/* Copyright (c) 2016-2018 Dovecot authors, see the included COPYING file */ #include "lib.h" #include "module-dir.h" #include "dcrypt.h" #include "istream.h" #include "json-tree.h" #include "dcrypt-private.h" static struct module *dcrypt_module = NULL; static struct dcrypt_vfs *dcrypt_vfs = NULL; static const struct dcrypt_settings dcrypt_default_set = { .module_dir = DCRYPT_MODULE_DIR, }; bool dcrypt_initialize(const char *backend, const struct dcrypt_settings *set, const char **error_r) { struct module_dir_load_settings mod_set; const char *error; if (dcrypt_vfs != NULL) { return TRUE; } if (backend == NULL) backend = "openssl"; /* default for now */ if (set == NULL) set = &dcrypt_default_set; const char *implementation = t_strconcat("dcrypt_",backend,NULL); i_zero(&mod_set); mod_set.abi_version = DOVECOT_ABI_VERSION; mod_set.require_init_funcs = TRUE; if (module_dir_try_load_missing(&dcrypt_module, set->module_dir, implementation, &mod_set, &error) < 0) { if (error_r != NULL) *error_r = error; return FALSE; } module_dir_init(dcrypt_module); i_assert(dcrypt_vfs != NULL); if (dcrypt_vfs->initialize != NULL) { if (!dcrypt_vfs->initialize(set, error_r)) { dcrypt_deinitialize(); return FALSE; } } /* Destroy SSL module after(most of) the others. Especially lib-fs backends may still want to access SSL module in their own atexit-callbacks. */ lib_atexit_priority(dcrypt_deinitialize, LIB_ATEXIT_PRIORITY_LOW); return TRUE; } void dcrypt_deinitialize(void) { module_dir_unload(&dcrypt_module); dcrypt_vfs = NULL; } void dcrypt_set_vfs(struct dcrypt_vfs *vfs) { dcrypt_vfs = vfs; } bool dcrypt_is_initialized(void) { return dcrypt_vfs != NULL; } bool dcrypt_ctx_sym_create(const char *algorithm, enum dcrypt_sym_mode mode, struct dcrypt_context_symmetric **ctx_r, const char **error_r) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->ctx_sym_create(algorithm, mode, ctx_r, error_r); } void dcrypt_ctx_sym_destroy(struct dcrypt_context_symmetric **ctx) { i_assert(dcrypt_vfs != NULL); dcrypt_vfs->ctx_sym_destroy(ctx); } void dcrypt_ctx_sym_set_key(struct dcrypt_context_symmetric *ctx, const unsigned char *key, size_t key_len) { i_assert(dcrypt_vfs != NULL); dcrypt_vfs->ctx_sym_set_key(ctx, key, key_len); } void dcrypt_ctx_sym_set_iv(struct dcrypt_context_symmetric *ctx, const unsigned char *iv, size_t iv_len) { i_assert(dcrypt_vfs != NULL); dcrypt_vfs->ctx_sym_set_iv(ctx, iv, iv_len); } void dcrypt_ctx_sym_set_key_iv_random(struct dcrypt_context_symmetric *ctx) { i_assert(dcrypt_vfs != NULL); dcrypt_vfs->ctx_sym_set_key_iv_random(ctx); } bool dcrypt_ctx_sym_get_key(struct dcrypt_context_symmetric *ctx, buffer_t *key) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->ctx_sym_get_key(ctx, key); } bool dcrypt_ctx_sym_get_iv(struct dcrypt_context_symmetric *ctx, buffer_t *iv) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->ctx_sym_get_iv(ctx, iv); } unsigned int dcrypt_ctx_sym_get_key_length(struct dcrypt_context_symmetric *ctx) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->ctx_sym_get_key_length(ctx); } unsigned int dcrypt_ctx_sym_get_iv_length(struct dcrypt_context_symmetric *ctx) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->ctx_sym_get_iv_length(ctx); } void dcrypt_ctx_sym_set_aad(struct dcrypt_context_symmetric *ctx, const unsigned char *aad, size_t aad_len) { i_assert(dcrypt_vfs != NULL); dcrypt_vfs->ctx_sym_set_aad(ctx, aad, aad_len); } bool dcrypt_ctx_sym_get_aad(struct dcrypt_context_symmetric *ctx, buffer_t *aad) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->ctx_sym_get_aad(ctx, aad); } void dcrypt_ctx_sym_set_tag(struct dcrypt_context_symmetric *ctx, const unsigned char *tag, size_t tag_len) { i_assert(dcrypt_vfs != NULL); dcrypt_vfs->ctx_sym_set_tag(ctx, tag, tag_len); } bool dcrypt_ctx_sym_get_tag(struct dcrypt_context_symmetric *ctx, buffer_t *tag) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->ctx_sym_get_tag(ctx, tag); } unsigned int dcrypt_ctx_sym_get_block_size(struct dcrypt_context_symmetric *ctx) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->ctx_sym_get_block_size(ctx); } bool dcrypt_ctx_sym_init(struct dcrypt_context_symmetric *ctx, const char **error_r) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->ctx_sym_init(ctx, error_r); } bool dcrypt_ctx_sym_update(struct dcrypt_context_symmetric *ctx, const unsigned char *data, size_t data_len, buffer_t *result, const char **error_r) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->ctx_sym_update(ctx, data, data_len, result, error_r); } bool dcrypt_ctx_sym_final(struct dcrypt_context_symmetric *ctx, buffer_t *result, const char **error_r) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->ctx_sym_final(ctx, result, error_r); } void dcrypt_ctx_sym_set_padding(struct dcrypt_context_symmetric *ctx, bool padding) { i_assert(dcrypt_vfs != NULL); dcrypt_vfs->ctx_sym_set_padding(ctx, padding); } bool dcrypt_ctx_hmac_create(const char *algorithm, struct dcrypt_context_hmac **ctx_r, const char **error_r) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->ctx_hmac_create(algorithm, ctx_r, error_r); } void dcrypt_ctx_hmac_destroy(struct dcrypt_context_hmac **ctx) { i_assert(dcrypt_vfs != NULL); dcrypt_vfs->ctx_hmac_destroy(ctx); } void dcrypt_ctx_hmac_set_key(struct dcrypt_context_hmac *ctx, const unsigned char *key, size_t key_len) { i_assert(dcrypt_vfs != NULL); dcrypt_vfs->ctx_hmac_set_key(ctx, key, key_len); } bool dcrypt_ctx_hmac_get_key(struct dcrypt_context_hmac *ctx, buffer_t *key) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->ctx_hmac_get_key(ctx, key); } void dcrypt_ctx_hmac_set_key_random(struct dcrypt_context_hmac *ctx) { i_assert(dcrypt_vfs != NULL); dcrypt_vfs->ctx_hmac_set_key_random(ctx); } unsigned int dcrypt_ctx_hmac_get_digest_length(struct dcrypt_context_hmac *ctx) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->ctx_hmac_get_digest_length(ctx); } bool dcrypt_ctx_hmac_init(struct dcrypt_context_hmac *ctx, const char **error_r) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->ctx_hmac_init(ctx, error_r); } bool dcrypt_ctx_hmac_update(struct dcrypt_context_hmac *ctx, const unsigned char *data, size_t data_len, const char **error_r) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->ctx_hmac_update(ctx, data, data_len, error_r); } bool dcrypt_ctx_hmac_final(struct dcrypt_context_hmac *ctx, buffer_t *result, const char **error_r) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->ctx_hmac_final(ctx, result, error_r); } bool dcrypt_ecdh_derive_secret(struct dcrypt_private_key *local_key, struct dcrypt_public_key *pub_key, buffer_t *shared_secret, const char **error_r) { i_assert(dcrypt_vfs != NULL); if (dcrypt_vfs->ecdh_derive_secret == NULL) { *error_r = "Not implemented"; return FALSE; } return dcrypt_vfs->ecdh_derive_secret(local_key, pub_key, shared_secret, error_r); } bool dcrypt_ecdh_derive_secret_local(struct dcrypt_private_key *local_key, buffer_t *R, buffer_t *S, const char **error_r) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->ecdh_derive_secret_local(local_key, R, S, error_r); } bool dcrypt_ecdh_derive_secret_peer(struct dcrypt_public_key *peer_key, buffer_t *R, buffer_t *S, const char **error_r) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->ecdh_derive_secret_peer(peer_key, R, S, error_r); } bool dcrypt_pbkdf2(const unsigned char *password, size_t password_len, const unsigned char *salt, size_t salt_len, const char *hash, unsigned int rounds, buffer_t *result, unsigned int result_len, const char **error_r) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->pbkdf2(password, password_len, salt, salt_len, hash, rounds, result, result_len, error_r); } bool dcrypt_keypair_generate(struct dcrypt_keypair *pair_r, enum dcrypt_key_type kind, unsigned int bits, const char *curve, const char **error_r) { i_assert(dcrypt_vfs != NULL); i_zero(pair_r); return dcrypt_vfs->generate_keypair(pair_r, kind, bits, curve, error_r); } bool dcrypt_key_load_private(struct dcrypt_private_key **key_r, const char *data, const char *password, struct dcrypt_private_key *dec_key, const char **error_r) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->load_private_key(key_r, data, password, dec_key, error_r); } bool dcrypt_key_load_public(struct dcrypt_public_key **key_r, const char *data, const char **error_r) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->load_public_key(key_r, data, error_r); } bool dcrypt_key_store_private(struct dcrypt_private_key *key, enum dcrypt_key_format format, const char *cipher, buffer_t *destination, const char *password, struct dcrypt_public_key *enc_key, const char **error_r) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->store_private_key(key, format, cipher, destination, password, enc_key, error_r); } bool dcrypt_key_store_public(struct dcrypt_public_key *key, enum dcrypt_key_format format, buffer_t *destination, const char **error_r) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->store_public_key(key, format, destination, error_r); } void dcrypt_key_convert_private_to_public(struct dcrypt_private_key *priv_key, struct dcrypt_public_key **pub_key_r) { i_assert(dcrypt_vfs != NULL); dcrypt_vfs->private_to_public_key(priv_key, pub_key_r); } bool dcrypt_key_string_get_info(const char *key_data, enum dcrypt_key_format *format_r, enum dcrypt_key_version *version_r, enum dcrypt_key_kind *kind_r, enum dcrypt_key_encryption_type *encryption_type_r, const char **encryption_key_hash_r, const char **key_hash_r, const char **error_r) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs-> key_string_get_info(key_data, format_r, version_r, kind_r, encryption_type_r, encryption_key_hash_r, key_hash_r, error_r); } enum dcrypt_key_type dcrypt_key_type_private(struct dcrypt_private_key *key) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->private_key_type(key); } enum dcrypt_key_type dcrypt_key_type_public(struct dcrypt_public_key *key) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->public_key_type(key); } bool dcrypt_key_id_public(struct dcrypt_public_key *key, const char *algorithm, buffer_t *result, const char **error_r) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->public_key_id(key, algorithm, result, error_r); } bool dcrypt_key_id_public_old(struct dcrypt_public_key *key, buffer_t *result, const char **error_r) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->public_key_id_old(key, result, error_r); } bool dcrypt_key_id_private(struct dcrypt_private_key *key, const char *algorithm, buffer_t *result, const char **error_r) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->private_key_id(key, algorithm, result, error_r); } bool dcrypt_key_id_private_old(struct dcrypt_private_key *key, buffer_t *result, const char **error_r) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->private_key_id_old(key, result, error_r); } void dcrypt_keypair_unref(struct dcrypt_keypair *keypair) { i_assert(dcrypt_vfs != NULL); dcrypt_vfs->unref_keypair(keypair); } void dcrypt_key_ref_public(struct dcrypt_public_key *key) { i_assert(dcrypt_vfs != NULL); dcrypt_vfs->ref_public_key(key); } void dcrypt_key_ref_private(struct dcrypt_private_key *key) { i_assert(dcrypt_vfs != NULL); dcrypt_vfs->ref_private_key(key); } void dcrypt_key_unref_public(struct dcrypt_public_key **key) { i_assert(dcrypt_vfs != NULL); dcrypt_vfs->unref_public_key(key); } void dcrypt_key_unref_private(struct dcrypt_private_key **key) { i_assert(dcrypt_vfs != NULL); dcrypt_vfs->unref_private_key(key); } bool dcrypt_rsa_encrypt(struct dcrypt_public_key *key, const unsigned char *data, size_t data_len, buffer_t *result, enum dcrypt_padding padding, const char **error_r) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->rsa_encrypt(key, data, data_len, result, padding, error_r); } bool dcrypt_rsa_decrypt(struct dcrypt_private_key *key, const unsigned char *data, size_t data_len, buffer_t *result, enum dcrypt_padding padding, const char **error_r) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->rsa_decrypt(key, data, data_len, result, padding, error_r); } const char *dcrypt_oid2name(const unsigned char *oid, size_t oid_len, const char **error_r) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->oid2name(oid, oid_len, error_r); } bool dcrypt_name2oid(const char *name, buffer_t *oid, const char **error_r) { i_assert(dcrypt_vfs != NULL); return dcrypt_vfs->name2oid(name, oid, error_r); } bool dcrypt_key_store_private_raw(struct dcrypt_private_key *key, pool_t pool, enum dcrypt_key_type *key_type_r, ARRAY_TYPE(dcrypt_raw_key) *keys_r, const char **error_r) { i_assert(dcrypt_vfs != NULL); if (dcrypt_vfs->key_store_private_raw == NULL) { *error_r = "Not implemented"; return FALSE; } return dcrypt_vfs->key_store_private_raw(key, pool, key_type_r, keys_r, error_r); } bool dcrypt_key_store_public_raw(struct dcrypt_public_key *key, pool_t pool, enum dcrypt_key_type *key_type_r, ARRAY_TYPE(dcrypt_raw_key) *keys_r, const char **error_r) { i_assert(dcrypt_vfs != NULL); if (dcrypt_vfs->key_store_public_raw == NULL) { *error_r = "Not implemented"; return FALSE; } return dcrypt_vfs->key_store_public_raw(key, pool, key_type_r, keys_r, error_r); } bool dcrypt_key_load_private_raw(struct dcrypt_private_key **key_r, enum dcrypt_key_type key_type, const ARRAY_TYPE(dcrypt_raw_key) *keys, const char **error_r) { i_assert(dcrypt_vfs != NULL); if (dcrypt_vfs->key_load_private_raw == NULL) { *error_r = "Not implemented"; return FALSE; } return dcrypt_vfs->key_load_private_raw(key_r, key_type, keys, error_r); } bool dcrypt_key_load_public_raw(struct dcrypt_public_key **key_r, enum dcrypt_key_type key_type, const ARRAY_TYPE(dcrypt_raw_key) *keys, const char **error_r) { i_assert(dcrypt_vfs != NULL); if (dcrypt_vfs->key_load_public_raw == NULL) { *error_r = "Not implemented"; return FALSE; } return dcrypt_vfs->key_load_public_raw(key_r, key_type, keys, error_r); } bool dcrypt_key_get_curve_public(struct dcrypt_public_key *key, const char **curve_r, const char **error_r) { i_assert(dcrypt_vfs != NULL); if (dcrypt_vfs->key_get_curve_public == NULL) { *error_r = "Not implemented"; return FALSE; } return dcrypt_vfs->key_get_curve_public(key, curve_r, error_r); } const char *dcrypt_key_get_id_public(struct dcrypt_public_key *key) { i_assert(dcrypt_vfs != NULL); if (dcrypt_vfs->key_get_id_public == NULL) return NULL; return dcrypt_vfs->key_get_id_public(key); } const char *dcrypt_key_get_id_private(struct dcrypt_private_key *key) { i_assert(dcrypt_vfs != NULL); if (dcrypt_vfs->key_get_id_private == NULL) return NULL; return dcrypt_vfs->key_get_id_private(key); } void dcrypt_key_set_id_public(struct dcrypt_public_key *key, const char *id) { i_assert(dcrypt_vfs != NULL); if (dcrypt_vfs->key_set_id_public == NULL) return; dcrypt_vfs->key_set_id_public(key, id); } void dcrypt_key_set_id_private(struct dcrypt_private_key *key, const char *id) { i_assert(dcrypt_vfs != NULL); if (dcrypt_vfs->key_set_id_private == NULL) return; dcrypt_vfs->key_set_id_private(key, id); } enum dcrypt_key_usage dcrypt_key_get_usage_public(struct dcrypt_public_key *key) { i_assert(dcrypt_vfs != NULL); if (dcrypt_vfs->key_get_usage_public == NULL) return DCRYPT_KEY_USAGE_NONE; return dcrypt_vfs->key_get_usage_public(key); } enum dcrypt_key_usage dcrypt_key_get_usage_private(struct dcrypt_private_key *key) { i_assert(dcrypt_vfs != NULL); if (dcrypt_vfs->key_get_usage_private == NULL) return DCRYPT_KEY_USAGE_NONE; return dcrypt_vfs->key_get_usage_private(key); } void dcrypt_key_set_usage_public(struct dcrypt_public_key *key, enum dcrypt_key_usage usage) { i_assert(dcrypt_vfs != NULL); if (dcrypt_vfs->key_set_usage_public == NULL) return; dcrypt_vfs->key_set_usage_public(key, usage); } void dcrypt_key_set_usage_private(struct dcrypt_private_key *key, enum dcrypt_key_usage usage) { i_assert(dcrypt_vfs != NULL); if (dcrypt_vfs->key_set_usage_private == NULL) return; dcrypt_vfs->key_set_usage_private(key, usage); } bool dcrypt_sign(struct dcrypt_private_key *key, const char *algorithm, enum dcrypt_signature_format format, const void *data, size_t data_len, buffer_t *signature_r, enum dcrypt_padding padding, const char **error_r) { i_assert(dcrypt_vfs != NULL); if (dcrypt_vfs->sign == NULL) { *error_r = "Not implemented"; return FALSE; } return dcrypt_vfs->sign(key, algorithm, format, data, data_len, signature_r, padding, error_r); } bool dcrypt_verify(struct dcrypt_public_key *key, const char *algorithm, enum dcrypt_signature_format format, const void *data, size_t data_len, const unsigned char *signature, size_t signature_len, bool *valid_r, enum dcrypt_padding padding, const char **error_r) { i_assert(dcrypt_vfs != NULL); if (dcrypt_vfs->verify == NULL) { *error_r = "Not implemented"; return FALSE; } return dcrypt_vfs->verify(key, algorithm, format, data, data_len, signature, signature_len, valid_r, padding, error_r); } int parse_jwk_key(const char *key_data, struct json_tree **tree_r, const char **error_r) { struct istream *is = i_stream_create_from_data(key_data, strlen(key_data)); struct json_parser *parser = json_parser_init(is); struct json_tree *tree = json_tree_init(); const char *error; enum json_type type; const char *value; int ret; i_stream_unref(&is); while ((ret = json_parse_next(parser, &type, &value)) == 1) json_tree_append(tree, type, value); i_assert(ret == -1); if (json_parser_deinit(&parser, &error) != 0) { json_tree_deinit(&tree); *error_r = error; if (error == NULL) *error_r = "Truncated JSON"; return -1; } *tree_r = tree; return 0; }