1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
|
//! Const-friendly decoding operations for [`Uint`]
#[cfg(all(feature = "der", feature = "generic-array"))]
mod der;
#[cfg(feature = "rlp")]
mod rlp;
use super::Uint;
use crate::{Encoding, Limb, Word};
impl<const LIMBS: usize> Uint<LIMBS> {
/// Create a new [`Uint`] from the provided big endian bytes.
pub const fn from_be_slice(bytes: &[u8]) -> Self {
assert!(
bytes.len() == Limb::BYTES * LIMBS,
"bytes are not the expected size"
);
let mut res = [Limb::ZERO; LIMBS];
let mut buf = [0u8; Limb::BYTES];
let mut i = 0;
while i < LIMBS {
let mut j = 0;
while j < Limb::BYTES {
buf[j] = bytes[i * Limb::BYTES + j];
j += 1;
}
res[LIMBS - i - 1] = Limb(Word::from_be_bytes(buf));
i += 1;
}
Uint::new(res)
}
/// Create a new [`Uint`] from the provided big endian hex string.
pub const fn from_be_hex(hex: &str) -> Self {
let bytes = hex.as_bytes();
assert!(
bytes.len() == Limb::BYTES * LIMBS * 2,
"hex string is not the expected size"
);
let mut res = [Limb::ZERO; LIMBS];
let mut buf = [0u8; Limb::BYTES];
let mut i = 0;
let mut err = 0;
while i < LIMBS {
let mut j = 0;
while j < Limb::BYTES {
let offset = (i * Limb::BYTES + j) * 2;
let (result, byte_err) = decode_hex_byte([bytes[offset], bytes[offset + 1]]);
err |= byte_err;
buf[j] = result;
j += 1;
}
res[LIMBS - i - 1] = Limb(Word::from_be_bytes(buf));
i += 1;
}
assert!(err == 0, "invalid hex byte");
Uint::new(res)
}
/// Create a new [`Uint`] from the provided little endian bytes.
pub const fn from_le_slice(bytes: &[u8]) -> Self {
assert!(
bytes.len() == Limb::BYTES * LIMBS,
"bytes are not the expected size"
);
let mut res = [Limb::ZERO; LIMBS];
let mut buf = [0u8; Limb::BYTES];
let mut i = 0;
while i < LIMBS {
let mut j = 0;
while j < Limb::BYTES {
buf[j] = bytes[i * Limb::BYTES + j];
j += 1;
}
res[i] = Limb(Word::from_le_bytes(buf));
i += 1;
}
Uint::new(res)
}
/// Create a new [`Uint`] from the provided little endian hex string.
pub const fn from_le_hex(hex: &str) -> Self {
let bytes = hex.as_bytes();
assert!(
bytes.len() == Limb::BYTES * LIMBS * 2,
"bytes are not the expected size"
);
let mut res = [Limb::ZERO; LIMBS];
let mut buf = [0u8; Limb::BYTES];
let mut i = 0;
let mut err = 0;
while i < LIMBS {
let mut j = 0;
while j < Limb::BYTES {
let offset = (i * Limb::BYTES + j) * 2;
let (result, byte_err) = decode_hex_byte([bytes[offset], bytes[offset + 1]]);
err |= byte_err;
buf[j] = result;
j += 1;
}
res[i] = Limb(Word::from_le_bytes(buf));
i += 1;
}
assert!(err == 0, "invalid hex byte");
Uint::new(res)
}
/// Serialize this [`Uint`] as big-endian, writing it into the provided
/// byte slice.
#[inline]
pub(crate) fn write_be_bytes(&self, out: &mut [u8]) {
debug_assert_eq!(out.len(), Limb::BYTES * LIMBS);
for (src, dst) in self
.limbs
.iter()
.rev()
.cloned()
.zip(out.chunks_exact_mut(Limb::BYTES))
{
dst.copy_from_slice(&src.to_be_bytes());
}
}
/// Serialize this [`Uint`] as little-endian, writing it into the provided
/// byte slice.
#[inline]
pub(crate) fn write_le_bytes(&self, out: &mut [u8]) {
debug_assert_eq!(out.len(), Limb::BYTES * LIMBS);
for (src, dst) in self
.limbs
.iter()
.cloned()
.zip(out.chunks_exact_mut(Limb::BYTES))
{
dst.copy_from_slice(&src.to_le_bytes());
}
}
}
/// Decode a single nibble of upper or lower hex
#[inline(always)]
const fn decode_nibble(src: u8) -> u16 {
let byte = src as i16;
let mut ret: i16 = -1;
// 0-9 0x30-0x39
// if (byte > 0x2f && byte < 0x3a) ret += byte - 0x30 + 1; // -47
ret += (((0x2fi16 - byte) & (byte - 0x3a)) >> 8) & (byte - 47);
// A-F 0x41-0x46
// if (byte > 0x40 && byte < 0x47) ret += byte - 0x41 + 10 + 1; // -54
ret += (((0x40i16 - byte) & (byte - 0x47)) >> 8) & (byte - 54);
// a-f 0x61-0x66
// if (byte > 0x60 && byte < 0x67) ret += byte - 0x61 + 10 + 1; // -86
ret += (((0x60i16 - byte) & (byte - 0x67)) >> 8) & (byte - 86);
ret as u16
}
/// Decode a single byte encoded as two hexadecimal characters.
/// Second element of the tuple is non-zero if the `bytes` values are not in the valid range
/// (0-9, a-z, A-Z).
#[inline(always)]
const fn decode_hex_byte(bytes: [u8; 2]) -> (u8, u16) {
let hi = decode_nibble(bytes[0]);
let lo = decode_nibble(bytes[1]);
let byte = (hi << 4) | lo;
let err = byte >> 8;
let result = byte as u8;
(result, err)
}
#[cfg(test)]
mod tests {
use crate::Limb;
use hex_literal::hex;
#[cfg(feature = "alloc")]
use {crate::U128, alloc::format};
#[cfg(target_pointer_width = "32")]
use crate::U64 as UintEx;
#[cfg(target_pointer_width = "64")]
use crate::U128 as UintEx;
#[test]
#[cfg(target_pointer_width = "32")]
fn from_be_slice() {
let bytes = hex!("0011223344556677");
let n = UintEx::from_be_slice(&bytes);
assert_eq!(n.as_limbs(), &[Limb(0x44556677), Limb(0x00112233)]);
}
#[test]
#[cfg(target_pointer_width = "64")]
fn from_be_slice() {
let bytes = hex!("00112233445566778899aabbccddeeff");
let n = UintEx::from_be_slice(&bytes);
assert_eq!(
n.as_limbs(),
&[Limb(0x8899aabbccddeeff), Limb(0x0011223344556677)]
);
}
#[test]
#[cfg(target_pointer_width = "32")]
fn from_le_slice() {
let bytes = hex!("7766554433221100");
let n = UintEx::from_le_slice(&bytes);
assert_eq!(n.as_limbs(), &[Limb(0x44556677), Limb(0x00112233)]);
}
#[test]
#[cfg(target_pointer_width = "64")]
fn from_le_slice() {
let bytes = hex!("ffeeddccbbaa99887766554433221100");
let n = UintEx::from_le_slice(&bytes);
assert_eq!(
n.as_limbs(),
&[Limb(0x8899aabbccddeeff), Limb(0x0011223344556677)]
);
}
#[test]
#[cfg(target_pointer_width = "32")]
fn from_be_hex() {
let n = UintEx::from_be_hex("0011223344556677");
assert_eq!(n.as_limbs(), &[Limb(0x44556677), Limb(0x00112233)]);
}
#[test]
#[cfg(target_pointer_width = "64")]
fn from_be_hex() {
let n = UintEx::from_be_hex("00112233445566778899aabbccddeeff");
assert_eq!(
n.as_limbs(),
&[Limb(0x8899aabbccddeeff), Limb(0x0011223344556677)]
);
}
#[test]
#[cfg(target_pointer_width = "32")]
fn from_le_hex() {
let n = UintEx::from_le_hex("7766554433221100");
assert_eq!(n.as_limbs(), &[Limb(0x44556677), Limb(0x00112233)]);
}
#[test]
#[cfg(target_pointer_width = "64")]
fn from_le_hex() {
let n = UintEx::from_le_hex("ffeeddccbbaa99887766554433221100");
assert_eq!(
n.as_limbs(),
&[Limb(0x8899aabbccddeeff), Limb(0x0011223344556677)]
);
}
#[cfg(feature = "alloc")]
#[test]
fn hex_upper() {
let hex = "AAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD";
let n = U128::from_be_hex(hex);
assert_eq!(hex, format!("{:X}", n));
}
#[cfg(feature = "alloc")]
#[test]
fn hex_lower() {
let hex = "aaaaaaaabbbbbbbbccccccccdddddddd";
let n = U128::from_be_hex(hex);
assert_eq!(hex, format!("{:x}", n));
}
}
|