#include #include #include #include "kmath.h" /************************************** *** Pseudo-random number generator *** **************************************/ /* 64-bit Mersenne Twister pseudorandom number generator. Adapted from: http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/VERSIONS/C-LANG/mt19937-64.c which was written by Takuji Nishimura and Makoto Matsumoto and released under the 3-clause BSD license. */ #define KR_NN 312 #define KR_MM 156 #define KR_UM 0xFFFFFFFF80000000ULL /* Most significant 33 bits */ #define KR_LM 0x7FFFFFFFULL /* Least significant 31 bits */ struct _krand_t { int mti; krint64_t mt[KR_NN]; }; static void kr_srand0(krint64_t seed, krand_t *kr) { kr->mt[0] = seed; for (kr->mti = 1; kr->mti < KR_NN; ++kr->mti) kr->mt[kr->mti] = 6364136223846793005ULL * (kr->mt[kr->mti - 1] ^ (kr->mt[kr->mti - 1] >> 62)) + kr->mti; } krand_t *kr_srand(krint64_t seed) { krand_t *kr; kr = malloc(sizeof(krand_t)); kr_srand0(seed, kr); return kr; } krint64_t kr_rand(krand_t *kr) { krint64_t x; static const krint64_t mag01[2] = { 0, 0xB5026F5AA96619E9ULL }; if (kr->mti >= KR_NN) { int i; if (kr->mti == KR_NN + 1) kr_srand0(5489ULL, kr); for (i = 0; i < KR_NN - KR_MM; ++i) { x = (kr->mt[i] & KR_UM) | (kr->mt[i+1] & KR_LM); kr->mt[i] = kr->mt[i + KR_MM] ^ (x>>1) ^ mag01[(int)(x&1)]; } for (; i < KR_NN - 1; ++i) { x = (kr->mt[i] & KR_UM) | (kr->mt[i+1] & KR_LM); kr->mt[i] = kr->mt[i + (KR_MM - KR_NN)] ^ (x>>1) ^ mag01[(int)(x&1)]; } x = (kr->mt[KR_NN - 1] & KR_UM) | (kr->mt[0] & KR_LM); kr->mt[KR_NN - 1] = kr->mt[KR_MM - 1] ^ (x>>1) ^ mag01[(int)(x&1)]; kr->mti = 0; } x = kr->mt[kr->mti++]; x ^= (x >> 29) & 0x5555555555555555ULL; x ^= (x << 17) & 0x71D67FFFEDA60000ULL; x ^= (x << 37) & 0xFFF7EEE000000000ULL; x ^= (x >> 43); return x; } #ifdef _KR_MAIN int main(int argc, char *argv[]) { long i, N = 200000000; krand_t *kr; if (argc > 1) N = atol(argv[1]); kr = kr_srand(11); for (i = 0; i < N; ++i) kr_rand(kr); // for (i = 0; i < N; ++i) lrand48(); free(kr); return 0; } #endif /****************************** *** Non-linear programming *** ******************************/ /* Hooke-Jeeves algorithm for nonlinear minimization Based on the pseudocodes by Bell and Pike (CACM 9(9):684-685), and the revision by Tomlin and Smith (CACM 12(11):637-638). Both of the papers are comments on Kaupe's Algorithm 178 "Direct Search" (ACM 6(6):313-314). The original algorithm was designed by Hooke and Jeeves (ACM 8:212-229). This program is further revised according to Johnson's implementation at Netlib (opt/hooke.c). Hooke-Jeeves algorithm is very simple and it works quite well on a few examples. However, it might fail to converge due to its heuristic nature. A possible improvement, as is suggested by Johnson, may be to choose a small r at the beginning to quickly approach to the minimum and a large r at later step to hit the minimum. */ static double __kmin_hj_aux(kmin_f func, int n, double *x1, void *data, double fx1, double *dx, int *n_calls) { int k, j = *n_calls; double ftmp; for (k = 0; k != n; ++k) { x1[k] += dx[k]; ftmp = func(n, x1, data); ++j; if (ftmp < fx1) fx1 = ftmp; else { /* search the opposite direction */ dx[k] = 0.0 - dx[k]; x1[k] += dx[k] + dx[k]; ftmp = func(n, x1, data); ++j; if (ftmp < fx1) fx1 = ftmp; else x1[k] -= dx[k]; /* back to the original x[k] */ } } *n_calls = j; return fx1; /* here: fx1=f(n,x1) */ } double kmin_hj(kmin_f func, int n, double *x, void *data, double r, double eps, int max_calls) { double fx, fx1, *x1, *dx, radius; int k, n_calls = 0; x1 = (double*)calloc(n, sizeof(double)); dx = (double*)calloc(n, sizeof(double)); for (k = 0; k != n; ++k) { /* initial directions, based on MGJ */ dx[k] = fabs(x[k]) * r; if (dx[k] == 0) dx[k] = r; } radius = r; fx1 = fx = func(n, x, data); ++n_calls; for (;;) { memcpy(x1, x, n * sizeof(double)); /* x1 = x */ fx1 = __kmin_hj_aux(func, n, x1, data, fx, dx, &n_calls); while (fx1 < fx) { for (k = 0; k != n; ++k) { double t = x[k]; dx[k] = x1[k] > x[k]? fabs(dx[k]) : 0.0 - fabs(dx[k]); x[k] = x1[k]; x1[k] = x1[k] + x1[k] - t; } fx = fx1; if (n_calls >= max_calls) break; fx1 = func(n, x1, data); ++n_calls; fx1 = __kmin_hj_aux(func, n, x1, data, fx1, dx, &n_calls); if (fx1 >= fx) break; for (k = 0; k != n; ++k) if (fabs(x1[k] - x[k]) > .5 * fabs(dx[k])) break; if (k == n) break; } if (radius >= eps) { if (n_calls >= max_calls) break; radius *= r; for (k = 0; k != n; ++k) dx[k] *= r; } else break; /* converge */ } free(x1); free(dx); return fx1; } // I copied this function somewhere several years ago with some of my modifications, but I forgot the source. double kmin_brent(kmin1_f func, double a, double b, void *data, double tol, double *xmin) { double bound, u, r, q, fu, tmp, fa, fb, fc, c; const double gold1 = 1.6180339887; const double gold2 = 0.3819660113; const double tiny = 1e-20; const int max_iter = 100; double e, d, w, v, mid, tol1, tol2, p, eold, fv, fw; int iter; fa = func(a, data); fb = func(b, data); if (fb > fa) { // swap, such that f(a) > f(b) tmp = a; a = b; b = tmp; tmp = fa; fa = fb; fb = tmp; } c = b + gold1 * (b - a), fc = func(c, data); // golden section extrapolation while (fb > fc) { bound = b + 100.0 * (c - b); // the farthest point where we want to go r = (b - a) * (fb - fc); q = (b - c) * (fb - fa); if (fabs(q - r) < tiny) { // avoid 0 denominator tmp = q > r? tiny : 0.0 - tiny; } else tmp = q - r; u = b - ((b - c) * q - (b - a) * r) / (2.0 * tmp); // u is the parabolic extrapolation point if ((b > u && u > c) || (b < u && u < c)) { // u lies between b and c fu = func(u, data); if (fu < fc) { // (b,u,c) bracket the minimum a = b; b = u; fa = fb; fb = fu; break; } else if (fu > fb) { // (a,b,u) bracket the minimum c = u; fc = fu; break; } u = c + gold1 * (c - b); fu = func(u, data); // golden section extrapolation } else if ((c > u && u > bound) || (c < u && u < bound)) { // u lies between c and bound fu = func(u, data); if (fu < fc) { // fb > fc > fu b = c; c = u; u = c + gold1 * (c - b); fb = fc; fc = fu; fu = func(u, data); } else { // (b,c,u) bracket the minimum a = b; b = c; c = u; fa = fb; fb = fc; fc = fu; break; } } else if ((u > bound && bound > c) || (u < bound && bound < c)) { // u goes beyond the bound u = bound; fu = func(u, data); } else { // u goes the other way around, use golden section extrapolation u = c + gold1 * (c - b); fu = func(u, data); } a = b; b = c; c = u; fa = fb; fb = fc; fc = fu; } if (a > c) u = a, a = c, c = u; // swap // now, afb and fb tol1) { // related to parabolic interpolation r = (b - w) * (fb - fv); q = (b - v) * (fb - fw); p = (b - v) * q - (b - w) * r; q = 2.0 * (q - r); if (q > 0.0) p = 0.0 - p; else q = 0.0 - q; eold = e; e = d; if (fabs(p) >= fabs(0.5 * q * eold) || p <= q * (a - b) || p >= q * (c - b)) { d = gold2 * (e = (b >= mid ? a - b : c - b)); } else { d = p / q; u = b + d; // actual parabolic interpolation happens here if (u - a < tol2 || c - u < tol2) d = (mid > b)? tol1 : 0.0 - tol1; } } else d = gold2 * (e = (b >= mid ? a - b : c - b)); // golden section interpolation u = fabs(d) >= tol1 ? b + d : b + (d > 0.0? tol1 : -tol1); fu = func(u, data); if (fu <= fb) { // u is the minimum point so far if (u >= b) a = b; else c = b; v = w; w = b; b = u; fv = fw; fw = fb; fb = fu; } else { // adjust (a,c) and (u,v,w) if (u < b) a = u; else c = u; if (fu <= fw || w == b) { v = w; w = u; fv = fw; fw = fu; } else if (fu <= fv || v == b || v == w) { v = u; fv = fu; } } } *xmin = b; return fb; } /************************* *** Special functions *** *************************/ /* Log gamma function * \log{\Gamma(z)} * AS245, 2nd algorithm, http://lib.stat.cmu.edu/apstat/245 */ double kf_lgamma(double z) { double x = 0; x += 0.1659470187408462e-06 / (z+7); x += 0.9934937113930748e-05 / (z+6); x -= 0.1385710331296526 / (z+5); x += 12.50734324009056 / (z+4); x -= 176.6150291498386 / (z+3); x += 771.3234287757674 / (z+2); x -= 1259.139216722289 / (z+1); x += 676.5203681218835 / z; x += 0.9999999999995183; return log(x) - 5.58106146679532777 - z + (z-0.5) * log(z+6.5); } /* complementary error function * \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2} dt * AS66, 2nd algorithm, http://lib.stat.cmu.edu/apstat/66 */ double kf_erfc(double x) { const double p0 = 220.2068679123761; const double p1 = 221.2135961699311; const double p2 = 112.0792914978709; const double p3 = 33.912866078383; const double p4 = 6.37396220353165; const double p5 = .7003830644436881; const double p6 = .03526249659989109; const double q0 = 440.4137358247522; const double q1 = 793.8265125199484; const double q2 = 637.3336333788311; const double q3 = 296.5642487796737; const double q4 = 86.78073220294608; const double q5 = 16.06417757920695; const double q6 = 1.755667163182642; const double q7 = .08838834764831844; double expntl, z, p; z = fabs(x) * M_SQRT2; if (z > 37.) return x > 0.? 0. : 2.; expntl = exp(z * z * - .5); if (z < 10. / M_SQRT2) // for small z p = expntl * ((((((p6 * z + p5) * z + p4) * z + p3) * z + p2) * z + p1) * z + p0) / (((((((q7 * z + q6) * z + q5) * z + q4) * z + q3) * z + q2) * z + q1) * z + q0); else p = expntl / 2.506628274631001 / (z + 1. / (z + 2. / (z + 3. / (z + 4. / (z + .65))))); return x > 0.? 2. * p : 2. * (1. - p); } /* The following computes regularized incomplete gamma functions. * Formulas are taken from Wiki, with additional input from Numerical * Recipes in C (for modified Lentz's algorithm) and AS245 * (http://lib.stat.cmu.edu/apstat/245). * * A good online calculator is available at: * * http://www.danielsoper.com/statcalc/calc23.aspx * * It calculates upper incomplete gamma function, which equals * kf_gammaq(s,z)*tgamma(s). */ #define KF_GAMMA_EPS 1e-14 #define KF_TINY 1e-290 // regularized lower incomplete gamma function, by series expansion static double _kf_gammap(double s, double z) { double sum, x; int k; for (k = 1, sum = x = 1.; k < 100; ++k) { sum += (x *= z / (s + k)); if (x / sum < KF_GAMMA_EPS) break; } return exp(s * log(z) - z - kf_lgamma(s + 1.) + log(sum)); } // regularized upper incomplete gamma function, by continued fraction static double _kf_gammaq(double s, double z) { int j; double C, D, f; f = 1. + z - s; C = f; D = 0.; // Modified Lentz's algorithm for computing continued fraction // See Numerical Recipes in C, 2nd edition, section 5.2 for (j = 1; j < 100; ++j) { double a = j * (s - j), b = (j<<1) + 1 + z - s, d; D = b + a * D; if (D < KF_TINY) D = KF_TINY; C = b + a / C; if (C < KF_TINY) C = KF_TINY; D = 1. / D; d = C * D; f *= d; if (fabs(d - 1.) < KF_GAMMA_EPS) break; } return exp(s * log(z) - z - kf_lgamma(s) - log(f)); } double kf_gammap(double s, double z) { return z <= 1. || z < s? _kf_gammap(s, z) : 1. - _kf_gammaq(s, z); } double kf_gammaq(double s, double z) { return z <= 1. || z < s? 1. - _kf_gammap(s, z) : _kf_gammaq(s, z); } /* Regularized incomplete beta function. The method is taken from * Numerical Recipe in C, 2nd edition, section 6.4. The following web * page calculates the incomplete beta function, which equals * kf_betai(a,b,x) * gamma(a) * gamma(b) / gamma(a+b): * * http://www.danielsoper.com/statcalc/calc36.aspx */ static double kf_betai_aux(double a, double b, double x) { double C, D, f; int j; if (x == 0.) return 0.; if (x == 1.) return 1.; f = 1.; C = f; D = 0.; // Modified Lentz's algorithm for computing continued fraction for (j = 1; j < 200; ++j) { double aa, d; int m = j>>1; aa = (j&1)? -(a + m) * (a + b + m) * x / ((a + 2*m) * (a + 2*m + 1)) : m * (b - m) * x / ((a + 2*m - 1) * (a + 2*m)); D = 1. + aa * D; if (D < KF_TINY) D = KF_TINY; C = 1. + aa / C; if (C < KF_TINY) C = KF_TINY; D = 1. / D; d = C * D; f *= d; if (fabs(d - 1.) < KF_GAMMA_EPS) break; } return exp(kf_lgamma(a+b) - kf_lgamma(a) - kf_lgamma(b) + a * log(x) + b * log(1.-x)) / a / f; } double kf_betai(double a, double b, double x) { return x < (a + 1.) / (a + b + 2.)? kf_betai_aux(a, b, x) : 1. - kf_betai_aux(b, a, 1. - x); } /****************** *** Statistics *** ******************/ double km_ks_dist(int na, const double a[], int nb, const double b[]) // a[] and b[] MUST BE sorted { int ia = 0, ib = 0; double fa = 0, fb = 0, sup = 0, na1 = 1. / na, nb1 = 1. / nb; while (ia < na || ib < nb) { if (ia == na) fb += nb1, ++ib; else if (ib == nb) fa += na1, ++ia; else if (a[ia] < b[ib]) fa += na1, ++ia; else if (a[ia] > b[ib]) fb += nb1, ++ib; else fa += na1, fb += nb1, ++ia, ++ib; if (sup < fabs(fa - fb)) sup = fabs(fa - fb); } return sup; } #ifdef KF_MAIN #include #include "ksort.h" KSORT_INIT_GENERIC(double) int main(int argc, char *argv[]) { double x = 5.5, y = 3; double a, b; double xx[] = {0.22, -0.87, -2.39, -1.79, 0.37, -1.54, 1.28, -0.31, -0.74, 1.72, 0.38, -0.17, -0.62, -1.10, 0.30, 0.15, 2.30, 0.19, -0.50, -0.09}; double yy[] = {-5.13, -2.19, -2.43, -3.83, 0.50, -3.25, 4.32, 1.63, 5.18, -0.43, 7.11, 4.87, -3.10, -5.81, 3.76, 6.31, 2.58, 0.07, 5.76, 3.50}; ks_introsort(double, 20, xx); ks_introsort(double, 20, yy); printf("K-S distance: %f\n", km_ks_dist(20, xx, 20, yy)); printf("erfc(%lg): %lg, %lg\n", x, erfc(x), kf_erfc(x)); printf("upper-gamma(%lg,%lg): %lg\n", x, y, kf_gammaq(y, x)*tgamma(y)); a = 2; b = 2; x = 0.5; printf("incomplete-beta(%lg,%lg,%lg): %lg\n", a, b, x, kf_betai(a, b, x) / exp(kf_lgamma(a+b) - kf_lgamma(a) - kf_lgamma(b))); return 0; } #endif