#include #include #include #include #include #include "ksort.h" KSORT_INIT_GENERIC(int) using namespace std; /********************************** * BEGIN OF PAUL'S IMPLEMENTATION * **********************************/ /* Attractive Chaos: I have added inline where necessary. */ /* Copyright (c) 2004 Paul Hsieh All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. Neither the name of sorttest nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* Recommended flags: ------------------ Intel C/C++: icl /O2 /G6 /Qaxi /Qxi /Qip sorttest.c WATCOM C/C++: wcl386 /otexan /6r sorttest.c GCC: gcc -O3 -mcpu=athlon-xp -march=athlon-xp sorttest.c MSVC: cl /O2 /Ot /Og /G6 sorttest.c */ static inline void sort2 (int * numbers) { int tmp; if (numbers[0] <= numbers[1]) return; tmp = numbers[0]; numbers[0] = numbers[1]; numbers[1] = tmp; } static inline void sort3 (int * numbers) { int tmp; if (numbers[0] <= numbers[1]) { if (numbers[1] <= numbers[2]) return; if (numbers[2] <= numbers[0]) { tmp = numbers[0]; numbers[0] = numbers[2]; numbers[2] = numbers[1]; numbers[1] = tmp; return; } tmp = numbers[1]; } else { tmp = numbers[0]; if (numbers[0] <= numbers[2]) { numbers[0] = numbers[1]; numbers[1] = tmp; return; } if (numbers[2] <= numbers[1]) { numbers[0] = numbers[2]; numbers[2] = tmp; return; } numbers[0] = numbers[1]; } numbers[1] = numbers[2]; numbers[2] = tmp; } static inline void sort4 (int * num) { int tmp; if (num[0] < num[1]) { if (num[1] < num[2]) { if (num[1] < num[3]) { if (num[2] >= num[3]) { tmp = num[2]; num[2] = num[3]; num[3] = tmp; } } else { tmp = num[1]; if (num[0] < num[3]) { num[1] = num[3]; } else { num[1] = num[0]; num[0] = num[3]; } num[3] = num[2]; num[2] = tmp; } } else { if (num[0] < num[2]) { if (num[2] < num[3]) { if (num[1] < num[3]) { tmp = num[1]; } else { tmp = num[3]; num[3] = num[1]; } num[1] = num[2]; num[2] = tmp; } else { if (num[0] < num[3]) { tmp = num[3]; } else { tmp = num[0]; num[0] = num[3]; } num[3] = num[1]; num[1] = tmp; } } else { if (num[0] < num[3]) { tmp = num[0]; num[0] = num[2]; if (num[1] < num[3]) { num[2] = num[1]; } else { num[2] = num[3]; num[3] = num[1]; } num[1] = tmp; } else { if (num[2] < num[3]) { tmp = num[0]; num[0] = num[2]; num[2] = tmp; tmp = num[1]; num[1] = num[3]; } else { tmp = num[1]; num[1] = num[2]; num[2] = num[0]; num[0] = num[3]; } num[3] = tmp; } } } } else { tmp = num[0]; if (tmp < num[2]) { if (tmp < num[3]) { num[0] = num[1]; num[1] = tmp; if (num[2] >= num[3]) { tmp = num[2]; num[2] = num[3]; num[3] = tmp; } } else { if (num[1] < num[3]) { num[0] = num[1]; num[1] = num[3]; } else { num[0] = num[3]; } num[3] = num[2]; num[2] = tmp; } } else { if (num[1] < num[2]) { if (num[2] < num[3]) { num[0] = num[1]; num[1] = num[2]; if (tmp < num[3]) { num[2] = tmp; } else { num[2] = num[3]; num[3] = tmp; } } else { if (num[1] < num[3]) { num[0] = num[1]; num[1] = num[3]; } else { num[0] = num[3]; } num[3] = tmp; } } else { if (num[1] < num[3]) { num[0] = num[2]; if (tmp < num[3]) { num[2] = tmp; } else { num[2] = num[3]; num[3] = tmp; } } else { if (num[2] < num[3]) { num[0] = num[2]; num[2] = num[1]; num[1] = num[3]; num[3] = tmp; } else { num[0] = num[3]; num[3] = tmp; tmp = num[1]; num[1] = num[2]; num[2] = tmp; } } } } } } static inline void sortAlt2 (int * numbers, int * altNumbers) { if (numbers[0] <= numbers[1]) { altNumbers[0] = numbers[0]; altNumbers[1] = numbers[1]; } else { altNumbers[0] = numbers[1]; altNumbers[1] = numbers[0]; } } static inline void sortAlt3 (int * numbers, int * altNumbers) { if (numbers[0] <= numbers[1]) { if (numbers[1] <= numbers[2]) { altNumbers[0] = numbers[0]; altNumbers[1] = numbers[1]; altNumbers[2] = numbers[2]; } else if (numbers[2] <= numbers[0]) { altNumbers[0] = numbers[2]; altNumbers[1] = numbers[0]; altNumbers[2] = numbers[1]; } else { altNumbers[0] = numbers[0]; altNumbers[1] = numbers[2]; altNumbers[2] = numbers[1]; } } else { if (numbers[0] <= numbers[2]) { altNumbers[0] = numbers[1]; altNumbers[1] = numbers[0]; altNumbers[2] = numbers[2]; } else if (numbers[2] <= numbers[1]) { altNumbers[0] = numbers[2]; altNumbers[1] = numbers[1]; altNumbers[2] = numbers[0]; } else { altNumbers[0] = numbers[1]; altNumbers[1] = numbers[2]; altNumbers[2] = numbers[0]; } } } /* * Insert Sort */ inline void insertSort (int numbers[], int qty) { int i, j, idx, q4; int tmp; if (qty <= 4) { if (qty == 4) sort4 (numbers); else if (qty == 3) sort3 (numbers); else if (qty == 2) sort2 (numbers); return; } q4 = qty - 4; for (i=0; i < q4; i++) { idx = i; for (j=i+1; j < qty; j++) { if (numbers[j] < numbers[idx]) idx = j; } if (idx != i) { tmp = numbers[idx]; numbers[idx] = numbers[i]; numbers[i] = tmp; } } sort4 (numbers + q4); } /* * Heap Sort */ /* Assure the heap property for entries from top to last */ static void siftDown (int numbers[], int top, int last) { int tmp = numbers[top]; int maxIdx = top; while (last >= (maxIdx += maxIdx)) { /* This is where the comparison occurrs and where a sufficiently good compiler can use a computed conditional result rather than using control logic. */ if (maxIdx != last && numbers[maxIdx] < numbers[maxIdx + 1]) maxIdx++; if (tmp >= numbers[maxIdx]) break; numbers[top] = numbers[maxIdx]; top = maxIdx; } numbers[top] = tmp; } /* Peel off the top siftDown operation since its parameters are trivial to fill in directly (and this saves us some moves.) */ static void siftDown0 (int numbers[], int last) { int tmp; if (numbers[0] < numbers[1]) { tmp = numbers[1]; numbers[1] = numbers[0]; siftDown (numbers, 1, last); } else { tmp = numbers[0]; } numbers[0] = numbers[last]; numbers[last] = tmp; } void heapSort (int numbers[], int qty) { int i; if (qty <= 4) { if (qty == 4) sort4 (numbers); else if (qty == 3) sort3 (numbers); else if (qty == 2) sort2 (numbers); return; } i = qty / 2; /* Enforce the heap property for each position in the tree */ for ( qty--; i > 0; i--) siftDown (numbers, i, qty); for (i = qty; i > 0; i--) siftDown0 (numbers, i); } /* * Quick Sort */ static int medianOf3 (int * numbers, int i, int j) { int tmp; if (numbers[0] <= numbers[i]) { if (numbers[j] <= numbers[0]) return numbers[0]; /* j 0 i */ if (numbers[i] <= numbers[j]) j = i; /* 0 i j */ /* 0 j i */ } else { if (numbers[0] <= numbers[j]) return numbers[0]; /* i 0 j */ if (numbers[j] <= numbers[i]) j = i; /* j i 0 */ /* i j 0 */ } tmp = numbers[j]; numbers[j] = numbers[0]; numbers[0] = tmp; return tmp; } static void quickSortRecurse (int * numbers, int left, int right) { int pivot, lTmp, rTmp; qsrStart:; #if defined(__GNUC__) if (right <= left + 8) { insertSort (numbers + left, right - left + 1); return; } #else if (right <= left + 3) { if (right == left + 1) { sort2 (numbers + left); } else if (right == left + 2) { sort3 (numbers + left); } else if (right == left + 3) { sort4 (numbers + left); } return; } #endif lTmp = left; rTmp = right; pivot = medianOf3 (numbers + left, (right-left) >> 1, right-1-left); goto QStart; while (1) { do { right--; if (left >= right) goto QEnd; QStart:; } while (numbers[right] > pivot); numbers[left] = numbers[right]; do { left++; if (left >= right) { left = right; goto QEnd; } } while (numbers[ left] < pivot); numbers[right] = numbers[left]; } QEnd:; numbers[left] = pivot; /* Only recurse the smaller partition */ if (left-1 - lTmp <= rTmp - left - 1) { if (lTmp < left) quickSortRecurse (numbers, lTmp, left-1); /* Set up for larger partition */ left++; right = rTmp; } else { if (rTmp > left) quickSortRecurse (numbers, left+1, rTmp); /* Set up for larger partition */ right = left - 1; left = lTmp; } /* Rerun with larger partition (recursion not required.) */ goto qsrStart; } void quickSort (int numbers[], int qty) { if (qty < 2) return; quickSortRecurse (numbers, 0, qty - 1); } /* * Merge Sort */ static void mergesortInPlace (int * numbers, int * altNumbers, int qty); /* Perform mergesort, but store results in altNumbers */ static void mergesortExchange (int * numbers, int * altNumbers, int qty) { int half, i0, i1, i; if (qty == 2) { sortAlt2 (numbers, altNumbers); return; } if (qty == 3) { sortAlt3 (numbers, altNumbers); return; } half = (qty + 1)/2; mergesortInPlace (numbers, altNumbers, half); mergesortInPlace (numbers + half, altNumbers, qty - half); i0 = 0; i1 = half; for (i=0; i < qty; i++) { if (i1 >= qty || (i0 < half && numbers[i0] < numbers[i1])) { altNumbers[i] = numbers[i0]; i0++; } else { altNumbers[i] = numbers[i1]; i1++; } } } /* Perform mergesort and store results in numbers */ static void mergesortInPlace (int * numbers, int * altNumbers, int qty) { int half, i0, i1, i; #if 0 if (qty == 2) { sort2 (numbers); return; } if (qty == 3) { sort3 (numbers); return; } if (qty == 4) { sort4 (numbers); return; } #else if (qty <= 12) { insertSort (numbers, qty); return; } #endif half = (qty + 1)/2; mergesortExchange (numbers, altNumbers, half); mergesortExchange (numbers + half, altNumbers + half, qty - half); i0 = 0; i1 = half; for (i=0; i < qty; i++) { if (i1 >= qty || (i0 < half && altNumbers[i0] < altNumbers[i1])) { numbers[i] = altNumbers[i0]; i0++; } else { numbers[i] = altNumbers[i1]; i1++; } } } #include void mergeSort (int numbers[], int qty) { int * tmpArray; if (qty <= 12) { insertSort (numbers, qty); return; } tmpArray = (int *) malloc (qty * sizeof (int)); mergesortInPlace (numbers, tmpArray, qty); free (tmpArray); } /******************************** * END OF PAUL'S IMPLEMENTATION * ********************************/ /************************************************* *** Implementation 1: faster on sorted arrays *** *************************************************/ #define rstype_t unsigned #define rskey(x) (x) #define RS_MIN_SIZE 64 typedef struct { rstype_t *b, *e; } rsbucket_t; void rs_sort(rstype_t *beg, rstype_t *end, int n_bits, int s) { rstype_t *i; int size = 1<b = k->e = beg; for (i = beg; i != end; ++i) ++b[rskey(*i)>>s&m].e; for (k = b + 1; k != be; ++k) k->e += (k-1)->e - beg, k->b = (k-1)->e; for (k = b; k != be;) { if (k->b != k->e) { rsbucket_t *l; if ((l = b + (rskey(*k->b)>>s&m)) != k) { rstype_t tmp = *k->b, swap; do { swap = tmp; tmp = *l->b; *l->b++ = swap; l = b + (rskey(tmp)>>s&m); } while (l != k); *k->b++ = tmp; } else ++k->b; } else ++k; } for (b->b = beg, k = b + 1; k != be; ++k) k->b = (k-1)->e; if (s) { s = s > n_bits? s - n_bits : 0; for (k = b; k != be; ++k) if (k->e - k->b > RS_MIN_SIZE) rs_sort(k->b, k->e, n_bits, s); else if (k->e - k->b > 1) for (i = k->b + 1; i < k->e; ++i) if (rskey(*i) < rskey(*(i - 1))) { rstype_t *j, tmp = *i; for (j = i; j > k->b && rskey(tmp) < rskey(*(j-1)); --j) *j = *(j - 1); *j = tmp; } } } /************************************************* *** Implementation 2: faster on random arrays *** *************************************************/ static inline void rs_insertsort(rstype_t *s, rstype_t *t) { rstype_t *i; for (i = s + 1; i < t; ++i) { if (rskey(*i) < rskey(*(i - 1))) { rstype_t *j, tmp = *i; for (j = i; j > s && rskey(tmp) < rskey(*(j-1)); --j) *j = *(j - 1); *j = tmp; } } } /* void rs_sort2(rstype_t *beg, rstype_t *end, int n_bits, int s) { int j, size = 1<>s&m]; b[0] = e[0] = beg; for (j = 1; j != size; ++j) b[j] = e[j] = b[j - 1] + c[j - 1]; for (i = beg, j = 0; i != end;) { rstype_t tmp = *i, swap; int x; for (;;) { x = rskey(tmp)>>s&m; if (e[x] == i) break; swap = tmp; tmp = *e[x]; *e[x]++ = swap; } *i++ = tmp; ++e[x]; while (j != size && i >= b[j]) ++j; while (j != size && e[j-1] == b[j]) ++j; if (i < e[j-1]) i = e[j-1]; } if (s) { s = s > n_bits? s - n_bits : 0; for (j = 0; j < size; ++j) { if (c[j] >= RS_MIN_SIZE) rs_sort2(b[j], e[j], n_bits, s); else if (c[j] >= 2) rs_insertsort(b[j], e[j]); } } } */ void radix_sort(unsigned *array, int offset, int end, int shift) { int x, y, value, temp; int last[256] = { 0 }, pointer[256]; for (x=offset; x> shift) & 0xFF]; } last[0] += offset; pointer[0] = offset; for (x=1; x<256; ++x) { pointer[x] = last[x-1]; last[x] += last[x-1]; } for (x=0; x<256; ++x) { while (pointer[x] != last[x]) { value = array[pointer[x]]; y = (value >> shift) & 0xFF; while (x != y) { temp = array[pointer[y]]; array[pointer[y]++] = value; value = temp; y = (value >> shift) & 0xFF; } array[pointer[x]++] = value; } } if (shift > 0) { shift -= 8; for (x=0; x<256; ++x) { temp = x > 0 ? pointer[x] - pointer[x-1] : pointer[0] - offset; if (temp > 64) { radix_sort(array, pointer[x] - temp, pointer[x], shift); } else if (temp > 1) rs_insertsort(array + pointer[x] - temp, array + pointer[x]); } } } /************************* *** END OF RADIX SORT *** *************************/ template< class _Type, unsigned long PowerOfTwoRadix, unsigned long Log2ofPowerOfTwoRadix, long Threshold > inline void _RadixSort_Unsigned_PowerOf2Radix_1( _Type* a, long last, _Type bitMask, unsigned long shiftRightAmount ) { const unsigned long numberOfBins = PowerOfTwoRadix; unsigned long count[ numberOfBins ]; for( unsigned long i = 0; i < numberOfBins; i++ ) count[ i ] = 0; for ( long _current = 0; _current <= last; _current++ ) // Scan the array and count the number of times each value appears { unsigned long digit = (unsigned long)(( a[ _current ] & bitMask ) >> shiftRightAmount ); // extract the digit we are sorting based on count[ digit ]++; } long startOfBin[ numberOfBins ], endOfBin[ numberOfBins ], nextBin; startOfBin[ 0 ] = endOfBin[ 0 ] = nextBin = 0; for( unsigned long i = 1; i < numberOfBins; i++ ) startOfBin[ i ] = endOfBin[ i ] = startOfBin[ i - 1 ] + count[ i - 1 ]; for ( long _current = 0; _current <= last; ) { unsigned long digit; _Type tmp = a[ _current ]; // get the compiler to recognize that a register can be used for the loop instead of a[_current] memory location while ( true ) { digit = (unsigned long)(( tmp & bitMask ) >> shiftRightAmount ); // extract the digit we are sorting based on if ( endOfBin[ digit ] == _current ) break; _Type tmp2; //_swap( tmp, a[ endOfBin[ digit ] ] ); tmp2 = a[endOfBin[digit]]; a[endOfBin[digit]] = tmp; tmp = tmp2; endOfBin[ digit ]++; } a[ _current ] = tmp; endOfBin[ digit ]++; // leave the element at its location and grow the bin _current++; // advance the current pointer to the next element while( _current >= startOfBin[ nextBin ] && nextBin < numberOfBins ) nextBin++; while( endOfBin[ nextBin - 1 ] == startOfBin[ nextBin ] && nextBin < numberOfBins ) nextBin++; if ( _current < endOfBin[ nextBin - 1 ] ) _current = endOfBin[ nextBin - 1 ]; } bitMask >>= Log2ofPowerOfTwoRadix; if ( bitMask != 0 ) // end recursion when all the bits have been processes { if ( shiftRightAmount >= Log2ofPowerOfTwoRadix ) shiftRightAmount -= Log2ofPowerOfTwoRadix; else shiftRightAmount = 0; for( unsigned long i = 0; i < numberOfBins; i++ ) { long numberOfElements = endOfBin[ i ] - startOfBin[ i ]; if ( numberOfElements >= Threshold ) // endOfBin actually points to one beyond the bin _RadixSort_Unsigned_PowerOf2Radix_1< _Type, PowerOfTwoRadix, Log2ofPowerOfTwoRadix, Threshold >( &a[ startOfBin[ i ]], numberOfElements - 1, bitMask, shiftRightAmount ); else if ( numberOfElements >= 2 ) rs_insertsort(&a[ startOfBin[ i ]], &a[ endOfBin[ i ]]); } } } inline void RadixSortInPlace_HybridUnsigned_Radix256( unsigned* a, unsigned long a_size ) { if ( a_size < 2 ) return; unsigned long bitMask = 0xFF000000; // bitMask controls how many bits we process at a time unsigned long shiftRightAmount = 24; if ( a_size >= 32 ) _RadixSort_Unsigned_PowerOf2Radix_1(a, a_size - 1, bitMask, shiftRightAmount ); else rs_insertsort(a, a + a_size); } struct intcmp_t { inline int operator() (int a, int b) const { return a < b? -1 : a > b? 1 : 0; } }; int compare_int(int a, int b) { return a < b? -1 : a > b? 1 : 0; } int compare(const void *a, const void *b) { return *((int*)a) - *((int*)b); } int main(int argc, char *argv[]) { int i, N = 50000000; int *array, *temp; clock_t t1, t2; if (argc == 1) fprintf(stderr, "Usage: %s [%d]\n", argv[0], N); if (argc > 1) N = atoi(argv[1]); temp = (int*)malloc(sizeof(int) * N); array = (int*)malloc(sizeof(int) * N); srand48(11); for (i = 0; i < N; ++i) array[i] = (int)lrand48(); t1 = clock(); rs_sort((unsigned*)array, (unsigned*)array + N, 8, 24); t2 = clock(); fprintf(stderr, "radix sort: %.3lf\n", (double)(t2-t1)/CLOCKS_PER_SEC); for (i = 0; i < N-1; ++i) { if (array[i] > array[i+1]) { fprintf(stderr, "Bug in radix sort!\n"); exit(1); } } t1 = clock(); rs_sort((unsigned*)array, (unsigned*)array + N, 8, 24); t2 = clock(); fprintf(stderr, "radix sort (sorted): %.3lf\n", (double)(t2-t1)/CLOCKS_PER_SEC); srand48(11); for (i = 0; i < N; ++i) array[i] = (int)lrand48(); t1 = clock(); RadixSortInPlace_HybridUnsigned_Radix256((unsigned*)array, N); // radix_sort((unsigned*)array, 0, N, 24); t2 = clock(); fprintf(stderr, "vd's radix sort: %.3lf\n", (double)(t2-t1)/CLOCKS_PER_SEC); for (i = 0; i < N-1; ++i) { if (array[i] > array[i+1]) { fprintf(stderr, "Bug in radix sort!\n"); exit(1); } } t1 = clock(); RadixSortInPlace_HybridUnsigned_Radix256((unsigned*)array, N); // radix_sort((unsigned*)array, 0, N, 24); t2 = clock(); fprintf(stderr, "vd's radix sort (sorted): %.3lf\n", (double)(t2-t1)/CLOCKS_PER_SEC); srand48(11); for (i = 0; i < N; ++i) array[i] = (int)lrand48(); t1 = clock(); sort(array, array+N); t2 = clock(); fprintf(stderr, "STL introsort: %.3lf\n", (double)(t2-t1)/CLOCKS_PER_SEC); t1 = clock(); sort(array, array+N); t2 = clock(); fprintf(stderr, "STL introsort (sorted): %.3lf\n", (double)(t2-t1)/CLOCKS_PER_SEC); srand48(11); for (i = 0; i < N; ++i) array[i] = (int)lrand48(); t1 = clock(); stable_sort(array, array+N); t2 = clock(); fprintf(stderr, "STL stablesort: %.3lf\n", (double)(t2-t1)/CLOCKS_PER_SEC); t1 = clock(); stable_sort(array, array+N); t2 = clock(); fprintf(stderr, "STL stablesort (sorted): %.3lf\n", (double)(t2-t1)/CLOCKS_PER_SEC); srand48(11); for (i = 0; i < N; ++i) array[i] = (int)lrand48(); t1 = clock(); make_heap(array, array+N); sort_heap(array, array+N); t2 = clock(); fprintf(stderr, "STL heapsort: %.3lf\n", (double)(t2-t1)/CLOCKS_PER_SEC); for (i = 0; i < N-1; ++i) { if (array[i] > array[i+1]) { fprintf(stderr, "Bug in heap_sort!\n"); exit(1); } } t1 = clock(); make_heap(array, array+N); sort_heap(array, array+N); t2 = clock(); fprintf(stderr, "STL heapsort (sorted): %.3lf\n", (double)(t2-t1)/CLOCKS_PER_SEC); srand48(11); for (i = 0; i < N; ++i) array[i] = (int)lrand48(); t1 = clock(); ks_combsort(int, N, array); t2 = clock(); fprintf(stderr, "combsort: %.3lf\n", (double)(t2-t1)/CLOCKS_PER_SEC); for (i = 0; i < N-1; ++i) { if (array[i] > array[i+1]) { fprintf(stderr, "Bug in combsort!\n"); exit(1); } } srand48(11); for (i = 0; i < N; ++i) array[i] = (int)lrand48(); t1 = clock(); qsort(array, N, sizeof(int), compare); t2 = clock(); fprintf(stderr, "libc qsort: %.3lf\n", (double)(t2-t1)/CLOCKS_PER_SEC); srand48(11); for (i = 0; i < N; ++i) array[i] = (int)lrand48(); t1 = clock(); ks_introsort(int, N, array); t2 = clock(); fprintf(stderr, "my introsort: %.3lf\n", (double)(t2-t1)/CLOCKS_PER_SEC); for (i = 0; i < N-1; ++i) { if (array[i] > array[i+1]) { fprintf(stderr, "Bug in intro_sort!\n"); exit(1); } } t1 = clock(); ks_introsort(int, N, array); t2 = clock(); fprintf(stderr, "introsort (sorted): %.3lf\n", (double)(t2-t1)/CLOCKS_PER_SEC); srand48(11); for (i = 0; i < N; ++i) array[i] = (int)lrand48(); t1 = clock(); ks_mergesort(int, N, array, 0); t2 = clock(); fprintf(stderr, "iterative mergesort: %.3lf\n", (double)(t2-t1)/CLOCKS_PER_SEC); for (i = 0; i < N-1; ++i) { if (array[i] > array[i+1]) { fprintf(stderr, "Bug in merge_sort!\n"); exit(1); } } t1 = clock(); ks_mergesort(int, N, array, 0); t2 = clock(); fprintf(stderr, "iterative mergesort (sorted): %.3lf\n", (double)(t2-t1)/CLOCKS_PER_SEC); srand48(11); for (i = 0; i < N; ++i) array[i] = (int)lrand48(); t1 = clock(); ks_heapmake(int, N, array); ks_heapsort(int, N, array); t2 = clock(); fprintf(stderr, "my heapsort: %.3lf\n", (double)(t2-t1)/CLOCKS_PER_SEC); for (i = 0; i < N-1; ++i) { if (array[i] > array[i+1]) { fprintf(stderr, "Bug in heap_sort!\n"); exit(1); } } t1 = clock(); ks_heapmake(int, N, array); ks_heapsort(int, N, array); t2 = clock(); fprintf(stderr, "heapsort (sorted): %.3lf\n", (double)(t2-t1)/CLOCKS_PER_SEC); srand48(11); for (i = 0; i < N; ++i) array[i] = (int)lrand48(); t1 = clock(); heapSort(array, N); t2 = clock(); fprintf(stderr, "Paul's heapsort: %.3lf\n", (double)(t2-t1)/CLOCKS_PER_SEC); for (i = 0; i < N-1; ++i) { if (array[i] > array[i+1]) { fprintf(stderr, "Bug in intro_sort!\n"); exit(1); } } srand48(11); for (i = 0; i < N; ++i) array[i] = (int)lrand48(); t1 = clock(); quickSort(array, N); t2 = clock(); fprintf(stderr, "Paul's quicksort: %.3lf\n", (double)(t2-t1)/CLOCKS_PER_SEC); for (i = 0; i < N-1; ++i) { if (array[i] > array[i+1]) { fprintf(stderr, "Bug in intro_sort!\n"); exit(1); } } srand48(11); for (i = 0; i < N; ++i) array[i] = (int)lrand48(); t1 = clock(); mergeSort(array, N); t2 = clock(); fprintf(stderr, "Paul's mergesort: %.3lf\n", (double)(t2-t1)/CLOCKS_PER_SEC); for (i = 0; i < N-1; ++i) { if (array[i] > array[i+1]) { fprintf(stderr, "Bug in intro_sort!\n"); exit(1); } } free(array); free(temp); return 0; }