/* * Reed-Solomon decoder, based on libfec * * Copyright (C) 2002, Phil Karn, KA9Q * libcryptsetup modifications * Copyright (C) 2017-2024 Red Hat, Inc. All rights reserved. * * This file is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This file is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this file; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include "rs.h" #define MAX_NR_BUF 256 int decode_rs_char(struct rs* rs, data_t* data) { int deg_lambda, el, deg_omega, syn_error, count; int i, j, r, k; data_t q, tmp, num1, num2, den, discr_r; data_t lambda[MAX_NR_BUF], s[MAX_NR_BUF]; /* Err+Eras Locator poly and syndrome poly */ data_t b[MAX_NR_BUF], t[MAX_NR_BUF], omega[MAX_NR_BUF]; data_t root[MAX_NR_BUF], reg[MAX_NR_BUF], loc[MAX_NR_BUF]; if (rs->nroots >= MAX_NR_BUF) return -1; memset(s, 0, rs->nroots * sizeof(data_t)); memset(b, 0, (rs->nroots + 1) * sizeof(data_t)); /* form the syndromes; i.e., evaluate data(x) at roots of g(x) */ for (i = 0; i < rs->nroots; i++) s[i] = data[0]; for (j = 1; j < rs->nn - rs->pad; j++) { for (i = 0; i < rs->nroots; i++) { if (s[i] == 0) { s[i] = data[j]; } else { s[i] = data[j] ^ rs->alpha_to[modnn(rs, rs->index_of[s[i]] + (rs->fcr + i) * rs->prim)]; } } } /* Convert syndromes to index form, checking for nonzero condition */ syn_error = 0; for (i = 0; i < rs->nroots; i++) { syn_error |= s[i]; s[i] = rs->index_of[s[i]]; } /* * if syndrome is zero, data[] is a codeword and there are no * errors to correct. So return data[] unmodified */ if (!syn_error) return 0; memset(&lambda[1], 0, rs->nroots * sizeof(lambda[0])); lambda[0] = 1; for (i = 0; i < rs->nroots + 1; i++) b[i] = rs->index_of[lambda[i]]; /* * Begin Berlekamp-Massey algorithm to determine error+erasure * locator polynomial */ r = 0; el = 0; while (++r <= rs->nroots) { /* r is the step number */ /* Compute discrepancy at the r-th step in poly-form */ discr_r = 0; for (i = 0; i < r; i++) { if ((lambda[i] != 0) && (s[r - i - 1] != A0)) { discr_r ^= rs->alpha_to[modnn(rs, rs->index_of[lambda[i]] + s[r - i - 1])]; } } discr_r = rs->index_of[discr_r]; /* Index form */ if (discr_r == A0) { /* 2 lines below: B(x) <-- x*B(x) */ memmove(&b[1], b, rs->nroots * sizeof(b[0])); b[0] = A0; } else { /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */ t[0] = lambda[0]; for (i = 0; i < rs->nroots; i++) { if (b[i] != A0) t[i + 1] = lambda[i + 1] ^ rs->alpha_to[modnn(rs, discr_r + b[i])]; else t[i + 1] = lambda[i + 1]; } if (2 * el <= r - 1) { el = r - el; /* * 2 lines below: B(x) <-- inv(discr_r) * * lambda(x) */ for (i = 0; i <= rs->nroots; i++) b[i] = (lambda[i] == 0) ? A0 : modnn(rs, rs->index_of[lambda[i]] - discr_r + rs->nn); } else { /* 2 lines below: B(x) <-- x*B(x) */ memmove(&b[1], b, rs->nroots * sizeof(b[0])); b[0] = A0; } memcpy(lambda, t, (rs->nroots + 1) * sizeof(t[0])); } } /* Convert lambda to index form and compute deg(lambda(x)) */ deg_lambda = 0; for (i = 0; i < rs->nroots + 1; i++) { lambda[i] = rs->index_of[lambda[i]]; if (lambda[i] != A0) deg_lambda = i; } /* Find roots of the error+erasure locator polynomial by Chien search */ memcpy(®[1], &lambda[1], rs->nroots * sizeof(reg[0])); count = 0; /* Number of roots of lambda(x) */ for (i = 1, k = rs->iprim - 1; i <= rs->nn; i++, k = modnn(rs, k + rs->iprim)) { q = 1; /* lambda[0] is always 0 */ for (j = deg_lambda; j > 0; j--) { if (reg[j] != A0) { reg[j] = modnn(rs, reg[j] + j); q ^= rs->alpha_to[reg[j]]; } } if (q != 0) continue; /* Not a root */ /* store root (index-form) and error location number */ root[count] = i; loc[count] = k; /* If we've already found max possible roots, abort the search to save time */ if (++count == deg_lambda) break; } /* * deg(lambda) unequal to number of roots => uncorrectable * error detected */ if (deg_lambda != count) return -1; /* * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo * x**rs->nroots). in index form. Also find deg(omega). */ deg_omega = deg_lambda - 1; for (i = 0; i <= deg_omega; i++) { tmp = 0; for (j = i; j >= 0; j--) { if ((s[i - j] != A0) && (lambda[j] != A0)) tmp ^= rs->alpha_to[modnn(rs, s[i - j] + lambda[j])]; } omega[i] = rs->index_of[tmp]; } /* * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = * inv(X(l))**(rs->fcr-1) and den = lambda_pr(inv(X(l))) all in poly-form */ for (j = count - 1; j >= 0; j--) { num1 = 0; for (i = deg_omega; i >= 0; i--) { if (omega[i] != A0) num1 ^= rs->alpha_to[modnn(rs, omega[i] + i * root[j])]; } num2 = rs->alpha_to[modnn(rs, root[j] * (rs->fcr - 1) + rs->nn)]; den = 0; /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */ for (i = RS_MIN(deg_lambda, rs->nroots - 1) & ~1; i >= 0; i -= 2) { if (lambda[i + 1] != A0) den ^= rs->alpha_to[modnn(rs, lambda[i + 1] + i * root[j])]; } /* Apply error to data */ if (num1 != 0 && loc[j] >= rs->pad) { data[loc[j] - rs->pad] ^= rs->alpha_to[modnn(rs, rs->index_of[num1] + rs->index_of[num2] + rs->nn - rs->index_of[den])]; } } return count; }