summaryrefslogtreecommitdiffstats
path: root/debian/vendor-h2o/deps/brotli/enc/entropy_encode.cc
diff options
context:
space:
mode:
Diffstat (limited to 'debian/vendor-h2o/deps/brotli/enc/entropy_encode.cc')
-rw-r--r--debian/vendor-h2o/deps/brotli/enc/entropy_encode.cc469
1 files changed, 0 insertions, 469 deletions
diff --git a/debian/vendor-h2o/deps/brotli/enc/entropy_encode.cc b/debian/vendor-h2o/deps/brotli/enc/entropy_encode.cc
deleted file mode 100644
index ff5484f..0000000
--- a/debian/vendor-h2o/deps/brotli/enc/entropy_encode.cc
+++ /dev/null
@@ -1,469 +0,0 @@
-/* Copyright 2010 Google Inc. All Rights Reserved.
-
- Distributed under MIT license.
- See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
-*/
-
-// Entropy encoding (Huffman) utilities.
-
-#include "./entropy_encode.h"
-
-#include <algorithm>
-#include <limits>
-#include <vector>
-#include <cstdlib>
-
-#include "./histogram.h"
-#include "./port.h"
-#include "./types.h"
-
-namespace brotli {
-
-void SetDepth(const HuffmanTree &p,
- HuffmanTree *pool,
- uint8_t *depth,
- uint8_t level) {
- if (p.index_left_ >= 0) {
- ++level;
- SetDepth(pool[p.index_left_], pool, depth, level);
- SetDepth(pool[p.index_right_or_value_], pool, depth, level);
- } else {
- depth[p.index_right_or_value_] = level;
- }
-}
-
-// This function will create a Huffman tree.
-//
-// The catch here is that the tree cannot be arbitrarily deep.
-// Brotli specifies a maximum depth of 15 bits for "code trees"
-// and 7 bits for "code length code trees."
-//
-// count_limit is the value that is to be faked as the minimum value
-// and this minimum value is raised until the tree matches the
-// maximum length requirement.
-//
-// This algorithm is not of excellent performance for very long data blocks,
-// especially when population counts are longer than 2**tree_limit, but
-// we are not planning to use this with extremely long blocks.
-//
-// See http://en.wikipedia.org/wiki/Huffman_coding
-void CreateHuffmanTree(const uint32_t *data,
- const size_t length,
- const int tree_limit,
- uint8_t *depth) {
- // For block sizes below 64 kB, we never need to do a second iteration
- // of this loop. Probably all of our block sizes will be smaller than
- // that, so this loop is mostly of academic interest. If we actually
- // would need this, we would be better off with the Katajainen algorithm.
- for (uint32_t count_limit = 1; ; count_limit *= 2) {
- std::vector<HuffmanTree> tree;
- tree.reserve(2 * length + 1);
-
- for (size_t i = length; i != 0;) {
- --i;
- if (data[i]) {
- const uint32_t count = std::max(data[i], count_limit);
- tree.push_back(HuffmanTree(count, -1, static_cast<int16_t>(i)));
- }
- }
-
- const size_t n = tree.size();
- if (n == 1) {
- depth[tree[0].index_right_or_value_] = 1; // Only one element.
- break;
- }
-
- std::stable_sort(tree.begin(), tree.end(), SortHuffmanTree);
-
- // The nodes are:
- // [0, n): the sorted leaf nodes that we start with.
- // [n]: we add a sentinel here.
- // [n + 1, 2n): new parent nodes are added here, starting from
- // (n+1). These are naturally in ascending order.
- // [2n]: we add a sentinel at the end as well.
- // There will be (2n+1) elements at the end.
- const HuffmanTree sentinel(std::numeric_limits<uint32_t>::max(), -1, -1);
- tree.push_back(sentinel);
- tree.push_back(sentinel);
-
- size_t i = 0; // Points to the next leaf node.
- size_t j = n + 1; // Points to the next non-leaf node.
- for (size_t k = n - 1; k != 0; --k) {
- size_t left, right;
- if (tree[i].total_count_ <= tree[j].total_count_) {
- left = i;
- ++i;
- } else {
- left = j;
- ++j;
- }
- if (tree[i].total_count_ <= tree[j].total_count_) {
- right = i;
- ++i;
- } else {
- right = j;
- ++j;
- }
-
- // The sentinel node becomes the parent node.
- size_t j_end = tree.size() - 1;
- tree[j_end].total_count_ =
- tree[left].total_count_ + tree[right].total_count_;
- tree[j_end].index_left_ = static_cast<int16_t>(left);
- tree[j_end].index_right_or_value_ = static_cast<int16_t>(right);
-
- // Add back the last sentinel node.
- tree.push_back(sentinel);
- }
- assert(tree.size() == 2 * n + 1);
- SetDepth(tree[2 * n - 1], &tree[0], depth, 0);
-
- // We need to pack the Huffman tree in tree_limit bits.
- // If this was not successful, add fake entities to the lowest values
- // and retry.
- if (*std::max_element(&depth[0], &depth[length]) <= tree_limit) {
- break;
- }
- }
-}
-
-void Reverse(std::vector<uint8_t>* v, size_t start, size_t end) {
- --end;
- while (start < end) {
- uint8_t tmp = (*v)[start];
- (*v)[start] = (*v)[end];
- (*v)[end] = tmp;
- ++start;
- --end;
- }
-}
-
-void WriteHuffmanTreeRepetitions(
- const uint8_t previous_value,
- const uint8_t value,
- size_t repetitions,
- std::vector<uint8_t> *tree,
- std::vector<uint8_t> *extra_bits_data) {
- assert(repetitions > 0);
- if (previous_value != value) {
- tree->push_back(value);
- extra_bits_data->push_back(0);
- --repetitions;
- }
- if (repetitions == 7) {
- tree->push_back(value);
- extra_bits_data->push_back(0);
- --repetitions;
- }
- if (repetitions < 3) {
- for (size_t i = 0; i < repetitions; ++i) {
- tree->push_back(value);
- extra_bits_data->push_back(0);
- }
- } else {
- repetitions -= 3;
- size_t start = tree->size();
- while (true) {
- tree->push_back(16);
- extra_bits_data->push_back(repetitions & 0x3);
- repetitions >>= 2;
- if (repetitions == 0) {
- break;
- }
- --repetitions;
- }
- Reverse(tree, start, tree->size());
- Reverse(extra_bits_data, start, tree->size());
- }
-}
-
-void WriteHuffmanTreeRepetitionsZeros(
- size_t repetitions,
- std::vector<uint8_t> *tree,
- std::vector<uint8_t> *extra_bits_data) {
- if (repetitions == 11) {
- tree->push_back(0);
- extra_bits_data->push_back(0);
- --repetitions;
- }
- if (repetitions < 3) {
- for (size_t i = 0; i < repetitions; ++i) {
- tree->push_back(0);
- extra_bits_data->push_back(0);
- }
- } else {
- repetitions -= 3;
- size_t start = tree->size();
- while (true) {
- tree->push_back(17);
- extra_bits_data->push_back(repetitions & 0x7);
- repetitions >>= 3;
- if (repetitions == 0) {
- break;
- }
- --repetitions;
- }
- Reverse(tree, start, tree->size());
- Reverse(extra_bits_data, start, tree->size());
- }
-}
-
-bool OptimizeHuffmanCountsForRle(size_t length, uint32_t* counts) {
- size_t nonzero_count = 0;
- size_t stride;
- size_t limit;
- size_t sum;
- const size_t streak_limit = 1240;
- uint8_t* good_for_rle;
- // Let's make the Huffman code more compatible with rle encoding.
- size_t i;
- for (i = 0; i < length; i++) {
- if (counts[i]) {
- ++nonzero_count;
- }
- }
- if (nonzero_count < 16) {
- return 1;
- }
- while (length != 0 && counts[length - 1] == 0) {
- --length;
- }
- if (length == 0) {
- return 1; // All zeros.
- }
- // Now counts[0..length - 1] does not have trailing zeros.
- {
- size_t nonzeros = 0;
- uint32_t smallest_nonzero = 1 << 30;
- for (i = 0; i < length; ++i) {
- if (counts[i] != 0) {
- ++nonzeros;
- if (smallest_nonzero > counts[i]) {
- smallest_nonzero = counts[i];
- }
- }
- }
- if (nonzeros < 5) {
- // Small histogram will model it well.
- return 1;
- }
- size_t zeros = length - nonzeros;
- if (smallest_nonzero < 4) {
- if (zeros < 6) {
- for (i = 1; i < length - 1; ++i) {
- if (counts[i - 1] != 0 && counts[i] == 0 && counts[i + 1] != 0) {
- counts[i] = 1;
- }
- }
- }
- }
- if (nonzeros < 28) {
- return 1;
- }
- }
- // 2) Let's mark all population counts that already can be encoded
- // with an rle code.
- good_for_rle = (uint8_t*)calloc(length, 1);
- if (good_for_rle == NULL) {
- return 0;
- }
- {
- // Let's not spoil any of the existing good rle codes.
- // Mark any seq of 0's that is longer as 5 as a good_for_rle.
- // Mark any seq of non-0's that is longer as 7 as a good_for_rle.
- uint32_t symbol = counts[0];
- size_t step = 0;
- for (i = 0; i <= length; ++i) {
- if (i == length || counts[i] != symbol) {
- if ((symbol == 0 && step >= 5) ||
- (symbol != 0 && step >= 7)) {
- size_t k;
- for (k = 0; k < step; ++k) {
- good_for_rle[i - k - 1] = 1;
- }
- }
- step = 1;
- if (i != length) {
- symbol = counts[i];
- }
- } else {
- ++step;
- }
- }
- }
- // 3) Let's replace those population counts that lead to more rle codes.
- // Math here is in 24.8 fixed point representation.
- stride = 0;
- limit = 256 * (counts[0] + counts[1] + counts[2]) / 3 + 420;
- sum = 0;
- for (i = 0; i <= length; ++i) {
- if (i == length || good_for_rle[i] ||
- (i != 0 && good_for_rle[i - 1]) ||
- (256 * counts[i] - limit + streak_limit) >= 2 * streak_limit) {
- if (stride >= 4 || (stride >= 3 && sum == 0)) {
- size_t k;
- // The stride must end, collapse what we have, if we have enough (4).
- size_t count = (sum + stride / 2) / stride;
- if (count == 0) {
- count = 1;
- }
- if (sum == 0) {
- // Don't make an all zeros stride to be upgraded to ones.
- count = 0;
- }
- for (k = 0; k < stride; ++k) {
- // We don't want to change value at counts[i],
- // that is already belonging to the next stride. Thus - 1.
- counts[i - k - 1] = static_cast<uint32_t>(count);
- }
- }
- stride = 0;
- sum = 0;
- if (i < length - 2) {
- // All interesting strides have a count of at least 4,
- // at least when non-zeros.
- limit = 256 * (counts[i] + counts[i + 1] + counts[i + 2]) / 3 + 420;
- } else if (i < length) {
- limit = 256 * counts[i];
- } else {
- limit = 0;
- }
- }
- ++stride;
- if (i != length) {
- sum += counts[i];
- if (stride >= 4) {
- limit = (256 * sum + stride / 2) / stride;
- }
- if (stride == 4) {
- limit += 120;
- }
- }
- }
- free(good_for_rle);
- return 1;
-}
-
-static void DecideOverRleUse(const uint8_t* depth, const size_t length,
- bool *use_rle_for_non_zero,
- bool *use_rle_for_zero) {
- size_t total_reps_zero = 0;
- size_t total_reps_non_zero = 0;
- size_t count_reps_zero = 1;
- size_t count_reps_non_zero = 1;
- for (size_t i = 0; i < length;) {
- const uint8_t value = depth[i];
- size_t reps = 1;
- for (size_t k = i + 1; k < length && depth[k] == value; ++k) {
- ++reps;
- }
- if (reps >= 3 && value == 0) {
- total_reps_zero += reps;
- ++count_reps_zero;
- }
- if (reps >= 4 && value != 0) {
- total_reps_non_zero += reps;
- ++count_reps_non_zero;
- }
- i += reps;
- }
- *use_rle_for_non_zero = total_reps_non_zero > count_reps_non_zero * 2;
- *use_rle_for_zero = total_reps_zero > count_reps_zero * 2;
-}
-
-void WriteHuffmanTree(const uint8_t* depth,
- size_t length,
- std::vector<uint8_t> *tree,
- std::vector<uint8_t> *extra_bits_data) {
- uint8_t previous_value = 8;
-
- // Throw away trailing zeros.
- size_t new_length = length;
- for (size_t i = 0; i < length; ++i) {
- if (depth[length - i - 1] == 0) {
- --new_length;
- } else {
- break;
- }
- }
-
- // First gather statistics on if it is a good idea to do rle.
- bool use_rle_for_non_zero = false;
- bool use_rle_for_zero = false;
- if (length > 50) {
- // Find rle coding for longer codes.
- // Shorter codes seem not to benefit from rle.
- DecideOverRleUse(depth, new_length,
- &use_rle_for_non_zero, &use_rle_for_zero);
- }
-
- // Actual rle coding.
- for (size_t i = 0; i < new_length;) {
- const uint8_t value = depth[i];
- size_t reps = 1;
- if ((value != 0 && use_rle_for_non_zero) ||
- (value == 0 && use_rle_for_zero)) {
- for (size_t k = i + 1; k < new_length && depth[k] == value; ++k) {
- ++reps;
- }
- }
- if (value == 0) {
- WriteHuffmanTreeRepetitionsZeros(reps, tree, extra_bits_data);
- } else {
- WriteHuffmanTreeRepetitions(previous_value,
- value, reps, tree, extra_bits_data);
- previous_value = value;
- }
- i += reps;
- }
-}
-
-namespace {
-
-uint16_t ReverseBits(int num_bits, uint16_t bits) {
- static const size_t kLut[16] = { // Pre-reversed 4-bit values.
- 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
- 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf
- };
- size_t retval = kLut[bits & 0xf];
- for (int i = 4; i < num_bits; i += 4) {
- retval <<= 4;
- bits = static_cast<uint16_t>(bits >> 4);
- retval |= kLut[bits & 0xf];
- }
- retval >>= (-num_bits & 0x3);
- return static_cast<uint16_t>(retval);
-}
-
-} // namespace
-
-void ConvertBitDepthsToSymbols(const uint8_t *depth,
- size_t len,
- uint16_t *bits) {
- // In Brotli, all bit depths are [1..15]
- // 0 bit depth means that the symbol does not exist.
- const int kMaxBits = 16; // 0..15 are values for bits
- uint16_t bl_count[kMaxBits] = { 0 };
- {
- for (size_t i = 0; i < len; ++i) {
- ++bl_count[depth[i]];
- }
- bl_count[0] = 0;
- }
- uint16_t next_code[kMaxBits];
- next_code[0] = 0;
- {
- int code = 0;
- for (int bits = 1; bits < kMaxBits; ++bits) {
- code = (code + bl_count[bits - 1]) << 1;
- next_code[bits] = static_cast<uint16_t>(code);
- }
- }
- for (size_t i = 0; i < len; ++i) {
- if (depth[i]) {
- bits[i] = ReverseBits(depth[i], next_code[depth[i]]++);
- }
- }
-}
-
-} // namespace brotli