diff options
Diffstat (limited to 'sourcestats.c')
-rw-r--r-- | sourcestats.c | 1041 |
1 files changed, 1041 insertions, 0 deletions
diff --git a/sourcestats.c b/sourcestats.c new file mode 100644 index 0000000..ce326e9 --- /dev/null +++ b/sourcestats.c @@ -0,0 +1,1041 @@ +/* + chronyd/chronyc - Programs for keeping computer clocks accurate. + + ********************************************************************** + * Copyright (C) Richard P. Curnow 1997-2003 + * Copyright (C) Miroslav Lichvar 2011-2014, 2016-2018, 2021 + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of version 2 of the GNU General Public License as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. + * + ********************************************************************** + + ======================================================================= + + This file contains the routines that do the statistical + analysis on the samples obtained from the sources, + to determined frequencies and error bounds. */ + +#include "config.h" + +#include "sysincl.h" + +#include "sourcestats.h" +#include "memory.h" +#include "regress.h" +#include "util.h" +#include "conf.h" +#include "logging.h" +#include "local.h" + +/* ================================================== */ +/* Define the maxumum number of samples that we want + to store per source */ +#define MAX_SAMPLES 64 + +/* This is the assumed worst case bound on an unknown frequency, + 2000ppm, which would be pretty bad */ +#define WORST_CASE_FREQ_BOUND (2000.0/1.0e6) + +/* The minimum and maximum assumed skew */ +#define MIN_SKEW 1.0e-12 +#define MAX_SKEW 1.0e+02 + +/* The minimum standard deviation */ +#define MIN_STDDEV 1.0e-9 + +/* The worst case bound on an unknown standard deviation of the offset */ +#define WORST_CASE_STDDEV_BOUND 4.0 + +/* The asymmetry of network jitter when all jitter is in one direction */ +#define MAX_ASYMMETRY 0.5 + +/* The minimum estimated asymmetry that can activate the offset correction */ +#define MIN_ASYMMETRY 0.45 + +/* The minimum number of consecutive asymmetries with the same sign needed + to activate the offset correction */ +#define MIN_ASYMMETRY_RUN 10 + +/* The maximum value of the counter */ +#define MAX_ASYMMETRY_RUN 1000 + +/* ================================================== */ + +static LOG_FileID logfileid; + +/* ================================================== */ +/* This data structure is used to hold the history of data from the + source */ + +struct SST_Stats_Record { + + /* Reference ID and IP address (NULL if not an NTP source) */ + uint32_t refid; + IPAddr *ip_addr; + + /* User defined minimum and maximum number of samples */ + int min_samples; + int max_samples; + + /* User defined minimum delay */ + double fixed_min_delay; + + /* User defined asymmetry of network jitter */ + double fixed_asymmetry; + + /* Number of samples currently stored. The samples are stored in circular + buffer. */ + int n_samples; + + /* Number of extra samples stored in sample_times, offsets and peer_delays + arrays that are used to extend the runs test */ + int runs_samples; + + /* The index of the newest sample */ + int last_sample; + + /* Flag indicating whether last regression was successful */ + int regression_ok; + + /* The best individual sample that we are holding, in terms of the minimum + root distance at the present time */ + int best_single_sample; + + /* The index of the sample with minimum delay in peer_delays */ + int min_delay_sample; + + /* This is the estimated offset (+ve => local fast) at a particular time */ + double estimated_offset; + double estimated_offset_sd; + struct timespec offset_time; + + /* Number of runs of the same sign amongst the residuals */ + int nruns; + + /* Number of consecutive estimated asymmetries with the same sign. + The sign of the number encodes the sign of the asymmetry. */ + int asymmetry_run; + + /* This is the latest estimated asymmetry of network jitter */ + double asymmetry; + + /* This value contains the estimated frequency. This is the number + of seconds that the local clock gains relative to the reference + source per unit local time. (Positive => local clock fast, + negative => local clock slow) */ + double estimated_frequency; + double estimated_frequency_sd; + + /* This is the assumed worst case bounds on the estimated frequency. + We assume that the true frequency lies within +/- half this much + about estimated_frequency */ + double skew; + + /* This is the estimated standard deviation of the data points */ + double std_dev; + + /* This array contains the sample epochs, in terms of the local + clock. */ + struct timespec sample_times[MAX_SAMPLES * REGRESS_RUNS_RATIO]; + + /* This is an array of offsets, in seconds, corresponding to the + sample times. In this module, we use the convention that + positive means the local clock is FAST of the source and negative + means it is SLOW. This is contrary to the convention in the NTP + stuff. */ + double offsets[MAX_SAMPLES * REGRESS_RUNS_RATIO]; + + /* This is an array of the offsets as originally measured. Local + clock fast of real time is indicated by positive values. This + array is not slewed to adjust the readings when we apply + adjustments to the local clock, as is done for the array + 'offset'. */ + double orig_offsets[MAX_SAMPLES]; + + /* This is an array of peer delays, in seconds, being the roundtrip + measurement delay to the peer */ + double peer_delays[MAX_SAMPLES * REGRESS_RUNS_RATIO]; + + /* This is an array of peer dispersions, being the skew and local + precision dispersion terms from sampling the peer */ + double peer_dispersions[MAX_SAMPLES]; + + /* This array contains the root delays of each sample, in seconds */ + double root_delays[MAX_SAMPLES]; + + /* This array contains the root dispersions of each sample at the + time of the measurements */ + double root_dispersions[MAX_SAMPLES]; +}; + +/* ================================================== */ + +static void find_min_delay_sample(SST_Stats inst); +static int get_buf_index(SST_Stats inst, int i); + +/* ================================================== */ + +void +SST_Initialise(void) +{ + logfileid = CNF_GetLogStatistics() ? LOG_FileOpen("statistics", + " Date (UTC) Time IP Address Std dev'n Est offset Offset sd Diff freq Est skew Stress Ns Bs Nr Asym") + : -1; +} + +/* ================================================== */ + +void +SST_Finalise(void) +{ +} + +/* ================================================== */ +/* This function creates a new instance of the statistics handler */ + +SST_Stats +SST_CreateInstance(uint32_t refid, IPAddr *addr, int min_samples, int max_samples, + double min_delay, double asymmetry) +{ + SST_Stats inst; + inst = MallocNew(struct SST_Stats_Record); + + inst->max_samples = max_samples > 0 ? CLAMP(1, max_samples, MAX_SAMPLES) : MAX_SAMPLES; + inst->min_samples = CLAMP(1, min_samples, inst->max_samples); + inst->fixed_min_delay = min_delay; + inst->fixed_asymmetry = asymmetry; + + SST_SetRefid(inst, refid, addr); + SST_ResetInstance(inst); + + return inst; +} + +/* ================================================== */ +/* This function deletes an instance of the statistics handler. */ + +void +SST_DeleteInstance(SST_Stats inst) +{ + Free(inst); +} + +/* ================================================== */ + +void +SST_ResetInstance(SST_Stats inst) +{ + inst->n_samples = 0; + inst->runs_samples = 0; + inst->last_sample = 0; + inst->regression_ok = 0; + inst->best_single_sample = 0; + inst->min_delay_sample = 0; + inst->estimated_frequency = 0; + inst->estimated_frequency_sd = WORST_CASE_FREQ_BOUND; + inst->skew = WORST_CASE_FREQ_BOUND; + inst->estimated_offset = 0.0; + inst->estimated_offset_sd = WORST_CASE_STDDEV_BOUND; + UTI_ZeroTimespec(&inst->offset_time); + inst->std_dev = WORST_CASE_STDDEV_BOUND; + inst->nruns = 0; + inst->asymmetry_run = 0; + inst->asymmetry = 0.0; +} + +/* ================================================== */ + +void +SST_SetRefid(SST_Stats inst, uint32_t refid, IPAddr *addr) +{ + inst->refid = refid; + inst->ip_addr = addr; +} + +/* ================================================== */ +/* This function is called to prune the register down when it is full. + For now, just discard the oldest sample. */ + +static void +prune_register(SST_Stats inst, int new_oldest) +{ + if (!new_oldest) + return; + + assert(inst->n_samples >= new_oldest); + inst->n_samples -= new_oldest; + inst->runs_samples += new_oldest; + if (inst->runs_samples > inst->n_samples * (REGRESS_RUNS_RATIO - 1)) + inst->runs_samples = inst->n_samples * (REGRESS_RUNS_RATIO - 1); + + assert(inst->n_samples + inst->runs_samples <= MAX_SAMPLES * REGRESS_RUNS_RATIO); + + find_min_delay_sample(inst); +} + +/* ================================================== */ + +void +SST_AccumulateSample(SST_Stats inst, NTP_Sample *sample) +{ + int n, m; + + /* Make room for the new sample */ + if (inst->n_samples > 0 && + (inst->n_samples == MAX_SAMPLES || inst->n_samples == inst->max_samples)) { + prune_register(inst, 1); + } + + /* Make sure it's newer than the last sample */ + if (inst->n_samples && + UTI_CompareTimespecs(&inst->sample_times[inst->last_sample], &sample->time) >= 0) { + LOG(LOGS_WARN, "Out of order sample detected, discarding history for %s", + inst->ip_addr ? UTI_IPToString(inst->ip_addr) : UTI_RefidToString(inst->refid)); + SST_ResetInstance(inst); + } + + n = inst->last_sample = (inst->last_sample + 1) % + (MAX_SAMPLES * REGRESS_RUNS_RATIO); + m = n % MAX_SAMPLES; + + /* WE HAVE TO NEGATE OFFSET IN THIS CALL, IT IS HERE THAT THE SENSE OF OFFSET + IS FLIPPED */ + inst->sample_times[n] = sample->time; + inst->offsets[n] = -sample->offset; + inst->orig_offsets[m] = -sample->offset; + inst->peer_delays[n] = sample->peer_delay; + inst->peer_dispersions[m] = sample->peer_dispersion; + inst->root_delays[m] = sample->root_delay; + inst->root_dispersions[m] = sample->root_dispersion; + + if (inst->peer_delays[n] < inst->fixed_min_delay) + inst->peer_delays[n] = 2.0 * inst->fixed_min_delay - inst->peer_delays[n]; + + if (!inst->n_samples || inst->peer_delays[n] < inst->peer_delays[inst->min_delay_sample]) + inst->min_delay_sample = n; + + ++inst->n_samples; +} + +/* ================================================== */ +/* Return index of the i-th sample in the sample_times and offset buffers, + i can be negative down to -runs_samples */ + +static int +get_runsbuf_index(SST_Stats inst, int i) +{ + return (unsigned int)(inst->last_sample + 2 * MAX_SAMPLES * REGRESS_RUNS_RATIO - + inst->n_samples + i + 1) % (MAX_SAMPLES * REGRESS_RUNS_RATIO); +} + +/* ================================================== */ +/* Return index of the i-th sample in the other buffers */ + +static int +get_buf_index(SST_Stats inst, int i) +{ + return (unsigned int)(inst->last_sample + MAX_SAMPLES * REGRESS_RUNS_RATIO - + inst->n_samples + i + 1) % MAX_SAMPLES; +} + +/* ================================================== */ +/* This function is used by both the regression routines to find the + time interval between each historical sample and the most recent + one */ + +static void +convert_to_intervals(SST_Stats inst, double *times_back) +{ + struct timespec *ts; + int i; + + ts = &inst->sample_times[inst->last_sample]; + for (i = -inst->runs_samples; i < inst->n_samples; i++) { + /* The entries in times_back[] should end up negative */ + times_back[i] = UTI_DiffTimespecsToDouble(&inst->sample_times[get_runsbuf_index(inst, i)], ts); + } +} + +/* ================================================== */ + +static void +find_best_sample_index(SST_Stats inst, double *times_back) +{ + /* With the value of skew that has been computed, see which of the + samples offers the tightest bound on root distance */ + + double root_distance, best_root_distance; + double elapsed; + int i, j, best_index; + + if (!inst->n_samples) + return; + + best_index = -1; + best_root_distance = DBL_MAX; + + for (i = 0; i < inst->n_samples; i++) { + j = get_buf_index(inst, i); + + elapsed = -times_back[i]; + assert(elapsed >= 0.0); + + root_distance = inst->root_dispersions[j] + elapsed * inst->skew + 0.5 * inst->root_delays[j]; + if (root_distance < best_root_distance) { + best_root_distance = root_distance; + best_index = i; + } + } + + assert(best_index >= 0); + inst->best_single_sample = best_index; +} + +/* ================================================== */ + +static void +find_min_delay_sample(SST_Stats inst) +{ + int i, index; + + inst->min_delay_sample = get_runsbuf_index(inst, -inst->runs_samples); + + for (i = -inst->runs_samples + 1; i < inst->n_samples; i++) { + index = get_runsbuf_index(inst, i); + if (inst->peer_delays[index] < inst->peer_delays[inst->min_delay_sample]) + inst->min_delay_sample = index; + } +} + +/* ================================================== */ +/* This function estimates asymmetry of network jitter on the path to the + source as a slope of offset against network delay in multiple linear + regression. If the asymmetry is significant and its sign doesn't change + frequently, the measured offsets (which are used later to estimate the + offset and frequency of the clock) are corrected to correspond to the + minimum network delay. This can significantly improve the accuracy and + stability of the estimated offset and frequency. */ + +static int +estimate_asymmetry(double *times_back, double *offsets, double *delays, int n, + double *asymmetry, int *asymmetry_run) +{ + double a; + + /* Reset the counter when the regression fails or the sign changes */ + if (!RGR_MultipleRegress(times_back, delays, offsets, n, &a) || + a * *asymmetry_run < 0.0) { + *asymmetry = 0; + *asymmetry_run = 0.0; + return 0; + } + + if (a <= -MIN_ASYMMETRY && *asymmetry_run > -MAX_ASYMMETRY_RUN) + (*asymmetry_run)--; + else if (a >= MIN_ASYMMETRY && *asymmetry_run < MAX_ASYMMETRY_RUN) + (*asymmetry_run)++; + + if (abs(*asymmetry_run) < MIN_ASYMMETRY_RUN) + return 0; + + *asymmetry = CLAMP(-MAX_ASYMMETRY, a, MAX_ASYMMETRY); + + return 1; +} + +/* ================================================== */ + +static void +correct_asymmetry(SST_Stats inst, double *times_back, double *offsets) +{ + double min_delay, delays[MAX_SAMPLES * REGRESS_RUNS_RATIO]; + int i, n; + + /* Check if the asymmetry was not specified to be zero */ + if (inst->fixed_asymmetry == 0.0) + return; + + min_delay = SST_MinRoundTripDelay(inst); + n = inst->runs_samples + inst->n_samples; + + for (i = 0; i < n; i++) + delays[i] = inst->peer_delays[get_runsbuf_index(inst, i - inst->runs_samples)] - + min_delay; + + if (fabs(inst->fixed_asymmetry) <= MAX_ASYMMETRY) { + inst->asymmetry = inst->fixed_asymmetry; + } else { + if (!estimate_asymmetry(times_back, offsets, delays, n, + &inst->asymmetry, &inst->asymmetry_run)) + return; + } + + /* Correct the offsets */ + for (i = 0; i < n; i++) + offsets[i] -= inst->asymmetry * delays[i]; +} + +/* ================================================== */ + +/* This defines the assumed ratio between the standard deviation of + the samples and the peer distance as measured from the round trip + time. E.g. a value of 4 means that we think the standard deviation + is four times the fluctuation of the peer distance */ + +#define SD_TO_DIST_RATIO 0.7 + +/* ================================================== */ +/* This function runs the linear regression operation on the data. It + finds the set of most recent samples that give the tightest + confidence interval for the frequency, and truncates the register + down to that number of samples */ + +void +SST_DoNewRegression(SST_Stats inst) +{ + double times_back[MAX_SAMPLES * REGRESS_RUNS_RATIO]; + double offsets[MAX_SAMPLES * REGRESS_RUNS_RATIO]; + double peer_distances[MAX_SAMPLES]; + double weights[MAX_SAMPLES]; + + int degrees_of_freedom; + int best_start, times_back_start; + double est_intercept, est_slope, est_var, est_intercept_sd, est_slope_sd; + int i, j, nruns; + double min_distance, median_distance; + double sd_weight, sd; + double old_skew, old_freq, stress; + double precision; + + convert_to_intervals(inst, times_back + inst->runs_samples); + + if (inst->n_samples > 0) { + for (i = -inst->runs_samples; i < inst->n_samples; i++) { + offsets[i + inst->runs_samples] = inst->offsets[get_runsbuf_index(inst, i)]; + } + + for (i = 0, min_distance = DBL_MAX; i < inst->n_samples; i++) { + j = get_buf_index(inst, i); + peer_distances[i] = 0.5 * inst->peer_delays[get_runsbuf_index(inst, i)] + + inst->peer_dispersions[j]; + if (peer_distances[i] < min_distance) { + min_distance = peer_distances[i]; + } + } + + /* And now, work out the weight vector */ + + precision = LCL_GetSysPrecisionAsQuantum(); + median_distance = RGR_FindMedian(peer_distances, inst->n_samples); + + sd = (median_distance - min_distance) / SD_TO_DIST_RATIO; + sd = CLAMP(precision, sd, min_distance); + min_distance += precision; + + for (i=0; i<inst->n_samples; i++) { + sd_weight = 1.0; + if (peer_distances[i] > min_distance) + sd_weight += (peer_distances[i] - min_distance) / sd; + weights[i] = SQUARE(sd_weight); + } + } + + correct_asymmetry(inst, times_back, offsets); + + inst->regression_ok = RGR_FindBestRegression(times_back + inst->runs_samples, + offsets + inst->runs_samples, weights, + inst->n_samples, inst->runs_samples, + inst->min_samples, + &est_intercept, &est_slope, &est_var, + &est_intercept_sd, &est_slope_sd, + &best_start, &nruns, °rees_of_freedom); + + if (inst->regression_ok) { + + old_skew = inst->skew; + old_freq = inst->estimated_frequency; + + inst->estimated_frequency = est_slope; + inst->estimated_frequency_sd = CLAMP(MIN_SKEW, est_slope_sd, MAX_SKEW); + inst->skew = est_slope_sd * RGR_GetTCoef(degrees_of_freedom); + inst->estimated_offset = est_intercept; + inst->offset_time = inst->sample_times[inst->last_sample]; + inst->estimated_offset_sd = est_intercept_sd; + inst->std_dev = MAX(MIN_STDDEV, sqrt(est_var)); + inst->nruns = nruns; + + inst->skew = CLAMP(MIN_SKEW, inst->skew, MAX_SKEW); + stress = fabs(old_freq - inst->estimated_frequency) / old_skew; + + DEBUG_LOG("off=%e freq=%e skew=%e n=%d bs=%d runs=%d asym=%f arun=%d", + inst->estimated_offset, inst->estimated_frequency, inst->skew, + inst->n_samples, best_start, inst->nruns, + inst->asymmetry, inst->asymmetry_run); + + if (logfileid != -1) { + LOG_FileWrite(logfileid, "%s %-15s %10.3e %10.3e %10.3e %10.3e %10.3e %7.1e %3d %3d %3d %5.2f", + UTI_TimeToLogForm(inst->offset_time.tv_sec), + inst->ip_addr ? UTI_IPToString(inst->ip_addr) : UTI_RefidToString(inst->refid), + inst->std_dev, + inst->estimated_offset, inst->estimated_offset_sd, + inst->estimated_frequency, inst->skew, stress, + inst->n_samples, best_start, inst->nruns, + inst->asymmetry); + } + + times_back_start = inst->runs_samples + best_start; + prune_register(inst, best_start); + } else { + inst->estimated_frequency_sd = WORST_CASE_FREQ_BOUND; + inst->skew = WORST_CASE_FREQ_BOUND; + inst->estimated_offset_sd = WORST_CASE_STDDEV_BOUND; + inst->std_dev = WORST_CASE_STDDEV_BOUND; + inst->nruns = 0; + + if (inst->n_samples > 0) { + inst->estimated_offset = inst->offsets[inst->last_sample]; + inst->offset_time = inst->sample_times[inst->last_sample]; + } else { + inst->estimated_offset = 0.0; + UTI_ZeroTimespec(&inst->offset_time); + } + + times_back_start = 0; + } + + find_best_sample_index(inst, times_back + times_back_start); + +} + +/* ================================================== */ +/* Return the assumed worst case range of values that this source's + frequency lies within. Frequency is defined as the amount of time + the local clock gains relative to the source per unit local clock + time. */ +void +SST_GetFrequencyRange(SST_Stats inst, + double *lo, double *hi) +{ + double freq, skew; + freq = inst->estimated_frequency; + skew = inst->skew; + *lo = freq - skew; + *hi = freq + skew; + + /* This function is currently used only to determine the values of delta + and epsilon in the ntp_core module. Limit the skew to a reasonable maximum + to avoid failing the dispersion test too easily. */ + if (skew > WORST_CASE_FREQ_BOUND) { + *lo = -WORST_CASE_FREQ_BOUND; + *hi = WORST_CASE_FREQ_BOUND; + } +} + +/* ================================================== */ + +void +SST_GetSelectionData(SST_Stats inst, struct timespec *now, + double *offset_lo_limit, + double *offset_hi_limit, + double *root_distance, + double *std_dev, + double *first_sample_ago, + double *last_sample_ago, + int *select_ok) +{ + double offset, sample_elapsed; + int i, j; + + if (!inst->n_samples) { + *select_ok = 0; + return; + } + + i = get_runsbuf_index(inst, inst->best_single_sample); + j = get_buf_index(inst, inst->best_single_sample); + + *std_dev = inst->std_dev; + + sample_elapsed = fabs(UTI_DiffTimespecsToDouble(now, &inst->sample_times[i])); + offset = inst->offsets[i] + sample_elapsed * inst->estimated_frequency; + *root_distance = 0.5 * inst->root_delays[j] + + inst->root_dispersions[j] + sample_elapsed * inst->skew; + + *offset_lo_limit = offset - *root_distance; + *offset_hi_limit = offset + *root_distance; + +#if 0 + double average_offset, elapsed; + int average_ok; + /* average_ok ignored for now */ + elapsed = UTI_DiffTimespecsToDouble(now, &inst->offset_time); + average_offset = inst->estimated_offset + inst->estimated_frequency * elapsed; + if (fabs(average_offset - offset) <= + inst->peer_dispersions[j] + 0.5 * inst->peer_delays[i]) { + average_ok = 1; + } else { + average_ok = 0; + } +#endif + + i = get_runsbuf_index(inst, 0); + *first_sample_ago = UTI_DiffTimespecsToDouble(now, &inst->sample_times[i]); + i = get_runsbuf_index(inst, inst->n_samples - 1); + *last_sample_ago = UTI_DiffTimespecsToDouble(now, &inst->sample_times[i]); + + *select_ok = inst->regression_ok; + + /* If maxsamples is too small to have a successful regression, enable the + selection as a special case for a fast update/print-once reference mode */ + if (!*select_ok && inst->n_samples < MIN_SAMPLES_FOR_REGRESS && + inst->n_samples == inst->max_samples) { + *std_dev = CNF_GetMaxJitter(); + *select_ok = 1; + } + + DEBUG_LOG("n=%d off=%f dist=%f sd=%f first_ago=%f last_ago=%f selok=%d", + inst->n_samples, offset, *root_distance, *std_dev, + *first_sample_ago, *last_sample_ago, *select_ok); +} + +/* ================================================== */ + +void +SST_GetTrackingData(SST_Stats inst, struct timespec *ref_time, + double *average_offset, double *offset_sd, + double *frequency, double *frequency_sd, double *skew, + double *root_delay, double *root_dispersion) +{ + int i, j; + double elapsed_sample; + + assert(inst->n_samples > 0); + + i = get_runsbuf_index(inst, inst->best_single_sample); + j = get_buf_index(inst, inst->best_single_sample); + + *ref_time = inst->offset_time; + *average_offset = inst->estimated_offset; + *offset_sd = inst->estimated_offset_sd; + *frequency = inst->estimated_frequency; + *frequency_sd = inst->estimated_frequency_sd; + *skew = inst->skew; + *root_delay = inst->root_delays[j]; + + elapsed_sample = UTI_DiffTimespecsToDouble(&inst->offset_time, &inst->sample_times[i]); + *root_dispersion = inst->root_dispersions[j] + inst->skew * elapsed_sample + *offset_sd; + + DEBUG_LOG("n=%d off=%f offsd=%f freq=%e freqsd=%e skew=%e delay=%f disp=%f", + inst->n_samples, *average_offset, *offset_sd, + *frequency, *frequency_sd, *skew, *root_delay, *root_dispersion); +} + +/* ================================================== */ + +void +SST_SlewSamples(SST_Stats inst, struct timespec *when, double dfreq, double doffset) +{ + int m, i; + double delta_time; + struct timespec *sample, prev; + double prev_offset, prev_freq; + + if (!inst->n_samples) + return; + + for (m = -inst->runs_samples; m < inst->n_samples; m++) { + i = get_runsbuf_index(inst, m); + sample = &inst->sample_times[i]; + prev = *sample; + UTI_AdjustTimespec(sample, when, sample, &delta_time, dfreq, doffset); + inst->offsets[i] += delta_time; + } + + /* Update the regression estimates */ + prev = inst->offset_time; + prev_offset = inst->estimated_offset; + prev_freq = inst->estimated_frequency; + UTI_AdjustTimespec(&inst->offset_time, when, &inst->offset_time, + &delta_time, dfreq, doffset); + inst->estimated_offset += delta_time; + inst->estimated_frequency = (inst->estimated_frequency - dfreq) / (1.0 - dfreq); + + DEBUG_LOG("n=%d m=%d old_off_time=%s new=%s old_off=%f new_off=%f old_freq=%.3f new_freq=%.3f", + inst->n_samples, inst->runs_samples, + UTI_TimespecToString(&prev), UTI_TimespecToString(&inst->offset_time), + prev_offset, inst->estimated_offset, + 1.0e6 * prev_freq, 1.0e6 * inst->estimated_frequency); +} + +/* ================================================== */ + +void +SST_CorrectOffset(SST_Stats inst, double doffset) +{ + int i; + + if (!inst->n_samples) + return; + + for (i = -inst->runs_samples; i < inst->n_samples; i++) + inst->offsets[get_runsbuf_index(inst, i)] += doffset; + + inst->estimated_offset += doffset; +} + +/* ================================================== */ + +void +SST_AddDispersion(SST_Stats inst, double dispersion) +{ + int m, i; + + for (m = 0; m < inst->n_samples; m++) { + i = get_buf_index(inst, m); + inst->root_dispersions[i] += dispersion; + inst->peer_dispersions[i] += dispersion; + } +} + +/* ================================================== */ + +double +SST_PredictOffset(SST_Stats inst, struct timespec *when) +{ + double elapsed; + + if (inst->n_samples < MIN_SAMPLES_FOR_REGRESS) { + /* We don't have any useful statistics, and presumably the poll + interval is minimal. We can't do any useful prediction other + than use the latest sample or zero if we don't have any samples */ + if (inst->n_samples > 0) { + return inst->offsets[inst->last_sample]; + } else { + return 0.0; + } + } else { + elapsed = UTI_DiffTimespecsToDouble(when, &inst->offset_time); + return inst->estimated_offset + elapsed * inst->estimated_frequency; + } + +} + +/* ================================================== */ + +double +SST_MinRoundTripDelay(SST_Stats inst) +{ + if (inst->fixed_min_delay > 0.0) + return inst->fixed_min_delay; + + if (!inst->n_samples) + return DBL_MAX; + + return inst->peer_delays[inst->min_delay_sample]; +} + +/* ================================================== */ + +int +SST_GetDelayTestData(SST_Stats inst, struct timespec *sample_time, + double *last_sample_ago, double *predicted_offset, + double *min_delay, double *skew, double *std_dev) +{ + if (inst->n_samples < 6) + return 0; + + *last_sample_ago = UTI_DiffTimespecsToDouble(sample_time, &inst->offset_time); + *predicted_offset = inst->estimated_offset + + *last_sample_ago * inst->estimated_frequency; + *min_delay = SST_MinRoundTripDelay(inst); + *skew = inst->skew; + *std_dev = inst->std_dev; + + return 1; +} + +/* ================================================== */ +/* This is used to save the register to a file, so that we can reload + it after restarting the daemon */ + +int +SST_SaveToFile(SST_Stats inst, FILE *out) +{ + int m, i, j; + + if (inst->n_samples < 1) + return 0; + + if (fprintf(out, "%d %d\n", inst->n_samples, inst->asymmetry_run) < 0) + return 0; + + for(m = 0; m < inst->n_samples; m++) { + i = get_runsbuf_index(inst, m); + j = get_buf_index(inst, m); + + if (fprintf(out, "%s %.6e %.6e %.6e %.6e %.6e %.6e\n", + UTI_TimespecToString(&inst->sample_times[i]), + inst->offsets[i], inst->orig_offsets[j], + inst->peer_delays[i], inst->peer_dispersions[j], + inst->root_delays[j], inst->root_dispersions[j]) < 0) + return 0; + } + + return 1; +} + +/* ================================================== */ +/* This is used to reload samples from a file */ + +int +SST_LoadFromFile(SST_Stats inst, FILE *in) +{ + int i, n_samples, arun; + struct timespec now; + double sample_time; + char line[256]; + + if (!fgets(line, sizeof (line), in) || + sscanf(line, "%d %d", &n_samples, &arun) != 2 || + n_samples < 1 || n_samples > MAX_SAMPLES) + return 0; + + SST_ResetInstance(inst); + + LCL_ReadCookedTime(&now, NULL); + + for (i = 0; i < n_samples; i++) { + if (!fgets(line, sizeof (line), in) || + sscanf(line, "%lf %lf %lf %lf %lf %lf %lf", + &sample_time, &inst->offsets[i], &inst->orig_offsets[i], + &inst->peer_delays[i], &inst->peer_dispersions[i], + &inst->root_delays[i], &inst->root_dispersions[i]) != 7) + return 0; + + if (!UTI_IsTimeOffsetSane(&now, sample_time - UTI_TimespecToDouble(&now))) + return 0; + + /* Some resolution is lost in the double format, but that's ok */ + UTI_DoubleToTimespec(sample_time, &inst->sample_times[i]); + + /* Make sure the samples are sane and they are in order */ + if (!UTI_IsTimeOffsetSane(&inst->sample_times[i], -inst->offsets[i]) || + UTI_CompareTimespecs(&now, &inst->sample_times[i]) < 0 || + !(fabs(inst->peer_delays[i]) < 1.0e6 && fabs(inst->peer_dispersions[i]) < 1.0e6 && + fabs(inst->root_delays[i]) < 1.0e6 && fabs(inst->root_dispersions[i]) < 1.0e6) || + (i > 0 && UTI_CompareTimespecs(&inst->sample_times[i], + &inst->sample_times[i - 1]) <= 0)) + return 0; + } + + inst->n_samples = n_samples; + inst->last_sample = inst->n_samples - 1; + inst->asymmetry_run = CLAMP(-MAX_ASYMMETRY_RUN, arun, MAX_ASYMMETRY_RUN); + + find_min_delay_sample(inst); + SST_DoNewRegression(inst); + + return 1; +} + +/* ================================================== */ + +void +SST_DoSourceReport(SST_Stats inst, RPT_SourceReport *report, struct timespec *now) +{ + int i, j; + struct timespec last_sample_time; + + if (inst->n_samples > 0) { + i = get_runsbuf_index(inst, inst->n_samples - 1); + j = get_buf_index(inst, inst->n_samples - 1); + report->orig_latest_meas = inst->orig_offsets[j]; + report->latest_meas = inst->offsets[i]; + report->latest_meas_err = 0.5*inst->root_delays[j] + inst->root_dispersions[j]; + + /* Align the sample time to reduce the leak of the NTP receive timestamp */ + last_sample_time = inst->sample_times[i]; + if (inst->ip_addr) + last_sample_time.tv_nsec = 0; + report->latest_meas_ago = UTI_DiffTimespecsToDouble(now, &last_sample_time); + } else { + report->latest_meas_ago = (uint32_t)-1; + report->orig_latest_meas = 0; + report->latest_meas = 0; + report->latest_meas_err = 0; + report->stratum = 0; + } +} + +/* ================================================== */ + +int +SST_Samples(SST_Stats inst) +{ + return inst->n_samples; +} + +/* ================================================== */ + +int +SST_GetMinSamples(SST_Stats inst) +{ + return inst->min_samples; +} + +/* ================================================== */ + +void +SST_DoSourcestatsReport(SST_Stats inst, RPT_SourcestatsReport *report, struct timespec *now) +{ + double dspan; + double elapsed, sample_elapsed; + int bi, bj; + + report->n_samples = inst->n_samples; + report->n_runs = inst->nruns; + + if (inst->n_samples > 0) { + bi = get_runsbuf_index(inst, inst->best_single_sample); + bj = get_buf_index(inst, inst->best_single_sample); + + dspan = UTI_DiffTimespecsToDouble(&inst->sample_times[inst->last_sample], + &inst->sample_times[get_runsbuf_index(inst, 0)]); + elapsed = UTI_DiffTimespecsToDouble(now, &inst->offset_time); + sample_elapsed = UTI_DiffTimespecsToDouble(now, &inst->sample_times[bi]); + + report->span_seconds = round(dspan); + report->est_offset = inst->estimated_offset + elapsed * inst->estimated_frequency; + report->est_offset_err = inst->estimated_offset_sd + sample_elapsed * inst->skew + + (0.5 * inst->root_delays[bj] + inst->root_dispersions[bj]); + } else { + report->span_seconds = 0; + report->est_offset = 0; + report->est_offset_err = 0; + } + + report->resid_freq_ppm = 1.0e6 * inst->estimated_frequency; + report->skew_ppm = 1.0e6 * inst->skew; + report->sd = inst->std_dev; +} + +/* ================================================== */ + +double +SST_GetJitterAsymmetry(SST_Stats inst) +{ + return inst->asymmetry; +} + +/* ================================================== */ |