/* * LUKS - Linux Unified Key Setup v2, LUKS2 type keyslot handler * * Copyright (C) 2015-2024 Red Hat, Inc. All rights reserved. * Copyright (C) 2015-2024 Milan Broz * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include "luks2_internal.h" /* FIXME: move keyslot encryption to crypto backend */ #include "../luks1/af.h" #define LUKS_SALTSIZE 32 #define LUKS_SLOT_ITERATIONS_MIN 1000 #define LUKS_STRIPES 4000 /* Serialize memory-hard keyslot access: optional workaround for parallel processing */ #define MIN_MEMORY_FOR_SERIALIZE_LOCK_KB 32*1024 /* 32MB */ /* coverity[ -taint_source : arg-0 ] */ static int luks2_encrypt_to_storage(char *src, size_t srcLength, const char *cipher, const char *cipher_mode, struct volume_key *vk, unsigned int sector, struct crypt_device *cd) { #ifndef ENABLE_AF_ALG /* Support for old kernel without Crypto API */ return LUKS_encrypt_to_storage(src, srcLength, cipher, cipher_mode, vk, sector, cd); #else struct crypt_storage *s; int devfd, r; struct device *device = crypt_metadata_device(cd); /* Only whole sector writes supported */ if (MISALIGNED_512(srcLength)) return -EINVAL; /* Encrypt buffer */ r = crypt_storage_init(&s, SECTOR_SIZE, cipher, cipher_mode, vk->key, vk->keylength, false); if (r) { log_err(cd, _("Cannot use %s-%s cipher for keyslot encryption."), cipher, cipher_mode); return r; } r = crypt_storage_encrypt(s, 0, srcLength, src); crypt_storage_destroy(s); if (r) { log_err(cd, _("IO error while encrypting keyslot.")); return r; } devfd = device_open_locked(cd, device, O_RDWR); if (devfd >= 0) { if (write_lseek_blockwise(devfd, device_block_size(cd, device), device_alignment(device), src, srcLength, sector * SECTOR_SIZE) < 0) r = -EIO; else r = 0; device_sync(cd, device); } else r = -EIO; if (r) log_err(cd, _("IO error while encrypting keyslot.")); return r; #endif } static int luks2_decrypt_from_storage(char *dst, size_t dstLength, const char *cipher, const char *cipher_mode, struct volume_key *vk, unsigned int sector, struct crypt_device *cd) { struct device *device = crypt_metadata_device(cd); #ifndef ENABLE_AF_ALG /* Support for old kernel without Crypto API */ int r = device_read_lock(cd, device); if (r) { log_err(cd, _("Failed to acquire read lock on device %s."), device_path(device)); return r; } r = LUKS_decrypt_from_storage(dst, dstLength, cipher, cipher_mode, vk, sector, cd); device_read_unlock(cd, crypt_metadata_device(cd)); return r; #else struct crypt_storage *s; int devfd, r; /* Only whole sector writes supported */ if (MISALIGNED_512(dstLength)) return -EINVAL; r = crypt_storage_init(&s, SECTOR_SIZE, cipher, cipher_mode, vk->key, vk->keylength, false); if (r) { log_err(cd, _("Cannot use %s-%s cipher for keyslot encryption."), cipher, cipher_mode); return r; } r = device_read_lock(cd, device); if (r) { log_err(cd, _("Failed to acquire read lock on device %s."), device_path(device)); crypt_storage_destroy(s); return r; } devfd = device_open_locked(cd, device, O_RDONLY); if (devfd >= 0) { if (read_lseek_blockwise(devfd, device_block_size(cd, device), device_alignment(device), dst, dstLength, sector * SECTOR_SIZE) < 0) r = -EIO; else r = 0; } else r = -EIO; device_read_unlock(cd, device); /* Decrypt buffer */ if (!r) r = crypt_storage_decrypt(s, 0, dstLength, dst); else log_err(cd, _("IO error while decrypting keyslot.")); crypt_storage_destroy(s); return r; #endif } static int luks2_keyslot_get_pbkdf_params(json_object *jobj_keyslot, struct crypt_pbkdf_type *pbkdf, char **salt) { json_object *jobj_kdf, *jobj1, *jobj2; size_t salt_len; int r; if (!jobj_keyslot || !pbkdf) return -EINVAL; memset(pbkdf, 0, sizeof(*pbkdf)); if (!json_object_object_get_ex(jobj_keyslot, "kdf", &jobj_kdf)) return -EINVAL; if (!json_object_object_get_ex(jobj_kdf, "type", &jobj1)) return -EINVAL; pbkdf->type = json_object_get_string(jobj1); if (!strcmp(pbkdf->type, CRYPT_KDF_PBKDF2)) { if (!json_object_object_get_ex(jobj_kdf, "hash", &jobj2)) return -EINVAL; pbkdf->hash = json_object_get_string(jobj2); if (!json_object_object_get_ex(jobj_kdf, "iterations", &jobj2)) return -EINVAL; pbkdf->iterations = json_object_get_int(jobj2); pbkdf->max_memory_kb = 0; pbkdf->parallel_threads = 0; } else { if (!json_object_object_get_ex(jobj_kdf, "time", &jobj2)) return -EINVAL; pbkdf->iterations = json_object_get_int(jobj2); if (!json_object_object_get_ex(jobj_kdf, "memory", &jobj2)) return -EINVAL; pbkdf->max_memory_kb = json_object_get_int(jobj2); if (!json_object_object_get_ex(jobj_kdf, "cpus", &jobj2)) return -EINVAL; pbkdf->parallel_threads = json_object_get_int(jobj2); } if (!json_object_object_get_ex(jobj_kdf, "salt", &jobj2)) return -EINVAL; r = crypt_base64_decode(salt, &salt_len, json_object_get_string(jobj2), json_object_get_string_len(jobj2)); if (r < 0) return r; if (salt_len != LUKS_SALTSIZE) { free(*salt); return -EINVAL; } return 0; } static int luks2_keyslot_set_key(struct crypt_device *cd, json_object *jobj_keyslot, const char *password, size_t passwordLen, const char *volume_key, size_t volume_key_len) { struct volume_key *derived_key; char *salt = NULL, cipher[MAX_CIPHER_LEN], cipher_mode[MAX_CIPHER_LEN]; char *AfKey = NULL; const char *af_hash = NULL; size_t AFEKSize, keyslot_key_len; json_object *jobj2, *jobj_kdf, *jobj_af, *jobj_area; uint64_t area_offset; struct crypt_pbkdf_type pbkdf; int r; if (!json_object_object_get_ex(jobj_keyslot, "kdf", &jobj_kdf) || !json_object_object_get_ex(jobj_keyslot, "af", &jobj_af) || !json_object_object_get_ex(jobj_keyslot, "area", &jobj_area)) return -EINVAL; /* prevent accidental volume key size change after allocation */ if (!json_object_object_get_ex(jobj_keyslot, "key_size", &jobj2)) return -EINVAL; if (json_object_get_int(jobj2) != (int)volume_key_len) return -EINVAL; if (!json_object_object_get_ex(jobj_area, "offset", &jobj2)) return -EINVAL; area_offset = crypt_jobj_get_uint64(jobj2); if (!json_object_object_get_ex(jobj_area, "encryption", &jobj2)) return -EINVAL; r = crypt_parse_name_and_mode(json_object_get_string(jobj2), cipher, NULL, cipher_mode); if (r < 0) return r; if (!json_object_object_get_ex(jobj_area, "key_size", &jobj2)) return -EINVAL; keyslot_key_len = json_object_get_int(jobj2); if (!json_object_object_get_ex(jobj_af, "hash", &jobj2)) return -EINVAL; af_hash = json_object_get_string(jobj2); r = luks2_keyslot_get_pbkdf_params(jobj_keyslot, &pbkdf, &salt); if (r < 0) return r; /* * Allocate derived key storage. */ derived_key = crypt_alloc_volume_key(keyslot_key_len, NULL); if (!derived_key) { free(salt); return -ENOMEM; } /* * Calculate keyslot content, split and store it to keyslot area. */ log_dbg(cd, "Running keyslot key derivation."); r = crypt_pbkdf(pbkdf.type, pbkdf.hash, password, passwordLen, salt, LUKS_SALTSIZE, derived_key->key, derived_key->keylength, pbkdf.iterations, pbkdf.max_memory_kb, pbkdf.parallel_threads); free(salt); if (r < 0) { if ((crypt_backend_flags() & CRYPT_BACKEND_PBKDF2_INT) && pbkdf.iterations > INT_MAX) log_err(cd, _("PBKDF2 iteration value overflow.")); crypt_free_volume_key(derived_key); return r; } // FIXME: verity key_size to AFEKSize AFEKSize = AF_split_sectors(volume_key_len, LUKS_STRIPES) * SECTOR_SIZE; AfKey = crypt_safe_alloc(AFEKSize); if (!AfKey) { crypt_free_volume_key(derived_key); return -ENOMEM; } r = crypt_hash_size(af_hash); if (r < 0) log_err(cd, _("Hash algorithm %s is not available."), af_hash); else r = AF_split(cd, volume_key, AfKey, volume_key_len, LUKS_STRIPES, af_hash); if (r == 0) { log_dbg(cd, "Updating keyslot area [0x%04" PRIx64 "].", area_offset); /* FIXME: sector_offset should be size_t, fix LUKS_encrypt... accordingly */ r = luks2_encrypt_to_storage(AfKey, AFEKSize, cipher, cipher_mode, derived_key, (unsigned)(area_offset / SECTOR_SIZE), cd); } crypt_safe_free(AfKey); crypt_free_volume_key(derived_key); if (r < 0) return r; return 0; } static int luks2_keyslot_get_key(struct crypt_device *cd, json_object *jobj_keyslot, const char *password, size_t passwordLen, char *volume_key, size_t volume_key_len) { struct volume_key *derived_key = NULL; struct crypt_pbkdf_type pbkdf, *cd_pbkdf; char *AfKey = NULL; size_t AFEKSize; const char *af_hash = NULL; char *salt = NULL, cipher[MAX_CIPHER_LEN], cipher_mode[MAX_CIPHER_LEN]; json_object *jobj2, *jobj_af, *jobj_area; uint64_t area_offset; size_t keyslot_key_len; bool try_serialize_lock = false; int r; if (!json_object_object_get_ex(jobj_keyslot, "af", &jobj_af) || !json_object_object_get_ex(jobj_keyslot, "area", &jobj_area)) return -EINVAL; if (!json_object_object_get_ex(jobj_af, "hash", &jobj2)) return -EINVAL; af_hash = json_object_get_string(jobj2); if (!json_object_object_get_ex(jobj_area, "offset", &jobj2)) return -EINVAL; area_offset = crypt_jobj_get_uint64(jobj2); if (!json_object_object_get_ex(jobj_area, "encryption", &jobj2)) return -EINVAL; r = crypt_parse_name_and_mode(json_object_get_string(jobj2), cipher, NULL, cipher_mode); if (r < 0) return r; if (!json_object_object_get_ex(jobj_area, "key_size", &jobj2)) return -EINVAL; keyslot_key_len = json_object_get_int(jobj2); r = luks2_keyslot_get_pbkdf_params(jobj_keyslot, &pbkdf, &salt); if (r < 0) return r; /* * Allocate derived key storage space. */ derived_key = crypt_alloc_volume_key(keyslot_key_len, NULL); if (!derived_key) { r = -ENOMEM; goto out; } AFEKSize = AF_split_sectors(volume_key_len, LUKS_STRIPES) * SECTOR_SIZE; AfKey = crypt_safe_alloc(AFEKSize); if (!AfKey) { r = -ENOMEM; goto out; } /* * Print warning when keyslot requires more memory than available * (if maximum memory was adjusted - no swap, not enough memory), * but be silent if user set keyslot memory cost above default limit intentionally. */ cd_pbkdf = crypt_get_pbkdf(cd); if (cd_pbkdf->max_memory_kb && pbkdf.max_memory_kb > cd_pbkdf->max_memory_kb && pbkdf.max_memory_kb <= DEFAULT_LUKS2_MEMORY_KB) log_std(cd, _("Warning: keyslot operation could fail as it requires more than available memory.\n")); /* * If requested, serialize unlocking for memory-hard KDF. Usually NOOP. */ if (pbkdf.max_memory_kb > MIN_MEMORY_FOR_SERIALIZE_LOCK_KB) try_serialize_lock = true; if (try_serialize_lock && (r = crypt_serialize_lock(cd))) goto out; /* * Calculate derived key, decrypt keyslot content and merge it. */ log_dbg(cd, "Running keyslot key derivation."); r = crypt_pbkdf(pbkdf.type, pbkdf.hash, password, passwordLen, salt, LUKS_SALTSIZE, derived_key->key, derived_key->keylength, pbkdf.iterations, pbkdf.max_memory_kb, pbkdf.parallel_threads); if (try_serialize_lock) crypt_serialize_unlock(cd); if (r == 0) { log_dbg(cd, "Reading keyslot area [0x%04" PRIx64 "].", area_offset); /* FIXME: sector_offset should be size_t, fix LUKS_decrypt... accordingly */ r = luks2_decrypt_from_storage(AfKey, AFEKSize, cipher, cipher_mode, derived_key, (unsigned)(area_offset / SECTOR_SIZE), cd); } if (r == 0) { r = crypt_hash_size(af_hash); if (r < 0) log_err(cd, _("Hash algorithm %s is not available."), af_hash); else r = AF_merge(AfKey, volume_key, volume_key_len, LUKS_STRIPES, af_hash); } out: free(salt); crypt_free_volume_key(derived_key); crypt_safe_free(AfKey); return r; } /* * currently we support update of only: * * - af hash function * - kdf params */ static int luks2_keyslot_update_json(struct crypt_device *cd, json_object *jobj_keyslot, const struct luks2_keyslot_params *params) { const struct crypt_pbkdf_type *pbkdf; json_object *jobj_af, *jobj_area, *jobj_kdf; char salt[LUKS_SALTSIZE], *salt_base64 = NULL; int r; /* jobj_keyslot is not yet validated */ if (!json_object_object_get_ex(jobj_keyslot, "af", &jobj_af) || !json_object_object_get_ex(jobj_keyslot, "area", &jobj_area)) return -EINVAL; /* update area encryption parameters */ json_object_object_add(jobj_area, "encryption", json_object_new_string(params->area.raw.encryption)); json_object_object_add(jobj_area, "key_size", json_object_new_int(params->area.raw.key_size)); pbkdf = crypt_get_pbkdf_type(cd); if (!pbkdf) return -EINVAL; r = crypt_benchmark_pbkdf_internal(cd, CONST_CAST(struct crypt_pbkdf_type *)pbkdf, params->area.raw.key_size); if (r < 0) return r; /* refresh whole 'kdf' object */ jobj_kdf = json_object_new_object(); if (!jobj_kdf) return -ENOMEM; json_object_object_add(jobj_kdf, "type", json_object_new_string(pbkdf->type)); if (!strcmp(pbkdf->type, CRYPT_KDF_PBKDF2)) { json_object_object_add(jobj_kdf, "hash", json_object_new_string(pbkdf->hash)); json_object_object_add(jobj_kdf, "iterations", json_object_new_int(pbkdf->iterations)); } else { json_object_object_add(jobj_kdf, "time", json_object_new_int(pbkdf->iterations)); json_object_object_add(jobj_kdf, "memory", json_object_new_int(pbkdf->max_memory_kb)); json_object_object_add(jobj_kdf, "cpus", json_object_new_int(pbkdf->parallel_threads)); } json_object_object_add(jobj_keyslot, "kdf", jobj_kdf); /* * Regenerate salt and add it in 'kdf' object */ r = crypt_random_get(cd, salt, LUKS_SALTSIZE, CRYPT_RND_SALT); if (r < 0) return r; r = crypt_base64_encode(&salt_base64, NULL, salt, LUKS_SALTSIZE); if (r < 0) return r; json_object_object_add(jobj_kdf, "salt", json_object_new_string(salt_base64)); free(salt_base64); /* update 'af' hash */ json_object_object_add(jobj_af, "hash", json_object_new_string(params->af.luks1.hash)); JSON_DBG(cd, jobj_keyslot, "Keyslot JSON:"); return 0; } static int luks2_keyslot_alloc(struct crypt_device *cd, int keyslot, size_t volume_key_len, const struct luks2_keyslot_params *params) { struct luks2_hdr *hdr; uint64_t area_offset, area_length; json_object *jobj_keyslots, *jobj_keyslot, *jobj_af, *jobj_area; int r; log_dbg(cd, "Trying to allocate LUKS2 keyslot %d.", keyslot); if (!params || params->area_type != LUKS2_KEYSLOT_AREA_RAW || params->af_type != LUKS2_KEYSLOT_AF_LUKS1) { log_dbg(cd, "Invalid LUKS2 keyslot parameters."); return -EINVAL; } if (!(hdr = crypt_get_hdr(cd, CRYPT_LUKS2))) return -EINVAL; if (keyslot == CRYPT_ANY_SLOT) keyslot = LUKS2_keyslot_find_empty(cd, hdr, 0); if (keyslot < 0 || keyslot >= LUKS2_KEYSLOTS_MAX) return -ENOMEM; if (LUKS2_get_keyslot_jobj(hdr, keyslot)) { log_dbg(cd, "Cannot modify already active keyslot %d.", keyslot); return -EINVAL; } if (!json_object_object_get_ex(hdr->jobj, "keyslots", &jobj_keyslots)) return -EINVAL; r = LUKS2_find_area_gap(cd, hdr, volume_key_len, &area_offset, &area_length); if (r < 0) { log_err(cd, _("No space for new keyslot.")); return r; } jobj_keyslot = json_object_new_object(); if (!jobj_keyslot) { r = -ENOMEM; goto err; } json_object_object_add(jobj_keyslot, "type", json_object_new_string("luks2")); json_object_object_add(jobj_keyslot, "key_size", json_object_new_int(volume_key_len)); /* AF object */ jobj_af = json_object_new_object(); if (!jobj_af) { r = -ENOMEM; goto err; } json_object_object_add(jobj_af, "type", json_object_new_string("luks1")); json_object_object_add(jobj_af, "stripes", json_object_new_int(params->af.luks1.stripes)); json_object_object_add(jobj_keyslot, "af", jobj_af); /* Area object */ jobj_area = json_object_new_object(); if (!jobj_area) { r = -ENOMEM; goto err; } json_object_object_add(jobj_area, "type", json_object_new_string("raw")); json_object_object_add(jobj_area, "offset", crypt_jobj_new_uint64(area_offset)); json_object_object_add(jobj_area, "size", crypt_jobj_new_uint64(area_length)); json_object_object_add(jobj_keyslot, "area", jobj_area); r = json_object_object_add_by_uint(jobj_keyslots, keyslot, jobj_keyslot); if (r) { json_object_put(jobj_keyslot); return r; } r = luks2_keyslot_update_json(cd, jobj_keyslot, params); if (!r && LUKS2_check_json_size(cd, hdr)) { log_dbg(cd, "Not enough space in header json area for new keyslot."); r = -ENOSPC; } if (r) json_object_object_del_by_uint(jobj_keyslots, keyslot); return r; err: json_object_put(jobj_keyslot); return r; } static int luks2_keyslot_open(struct crypt_device *cd, int keyslot, const char *password, size_t password_len, char *volume_key, size_t volume_key_len) { struct luks2_hdr *hdr; json_object *jobj_keyslot; log_dbg(cd, "Trying to open LUKS2 keyslot %d.", keyslot); if (!(hdr = crypt_get_hdr(cd, CRYPT_LUKS2))) return -EINVAL; jobj_keyslot = LUKS2_get_keyslot_jobj(hdr, keyslot); if (!jobj_keyslot) return -EINVAL; return luks2_keyslot_get_key(cd, jobj_keyslot, password, password_len, volume_key, volume_key_len); } /* * This function must not modify json. * It's called after luks2 keyslot validation. */ static int luks2_keyslot_store(struct crypt_device *cd, int keyslot, const char *password, size_t password_len, const char *volume_key, size_t volume_key_len) { struct luks2_hdr *hdr; json_object *jobj_keyslot; int r; log_dbg(cd, "Calculating attributes for LUKS2 keyslot %d.", keyslot); if (!(hdr = crypt_get_hdr(cd, CRYPT_LUKS2))) return -EINVAL; jobj_keyslot = LUKS2_get_keyslot_jobj(hdr, keyslot); if (!jobj_keyslot) return -EINVAL; r = LUKS2_device_write_lock(cd, hdr, crypt_metadata_device(cd)); if(r) return r; r = luks2_keyslot_set_key(cd, jobj_keyslot, password, password_len, volume_key, volume_key_len); if (!r) r = LUKS2_hdr_write(cd, hdr); device_write_unlock(cd, crypt_metadata_device(cd)); return r < 0 ? r : keyslot; } static int luks2_keyslot_wipe(struct crypt_device *cd, int keyslot) { struct luks2_hdr *hdr; if (!(hdr = crypt_get_hdr(cd, CRYPT_LUKS2))) return -EINVAL; /* Remove any reference of deleted keyslot from digests and tokens */ LUKS2_digest_assign(cd, hdr, keyslot, CRYPT_ANY_DIGEST, 0, 0); LUKS2_token_assign(cd, hdr, keyslot, CRYPT_ANY_TOKEN, 0, 0); return 0; } static int luks2_keyslot_dump(struct crypt_device *cd, int keyslot) { json_object *jobj_keyslot, *jobj1, *jobj_kdf, *jobj_af, *jobj_area; jobj_keyslot = LUKS2_get_keyslot_jobj(crypt_get_hdr(cd, CRYPT_LUKS2), keyslot); if (!jobj_keyslot) return -EINVAL; if (!json_object_object_get_ex(jobj_keyslot, "kdf", &jobj_kdf) || !json_object_object_get_ex(jobj_keyslot, "af", &jobj_af) || !json_object_object_get_ex(jobj_keyslot, "area", &jobj_area)) return -EINVAL; json_object_object_get_ex(jobj_area, "encryption", &jobj1); log_std(cd, "\tCipher: %s\n", json_object_get_string(jobj1)); json_object_object_get_ex(jobj_area, "key_size", &jobj1); log_std(cd, "\tCipher key: %u bits\n", crypt_jobj_get_uint32(jobj1) * 8); json_object_object_get_ex(jobj_kdf, "type", &jobj1); log_std(cd, "\tPBKDF: %s\n", json_object_get_string(jobj1)); if (!strcmp(json_object_get_string(jobj1), CRYPT_KDF_PBKDF2)) { json_object_object_get_ex(jobj_kdf, "hash", &jobj1); log_std(cd, "\tHash: %s\n", json_object_get_string(jobj1)); json_object_object_get_ex(jobj_kdf, "iterations", &jobj1); log_std(cd, "\tIterations: %" PRIu64 "\n", crypt_jobj_get_uint64(jobj1)); } else { json_object_object_get_ex(jobj_kdf, "time", &jobj1); log_std(cd, "\tTime cost: %" PRIu64 "\n", json_object_get_int64(jobj1)); json_object_object_get_ex(jobj_kdf, "memory", &jobj1); log_std(cd, "\tMemory: %" PRIu64 "\n", json_object_get_int64(jobj1)); json_object_object_get_ex(jobj_kdf, "cpus", &jobj1); log_std(cd, "\tThreads: %" PRIu64 "\n", json_object_get_int64(jobj1)); } json_object_object_get_ex(jobj_kdf, "salt", &jobj1); log_std(cd, "\tSalt: "); hexprint_base64(cd, jobj1, " ", " "); json_object_object_get_ex(jobj_af, "stripes", &jobj1); log_std(cd, "\tAF stripes: %u\n", json_object_get_int(jobj1)); json_object_object_get_ex(jobj_af, "hash", &jobj1); log_std(cd, "\tAF hash: %s\n", json_object_get_string(jobj1)); json_object_object_get_ex(jobj_area, "offset", &jobj1); log_std(cd, "\tArea offset:%" PRIu64 " [bytes]\n", crypt_jobj_get_uint64(jobj1)); json_object_object_get_ex(jobj_area, "size", &jobj1); log_std(cd, "\tArea length:%" PRIu64 " [bytes]\n", crypt_jobj_get_uint64(jobj1)); return 0; } static int luks2_keyslot_validate(struct crypt_device *cd, json_object *jobj_keyslot) { json_object *jobj_kdf, *jobj_af, *jobj_area, *jobj1; const char *type; int count; if (!jobj_keyslot) return -EINVAL; if (!(jobj_kdf = json_contains(cd, jobj_keyslot, "", "keyslot", "kdf", json_type_object)) || !(jobj_af = json_contains(cd, jobj_keyslot, "", "keyslot", "af", json_type_object)) || !(jobj_area = json_contains(cd, jobj_keyslot, "", "keyslot", "area", json_type_object))) return -EINVAL; count = json_object_object_length(jobj_kdf); jobj1 = json_contains_string(cd, jobj_kdf, "", "kdf section", "type"); if (!jobj1) return -EINVAL; type = json_object_get_string(jobj1); if (!strcmp(type, CRYPT_KDF_PBKDF2)) { if (count != 4 || /* type, salt, hash, iterations only */ !json_contains_string(cd, jobj_kdf, "kdf type", type, "hash") || !json_contains(cd, jobj_kdf, "kdf type", type, "iterations", json_type_int) || !json_contains_string(cd, jobj_kdf, "kdf type", type, "salt")) return -EINVAL; } else if (!strcmp(type, CRYPT_KDF_ARGON2I) || !strcmp(type, CRYPT_KDF_ARGON2ID)) { if (count != 5 || /* type, salt, time, memory, cpus only */ !json_contains(cd, jobj_kdf, "kdf type", type, "time", json_type_int) || !json_contains(cd, jobj_kdf, "kdf type", type, "memory", json_type_int) || !json_contains(cd, jobj_kdf, "kdf type", type, "cpus", json_type_int) || !json_contains_string(cd, jobj_kdf, "kdf type", type, "salt")) return -EINVAL; } jobj1 = json_contains_string(cd, jobj_af, "", "af section", "type"); if (!jobj1) return -EINVAL; type = json_object_get_string(jobj1); if (!strcmp(type, "luks1")) { if (!json_contains_string(cd, jobj_af, "", "luks1 af", "hash") || !json_contains(cd, jobj_af, "", "luks1 af", "stripes", json_type_int)) return -EINVAL; } else return -EINVAL; // FIXME check numbered jobj1 = json_contains_string(cd, jobj_area, "", "area section", "type"); if (!jobj1) return -EINVAL; type = json_object_get_string(jobj1); if (!strcmp(type, "raw")) { if (!json_contains_string(cd, jobj_area, "area", "raw type", "encryption") || !json_contains(cd, jobj_area, "area", "raw type", "key_size", json_type_int) || !json_contains_string(cd, jobj_area, "area", "raw type", "offset") || !json_contains_string(cd, jobj_area, "area", "raw type", "size")) return -EINVAL; } else return -EINVAL; return 0; } static int luks2_keyslot_update(struct crypt_device *cd, int keyslot, const struct luks2_keyslot_params *params) { struct luks2_hdr *hdr; json_object *jobj_keyslot; int r; log_dbg(cd, "Updating LUKS2 keyslot %d.", keyslot); if (!(hdr = crypt_get_hdr(cd, CRYPT_LUKS2))) return -EINVAL; jobj_keyslot = LUKS2_get_keyslot_jobj(hdr, keyslot); if (!jobj_keyslot) return -EINVAL; r = luks2_keyslot_update_json(cd, jobj_keyslot, params); if (!r && LUKS2_check_json_size(cd, hdr)) { log_dbg(cd, "Not enough space in header json area for updated keyslot %d.", keyslot); r = -ENOSPC; } return r; } static void luks2_keyslot_repair(json_object *jobj_keyslot) { const char *type; json_object *jobj_kdf, *jobj_type; if (!json_object_object_get_ex(jobj_keyslot, "kdf", &jobj_kdf) || !json_object_is_type(jobj_kdf, json_type_object)) return; if (!json_object_object_get_ex(jobj_kdf, "type", &jobj_type) || !json_object_is_type(jobj_type, json_type_string)) return; type = json_object_get_string(jobj_type); if (!strcmp(type, CRYPT_KDF_PBKDF2)) { /* type, salt, hash, iterations only */ json_object_object_foreach(jobj_kdf, key, val) { UNUSED(val); if (!strcmp(key, "type") || !strcmp(key, "salt") || !strcmp(key, "hash") || !strcmp(key, "iterations")) continue; json_object_object_del(jobj_kdf, key); } } else if (!strcmp(type, CRYPT_KDF_ARGON2I) || !strcmp(type, CRYPT_KDF_ARGON2ID)) { /* type, salt, time, memory, cpus only */ json_object_object_foreach(jobj_kdf, key, val) { UNUSED(val); if (!strcmp(key, "type") || !strcmp(key, "salt") || !strcmp(key, "time") || !strcmp(key, "memory") || !strcmp(key, "cpus")) continue; json_object_object_del(jobj_kdf, key); } } } const keyslot_handler luks2_keyslot = { .name = "luks2", .alloc = luks2_keyslot_alloc, .update = luks2_keyslot_update, .open = luks2_keyslot_open, .store = luks2_keyslot_store, .wipe = luks2_keyslot_wipe, .dump = luks2_keyslot_dump, .validate = luks2_keyslot_validate, .repair = luks2_keyslot_repair };