1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
|
/*
* This file is part of PowerDNS or dnsdist.
* Copyright -- PowerDNS.COM B.V. and its contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* In addition, for the avoidance of any doubt, permission is granted to
* link this program with OpenSSL and to (re)distribute the binaries
* produced as the result of such linking.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "config.h"
#include "dnsdist.hh"
#include "dnsdist-backoff.hh"
#include "dnsdist-metrics.hh"
#include "dnsdist-nghttp2.hh"
#include "dnsdist-random.hh"
#include "dnsdist-rings.hh"
#include "dnsdist-tcp.hh"
#include "dnsdist-xsk.hh"
#include "dolog.hh"
#include "xsk.hh"
bool DownstreamState::passCrossProtocolQuery(std::unique_ptr<CrossProtocolQuery>&& cpq)
{
#if defined(HAVE_DNS_OVER_HTTPS) && defined(HAVE_NGHTTP2)
if (!d_config.d_dohPath.empty()) {
return g_dohClientThreads && g_dohClientThreads->passCrossProtocolQueryToThread(std::move(cpq));
}
#endif
return g_tcpclientthreads && g_tcpclientthreads->passCrossProtocolQueryToThread(std::move(cpq));
}
#ifdef HAVE_XSK
void DownstreamState::addXSKDestination(int fd)
{
auto socklen = d_config.remote.getSocklen();
ComboAddress local;
if (getsockname(fd, reinterpret_cast<sockaddr*>(&local), &socklen)) {
return;
}
{
auto addresses = d_socketSourceAddresses.write_lock();
addresses->push_back(local);
}
dnsdist::xsk::addDestinationAddress(local);
for (size_t idx = 0; idx < d_xskSockets.size(); idx++) {
d_xskSockets.at(idx)->addWorkerRoute(d_xskInfos.at(idx), local);
}
}
void DownstreamState::removeXSKDestination(int fd)
{
auto socklen = d_config.remote.getSocklen();
ComboAddress local;
if (getsockname(fd, reinterpret_cast<sockaddr*>(&local), &socklen)) {
return;
}
dnsdist::xsk::removeDestinationAddress(local);
for (auto& xskSocket : d_xskSockets) {
xskSocket->removeWorkerRoute(local);
}
}
#endif /* HAVE_XSK */
bool DownstreamState::reconnect(bool initialAttempt)
{
std::unique_lock<std::mutex> tl(connectLock, std::try_to_lock);
if (!tl.owns_lock() || isStopped()) {
/* we are already reconnecting or stopped anyway */
return false;
}
if (IsAnyAddress(d_config.remote)) {
return true;
}
connected = false;
#ifdef HAVE_XSK
if (!d_xskInfos.empty()) {
auto addresses = d_socketSourceAddresses.write_lock();
addresses->clear();
}
#endif /* HAVE_XSK */
for (auto& fd : sockets) {
if (fd != -1) {
if (sockets.size() > 1) {
(*mplexer.lock())->removeReadFD(fd);
}
#ifdef HAVE_XSK
if (!d_xskInfos.empty()) {
removeXSKDestination(fd);
}
#endif /* HAVE_XSK */
/* shutdown() is needed to wake up recv() in the responderThread */
shutdown(fd, SHUT_RDWR);
close(fd);
fd = -1;
}
fd = SSocket(d_config.remote.sin4.sin_family, SOCK_DGRAM, 0);
#ifdef SO_BINDTODEVICE
if (!d_config.sourceItfName.empty()) {
int res = setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, d_config.sourceItfName.c_str(), d_config.sourceItfName.length());
if (res != 0) {
infolog("Error setting up the interface on backend socket '%s': %s", d_config.remote.toStringWithPort(), stringerror());
}
}
#endif
if (!IsAnyAddress(d_config.sourceAddr)) {
#ifdef IP_BIND_ADDRESS_NO_PORT
if (d_config.ipBindAddrNoPort) {
SSetsockopt(fd, SOL_IP, IP_BIND_ADDRESS_NO_PORT, 1);
}
#endif
SBind(fd, d_config.sourceAddr);
}
try {
SConnect(fd, d_config.remote);
if (sockets.size() > 1) {
(*mplexer.lock())->addReadFD(fd, [](int, boost::any) {});
}
#ifdef HAVE_XSK
if (!d_xskInfos.empty()) {
addXSKDestination(fd);
}
#endif /* HAVE_XSK */
connected = true;
}
catch (const std::runtime_error& error) {
if (initialAttempt || g_verbose) {
infolog("Error connecting to new server with address %s: %s", d_config.remote.toStringWithPort(), error.what());
}
connected = false;
break;
}
}
/* if at least one (re-)connection failed, close all sockets */
if (!connected) {
#ifdef HAVE_XSK
if (!d_xskInfos.empty()) {
auto addresses = d_socketSourceAddresses.write_lock();
addresses->clear();
}
#endif /* HAVE_XSK */
for (auto& fd : sockets) {
if (fd != -1) {
#ifdef HAVE_XSK
if (!d_xskInfos.empty()) {
removeXSKDestination(fd);
}
#endif /* HAVE_XSK */
if (sockets.size() > 1) {
try {
(*mplexer.lock())->removeReadFD(fd);
}
catch (const FDMultiplexerException& e) {
/* some sockets might not have been added to the multiplexer
yet, that's fine */
}
}
/* shutdown() is needed to wake up recv() in the responderThread */
shutdown(fd, SHUT_RDWR);
close(fd);
fd = -1;
}
}
}
if (connected) {
tl.unlock();
d_connectedWait.notify_all();
if (!initialAttempt) {
/* we need to be careful not to start this
thread too soon, as the creation should only
happen after the configuration has been parsed */
start();
}
}
return connected;
}
void DownstreamState::waitUntilConnected()
{
if (d_stopped) {
return;
}
if (connected) {
return;
}
{
std::unique_lock<std::mutex> lock(connectLock);
d_connectedWait.wait(lock, [this]{
return connected.load();
});
}
}
void DownstreamState::stop()
{
if (d_stopped) {
return;
}
d_stopped = true;
{
std::lock_guard<std::mutex> tl(connectLock);
auto slock = mplexer.lock();
for (auto& fd : sockets) {
if (fd != -1) {
/* shutdown() is needed to wake up recv() in the responderThread */
shutdown(fd, SHUT_RDWR);
}
}
}
}
void DownstreamState::hash()
{
vinfolog("Computing hashes for id=%s and weight=%d", *d_config.id, d_config.d_weight);
auto w = d_config.d_weight;
auto idStr = boost::str(boost::format("%s") % *d_config.id);
auto lockedHashes = hashes.write_lock();
lockedHashes->clear();
lockedHashes->reserve(w);
while (w > 0) {
std::string uuid = boost::str(boost::format("%s-%d") % idStr % w);
unsigned int wshash = burtleCI(reinterpret_cast<const unsigned char*>(uuid.c_str()), uuid.size(), g_hashperturb);
lockedHashes->push_back(wshash);
--w;
}
std::sort(lockedHashes->begin(), lockedHashes->end());
hashesComputed = true;
}
void DownstreamState::setId(const boost::uuids::uuid& newId)
{
d_config.id = newId;
// compute hashes only if already done
if (hashesComputed) {
hash();
}
}
void DownstreamState::setWeight(int newWeight)
{
if (newWeight < 1) {
errlog("Error setting server's weight: downstream weight value must be greater than 0.");
return ;
}
d_config.d_weight = newWeight;
if (hashesComputed) {
hash();
}
}
DownstreamState::DownstreamState(DownstreamState::Config&& config, std::shared_ptr<TLSCtx> tlsCtx, bool connect): d_config(std::move(config)), d_tlsCtx(std::move(tlsCtx))
{
threadStarted.clear();
if (d_config.d_qpsLimit > 0) {
qps = QPSLimiter(d_config.d_qpsLimit, d_config.d_qpsLimit);
}
if (d_config.id) {
setId(*d_config.id);
}
else {
d_config.id = getUniqueID();
}
if (d_config.d_weight > 0) {
setWeight(d_config.d_weight);
}
if (d_config.availability == Availability::Lazy && d_config.d_lazyHealthCheckSampleSize > 0) {
d_lazyHealthCheckStats.lock()->d_lastResults.set_capacity(d_config.d_lazyHealthCheckSampleSize);
setUpStatus(true);
}
setName(d_config.name);
if (d_tlsCtx) {
if (!d_config.d_dohPath.empty()) {
#ifdef HAVE_NGHTTP2
setupDoHClientProtocolNegotiation(d_tlsCtx);
if (g_configurationDone && g_outgoingDoHWorkerThreads && *g_outgoingDoHWorkerThreads == 0) {
throw std::runtime_error("Error: setOutgoingDoHWorkerThreads() is set to 0 so no outgoing DoH worker thread is available to serve queries");
}
if (!g_outgoingDoHWorkerThreads || *g_outgoingDoHWorkerThreads == 0) {
g_outgoingDoHWorkerThreads = 1;
}
#endif /* HAVE_NGHTTP2 */
}
else {
setupDoTProtocolNegotiation(d_tlsCtx);
}
}
if (connect && !isTCPOnly()) {
if (!IsAnyAddress(d_config.remote)) {
connectUDPSockets();
}
}
sw.start();
}
void DownstreamState::start()
{
if (connected && !threadStarted.test_and_set()) {
#ifdef HAVE_XSK
for (auto& xskInfo : d_xskInfos) {
auto xskResponderThread = std::thread(dnsdist::xsk::XskResponderThread, shared_from_this(), xskInfo);
if (!d_config.d_cpus.empty()) {
mapThreadToCPUList(xskResponderThread.native_handle(), d_config.d_cpus);
}
xskResponderThread.detach();
}
#endif /* HAVE_XSK */
auto tid = std::thread(responderThread, shared_from_this());
if (!d_config.d_cpus.empty()) {
mapThreadToCPUList(tid.native_handle(), d_config.d_cpus);
}
tid.detach();
}
}
void DownstreamState::connectUDPSockets()
{
if (s_randomizeIDs) {
idStates.clear();
}
else {
idStates.resize(g_maxOutstanding);
}
sockets.resize(d_config.d_numberOfSockets);
if (sockets.size() > 1) {
*(mplexer.lock()) = std::unique_ptr<FDMultiplexer>(FDMultiplexer::getMultiplexerSilent(sockets.size()));
}
for (auto& fd : sockets) {
fd = -1;
}
reconnect(true);
}
DownstreamState::~DownstreamState()
{
for (auto& fd : sockets) {
if (fd >= 0) {
close(fd);
fd = -1;
}
}
}
void DownstreamState::incCurrentConnectionsCount()
{
auto currentConnectionsCount = ++tcpCurrentConnections;
if (currentConnectionsCount > tcpMaxConcurrentConnections) {
tcpMaxConcurrentConnections.store(currentConnectionsCount);
}
}
int DownstreamState::pickSocketForSending()
{
size_t numberOfSockets = sockets.size();
if (numberOfSockets == 1) {
return sockets[0];
}
size_t idx;
if (s_randomizeSockets) {
idx = dnsdist::getRandomValue(numberOfSockets);
}
else {
idx = socketsOffset++;
}
return sockets[idx % numberOfSockets];
}
void DownstreamState::pickSocketsReadyForReceiving(std::vector<int>& ready)
{
ready.clear();
if (sockets.size() == 1) {
ready.push_back(sockets[0]);
return ;
}
(*mplexer.lock())->getAvailableFDs(ready, 1000);
}
bool DownstreamState::s_randomizeSockets{false};
bool DownstreamState::s_randomizeIDs{false};
int DownstreamState::s_udpTimeout{2};
static bool isIDSExpired(const IDState& ids)
{
auto age = ids.age.load();
return age > DownstreamState::s_udpTimeout;
}
void DownstreamState::handleUDPTimeout(IDState& ids)
{
ids.age = 0;
ids.inUse = false;
DOHUnitInterface::handleTimeout(std::move(ids.internal.du));
++reuseds;
--outstanding;
++dnsdist::metrics::g_stats.downstreamTimeouts; // this is an 'actively' discovered timeout
vinfolog("Had a downstream timeout from %s (%s) for query for %s|%s from %s",
d_config.remote.toStringWithPort(), getName(),
ids.internal.qname.toLogString(), QType(ids.internal.qtype).toString(), ids.internal.origRemote.toStringWithPort());
if (g_rings.shouldRecordResponses()) {
struct timespec ts;
gettime(&ts);
struct dnsheader fake;
memset(&fake, 0, sizeof(fake));
fake.id = ids.internal.origID;
uint16_t* flags = getFlagsFromDNSHeader(&fake);
*flags = ids.internal.origFlags;
g_rings.insertResponse(ts, ids.internal.origRemote, ids.internal.qname, ids.internal.qtype, std::numeric_limits<unsigned int>::max(), 0, fake, d_config.remote, getProtocol());
}
reportTimeoutOrError();
}
void DownstreamState::reportResponse(uint8_t rcode)
{
if (d_config.availability == Availability::Lazy && d_config.d_lazyHealthCheckSampleSize > 0) {
bool failure = d_config.d_lazyHealthCheckMode == LazyHealthCheckMode::TimeoutOrServFail ? rcode == RCode::ServFail : false;
d_lazyHealthCheckStats.lock()->d_lastResults.push_back(failure);
}
}
void DownstreamState::reportTimeoutOrError()
{
if (d_config.availability == Availability::Lazy && d_config.d_lazyHealthCheckSampleSize > 0) {
d_lazyHealthCheckStats.lock()->d_lastResults.push_back(true);
}
}
void DownstreamState::handleUDPTimeouts()
{
if (getProtocol() != dnsdist::Protocol::DoUDP) {
return;
}
if (s_randomizeIDs) {
auto map = d_idStatesMap.lock();
for (auto it = map->begin(); it != map->end(); ) {
auto& ids = it->second;
if (isIDSExpired(ids)) {
handleUDPTimeout(ids);
it = map->erase(it);
continue;
}
++ids.age;
++it;
}
}
else {
if (outstanding.load() > 0) {
for (IDState& ids : idStates) {
if (!ids.isInUse()) {
continue;
}
if (!isIDSExpired(ids)) {
++ids.age;
continue;
}
auto guard = ids.acquire();
if (!guard) {
continue;
}
/* check again, now that we have locked this state */
if (ids.isInUse() && isIDSExpired(ids)) {
handleUDPTimeout(ids);
}
}
}
}
}
uint16_t DownstreamState::saveState(InternalQueryState&& state)
{
if (s_randomizeIDs) {
/* if the state is already in use we will retry,
up to 5 five times. The last selected one is used
even if it was already in use */
size_t remainingAttempts = 5;
auto map = d_idStatesMap.lock();
do {
uint16_t selectedID = dnsdist::getRandomValue(std::numeric_limits<uint16_t>::max());
auto [it, inserted] = map->emplace(selectedID, IDState());
if (!inserted) {
remainingAttempts--;
if (remainingAttempts > 0) {
continue;
}
auto oldDU = std::move(it->second.internal.du);
++reuseds;
++dnsdist::metrics::g_stats.downstreamTimeouts;
DOHUnitInterface::handleTimeout(std::move(oldDU));
}
else {
++outstanding;
}
it->second.internal = std::move(state);
it->second.age.store(0);
return it->first;
}
while (true);
}
do {
uint16_t selectedID = (idOffset++) % idStates.size();
IDState& ids = idStates[selectedID];
auto guard = ids.acquire();
if (!guard) {
continue;
}
if (ids.isInUse()) {
/* we are reusing a state, no change in outstanding but if there was an existing DOHUnit we need
to handle it because it's about to be overwritten. */
auto oldDU = std::move(ids.internal.du);
++reuseds;
++dnsdist::metrics::g_stats.downstreamTimeouts;
DOHUnitInterface::handleTimeout(std::move(oldDU));
}
else {
++outstanding;
}
ids.internal = std::move(state);
ids.age.store(0);
ids.inUse = true;
return selectedID;
}
while (true);
}
void DownstreamState::restoreState(uint16_t id, InternalQueryState&& state)
{
if (s_randomizeIDs) {
auto map = d_idStatesMap.lock();
auto [it, inserted] = map->emplace(id, IDState());
if (!inserted) {
/* already used */
++reuseds;
++dnsdist::metrics::g_stats.downstreamTimeouts;
DOHUnitInterface::handleTimeout(std::move(state.du));
}
else {
it->second.internal = std::move(state);
++outstanding;
}
return;
}
auto& ids = idStates[id];
auto guard = ids.acquire();
if (!guard) {
/* already used */
++reuseds;
++dnsdist::metrics::g_stats.downstreamTimeouts;
DOHUnitInterface::handleTimeout(std::move(state.du));
return;
}
if (ids.isInUse()) {
/* already used */
++reuseds;
++dnsdist::metrics::g_stats.downstreamTimeouts;
DOHUnitInterface::handleTimeout(std::move(state.du));
return;
}
ids.internal = std::move(state);
ids.inUse = true;
++outstanding;
}
std::optional<InternalQueryState> DownstreamState::getState(uint16_t id)
{
std::optional<InternalQueryState> result = std::nullopt;
if (s_randomizeIDs) {
auto map = d_idStatesMap.lock();
auto it = map->find(id);
if (it == map->end()) {
return result;
}
result = std::move(it->second.internal);
map->erase(it);
--outstanding;
return result;
}
if (id > idStates.size()) {
return result;
}
auto& ids = idStates[id];
auto guard = ids.acquire();
if (!guard) {
return result;
}
if (ids.isInUse()) {
result = std::move(ids.internal);
--outstanding;
}
ids.inUse = false;
return result;
}
bool DownstreamState::healthCheckRequired(std::optional<time_t> currentTime)
{
if (d_config.availability == DownstreamState::Availability::Lazy) {
auto stats = d_lazyHealthCheckStats.lock();
if (stats->d_status == LazyHealthCheckStats::LazyStatus::PotentialFailure) {
vinfolog("Sending health-check query for %s which is still in the Potential Failure state", getNameWithAddr());
return true;
}
if (stats->d_status == LazyHealthCheckStats::LazyStatus::Failed) {
auto now = currentTime ? *currentTime : time(nullptr);
if (stats->d_nextCheck <= now) {
/* we update the next check time here because the check might time out,
and we do not want to send a second check during that time unless
the timer is actually very short */
vinfolog("Sending health-check query for %s which is still in the Failed state", getNameWithAddr());
updateNextLazyHealthCheck(*stats, true, now);
return true;
}
return false;
}
if (stats->d_status == LazyHealthCheckStats::LazyStatus::Healthy) {
auto& lastResults = stats->d_lastResults;
size_t totalCount = lastResults.size();
if (totalCount < d_config.d_lazyHealthCheckMinSampleCount) {
return false;
}
size_t failures = 0;
for (const auto& result : lastResults) {
if (result) {
++failures;
}
}
const auto maxFailureRate = static_cast<float>(d_config.d_lazyHealthCheckThreshold);
auto current = (100.0 * failures) / totalCount;
if (current >= maxFailureRate) {
lastResults.clear();
vinfolog("Backend %s reached the lazy health-check threshold (%f%% out of %f%%, looking at sample of %d items with %d failures), moving to Potential Failure state", getNameWithAddr(), current, maxFailureRate, totalCount, failures);
stats->d_status = LazyHealthCheckStats::LazyStatus::PotentialFailure;
consecutiveSuccessfulChecks = 0;
/* we update the next check time here because the check might time out,
and we do not want to send a second check during that time unless
the timer is actually very short */
updateNextLazyHealthCheck(*stats, true);
return true;
}
}
return false;
}
else if (d_config.availability == DownstreamState::Availability::Auto) {
if (d_nextCheck > 1) {
--d_nextCheck;
return false;
}
d_nextCheck = d_config.checkInterval;
return true;
}
return false;
}
time_t DownstreamState::getNextLazyHealthCheck()
{
auto stats = d_lazyHealthCheckStats.lock();
return stats->d_nextCheck;
}
void DownstreamState::updateNextLazyHealthCheck(LazyHealthCheckStats& stats, bool checkScheduled, std::optional<time_t> currentTime)
{
auto now = currentTime ? * currentTime : time(nullptr);
if (d_config.d_lazyHealthCheckUseExponentialBackOff) {
if (stats.d_status == DownstreamState::LazyHealthCheckStats::LazyStatus::PotentialFailure) {
/* we are still in the "up" state, we need to send the next query quickly to
determine if the backend is really down */
stats.d_nextCheck = now + d_config.checkInterval;
vinfolog("Backend %s is in potential failure state, next check in %d seconds", getNameWithAddr(), d_config.checkInterval);
}
else if (consecutiveSuccessfulChecks > 0) {
/* we are in 'Failed' state, but just had one (or more) successful check,
so we want the next one to happen quite quickly as the backend might
be available again. */
stats.d_nextCheck = now + d_config.d_lazyHealthCheckFailedInterval;
if (!checkScheduled) {
vinfolog("Backend %s is in failed state but had %d consecutive successful checks, next check in %d seconds", getNameWithAddr(), std::to_string(consecutiveSuccessfulChecks), d_config.d_lazyHealthCheckFailedInterval);
}
}
else {
uint16_t failedTests = currentCheckFailures;
if (checkScheduled) {
/* we are planning the check after that one, which will only
occur if there is a failure */
failedTests++;
}
time_t backOff = d_config.d_lazyHealthCheckMaxBackOff;
const ExponentialBackOffTimer backOffTimer(d_config.d_lazyHealthCheckMaxBackOff);
auto backOffCoeffTmp = backOffTimer.get(failedTests - 1);
/* backOffCoeffTmp cannot be higher than d_config.d_lazyHealthCheckMaxBackOff */
const auto backOffCoeff = static_cast<time_t>(backOffCoeffTmp);
if ((std::numeric_limits<time_t>::max() / d_config.d_lazyHealthCheckFailedInterval) >= backOffCoeff) {
backOff = d_config.d_lazyHealthCheckFailedInterval * backOffCoeff;
if (backOff > d_config.d_lazyHealthCheckMaxBackOff || (std::numeric_limits<time_t>::max() - now) <= backOff) {
backOff = d_config.d_lazyHealthCheckMaxBackOff;
}
}
stats.d_nextCheck = now + backOff;
vinfolog("Backend %s is in failed state and has failed %d consecutive checks, next check in %d seconds", getNameWithAddr(), failedTests, backOff);
}
}
else {
stats.d_nextCheck = now + d_config.d_lazyHealthCheckFailedInterval;
vinfolog("Backend %s is in %s state, next check in %d seconds", getNameWithAddr(), (stats.d_status == DownstreamState::LazyHealthCheckStats::LazyStatus::PotentialFailure ? "potential failure" : "failed"), d_config.d_lazyHealthCheckFailedInterval);
}
}
void DownstreamState::submitHealthCheckResult(bool initial, bool newResult)
{
if (!newResult) {
++d_healthCheckMetrics.d_failures;
}
if (initial) {
/* if this is the initial health-check, at startup, we do not care
about the minimum number of failed/successful health-checks */
if (!IsAnyAddress(d_config.remote)) {
infolog("Marking downstream %s as '%s'", getNameWithAddr(), newResult ? "up" : "down");
}
setUpStatus(newResult);
if (newResult == false) {
currentCheckFailures++;
if (d_config.availability == DownstreamState::Availability::Lazy) {
auto stats = d_lazyHealthCheckStats.lock();
stats->d_status = LazyHealthCheckStats::LazyStatus::Failed;
updateNextLazyHealthCheck(*stats, false);
}
}
return;
}
bool newState = newResult;
if (newResult) {
/* check succeeded */
currentCheckFailures = 0;
consecutiveSuccessfulChecks++;
if (!upStatus) {
/* we were previously marked as "down" and had a successful health-check,
let's see if this is enough to move to the "up" state or if we need
more successful health-checks for that */
if (consecutiveSuccessfulChecks < d_config.minRiseSuccesses) {
/* we need more than one successful check to rise
and we didn't reach the threshold yet, let's stay down */
newState = false;
if (d_config.availability == DownstreamState::Availability::Lazy) {
auto stats = d_lazyHealthCheckStats.lock();
updateNextLazyHealthCheck(*stats, false);
}
}
}
if (newState) {
if (d_config.availability == DownstreamState::Availability::Lazy) {
auto stats = d_lazyHealthCheckStats.lock();
vinfolog("Backend %s had %d successful checks, moving to Healthy", getNameWithAddr(), std::to_string(consecutiveSuccessfulChecks));
stats->d_status = LazyHealthCheckStats::LazyStatus::Healthy;
stats->d_lastResults.clear();
}
}
}
else {
/* check failed */
consecutiveSuccessfulChecks = 0;
currentCheckFailures++;
if (upStatus) {
/* we were previously marked as "up" and failed a health-check,
let's see if this is enough to move to the "down" state or if
need more failed checks for that */
if (currentCheckFailures < d_config.maxCheckFailures) {
/* we need more than one failure to be marked as down,
and we did not reach the threshold yet, let's stay up */
newState = true;
}
else if (d_config.availability == DownstreamState::Availability::Lazy) {
auto stats = d_lazyHealthCheckStats.lock();
vinfolog("Backend %s failed its health-check, moving from Potential failure to Failed", getNameWithAddr());
stats->d_status = LazyHealthCheckStats::LazyStatus::Failed;
currentCheckFailures = 1;
updateNextLazyHealthCheck(*stats, false);
}
}
}
if (newState != upStatus) {
/* we are actually moving to a new state */
if (!IsAnyAddress(d_config.remote)) {
infolog("Marking downstream %s as '%s'", getNameWithAddr(), newState ? "up" : "down");
}
if (newState && !isTCPOnly() && (!connected || d_config.reconnectOnUp)) {
newState = reconnect();
}
setUpStatus(newState);
if (g_snmpAgent && g_snmpTrapsEnabled) {
g_snmpAgent->sendBackendStatusChangeTrap(*this);
}
}
}
#ifdef HAVE_XSK
[[nodiscard]] ComboAddress DownstreamState::pickSourceAddressForSending()
{
if (!connected) {
waitUntilConnected();
}
auto addresses = d_socketSourceAddresses.read_lock();
auto numberOfAddresses = addresses->size();
if (numberOfAddresses == 0) {
throw std::runtime_error("No source address available for sending XSK data to backend " + getNameWithAddr());
}
size_t idx = dnsdist::getRandomValue(numberOfAddresses);
return (*addresses)[idx % numberOfAddresses];
}
void DownstreamState::registerXsk(std::vector<std::shared_ptr<XskSocket>>& xsks)
{
d_xskSockets = xsks;
if (d_config.sourceAddr.sin4.sin_family == 0 || (IsAnyAddress(d_config.sourceAddr))) {
const auto& ifName = xsks.at(0)->getInterfaceName();
auto addresses = getListOfAddressesOfNetworkInterface(ifName);
if (addresses.empty()) {
throw std::runtime_error("Unable to get source address from interface " + ifName);
}
if (addresses.size() > 1) {
warnlog("More than one address configured on interface %s, picking the first one (%s) for XSK. Set the 'source' parameter on 'newServer' if you want to use a different address.", ifName, addresses.at(0).toString());
}
d_config.sourceAddr = addresses.at(0);
}
d_config.sourceMACAddr = d_xskSockets.at(0)->getSourceMACAddress();
for (auto& xsk : d_xskSockets) {
auto xskInfo = XskWorker::create(XskWorker::Type::Bidirectional, xsk->sharedEmptyFrameOffset);
d_xskInfos.push_back(xskInfo);
xsk->addWorker(xskInfo);
}
reconnect(false);
}
#endif /* HAVE_XSK */
size_t ServerPool::countServers(bool upOnly)
{
std::shared_ptr<const ServerPolicy::NumberedServerVector> servers = nullptr;
{
auto lock = d_servers.read_lock();
servers = *lock;
}
size_t count = 0;
for (const auto& server : *servers) {
if (!upOnly || std::get<1>(server)->isUp() ) {
count++;
}
}
return count;
}
size_t ServerPool::poolLoad()
{
std::shared_ptr<const ServerPolicy::NumberedServerVector> servers = nullptr;
{
auto lock = d_servers.read_lock();
servers = *lock;
}
size_t load = 0;
for (const auto& server : *servers) {
size_t serverOutstanding = std::get<1>(server)->outstanding.load();
load += serverOutstanding;
}
return load;
}
const std::shared_ptr<const ServerPolicy::NumberedServerVector> ServerPool::getServers()
{
std::shared_ptr<const ServerPolicy::NumberedServerVector> result;
{
result = *(d_servers.read_lock());
}
return result;
}
void ServerPool::addServer(shared_ptr<DownstreamState>& server)
{
auto servers = d_servers.write_lock();
/* we can't update the content of the shared pointer directly even when holding the lock,
as other threads might hold a copy. We can however update the pointer as long as we hold the lock. */
unsigned int count = static_cast<unsigned int>((*servers)->size());
auto newServers = ServerPolicy::NumberedServerVector(*(*servers));
newServers.emplace_back(++count, server);
/* we need to reorder based on the server 'order' */
std::stable_sort(newServers.begin(), newServers.end(), [](const std::pair<unsigned int,std::shared_ptr<DownstreamState> >& a, const std::pair<unsigned int,std::shared_ptr<DownstreamState> >& b) {
return a.second->d_config.order < b.second->d_config.order;
});
/* and now we need to renumber for Lua (custom policies) */
size_t idx = 1;
for (auto& serv : newServers) {
serv.first = idx++;
}
*servers = std::make_shared<const ServerPolicy::NumberedServerVector>(std::move(newServers));
}
void ServerPool::removeServer(shared_ptr<DownstreamState>& server)
{
auto servers = d_servers.write_lock();
/* we can't update the content of the shared pointer directly even when holding the lock,
as other threads might hold a copy. We can however update the pointer as long as we hold the lock. */
auto newServers = std::make_shared<ServerPolicy::NumberedServerVector>(*(*servers));
size_t idx = 1;
bool found = false;
for (auto it = newServers->begin(); it != newServers->end();) {
if (found) {
/* we need to renumber the servers placed
after the removed one, for Lua (custom policies) */
it->first = idx++;
it++;
}
else if (it->second == server) {
it = newServers->erase(it);
found = true;
} else {
idx++;
it++;
}
}
*servers = std::move(newServers);
}
|