1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
|
use crate::{CtChoice, Limb, Uint, Word};
impl<const LIMBS: usize> Uint<LIMBS> {
/// Returns `true` if the bit at position `index` is set, `false` otherwise.
#[inline(always)]
pub const fn bit_vartime(&self, index: usize) -> bool {
if index >= Self::BITS {
false
} else {
(self.limbs[index / Limb::BITS].0 >> (index % Limb::BITS)) & 1 == 1
}
}
/// Calculate the number of bits needed to represent this number.
#[allow(trivial_numeric_casts)]
pub const fn bits_vartime(&self) -> usize {
let mut i = LIMBS - 1;
while i > 0 && self.limbs[i].0 == 0 {
i -= 1;
}
let limb = self.limbs[i].0;
Limb::BITS * (i + 1) - limb.leading_zeros() as usize
}
/// Calculate the number of leading zeros in the binary representation of this number.
pub const fn leading_zeros(&self) -> usize {
let limbs = self.as_limbs();
let mut count: Word = 0;
let mut i = LIMBS;
let mut nonzero_limb_not_encountered = CtChoice::TRUE;
while i > 0 {
i -= 1;
let l = limbs[i];
let z = l.leading_zeros() as Word;
count += nonzero_limb_not_encountered.if_true(z);
nonzero_limb_not_encountered =
nonzero_limb_not_encountered.and(l.ct_is_nonzero().not());
}
count as usize
}
/// Calculate the number of trailing zeros in the binary representation of this number.
pub const fn trailing_zeros(&self) -> usize {
let limbs = self.as_limbs();
let mut count: Word = 0;
let mut i = 0;
let mut nonzero_limb_not_encountered = CtChoice::TRUE;
while i < LIMBS {
let l = limbs[i];
let z = l.trailing_zeros() as Word;
count += nonzero_limb_not_encountered.if_true(z);
nonzero_limb_not_encountered =
nonzero_limb_not_encountered.and(l.ct_is_nonzero().not());
i += 1;
}
count as usize
}
/// Calculate the number of bits needed to represent this number.
pub const fn bits(&self) -> usize {
Self::BITS - self.leading_zeros()
}
/// Get the value of the bit at position `index`, as a truthy or falsy `CtChoice`.
/// Returns the falsy value for indices out of range.
pub const fn bit(&self, index: usize) -> CtChoice {
let limb_num = index / Limb::BITS;
let index_in_limb = index % Limb::BITS;
let index_mask = 1 << index_in_limb;
let limbs = self.as_words();
let mut result: Word = 0;
let mut i = 0;
while i < LIMBS {
let bit = limbs[i] & index_mask;
let is_right_limb = CtChoice::from_usize_equality(i, limb_num);
result |= is_right_limb.if_true(bit);
i += 1;
}
CtChoice::from_lsb(result >> index_in_limb)
}
/// Sets the bit at `index` to 0 or 1 depending on the value of `bit_value`.
pub(crate) const fn set_bit(self, index: usize, bit_value: CtChoice) -> Self {
let mut result = self;
let limb_num = index / Limb::BITS;
let index_in_limb = index % Limb::BITS;
let index_mask = 1 << index_in_limb;
let mut i = 0;
while i < LIMBS {
let is_right_limb = CtChoice::from_usize_equality(i, limb_num);
let old_limb = result.limbs[i].0;
let new_limb = bit_value.select(old_limb & !index_mask, old_limb | index_mask);
result.limbs[i] = Limb(is_right_limb.select(old_limb, new_limb));
i += 1;
}
result
}
}
#[cfg(test)]
mod tests {
use crate::{CtChoice, U256};
fn uint_with_bits_at(positions: &[usize]) -> U256 {
let mut result = U256::ZERO;
for pos in positions {
result |= U256::ONE << *pos;
}
result
}
#[test]
fn bit_vartime() {
let u = uint_with_bits_at(&[16, 48, 112, 127, 255]);
assert!(!u.bit_vartime(0));
assert!(!u.bit_vartime(1));
assert!(u.bit_vartime(16));
assert!(u.bit_vartime(127));
assert!(u.bit_vartime(255));
assert!(!u.bit_vartime(256));
assert!(!u.bit_vartime(260));
}
#[test]
fn bit() {
let u = uint_with_bits_at(&[16, 48, 112, 127, 255]);
assert!(!u.bit(0).is_true_vartime());
assert!(!u.bit(1).is_true_vartime());
assert!(u.bit(16).is_true_vartime());
assert!(u.bit(127).is_true_vartime());
assert!(u.bit(255).is_true_vartime());
assert!(!u.bit(256).is_true_vartime());
assert!(!u.bit(260).is_true_vartime());
}
#[test]
fn leading_zeros() {
let u = uint_with_bits_at(&[256 - 16, 256 - 79, 256 - 207]);
assert_eq!(u.leading_zeros() as u32, 15);
let u = uint_with_bits_at(&[256 - 79, 256 - 207]);
assert_eq!(u.leading_zeros() as u32, 78);
let u = uint_with_bits_at(&[256 - 207]);
assert_eq!(u.leading_zeros() as u32, 206);
let u = uint_with_bits_at(&[256 - 1, 256 - 75, 256 - 150]);
assert_eq!(u.leading_zeros() as u32, 0);
let u = U256::ZERO;
assert_eq!(u.leading_zeros() as u32, 256);
}
#[test]
fn trailing_zeros() {
let u = uint_with_bits_at(&[16, 79, 150]);
assert_eq!(u.trailing_zeros() as u32, 16);
let u = uint_with_bits_at(&[79, 150]);
assert_eq!(u.trailing_zeros() as u32, 79);
let u = uint_with_bits_at(&[150, 207]);
assert_eq!(u.trailing_zeros() as u32, 150);
let u = uint_with_bits_at(&[0, 150, 207]);
assert_eq!(u.trailing_zeros() as u32, 0);
let u = U256::ZERO;
assert_eq!(u.trailing_zeros() as u32, 256);
}
#[test]
fn set_bit() {
let u = uint_with_bits_at(&[16, 79, 150]);
assert_eq!(
u.set_bit(127, CtChoice::TRUE),
uint_with_bits_at(&[16, 79, 127, 150])
);
let u = uint_with_bits_at(&[16, 79, 150]);
assert_eq!(
u.set_bit(150, CtChoice::TRUE),
uint_with_bits_at(&[16, 79, 150])
);
let u = uint_with_bits_at(&[16, 79, 150]);
assert_eq!(
u.set_bit(127, CtChoice::FALSE),
uint_with_bits_at(&[16, 79, 150])
);
let u = uint_with_bits_at(&[16, 79, 150]);
assert_eq!(
u.set_bit(150, CtChoice::FALSE),
uint_with_bits_at(&[16, 79])
);
}
}
|