/* * qsfp.c: Implements SFF-8636 based QSFP+/QSFP28 Diagnostics Memory map. * * Copyright 2010 Solarflare Communications Inc. * Aurelien Guillaume (C) 2012 * Copyright (C) 2014 Cumulus networks Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Freeoftware Foundation; either version 2 of the License, or * (at your option) any later version. * * Vidya Ravipati * This implementation is loosely based on current SFP parser * and SFF-8636 spec Rev 2.7 (ftp://ftp.seagate.com/pub/sff/SFF-8636.PDF) * by SFF Committee. */ /* * Description: * a) The register/memory layout is up to 5 128 byte pages defined by * a "pages valid" register and switched via a "page select" * register. Memory of 256 bytes can be memory mapped at a time * according to SFF 8636. * b) SFF 8636 based 640 bytes memory layout is presented for parser * * SFF 8636 based QSFP Memory Map * * 2-Wire Serial Address: 1010000x * * Lower Page 00h (128 bytes) * ====================== * | | * |Page Select Byte(127)| * ====================== * | * V * ---------------------------------------- * | | | | * V V V V * ---------- ---------- --------- ------------ * | Upper | | Upper | | Upper | | Upper | * | Page 00h | | Page 01h | | Page 02h | | Page 03h | * | | |(Optional)| |(Optional)| | (Optional) | * | | | | | | | | * | | | | | | | | * | ID | | AST | | User | | For | * | Fields | | Table | | EEPROM | | Cable | * | | | | | Data | | Assemblies | * | | | | | | | | * | | | | | | | | * ----------- ----------- ---------- -------------- * * **/ #include #include #include #include "internal.h" #include "sff-common.h" #include "qsfp.h" #include "cmis.h" #include "netlink/extapi.h" struct sff8636_memory_map { const __u8 *lower_memory; const __u8 *upper_memory[4]; #define page_00h upper_memory[0x0] #define page_03h upper_memory[0x3] }; #define SFF8636_PAGE_SIZE 0x80 #define SFF8636_I2C_ADDRESS 0x50 #define SFF8636_MAX_CHANNEL_NUM 4 #define MAX_DESC_SIZE 42 static struct sff8636_aw_flags { const char *str; /* Human-readable string, null at the end */ int offset; __u8 value; /* Alarm is on if (offset & value) != 0. */ } sff8636_aw_flags[] = { { "Laser bias current high alarm (Chan 1)", SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_1_HALARM) }, { "Laser bias current low alarm (Chan 1)", SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_1_LALARM) }, { "Laser bias current high warning (Chan 1)", SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_1_HWARN) }, { "Laser bias current low warning (Chan 1)", SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_1_LWARN) }, { "Laser bias current high alarm (Chan 2)", SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_2_HALARM) }, { "Laser bias current low alarm (Chan 2)", SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_2_LALARM) }, { "Laser bias current high warning (Chan 2)", SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_2_HWARN) }, { "Laser bias current low warning (Chan 2)", SFF8636_TX_BIAS_12_AW_OFFSET, (SFF8636_TX_BIAS_2_LWARN) }, { "Laser bias current high alarm (Chan 3)", SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_3_HALARM) }, { "Laser bias current low alarm (Chan 3)", SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_3_LALARM) }, { "Laser bias current high warning (Chan 3)", SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_3_HWARN) }, { "Laser bias current low warning (Chan 3)", SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_3_LWARN) }, { "Laser bias current high alarm (Chan 4)", SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_4_HALARM) }, { "Laser bias current low alarm (Chan 4)", SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_4_LALARM) }, { "Laser bias current high warning (Chan 4)", SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_4_HWARN) }, { "Laser bias current low warning (Chan 4)", SFF8636_TX_BIAS_34_AW_OFFSET, (SFF8636_TX_BIAS_4_LWARN) }, { "Module temperature high alarm", SFF8636_TEMP_AW_OFFSET, (SFF8636_TEMP_HALARM_STATUS) }, { "Module temperature low alarm", SFF8636_TEMP_AW_OFFSET, (SFF8636_TEMP_LALARM_STATUS) }, { "Module temperature high warning", SFF8636_TEMP_AW_OFFSET, (SFF8636_TEMP_HWARN_STATUS) }, { "Module temperature low warning", SFF8636_TEMP_AW_OFFSET, (SFF8636_TEMP_LWARN_STATUS) }, { "Module voltage high alarm", SFF8636_VCC_AW_OFFSET, (SFF8636_VCC_HALARM_STATUS) }, { "Module voltage low alarm", SFF8636_VCC_AW_OFFSET, (SFF8636_VCC_LALARM_STATUS) }, { "Module voltage high warning", SFF8636_VCC_AW_OFFSET, (SFF8636_VCC_HWARN_STATUS) }, { "Module voltage low warning", SFF8636_VCC_AW_OFFSET, (SFF8636_VCC_LWARN_STATUS) }, { "Laser tx power high alarm (Channel 1)", SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_1_HALARM) }, { "Laser tx power low alarm (Channel 1)", SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_1_LALARM) }, { "Laser tx power high warning (Channel 1)", SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_1_HWARN) }, { "Laser tx power low warning (Channel 1)", SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_1_LWARN) }, { "Laser tx power high alarm (Channel 2)", SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_2_HALARM) }, { "Laser tx power low alarm (Channel 2)", SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_2_LALARM) }, { "Laser tx power high warning (Channel 2)", SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_2_HWARN) }, { "Laser tx power low warning (Channel 2)", SFF8636_TX_PWR_12_AW_OFFSET, (SFF8636_TX_PWR_2_LWARN) }, { "Laser tx power high alarm (Channel 3)", SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_3_HALARM) }, { "Laser tx power low alarm (Channel 3)", SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_3_LALARM) }, { "Laser tx power high warning (Channel 3)", SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_3_HWARN) }, { "Laser tx power low warning (Channel 3)", SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_3_LWARN) }, { "Laser tx power high alarm (Channel 4)", SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_4_HALARM) }, { "Laser tx power low alarm (Channel 4)", SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_4_LALARM) }, { "Laser tx power high warning (Channel 4)", SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_4_HWARN) }, { "Laser tx power low warning (Channel 4)", SFF8636_TX_PWR_34_AW_OFFSET, (SFF8636_TX_PWR_4_LWARN) }, { "Laser rx power high alarm (Channel 1)", SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_1_HALARM) }, { "Laser rx power low alarm (Channel 1)", SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_1_LALARM) }, { "Laser rx power high warning (Channel 1)", SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_1_HWARN) }, { "Laser rx power low warning (Channel 1)", SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_1_LWARN) }, { "Laser rx power high alarm (Channel 2)", SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_2_HALARM) }, { "Laser rx power low alarm (Channel 2)", SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_2_LALARM) }, { "Laser rx power high warning (Channel 2)", SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_2_HWARN) }, { "Laser rx power low warning (Channel 2)", SFF8636_RX_PWR_12_AW_OFFSET, (SFF8636_RX_PWR_2_LWARN) }, { "Laser rx power high alarm (Channel 3)", SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_3_HALARM) }, { "Laser rx power low alarm (Channel 3)", SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_3_LALARM) }, { "Laser rx power high warning (Channel 3)", SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_3_HWARN) }, { "Laser rx power low warning (Channel 3)", SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_3_LWARN) }, { "Laser rx power high alarm (Channel 4)", SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_4_HALARM) }, { "Laser rx power low alarm (Channel 4)", SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_4_LALARM) }, { "Laser rx power high warning (Channel 4)", SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_4_HWARN) }, { "Laser rx power low warning (Channel 4)", SFF8636_RX_PWR_34_AW_OFFSET, (SFF8636_RX_PWR_4_LWARN) }, { NULL, 0, 0 }, }; static void sff8636_show_identifier(const struct sff8636_memory_map *map) { sff8024_show_identifier(map->lower_memory, SFF8636_ID_OFFSET); } static void sff8636_show_ext_identifier(const struct sff8636_memory_map *map) { printf("\t%-41s : 0x%02x\n", "Extended identifier", map->page_00h[SFF8636_EXT_ID_OFFSET]); static const char *pfx = "\tExtended identifier description :"; switch (map->page_00h[SFF8636_EXT_ID_OFFSET] & SFF8636_EXT_ID_PWR_CLASS_MASK) { case SFF8636_EXT_ID_PWR_CLASS_1: printf("%s 1.5W max. Power consumption\n", pfx); break; case SFF8636_EXT_ID_PWR_CLASS_2: printf("%s 2.0W max. Power consumption\n", pfx); break; case SFF8636_EXT_ID_PWR_CLASS_3: printf("%s 2.5W max. Power consumption\n", pfx); break; case SFF8636_EXT_ID_PWR_CLASS_4: printf("%s 3.5W max. Power consumption\n", pfx); break; } if (map->page_00h[SFF8636_EXT_ID_OFFSET] & SFF8636_EXT_ID_CDR_TX_MASK) printf("%s CDR present in TX,", pfx); else printf("%s No CDR in TX,", pfx); if (map->page_00h[SFF8636_EXT_ID_OFFSET] & SFF8636_EXT_ID_CDR_RX_MASK) printf(" CDR present in RX\n"); else printf(" No CDR in RX\n"); switch (map->page_00h[SFF8636_EXT_ID_OFFSET] & SFF8636_EXT_ID_EPWR_CLASS_MASK) { case SFF8636_EXT_ID_PWR_CLASS_LEGACY: printf("%s", pfx); break; case SFF8636_EXT_ID_PWR_CLASS_5: printf("%s 4.0W max. Power consumption,", pfx); break; case SFF8636_EXT_ID_PWR_CLASS_6: printf("%s 4.5W max. Power consumption, ", pfx); break; case SFF8636_EXT_ID_PWR_CLASS_7: printf("%s 5.0W max. Power consumption, ", pfx); break; } if (map->lower_memory[SFF8636_PWR_MODE_OFFSET] & SFF8636_HIGH_PWR_ENABLE) printf(" High Power Class (> 3.5 W) enabled\n"); else printf(" High Power Class (> 3.5 W) not enabled\n"); printf("\t%-41s : ", "Power set"); printf("%s\n", ONOFF(map->lower_memory[SFF8636_PWR_MODE_OFFSET] & SFF8636_LOW_PWR_SET)); printf("\t%-41s : ", "Power override"); printf("%s\n", ONOFF(map->lower_memory[SFF8636_PWR_MODE_OFFSET] & SFF8636_PWR_OVERRIDE)); } static void sff8636_show_connector(const struct sff8636_memory_map *map) { sff8024_show_connector(map->page_00h, SFF8636_CTOR_OFFSET); } static void sff8636_show_transceiver(const struct sff8636_memory_map *map) { static const char *pfx = "\tTransceiver type :"; printf("\t%-41s : 0x%02x 0x%02x 0x%02x " \ "0x%02x 0x%02x 0x%02x 0x%02x 0x%02x\n", "Transceiver codes", map->page_00h[SFF8636_ETHERNET_COMP_OFFSET], map->page_00h[SFF8636_SONET_COMP_OFFSET], map->page_00h[SFF8636_SAS_COMP_OFFSET], map->page_00h[SFF8636_GIGE_COMP_OFFSET], map->page_00h[SFF8636_FC_LEN_OFFSET], map->page_00h[SFF8636_FC_TECH_OFFSET], map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET], map->page_00h[SFF8636_FC_SPEED_OFFSET]); /* 10G/40G Ethernet Compliance Codes */ if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] & SFF8636_ETHERNET_10G_LRM) printf("%s 10G Ethernet: 10G Base-LRM\n", pfx); if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] & SFF8636_ETHERNET_10G_LR) printf("%s 10G Ethernet: 10G Base-LR\n", pfx); if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] & SFF8636_ETHERNET_10G_SR) printf("%s 10G Ethernet: 10G Base-SR\n", pfx); if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] & SFF8636_ETHERNET_40G_CR4) printf("%s 40G Ethernet: 40G Base-CR4\n", pfx); if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] & SFF8636_ETHERNET_40G_SR4) printf("%s 40G Ethernet: 40G Base-SR4\n", pfx); if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] & SFF8636_ETHERNET_40G_LR4) printf("%s 40G Ethernet: 40G Base-LR4\n", pfx); if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] & SFF8636_ETHERNET_40G_ACTIVE) printf("%s 40G Ethernet: 40G Active Cable (XLPPI)\n", pfx); /* Extended Specification Compliance Codes from SFF-8024 */ if (map->page_00h[SFF8636_ETHERNET_COMP_OFFSET] & SFF8636_ETHERNET_RSRVD) { switch (map->page_00h[SFF8636_OPTION_1_OFFSET]) { case SFF8636_ETHERNET_UNSPECIFIED: printf("%s (reserved or unknown)\n", pfx); break; case SFF8636_ETHERNET_100G_AOC: printf("%s 100G Ethernet: 100G AOC or 25GAUI C2M AOC with worst BER of 5x10^(-5)\n", pfx); break; case SFF8636_ETHERNET_100G_SR4: printf("%s 100G Ethernet: 100G Base-SR4 or 25GBase-SR\n", pfx); break; case SFF8636_ETHERNET_100G_LR4: printf("%s 100G Ethernet: 100G Base-LR4\n", pfx); break; case SFF8636_ETHERNET_100G_ER4: printf("%s 100G Ethernet: 100G Base-ER4\n", pfx); break; case SFF8636_ETHERNET_100G_SR10: printf("%s 100G Ethernet: 100G Base-SR10\n", pfx); break; case SFF8636_ETHERNET_100G_CWDM4_FEC: printf("%s 100G Ethernet: 100G CWDM4 MSA with FEC\n", pfx); break; case SFF8636_ETHERNET_100G_PSM4: printf("%s 100G Ethernet: 100G PSM4 Parallel SMF\n", pfx); break; case SFF8636_ETHERNET_100G_ACC: printf("%s 100G Ethernet: 100G ACC or 25GAUI C2M ACC with worst BER of 5x10^(-5)\n", pfx); break; case SFF8636_ETHERNET_100G_CWDM4_NO_FEC: printf("%s 100G Ethernet: 100G CWDM4 MSA without FEC\n", pfx); break; case SFF8636_ETHERNET_100G_RSVD1: printf("%s (reserved or unknown)\n", pfx); break; case SFF8636_ETHERNET_100G_CR4: printf("%s 100G Ethernet: 100G Base-CR4 or 25G Base-CR CA-L\n", pfx); break; case SFF8636_ETHERNET_25G_CR_CA_S: printf("%s 25G Ethernet: 25G Base-CR CA-S\n", pfx); break; case SFF8636_ETHERNET_25G_CR_CA_N: printf("%s 25G Ethernet: 25G Base-CR CA-N\n", pfx); break; case SFF8636_ETHERNET_40G_ER4: printf("%s 40G Ethernet: 40G Base-ER4\n", pfx); break; case SFF8636_ETHERNET_4X10_SR: printf("%s 4x10G Ethernet: 10G Base-SR\n", pfx); break; case SFF8636_ETHERNET_40G_PSM4: printf("%s 40G Ethernet: 40G PSM4 Parallel SMF\n", pfx); break; case SFF8636_ETHERNET_G959_P1I1_2D1: printf("%s Ethernet: G959.1 profile P1I1-2D1 (10709 MBd, 2km, 1310nm SM)\n", pfx); break; case SFF8636_ETHERNET_G959_P1S1_2D2: printf("%s Ethernet: G959.1 profile P1S1-2D2 (10709 MBd, 40km, 1550nm SM)\n", pfx); break; case SFF8636_ETHERNET_G959_P1L1_2D2: printf("%s Ethernet: G959.1 profile P1L1-2D2 (10709 MBd, 80km, 1550nm SM)\n", pfx); break; case SFF8636_ETHERNET_10GT_SFI: printf("%s 10G Ethernet: 10G Base-T with SFI electrical interface\n", pfx); break; case SFF8636_ETHERNET_100G_CLR4: printf("%s 100G Ethernet: 100G CLR4\n", pfx); break; case SFF8636_ETHERNET_100G_AOC2: printf("%s 100G Ethernet: 100G AOC or 25GAUI C2M AOC with worst BER of 10^(-12)\n", pfx); break; case SFF8636_ETHERNET_100G_ACC2: printf("%s 100G Ethernet: 100G ACC or 25GAUI C2M ACC with worst BER of 10^(-12)\n", pfx); break; case SFF8636_ETHERNET_100GE_DWDM2: printf("%s 100GE-DWDM2 (DWDM transceiver using 2 wavelengths on a 1550 nm DWDM grid with a reach up to 80 km)\n", pfx); break; case SFF8636_ETHERNET_100G_1550NM_WDM: printf("%s 100G 1550nm WDM (4 wavelengths)\n", pfx); break; case SFF8636_ETHERNET_10G_BASET_SR: printf("%s 10GBASE-T Short Reach (30 meters)\n", pfx); break; case SFF8636_ETHERNET_5G_BASET: printf("%s 5GBASE-T\n", pfx); break; case SFF8636_ETHERNET_2HALFG_BASET: printf("%s 2.5GBASE-T\n", pfx); break; case SFF8636_ETHERNET_40G_SWDM4: printf("%s 40G SWDM4\n", pfx); break; case SFF8636_ETHERNET_100G_SWDM4: printf("%s 100G SWDM4\n", pfx); break; case SFF8636_ETHERNET_100G_PAM4_BIDI: printf("%s 100G PAM4 BiDi\n", pfx); break; case SFF8636_ETHERNET_4WDM10_MSA: printf("%s 4WDM-10 MSA (10km version of 100G CWDM4 with same RS(528,514) FEC in host system)\n", pfx); break; case SFF8636_ETHERNET_4WDM20_MSA: printf("%s 4WDM-20 MSA (20km version of 100GBASE-LR4 with RS(528,514) FEC in host system)\n", pfx); break; case SFF8636_ETHERNET_4WDM40_MSA: printf("%s 4WDM-40 MSA (40km reach with APD receiver and RS(528,514) FEC in host system)\n", pfx); break; case SFF8636_ETHERNET_100G_DR: printf("%s 100GBASE-DR (clause 140), CAUI-4 (no FEC)\n", pfx); break; case SFF8636_ETHERNET_100G_FR_NOFEC: printf("%s 100G-FR or 100GBASE-FR1 (clause 140), CAUI-4 (no FEC)\n", pfx); break; case SFF8636_ETHERNET_100G_LR_NOFEC: printf("%s 100G-LR or 100GBASE-LR1 (clause 140), CAUI-4 (no FEC)\n", pfx); break; case SFF8636_ETHERNET_200G_ACC1: printf("%s Active Copper Cable with 50GAUI, 100GAUI-2 or 200GAUI-4 C2M. Providing a worst BER of 10-6 or below\n", pfx); break; case SFF8636_ETHERNET_200G_AOC1: printf("%s Active Optical Cable with 50GAUI, 100GAUI-2 or 200GAUI-4 C2M. Providing a worst BER of 10-6 or below\n", pfx); break; case SFF8636_ETHERNET_200G_ACC2: printf("%s Active Copper Cable with 50GAUI, 100GAUI-2 or 200GAUI-4 C2M. Providing a worst BER of 2.6x10-4 for ACC, 10-5 for AUI, or below\n", pfx); break; case SFF8636_ETHERNET_200G_A0C2: printf("%s Active Optical Cable with 50GAUI, 100GAUI-2 or 200GAUI-4 C2M. Providing a worst BER of 2.6x10-4 for ACC, 10-5 for AUI, or below\n", pfx); break; case SFF8636_ETHERNET_200G_CR4: printf("%s 50GBASE-CR, 100GBASE-CR2, or 200GBASE-CR4\n", pfx); break; case SFF8636_ETHERNET_200G_SR4: printf("%s 50GBASE-SR, 100GBASE-SR2, or 200GBASE-SR4\n", pfx); break; case SFF8636_ETHERNET_200G_DR4: printf("%s 50GBASE-FR or 200GBASE-DR4\n", pfx); break; case SFF8636_ETHERNET_200G_FR4: printf("%s 200GBASE-FR4\n", pfx); break; case SFF8636_ETHERNET_200G_PSM4: printf("%s 200G 1550 nm PSM4\n", pfx); break; case SFF8636_ETHERNET_50G_LR: printf("%s 50GBASE-LR\n", pfx); break; case SFF8636_ETHERNET_200G_LR4: printf("%s 200GBASE-LR4\n", pfx); break; case SFF8636_ETHERNET_64G_EA: printf("%s 64GFC EA\n", pfx); break; case SFF8636_ETHERNET_64G_SW: printf("%s 64GFC SW\n", pfx); break; case SFF8636_ETHERNET_64G_LW: printf("%s 64GFC LW\n", pfx); break; case SFF8636_ETHERNET_128FC_EA: printf("%s 128GFC EA\n", pfx); break; case SFF8636_ETHERNET_128FC_SW: printf("%s 128GFC SW\n", pfx); break; case SFF8636_ETHERNET_128FC_LW: printf("%s 128GFC LW\n", pfx); break; default: printf("%s (reserved or unknown)\n", pfx); break; } } /* SONET Compliance Codes */ if (map->page_00h[SFF8636_SONET_COMP_OFFSET] & (SFF8636_SONET_40G_OTN)) printf("%s 40G OTN (OTU3B/OTU3C)\n", pfx); if (map->page_00h[SFF8636_SONET_COMP_OFFSET] & (SFF8636_SONET_OC48_LR)) printf("%s SONET: OC-48, long reach\n", pfx); if (map->page_00h[SFF8636_SONET_COMP_OFFSET] & (SFF8636_SONET_OC48_IR)) printf("%s SONET: OC-48, intermediate reach\n", pfx); if (map->page_00h[SFF8636_SONET_COMP_OFFSET] & (SFF8636_SONET_OC48_SR)) printf("%s SONET: OC-48, short reach\n", pfx); /* SAS/SATA Compliance Codes */ if (map->page_00h[SFF8636_SAS_COMP_OFFSET] & (SFF8636_SAS_6G)) printf("%s SAS 6.0G\n", pfx); if (map->page_00h[SFF8636_SAS_COMP_OFFSET] & (SFF8636_SAS_3G)) printf("%s SAS 3.0G\n", pfx); /* Ethernet Compliance Codes */ if (map->page_00h[SFF8636_GIGE_COMP_OFFSET] & SFF8636_GIGE_1000_BASE_T) printf("%s Ethernet: 1000BASE-T\n", pfx); if (map->page_00h[SFF8636_GIGE_COMP_OFFSET] & SFF8636_GIGE_1000_BASE_CX) printf("%s Ethernet: 1000BASE-CX\n", pfx); if (map->page_00h[SFF8636_GIGE_COMP_OFFSET] & SFF8636_GIGE_1000_BASE_LX) printf("%s Ethernet: 1000BASE-LX\n", pfx); if (map->page_00h[SFF8636_GIGE_COMP_OFFSET] & SFF8636_GIGE_1000_BASE_SX) printf("%s Ethernet: 1000BASE-SX\n", pfx); /* Fibre Channel link length */ if (map->page_00h[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_LEN_VERY_LONG) printf("%s FC: very long distance (V)\n", pfx); if (map->page_00h[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_LEN_SHORT) printf("%s FC: short distance (S)\n", pfx); if (map->page_00h[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_LEN_INT) printf("%s FC: intermediate distance (I)\n", pfx); if (map->page_00h[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_LEN_LONG) printf("%s FC: long distance (L)\n", pfx); if (map->page_00h[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_LEN_MED) printf("%s FC: medium distance (M)\n", pfx); /* Fibre Channel transmitter technology */ if (map->page_00h[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_TECH_LONG_LC) printf("%s FC: Longwave laser (LC)\n", pfx); if (map->page_00h[SFF8636_FC_LEN_OFFSET] & SFF8636_FC_TECH_ELEC_INTER) printf("%s FC: Electrical inter-enclosure (EL)\n", pfx); if (map->page_00h[SFF8636_FC_TECH_OFFSET] & SFF8636_FC_TECH_ELEC_INTRA) printf("%s FC: Electrical intra-enclosure (EL)\n", pfx); if (map->page_00h[SFF8636_FC_TECH_OFFSET] & SFF8636_FC_TECH_SHORT_WO_OFC) printf("%s FC: Shortwave laser w/o OFC (SN)\n", pfx); if (map->page_00h[SFF8636_FC_TECH_OFFSET] & SFF8636_FC_TECH_SHORT_W_OFC) printf("%s FC: Shortwave laser with OFC (SL)\n", pfx); if (map->page_00h[SFF8636_FC_TECH_OFFSET] & SFF8636_FC_TECH_LONG_LL) printf("%s FC: Longwave laser (LL)\n", pfx); /* Fibre Channel transmission media */ if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] & SFF8636_FC_TRANS_MEDIA_TW) printf("%s FC: Twin Axial Pair (TW)\n", pfx); if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] & SFF8636_FC_TRANS_MEDIA_TP) printf("%s FC: Twisted Pair (TP)\n", pfx); if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] & SFF8636_FC_TRANS_MEDIA_MI) printf("%s FC: Miniature Coax (MI)\n", pfx); if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] & SFF8636_FC_TRANS_MEDIA_TV) printf("%s FC: Video Coax (TV)\n", pfx); if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] & SFF8636_FC_TRANS_MEDIA_M6) printf("%s FC: Multimode, 62.5m (M6)\n", pfx); if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] & SFF8636_FC_TRANS_MEDIA_M5) printf("%s FC: Multimode, 50m (M5)\n", pfx); if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] & SFF8636_FC_TRANS_MEDIA_OM3) printf("%s FC: Multimode, 50um (OM3)\n", pfx); if (map->page_00h[SFF8636_FC_TRANS_MEDIA_OFFSET] & SFF8636_FC_TRANS_MEDIA_SM) printf("%s FC: Single Mode (SM)\n", pfx); /* Fibre Channel speed */ if (map->page_00h[SFF8636_FC_SPEED_OFFSET] & SFF8636_FC_SPEED_1200_MBPS) printf("%s FC: 1200 MBytes/sec\n", pfx); if (map->page_00h[SFF8636_FC_SPEED_OFFSET] & SFF8636_FC_SPEED_800_MBPS) printf("%s FC: 800 MBytes/sec\n", pfx); if (map->page_00h[SFF8636_FC_SPEED_OFFSET] & SFF8636_FC_SPEED_1600_MBPS) printf("%s FC: 1600 MBytes/sec\n", pfx); if (map->page_00h[SFF8636_FC_SPEED_OFFSET] & SFF8636_FC_SPEED_400_MBPS) printf("%s FC: 400 MBytes/sec\n", pfx); if (map->page_00h[SFF8636_FC_SPEED_OFFSET] & SFF8636_FC_SPEED_200_MBPS) printf("%s FC: 200 MBytes/sec\n", pfx); if (map->page_00h[SFF8636_FC_SPEED_OFFSET] & SFF8636_FC_SPEED_100_MBPS) printf("%s FC: 100 MBytes/sec\n", pfx); } static void sff8636_show_encoding(const struct sff8636_memory_map *map) { sff8024_show_encoding(map->page_00h, SFF8636_ENCODING_OFFSET, ETH_MODULE_SFF_8636); } static void sff8636_show_rate_identifier(const struct sff8636_memory_map *map) { /* TODO: Need to fix rate select logic */ printf("\t%-41s : 0x%02x\n", "Rate identifier", map->page_00h[SFF8636_EXT_RS_OFFSET]); } static void sff8636_show_wavelength_or_copper_compliance(const struct sff8636_memory_map *map) { printf("\t%-41s : 0x%02x", "Transmitter technology", map->page_00h[SFF8636_DEVICE_TECH_OFFSET] & SFF8636_TRANS_TECH_MASK); switch (map->page_00h[SFF8636_DEVICE_TECH_OFFSET] & SFF8636_TRANS_TECH_MASK) { case SFF8636_TRANS_850_VCSEL: printf(" (850 nm VCSEL)\n"); break; case SFF8636_TRANS_1310_VCSEL: printf(" (1310 nm VCSEL)\n"); break; case SFF8636_TRANS_1550_VCSEL: printf(" (1550 nm VCSEL)\n"); break; case SFF8636_TRANS_1310_FP: printf(" (1310 nm FP)\n"); break; case SFF8636_TRANS_1310_DFB: printf(" (1310 nm DFB)\n"); break; case SFF8636_TRANS_1550_DFB: printf(" (1550 nm DFB)\n"); break; case SFF8636_TRANS_1310_EML: printf(" (1310 nm EML)\n"); break; case SFF8636_TRANS_1550_EML: printf(" (1550 nm EML)\n"); break; case SFF8636_TRANS_OTHERS: printf(" (Others/Undefined)\n"); break; case SFF8636_TRANS_1490_DFB: printf(" (1490 nm DFB)\n"); break; case SFF8636_TRANS_COPPER_PAS_UNEQUAL: printf(" (Copper cable unequalized)\n"); break; case SFF8636_TRANS_COPPER_PAS_EQUAL: printf(" (Copper cable passive equalized)\n"); break; case SFF8636_TRANS_COPPER_LNR_FAR_EQUAL: printf(" (Copper cable, near and far end limiting active equalizers)\n"); break; case SFF8636_TRANS_COPPER_FAR_EQUAL: printf(" (Copper cable, far end limiting active equalizers)\n"); break; case SFF8636_TRANS_COPPER_NEAR_EQUAL: printf(" (Copper cable, near end limiting active equalizers)\n"); break; case SFF8636_TRANS_COPPER_LNR_EQUAL: printf(" (Copper cable, linear active equalizers)\n"); break; } if ((map->page_00h[SFF8636_DEVICE_TECH_OFFSET] & SFF8636_TRANS_TECH_MASK) >= SFF8636_TRANS_COPPER_PAS_UNEQUAL) { printf("\t%-41s : %udb\n", "Attenuation at 2.5GHz", map->page_00h[SFF8636_WAVELEN_HIGH_BYTE_OFFSET]); printf("\t%-41s : %udb\n", "Attenuation at 5.0GHz", map->page_00h[SFF8636_WAVELEN_LOW_BYTE_OFFSET]); printf("\t%-41s : %udb\n", "Attenuation at 7.0GHz", map->page_00h[SFF8636_WAVE_TOL_HIGH_BYTE_OFFSET]); printf("\t%-41s : %udb\n", "Attenuation at 12.9GHz", map->page_00h[SFF8636_WAVE_TOL_LOW_BYTE_OFFSET]); } else { printf("\t%-41s : %.3lfnm\n", "Laser wavelength", (((map->page_00h[SFF8636_WAVELEN_HIGH_BYTE_OFFSET] << 8) | map->page_00h[SFF8636_WAVELEN_LOW_BYTE_OFFSET]) * 0.05)); printf("\t%-41s : %.3lfnm\n", "Laser wavelength tolerance", (((map->page_00h[SFF8636_WAVE_TOL_HIGH_BYTE_OFFSET] << 8) | map->page_00h[SFF8636_WAVE_TOL_LOW_BYTE_OFFSET]) * 0.005)); } } /* * 2-byte internal temperature conversions: * First byte is a signed 8-bit integer, which is the temp decimal part * Second byte are 1/256th of degree, which are added to the dec part. */ #define SFF8636_OFFSET_TO_TEMP(offset) ((__s16)OFFSET_TO_U16(offset)) static void sff8636_dom_parse(const struct sff8636_memory_map *map, struct sff_diags *sd) { const __u8 *id = map->lower_memory; int i = 0; /* Monitoring Thresholds for Alarms and Warnings */ sd->sfp_voltage[MCURR] = OFFSET_TO_U16_PTR(id, SFF8636_VCC_CURR); sd->sfp_temp[MCURR] = SFF8636_OFFSET_TO_TEMP(SFF8636_TEMP_CURR); if (!map->page_03h) goto out; sd->sfp_voltage[HALRM] = OFFSET_TO_U16_PTR(map->page_03h, SFF8636_VCC_HALRM); sd->sfp_voltage[LALRM] = OFFSET_TO_U16_PTR(map->page_03h, SFF8636_VCC_LALRM); sd->sfp_voltage[HWARN] = OFFSET_TO_U16_PTR(map->page_03h, SFF8636_VCC_HWARN); sd->sfp_voltage[LWARN] = OFFSET_TO_U16_PTR(map->page_03h, SFF8636_VCC_LWARN); sd->sfp_temp[HALRM] = (__s16)OFFSET_TO_U16_PTR(map->page_03h, SFF8636_TEMP_HALRM); sd->sfp_temp[LALRM] = (__s16)OFFSET_TO_U16_PTR(map->page_03h, SFF8636_TEMP_LALRM); sd->sfp_temp[HWARN] = (__s16)OFFSET_TO_U16_PTR(map->page_03h, SFF8636_TEMP_HWARN); sd->sfp_temp[LWARN] = (__s16)OFFSET_TO_U16_PTR(map->page_03h, SFF8636_TEMP_LWARN); sd->bias_cur[HALRM] = OFFSET_TO_U16_PTR(map->page_03h, SFF8636_TX_BIAS_HALRM); sd->bias_cur[LALRM] = OFFSET_TO_U16_PTR(map->page_03h, SFF8636_TX_BIAS_LALRM); sd->bias_cur[HWARN] = OFFSET_TO_U16_PTR(map->page_03h, SFF8636_TX_BIAS_HWARN); sd->bias_cur[LWARN] = OFFSET_TO_U16_PTR(map->page_03h, SFF8636_TX_BIAS_LWARN); sd->tx_power[HALRM] = OFFSET_TO_U16_PTR(map->page_03h, SFF8636_TX_PWR_HALRM); sd->tx_power[LALRM] = OFFSET_TO_U16_PTR(map->page_03h, SFF8636_TX_PWR_LALRM); sd->tx_power[HWARN] = OFFSET_TO_U16_PTR(map->page_03h, SFF8636_TX_PWR_HWARN); sd->tx_power[LWARN] = OFFSET_TO_U16_PTR(map->page_03h, SFF8636_TX_PWR_LWARN); sd->rx_power[HALRM] = OFFSET_TO_U16_PTR(map->page_03h, SFF8636_RX_PWR_HALRM); sd->rx_power[LALRM] = OFFSET_TO_U16_PTR(map->page_03h, SFF8636_RX_PWR_LALRM); sd->rx_power[HWARN] = OFFSET_TO_U16_PTR(map->page_03h, SFF8636_RX_PWR_HWARN); sd->rx_power[LWARN] = OFFSET_TO_U16_PTR(map->page_03h, SFF8636_RX_PWR_LWARN); out: /* Channel Specific Data */ for (i = 0; i < SFF8636_MAX_CHANNEL_NUM; i++) { u8 rx_power_offset, tx_bias_offset; u8 tx_power_offset; switch (i) { case 0: rx_power_offset = SFF8636_RX_PWR_1_OFFSET; tx_power_offset = SFF8636_TX_PWR_1_OFFSET; tx_bias_offset = SFF8636_TX_BIAS_1_OFFSET; break; case 1: rx_power_offset = SFF8636_RX_PWR_2_OFFSET; tx_power_offset = SFF8636_TX_PWR_2_OFFSET; tx_bias_offset = SFF8636_TX_BIAS_2_OFFSET; break; case 2: rx_power_offset = SFF8636_RX_PWR_3_OFFSET; tx_power_offset = SFF8636_TX_PWR_3_OFFSET; tx_bias_offset = SFF8636_TX_BIAS_3_OFFSET; break; case 3: rx_power_offset = SFF8636_RX_PWR_4_OFFSET; tx_power_offset = SFF8636_TX_PWR_4_OFFSET; tx_bias_offset = SFF8636_TX_BIAS_4_OFFSET; break; } sd->scd[i].bias_cur = OFFSET_TO_U16(tx_bias_offset); sd->scd[i].rx_power = OFFSET_TO_U16(rx_power_offset); sd->scd[i].tx_power = OFFSET_TO_U16(tx_power_offset); } } static void sff8636_show_dom(const struct sff8636_memory_map *map) { struct sff_diags sd = {0}; char *rx_power_string = NULL; char power_string[MAX_DESC_SIZE]; int i; /* * There is no clear identifier to signify the existence of * optical diagnostics similar to SFF-8472. So checking existence * of page 3, will provide the gurantee for existence of alarms * and thresholds * If pagging support exists, then supports_alarms is marked as 1 */ if (map->page_03h) sd.supports_alarms = 1; sd.rx_power_type = map->page_00h[SFF8636_DIAG_TYPE_OFFSET] & SFF8636_RX_PWR_TYPE_MASK; sd.tx_power_type = map->page_00h[SFF8636_DIAG_TYPE_OFFSET] & SFF8636_RX_PWR_TYPE_MASK; sff8636_dom_parse(map, &sd); PRINT_TEMP("Module temperature", sd.sfp_temp[MCURR]); PRINT_VCC("Module voltage", sd.sfp_voltage[MCURR]); /* * SFF-8636/8436 spec is not clear whether RX power/ TX bias * current fields are supported or not. A valid temperature * reading is used as existence for TX/RX power. */ if ((sd.sfp_temp[MCURR] == 0x0) || (sd.sfp_temp[MCURR] == (__s16)0xFFFF)) return; printf("\t%-41s : %s\n", "Alarm/warning flags implemented", (sd.supports_alarms ? "Yes" : "No")); for (i = 0; i < SFF8636_MAX_CHANNEL_NUM; i++) { snprintf(power_string, MAX_DESC_SIZE, "%s (Channel %d)", "Laser tx bias current", i+1); PRINT_BIAS(power_string, sd.scd[i].bias_cur); } for (i = 0; i < SFF8636_MAX_CHANNEL_NUM; i++) { snprintf(power_string, MAX_DESC_SIZE, "%s (Channel %d)", "Transmit avg optical power", i+1); PRINT_xX_PWR(power_string, sd.scd[i].tx_power); } if (!sd.rx_power_type) rx_power_string = "Receiver signal OMA"; else rx_power_string = "Rcvr signal avg optical power"; for (i = 0; i < SFF8636_MAX_CHANNEL_NUM; i++) { snprintf(power_string, MAX_DESC_SIZE, "%s(Channel %d)", rx_power_string, i+1); PRINT_xX_PWR(power_string, sd.scd[i].rx_power); } if (sd.supports_alarms) { for (i = 0; sff8636_aw_flags[i].str; ++i) { printf("\t%-41s : %s\n", sff8636_aw_flags[i].str, map->lower_memory[sff8636_aw_flags[i].offset] & sff8636_aw_flags[i].value ? "On" : "Off"); } sff_show_thresholds(sd); } } static void sff8636_show_signals(const struct sff8636_memory_map *map) { unsigned int v; /* There appears to be no Rx LOS support bit, use Tx for both */ if (map->page_00h[SFF8636_OPTION_4_OFFSET] & SFF8636_O4_TX_LOS) { v = map->lower_memory[SFF8636_LOS_AW_OFFSET] & 0xf; sff_show_lane_status("Rx loss of signal", 4, "Yes", "No", v); v = map->lower_memory[SFF8636_LOS_AW_OFFSET] >> 4; sff_show_lane_status("Tx loss of signal", 4, "Yes", "No", v); } v = map->lower_memory[SFF8636_LOL_AW_OFFSET] & 0xf; if (map->page_00h[SFF8636_OPTION_3_OFFSET] & SFF8636_O3_RX_LOL) sff_show_lane_status("Rx loss of lock", 4, "Yes", "No", v); v = map->lower_memory[SFF8636_LOL_AW_OFFSET] >> 4; if (map->page_00h[SFF8636_OPTION_3_OFFSET] & SFF8636_O3_TX_LOL) sff_show_lane_status("Tx loss of lock", 4, "Yes", "No", v); v = map->lower_memory[SFF8636_FAULT_AW_OFFSET] & 0xf; if (map->page_00h[SFF8636_OPTION_4_OFFSET] & SFF8636_O4_TX_FAULT) sff_show_lane_status("Tx fault", 4, "Yes", "No", v); v = map->lower_memory[SFF8636_FAULT_AW_OFFSET] >> 4; if (map->page_00h[SFF8636_OPTION_2_OFFSET] & SFF8636_O2_TX_EQ_AUTO) sff_show_lane_status("Tx adaptive eq fault", 4, "Yes", "No", v); } static void sff8636_show_page_zero(const struct sff8636_memory_map *map) { sff8636_show_ext_identifier(map); sff8636_show_connector(map); sff8636_show_transceiver(map); sff8636_show_encoding(map); sff_show_value_with_unit(map->page_00h, SFF8636_BR_NOMINAL_OFFSET, "BR, Nominal", 100, "Mbps"); sff8636_show_rate_identifier(map); sff_show_value_with_unit(map->page_00h, SFF8636_SM_LEN_OFFSET, "Length (SMF,km)", 1, "km"); sff_show_value_with_unit(map->page_00h, SFF8636_OM3_LEN_OFFSET, "Length (OM3 50um)", 2, "m"); sff_show_value_with_unit(map->page_00h, SFF8636_OM2_LEN_OFFSET, "Length (OM2 50um)", 1, "m"); sff_show_value_with_unit(map->page_00h, SFF8636_OM1_LEN_OFFSET, "Length (OM1 62.5um)", 1, "m"); sff_show_value_with_unit(map->page_00h, SFF8636_CBL_LEN_OFFSET, "Length (Copper or Active cable)", 1, "m"); sff8636_show_wavelength_or_copper_compliance(map); sff_show_ascii(map->page_00h, SFF8636_VENDOR_NAME_START_OFFSET, SFF8636_VENDOR_NAME_END_OFFSET, "Vendor name"); sff8024_show_oui(map->page_00h, SFF8636_VENDOR_OUI_OFFSET); sff_show_ascii(map->page_00h, SFF8636_VENDOR_PN_START_OFFSET, SFF8636_VENDOR_PN_END_OFFSET, "Vendor PN"); sff_show_ascii(map->page_00h, SFF8636_VENDOR_REV_START_OFFSET, SFF8636_VENDOR_REV_END_OFFSET, "Vendor rev"); sff_show_ascii(map->page_00h, SFF8636_VENDOR_SN_START_OFFSET, SFF8636_VENDOR_SN_END_OFFSET, "Vendor SN"); sff_show_ascii(map->page_00h, SFF8636_DATE_YEAR_OFFSET, SFF8636_DATE_VENDOR_LOT_OFFSET + 1, "Date code"); sff_show_revision_compliance(map->lower_memory, SFF8636_REV_COMPLIANCE_OFFSET); sff8636_show_signals(map); } static void sff8636_show_all_common(const struct sff8636_memory_map *map) { sff8636_show_identifier(map); switch (map->lower_memory[SFF8636_ID_OFFSET]) { case SFF8024_ID_QSFP: case SFF8024_ID_QSFP_PLUS: case SFF8024_ID_QSFP28: sff8636_show_page_zero(map); sff8636_show_dom(map); break; } } static void sff8636_memory_map_init_buf(struct sff8636_memory_map *map, const __u8 *id, __u32 eeprom_len) { /* Lower Memory and Page 00h are always present. * * Offset into Upper Memory is between page size and twice the page * size. Therefore, set the base address of each page to base address * plus page size multiplied by the page number. */ map->lower_memory = id; map->page_00h = id; /* Page 03h is only present when the module memory model is paged and * not flat and when we got a big enough buffer from the kernel. */ if (map->lower_memory[SFF8636_STATUS_2_OFFSET] & SFF8636_STATUS_PAGE_3_PRESENT || eeprom_len != ETH_MODULE_SFF_8636_MAX_LEN) return; map->page_03h = id + 3 * SFF8636_PAGE_SIZE; } void sff8636_show_all_ioctl(const __u8 *id, __u32 eeprom_len) { struct sff8636_memory_map map = {}; switch (id[SFF8636_ID_OFFSET]) { case SFF8024_ID_QSFP_DD: case SFF8024_ID_OSFP: case SFF8024_ID_DSFP: case SFF8024_ID_QSFP_PLUS_CMIS: case SFF8024_ID_SFP_DD_CMIS: case SFF8024_ID_SFP_PLUS_CMIS: cmis_show_all_ioctl(id); break; default: sff8636_memory_map_init_buf(&map, id, eeprom_len); sff8636_show_all_common(&map); break; } } static void sff8636_request_init(struct ethtool_module_eeprom *request, u8 page, u32 offset) { request->offset = offset; request->length = SFF8636_PAGE_SIZE; request->page = page; request->bank = 0; request->i2c_address = SFF8636_I2C_ADDRESS; request->data = NULL; } static int sff8636_memory_map_init_pages(struct cmd_context *ctx, struct sff8636_memory_map *map) { struct ethtool_module_eeprom request; int ret; /* Lower Memory and Page 00h are always present. * * Offset into Upper Memory is between page size and twice the page * size. Therefore, set the base address of each page to its base * address minus page size. */ sff8636_request_init(&request, 0x0, 0); ret = nl_get_eeprom_page(ctx, &request); if (ret < 0) return ret; map->lower_memory = request.data; sff8636_request_init(&request, 0x0, SFF8636_PAGE_SIZE); ret = nl_get_eeprom_page(ctx, &request); if (ret < 0) return ret; map->page_00h = request.data - SFF8636_PAGE_SIZE; /* Page 03h is only present when the module memory model is paged and * not flat. */ if (map->lower_memory[SFF8636_STATUS_2_OFFSET] & SFF8636_STATUS_PAGE_3_PRESENT) return 0; sff8636_request_init(&request, 0x3, SFF8636_PAGE_SIZE); ret = nl_get_eeprom_page(ctx, &request); if (ret < 0) return ret; map->page_03h = request.data - SFF8636_PAGE_SIZE; return 0; } int sff8636_show_all_nl(struct cmd_context *ctx) { struct sff8636_memory_map map = {}; int ret; ret = sff8636_memory_map_init_pages(ctx, &map); if (ret < 0) return ret; sff8636_show_all_common(&map); return 0; }