#ifndef BITS_H #define BITS_H #define UINT64_SUM_OVERFLOWS(a, b) \ (a > (uint64_t)-1 - b) #define BIT(n) (1u << (n)) /* These expressions make it easy to ensure that bit test expressions are boolean in order to satisfy the in-house -Wstrict-bool. */ /* ((val & bits) == 0) is very common */ #define HAS_NO_BITS(val,bits) (((val) & (bits)) == 0) /* ((val & bits) != 0) is even more common */ /* Note - illogical behaviour if bits==0, fixing that requires potential multiple evaluation, but it's a corner case that should never occur. */ #define HAS_ANY_BITS(val,bits) (((val) & (bits)) != 0) /* ((val & bits) == bits) is uncommon */ #define HAS_ALL_BITS(val,bits) ((~(val) & (bits)) == 0) /* negation implemented without using the subtraction operator ~(x - 1) = 1 + ~x these are equivalent by -(-x) == ~(~(x)) == x */ #define UNSIGNED_MINUS(x) (1 + ~(x)) /* Returns x, such that x is the smallest power of 2 >= num. */ size_t nearest_power(size_t num) ATTR_CONST; #if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4) /* Returns TRUE if 2^x=num, i.e. if num has only a single bit set to 1. */ static inline bool ATTR_CONST bits_is_power_of_two(uint64_t num) { return __builtin_popcountll(num) == 1; } static inline unsigned int ATTR_CONST bits_required32(uint32_t num) { return num == 0 ? 0 : 32 - __builtin_clz(num); } static inline unsigned int ATTR_CONST bits_required8(uint8_t num) { return bits_required32(num); } static inline unsigned int ATTR_CONST bits_required16(uint16_t num) { return bits_required32(num); } static inline unsigned int ATTR_CONST bits_required64(uint64_t num) { return num == 0 ? 0 : 64 - __builtin_clzll(num); } #else /* Returns TRUE if 2^x=num, i.e. if num has only a single bit set to 1. */ static inline bool ATTR_CONST bits_is_power_of_two(uint64_t num) { return num != 0 && (num & (num + ~0ULL)) == 0; } unsigned int bits_required8(uint8_t num) ATTR_CONST; static inline unsigned int bits_required16(uint16_t num) { return (num <= 0xff) ? bits_required8(num) : 8 + bits_required8(num >> 8); } static inline unsigned int bits_required32(uint32_t num) { return (num <= 0xffff) ? bits_required16(num) : 16 + bits_required16(num >> 16); } static inline unsigned int bits_required64(uint64_t num) { return (num <= 0xffffffff) ? bits_required32(num) : 32 + bits_required32(num >> 32); } #endif static inline uint64_t ATTR_NO_SANITIZE_INTEGER ATTR_NO_SANITIZE_IMPLICIT_CONVERSION bits_rotl64(uint64_t num, unsigned int count) { const unsigned int mask = CHAR_BIT*sizeof(num) - 1; count &= mask; return (num << count) | (num >> (UNSIGNED_MINUS(count) & mask)); } static inline uint32_t ATTR_NO_SANITIZE_INTEGER ATTR_NO_SANITIZE_IMPLICIT_CONVERSION bits_rotl32(uint32_t num, unsigned int count) { const unsigned int mask = CHAR_BIT*sizeof(num) - 1; count &= mask; return (num << count) | (num >> (UNSIGNED_MINUS(count) & mask)); } static inline uint64_t ATTR_NO_SANITIZE_INTEGER ATTR_NO_SANITIZE_IMPLICIT_CONVERSION bits_rotr64(uint64_t num, unsigned int count) { const unsigned int mask = CHAR_BIT*sizeof(num) - 1; count &= mask; return (num >> count) | (num << (UNSIGNED_MINUS(count) & mask)); } static inline uint32_t ATTR_NO_SANITIZE_INTEGER ATTR_NO_SANITIZE_IMPLICIT_CONVERSION bits_rotr32(uint32_t num, unsigned int count) { const unsigned int mask = CHAR_BIT*sizeof(num) - 1; count &= mask; return (num >> count) | (num << (UNSIGNED_MINUS(count) & mask)); } /* These functions look too big to be inline, but in almost all expected uses, 'fracbits' will be a compile-time constant, and most of the expressions will simplify greatly. */ /* Perform a piecewise-linear approximation to a log2, with fracbits "fractional" bits. Best explained with examples: With 2 fractional bits splitting each power of 2 into 4 bands: 00, 01, 10, 11 -> 00, 01, 10, 11 (small corner cases) 100, 101, 110, 111 -> 100, 101, 110, 111 ([4-8) split into 4 bands) 1000, 1001, 1010, 1011 -> 1000, 1000, 1001, 1001 ([8-15) split ... 1100, 1101, 1110, 1111 -> 1010, 1010, 1011, 1011 ... into 4 bands) [16..31) -> 11bb [32..63) -> 100bb [64..127) -> 101bb [128..255) -> 110bb e.g. 236 = 11101100 -> ((8-2)<<2 == 11000) + (111.....>> 5 == 111) - 100 == 11011 */ static inline unsigned int ATTR_CONST bits_fraclog(unsigned int val, unsigned int fracbits) { unsigned bits = bits_required32(val); if (bits <= fracbits + 1) return val; unsigned int bandnum = bits - fracbits; unsigned int bandstart = bandnum << fracbits; unsigned int fracoffsbad = val >> (bandnum - 1); /* has leading 1 still */ unsigned int bucket = bandstart + fracoffsbad - BIT(fracbits); return bucket; } static inline unsigned int ATTR_CONST bits_fraclog_bucket_start(unsigned int bucket, unsigned int fracbits) { unsigned int bandnum = bucket >> fracbits; if (bandnum <= 1) return bucket; if (fracbits == 0) return BIT(bucket - 1); unsigned int fracoffs = bucket & (BIT(fracbits)-1); unsigned int fracoffs1 = BIT(fracbits) + fracoffs; unsigned int bandstart = fracoffs1 << (bandnum - 1); return bandstart; } static inline unsigned int ATTR_CONST ATTR_NO_SANITIZE_INTEGER ATTR_NO_SANITIZE_IMPLICIT_CONVERSION bits_fraclog_bucket_end(unsigned int bucket, unsigned int fracbits) { unsigned int bandnum = bucket >> fracbits; if (bandnum <= 1) return bucket; if (fracbits == 0) return BIT(bucket - 1) * 2 - 1; unsigned int fracoffs = bucket & (BIT(fracbits)-1); unsigned int nextfracoffs1 = 1 + BIT(fracbits) + fracoffs; unsigned int nextbandstart = nextfracoffs1 << (bandnum - 1); return nextbandstart - 1; } /* UNSAFE: multiple use of parameter (but expecting a constant in reality). But a macro as it's most likely to be used to declare an array size. */ #define BITS_FRACLOG_BUCKETS(bits) ((33u - (bits)) << (bits)) #endif