/* ********************************************************************** * Copyright (C) Miroslav Lichvar 2016-2018, 2022 * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * ********************************************************************** */ #include #include "test.h" #if defined(FEAT_PHC) || defined(HAVE_LINUX_TIMESTAMPING) #include #define MAX_READINGS 20 void test_unit(void) { struct timespec start_hw_ts, start_local_ts, hw_ts, local_ts, ts; struct timespec readings[MAX_READINGS][3]; HCL_Instance clock; double freq, jitter, interval, dj, err, sum; int i, j, k, l, new_sample, n_readings, count; LCL_Initialise(); TST_RegisterDummyDrivers(); for (i = 1; i <= 8; i++) { clock = HCL_CreateInstance(random() % (1 << i), 1 << i, 1.0, 1e-9); for (j = 0, count = 0, sum = 0.0; j < 100; j++) { UTI_ZeroTimespec(&start_hw_ts); UTI_ZeroTimespec(&start_local_ts); UTI_AddDoubleToTimespec(&start_hw_ts, TST_GetRandomDouble(0.0, 1e9), &start_hw_ts); UTI_AddDoubleToTimespec(&start_local_ts, TST_GetRandomDouble(0.0, 1e9), &start_local_ts); DEBUG_LOG("iteration %d", j); freq = TST_GetRandomDouble(0.9, 1.1); jitter = TST_GetRandomDouble(10.0e-9, 1000.0e-9); interval = TST_GetRandomDouble(0.1, 10.0); clock->n_samples = 0; clock->valid_coefs = 0; QNT_Reset(clock->delay_quants); new_sample = 0; for (k = 0; k < 100; k++) { UTI_AddDoubleToTimespec(&start_hw_ts, k * interval * freq, &hw_ts); UTI_AddDoubleToTimespec(&start_local_ts, k * interval, &local_ts); if (HCL_CookTime(clock, &hw_ts, &ts, NULL) && new_sample) { dj = fabs(UTI_DiffTimespecsToDouble(&ts, &local_ts) / jitter); DEBUG_LOG("delta/jitter %f", dj); if (clock->n_samples >= clock->max_samples / 2) sum += dj, count++; TEST_CHECK(clock->n_samples < 4 || dj <= 4.0); TEST_CHECK(clock->n_samples < 8 || dj <= 3.0); } UTI_AddDoubleToTimespec(&start_hw_ts, k * interval * freq + TST_GetRandomDouble(-jitter, jitter), &hw_ts); if (HCL_NeedsNewSample(clock, &local_ts)) { n_readings = random() % MAX_READINGS + 1; for (l = 0; l < n_readings; l++) { UTI_AddDoubleToTimespec(&local_ts, -TST_GetRandomDouble(0.0, jitter / 10.0), &readings[l][0]); readings[l][1] = hw_ts; UTI_AddDoubleToTimespec(&local_ts, TST_GetRandomDouble(0.0, jitter / 10.0), &readings[l][2]); } UTI_ZeroTimespec(&hw_ts); UTI_ZeroTimespec(&local_ts); if (HCL_ProcessReadings(clock, n_readings, readings, &hw_ts, &local_ts, &err)) { HCL_AccumulateSample(clock, &hw_ts, &local_ts, 2.0 * jitter); new_sample = 1; } else { new_sample = 0; } } TEST_CHECK(clock->valid_coefs == (clock->n_samples >= 2)); if (!clock->valid_coefs) continue; TEST_CHECK(fabs(clock->offset) <= 2.0 * jitter); } } TEST_CHECK(sum / count < 2.4 / sqrt(clock->max_samples)); HCL_DestroyInstance(clock); } LCL_Finalise(); } #else void test_unit(void) { TEST_REQUIRE(0); } #endif