summaryrefslogtreecommitdiffstats
path: root/hwclock.c
blob: 86c7e51de49a162c4393f6c8500646916a500242 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
/*
  chronyd/chronyc - Programs for keeping computer clocks accurate.

 **********************************************************************
 * Copyright (C) Miroslav Lichvar  2016-2018, 2022
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 * 
 **********************************************************************

  =======================================================================

  Tracking of hardware clocks (e.g. RTC, PHC)
  */

#include "config.h"

#include "sysincl.h"

#include "array.h"
#include "hwclock.h"
#include "local.h"
#include "logging.h"
#include "memory.h"
#include "quantiles.h"
#include "regress.h"
#include "util.h"

/* Minimum and maximum number of samples per clock */
#define MIN_SAMPLES 2
#define MAX_SAMPLES 64

/* Maximum acceptable frequency offset of the clock */
#define MAX_FREQ_OFFSET (2.0 / 3.0)

/* Quantiles for filtering readings by delay */
#define DELAY_QUANT_MIN_K 1
#define DELAY_QUANT_MAX_K 2
#define DELAY_QUANT_Q 10
#define DELAY_QUANT_REPEAT 7
#define DELAY_QUANT_MIN_STEP 1.0e-9

struct HCL_Instance_Record {
  /* HW and local reference timestamp */
  struct timespec hw_ref;
  struct timespec local_ref;

  /* Samples stored as intervals (uncorrected for frequency error)
     relative to local_ref and hw_ref */
  double *x_data;
  double *y_data;

  /* Minimum, maximum and current number of samples */
  int min_samples;
  int max_samples;
  int n_samples;

  /* Maximum error of the last sample */
  double last_err;

  /* Minimum interval between samples */
  double min_separation;

  /* Expected precision of readings */
  double precision;

  /* Flag indicating the offset and frequency values are valid */
  int valid_coefs;

  /* Estimated offset and frequency of HW clock relative to local clock */
  double offset;
  double frequency;

  /* Estimated quantiles of reading delay */
  QNT_Instance delay_quants;
};

/* ================================================== */

static void
handle_slew(struct timespec *raw, struct timespec *cooked, double dfreq,
            double doffset, LCL_ChangeType change_type, void *anything)
{
  HCL_Instance clock;
  double delta;

  clock = anything;

  if (clock->n_samples)
    UTI_AdjustTimespec(&clock->local_ref, cooked, &clock->local_ref, &delta, dfreq, doffset);
  if (clock->valid_coefs)
    clock->frequency /= 1.0 - dfreq;
}

/* ================================================== */

HCL_Instance
HCL_CreateInstance(int min_samples, int max_samples, double min_separation, double precision)
{
  HCL_Instance clock;

  min_samples = CLAMP(MIN_SAMPLES, min_samples, MAX_SAMPLES);
  max_samples = CLAMP(MIN_SAMPLES, max_samples, MAX_SAMPLES);
  max_samples = MAX(min_samples, max_samples);

  clock = MallocNew(struct HCL_Instance_Record);
  clock->x_data = MallocArray(double, max_samples);
  clock->y_data = MallocArray(double, max_samples);
  clock->x_data[max_samples - 1] = 0.0;
  clock->y_data[max_samples - 1] = 0.0;
  clock->min_samples = min_samples;
  clock->max_samples = max_samples;
  clock->n_samples = 0;
  clock->valid_coefs = 0;
  clock->min_separation = min_separation;
  clock->precision = precision;
  clock->delay_quants = QNT_CreateInstance(DELAY_QUANT_MIN_K, DELAY_QUANT_MAX_K,
                                           DELAY_QUANT_Q, DELAY_QUANT_REPEAT,
                                           DELAY_QUANT_MIN_STEP);

  LCL_AddParameterChangeHandler(handle_slew, clock);

  return clock;
}

/* ================================================== */

void HCL_DestroyInstance(HCL_Instance clock)
{
  LCL_RemoveParameterChangeHandler(handle_slew, clock);
  QNT_DestroyInstance(clock->delay_quants);
  Free(clock->y_data);
  Free(clock->x_data);
  Free(clock);
}

/* ================================================== */

int
HCL_NeedsNewSample(HCL_Instance clock, struct timespec *now)
{
  if (!clock->n_samples ||
      fabs(UTI_DiffTimespecsToDouble(now, &clock->local_ref)) >= clock->min_separation)
    return 1;

  return 0;
}

/* ================================================== */

int
HCL_ProcessReadings(HCL_Instance clock, int n_readings, struct timespec tss[][3],
                    struct timespec *hw_ts, struct timespec *local_ts, double *err)
{
  double delay, raw_delay, min_delay, low_delay, high_delay, e, pred_err;
  double delay_sum, hw_sum, local_sum, local_prec, freq;
  int i, min_reading, combined;
  struct timespec ts1, ts2;

  if (n_readings < 1)
    return 0;

  /* Work out the current correction multiplier needed to get cooked delays */
  LCL_CookTime(&tss[0][0], &ts1, NULL);
  LCL_CookTime(&tss[n_readings - 1][2], &ts2, NULL);
  if (UTI_CompareTimespecs(&tss[0][0], &tss[n_readings - 1][2]) < 0)
    freq = UTI_DiffTimespecsToDouble(&ts1, &ts2) /
           UTI_DiffTimespecsToDouble(&tss[0][0], &tss[n_readings - 1][2]);
  else
    freq = 1.0;

  for (i = 0; i < n_readings; i++) {
    delay = freq * UTI_DiffTimespecsToDouble(&tss[i][2], &tss[i][0]);

    if (delay < 0.0) {
      /* Step in the middle of a reading? */
      DEBUG_LOG("Bad reading delay=%e", delay);
      return 0;
    }

    if (i == 0 || min_delay > delay) {
      min_delay = delay;
      min_reading = i;
    }

    QNT_Accumulate(clock->delay_quants, delay);
  }

  local_prec = LCL_GetSysPrecisionAsQuantum();

  low_delay = QNT_GetQuantile(clock->delay_quants, DELAY_QUANT_MIN_K);
  high_delay = QNT_GetQuantile(clock->delay_quants, DELAY_QUANT_MAX_K);
  low_delay = MIN(low_delay, high_delay);
  high_delay = MAX(high_delay, low_delay + local_prec);

  /* Combine readings with delay in the expected interval */
  for (i = combined = 0, delay_sum = hw_sum = local_sum = 0.0; i < n_readings; i++) {
    raw_delay = UTI_DiffTimespecsToDouble(&tss[i][2], &tss[i][0]);
    delay = freq * raw_delay;

    if (delay < low_delay || delay > high_delay)
      continue;

    delay_sum += delay;
    hw_sum += UTI_DiffTimespecsToDouble(&tss[i][1], &tss[0][1]);
    local_sum += UTI_DiffTimespecsToDouble(&tss[i][0], &tss[0][0]) + raw_delay / 2.0;
    combined++;
  }

  DEBUG_LOG("Combined %d readings lo=%e hi=%e", combined, low_delay, high_delay);

  if (combined > 0) {
    UTI_AddDoubleToTimespec(&tss[0][1], hw_sum / combined, hw_ts);
    UTI_AddDoubleToTimespec(&tss[0][0], local_sum / combined, local_ts);
    *err = MAX(delay_sum / combined / 2.0, clock->precision);
    return 1;
  }

  /* Accept the reading with minimum delay if its interval does not contain
     the current offset predicted from previous samples */

  *hw_ts = tss[min_reading][1];
  UTI_AddDoubleToTimespec(&tss[min_reading][0], min_delay / freq / 2.0, local_ts);
  *err = MAX(min_delay / 2.0, clock->precision);

  pred_err = 0.0;
  LCL_CookTime(local_ts, &ts1, NULL);
  if (!HCL_CookTime(clock, hw_ts, &ts2, &e) ||
      ((pred_err = UTI_DiffTimespecsToDouble(&ts1, &ts2)) > *err)) {
    DEBUG_LOG("Accepted reading err=%e prerr=%e", *err, pred_err);
    return 1;
  }

  return 0;
}

/* ================================================== */

void
HCL_AccumulateSample(HCL_Instance clock, struct timespec *hw_ts,
                     struct timespec *local_ts, double err)
{
  double hw_delta, local_delta, local_freq, raw_freq;
  int i, n_runs, best_start;

  local_freq = 1.0 - LCL_ReadAbsoluteFrequency() / 1.0e6;

  /* Shift old samples */
  if (clock->n_samples) {
    if (clock->n_samples >= clock->max_samples)
      clock->n_samples--;

    hw_delta = UTI_DiffTimespecsToDouble(hw_ts, &clock->hw_ref);
    local_delta = UTI_DiffTimespecsToDouble(local_ts, &clock->local_ref) / local_freq;

    if (hw_delta <= 0.0 || local_delta < clock->min_separation / 2.0) {
      clock->n_samples = 0;
      DEBUG_LOG("HW clock reset interval=%f", local_delta);
    }

    for (i = clock->max_samples - clock->n_samples; i < clock->max_samples; i++) {
      clock->y_data[i - 1] = clock->y_data[i] - hw_delta;
      clock->x_data[i - 1] = clock->x_data[i] - local_delta;
    }
  }

  clock->n_samples++;
  clock->hw_ref = *hw_ts;
  clock->local_ref = *local_ts;
  clock->last_err = err;

  /* Get new coefficients */
  clock->valid_coefs =
    RGR_FindBestRobustRegression(clock->x_data + clock->max_samples - clock->n_samples,
                                 clock->y_data + clock->max_samples - clock->n_samples,
                                 clock->n_samples, 1.0e-10, &clock->offset, &raw_freq,
                                 &n_runs, &best_start);

  if (!clock->valid_coefs) {
    DEBUG_LOG("HW clock needs more samples");
    return;
  }

  clock->frequency = raw_freq / local_freq;

  /* Drop unneeded samples */
  if (clock->n_samples > clock->min_samples)
    clock->n_samples -= MIN(best_start, clock->n_samples - clock->min_samples);

  /* If the fit doesn't cross the error interval of the last sample,
     or the frequency is not sane, drop all samples and start again */
  if (fabs(clock->offset) > err ||
      fabs(clock->frequency - 1.0) > MAX_FREQ_OFFSET) {
    DEBUG_LOG("HW clock reset");
    clock->n_samples = 0;
    clock->valid_coefs = 0;
  }

  DEBUG_LOG("HW clock samples=%d offset=%e freq=%e raw_freq=%e err=%e ref_diff=%e",
            clock->n_samples, clock->offset, clock->frequency - 1.0, raw_freq - 1.0, err,
            UTI_DiffTimespecsToDouble(&clock->hw_ref, &clock->local_ref));
}

/* ================================================== */

int
HCL_CookTime(HCL_Instance clock, struct timespec *raw, struct timespec *cooked, double *err)
{
  double offset, elapsed;

  if (!clock->valid_coefs)
    return 0;

  elapsed = UTI_DiffTimespecsToDouble(raw, &clock->hw_ref);
  offset = elapsed / clock->frequency - clock->offset;
  UTI_AddDoubleToTimespec(&clock->local_ref, offset, cooked);

  /* Fow now, just return the error of the last sample */
  if (err)
    *err = clock->last_err;

  return 1;
}