summaryrefslogtreecommitdiffstats
path: root/js/public/Value.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 01:47:29 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 01:47:29 +0000
commit0ebf5bdf043a27fd3dfb7f92e0cb63d88954c44d (patch)
treea31f07c9bcca9d56ce61e9a1ffd30ef350d513aa /js/public/Value.h
parentInitial commit. (diff)
downloadfirefox-esr-0ebf5bdf043a27fd3dfb7f92e0cb63d88954c44d.tar.xz
firefox-esr-0ebf5bdf043a27fd3dfb7f92e0cb63d88954c44d.zip
Adding upstream version 115.8.0esr.upstream/115.8.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'js/public/Value.h')
-rw-r--r--js/public/Value.h1528
1 files changed, 1528 insertions, 0 deletions
diff --git a/js/public/Value.h b/js/public/Value.h
new file mode 100644
index 0000000000..de8db0fed8
--- /dev/null
+++ b/js/public/Value.h
@@ -0,0 +1,1528 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
+ * vim: set ts=8 sts=2 et sw=2 tw=80:
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+/* JS::Value implementation. */
+
+#ifndef js_Value_h
+#define js_Value_h
+
+#include "mozilla/Attributes.h"
+#include "mozilla/Casting.h"
+#include "mozilla/FloatingPoint.h"
+#include "mozilla/Likely.h"
+#include "mozilla/Maybe.h"
+
+#include <limits> /* for std::numeric_limits */
+#include <type_traits>
+
+#include "jstypes.h"
+
+#include "js/HeapAPI.h"
+#include "js/RootingAPI.h"
+#include "js/TypeDecls.h"
+
+namespace JS {
+class JS_PUBLIC_API Value;
+}
+
+// [SMDOC] JS::Value Boxing Formats
+//
+// JS::Value is a 64-bit value, on all architectures. It is conceptually a
+// discriminated union of all the types of values that can be represented in SM:
+// - Object Pointers
+// - 64 bit IEEE 754 floats
+// - 32-bit integer values
+// - and quite a few more (see JSValueType)
+//
+// The ECMAScript standard specifies that ECMAScript numbers are IEEE 64-bit
+// floating-point values. A JS::Value can represent any JavaScript number
+// value directly, without referring to additional storage, or represent an
+// object, string, or other ECMAScript value, and remember which type it is.
+//
+// This may seem surprising: how can a 64-bit type hold all the 64-bit IEEE
+// values, and still distinguish them from objects, strings, and so on,
+// which have 64-bit addresses ?
+//
+// This is possible for two reasons:
+//
+// - First, ECMAScript implementations aren't required to distinguish all
+// the values the IEEE 64-bit format can represent.
+//
+// The IEEE 754 format for floating point numbers specifies that every
+// floating-point value whose 11-bit exponent field is all ones, and whose
+// 52-bit fraction field is non-zero, has the value NaN. EMCAScript requires
+// only one NaN value. This means we can use one IEEE NaN to represent
+// ECMAScript's NaN, and use all the other 2^52-2 NaN bitstrings to
+// represent the other ECMAScript values.
+//
+// - Second, on the 64 bit architectures we suppport, only the
+// lower 48 bits of an address are currently significant. The upper sixteen
+// bits are required to be the sign-extension of bit 48. Furthermore, user
+// code always runs in "positive addresses": those in which bit 48 is zero. So
+// we only actually need 47 bits to store all possible object or string
+// addresses, even on 64-bit platforms.
+//
+// Our memory initialization system ensures that all pointers we will store in
+// objects use only 47 bits. See js::gc::MapAlignedPagesRandom.
+//
+// The introduction of 5-level page tables, supporting 57-bit virtual
+// addresses, is a potential complication. For now, large addresses are
+// opt-in, and we simply don't use them.
+//
+// With a 52-bit fraction field, and 47 bits needed for the 'payload', we
+// have up to five bits left to store a 'tag' value, to indicate which
+// branch of our discriminated union is live. (In practice, one of those
+// bits is used up to simplify NaN representation; see micro-optimization 5
+// below.)
+//
+// Thus, we define JS::Value representations in terms of the IEEE 64-bit
+// floating-point format:
+//
+// - Any bitstring that IEEE calls a number or an infinity represents that
+// ECMAScript number.
+//
+// - Any bitstring that IEEE calls a NaN represents either an ECMAScript NaN
+// or a non-number ECMAScript value, as determined by a tag field stored
+// towards the most significant end of the fraction field (exactly where
+// depends on the address size). If the tag field indicates that this
+// JS::Value is an object, the fraction field's least significant end
+// holds the address of a JSObject; if a string, the address of a
+// JSString; and so on.
+//
+// To enforce this invariant, anywhere that may provide a numerical value
+// which may have a non-canonical NaN value (NaN, but not the one we've chosen
+// for ECMAScript) we must convert that to the canonical NaN. See
+// JS::CanonicalizeNaN.
+//
+// We have two boxing modes defined: NUNBOX32 and PUNBOX64.The first is
+// "NaN unboxed boxing" (or Nunboxing), as non-Number payload are stored
+// unaltered in the lower bits. The second is "Packed NaN boxing" (or
+// punboxing), which is 'logically like nunboxing, but with all the unused bits
+// sucked out' [1], as we rely on unused bits of the payload to pack the
+// payload in the lower bits using Nunboxing.
+//
+// - In NUNBOX32 the tag is stored in the least-significant bits of the high
+// word of the NaN. Since it's used on 32-bit systems, this has the nice
+// property that boxed values are simply stored in the low-word of the 8-byte
+// NaN.
+//
+// - In PUNBOX64, since we need to store more pointer bits (47, see above), the
+// tag is stored in the 5 most significant bits of the fraction adjacent to
+// the exponent.
+//
+// Tag values are carefully ordered to support a set of micro-optimizations. In
+// particular:
+//
+// 1. Object is the highest tag, to simplify isPrimitive checks. (See
+// ValueUpperExclPrimitiveTag)
+// 2. Numbers (Double and Int32) are the lowest tags, to simplify isNumber
+// checks. (See ValueUpperInclNumberTag)
+// 3. Non-GC tags are ordered before GC-tags, to simplify isGCThing checks. (See
+// ValueLowerInclGCThingTag)
+// 4. The tags for Object and Null differ by a single flipped bit, to simplify
+// toObjectOrNull. (See ValueObjectOrNullBit)
+// 5. In PUNBOX64, the most significant bit of every non-Double tag is always
+// set. This is to simplify isDouble checks. Note that the highest bitstring
+// that corresponds to a non-NaN double is -Infinity:
+// 0xfff0_0000_0000_0000
+// But the canonical hardware NaN (produced by, for example, 0/0) is:
+// 0x?ff8_0000_0000_0000
+// on all platforms with JIT support*. (The most significant bit is the sign
+// bit; it is 1 on x86, but 0 on ARM.) The most significant bit of the
+// fraction field is set, which corresponds to the most significant of the 5
+// tag bits. Because we only use tags that have the high bit set, any Value
+// represented by a bitstring less than or equal to 0xfff8_..._0000 is a
+// Double. (If we wanted to use all five bits, we could define 0x10 as
+// JSVAL_TYPE_NAN, and mask off the most significant bit of the tag for
+// IsDouble checks. This is not yet necessary, because we still have room
+// left to allocate new tags.)
+//
+// * But see JS_NONCANONICAL_HARDWARE_NAN below.
+//
+// [1]:
+// https://wingolog.org/archives/2011/05/18/value-representation-in-javascript-implementations#969f63bbe4eb912778c9da85feb0f5763e7a7862
+
+/* JS::Value can store a full int32_t. */
+#define JSVAL_INT_BITS 32
+#define JSVAL_INT_MIN ((int32_t)0x80000000)
+#define JSVAL_INT_MAX ((int32_t)0x7fffffff)
+
+#if defined(JS_NUNBOX32)
+# define JSVAL_TAG_SHIFT 32
+#elif defined(JS_PUNBOX64)
+# define JSVAL_TAG_SHIFT 47
+#endif
+
+// Use enums so that printing a JS::Value in the debugger shows nice
+// symbolic type tags.
+
+enum JSValueType : uint8_t {
+ JSVAL_TYPE_DOUBLE = 0x00,
+ JSVAL_TYPE_INT32 = 0x01,
+ JSVAL_TYPE_BOOLEAN = 0x02,
+ JSVAL_TYPE_UNDEFINED = 0x03,
+ JSVAL_TYPE_NULL = 0x04,
+ JSVAL_TYPE_MAGIC = 0x05,
+ JSVAL_TYPE_STRING = 0x06,
+ JSVAL_TYPE_SYMBOL = 0x07,
+ JSVAL_TYPE_PRIVATE_GCTHING = 0x08,
+ JSVAL_TYPE_BIGINT = 0x09,
+#ifdef ENABLE_RECORD_TUPLE
+ JSVAL_TYPE_EXTENDED_PRIMITIVE = 0x0b,
+#endif
+ JSVAL_TYPE_OBJECT = 0x0c,
+
+ // This type never appears in a Value; it's only an out-of-band value.
+ JSVAL_TYPE_UNKNOWN = 0x20
+};
+
+namespace JS {
+enum class ValueType : uint8_t {
+ Double = JSVAL_TYPE_DOUBLE,
+ Int32 = JSVAL_TYPE_INT32,
+ Boolean = JSVAL_TYPE_BOOLEAN,
+ Undefined = JSVAL_TYPE_UNDEFINED,
+ Null = JSVAL_TYPE_NULL,
+ Magic = JSVAL_TYPE_MAGIC,
+ String = JSVAL_TYPE_STRING,
+ Symbol = JSVAL_TYPE_SYMBOL,
+ PrivateGCThing = JSVAL_TYPE_PRIVATE_GCTHING,
+ BigInt = JSVAL_TYPE_BIGINT,
+#ifdef ENABLE_RECORD_TUPLE
+ ExtendedPrimitive = JSVAL_TYPE_EXTENDED_PRIMITIVE,
+#endif
+ Object = JSVAL_TYPE_OBJECT,
+};
+} // namespace JS
+
+static_assert(sizeof(JSValueType) == 1,
+ "compiler typed enum support is apparently buggy");
+
+#if defined(JS_NUNBOX32)
+
+enum JSValueTag : uint32_t {
+ JSVAL_TAG_CLEAR = 0xFFFFFF80,
+ JSVAL_TAG_INT32 = JSVAL_TAG_CLEAR | JSVAL_TYPE_INT32,
+ JSVAL_TAG_UNDEFINED = JSVAL_TAG_CLEAR | JSVAL_TYPE_UNDEFINED,
+ JSVAL_TAG_NULL = JSVAL_TAG_CLEAR | JSVAL_TYPE_NULL,
+ JSVAL_TAG_BOOLEAN = JSVAL_TAG_CLEAR | JSVAL_TYPE_BOOLEAN,
+ JSVAL_TAG_MAGIC = JSVAL_TAG_CLEAR | JSVAL_TYPE_MAGIC,
+ JSVAL_TAG_STRING = JSVAL_TAG_CLEAR | JSVAL_TYPE_STRING,
+ JSVAL_TAG_SYMBOL = JSVAL_TAG_CLEAR | JSVAL_TYPE_SYMBOL,
+ JSVAL_TAG_PRIVATE_GCTHING = JSVAL_TAG_CLEAR | JSVAL_TYPE_PRIVATE_GCTHING,
+ JSVAL_TAG_BIGINT = JSVAL_TAG_CLEAR | JSVAL_TYPE_BIGINT,
+# ifdef ENABLE_RECORD_TUPLE
+ JSVAL_TAG_EXTENDED_PRIMITIVE =
+ JSVAL_TAG_CLEAR | JSVAL_TYPE_EXTENDED_PRIMITIVE,
+# endif
+ JSVAL_TAG_OBJECT = JSVAL_TAG_CLEAR | JSVAL_TYPE_OBJECT
+};
+
+static_assert(sizeof(JSValueTag) == sizeof(uint32_t),
+ "compiler typed enum support is apparently buggy");
+
+#elif defined(JS_PUNBOX64)
+
+enum JSValueTag : uint32_t {
+ JSVAL_TAG_MAX_DOUBLE = 0x1FFF0,
+ JSVAL_TAG_INT32 = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_INT32,
+ JSVAL_TAG_UNDEFINED = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_UNDEFINED,
+ JSVAL_TAG_NULL = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_NULL,
+ JSVAL_TAG_BOOLEAN = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_BOOLEAN,
+ JSVAL_TAG_MAGIC = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_MAGIC,
+ JSVAL_TAG_STRING = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_STRING,
+ JSVAL_TAG_SYMBOL = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_SYMBOL,
+ JSVAL_TAG_PRIVATE_GCTHING = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_PRIVATE_GCTHING,
+ JSVAL_TAG_BIGINT = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_BIGINT,
+# ifdef ENABLE_RECORD_TUPLE
+ JSVAL_TAG_EXTENDED_PRIMITIVE =
+ JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_EXTENDED_PRIMITIVE,
+# endif
+ JSVAL_TAG_OBJECT = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_OBJECT
+};
+
+static_assert(sizeof(JSValueTag) == sizeof(uint32_t),
+ "compiler typed enum support is apparently buggy");
+
+enum JSValueShiftedTag : uint64_t {
+ // See Bug 584653 for why we include 0xFFFFFFFF.
+ JSVAL_SHIFTED_TAG_MAX_DOUBLE =
+ ((uint64_t(JSVAL_TAG_MAX_DOUBLE) << JSVAL_TAG_SHIFT) | 0xFFFFFFFF),
+ JSVAL_SHIFTED_TAG_INT32 = (uint64_t(JSVAL_TAG_INT32) << JSVAL_TAG_SHIFT),
+ JSVAL_SHIFTED_TAG_UNDEFINED =
+ (uint64_t(JSVAL_TAG_UNDEFINED) << JSVAL_TAG_SHIFT),
+ JSVAL_SHIFTED_TAG_NULL = (uint64_t(JSVAL_TAG_NULL) << JSVAL_TAG_SHIFT),
+ JSVAL_SHIFTED_TAG_BOOLEAN = (uint64_t(JSVAL_TAG_BOOLEAN) << JSVAL_TAG_SHIFT),
+ JSVAL_SHIFTED_TAG_MAGIC = (uint64_t(JSVAL_TAG_MAGIC) << JSVAL_TAG_SHIFT),
+ JSVAL_SHIFTED_TAG_STRING = (uint64_t(JSVAL_TAG_STRING) << JSVAL_TAG_SHIFT),
+ JSVAL_SHIFTED_TAG_SYMBOL = (uint64_t(JSVAL_TAG_SYMBOL) << JSVAL_TAG_SHIFT),
+ JSVAL_SHIFTED_TAG_PRIVATE_GCTHING =
+ (uint64_t(JSVAL_TAG_PRIVATE_GCTHING) << JSVAL_TAG_SHIFT),
+ JSVAL_SHIFTED_TAG_BIGINT = (uint64_t(JSVAL_TAG_BIGINT) << JSVAL_TAG_SHIFT),
+# ifdef ENABLE_RECORD_TUPLE
+ JSVAL_SHIFTED_TAG_EXTENDED_PRIMITIVE =
+ (uint64_t(JSVAL_TYPE_EXTENDED_PRIMITIVE) << JSVAL_TAG_SHIFT),
+# endif
+ JSVAL_SHIFTED_TAG_OBJECT = (uint64_t(JSVAL_TAG_OBJECT) << JSVAL_TAG_SHIFT)
+};
+
+static_assert(sizeof(JSValueShiftedTag) == sizeof(uint64_t),
+ "compiler typed enum support is apparently buggy");
+
+#endif
+
+namespace JS {
+namespace detail {
+
+#if defined(JS_NUNBOX32)
+
+constexpr JSValueTag ValueTypeToTag(JSValueType type) {
+ return static_cast<JSValueTag>(JSVAL_TAG_CLEAR |
+ std::underlying_type_t<JSValueType>(type));
+}
+
+constexpr bool ValueIsDouble(uint64_t bits) {
+ return uint32_t(bits >> JSVAL_TAG_SHIFT) <= uint32_t(JSVAL_TAG_CLEAR);
+}
+
+constexpr JSValueTag ValueUpperExclPrimitiveTag = JSVAL_TAG_OBJECT;
+constexpr JSValueTag ValueUpperInclNumberTag = JSVAL_TAG_INT32;
+constexpr JSValueTag ValueLowerInclGCThingTag = JSVAL_TAG_STRING;
+
+#elif defined(JS_PUNBOX64)
+
+constexpr JSValueTag ValueTypeToTag(JSValueType type) {
+ return static_cast<JSValueTag>(JSVAL_TAG_MAX_DOUBLE |
+ std::underlying_type_t<JSValueType>(type));
+}
+
+constexpr bool ValueIsDouble(uint64_t bits) {
+ return bits <= JSVAL_SHIFTED_TAG_MAX_DOUBLE;
+}
+
+constexpr uint64_t ValueTagMask = 0xFFFF'8000'0000'0000;
+
+// This should only be used in toGCThing. See the 'Spectre mitigations' comment.
+constexpr uint64_t ValueGCThingPayloadMask = 0x0000'7FFF'FFFF'FFFF;
+
+// Mask used to combine an unbox operation with getting the chunk base.
+constexpr uint64_t ValueGCThingPayloadChunkMask =
+ ValueGCThingPayloadMask & ~js::gc::ChunkMask;
+
+constexpr uint64_t ValueTypeToShiftedTag(JSValueType type) {
+ return static_cast<uint64_t>(ValueTypeToTag(type)) << JSVAL_TAG_SHIFT;
+}
+# define JSVAL_TYPE_TO_SHIFTED_TAG(type) \
+ (JS::detail::ValueTypeToShiftedTag(type))
+
+constexpr JSValueTag ValueUpperExclPrimitiveTag = JSVAL_TAG_OBJECT;
+constexpr JSValueTag ValueUpperInclNumberTag = JSVAL_TAG_INT32;
+constexpr JSValueTag ValueLowerInclGCThingTag = JSVAL_TAG_STRING;
+
+constexpr uint64_t ValueUpperExclShiftedPrimitiveTag = JSVAL_SHIFTED_TAG_OBJECT;
+constexpr uint64_t ValueUpperExclShiftedNumberTag = JSVAL_SHIFTED_TAG_BOOLEAN;
+constexpr uint64_t ValueLowerInclShiftedGCThingTag = JSVAL_SHIFTED_TAG_STRING;
+
+// JSVAL_TYPE_OBJECT and JSVAL_TYPE_NULL differ by one bit. We can use this to
+// implement toObjectOrNull more efficiently.
+constexpr uint64_t ValueObjectOrNullBit = 0x8ULL << JSVAL_TAG_SHIFT;
+static_assert(
+ (JSVAL_SHIFTED_TAG_NULL ^ JSVAL_SHIFTED_TAG_OBJECT) == ValueObjectOrNullBit,
+ "ValueObjectOrNullBit must be consistent with object and null tags");
+
+constexpr uint64_t IsValidUserModePointer(uint64_t bits) {
+ // All 64-bit platforms that we support actually have a 48-bit address space
+ // for user-mode pointers, with the top 16 bits all set to zero.
+ return (bits & 0xFFFF'0000'0000'0000) == 0;
+}
+
+#endif /* JS_PUNBOX64 */
+
+} // namespace detail
+} // namespace JS
+
+#define JSVAL_TYPE_TO_TAG(type) (JS::detail::ValueTypeToTag(type))
+
+enum JSWhyMagic {
+ /** a hole in a native object's elements */
+ JS_ELEMENTS_HOLE,
+
+ /** there is not a pending iterator value */
+ JS_NO_ITER_VALUE,
+
+ /** exception value thrown when closing a generator */
+ JS_GENERATOR_CLOSING,
+
+ /** used in debug builds to catch tracing errors */
+ JS_ARG_POISON,
+
+ /** an empty subnode in the AST serializer */
+ JS_SERIALIZE_NO_NODE,
+
+ /** magic value passed to natives to indicate construction */
+ JS_IS_CONSTRUCTING,
+
+ /** see class js::HashableValue */
+ JS_HASH_KEY_EMPTY,
+
+ /** error while running Ion code */
+ JS_ION_ERROR,
+
+ /** missing recover instruction result */
+ JS_ION_BAILOUT,
+
+ /** optimized out slot */
+ JS_OPTIMIZED_OUT,
+
+ /** uninitialized lexical bindings that produce ReferenceError on touch. */
+ JS_UNINITIALIZED_LEXICAL,
+
+ /** arguments object can't be created because environment is dead. */
+ JS_MISSING_ARGUMENTS,
+
+ /** for local use */
+ JS_GENERIC_MAGIC,
+
+ /**
+ * When an error object is created without the error cause argument, we set
+ * the error's cause slot to this magic value.
+ */
+ JS_ERROR_WITHOUT_CAUSE,
+
+ JS_WHY_MAGIC_COUNT
+};
+
+namespace js {
+static inline JS::Value PoisonedObjectValue(uintptr_t poison);
+#ifdef ENABLE_RECORD_TUPLE
+// Re-defined in vm/RecordTupleBoxShared.h. We cannot include that
+// file because it circularly includes this one.
+bool IsExtendedPrimitive(const JSObject& obj);
+namespace gc {
+bool MaybeForwardedIsExtendedPrimitive(const JSObject& obj);
+} // namespace gc
+#endif
+} // namespace js
+
+namespace JS {
+
+namespace detail {
+
+// IEEE-754 bit pattern for double-precision positive infinity.
+constexpr int InfinitySignBit = 0;
+constexpr uint64_t InfinityBits =
+ mozilla::InfinityBits<double, detail::InfinitySignBit>::value;
+
+// This is a quiet NaN on IEEE-754[2008] compatible platforms, including X86,
+// ARM, SPARC, RISC-V and modern MIPS.
+//
+// Note: The default sign bit for a hardware synthesized NaN differs between X86
+// and ARM. Both values are considered compatible values on both
+// platforms.
+constexpr int CanonicalizedNaNSignBit = 0;
+constexpr uint64_t CanonicalizedNaNSignificand = 0x8000000000000;
+
+#if defined(__sparc__)
+// Some architectures (not to name names) generate NaNs with bit patterns that
+// are incompatible with JS::Value's bit pattern restrictions. Instead we must
+// canonicalize all hardware values before storing in JS::Value.
+# define JS_NONCANONICAL_HARDWARE_NAN
+#endif
+
+#if defined(__mips__) && !defined(__mips_nan_2008)
+// These builds may run on hardware that has differing polarity of the signaling
+// NaN bit. While the kernel may handle the trap for us, it is a performance
+// issue so instead we compute the NaN to use on startup. The runtime value must
+// still meet `ValueIsDouble` requirements which are checked on startup.
+
+// In particular, we expect one of the following values on MIPS:
+// - 0x7FF7FFFFFFFFFFFF Legacy
+// - 0x7FF8000000000000 IEEE-754[2008]
+# define JS_RUNTIME_CANONICAL_NAN
+#endif
+
+#if defined(JS_RUNTIME_CANONICAL_NAN)
+extern uint64_t CanonicalizedNaNBits;
+#else
+constexpr uint64_t CanonicalizedNaNBits =
+ mozilla::SpecificNaNBits<double, detail::CanonicalizedNaNSignBit,
+ detail::CanonicalizedNaNSignificand>::value;
+#endif
+} // namespace detail
+
+// Return a quiet NaN that is compatible with JS::Value restrictions.
+static MOZ_ALWAYS_INLINE double GenericNaN() {
+#if !defined(JS_RUNTIME_CANONICAL_NAN)
+ static_assert(detail::ValueIsDouble(detail::CanonicalizedNaNBits),
+ "Canonical NaN must be compatible with JS::Value");
+#endif
+
+ return mozilla::BitwiseCast<double>(detail::CanonicalizedNaNBits);
+}
+
+// Return the infinity the engine uses
+static MOZ_ALWAYS_INLINE double Infinity() {
+ return mozilla::BitwiseCast<double>(detail::InfinityBits);
+}
+
+// Convert an arbitrary double to one compatible with JS::Value representation
+// by replacing any NaN value with a canonical one.
+static MOZ_ALWAYS_INLINE double CanonicalizeNaN(double d) {
+ if (MOZ_UNLIKELY(std::isnan(d))) {
+ return GenericNaN();
+ }
+ return d;
+}
+
+/**
+ * [SMDOC] JS::Value type
+ *
+ * JS::Value is the interface for a single JavaScript Engine value. A few
+ * general notes on JS::Value:
+ *
+ * - JS::Value has setX() and isX() members for X in
+ *
+ * { Int32, Double, String, Symbol, BigInt, Boolean, Undefined, Null,
+ * Object, Magic }
+ *
+ * JS::Value also contains toX() for each of the non-singleton types.
+ *
+ * - Magic is a singleton type whose payload contains either a JSWhyMagic
+ * "reason" for the magic value or a uint32_t value. By providing JSWhyMagic
+ * values when creating and checking for magic values, it is possible to
+ * assert, at runtime, that only magic values with the expected reason flow
+ * through a particular value. For example, if cx->exception has a magic
+ * value, the reason must be JS_GENERATOR_CLOSING.
+ *
+ * - The JS::Value operations are preferred. The JSVAL_* operations remain for
+ * compatibility; they may be removed at some point. These operations mostly
+ * provide similar functionality. But there are a few key differences. One
+ * is that JS::Value gives null a separate type.
+ * Also, to help prevent mistakenly boxing a nullable JSObject* as an object,
+ * Value::setObject takes a JSObject&. (Conversely, Value::toObject returns a
+ * JSObject&.) A convenience member Value::setObjectOrNull is provided.
+ *
+ * - Note that JS::Value is 8 bytes on 32 and 64-bit architectures. Thus, on
+ * 32-bit user code should avoid copying jsval/JS::Value as much as possible,
+ * preferring to pass by const Value&.
+ *
+ * Spectre mitigations
+ * ===================
+ * To mitigate Spectre attacks, we do the following:
+ *
+ * - On 64-bit platforms, when unboxing a Value, we XOR the bits with the
+ * expected type tag (instead of masking the payload bits). This guarantees
+ * that toString, toObject, toSymbol will return an invalid pointer (because
+ * some high bits will be set) when called on a Value with a different type
+ * tag.
+ *
+ * - On 32-bit platforms,when unboxing an object/string/symbol Value, we use a
+ * conditional move (not speculated) to zero the payload register if the type
+ * doesn't match.
+ */
+class alignas(8) Value {
+ private:
+ uint64_t asBits_;
+
+ public:
+ constexpr Value() : asBits_(bitsFromTagAndPayload(JSVAL_TAG_UNDEFINED, 0)) {}
+
+ private:
+ explicit constexpr Value(uint64_t asBits) : asBits_(asBits) {}
+
+ static uint64_t bitsFromDouble(double d) {
+#if defined(JS_NONCANONICAL_HARDWARE_NAN)
+ d = CanonicalizeNaN(d);
+#endif
+ return mozilla::BitwiseCast<uint64_t>(d);
+ }
+
+ static_assert(sizeof(JSValueType) == 1,
+ "type bits must fit in a single byte");
+ static_assert(sizeof(JSValueTag) == 4,
+ "32-bit Value's tag_ must have size 4 to complement the "
+ "payload union's size 4");
+ static_assert(sizeof(JSWhyMagic) <= 4,
+ "32-bit Value's JSWhyMagic payload field must not inflate "
+ "the payload beyond 4 bytes");
+
+ public:
+#if defined(JS_NUNBOX32)
+ using PayloadType = uint32_t;
+#elif defined(JS_PUNBOX64)
+ using PayloadType = uint64_t;
+#endif
+
+ static constexpr uint64_t bitsFromTagAndPayload(JSValueTag tag,
+ PayloadType payload) {
+ return (uint64_t(tag) << JSVAL_TAG_SHIFT) | payload;
+ }
+
+ static constexpr Value fromTagAndPayload(JSValueTag tag,
+ PayloadType payload) {
+ return fromRawBits(bitsFromTagAndPayload(tag, payload));
+ }
+
+ static constexpr Value fromRawBits(uint64_t asBits) { return Value(asBits); }
+
+ static constexpr Value fromInt32(int32_t i) {
+ return fromTagAndPayload(JSVAL_TAG_INT32, uint32_t(i));
+ }
+
+ static Value fromDouble(double d) { return fromRawBits(bitsFromDouble(d)); }
+
+ /**
+ * Returns false if creating a NumberValue containing the given type would
+ * be lossy, true otherwise.
+ */
+ template <typename T>
+ static bool isNumberRepresentable(const T t) {
+ return T(double(t)) == t;
+ }
+
+ /*** Mutators ***/
+
+ void setNull() {
+ asBits_ = bitsFromTagAndPayload(JSVAL_TAG_NULL, 0);
+ MOZ_ASSERT(isNull());
+ }
+
+ void setUndefined() {
+ asBits_ = bitsFromTagAndPayload(JSVAL_TAG_UNDEFINED, 0);
+ MOZ_ASSERT(isUndefined());
+ }
+
+ void setInt32(int32_t i) {
+ asBits_ = bitsFromTagAndPayload(JSVAL_TAG_INT32, uint32_t(i));
+ MOZ_ASSERT(toInt32() == i);
+ }
+
+ void setDouble(double d) {
+ asBits_ = bitsFromDouble(d);
+ MOZ_ASSERT(isDouble());
+ }
+
+ void setString(JSString* str) {
+ MOZ_ASSERT(js::gc::IsCellPointerValid(str));
+ asBits_ = bitsFromTagAndPayload(JSVAL_TAG_STRING, PayloadType(str));
+ MOZ_ASSERT(toString() == str);
+ }
+
+ void setSymbol(JS::Symbol* sym) {
+ MOZ_ASSERT(js::gc::IsCellPointerValid(sym));
+ asBits_ = bitsFromTagAndPayload(JSVAL_TAG_SYMBOL, PayloadType(sym));
+ MOZ_ASSERT(toSymbol() == sym);
+ }
+
+ void setBigInt(JS::BigInt* bi) {
+ MOZ_ASSERT(js::gc::IsCellPointerValid(bi));
+ asBits_ = bitsFromTagAndPayload(JSVAL_TAG_BIGINT, PayloadType(bi));
+ MOZ_ASSERT(toBigInt() == bi);
+ }
+
+ void setObject(JSObject& obj) {
+ MOZ_ASSERT(js::gc::IsCellPointerValid(&obj));
+#ifdef ENABLE_RECORD_TUPLE
+ MOZ_ASSERT(!js::gc::MaybeForwardedIsExtendedPrimitive(obj));
+#endif
+ setObjectNoCheck(&obj);
+ MOZ_ASSERT(&toObject() == &obj);
+ }
+
+#ifdef ENABLE_RECORD_TUPLE
+ void setExtendedPrimitive(JSObject& obj) {
+ MOZ_ASSERT(js::gc::IsCellPointerValid(&obj));
+ MOZ_ASSERT(js::gc::MaybeForwardedIsExtendedPrimitive(obj));
+ asBits_ =
+ bitsFromTagAndPayload(JSVAL_TAG_EXTENDED_PRIMITIVE, PayloadType(&obj));
+ MOZ_ASSERT(&toExtendedPrimitive() == &obj);
+ }
+#endif
+
+ private:
+ void setObjectNoCheck(JSObject* obj) {
+ asBits_ = bitsFromTagAndPayload(JSVAL_TAG_OBJECT, PayloadType(obj));
+ }
+
+ friend inline Value js::PoisonedObjectValue(uintptr_t poison);
+
+ public:
+ void setBoolean(bool b) {
+ asBits_ = bitsFromTagAndPayload(JSVAL_TAG_BOOLEAN, uint32_t(b));
+ MOZ_ASSERT(toBoolean() == b);
+ }
+
+ void setMagic(JSWhyMagic why) {
+ asBits_ = bitsFromTagAndPayload(JSVAL_TAG_MAGIC, uint32_t(why));
+ MOZ_ASSERT(whyMagic() == why);
+ }
+
+ void setMagicUint32(uint32_t payload) {
+ MOZ_ASSERT(payload >= JS_WHY_MAGIC_COUNT,
+ "This should only be used for non-standard magic values");
+ asBits_ = bitsFromTagAndPayload(JSVAL_TAG_MAGIC, payload);
+ MOZ_ASSERT(magicUint32() == payload);
+ }
+
+ void setNumber(float f) {
+ int32_t i;
+ if (mozilla::NumberIsInt32(f, &i)) {
+ setInt32(i);
+ return;
+ }
+
+ setDouble(double(f));
+ }
+
+ void setNumber(double d) {
+ int32_t i;
+ if (mozilla::NumberIsInt32(d, &i)) {
+ setInt32(i);
+ return;
+ }
+
+ setDouble(d);
+ }
+
+ template <typename T>
+ void setNumber(const T t) {
+ static_assert(std::is_integral<T>::value, "must be integral type");
+ MOZ_ASSERT(isNumberRepresentable(t), "value creation would be lossy");
+
+ if constexpr (std::numeric_limits<T>::is_signed) {
+ if constexpr (sizeof(t) <= sizeof(int32_t)) {
+ setInt32(int32_t(t));
+ } else {
+ if (JSVAL_INT_MIN <= t && t <= JSVAL_INT_MAX) {
+ setInt32(int32_t(t));
+ } else {
+ setDouble(double(t));
+ }
+ }
+ } else {
+ if constexpr (sizeof(t) <= sizeof(uint16_t)) {
+ setInt32(int32_t(t));
+ } else {
+ if (t <= JSVAL_INT_MAX) {
+ setInt32(int32_t(t));
+ } else {
+ setDouble(double(t));
+ }
+ }
+ }
+ }
+
+ void setObjectOrNull(JSObject* arg) {
+ if (arg) {
+ setObject(*arg);
+ } else {
+ setNull();
+ }
+ }
+
+ void swap(Value& rhs) {
+ uint64_t tmp = rhs.asBits_;
+ rhs.asBits_ = asBits_;
+ asBits_ = tmp;
+ }
+
+ private:
+ JSValueTag toTag() const { return JSValueTag(asBits_ >> JSVAL_TAG_SHIFT); }
+
+ template <typename T, JSValueTag Tag>
+ T* unboxGCPointer() const {
+ MOZ_ASSERT((asBits_ & js::gc::CellAlignMask) == 0,
+ "GC pointer is not aligned. Is this memory corruption?");
+#if defined(JS_NUNBOX32)
+ uintptr_t payload = uint32_t(asBits_);
+ return reinterpret_cast<T*>(payload);
+#elif defined(JS_PUNBOX64)
+ // Note: the 'Spectre mitigations' comment at the top of this class
+ // explains why we use XOR here.
+ constexpr uint64_t shiftedTag = uint64_t(Tag) << JSVAL_TAG_SHIFT;
+ return reinterpret_cast<T*>(uintptr_t(asBits_ ^ shiftedTag));
+#endif
+ }
+
+ public:
+ /*** JIT-only interfaces to interact with and create raw Values ***/
+#if defined(JS_NUNBOX32)
+ PayloadType toNunboxPayload() const { return uint32_t(asBits_); }
+
+ JSValueTag toNunboxTag() const { return toTag(); }
+#elif defined(JS_PUNBOX64)
+ const void* bitsAsPunboxPointer() const {
+ return reinterpret_cast<void*>(asBits_);
+ }
+#endif
+
+ /*** Value type queries ***/
+
+ /*
+ * N.B. GCC, in some but not all cases, chooses to emit signed comparison
+ * of JSValueTag even though its underlying type has been forced to be
+ * uint32_t. Thus, all comparisons should explicitly cast operands to
+ * uint32_t.
+ */
+
+ bool isUndefined() const {
+#if defined(JS_NUNBOX32)
+ return toTag() == JSVAL_TAG_UNDEFINED;
+#elif defined(JS_PUNBOX64)
+ return asBits_ == JSVAL_SHIFTED_TAG_UNDEFINED;
+#endif
+ }
+
+ bool isNull() const {
+#if defined(JS_NUNBOX32)
+ return toTag() == JSVAL_TAG_NULL;
+#elif defined(JS_PUNBOX64)
+ return asBits_ == JSVAL_SHIFTED_TAG_NULL;
+#endif
+ }
+
+ bool isNullOrUndefined() const { return isNull() || isUndefined(); }
+
+ bool isInt32() const { return toTag() == JSVAL_TAG_INT32; }
+
+ bool isInt32(int32_t i32) const {
+ return asBits_ == bitsFromTagAndPayload(JSVAL_TAG_INT32, uint32_t(i32));
+ }
+
+ bool isDouble() const { return detail::ValueIsDouble(asBits_); }
+
+ bool isNumber() const {
+#if defined(JS_NUNBOX32)
+ MOZ_ASSERT(toTag() != JSVAL_TAG_CLEAR);
+ return uint32_t(toTag()) <= uint32_t(detail::ValueUpperInclNumberTag);
+#elif defined(JS_PUNBOX64)
+ return asBits_ < detail::ValueUpperExclShiftedNumberTag;
+#endif
+ }
+
+ bool isString() const { return toTag() == JSVAL_TAG_STRING; }
+
+ bool isSymbol() const { return toTag() == JSVAL_TAG_SYMBOL; }
+
+ bool isBigInt() const { return toTag() == JSVAL_TAG_BIGINT; }
+
+ bool isObject() const {
+#if defined(JS_NUNBOX32)
+ return toTag() == JSVAL_TAG_OBJECT;
+#elif defined(JS_PUNBOX64)
+ MOZ_ASSERT((asBits_ >> JSVAL_TAG_SHIFT) <= JSVAL_TAG_OBJECT);
+ return asBits_ >= JSVAL_SHIFTED_TAG_OBJECT;
+#endif
+ }
+
+#ifdef ENABLE_RECORD_TUPLE
+ bool isExtendedPrimitive() const {
+ return toTag() == JSVAL_TAG_EXTENDED_PRIMITIVE;
+ }
+#endif
+
+ bool hasObjectPayload() const {
+ return isObject() || IF_RECORD_TUPLE(isExtendedPrimitive(), false);
+ }
+
+ bool isPrimitive() const {
+#if defined(JS_NUNBOX32)
+ return uint32_t(toTag()) < uint32_t(detail::ValueUpperExclPrimitiveTag);
+#elif defined(JS_PUNBOX64)
+ return asBits_ < detail::ValueUpperExclShiftedPrimitiveTag;
+#endif
+ }
+
+ bool isObjectOrNull() const { return isObject() || isNull(); }
+
+ bool isNumeric() const { return isNumber() || isBigInt(); }
+
+ bool isGCThing() const {
+#if defined(JS_NUNBOX32)
+ /* gcc sometimes generates signed < without explicit casts. */
+ return uint32_t(toTag()) >= uint32_t(detail::ValueLowerInclGCThingTag);
+#elif defined(JS_PUNBOX64)
+ return asBits_ >= detail::ValueLowerInclShiftedGCThingTag;
+#endif
+ }
+
+ bool isBoolean() const { return toTag() == JSVAL_TAG_BOOLEAN; }
+
+ bool isTrue() const {
+ return asBits_ == bitsFromTagAndPayload(JSVAL_TAG_BOOLEAN, uint32_t(true));
+ }
+
+ bool isFalse() const {
+ return asBits_ == bitsFromTagAndPayload(JSVAL_TAG_BOOLEAN, uint32_t(false));
+ }
+
+ bool isMagic() const { return toTag() == JSVAL_TAG_MAGIC; }
+
+ bool isMagic(JSWhyMagic why) const {
+ if (!isMagic()) {
+ return false;
+ }
+ MOZ_RELEASE_ASSERT(whyMagic() == why);
+ return true;
+ }
+
+ JS::TraceKind traceKind() const {
+ MOZ_ASSERT(isGCThing());
+ static_assert((JSVAL_TAG_STRING & 0x03) == size_t(JS::TraceKind::String),
+ "Value type tags must correspond with JS::TraceKinds.");
+ static_assert((JSVAL_TAG_SYMBOL & 0x03) == size_t(JS::TraceKind::Symbol),
+ "Value type tags must correspond with JS::TraceKinds.");
+ static_assert((JSVAL_TAG_OBJECT & 0x03) == size_t(JS::TraceKind::Object),
+ "Value type tags must correspond with JS::TraceKinds.");
+ static_assert((JSVAL_TAG_BIGINT & 0x03) == size_t(JS::TraceKind::BigInt),
+ "Value type tags must correspond with JS::TraceKinds.");
+ if (MOZ_UNLIKELY(isPrivateGCThing())) {
+ return JS::GCThingTraceKind(toGCThing());
+ }
+#ifdef ENABLE_RECORD_TUPLE
+ if (isExtendedPrimitive()) {
+ return JS::TraceKind::Object;
+ }
+#endif
+ return JS::TraceKind(toTag() & 0x03);
+ }
+
+ JSWhyMagic whyMagic() const {
+ MOZ_ASSERT(magicUint32() < JS_WHY_MAGIC_COUNT);
+ return static_cast<JSWhyMagic>(magicUint32());
+ }
+
+ uint32_t magicUint32() const {
+ MOZ_ASSERT(isMagic());
+ return uint32_t(asBits_);
+ }
+
+ /*** Comparison ***/
+
+ bool operator==(const Value& rhs) const { return asBits_ == rhs.asBits_; }
+
+ bool operator!=(const Value& rhs) const { return asBits_ != rhs.asBits_; }
+
+ friend inline bool SameType(const Value& lhs, const Value& rhs);
+
+ /*** Extract the value's typed payload ***/
+
+ int32_t toInt32() const {
+ MOZ_ASSERT(isInt32());
+ return int32_t(asBits_);
+ }
+
+ double toDouble() const {
+ MOZ_ASSERT(isDouble());
+ return mozilla::BitwiseCast<double>(asBits_);
+ }
+
+ double toNumber() const {
+ MOZ_ASSERT(isNumber());
+ return isDouble() ? toDouble() : double(toInt32());
+ }
+
+ JSString* toString() const {
+ MOZ_ASSERT(isString());
+ return unboxGCPointer<JSString, JSVAL_TAG_STRING>();
+ }
+
+ JS::Symbol* toSymbol() const {
+ MOZ_ASSERT(isSymbol());
+ return unboxGCPointer<JS::Symbol, JSVAL_TAG_SYMBOL>();
+ }
+
+ JS::BigInt* toBigInt() const {
+ MOZ_ASSERT(isBigInt());
+ return unboxGCPointer<JS::BigInt, JSVAL_TAG_BIGINT>();
+ }
+
+ JSObject& toObject() const {
+ MOZ_ASSERT(isObject());
+#if defined(JS_PUNBOX64)
+ MOZ_ASSERT((asBits_ & detail::ValueGCThingPayloadMask) != 0);
+#endif
+ return *unboxGCPointer<JSObject, JSVAL_TAG_OBJECT>();
+ }
+
+ JSObject* toObjectOrNull() const {
+ MOZ_ASSERT(isObjectOrNull());
+#if defined(JS_NUNBOX32)
+ return reinterpret_cast<JSObject*>(uintptr_t(asBits_));
+#elif defined(JS_PUNBOX64)
+ // Note: the 'Spectre mitigations' comment at the top of this class
+ // explains why we use XOR here and in other to* methods.
+ uint64_t ptrBits =
+ (asBits_ ^ JSVAL_SHIFTED_TAG_OBJECT) & ~detail::ValueObjectOrNullBit;
+ MOZ_ASSERT((ptrBits & 0x7) == 0);
+ return reinterpret_cast<JSObject*>(ptrBits);
+#endif
+ }
+
+#ifdef ENABLE_RECORD_TUPLE
+ JSObject& toExtendedPrimitive() const {
+ MOZ_ASSERT(isExtendedPrimitive());
+# if defined(JS_PUNBOX64)
+ MOZ_ASSERT((asBits_ & detail::ValueGCThingPayloadMask) != 0);
+# endif
+ return *unboxGCPointer<JSObject, JSVAL_TAG_EXTENDED_PRIMITIVE>();
+ }
+#endif
+
+ JSObject& getObjectPayload() const {
+#ifdef ENABLE_RECORD_TUPLE
+ return isExtendedPrimitive() ? toExtendedPrimitive() : toObject();
+#else
+ return toObject();
+#endif
+ }
+
+ js::gc::Cell* toGCThing() const {
+ MOZ_ASSERT(isGCThing());
+#if defined(JS_NUNBOX32)
+ return reinterpret_cast<js::gc::Cell*>(uintptr_t(asBits_));
+#elif defined(JS_PUNBOX64)
+ uint64_t ptrBits = asBits_ & detail::ValueGCThingPayloadMask;
+ MOZ_ASSERT((ptrBits & 0x7) == 0);
+ return reinterpret_cast<js::gc::Cell*>(ptrBits);
+#endif
+ }
+
+ GCCellPtr toGCCellPtr() const { return GCCellPtr(toGCThing(), traceKind()); }
+
+ bool toBoolean() const {
+ MOZ_ASSERT(isBoolean());
+#if defined(JS_NUNBOX32)
+ return bool(toNunboxPayload());
+#elif defined(JS_PUNBOX64)
+ return bool(asBits_ & 0x1);
+#endif
+ }
+
+ constexpr uint64_t asRawBits() const { return asBits_; }
+
+ JSValueType extractNonDoubleType() const {
+ uint32_t type = toTag() & 0xF;
+ MOZ_ASSERT(type > JSVAL_TYPE_DOUBLE);
+ return JSValueType(type);
+ }
+
+ JS::ValueType type() const {
+ if (isDouble()) {
+ return JS::ValueType::Double;
+ }
+
+ JSValueType type = extractNonDoubleType();
+ MOZ_ASSERT(type <= JSVAL_TYPE_OBJECT);
+ return JS::ValueType(type);
+ }
+
+ /*
+ * Private API
+ *
+ * Private setters/getters allow the caller to read/write arbitrary
+ * word-size pointers or uint32s. After storing to a value with
+ * setPrivateX, it is the caller's responsibility to only read using
+ * toPrivateX. Private values are given a type which ensures they
+ * aren't marked by the GC.
+ */
+
+ void setPrivate(void* ptr) {
+#if defined(JS_PUNBOX64)
+ MOZ_ASSERT(detail::IsValidUserModePointer(uintptr_t(ptr)));
+#endif
+ asBits_ = uintptr_t(ptr);
+ MOZ_ASSERT(isDouble());
+ }
+
+ void* toPrivate() const {
+ MOZ_ASSERT(isDouble());
+#if defined(JS_PUNBOX64)
+ MOZ_ASSERT(detail::IsValidUserModePointer(asBits_));
+#endif
+ return reinterpret_cast<void*>(uintptr_t(asBits_));
+ }
+
+ void setPrivateUint32(uint32_t ui) {
+ MOZ_ASSERT(uint32_t(int32_t(ui)) == ui);
+ setInt32(int32_t(ui));
+ }
+
+ uint32_t toPrivateUint32() const { return uint32_t(toInt32()); }
+
+ /*
+ * Private GC Thing API
+ *
+ * Non-JSObject, JSString, and JS::Symbol cells may be put into the 64-bit
+ * payload as private GC things. Such Values are considered isGCThing(), and
+ * as such, automatically marked. Their traceKind() is gotten via their
+ * cells.
+ */
+
+ void setPrivateGCThing(js::gc::Cell* cell) {
+ MOZ_ASSERT(JS::GCThingTraceKind(cell) != JS::TraceKind::String,
+ "Private GC thing Values must not be strings. Make a "
+ "StringValue instead.");
+ MOZ_ASSERT(JS::GCThingTraceKind(cell) != JS::TraceKind::Symbol,
+ "Private GC thing Values must not be symbols. Make a "
+ "SymbolValue instead.");
+ MOZ_ASSERT(JS::GCThingTraceKind(cell) != JS::TraceKind::BigInt,
+ "Private GC thing Values must not be BigInts. Make a "
+ "BigIntValue instead.");
+ MOZ_ASSERT(JS::GCThingTraceKind(cell) != JS::TraceKind::Object,
+ "Private GC thing Values must not be objects. Make an "
+ "ObjectValue instead.");
+
+ MOZ_ASSERT(js::gc::IsCellPointerValid(cell));
+#if defined(JS_PUNBOX64)
+ // VisualStudio cannot contain parenthesized C++ style cast and shift
+ // inside decltype in template parameter:
+ // AssertionConditionType<decltype((uintptr_t(x) >> 1))>
+ // It throws syntax error.
+ MOZ_ASSERT((((uintptr_t)cell) >> JSVAL_TAG_SHIFT) == 0);
+#endif
+ asBits_ =
+ bitsFromTagAndPayload(JSVAL_TAG_PRIVATE_GCTHING, PayloadType(cell));
+ }
+
+ bool isPrivateGCThing() const { return toTag() == JSVAL_TAG_PRIVATE_GCTHING; }
+} JS_HAZ_GC_POINTER MOZ_NON_PARAM;
+
+static_assert(sizeof(Value) == 8,
+ "Value size must leave three tag bits, be a binary power, and "
+ "is ubiquitously depended upon everywhere");
+
+static MOZ_ALWAYS_INLINE void ExposeValueToActiveJS(const Value& v) {
+#ifdef DEBUG
+ Value tmp = v;
+ MOZ_ASSERT(!js::gc::EdgeNeedsSweepUnbarrieredSlow(&tmp));
+#endif
+ if (v.isGCThing()) {
+ js::gc::ExposeGCThingToActiveJS(v.toGCCellPtr());
+ }
+}
+
+/************************************************************************/
+
+static inline MOZ_MAY_CALL_AFTER_MUST_RETURN Value NullValue() {
+ Value v;
+ v.setNull();
+ return v;
+}
+
+static constexpr Value UndefinedValue() { return Value(); }
+
+static constexpr Value Int32Value(int32_t i32) { return Value::fromInt32(i32); }
+
+static inline Value DoubleValue(double dbl) {
+ Value v;
+ v.setDouble(dbl);
+ return v;
+}
+
+static inline Value CanonicalizedDoubleValue(double d) {
+ return Value::fromDouble(CanonicalizeNaN(d));
+}
+
+static inline Value NaNValue() {
+ return Value::fromRawBits(detail::CanonicalizedNaNBits);
+}
+
+static inline Value InfinityValue() {
+ return Value::fromRawBits(detail::InfinityBits);
+}
+
+static inline Value Float32Value(float f) {
+ Value v;
+ v.setDouble(f);
+ return v;
+}
+
+static inline Value StringValue(JSString* str) {
+ Value v;
+ v.setString(str);
+ return v;
+}
+
+static inline Value SymbolValue(JS::Symbol* sym) {
+ Value v;
+ v.setSymbol(sym);
+ return v;
+}
+
+static inline Value BigIntValue(JS::BigInt* bi) {
+ Value v;
+ v.setBigInt(bi);
+ return v;
+}
+
+static inline Value BooleanValue(bool boo) {
+ Value v;
+ v.setBoolean(boo);
+ return v;
+}
+
+static inline Value TrueValue() {
+ Value v;
+ v.setBoolean(true);
+ return v;
+}
+
+static inline Value FalseValue() {
+ Value v;
+ v.setBoolean(false);
+ return v;
+}
+
+static inline Value ObjectValue(JSObject& obj) {
+ Value v;
+ v.setObject(obj);
+ return v;
+}
+
+#ifdef ENABLE_RECORD_TUPLE
+static inline Value ExtendedPrimitiveValue(JSObject& obj) {
+ Value v;
+ v.setExtendedPrimitive(obj);
+ return v;
+}
+#endif
+
+static inline Value MagicValue(JSWhyMagic why) {
+ Value v;
+ v.setMagic(why);
+ return v;
+}
+
+static inline Value MagicValueUint32(uint32_t payload) {
+ Value v;
+ v.setMagicUint32(payload);
+ return v;
+}
+
+static constexpr Value NumberValue(uint32_t i) {
+ return i <= JSVAL_INT_MAX ? Int32Value(int32_t(i))
+ : Value::fromDouble(double(i));
+}
+
+template <typename T>
+static inline Value NumberValue(const T t) {
+ Value v;
+ v.setNumber(t);
+ return v;
+}
+
+static inline Value ObjectOrNullValue(JSObject* obj) {
+ Value v;
+ v.setObjectOrNull(obj);
+ return v;
+}
+
+static inline Value PrivateValue(void* ptr) {
+ Value v;
+ v.setPrivate(ptr);
+ return v;
+}
+
+static inline Value PrivateValue(uintptr_t ptr) {
+ return PrivateValue(reinterpret_cast<void*>(ptr));
+}
+
+static inline Value PrivateUint32Value(uint32_t ui) {
+ Value v;
+ v.setPrivateUint32(ui);
+ return v;
+}
+
+static inline Value PrivateGCThingValue(js::gc::Cell* cell) {
+ Value v;
+ v.setPrivateGCThing(cell);
+ return v;
+}
+
+inline bool SameType(const Value& lhs, const Value& rhs) {
+#if defined(JS_NUNBOX32)
+ JSValueTag ltag = lhs.toTag(), rtag = rhs.toTag();
+ return ltag == rtag || (ltag < JSVAL_TAG_CLEAR && rtag < JSVAL_TAG_CLEAR);
+#elif defined(JS_PUNBOX64)
+ return (lhs.isDouble() && rhs.isDouble()) ||
+ (((lhs.asBits_ ^ rhs.asBits_) & 0xFFFF800000000000ULL) == 0);
+#endif
+}
+
+} // namespace JS
+
+/************************************************************************/
+
+namespace JS {
+JS_PUBLIC_API void HeapValuePostWriteBarrier(Value* valuep, const Value& prev,
+ const Value& next);
+JS_PUBLIC_API void HeapValueWriteBarriers(Value* valuep, const Value& prev,
+ const Value& next);
+
+template <>
+struct GCPolicy<JS::Value> {
+ static void trace(JSTracer* trc, Value* v, const char* name) {
+ // This should only be called as part of root marking since that's the only
+ // time we should trace unbarriered GC thing pointers. This will assert if
+ // called at other times.
+ TraceRoot(trc, v, name);
+ }
+ static bool isTenured(const Value& thing) {
+ return !thing.isGCThing() || !IsInsideNursery(thing.toGCThing());
+ }
+ static bool isValid(const Value& value) {
+ return !value.isGCThing() || js::gc::IsCellPointerValid(value.toGCThing());
+ }
+};
+
+} // namespace JS
+
+namespace js {
+
+template <>
+struct BarrierMethods<JS::Value> {
+ static gc::Cell* asGCThingOrNull(const JS::Value& v) {
+ return v.isGCThing() ? v.toGCThing() : nullptr;
+ }
+ static void postWriteBarrier(JS::Value* v, const JS::Value& prev,
+ const JS::Value& next) {
+ JS::HeapValuePostWriteBarrier(v, prev, next);
+ }
+ static void exposeToJS(const JS::Value& v) { JS::ExposeValueToActiveJS(v); }
+ static void readBarrier(const JS::Value& v) {
+ if (v.isGCThing()) {
+ js::gc::IncrementalReadBarrier(v.toGCCellPtr());
+ }
+ }
+};
+
+template <class Wrapper>
+class MutableValueOperations;
+
+/**
+ * A class designed for CRTP use in implementing the non-mutating parts of the
+ * Value interface in Value-like classes. Wrapper must be a class inheriting
+ * ValueOperations<Wrapper> with a visible get() method returning a const
+ * reference to the Value abstracted by Wrapper.
+ */
+template <class Wrapper>
+class WrappedPtrOperations<JS::Value, Wrapper> {
+ const JS::Value& value() const {
+ return static_cast<const Wrapper*>(this)->get();
+ }
+
+ public:
+ bool isUndefined() const { return value().isUndefined(); }
+ bool isNull() const { return value().isNull(); }
+ bool isBoolean() const { return value().isBoolean(); }
+ bool isTrue() const { return value().isTrue(); }
+ bool isFalse() const { return value().isFalse(); }
+ bool isNumber() const { return value().isNumber(); }
+ bool isInt32() const { return value().isInt32(); }
+ bool isInt32(int32_t i32) const { return value().isInt32(i32); }
+ bool isDouble() const { return value().isDouble(); }
+ bool isString() const { return value().isString(); }
+ bool isSymbol() const { return value().isSymbol(); }
+ bool isBigInt() const { return value().isBigInt(); }
+ bool isObject() const { return value().isObject(); }
+#ifdef ENABLE_RECORD_TUPLE
+ bool isExtendedPrimitive() const { return value().isExtendedPrimitive(); }
+#endif
+ bool hasObjectPayload() const { return value().hasObjectPayload(); }
+ bool isMagic() const { return value().isMagic(); }
+ bool isMagic(JSWhyMagic why) const { return value().isMagic(why); }
+ bool isGCThing() const { return value().isGCThing(); }
+ bool isPrivateGCThing() const { return value().isPrivateGCThing(); }
+ bool isPrimitive() const { return value().isPrimitive(); }
+
+ bool isNullOrUndefined() const { return value().isNullOrUndefined(); }
+ bool isObjectOrNull() const { return value().isObjectOrNull(); }
+ bool isNumeric() const { return value().isNumeric(); }
+
+ bool toBoolean() const { return value().toBoolean(); }
+ double toNumber() const { return value().toNumber(); }
+ int32_t toInt32() const { return value().toInt32(); }
+ double toDouble() const { return value().toDouble(); }
+ JSString* toString() const { return value().toString(); }
+ JS::Symbol* toSymbol() const { return value().toSymbol(); }
+ JS::BigInt* toBigInt() const { return value().toBigInt(); }
+ JSObject& toObject() const { return value().toObject(); }
+ JSObject* toObjectOrNull() const { return value().toObjectOrNull(); }
+#ifdef ENABLE_RECORD_TUPLE
+ JSObject& toExtendedPrimitive() const {
+ return value().toExtendedPrimitive();
+ }
+#endif
+ JSObject& getObjectPayload() const { return value().getObjectPayload(); }
+ JS::GCCellPtr toGCCellPtr() const { return value().toGCCellPtr(); }
+ gc::Cell* toGCThing() const { return value().toGCThing(); }
+ JS::TraceKind traceKind() const { return value().traceKind(); }
+ void* toPrivate() const { return value().toPrivate(); }
+ uint32_t toPrivateUint32() const { return value().toPrivateUint32(); }
+
+ uint64_t asRawBits() const { return value().asRawBits(); }
+ JSValueType extractNonDoubleType() const {
+ return value().extractNonDoubleType();
+ }
+ JS::ValueType type() const { return value().type(); }
+
+ JSWhyMagic whyMagic() const { return value().whyMagic(); }
+ uint32_t magicUint32() const { return value().magicUint32(); }
+};
+
+/**
+ * A class designed for CRTP use in implementing all the mutating parts of the
+ * Value interface in Value-like classes. Wrapper must be a class inheriting
+ * MutableWrappedPtrOperations<Wrapper> with visible get() methods returning
+ * const and non-const references to the Value abstracted by Wrapper.
+ */
+template <class Wrapper>
+class MutableWrappedPtrOperations<JS::Value, Wrapper>
+ : public WrappedPtrOperations<JS::Value, Wrapper> {
+ protected:
+ void set(const JS::Value& v) {
+ // Call Wrapper::set to trigger any barriers.
+ static_cast<Wrapper*>(this)->set(v);
+ }
+
+ public:
+ void setNull() { set(JS::NullValue()); }
+ void setUndefined() { set(JS::UndefinedValue()); }
+ void setInt32(int32_t i) { set(JS::Int32Value(i)); }
+ void setDouble(double d) { set(JS::DoubleValue(d)); }
+ void setNaN() { set(JS::NaNValue()); }
+ void setInfinity() { set(JS::InfinityValue()); }
+ void setBoolean(bool b) { set(JS::BooleanValue(b)); }
+ void setMagic(JSWhyMagic why) { set(JS::MagicValue(why)); }
+ template <typename T>
+ void setNumber(T t) {
+ set(JS::NumberValue(t));
+ }
+ void setString(JSString* str) { set(JS::StringValue(str)); }
+ void setSymbol(JS::Symbol* sym) { set(JS::SymbolValue(sym)); }
+ void setBigInt(JS::BigInt* bi) { set(JS::BigIntValue(bi)); }
+ void setObject(JSObject& obj) { set(JS::ObjectValue(obj)); }
+ void setObjectOrNull(JSObject* arg) { set(JS::ObjectOrNullValue(arg)); }
+#ifdef ENABLE_RECORD_TUPLE
+ void setExtendedPrimitive(JSObject& obj) {
+ return set(JS::ExtendedPrimitiveValue(obj));
+ }
+#endif
+ void setPrivate(void* ptr) { set(JS::PrivateValue(ptr)); }
+ void setPrivateUint32(uint32_t ui) { set(JS::PrivateUint32Value(ui)); }
+ void setPrivateGCThing(js::gc::Cell* cell) {
+ set(JS::PrivateGCThingValue(cell));
+ }
+};
+
+/*
+ * Augment the generic Heap<T> interface when T = Value with
+ * type-querying, value-extracting, and mutating operations.
+ */
+template <typename Wrapper>
+class HeapOperations<JS::Value, Wrapper>
+ : public MutableWrappedPtrOperations<JS::Value, Wrapper> {};
+
+MOZ_HAVE_NORETURN MOZ_COLD MOZ_NEVER_INLINE void ReportBadValueTypeAndCrash(
+ const JS::Value& val);
+
+// If the Value is a GC pointer type, call |f| with the pointer cast to that
+// type and return the result wrapped in a Maybe, otherwise return None().
+template <typename F>
+auto MapGCThingTyped(const JS::Value& val, F&& f) {
+ switch (val.type()) {
+ case JS::ValueType::String: {
+ JSString* str = val.toString();
+ MOZ_ASSERT(gc::IsCellPointerValid(str));
+ return mozilla::Some(f(str));
+ }
+#ifdef ENABLE_RECORD_TUPLE
+ case JS::ValueType::ExtendedPrimitive:
+#endif
+ case JS::ValueType::Object: {
+ JSObject* obj = &val.getObjectPayload();
+ MOZ_ASSERT(gc::IsCellPointerValid(obj));
+ return mozilla::Some(f(obj));
+ }
+ case JS::ValueType::Symbol: {
+ JS::Symbol* sym = val.toSymbol();
+ MOZ_ASSERT(gc::IsCellPointerValid(sym));
+ return mozilla::Some(f(sym));
+ }
+ case JS::ValueType::BigInt: {
+ JS::BigInt* bi = val.toBigInt();
+ MOZ_ASSERT(gc::IsCellPointerValid(bi));
+ return mozilla::Some(f(bi));
+ }
+ case JS::ValueType::PrivateGCThing: {
+ MOZ_ASSERT(gc::IsCellPointerValid(val.toGCThing()));
+ return mozilla::Some(MapGCThingTyped(val.toGCCellPtr(), std::move(f)));
+ }
+ case JS::ValueType::Double:
+ case JS::ValueType::Int32:
+ case JS::ValueType::Boolean:
+ case JS::ValueType::Undefined:
+ case JS::ValueType::Null:
+ case JS::ValueType::Magic: {
+ MOZ_ASSERT(!val.isGCThing());
+ using ReturnType = decltype(f(static_cast<JSObject*>(nullptr)));
+ return mozilla::Maybe<ReturnType>();
+ }
+ }
+
+ ReportBadValueTypeAndCrash(val);
+}
+
+// If the Value is a GC pointer type, call |f| with the pointer cast to that
+// type. Return whether this happened.
+template <typename F>
+bool ApplyGCThingTyped(const JS::Value& val, F&& f) {
+ return MapGCThingTyped(val,
+ [&f](auto t) {
+ f(t);
+ return true;
+ })
+ .isSome();
+}
+
+static inline JS::Value PoisonedObjectValue(uintptr_t poison) {
+ JS::Value v;
+ v.setObjectNoCheck(reinterpret_cast<JSObject*>(poison));
+ return v;
+}
+
+} // namespace js
+
+#ifdef DEBUG
+namespace JS {
+
+MOZ_ALWAYS_INLINE void AssertValueIsNotGray(const Value& value) {
+ if (value.isGCThing()) {
+ AssertCellIsNotGray(value.toGCThing());
+ }
+}
+
+MOZ_ALWAYS_INLINE void AssertValueIsNotGray(const Heap<Value>& value) {
+ AssertValueIsNotGray(value.unbarrieredGet());
+}
+
+} // namespace JS
+#endif
+
+/************************************************************************/
+
+namespace JS {
+
+extern JS_PUBLIC_DATA const HandleValue NullHandleValue;
+extern JS_PUBLIC_DATA const HandleValue UndefinedHandleValue;
+extern JS_PUBLIC_DATA const HandleValue TrueHandleValue;
+extern JS_PUBLIC_DATA const HandleValue FalseHandleValue;
+extern JS_PUBLIC_DATA const Handle<mozilla::Maybe<Value>> NothingHandleValue;
+
+} // namespace JS
+
+#endif /* js_Value_h */