//! Parser for implementing virtual terminal emulators //! //! [`Parser`] is implemented according to [Paul Williams' ANSI parser //! state machine]. The state machine doesn't assign meaning to the parsed data //! and is thus not itself sufficient for writing a terminal emulator. Instead, //! it is expected that an implementation of [`Perform`] is provided which does //! something useful with the parsed data. The [`Parser`] handles the book //! keeping, and the [`Perform`] gets to simply handle actions. //! //! # Examples //! //! For an example of using the [`Parser`] please see the examples folder. The example included //! there simply logs all the actions [`Perform`] does. One quick thing to see it in action is to //! pipe `vim` into it //! //! ```sh //! cargo build --release --example parselog //! vim | target/release/examples/parselog //! ``` //! //! Just type `:q` to exit. //! //! # Differences from original state machine description //! //! * UTF-8 Support for Input //! * OSC Strings can be terminated by 0x07 //! * Only supports 7-bit codes. Some 8-bit codes are still supported, but they no longer work in //! all states. //! //! [`Parser`]: struct.Parser.html //! [`Perform`]: trait.Perform.html //! [Paul Williams' ANSI parser state machine]: https://vt100.net/emu/dec_ansi_parser #![deny(clippy::all, clippy::if_not_else, clippy::enum_glob_use, clippy::wrong_pub_self_convention)] #![cfg_attr(all(feature = "nightly", test), feature(test))] #![cfg_attr(feature = "no_std", no_std)] use core::mem::MaybeUninit; #[cfg(feature = "no_std")] use arrayvec::ArrayVec; use utf8parse as utf8; mod definitions; mod params; mod table; pub use params::{Params, ParamsIter}; use definitions::{unpack, Action, State}; const MAX_INTERMEDIATES: usize = 2; const MAX_OSC_PARAMS: usize = 16; #[cfg(any(feature = "no_std", test))] const MAX_OSC_RAW: usize = 1024; struct VtUtf8Receiver<'a, P: Perform>(&'a mut P, &'a mut State); impl<'a, P: Perform> utf8::Receiver for VtUtf8Receiver<'a, P> { fn codepoint(&mut self, c: char) { self.0.print(c); *self.1 = State::Ground; } fn invalid_sequence(&mut self) { self.0.print('�'); *self.1 = State::Ground; } } /// Parser for raw _VTE_ protocol which delegates actions to a [`Perform`] /// /// [`Perform`]: trait.Perform.html #[derive(Default)] pub struct Parser { state: State, intermediates: [u8; MAX_INTERMEDIATES], intermediate_idx: usize, params: Params, param: u16, #[cfg(feature = "no_std")] osc_raw: ArrayVec<[u8; MAX_OSC_RAW]>, #[cfg(not(feature = "no_std"))] osc_raw: Vec, osc_params: [(usize, usize); MAX_OSC_PARAMS], osc_num_params: usize, ignoring: bool, utf8_parser: utf8::Parser, } impl Parser { /// Create a new Parser pub fn new() -> Parser { Parser::default() } #[inline] fn params(&self) -> &Params { &self.params } #[inline] fn intermediates(&self) -> &[u8] { &self.intermediates[..self.intermediate_idx] } /// Advance the parser state /// /// Requires a [`Perform`] in case `byte` triggers an action /// /// [`Perform`]: trait.Perform.html #[inline] pub fn advance(&mut self, performer: &mut P, byte: u8) { // Utf8 characters are handled out-of-band. if let State::Utf8 = self.state { self.process_utf8(performer, byte); return; } // Handle state changes in the anywhere state before evaluating changes // for current state. let mut change = table::STATE_CHANGES[State::Anywhere as usize][byte as usize]; if change == 0 { change = table::STATE_CHANGES[self.state as usize][byte as usize]; } // Unpack into a state and action let (state, action) = unpack(change); self.perform_state_change(performer, state, action, byte); } #[inline] fn process_utf8

(&mut self, performer: &mut P, byte: u8) where P: Perform, { let mut receiver = VtUtf8Receiver(performer, &mut self.state); let utf8_parser = &mut self.utf8_parser; utf8_parser.advance(&mut receiver, byte); } #[inline] fn perform_state_change

(&mut self, performer: &mut P, state: State, action: Action, byte: u8) where P: Perform, { macro_rules! maybe_action { ($action:expr, $arg:expr) => { match $action { Action::None => (), action => { self.perform_action(performer, action, $arg); }, } }; } match state { State::Anywhere => { // Just run the action self.perform_action(performer, action, byte); }, state => { match self.state { State::DcsPassthrough => { self.perform_action(performer, Action::Unhook, byte); }, State::OscString => { self.perform_action(performer, Action::OscEnd, byte); }, _ => (), } maybe_action!(action, byte); match state { State::CsiEntry | State::DcsEntry | State::Escape => { self.perform_action(performer, Action::Clear, byte); }, State::DcsPassthrough => { self.perform_action(performer, Action::Hook, byte); }, State::OscString => { self.perform_action(performer, Action::OscStart, byte); }, _ => (), } // Assume the new state self.state = state; }, } } /// Separate method for osc_dispatch that borrows self as read-only /// /// The aliasing is needed here for multiple slices into self.osc_raw #[inline] fn osc_dispatch(&self, performer: &mut P, byte: u8) { let mut slices: [MaybeUninit<&[u8]>; MAX_OSC_PARAMS] = unsafe { MaybeUninit::uninit().assume_init() }; for (i, slice) in slices.iter_mut().enumerate().take(self.osc_num_params) { let indices = self.osc_params[i]; *slice = MaybeUninit::new(&self.osc_raw[indices.0..indices.1]); } unsafe { let num_params = self.osc_num_params; let params = &slices[..num_params] as *const [MaybeUninit<&[u8]>] as *const [&[u8]]; performer.osc_dispatch(&*params, byte == 0x07); } } #[inline] fn perform_action(&mut self, performer: &mut P, action: Action, byte: u8) { match action { Action::Print => performer.print(byte as char), Action::Execute => performer.execute(byte), Action::Hook => { if self.params.is_full() { self.ignoring = true; } else { self.params.push(self.param); } performer.hook(self.params(), self.intermediates(), self.ignoring, byte as char); }, Action::Put => performer.put(byte), Action::OscStart => { self.osc_raw.clear(); self.osc_num_params = 0; }, Action::OscPut => { #[cfg(feature = "no_std")] { if self.osc_raw.is_full() { return; } } let idx = self.osc_raw.len(); // Param separator if byte == b';' { let param_idx = self.osc_num_params; match param_idx { // Only process up to MAX_OSC_PARAMS MAX_OSC_PARAMS => return, // First param is special - 0 to current byte index 0 => { self.osc_params[param_idx] = (0, idx); }, // All other params depend on previous indexing _ => { let prev = self.osc_params[param_idx - 1]; let begin = prev.1; self.osc_params[param_idx] = (begin, idx); }, } self.osc_num_params += 1; } else { self.osc_raw.push(byte); } }, Action::OscEnd => { let param_idx = self.osc_num_params; let idx = self.osc_raw.len(); match param_idx { // Finish last parameter if not already maxed MAX_OSC_PARAMS => (), // First param is special - 0 to current byte index 0 => { self.osc_params[param_idx] = (0, idx); self.osc_num_params += 1; }, // All other params depend on previous indexing _ => { let prev = self.osc_params[param_idx - 1]; let begin = prev.1; self.osc_params[param_idx] = (begin, idx); self.osc_num_params += 1; }, } self.osc_dispatch(performer, byte); }, Action::Unhook => performer.unhook(), Action::CsiDispatch => { if self.params.is_full() { self.ignoring = true; } else { self.params.push(self.param); } performer.csi_dispatch( self.params(), self.intermediates(), self.ignoring, byte as char, ); }, Action::EscDispatch => { performer.esc_dispatch(self.intermediates(), self.ignoring, byte) }, Action::Collect => { if self.intermediate_idx == MAX_INTERMEDIATES { self.ignoring = true; } else { self.intermediates[self.intermediate_idx] = byte; self.intermediate_idx += 1; } }, Action::Param => { if self.params.is_full() { self.ignoring = true; return; } if byte == b';' { self.params.push(self.param); self.param = 0; } else if byte == b':' { self.params.extend(self.param); self.param = 0; } else { // Continue collecting bytes into param self.param = self.param.saturating_mul(10); self.param = self.param.saturating_add((byte - b'0') as u16); } }, Action::Clear => { // Reset everything on ESC/CSI/DCS entry self.intermediate_idx = 0; self.ignoring = false; self.param = 0; self.params.clear(); }, Action::BeginUtf8 => self.process_utf8(performer, byte), Action::Ignore => (), Action::None => (), } } } /// Performs actions requested by the Parser /// /// Actions in this case mean, for example, handling a CSI escape sequence describing cursor /// movement, or simply printing characters to the screen. /// /// The methods on this type correspond to actions described in /// http://vt100.net/emu/dec_ansi_parser. I've done my best to describe them in /// a useful way in my own words for completeness, but the site should be /// referenced if something isn't clear. If the site disappears at some point in /// the future, consider checking archive.org. pub trait Perform { /// Draw a character to the screen and update states. fn print(&mut self, _c: char) {} /// Execute a C0 or C1 control function. fn execute(&mut self, _byte: u8) {} /// Invoked when a final character arrives in first part of device control string. /// /// The control function should be determined from the private marker, final character, and /// execute with a parameter list. A handler should be selected for remaining characters in the /// string; the handler function should subsequently be called by `put` for every character in /// the control string. /// /// The `ignore` flag indicates that more than two intermediates arrived and /// subsequent characters were ignored. fn hook(&mut self, _params: &Params, _intermediates: &[u8], _ignore: bool, _action: char) {} /// Pass bytes as part of a device control string to the handle chosen in `hook`. C0 controls /// will also be passed to the handler. fn put(&mut self, _byte: u8) {} /// Called when a device control string is terminated. /// /// The previously selected handler should be notified that the DCS has /// terminated. fn unhook(&mut self) {} /// Dispatch an operating system command. fn osc_dispatch(&mut self, _params: &[&[u8]], _bell_terminated: bool) {} /// A final character has arrived for a CSI sequence /// /// The `ignore` flag indicates that either more than two intermediates arrived /// or the number of parameters exceeded the maximum supported length, /// and subsequent characters were ignored. fn csi_dispatch( &mut self, _params: &Params, _intermediates: &[u8], _ignore: bool, _action: char, ) { } /// The final character of an escape sequence has arrived. /// /// The `ignore` flag indicates that more than two intermediates arrived and /// subsequent characters were ignored. fn esc_dispatch(&mut self, _intermediates: &[u8], _ignore: bool, _byte: u8) {} } #[cfg(all(test, feature = "no_std"))] #[macro_use] extern crate std; #[cfg(test)] mod tests { use super::*; use std::string::String; use std::vec::Vec; static OSC_BYTES: &[u8] = &[ 0x1b, 0x5d, // Begin OSC b'2', b';', b'j', b'w', b'i', b'l', b'm', b'@', b'j', b'w', b'i', b'l', b'm', b'-', b'd', b'e', b's', b'k', b':', b' ', b'~', b'/', b'c', b'o', b'd', b'e', b'/', b'a', b'l', b'a', b'c', b'r', b'i', b't', b't', b'y', 0x07, // End OSC ]; #[derive(Default)] struct Dispatcher { dispatched: Vec, } #[derive(Debug, PartialEq, Eq)] enum Sequence { Osc(Vec>, bool), Csi(Vec>, Vec, bool, char), Esc(Vec, bool, u8), DcsHook(Vec>, Vec, bool, char), DcsPut(u8), DcsUnhook, } impl Perform for Dispatcher { fn osc_dispatch(&mut self, params: &[&[u8]], bell_terminated: bool) { let params = params.iter().map(|p| p.to_vec()).collect(); self.dispatched.push(Sequence::Osc(params, bell_terminated)); } fn csi_dispatch(&mut self, params: &Params, intermediates: &[u8], ignore: bool, c: char) { let params = params.iter().map(|subparam| subparam.to_vec()).collect(); let intermediates = intermediates.to_vec(); self.dispatched.push(Sequence::Csi(params, intermediates, ignore, c)); } fn esc_dispatch(&mut self, intermediates: &[u8], ignore: bool, byte: u8) { let intermediates = intermediates.to_vec(); self.dispatched.push(Sequence::Esc(intermediates, ignore, byte)); } fn hook(&mut self, params: &Params, intermediates: &[u8], ignore: bool, c: char) { let params = params.iter().map(|subparam| subparam.to_vec()).collect(); let intermediates = intermediates.to_vec(); self.dispatched.push(Sequence::DcsHook(params, intermediates, ignore, c)); } fn put(&mut self, byte: u8) { self.dispatched.push(Sequence::DcsPut(byte)); } fn unhook(&mut self) { self.dispatched.push(Sequence::DcsUnhook); } } #[test] fn parse_osc() { let mut dispatcher = Dispatcher::default(); let mut parser = Parser::new(); for byte in OSC_BYTES { parser.advance(&mut dispatcher, *byte); } assert_eq!(dispatcher.dispatched.len(), 1); match &dispatcher.dispatched[0] { Sequence::Osc(params, _) => { assert_eq!(params.len(), 2); assert_eq!(params[0], &OSC_BYTES[2..3]); assert_eq!(params[1], &OSC_BYTES[4..(OSC_BYTES.len() - 1)]); }, _ => panic!("expected osc sequence"), } } #[test] fn parse_empty_osc() { let mut dispatcher = Dispatcher::default(); let mut parser = Parser::new(); for byte in &[0x1b, 0x5d, 0x07] { parser.advance(&mut dispatcher, *byte); } assert_eq!(dispatcher.dispatched.len(), 1); match &dispatcher.dispatched[0] { Sequence::Osc(..) => (), _ => panic!("expected osc sequence"), } } #[test] fn parse_osc_max_params() { let params = std::iter::repeat(";").take(params::MAX_PARAMS + 1).collect::(); let input = format!("\x1b]{}\x1b", ¶ms[..]).into_bytes(); let mut dispatcher = Dispatcher::default(); let mut parser = Parser::new(); for byte in input { parser.advance(&mut dispatcher, byte); } assert_eq!(dispatcher.dispatched.len(), 1); match &dispatcher.dispatched[0] { Sequence::Osc(params, _) => { assert_eq!(params.len(), MAX_OSC_PARAMS); assert!(params.iter().all(Vec::is_empty)); }, _ => panic!("expected osc sequence"), } } #[test] fn osc_bell_terminated() { static INPUT: &[u8] = b"\x1b]11;ff/00/ff\x07"; let mut dispatcher = Dispatcher::default(); let mut parser = Parser::new(); for byte in INPUT { parser.advance(&mut dispatcher, *byte); } assert_eq!(dispatcher.dispatched.len(), 1); match &dispatcher.dispatched[0] { Sequence::Osc(_, true) => (), _ => panic!("expected osc with bell terminator"), } } #[test] fn osc_c0_st_terminated() { static INPUT: &[u8] = b"\x1b]11;ff/00/ff\x1b\\"; let mut dispatcher = Dispatcher::default(); let mut parser = Parser::new(); for byte in INPUT { parser.advance(&mut dispatcher, *byte); } assert_eq!(dispatcher.dispatched.len(), 2); match &dispatcher.dispatched[0] { Sequence::Osc(_, false) => (), _ => panic!("expected osc with ST terminator"), } } #[test] fn parse_osc_with_utf8_arguments() { static INPUT: &[u8] = &[ 0x0d, 0x1b, 0x5d, 0x32, 0x3b, 0x65, 0x63, 0x68, 0x6f, 0x20, 0x27, 0xc2, 0xaf, 0x5c, 0x5f, 0x28, 0xe3, 0x83, 0x84, 0x29, 0x5f, 0x2f, 0xc2, 0xaf, 0x27, 0x20, 0x26, 0x26, 0x20, 0x73, 0x6c, 0x65, 0x65, 0x70, 0x20, 0x31, 0x07, ]; let mut dispatcher = Dispatcher::default(); let mut parser = Parser::new(); for byte in INPUT { parser.advance(&mut dispatcher, *byte); } assert_eq!(dispatcher.dispatched.len(), 1); match &dispatcher.dispatched[0] { Sequence::Osc(params, _) => { assert_eq!(params[0], &[b'2']); assert_eq!(params[1], &INPUT[5..(INPUT.len() - 1)]); }, _ => panic!("expected osc sequence"), } } #[test] fn osc_containing_string_terminator() { static INPUT: &[u8] = b"\x1b]2;\xe6\x9c\xab\x1b\\"; let mut dispatcher = Dispatcher::default(); let mut parser = Parser::new(); for byte in INPUT { parser.advance(&mut dispatcher, *byte); } assert_eq!(dispatcher.dispatched.len(), 2); match &dispatcher.dispatched[0] { Sequence::Osc(params, _) => { assert_eq!(params[1], &INPUT[4..(INPUT.len() - 2)]); }, _ => panic!("expected osc sequence"), } } #[test] fn exceed_max_buffer_size() { static NUM_BYTES: usize = MAX_OSC_RAW + 100; static INPUT_START: &[u8] = &[0x1b, b']', b'5', b'2', b';', b's']; static INPUT_END: &[u8] = &[b'\x07']; let mut dispatcher = Dispatcher::default(); let mut parser = Parser::new(); // Create valid OSC escape for byte in INPUT_START { parser.advance(&mut dispatcher, *byte); } // Exceed max buffer size for _ in 0..NUM_BYTES { parser.advance(&mut dispatcher, b'a'); } // Terminate escape for dispatch for byte in INPUT_END { parser.advance(&mut dispatcher, *byte); } assert_eq!(dispatcher.dispatched.len(), 1); match &dispatcher.dispatched[0] { Sequence::Osc(params, _) => { assert_eq!(params.len(), 2); assert_eq!(params[0], b"52"); #[cfg(not(feature = "no_std"))] assert_eq!(params[1].len(), NUM_BYTES + INPUT_END.len()); #[cfg(feature = "no_std")] assert_eq!(params[1].len(), MAX_OSC_RAW - params[0].len()); }, _ => panic!("expected osc sequence"), } } #[test] fn parse_csi_max_params() { // This will build a list of repeating '1;'s // The length is MAX_PARAMS - 1 because the last semicolon is interpreted // as an implicit zero, making the total number of parameters MAX_PARAMS let params = std::iter::repeat("1;").take(params::MAX_PARAMS - 1).collect::(); let input = format!("\x1b[{}p", ¶ms[..]).into_bytes(); let mut dispatcher = Dispatcher::default(); let mut parser = Parser::new(); for byte in input { parser.advance(&mut dispatcher, byte); } assert_eq!(dispatcher.dispatched.len(), 1); match &dispatcher.dispatched[0] { Sequence::Csi(params, _, ignore, _) => { assert_eq!(params.len(), params::MAX_PARAMS); assert!(!ignore); }, _ => panic!("expected csi sequence"), } } #[test] fn parse_csi_params_ignore_long_params() { // This will build a list of repeating '1;'s // The length is MAX_PARAMS because the last semicolon is interpreted // as an implicit zero, making the total number of parameters MAX_PARAMS + 1 let params = std::iter::repeat("1;").take(params::MAX_PARAMS).collect::(); let input = format!("\x1b[{}p", ¶ms[..]).into_bytes(); let mut dispatcher = Dispatcher::default(); let mut parser = Parser::new(); for byte in input { parser.advance(&mut dispatcher, byte); } assert_eq!(dispatcher.dispatched.len(), 1); match &dispatcher.dispatched[0] { Sequence::Csi(params, _, ignore, _) => { assert_eq!(params.len(), params::MAX_PARAMS); assert!(ignore); }, _ => panic!("expected csi sequence"), } } #[test] fn parse_csi_params_trailing_semicolon() { let mut dispatcher = Dispatcher::default(); let mut parser = Parser::new(); for byte in b"\x1b[4;m" { parser.advance(&mut dispatcher, *byte); } assert_eq!(dispatcher.dispatched.len(), 1); match &dispatcher.dispatched[0] { Sequence::Csi(params, ..) => assert_eq!(params, &[[4], [0]]), _ => panic!("expected csi sequence"), } } #[test] fn parse_csi_params_leading_semicolon() { // Create dispatcher and check state let mut dispatcher = Dispatcher::default(); let mut parser = Parser::new(); for byte in b"\x1b[;4m" { parser.advance(&mut dispatcher, *byte); } assert_eq!(dispatcher.dispatched.len(), 1); match &dispatcher.dispatched[0] { Sequence::Csi(params, ..) => assert_eq!(params, &[[0], [4]]), _ => panic!("expected csi sequence"), } } #[test] fn parse_long_csi_param() { // The important part is the parameter, which is (i64::MAX + 1) static INPUT: &[u8] = b"\x1b[9223372036854775808m"; let mut dispatcher = Dispatcher::default(); let mut parser = Parser::new(); for byte in INPUT { parser.advance(&mut dispatcher, *byte); } assert_eq!(dispatcher.dispatched.len(), 1); match &dispatcher.dispatched[0] { Sequence::Csi(params, ..) => assert_eq!(params, &[[std::u16::MAX as u16]]), _ => panic!("expected csi sequence"), } } #[test] fn csi_reset() { static INPUT: &[u8] = b"\x1b[3;1\x1b[?1049h"; let mut dispatcher = Dispatcher::default(); let mut parser = Parser::new(); for byte in INPUT { parser.advance(&mut dispatcher, *byte); } assert_eq!(dispatcher.dispatched.len(), 1); match &dispatcher.dispatched[0] { Sequence::Csi(params, intermediates, ignore, _) => { assert_eq!(intermediates, &[b'?']); assert_eq!(params, &[[1049]]); assert!(!ignore); }, _ => panic!("expected csi sequence"), } } #[test] fn csi_subparameters() { static INPUT: &[u8] = b"\x1b[38:2:255:0:255;1m"; let mut dispatcher = Dispatcher::default(); let mut parser = Parser::new(); for byte in INPUT { parser.advance(&mut dispatcher, *byte); } assert_eq!(dispatcher.dispatched.len(), 1); match &dispatcher.dispatched[0] { Sequence::Csi(params, intermediates, ignore, _) => { assert_eq!(params, &[vec![38, 2, 255, 0, 255], vec![1]]); assert_eq!(intermediates, &[]); assert!(!ignore); }, _ => panic!("expected csi sequence"), } } #[test] fn parse_dcs_max_params() { let params = std::iter::repeat("1;").take(params::MAX_PARAMS + 1).collect::(); let input = format!("\x1bP{}p", ¶ms[..]).into_bytes(); let mut dispatcher = Dispatcher::default(); let mut parser = Parser::new(); for byte in input { parser.advance(&mut dispatcher, byte); } assert_eq!(dispatcher.dispatched.len(), 1); match &dispatcher.dispatched[0] { Sequence::DcsHook(params, _, ignore, _) => { assert_eq!(params.len(), params::MAX_PARAMS); assert!(params.iter().all(|param| param == &[1])); assert!(ignore); }, _ => panic!("expected dcs sequence"), } } #[test] fn dcs_reset() { static INPUT: &[u8] = b"\x1b[3;1\x1bP1$tx\x9c"; let mut dispatcher = Dispatcher::default(); let mut parser = Parser::new(); for byte in INPUT { parser.advance(&mut dispatcher, *byte); } assert_eq!(dispatcher.dispatched.len(), 3); match &dispatcher.dispatched[0] { Sequence::DcsHook(params, intermediates, ignore, _) => { assert_eq!(intermediates, &[b'$']); assert_eq!(params, &[[1]]); assert!(!ignore); }, _ => panic!("expected dcs sequence"), } assert_eq!(dispatcher.dispatched[1], Sequence::DcsPut(b'x')); assert_eq!(dispatcher.dispatched[2], Sequence::DcsUnhook); } #[test] fn parse_dcs() { static INPUT: &[u8] = b"\x1bP0;1|17/ab\x9c"; let mut dispatcher = Dispatcher::default(); let mut parser = Parser::new(); for byte in INPUT { parser.advance(&mut dispatcher, *byte); } assert_eq!(dispatcher.dispatched.len(), 7); match &dispatcher.dispatched[0] { Sequence::DcsHook(params, _, _, c) => { assert_eq!(params, &[[0], [1]]); assert_eq!(c, &'|'); }, _ => panic!("expected dcs sequence"), } for (i, byte) in b"17/ab".iter().enumerate() { assert_eq!(dispatcher.dispatched[1 + i], Sequence::DcsPut(*byte)); } assert_eq!(dispatcher.dispatched[6], Sequence::DcsUnhook); } #[test] fn intermediate_reset_on_dcs_exit() { static INPUT: &[u8] = b"\x1bP=1sZZZ\x1b+\x5c"; let mut dispatcher = Dispatcher::default(); let mut parser = Parser::new(); for byte in INPUT { parser.advance(&mut dispatcher, *byte); } assert_eq!(dispatcher.dispatched.len(), 6); match &dispatcher.dispatched[5] { Sequence::Esc(intermediates, ..) => assert_eq!(intermediates, &[b'+']), _ => panic!("expected esc sequence"), } } #[test] fn esc_reset() { static INPUT: &[u8] = b"\x1b[3;1\x1b(A"; let mut dispatcher = Dispatcher::default(); let mut parser = Parser::new(); for byte in INPUT { parser.advance(&mut dispatcher, *byte); } assert_eq!(dispatcher.dispatched.len(), 1); match &dispatcher.dispatched[0] { Sequence::Esc(intermediates, ignore, byte) => { assert_eq!(intermediates, &[b'(']); assert_eq!(*byte, b'A'); assert!(!ignore); }, _ => panic!("expected esc sequence"), } } } #[cfg(all(feature = "nightly", test))] mod bench { extern crate std; extern crate test; use super::*; use test::{black_box, Bencher}; static VTE_DEMO: &[u8] = include_bytes!("../tests/demo.vte"); struct BenchDispatcher; impl Perform for BenchDispatcher { fn print(&mut self, c: char) { black_box(c); } fn execute(&mut self, byte: u8) { black_box(byte); } fn hook(&mut self, params: &Params, intermediates: &[u8], ignore: bool, c: char) { black_box((params, intermediates, ignore, c)); } fn put(&mut self, byte: u8) { black_box(byte); } fn osc_dispatch(&mut self, params: &[&[u8]], bell_terminated: bool) { black_box((params, bell_terminated)); } fn csi_dispatch(&mut self, params: &Params, intermediates: &[u8], ignore: bool, c: char) { black_box((params, intermediates, ignore, c)); } fn esc_dispatch(&mut self, intermediates: &[u8], ignore: bool, byte: u8) { black_box((intermediates, ignore, byte)); } } #[bench] fn testfile(b: &mut Bencher) { b.iter(|| { let mut dispatcher = BenchDispatcher; let mut parser = Parser::new(); for byte in VTE_DEMO { parser.advance(&mut dispatcher, *byte); } }); } #[bench] fn state_changes(b: &mut Bencher) { let input = b"\x1b]2;X\x1b\\ \x1b[0m \x1bP0@\x1b\\"; b.iter(|| { let mut dispatcher = BenchDispatcher; let mut parser = Parser::new(); for _ in 0..1_000 { for byte in input { parser.advance(&mut dispatcher, *byte); } } }); } }