/* * FIPS 180-2 SHA-224/256/384/512 implementation * Last update: 02/02/2007 * Issue date: 04/30/2005 * * Copyright (C) 2005, 2007 Olivier Gay * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "lib.h" #include "sha2.h" #define SHFR(x, n) (x >> n) #define ROTR(x, n) ((x >> n) | (x << ((sizeof(x) << 3) - n))) #define ROTL(x, n) ((x << n) | (x >> ((sizeof(x) << 3) - n))) #define CH(x, y, z) ((x & y) ^ (~x & z)) #define MAJ(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) #define SHA256_F1(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) #define SHA256_F2(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) #define SHA256_F3(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHFR(x, 3)) #define SHA256_F4(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHFR(x, 10)) #define SHA384_F1(x) (ROTR(x, 28) ^ ROTR(x, 34) ^ ROTR(x, 39)) #define SHA384_F2(x) (ROTR(x, 14) ^ ROTR(x, 18) ^ ROTR(x, 41)) #define SHA384_F3(x) (ROTR(x, 1) ^ ROTR(x, 8) ^ SHFR(x, 7)) #define SHA384_F4(x) (ROTR(x, 19) ^ ROTR(x, 61) ^ SHFR(x, 6)) #define SHA512_F1(x) (ROTR(x, 28) ^ ROTR(x, 34) ^ ROTR(x, 39)) #define SHA512_F2(x) (ROTR(x, 14) ^ ROTR(x, 18) ^ ROTR(x, 41)) #define SHA512_F3(x) (ROTR(x, 1) ^ ROTR(x, 8) ^ SHFR(x, 7)) #define SHA512_F4(x) (ROTR(x, 19) ^ ROTR(x, 61) ^ SHFR(x, 6)) #define UNPACK32(x, str) \ { \ *((str) + 3) = (uint8_t) ((x) ); \ *((str) + 2) = (uint8_t) ((x) >> 8); \ *((str) + 1) = (uint8_t) ((x) >> 16); \ *((str) + 0) = (uint8_t) ((x) >> 24); \ } #define PACK32(str, x) \ { \ *(x) = ((uint32_t) *((str) + 3) ) \ | ((uint32_t) *((str) + 2) << 8) \ | ((uint32_t) *((str) + 1) << 16) \ | ((uint32_t) *((str) + 0) << 24); \ } #define UNPACK64(x, str) \ { \ *((str) + 7) = (uint8_t) ((x) ); \ *((str) + 6) = (uint8_t) ((x) >> 8); \ *((str) + 5) = (uint8_t) ((x) >> 16); \ *((str) + 4) = (uint8_t) ((x) >> 24); \ *((str) + 3) = (uint8_t) ((x) >> 32); \ *((str) + 2) = (uint8_t) ((x) >> 40); \ *((str) + 1) = (uint8_t) ((x) >> 48); \ *((str) + 0) = (uint8_t) ((x) >> 56); \ } #define PACK64(str, x) \ { \ *(x) = ((uint64_t) *((str) + 7) ) \ | ((uint64_t) *((str) + 6) << 8) \ | ((uint64_t) *((str) + 5) << 16) \ | ((uint64_t) *((str) + 4) << 24) \ | ((uint64_t) *((str) + 3) << 32) \ | ((uint64_t) *((str) + 2) << 40) \ | ((uint64_t) *((str) + 1) << 48) \ | ((uint64_t) *((str) + 0) << 56); \ } #define SHA256_SCR(i) \ { \ w[i] = SHA256_F4(w[i - 2]) + w[i - 7] \ + SHA256_F3(w[i - 15]) + w[i - 16]; \ } #define SHA384_SCR(i) \ { \ w[i] = SHA512_F4(w[i - 2]) + w[i - 7] \ + SHA512_F3(w[i - 15]) + w[i - 16]; \ } #define SHA512_SCR(i) \ { \ w[i] = SHA512_F4(w[i - 2]) + w[i - 7] \ + SHA512_F3(w[i - 15]) + w[i - 16]; \ } static const uint32_t sha256_h0[8] = {0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19}; static const uint64_t sha384_h0[8] = {0xcbbb9d5dc1059ed8ULL, 0x629a292a367cd507ULL, 0x9159015a3070dd17ULL, 0x152fecd8f70e5939ULL, 0x67332667ffc00b31ULL, 0x8eb44a8768581511ULL, 0xdb0c2e0d64f98fa7ULL, 0x47b5481dbefa4fa4ULL}; static const uint64_t sha512_h0[8] = {0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL, 0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL, 0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL, 0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL}; static const uint32_t sha256_k[64] = {0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2}; static const uint64_t sha512_k[80] = {0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL}; /* SHA-256 functions */ static void ATTR_UNSIGNED_WRAPS sha256_transf(struct sha256_ctx *ctx, const unsigned char *data, size_t block_nb) { uint32_t w[64]; uint32_t wv[8]; uint32_t t1, t2; const unsigned char *sub_block; int i,j; for (i = 0; i < (int) block_nb; i++) { sub_block = data + (i << 6); for (j = 0; j < 16; j++) { PACK32(&sub_block[j << 2], &w[j]); } for (j = 16; j < 64; j++) { SHA256_SCR(j); } for (j = 0; j < 8; j++) { wv[j] = ctx->h[j]; } for (j = 0; j < 64; j++) { t1 = wv[7] + SHA256_F2(wv[4]) + CH(wv[4], wv[5], wv[6]) + sha256_k[j] + w[j]; t2 = SHA256_F1(wv[0]) + MAJ(wv[0], wv[1], wv[2]); wv[7] = wv[6]; wv[6] = wv[5]; wv[5] = wv[4]; wv[4] = wv[3] + t1; wv[3] = wv[2]; wv[2] = wv[1]; wv[1] = wv[0]; wv[0] = t1 + t2; } for (j = 0; j < 8; j++) { ctx->h[j] += wv[j]; } } } void sha256_init(struct sha256_ctx *ctx) { int i; for (i = 0; i < 8; i++) { ctx->h[i] = sha256_h0[i]; } ctx->len = 0; ctx->tot_len = 0; } void sha256_loop(struct sha256_ctx *ctx, const void *data, size_t len) { const unsigned char *shifted_message; size_t block_nb; size_t new_len, rem_len, tmp_len; tmp_len = SHA256_BLOCK_SIZE - ctx->len; rem_len = len < tmp_len ? len : tmp_len; memcpy(&ctx->block[ctx->len], data, rem_len); if (ctx->len + len < SHA256_BLOCK_SIZE) { ctx->len += len; return; } new_len = len - rem_len; block_nb = new_len / SHA256_BLOCK_SIZE; shifted_message = CONST_PTR_OFFSET(data, rem_len); sha256_transf(ctx, ctx->block, 1); sha256_transf(ctx, shifted_message, block_nb); rem_len = new_len % SHA256_BLOCK_SIZE; memcpy(ctx->block, &shifted_message[block_nb << 6], rem_len); ctx->len = rem_len; ctx->tot_len += (block_nb + 1) << 6; } void sha256_result(struct sha256_ctx *ctx, unsigned char digest[STATIC_ARRAY SHA256_RESULTLEN]) { size_t block_nb; size_t pm_len; uint64_t len_b; int i; block_nb = (1 + ((SHA256_BLOCK_SIZE - 9) < (ctx->len % SHA256_BLOCK_SIZE))); len_b = (ctx->tot_len + ctx->len) << 3; pm_len = block_nb << 6; memset(ctx->block + ctx->len, 0, pm_len - ctx->len); ctx->block[ctx->len] = 0x80; UNPACK64(len_b, ctx->block + pm_len - 8); sha256_transf(ctx, ctx->block, block_nb); for (i = 0 ; i < 8; i++) { UNPACK32(ctx->h[i], &digest[i << 2]); } } void sha256_get_digest(const void *data, size_t size, unsigned char digest[STATIC_ARRAY SHA256_RESULTLEN]) { struct sha256_ctx ctx; sha256_init(&ctx); sha256_loop(&ctx, data, size); sha256_result(&ctx, digest); } /* SHA-384 functions */ static void ATTR_UNSIGNED_WRAPS sha384_transf(struct sha384_ctx *ctx, const unsigned char *data, size_t block_nb) { uint64_t w[80]; uint64_t wv[8]; uint64_t t1, t2; const unsigned char *sub_block; int i, j; for (i = 0; i < (int) block_nb; i++) { sub_block = data + (i << 7); for (j = 0; j < 16; j++) { PACK64(&sub_block[j << 3], &w[j]); } for (j = 16; j < 80; j++) { SHA384_SCR(j); } for (j = 0; j < 8; j++) { wv[j] = ctx->h[j]; } for (j = 0; j < 80; j++) { /* sha384_k is same as sha512_k */ t1 = wv[7] + SHA384_F2(wv[4]) + CH(wv[4], wv[5], wv[6]) + sha512_k[j] + w[j]; t2 = SHA384_F1(wv[0]) + MAJ(wv[0], wv[1], wv[2]); wv[7] = wv[6]; wv[6] = wv[5]; wv[5] = wv[4]; wv[4] = wv[3] + t1; wv[3] = wv[2]; wv[2] = wv[1]; wv[1] = wv[0]; wv[0] = t1 + t2; } for (j = 0; j < 8; j++) { ctx->h[j] += wv[j]; } } } void sha384_init(struct sha384_ctx *ctx) { int i; for (i = 0; i < 8; i++) { ctx->h[i] = sha384_h0[i]; } ctx->len = 0; ctx->tot_len = 0; } void sha384_loop(struct sha384_ctx *ctx, const void *data, size_t len) { const unsigned char *shifted_message; size_t block_nb; size_t new_len, rem_len, tmp_len; tmp_len = SHA384_BLOCK_SIZE - ctx->len; rem_len = len < tmp_len ? len : tmp_len; memcpy(&ctx->block[ctx->len], data, rem_len); if (ctx->len + len < SHA384_BLOCK_SIZE) { ctx->len += len; return; } new_len = len - rem_len; block_nb = new_len / SHA384_BLOCK_SIZE; shifted_message = CONST_PTR_OFFSET(data, rem_len); sha384_transf(ctx, ctx->block, 1); sha384_transf(ctx, shifted_message, block_nb); rem_len = new_len % SHA384_BLOCK_SIZE; memcpy(ctx->block, &shifted_message[block_nb << 7], rem_len); ctx->len = rem_len; ctx->tot_len += (block_nb + 1) << 7; } void sha384_result(struct sha384_ctx *ctx, unsigned char digest[STATIC_ARRAY SHA384_RESULTLEN]) { unsigned int block_nb; unsigned int pm_len; uint64_t len_b; int i; block_nb = 1 + ((SHA384_BLOCK_SIZE - 17) < (ctx->len % SHA384_BLOCK_SIZE)); len_b = (ctx->tot_len + ctx->len) << 3; pm_len = block_nb << 7; memset(ctx->block + ctx->len, 0, pm_len - ctx->len); ctx->block[ctx->len] = 0x80; UNPACK64(len_b, ctx->block + pm_len - 8); sha384_transf(ctx, ctx->block, block_nb); for (i = 0 ; i < 6; i++) { UNPACK64(ctx->h[i], &digest[i << 3]); } } void sha384_get_digest(const void *data, size_t size, unsigned char digest[STATIC_ARRAY SHA384_RESULTLEN]) { struct sha384_ctx ctx; sha384_init(&ctx); sha384_loop(&ctx, data, size); sha384_result(&ctx, digest); } /* SHA-512 functions */ static void ATTR_UNSIGNED_WRAPS sha512_transf(struct sha512_ctx *ctx, const unsigned char *data, size_t block_nb) { uint64_t w[80]; uint64_t wv[8]; uint64_t t1, t2; const unsigned char *sub_block; int i, j; for (i = 0; i < (int) block_nb; i++) { sub_block = data + (i << 7); for (j = 0; j < 16; j++) { PACK64(&sub_block[j << 3], &w[j]); } for (j = 16; j < 80; j++) { SHA512_SCR(j); } for (j = 0; j < 8; j++) { wv[j] = ctx->h[j]; } for (j = 0; j < 80; j++) { t1 = wv[7] + SHA512_F2(wv[4]) + CH(wv[4], wv[5], wv[6]) + sha512_k[j] + w[j]; t2 = SHA512_F1(wv[0]) + MAJ(wv[0], wv[1], wv[2]); wv[7] = wv[6]; wv[6] = wv[5]; wv[5] = wv[4]; wv[4] = wv[3] + t1; wv[3] = wv[2]; wv[2] = wv[1]; wv[1] = wv[0]; wv[0] = t1 + t2; } for (j = 0; j < 8; j++) { ctx->h[j] += wv[j]; } } } void sha512_init(struct sha512_ctx *ctx) { int i; for (i = 0; i < 8; i++) { ctx->h[i] = sha512_h0[i]; } ctx->len = 0; ctx->tot_len = 0; } void sha512_loop(struct sha512_ctx *ctx, const void *data, size_t len) { const unsigned char *shifted_message; size_t block_nb; size_t new_len, rem_len, tmp_len; tmp_len = SHA512_BLOCK_SIZE - ctx->len; rem_len = len < tmp_len ? len : tmp_len; memcpy(&ctx->block[ctx->len], data, rem_len); if (ctx->len + len < SHA512_BLOCK_SIZE) { ctx->len += len; return; } new_len = len - rem_len; block_nb = new_len / SHA512_BLOCK_SIZE; shifted_message = CONST_PTR_OFFSET(data, rem_len); sha512_transf(ctx, ctx->block, 1); sha512_transf(ctx, shifted_message, block_nb); rem_len = new_len % SHA512_BLOCK_SIZE; memcpy(ctx->block, &shifted_message[block_nb << 7], rem_len); ctx->len = rem_len; ctx->tot_len += (block_nb + 1) << 7; } void sha512_result(struct sha512_ctx *ctx, unsigned char digest[STATIC_ARRAY SHA512_RESULTLEN]) { unsigned int block_nb; unsigned int pm_len; uint64_t len_b; int i; block_nb = 1 + ((SHA512_BLOCK_SIZE - 17) < (ctx->len % SHA512_BLOCK_SIZE)); len_b = (ctx->tot_len + ctx->len) << 3; pm_len = block_nb << 7; memset(ctx->block + ctx->len, 0, pm_len - ctx->len); ctx->block[ctx->len] = 0x80; UNPACK64(len_b, ctx->block + pm_len - 8); sha512_transf(ctx, ctx->block, block_nb); for (i = 0 ; i < 8; i++) { UNPACK64(ctx->h[i], &digest[i << 3]); } } void sha512_get_digest(const void *data, size_t size, unsigned char digest[STATIC_ARRAY SHA512_RESULTLEN]) { struct sha512_ctx ctx; sha512_init(&ctx); sha512_loop(&ctx, data, size); sha512_result(&ctx, digest); } static void hash_method_init_sha256(void *context) { sha256_init(context); } static void hash_method_loop_sha256(void *context, const void *data, size_t size) { sha256_loop(context, data, size); } static void hash_method_result_sha256(void *context, unsigned char *result_r) { sha256_result(context, result_r); } const struct hash_method hash_method_sha256 = { .name = "sha256", .block_size = SHA256_BLOCK_SIZE, .context_size = sizeof(struct sha256_ctx), .digest_size = SHA256_RESULTLEN, .init = hash_method_init_sha256, .loop = hash_method_loop_sha256, .result = hash_method_result_sha256, }; static void hash_method_init_sha384(void *context) { sha384_init(context); } static void hash_method_loop_sha384(void *context, const void *data, size_t size) { sha384_loop(context, data, size); } static void hash_method_result_sha384(void *context, unsigned char *result_r) { sha384_result(context, result_r); } const struct hash_method hash_method_sha384 = { .name = "sha384", .block_size = SHA384_BLOCK_SIZE, .context_size = sizeof(struct sha384_ctx), .digest_size = SHA384_RESULTLEN, .init = hash_method_init_sha384, .loop = hash_method_loop_sha384, .result = hash_method_result_sha384, }; static void hash_method_init_sha512(void *context) { sha512_init(context); } static void hash_method_loop_sha512(void *context, const void *data, size_t size) { sha512_loop(context, data, size); } static void hash_method_result_sha512(void *context, unsigned char *result_r) { sha512_result(context, result_r); } const struct hash_method hash_method_sha512 = { .name = "sha512", .block_size = SHA512_BLOCK_SIZE, .context_size = sizeof(struct sha512_ctx), .digest_size = SHA512_RESULTLEN, .init = hash_method_init_sha512, .loop = hash_method_loop_sha512, .result = hash_method_result_sha512, };