diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-19 01:47:29 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-19 01:47:29 +0000 |
commit | 0ebf5bdf043a27fd3dfb7f92e0cb63d88954c44d (patch) | |
tree | a31f07c9bcca9d56ce61e9a1ffd30ef350d513aa /js/src/jit/arm | |
parent | Initial commit. (diff) | |
download | firefox-esr-0ebf5bdf043a27fd3dfb7f92e0cb63d88954c44d.tar.xz firefox-esr-0ebf5bdf043a27fd3dfb7f92e0cb63d88954c44d.zip |
Adding upstream version 115.8.0esr.upstream/115.8.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'js/src/jit/arm')
29 files changed, 32951 insertions, 0 deletions
diff --git a/js/src/jit/arm/Architecture-arm.cpp b/js/src/jit/arm/Architecture-arm.cpp new file mode 100644 index 0000000000..d4c5026705 --- /dev/null +++ b/js/src/jit/arm/Architecture-arm.cpp @@ -0,0 +1,540 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "jit/arm/Architecture-arm.h" + +#if !defined(JS_SIMULATOR_ARM) && !defined(__APPLE__) +# include <elf.h> +#endif + +#include <fcntl.h> +#ifdef XP_UNIX +# include <unistd.h> +#endif + +#if defined(XP_IOS) +# include <libkern/OSCacheControl.h> +#endif + +#include "jit/arm/Assembler-arm.h" +#include "jit/arm/Simulator-arm.h" +#include "jit/FlushICache.h" // js::jit::FlushICache +#include "jit/RegisterSets.h" + +#if !defined(__linux__) || defined(ANDROID) || defined(JS_SIMULATOR_ARM) +// The Android NDK and B2G do not include the hwcap.h kernel header, and it is +// not defined when building the simulator, so inline the header defines we +// need. +# define HWCAP_VFP (1 << 6) +# define HWCAP_NEON (1 << 12) +# define HWCAP_VFPv3 (1 << 13) +# define HWCAP_VFPv3D16 (1 << 14) /* also set for VFPv4-D16 */ +# define HWCAP_VFPv4 (1 << 16) +# define HWCAP_IDIVA (1 << 17) +# define HWCAP_IDIVT (1 << 18) +# define HWCAP_VFPD32 (1 << 19) /* set if VFP has 32 regs (not 16) */ +# define AT_HWCAP 16 +#else +# include <asm/hwcap.h> +# if !defined(HWCAP_IDIVA) +# define HWCAP_IDIVA (1 << 17) +# endif +# if !defined(HWCAP_VFPD32) +# define HWCAP_VFPD32 (1 << 19) /* set if VFP has 32 regs (not 16) */ +# endif +#endif + +namespace js { +namespace jit { + +// Parse the Linux kernel cpuinfo features. This is also used to parse the +// override features which has some extensions: 'armv7', 'align' and 'hardfp'. +static uint32_t ParseARMCpuFeatures(const char* features, + bool override = false) { + uint32_t flags = 0; + + // For ease of running tests we want it to be the default to fixup faults. + bool fixupAlignmentFault = true; + + for (;;) { + char ch = *features; + if (!ch) { + // End of string. + break; + } + if (ch == ' ' || ch == ',') { + // Skip separator characters. + features++; + continue; + } + // Find the end of the token. + const char* end = features + 1; + for (;; end++) { + ch = *end; + if (!ch || ch == ' ' || ch == ',') { + break; + } + } + size_t count = end - features; + if (count == 3 && strncmp(features, "vfp", 3) == 0) { + flags |= HWCAP_VFP; + } else if (count == 5 && strncmp(features, "vfpv2", 5) == 0) { + flags |= HWCAP_VFP; // vfpv2 is the same as vfp + } else if (count == 4 && strncmp(features, "neon", 4) == 0) { + flags |= HWCAP_NEON; + } else if (count == 5 && strncmp(features, "vfpv3", 5) == 0) { + flags |= HWCAP_VFPv3; + } else if (count == 8 && strncmp(features, "vfpv3d16", 8) == 0) { + flags |= HWCAP_VFPv3D16; + } else if (count == 5 && strncmp(features, "vfpv4", 5) == 0) { + flags |= HWCAP_VFPv4; + } else if (count == 5 && strncmp(features, "idiva", 5) == 0) { + flags |= HWCAP_IDIVA; + } else if (count == 5 && strncmp(features, "idivt", 5) == 0) { + flags |= HWCAP_IDIVT; + } else if (count == 6 && strncmp(features, "vfpd32", 6) == 0) { + flags |= HWCAP_VFPD32; + } else if (count == 5 && strncmp(features, "armv7", 5) == 0) { + flags |= HWCAP_ARMv7; + } else if (count == 5 && strncmp(features, "align", 5) == 0) { + flags |= HWCAP_ALIGNMENT_FAULT | HWCAP_FIXUP_FAULT; +#if defined(JS_SIMULATOR_ARM) + } else if (count == 7 && strncmp(features, "nofixup", 7) == 0) { + fixupAlignmentFault = false; + } else if (count == 6 && strncmp(features, "hardfp", 6) == 0) { + flags |= HWCAP_USE_HARDFP_ABI; +#endif + } else if (override) { + fprintf(stderr, "Warning: unexpected ARM feature at: %s\n", features); + } + features = end; + } + + if (!fixupAlignmentFault) { + flags &= ~HWCAP_FIXUP_FAULT; + } + + return flags; +} + +static uint32_t CanonicalizeARMHwCapFlags(uint32_t flags) { + // Canonicalize the flags. These rules are also applied to the features + // supplied for simulation. + + // VFPv3 is a subset of VFPv4, force this if the input string omits it. + if (flags & HWCAP_VFPv4) { + flags |= HWCAP_VFPv3; + } + + // The VFPv3 feature is expected when the VFPv3D16 is reported, but add it + // just in case of a kernel difference in feature reporting. + if (flags & HWCAP_VFPv3D16) { + flags |= HWCAP_VFPv3; + } + + // VFPv2 is a subset of VFPv3, force this if the input string omits it. VFPv2 + // is just an alias for VFP. + if (flags & HWCAP_VFPv3) { + flags |= HWCAP_VFP; + } + + // If we have Neon we have floating point. + if (flags & HWCAP_NEON) { + flags |= HWCAP_VFP; + } + + // If VFPv3 or Neon is supported then this must be an ARMv7. + if (flags & (HWCAP_VFPv3 | HWCAP_NEON)) { + flags |= HWCAP_ARMv7; + } + + // Some old kernels report VFP and not VFPv3, but if ARMv7 then it must be + // VFPv3. + if ((flags & HWCAP_VFP) && (flags & HWCAP_ARMv7)) { + flags |= HWCAP_VFPv3; + } + + // Older kernels do not implement the HWCAP_VFPD32 flag. + if ((flags & HWCAP_VFPv3) && !(flags & HWCAP_VFPv3D16)) { + flags |= HWCAP_VFPD32; + } + + return flags; +} + +#if !defined(JS_SIMULATOR_ARM) && (defined(__linux__) || defined(ANDROID)) +static bool forceDoubleCacheFlush = false; +#endif + +// The override flags parsed from the ARMHWCAP environment variable or from the +// --arm-hwcap js shell argument. They are stable after startup: there is no +// longer a programmatic way of setting these from JS. +volatile uint32_t armHwCapFlags = HWCAP_UNINITIALIZED; + +bool CPUFlagsHaveBeenComputed() { return armHwCapFlags != HWCAP_UNINITIALIZED; } + +static const char* gArmHwCapString = nullptr; + +void SetARMHwCapFlagsString(const char* armHwCap) { + MOZ_ASSERT(!CPUFlagsHaveBeenComputed()); + gArmHwCapString = armHwCap; +} + +static void ParseARMHwCapFlags(const char* armHwCap) { + MOZ_ASSERT(armHwCap); + + if (strstr(armHwCap, "help")) { + fflush(NULL); + printf( + "\n" + "usage: ARMHWCAP=option,option,option,... where options can be:\n" + "\n" + " vfp \n" + " neon \n" + " vfpv3 \n" + " vfpv3d16 \n" + " vfpv4 \n" + " idiva \n" + " idivt \n" + " vfpd32 \n" + " armv7 \n" + " align - unaligned accesses will trap and be emulated\n" +#ifdef JS_SIMULATOR_ARM + " nofixup - disable emulation of unaligned accesses\n" + " hardfp \n" +#endif + "\n"); + exit(0); + /*NOTREACHED*/ + } + + uint32_t flags = ParseARMCpuFeatures(armHwCap, /* override = */ true); + +#ifdef JS_CODEGEN_ARM_HARDFP + flags |= HWCAP_USE_HARDFP_ABI; +#endif + + armHwCapFlags = CanonicalizeARMHwCapFlags(flags); + JitSpew(JitSpew_Codegen, "ARM HWCAP: 0x%x\n", armHwCapFlags); +} + +void InitARMFlags() { + MOZ_RELEASE_ASSERT(armHwCapFlags == HWCAP_UNINITIALIZED); + + if (const char* env = getenv("ARMHWCAP")) { + ParseARMHwCapFlags(env); + return; + } + + if (gArmHwCapString) { + ParseARMHwCapFlags(gArmHwCapString); + return; + } + + uint32_t flags = 0; +#ifdef JS_SIMULATOR_ARM + // HWCAP_FIXUP_FAULT is on by default even if HWCAP_ALIGNMENT_FAULT is + // not on by default, because some memory access instructions always fault. + // Notably, this is true for floating point accesses. + flags = HWCAP_ARMv7 | HWCAP_VFP | HWCAP_VFPv3 | HWCAP_VFPv4 | HWCAP_NEON | + HWCAP_IDIVA | HWCAP_FIXUP_FAULT; +#else + +# if defined(__linux__) || defined(ANDROID) + // This includes Android and B2G. + bool readAuxv = false; + int fd = open("/proc/self/auxv", O_RDONLY); + if (fd > 0) { + struct { + uint32_t a_type; + uint32_t a_val; + } aux; + while (read(fd, &aux, sizeof(aux))) { + if (aux.a_type == AT_HWCAP) { + flags = aux.a_val; + readAuxv = true; + break; + } + } + close(fd); + } + + FILE* fp = fopen("/proc/cpuinfo", "r"); + if (fp) { + char buf[1024] = {}; + size_t len = fread(buf, sizeof(char), sizeof(buf) - 1, fp); + fclose(fp); + buf[len] = '\0'; + + // Read the cpuinfo Features if the auxv is not available. + if (!readAuxv) { + char* featureList = strstr(buf, "Features"); + if (featureList) { + if (char* featuresEnd = strstr(featureList, "\n")) { + *featuresEnd = '\0'; + } + flags = ParseARMCpuFeatures(featureList + 8); + } + if (strstr(buf, "ARMv7")) { + flags |= HWCAP_ARMv7; + } + } + + // The exynos7420 cpu (EU galaxy S6 (Note)) has a bug where sometimes + // flushing doesn't invalidate the instruction cache. As a result we force + // it by calling the cacheFlush twice on different start addresses. + char* exynos7420 = strstr(buf, "Exynos7420"); + if (exynos7420) { + forceDoubleCacheFlush = true; + } + } +# endif + + // If compiled to use specialized features then these features can be + // assumed to be present otherwise the compiler would fail to run. + +# ifdef JS_CODEGEN_ARM_HARDFP + // Compiled to use the hardfp ABI. + flags |= HWCAP_USE_HARDFP_ABI; +# endif + +# if defined(__VFP_FP__) && !defined(__SOFTFP__) + // Compiled to use VFP instructions so assume VFP support. + flags |= HWCAP_VFP; +# endif + +# if defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) + // Compiled to use ARMv7 instructions so assume the ARMv7 arch. + flags |= HWCAP_ARMv7; +# endif + +# if defined(__APPLE__) +# if defined(__ARM_NEON__) + flags |= HWCAP_NEON; +# endif +# if defined(__ARMVFPV3__) + flags |= HWCAP_VFPv3 | HWCAP_VFPD32 +# endif +# endif + +#endif // JS_SIMULATOR_ARM + + armHwCapFlags = CanonicalizeARMHwCapFlags(flags); + + JitSpew(JitSpew_Codegen, "ARM HWCAP: 0x%x\n", armHwCapFlags); + return; +} + +uint32_t GetARMFlags() { + MOZ_ASSERT(armHwCapFlags != HWCAP_UNINITIALIZED); + return armHwCapFlags; +} + +bool HasNEON() { + MOZ_ASSERT(armHwCapFlags != HWCAP_UNINITIALIZED); + return armHwCapFlags & HWCAP_NEON; +} + +bool HasARMv7() { + MOZ_ASSERT(armHwCapFlags != HWCAP_UNINITIALIZED); + return armHwCapFlags & HWCAP_ARMv7; +} + +bool HasMOVWT() { + MOZ_ASSERT(armHwCapFlags != HWCAP_UNINITIALIZED); + return armHwCapFlags & HWCAP_ARMv7; +} + +bool HasLDSTREXBHD() { + // These are really available from ARMv6K and later, but why bother? + MOZ_ASSERT(armHwCapFlags != HWCAP_UNINITIALIZED); + return armHwCapFlags & HWCAP_ARMv7; +} + +bool HasDMBDSBISB() { + MOZ_ASSERT(armHwCapFlags != HWCAP_UNINITIALIZED); + return armHwCapFlags & HWCAP_ARMv7; +} + +bool HasVFPv3() { + MOZ_ASSERT(armHwCapFlags != HWCAP_UNINITIALIZED); + return armHwCapFlags & HWCAP_VFPv3; +} + +bool HasVFP() { + MOZ_ASSERT(armHwCapFlags != HWCAP_UNINITIALIZED); + return armHwCapFlags & HWCAP_VFP; +} + +bool Has32DP() { + MOZ_ASSERT(armHwCapFlags != HWCAP_UNINITIALIZED); + return armHwCapFlags & HWCAP_VFPD32; +} + +bool HasIDIV() { + MOZ_ASSERT(armHwCapFlags != HWCAP_UNINITIALIZED); + return armHwCapFlags & HWCAP_IDIVA; +} + +// This is defined in the header and inlined when not using the simulator. +#ifdef JS_SIMULATOR_ARM +bool UseHardFpABI() { + MOZ_ASSERT(armHwCapFlags != HWCAP_UNINITIALIZED); + return armHwCapFlags & HWCAP_USE_HARDFP_ABI; +} +#endif + +Registers::Code Registers::FromName(const char* name) { + // Check for some register aliases first. + if (strcmp(name, "ip") == 0) { + return ip; + } + if (strcmp(name, "r13") == 0) { + return r13; + } + if (strcmp(name, "lr") == 0) { + return lr; + } + if (strcmp(name, "r15") == 0) { + return r15; + } + + for (size_t i = 0; i < Total; i++) { + if (strcmp(GetName(i), name) == 0) { + return Code(i); + } + } + + return Invalid; +} + +FloatRegisters::Code FloatRegisters::FromName(const char* name) { + for (size_t i = 0; i < TotalSingle; ++i) { + if (strcmp(GetSingleName(Encoding(i)), name) == 0) { + return VFPRegister(i, VFPRegister::Single).code(); + } + } + for (size_t i = 0; i < TotalDouble; ++i) { + if (strcmp(GetDoubleName(Encoding(i)), name) == 0) { + return VFPRegister(i, VFPRegister::Double).code(); + } + } + + return Invalid; +} + +FloatRegisterSet VFPRegister::ReduceSetForPush(const FloatRegisterSet& s) { +#ifdef ENABLE_WASM_SIMD +# error "Needs more careful logic if SIMD is enabled" +#endif + + LiveFloatRegisterSet mod; + for (FloatRegisterIterator iter(s); iter.more(); ++iter) { + if ((*iter).isSingle()) { + // Add in just this float. + mod.addUnchecked(*iter); + } else if ((*iter).id() < 16) { + // A double with an overlay, add in both floats. + mod.addUnchecked((*iter).singleOverlay(0)); + mod.addUnchecked((*iter).singleOverlay(1)); + } else { + // Add in the lone double in the range 16-31. + mod.addUnchecked(*iter); + } + } + return mod.set(); +} + +uint32_t VFPRegister::GetPushSizeInBytes(const FloatRegisterSet& s) { +#ifdef ENABLE_WASM_SIMD +# error "Needs more careful logic if SIMD is enabled" +#endif + + FloatRegisterSet ss = s.reduceSetForPush(); + uint64_t bits = ss.bits(); + uint32_t ret = mozilla::CountPopulation32(bits & 0xffffffff) * sizeof(float); + ret += mozilla::CountPopulation32(bits >> 32) * sizeof(double); + return ret; +} +uint32_t VFPRegister::getRegisterDumpOffsetInBytes() { +#ifdef ENABLE_WASM_SIMD +# error "Needs more careful logic if SIMD is enabled" +#endif + + if (isSingle()) { + return id() * sizeof(float); + } + if (isDouble()) { + return id() * sizeof(double); + } + MOZ_CRASH("not Single or Double"); +} + +uint32_t FloatRegisters::ActualTotalPhys() { + if (Has32DP()) { + return 32; + } + return 16; +} + +void FlushICache(void* code, size_t size) { +#if defined(JS_SIMULATOR_ARM) + js::jit::SimulatorProcess::FlushICache(code, size); + +#elif (defined(__linux__) || defined(ANDROID)) && defined(__GNUC__) + void* end = (void*)(reinterpret_cast<char*>(code) + size); + asm volatile( + "push {r7}\n" + "mov r0, %0\n" + "mov r1, %1\n" + "mov r7, #0xf0000\n" + "add r7, r7, #0x2\n" + "mov r2, #0x0\n" + "svc 0x0\n" + "pop {r7}\n" + : + : "r"(code), "r"(end) + : "r0", "r1", "r2"); + + if (forceDoubleCacheFlush) { + void* start = (void*)((uintptr_t)code + 1); + asm volatile( + "push {r7}\n" + "mov r0, %0\n" + "mov r1, %1\n" + "mov r7, #0xf0000\n" + "add r7, r7, #0x2\n" + "mov r2, #0x0\n" + "svc 0x0\n" + "pop {r7}\n" + : + : "r"(start), "r"(end) + : "r0", "r1", "r2"); + } + +#elif defined(__FreeBSD__) || defined(__NetBSD__) + __clear_cache(code, reinterpret_cast<char*>(code) + size); + +#elif defined(XP_IOS) + sys_icache_invalidate(code, size); + +#else +# error "Unexpected platform" +#endif +} + +void FlushExecutionContext() { +#ifndef JS_SIMULATOR_ARM + // Ensure that any instructions already in the pipeline are discarded and + // reloaded from the icache. + asm volatile("isb\n" : : : "memory"); +#else + // We assume the icache flushing routines on other platforms take care of this +#endif +} + +} // namespace jit +} // namespace js diff --git a/js/src/jit/arm/Architecture-arm.h b/js/src/jit/arm/Architecture-arm.h new file mode 100644 index 0000000000..fa2ae8e0ed --- /dev/null +++ b/js/src/jit/arm/Architecture-arm.h @@ -0,0 +1,733 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifndef jit_arm_Architecture_arm_h +#define jit_arm_Architecture_arm_h + +#include "mozilla/MathAlgorithms.h" + +#include <algorithm> +#include <limits.h> +#include <stdint.h> + +#include "jit/shared/Architecture-shared.h" + +#include "js/Utility.h" + +// GCC versions 4.6 and above define __ARM_PCS_VFP to denote a hard-float +// ABI target. The iOS toolchain doesn't define anything specific here, +// but iOS always supports VFP. +#if defined(__ARM_PCS_VFP) || defined(XP_IOS) +# define JS_CODEGEN_ARM_HARDFP +#endif + +namespace js { +namespace jit { + +// These offsets are specific to nunboxing, and capture offsets into the +// components of a js::Value. +static const int32_t NUNBOX32_TYPE_OFFSET = 4; +static const int32_t NUNBOX32_PAYLOAD_OFFSET = 0; + +static const uint32_t ShadowStackSpace = 0; + +// How far forward/back can a jump go? Provide a generous buffer for thunks. +static const uint32_t JumpImmediateRange = 20 * 1024 * 1024; + +class Registers { + public: + enum RegisterID { + r0 = 0, + r1, + r2, + r3, + r4, + r5, + r6, + r7, + r8, + r9, + r10, + r11, + fp = r11, + r12, + ip = r12, + r13, + sp = r13, + r14, + lr = r14, + r15, + pc = r15, + invalid_reg + }; + typedef uint8_t Code; + typedef RegisterID Encoding; + + // Content spilled during bailouts. + union RegisterContent { + uintptr_t r; + }; + + static const char* GetName(Code code) { + MOZ_ASSERT(code < Total); + static const char* const Names[] = {"r0", "r1", "r2", "r3", "r4", "r5", + "r6", "r7", "r8", "r9", "r10", "r11", + "r12", "sp", "r14", "pc"}; + return Names[code]; + } + static const char* GetName(Encoding i) { return GetName(Code(i)); } + + static Code FromName(const char* name); + + static const Encoding StackPointer = sp; + static const Encoding Invalid = invalid_reg; + + static const uint32_t Total = 16; + static const uint32_t Allocatable = 13; + + typedef uint32_t SetType; + + static const SetType AllMask = (1 << Total) - 1; + static const SetType ArgRegMask = + (1 << r0) | (1 << r1) | (1 << r2) | (1 << r3); + + static const SetType VolatileMask = + (1 << r0) | (1 << r1) | (1 << Registers::r2) | + (1 << Registers::r3) +#if defined(XP_IOS) + // per + // https://developer.apple.com/library/ios/documentation/Xcode/Conceptual/iPhoneOSABIReference/Articles/ARMv6FunctionCallingConventions.html#//apple_ref/doc/uid/TP40009021-SW4 + | (1 << Registers::r9) +#endif + ; + + static const SetType NonVolatileMask = + (1 << Registers::r4) | (1 << Registers::r5) | (1 << Registers::r6) | + (1 << Registers::r7) | (1 << Registers::r8) | +#if !defined(XP_IOS) + (1 << Registers::r9) | +#endif + (1 << Registers::r10) | (1 << Registers::r11) | (1 << Registers::r12) | + (1 << Registers::r14); + + static const SetType WrapperMask = VolatileMask | // = arguments + (1 << Registers::r4) | // = outReg + (1 << Registers::r5); // = argBase + + static const SetType NonAllocatableMask = + (1 << Registers::sp) | (1 << Registers::r12) | // r12 = ip = scratch + (1 << Registers::lr) | (1 << Registers::pc) | (1 << Registers::fp); + + // Registers returned from a JS -> JS call. + static const SetType JSCallMask = (1 << Registers::r2) | (1 << Registers::r3); + + // Registers returned from a JS -> C call. + static const SetType CallMask = + (1 << Registers::r0) | + (1 << Registers::r1); // Used for double-size returns. + + static const SetType AllocatableMask = AllMask & ~NonAllocatableMask; + + static uint32_t SetSize(SetType x) { + static_assert(sizeof(SetType) == 4, "SetType must be 32 bits"); + return mozilla::CountPopulation32(x); + } + static uint32_t FirstBit(SetType x) { + return mozilla::CountTrailingZeroes32(x); + } + static uint32_t LastBit(SetType x) { + return 31 - mozilla::CountLeadingZeroes32(x); + } +}; + +// Smallest integer type that can hold a register bitmask. +typedef uint16_t PackedRegisterMask; + +class FloatRegisters { + public: + enum FPRegisterID { + s0, + s1, + s2, + s3, + s4, + s5, + s6, + s7, + s8, + s9, + s10, + s11, + s12, + s13, + s14, + s15, + s16, + s17, + s18, + s19, + s20, + s21, + s22, + s23, + s24, + s25, + s26, + s27, + s28, + s29, + s30, + s31, + d0, + d1, + d2, + d3, + d4, + d5, + d6, + d7, + d8, + d9, + d10, + d11, + d12, + d13, + d14, + d15, + d16, + d17, + d18, + d19, + d20, + d21, + d22, + d23, + d24, + d25, + d26, + d27, + d28, + d29, + d30, + d31, + invalid_freg + }; + + typedef uint32_t Code; + typedef FPRegisterID Encoding; + + // Content spilled during bailouts. + union RegisterContent { + double d; + }; + + static const char* GetDoubleName(Encoding code) { + static const char* const Names[] = { + "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", + "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", + "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23", + "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31"}; + return Names[code]; + } + static const char* GetSingleName(Encoding code) { + static const char* const Names[] = { + "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", + "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15", + "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23", + "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31"}; + return Names[code]; + } + + static Code FromName(const char* name); + + static const Encoding Invalid = invalid_freg; + static const uint32_t Total = 48; + static const uint32_t TotalDouble = 16; + static const uint32_t TotalSingle = 32; + static const uint32_t Allocatable = 45; + // There are only 32 places that we can put values. + static const uint32_t TotalPhys = 32; + static uint32_t ActualTotalPhys(); + + /* clang-format off */ + // ARM float registers overlap in a way that for 1 double registers, in the + // range d0-d15, we have 2 singles register in the range s0-s31. d16-d31 + // have no single register aliases. The aliasing rule state that d{n} + // aliases s{2n} and s{2n+1}, for n in [0 .. 15]. + // + // The register set is used to represent either allocatable register or live + // registers. The register maps d0-d15 and s0-s31 to a single bit each. The + // registers d16-d31 are not used at the moment. + // + // uuuu uuuu uuuu uuuu dddd dddd dddd dddd ssss ssss ssss ssss ssss ssss ssss ssss + // ^ ^ ^ ^ + // '-- d15 d0 --' '-- s31 s0 --' + // + // LiveSet are handled by adding the bit of each register without + // considering the aliases. + // + // AllocatableSet are handled by adding and removing the bit of each + // aligned-or-dominated-aliased registers. + // + // ...0...00... : s{2n}, s{2n+1} and d{n} are not available + // ...1...01... : s{2n} is available (*) + // ...0...10... : s{2n+1} is available + // ...1...11... : s{2n}, s{2n+1} and d{n} are available + // + // (*) Note that d{n} bit is set, but is not available because s{2n+1} bit + // is not set, which is required as d{n} dominates s{2n+1}. The d{n} bit is + // set, because s{2n} is aligned. + // + // | d{n} | + // | s{2n+1} | s{2n} | + // + /* clang-format on */ + typedef uint64_t SetType; + static const SetType AllSingleMask = (1ull << TotalSingle) - 1; + static const SetType AllDoubleMask = ((1ull << TotalDouble) - 1) + << TotalSingle; + static const SetType AllMask = AllDoubleMask | AllSingleMask; + + // d15 is the ScratchFloatReg. + static const SetType NonVolatileDoubleMask = + ((1ULL << d8) | (1ULL << d9) | (1ULL << d10) | (1ULL << d11) | + (1ULL << d12) | (1ULL << d13) | (1ULL << d14)); + // s30 and s31 alias d15. + static const SetType NonVolatileMask = + (NonVolatileDoubleMask | + ((1 << s16) | (1 << s17) | (1 << s18) | (1 << s19) | (1 << s20) | + (1 << s21) | (1 << s22) | (1 << s23) | (1 << s24) | (1 << s25) | + (1 << s26) | (1 << s27) | (1 << s28) | (1 << s29) | (1 << s30))); + + static const SetType VolatileMask = AllMask & ~NonVolatileMask; + static const SetType VolatileDoubleMask = + AllDoubleMask & ~NonVolatileDoubleMask; + + static const SetType WrapperMask = VolatileMask; + + // d15 is the ARM scratch float register. + // s30 and s31 alias d15. + static const SetType NonAllocatableMask = + ((1ULL << d15)) | (1ULL << s30) | (1ULL << s31); + + static const SetType AllocatableMask = AllMask & ~NonAllocatableMask; +}; + +static const uint32_t SpillSlotSize = + std::max(sizeof(Registers::RegisterContent), + sizeof(FloatRegisters::RegisterContent)); + +template <typename T> +class TypedRegisterSet; + +class VFPRegister { + public: + // What type of data is being stored in this register? UInt / Int are + // specifically for vcvt, where we need to know how the data is supposed to + // be converted. + enum RegType : uint8_t { Single = 0x0, Double = 0x1, UInt = 0x2, Int = 0x3 }; + + typedef FloatRegisters Codes; + typedef Codes::Code Code; + typedef Codes::Encoding Encoding; + + // Bitfields below are all uint32_t to make sure MSVC packs them correctly. + public: + // ARM doesn't have more than 32 registers of each type, so 5 bits should + // suffice. + uint32_t code_ : 5; + + protected: + uint32_t kind : 2; + uint32_t _isInvalid : 1; + uint32_t _isMissing : 1; + + public: + constexpr VFPRegister(uint32_t r, RegType k) + : code_(Code(r)), kind(k), _isInvalid(false), _isMissing(false) {} + constexpr VFPRegister() + : code_(Code(0)), kind(Double), _isInvalid(true), _isMissing(false) {} + + constexpr VFPRegister(RegType k, uint32_t id, bool invalid, bool missing) + : code_(Code(id)), kind(k), _isInvalid(invalid), _isMissing(missing) {} + + explicit constexpr VFPRegister(Code id) + : code_(id), kind(Double), _isInvalid(false), _isMissing(false) {} + bool operator==(const VFPRegister& other) const { + return kind == other.kind && code_ == other.code_ && + isInvalid() == other.isInvalid(); + } + bool operator!=(const VFPRegister& other) const { return !operator==(other); } + + bool isSingle() const { return kind == Single; } + bool isDouble() const { return kind == Double; } + bool isSimd128() const { return false; } + bool isFloat() const { return (kind == Double) || (kind == Single); } + bool isInt() const { return (kind == UInt) || (kind == Int); } + bool isSInt() const { return kind == Int; } + bool isUInt() const { return kind == UInt; } + bool equiv(const VFPRegister& other) const { return other.kind == kind; } + size_t size() const { return (kind == Double) ? 8 : 4; } + bool isInvalid() const { return _isInvalid; } + bool isMissing() const { + MOZ_ASSERT(!_isInvalid); + return _isMissing; + } + + VFPRegister doubleOverlay(unsigned int which = 0) const; + VFPRegister singleOverlay(unsigned int which = 0) const; + VFPRegister sintOverlay(unsigned int which = 0) const; + VFPRegister uintOverlay(unsigned int which = 0) const; + + VFPRegister asSingle() const { return singleOverlay(); } + VFPRegister asDouble() const { return doubleOverlay(); } + VFPRegister asSimd128() const { MOZ_CRASH("NYI"); } + + struct VFPRegIndexSplit; + VFPRegIndexSplit encode(); + + // For serializing values. + struct VFPRegIndexSplit { + const uint32_t block : 4; + const uint32_t bit : 1; + + private: + friend VFPRegIndexSplit js::jit::VFPRegister::encode(); + + VFPRegIndexSplit(uint32_t block_, uint32_t bit_) + : block(block_), bit(bit_) { + MOZ_ASSERT(block == block_); + MOZ_ASSERT(bit == bit_); + } + }; + + Code code() const { + MOZ_ASSERT(!_isInvalid && !_isMissing); + // This should only be used in areas where we only have doubles and + // singles. + MOZ_ASSERT(isFloat()); + return Code(code_ | (kind << 5)); + } + Encoding encoding() const { + MOZ_ASSERT(!_isInvalid && !_isMissing); + return Encoding(code_); + } + uint32_t id() const { return code_; } + static VFPRegister FromCode(uint32_t i) { + uint32_t code = i & 31; + uint32_t kind = i >> 5; + return VFPRegister(code, RegType(kind)); + } + bool volatile_() const { + if (isDouble()) { + return !!((1ULL << (code_ >> 1)) & FloatRegisters::VolatileMask); + } + return !!((1ULL << code_) & FloatRegisters::VolatileMask); + } + const char* name() const { + if (isDouble()) { + return FloatRegisters::GetDoubleName(Encoding(code_)); + } + return FloatRegisters::GetSingleName(Encoding(code_)); + } + bool aliases(const VFPRegister& other) { + if (kind == other.kind) { + return code_ == other.code_; + } + return doubleOverlay() == other.doubleOverlay(); + } + static const int NumAliasedDoubles = 16; + uint32_t numAliased() const { + if (isDouble()) { + if (code_ < NumAliasedDoubles) { + return 3; + } + return 1; + } + return 2; + } + + VFPRegister aliased(uint32_t aliasIdx) { + if (aliasIdx == 0) { + return *this; + } + if (isDouble()) { + MOZ_ASSERT(code_ < NumAliasedDoubles); + MOZ_ASSERT(aliasIdx <= 2); + return singleOverlay(aliasIdx - 1); + } + MOZ_ASSERT(aliasIdx == 1); + return doubleOverlay(aliasIdx - 1); + } + uint32_t numAlignedAliased() const { + if (isDouble()) { + if (code_ < NumAliasedDoubles) { + return 2; + } + return 1; + } + // s1 has 0 other aligned aliases, 1 total. + // s0 has 1 other aligned aliase, 2 total. + return 2 - (code_ & 1); + } + // | d0 | + // | s0 | s1 | + // If we've stored s0 and s1 in memory, we also want to say that d0 is + // stored there, but it is only stored at the location where it is aligned + // e.g. at s0, not s1. + VFPRegister alignedAliased(uint32_t aliasIdx) { + if (aliasIdx == 0) { + return *this; + } + MOZ_ASSERT(aliasIdx == 1); + if (isDouble()) { + MOZ_ASSERT(code_ < NumAliasedDoubles); + return singleOverlay(aliasIdx - 1); + } + MOZ_ASSERT((code_ & 1) == 0); + return doubleOverlay(aliasIdx - 1); + } + + typedef FloatRegisters::SetType SetType; + + // This function is used to ensure that Register set can take all Single + // registers, even if we are taking a mix of either double or single + // registers. + // + // s0.alignedOrDominatedAliasedSet() == s0 | d0. + // s1.alignedOrDominatedAliasedSet() == s1. + // d0.alignedOrDominatedAliasedSet() == s0 | s1 | d0. + // + // This way the Allocatable register set does not have to do any arithmetics + // to know if a register is available or not, as we have the following + // relations: + // + // d0.alignedOrDominatedAliasedSet() == + // s0.alignedOrDominatedAliasedSet() | s1.alignedOrDominatedAliasedSet() + // + // s0.alignedOrDominatedAliasedSet() & s1.alignedOrDominatedAliasedSet() == 0 + // + SetType alignedOrDominatedAliasedSet() const { + if (isSingle()) { + if (code_ % 2 != 0) { + return SetType(1) << code_; + } + return (SetType(1) << code_) | (SetType(1) << (32 + code_ / 2)); + } + + MOZ_ASSERT(isDouble()); + return (SetType(0b11) << (code_ * 2)) | (SetType(1) << (32 + code_)); + } + + static constexpr RegTypeName DefaultType = RegTypeName::Float64; + + template <RegTypeName = DefaultType> + static SetType LiveAsIndexableSet(SetType s) { + return SetType(0); + } + + template <RegTypeName Name = DefaultType> + static SetType AllocatableAsIndexableSet(SetType s) { + static_assert(Name != RegTypeName::Any, "Allocatable set are not iterable"); + return SetType(0); + } + + static uint32_t SetSize(SetType x) { + static_assert(sizeof(SetType) == 8, "SetType must be 64 bits"); + return mozilla::CountPopulation32(x); + } + static Code FromName(const char* name) { + return FloatRegisters::FromName(name); + } + static TypedRegisterSet<VFPRegister> ReduceSetForPush( + const TypedRegisterSet<VFPRegister>& s); + static uint32_t GetPushSizeInBytes(const TypedRegisterSet<VFPRegister>& s); + uint32_t getRegisterDumpOffsetInBytes(); + static uint32_t FirstBit(SetType x) { + return mozilla::CountTrailingZeroes64(x); + } + static uint32_t LastBit(SetType x) { + return 63 - mozilla::CountLeadingZeroes64(x); + } +}; + +template <> +inline VFPRegister::SetType +VFPRegister::LiveAsIndexableSet<RegTypeName::Float32>(SetType set) { + return set & FloatRegisters::AllSingleMask; +} + +template <> +inline VFPRegister::SetType +VFPRegister::LiveAsIndexableSet<RegTypeName::Float64>(SetType set) { + return set & FloatRegisters::AllDoubleMask; +} + +template <> +inline VFPRegister::SetType VFPRegister::LiveAsIndexableSet<RegTypeName::Any>( + SetType set) { + return set; +} + +template <> +inline VFPRegister::SetType +VFPRegister::AllocatableAsIndexableSet<RegTypeName::Float32>(SetType set) { + // Single registers are not dominating any smaller registers, thus masking + // is enough to convert an allocatable set into a set of register list all + // single register available. + return set & FloatRegisters::AllSingleMask; +} + +template <> +inline VFPRegister::SetType +VFPRegister::AllocatableAsIndexableSet<RegTypeName::Float64>(SetType set) { + /* clang-format off */ + // An allocatable float register set is represented as follow: + // + // uuuu uuuu uuuu uuuu dddd dddd dddd dddd ssss ssss ssss ssss ssss ssss ssss ssss + // ^ ^ ^ ^ + // '-- d15 d0 --' '-- s31 s0 --' + // + // ...0...00... : s{2n}, s{2n+1} and d{n} are not available + // ...1...01... : s{2n} is available + // ...0...10... : s{2n+1} is available + // ...1...11... : s{2n}, s{2n+1} and d{n} are available + // + // The goal of this function is to return the set of double registers which + // are available as an indexable bit set. This implies that iff a double bit + // is set in the returned set, then the register is available. + // + // To do so, this functions converts the 32 bits set of single registers + // into a 16 bits set of equivalent double registers. Then, we mask out + // double registers which do not have all the single register that compose + // them. As d{n} bit is set when s{2n} is available, we only need to take + // s{2n+1} into account. + /* clang-format on */ + + // Convert s7s6s5s4 s3s2s1s0 into s7s5s3s1, for all s0-s31. + SetType s2d = AllocatableAsIndexableSet<RegTypeName::Float32>(set); + static_assert(FloatRegisters::TotalSingle == 32, "Wrong mask"); + s2d = (0xaaaaaaaa & s2d) >> 1; // Filter s{2n+1} registers. + // Group adjacent bits as follow: + // 0.0.s3.s1 == ((0.s3.0.s1) >> 1 | (0.s3.0.s1)) & 0b0011; + s2d = ((s2d >> 1) | s2d) & 0x33333333; // 0a0b --> 00ab + s2d = ((s2d >> 2) | s2d) & 0x0f0f0f0f; // 00ab00cd --> 0000abcd + s2d = ((s2d >> 4) | s2d) & 0x00ff00ff; + s2d = ((s2d >> 8) | s2d) & 0x0000ffff; + // Move the s7s5s3s1 to the aliased double positions. + s2d = s2d << FloatRegisters::TotalSingle; + + // Note: We currently do not use any representation for d16-d31. + static_assert(FloatRegisters::TotalDouble == 16, + "d16-d31 do not have a single register mapping"); + + // Filter out any double register which are not allocatable due to + // non-aligned dominated single registers. + return set & s2d; +} + +// The only floating point register set that we work with are the VFP Registers. +typedef VFPRegister FloatRegister; + +uint32_t GetARMFlags(); +bool HasARMv7(); +bool HasMOVWT(); +bool HasLDSTREXBHD(); // {LD,ST}REX{B,H,D} +bool HasDMBDSBISB(); // DMB, DSB, and ISB +bool HasVFPv3(); +bool HasVFP(); +bool Has32DP(); +bool HasIDIV(); +bool HasNEON(); + +extern volatile uint32_t armHwCapFlags; + +// Not part of the HWCAP flag, but we need to know these and these bits are not +// used. Define these here so that their use can be inlined by the simulator. + +// A bit to flag when signaled alignment faults are to be fixed up. +#define HWCAP_FIXUP_FAULT (1 << 24) + +// A bit to flag when the flags are uninitialized, so they can be atomically +// set. +#define HWCAP_UNINITIALIZED (1 << 25) + +// A bit to flag when alignment faults are enabled and signal. +#define HWCAP_ALIGNMENT_FAULT (1 << 26) + +// A bit to flag the use of the hardfp ABI. +#define HWCAP_USE_HARDFP_ABI (1 << 27) + +// A bit to flag the use of the ARMv7 arch, otherwise ARMv6. +#define HWCAP_ARMv7 (1 << 28) + +// Top three bits are reserved, do not use them. + +// Returns true when cpu alignment faults are enabled and signaled, and thus we +// should ensure loads and stores are aligned. +inline bool HasAlignmentFault() { + MOZ_ASSERT(armHwCapFlags != HWCAP_UNINITIALIZED); + return armHwCapFlags & HWCAP_ALIGNMENT_FAULT; +} + +#ifdef JS_SIMULATOR_ARM +// Returns true when cpu alignment faults will be fixed up by the +// "operating system", which functionality we will emulate. +inline bool FixupFault() { + MOZ_ASSERT(armHwCapFlags != HWCAP_UNINITIALIZED); + return armHwCapFlags & HWCAP_FIXUP_FAULT; +} +#endif + +// Arm/D32 has double registers that can NOT be treated as float32 and this +// requires some dances in lowering. +inline bool hasUnaliasedDouble() { return Has32DP(); } + +// On ARM, Dn aliases both S2n and S2n+1, so if you need to convert a float32 to +// a double as a temporary, you need a temporary double register. +inline bool hasMultiAlias() { return true; } + +// InitARMFlags is called from the JitContext constructor to read the hardware +// flags. The call is a no-op after the first call, or if the JS shell has +// already set the flags (it has a command line switch for this, see +// ParseARMHwCapFlags). +// +// If the environment variable ARMHWCAP is set then the flags are read from it +// instead; see ParseARMHwCapFlags. +void InitARMFlags(); + +// Register a string denoting ARM hardware flags. During engine initialization, +// these flags will then be used instead of the actual hardware capabilities. +// This must be called before JS_Init and the passed string's buffer must +// outlive the JS_Init call. +void SetARMHwCapFlagsString(const char* armHwCap); + +// Retrive the ARM hardware flags at a bitmask. They must have been set. +uint32_t GetARMFlags(); + +// If the simulator is used then the ABI choice is dynamic. Otherwise the ABI is +// static and useHardFpABI is inlined so that unused branches can be optimized +// away. +#ifdef JS_SIMULATOR_ARM +bool UseHardFpABI(); +#else +static inline bool UseHardFpABI() { +# if defined(JS_CODEGEN_ARM_HARDFP) + return true; +# else + return false; +# endif +} +#endif + +// In order to handle SoftFp ABI calls, we need to be able to express that we +// have ABIArg which are represented by pair of general purpose registers. +#define JS_CODEGEN_REGISTER_PAIR 1 + +} // namespace jit +} // namespace js + +#endif /* jit_arm_Architecture_arm_h */ diff --git a/js/src/jit/arm/Assembler-arm.cpp b/js/src/jit/arm/Assembler-arm.cpp new file mode 100644 index 0000000000..a1213b6f21 --- /dev/null +++ b/js/src/jit/arm/Assembler-arm.cpp @@ -0,0 +1,2832 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "jit/arm/Assembler-arm.h" + +#include "mozilla/DebugOnly.h" +#include "mozilla/MathAlgorithms.h" +#include "mozilla/Maybe.h" +#include "mozilla/Sprintf.h" + +#include <type_traits> + +#include "gc/Marking.h" +#include "jit/arm/disasm/Disasm-arm.h" +#include "jit/arm/MacroAssembler-arm.h" +#include "jit/AutoWritableJitCode.h" +#include "jit/ExecutableAllocator.h" +#include "jit/MacroAssembler.h" +#include "vm/Realm.h" + +using namespace js; +using namespace js::jit; + +using mozilla::CountLeadingZeroes32; +using mozilla::DebugOnly; + +using LabelDoc = DisassemblerSpew::LabelDoc; +using LiteralDoc = DisassemblerSpew::LiteralDoc; + +void dbg_break() {} + +// The ABIArgGenerator is used for making system ABI calls and for inter-wasm +// calls. The system ABI can either be SoftFp or HardFp, and inter-wasm calls +// are always HardFp calls. The initialization defaults to HardFp, and the ABI +// choice is made before any system ABI calls with the method "setUseHardFp". +ABIArgGenerator::ABIArgGenerator() + : intRegIndex_(0), + floatRegIndex_(0), + stackOffset_(0), + current_(), + useHardFp_(true) {} + +// See the "Parameter Passing" section of the "Procedure Call Standard for the +// ARM Architecture" documentation. +ABIArg ABIArgGenerator::softNext(MIRType type) { + switch (type) { + case MIRType::Int32: + case MIRType::Pointer: + case MIRType::RefOrNull: + case MIRType::StackResults: + if (intRegIndex_ == NumIntArgRegs) { + current_ = ABIArg(stackOffset_); + stackOffset_ += sizeof(uint32_t); + break; + } + current_ = ABIArg(Register::FromCode(intRegIndex_)); + intRegIndex_++; + break; + case MIRType::Int64: + // Make sure to use an even register index. Increase to next even number + // when odd. + intRegIndex_ = (intRegIndex_ + 1) & ~1; + if (intRegIndex_ == NumIntArgRegs) { + // Align the stack on 8 bytes. + static const uint32_t align = sizeof(uint64_t) - 1; + stackOffset_ = (stackOffset_ + align) & ~align; + current_ = ABIArg(stackOffset_); + stackOffset_ += sizeof(uint64_t); + break; + } + current_ = ABIArg(Register::FromCode(intRegIndex_), + Register::FromCode(intRegIndex_ + 1)); + intRegIndex_ += 2; + break; + case MIRType::Float32: + if (intRegIndex_ == NumIntArgRegs) { + current_ = ABIArg(stackOffset_); + stackOffset_ += sizeof(uint32_t); + break; + } + current_ = ABIArg(Register::FromCode(intRegIndex_)); + intRegIndex_++; + break; + case MIRType::Double: + // Make sure to use an even register index. Increase to next even number + // when odd. + intRegIndex_ = (intRegIndex_ + 1) & ~1; + if (intRegIndex_ == NumIntArgRegs) { + // Align the stack on 8 bytes. + static const uint32_t align = sizeof(double) - 1; + stackOffset_ = (stackOffset_ + align) & ~align; + current_ = ABIArg(stackOffset_); + stackOffset_ += sizeof(double); + break; + } + current_ = ABIArg(Register::FromCode(intRegIndex_), + Register::FromCode(intRegIndex_ + 1)); + intRegIndex_ += 2; + break; + default: + MOZ_CRASH("Unexpected argument type"); + } + + return current_; +} + +ABIArg ABIArgGenerator::hardNext(MIRType type) { + switch (type) { + case MIRType::Int32: + case MIRType::Pointer: + case MIRType::RefOrNull: + case MIRType::StackResults: + if (intRegIndex_ == NumIntArgRegs) { + current_ = ABIArg(stackOffset_); + stackOffset_ += sizeof(uint32_t); + break; + } + current_ = ABIArg(Register::FromCode(intRegIndex_)); + intRegIndex_++; + break; + case MIRType::Int64: + // Make sure to use an even register index. Increase to next even number + // when odd. + intRegIndex_ = (intRegIndex_ + 1) & ~1; + if (intRegIndex_ == NumIntArgRegs) { + // Align the stack on 8 bytes. + static const uint32_t align = sizeof(uint64_t) - 1; + stackOffset_ = (stackOffset_ + align) & ~align; + current_ = ABIArg(stackOffset_); + stackOffset_ += sizeof(uint64_t); + break; + } + current_ = ABIArg(Register::FromCode(intRegIndex_), + Register::FromCode(intRegIndex_ + 1)); + intRegIndex_ += 2; + break; + case MIRType::Float32: + if (floatRegIndex_ == NumFloatArgRegs) { + current_ = ABIArg(stackOffset_); + stackOffset_ += sizeof(uint32_t); + break; + } + current_ = ABIArg(VFPRegister(floatRegIndex_, VFPRegister::Single)); + floatRegIndex_++; + break; + case MIRType::Double: + // Double register are composed of 2 float registers, thus we have to + // skip any float register which cannot be used in a pair of float + // registers in which a double value can be stored. + floatRegIndex_ = (floatRegIndex_ + 1) & ~1; + if (floatRegIndex_ == NumFloatArgRegs) { + static const uint32_t align = sizeof(double) - 1; + stackOffset_ = (stackOffset_ + align) & ~align; + current_ = ABIArg(stackOffset_); + stackOffset_ += sizeof(uint64_t); + break; + } + current_ = ABIArg(VFPRegister(floatRegIndex_ >> 1, VFPRegister::Double)); + floatRegIndex_ += 2; + break; + default: + MOZ_CRASH("Unexpected argument type"); + } + + return current_; +} + +ABIArg ABIArgGenerator::next(MIRType type) { + if (useHardFp_) { + return hardNext(type); + } + return softNext(type); +} + +bool js::jit::IsUnaligned(const wasm::MemoryAccessDesc& access) { + if (!access.align()) { + return false; + } + + if (access.type() == Scalar::Float64 && access.align() >= 4) { + return false; + } + + return access.align() < access.byteSize(); +} + +// Encode a standard register when it is being used as src1, the dest, and an +// extra register. These should never be called with an InvalidReg. +uint32_t js::jit::RT(Register r) { + MOZ_ASSERT((r.code() & ~0xf) == 0); + return r.code() << 12; +} + +uint32_t js::jit::RN(Register r) { + MOZ_ASSERT((r.code() & ~0xf) == 0); + return r.code() << 16; +} + +uint32_t js::jit::RD(Register r) { + MOZ_ASSERT((r.code() & ~0xf) == 0); + return r.code() << 12; +} + +uint32_t js::jit::RM(Register r) { + MOZ_ASSERT((r.code() & ~0xf) == 0); + return r.code() << 8; +} + +// Encode a standard register when it is being used as src1, the dest, and an +// extra register. For these, an InvalidReg is used to indicate a optional +// register that has been omitted. +uint32_t js::jit::maybeRT(Register r) { + if (r == InvalidReg) { + return 0; + } + + MOZ_ASSERT((r.code() & ~0xf) == 0); + return r.code() << 12; +} + +uint32_t js::jit::maybeRN(Register r) { + if (r == InvalidReg) { + return 0; + } + + MOZ_ASSERT((r.code() & ~0xf) == 0); + return r.code() << 16; +} + +uint32_t js::jit::maybeRD(Register r) { + if (r == InvalidReg) { + return 0; + } + + MOZ_ASSERT((r.code() & ~0xf) == 0); + return r.code() << 12; +} + +Register js::jit::toRD(Instruction i) { + return Register::FromCode((i.encode() >> 12) & 0xf); +} +Register js::jit::toR(Instruction i) { + return Register::FromCode(i.encode() & 0xf); +} + +Register js::jit::toRM(Instruction i) { + return Register::FromCode((i.encode() >> 8) & 0xf); +} + +Register js::jit::toRN(Instruction i) { + return Register::FromCode((i.encode() >> 16) & 0xf); +} + +uint32_t js::jit::VD(VFPRegister vr) { + if (vr.isMissing()) { + return 0; + } + + // Bits 15,14,13,12, 22. + VFPRegister::VFPRegIndexSplit s = vr.encode(); + return s.bit << 22 | s.block << 12; +} +uint32_t js::jit::VN(VFPRegister vr) { + if (vr.isMissing()) { + return 0; + } + + // Bits 19,18,17,16, 7. + VFPRegister::VFPRegIndexSplit s = vr.encode(); + return s.bit << 7 | s.block << 16; +} +uint32_t js::jit::VM(VFPRegister vr) { + if (vr.isMissing()) { + return 0; + } + + // Bits 5, 3,2,1,0. + VFPRegister::VFPRegIndexSplit s = vr.encode(); + return s.bit << 5 | s.block; +} + +VFPRegister::VFPRegIndexSplit jit::VFPRegister::encode() { + MOZ_ASSERT(!_isInvalid); + + switch (kind) { + case Double: + return VFPRegIndexSplit(code_ & 0xf, code_ >> 4); + case Single: + return VFPRegIndexSplit(code_ >> 1, code_ & 1); + default: + // VFP register treated as an integer, NOT a gpr. + return VFPRegIndexSplit(code_ >> 1, code_ & 1); + } +} + +bool InstDTR::IsTHIS(const Instruction& i) { + return (i.encode() & IsDTRMask) == (uint32_t)IsDTR; +} + +InstDTR* InstDTR::AsTHIS(const Instruction& i) { + if (IsTHIS(i)) { + return (InstDTR*)&i; + } + return nullptr; +} + +bool InstLDR::IsTHIS(const Instruction& i) { + return (i.encode() & IsDTRMask) == (uint32_t)IsDTR; +} + +InstLDR* InstLDR::AsTHIS(const Instruction& i) { + if (IsTHIS(i)) { + return (InstLDR*)&i; + } + return nullptr; +} + +InstNOP* InstNOP::AsTHIS(Instruction& i) { + if (IsTHIS(i)) { + return (InstNOP*)&i; + } + return nullptr; +} + +bool InstNOP::IsTHIS(const Instruction& i) { + return (i.encode() & 0x0fffffff) == NopInst; +} + +bool InstBranchReg::IsTHIS(const Instruction& i) { + return InstBXReg::IsTHIS(i) || InstBLXReg::IsTHIS(i); +} + +InstBranchReg* InstBranchReg::AsTHIS(const Instruction& i) { + if (IsTHIS(i)) { + return (InstBranchReg*)&i; + } + return nullptr; +} +void InstBranchReg::extractDest(Register* dest) { *dest = toR(*this); } +bool InstBranchReg::checkDest(Register dest) { return dest == toR(*this); } + +bool InstBranchImm::IsTHIS(const Instruction& i) { + return InstBImm::IsTHIS(i) || InstBLImm::IsTHIS(i); +} + +InstBranchImm* InstBranchImm::AsTHIS(const Instruction& i) { + if (IsTHIS(i)) { + return (InstBranchImm*)&i; + } + return nullptr; +} + +void InstBranchImm::extractImm(BOffImm* dest) { *dest = BOffImm(*this); } + +bool InstBXReg::IsTHIS(const Instruction& i) { + return (i.encode() & IsBRegMask) == IsBX; +} + +InstBXReg* InstBXReg::AsTHIS(const Instruction& i) { + if (IsTHIS(i)) { + return (InstBXReg*)&i; + } + return nullptr; +} + +bool InstBLXReg::IsTHIS(const Instruction& i) { + return (i.encode() & IsBRegMask) == IsBLX; +} +InstBLXReg* InstBLXReg::AsTHIS(const Instruction& i) { + if (IsTHIS(i)) { + return (InstBLXReg*)&i; + } + return nullptr; +} + +bool InstBImm::IsTHIS(const Instruction& i) { + return (i.encode() & IsBImmMask) == IsB; +} +InstBImm* InstBImm::AsTHIS(const Instruction& i) { + if (IsTHIS(i)) { + return (InstBImm*)&i; + } + return nullptr; +} + +bool InstBLImm::IsTHIS(const Instruction& i) { + return (i.encode() & IsBImmMask) == IsBL; +} +InstBLImm* InstBLImm::AsTHIS(const Instruction& i) { + if (IsTHIS(i)) { + return (InstBLImm*)&i; + } + return nullptr; +} + +bool InstMovWT::IsTHIS(Instruction& i) { + return InstMovW::IsTHIS(i) || InstMovT::IsTHIS(i); +} +InstMovWT* InstMovWT::AsTHIS(Instruction& i) { + if (IsTHIS(i)) { + return (InstMovWT*)&i; + } + return nullptr; +} + +void InstMovWT::extractImm(Imm16* imm) { *imm = Imm16(*this); } +bool InstMovWT::checkImm(Imm16 imm) { + return imm.decode() == Imm16(*this).decode(); +} + +void InstMovWT::extractDest(Register* dest) { *dest = toRD(*this); } +bool InstMovWT::checkDest(Register dest) { return dest == toRD(*this); } + +bool InstMovW::IsTHIS(const Instruction& i) { + return (i.encode() & IsWTMask) == IsW; +} + +InstMovW* InstMovW::AsTHIS(const Instruction& i) { + if (IsTHIS(i)) { + return (InstMovW*)&i; + } + return nullptr; +} +InstMovT* InstMovT::AsTHIS(const Instruction& i) { + if (IsTHIS(i)) { + return (InstMovT*)&i; + } + return nullptr; +} + +bool InstMovT::IsTHIS(const Instruction& i) { + return (i.encode() & IsWTMask) == IsT; +} + +InstALU* InstALU::AsTHIS(const Instruction& i) { + if (IsTHIS(i)) { + return (InstALU*)&i; + } + return nullptr; +} +bool InstALU::IsTHIS(const Instruction& i) { + return (i.encode() & ALUMask) == 0; +} +void InstALU::extractOp(ALUOp* ret) { *ret = ALUOp(encode() & (0xf << 21)); } +bool InstALU::checkOp(ALUOp op) { + ALUOp mine; + extractOp(&mine); + return mine == op; +} +void InstALU::extractDest(Register* ret) { *ret = toRD(*this); } +bool InstALU::checkDest(Register rd) { return rd == toRD(*this); } +void InstALU::extractOp1(Register* ret) { *ret = toRN(*this); } +bool InstALU::checkOp1(Register rn) { return rn == toRN(*this); } +Operand2 InstALU::extractOp2() { return Operand2(encode()); } + +InstCMP* InstCMP::AsTHIS(const Instruction& i) { + if (IsTHIS(i)) { + return (InstCMP*)&i; + } + return nullptr; +} + +bool InstCMP::IsTHIS(const Instruction& i) { + return InstALU::IsTHIS(i) && InstALU::AsTHIS(i)->checkDest(r0) && + InstALU::AsTHIS(i)->checkOp(OpCmp); +} + +InstMOV* InstMOV::AsTHIS(const Instruction& i) { + if (IsTHIS(i)) { + return (InstMOV*)&i; + } + return nullptr; +} + +bool InstMOV::IsTHIS(const Instruction& i) { + return InstALU::IsTHIS(i) && InstALU::AsTHIS(i)->checkOp1(r0) && + InstALU::AsTHIS(i)->checkOp(OpMov); +} + +Op2Reg Operand2::toOp2Reg() const { return *(Op2Reg*)this; } + +Imm16::Imm16(Instruction& inst) + : lower_(inst.encode() & 0xfff), + upper_(inst.encode() >> 16), + invalid_(0xfff) {} + +Imm16::Imm16(uint32_t imm) + : lower_(imm & 0xfff), pad_(0), upper_((imm >> 12) & 0xf), invalid_(0) { + MOZ_ASSERT(decode() == imm); +} + +Imm16::Imm16() : invalid_(0xfff) {} + +void Assembler::finish() { + flush(); + MOZ_ASSERT(!isFinished); + isFinished = true; +} + +bool Assembler::appendRawCode(const uint8_t* code, size_t numBytes) { + flush(); + return m_buffer.appendRawCode(code, numBytes); +} + +bool Assembler::reserve(size_t size) { + // This buffer uses fixed-size chunks so there's no point in reserving + // now vs. on-demand. + return !oom(); +} + +bool Assembler::swapBuffer(wasm::Bytes& bytes) { + // For now, specialize to the one use case. As long as wasm::Bytes is a + // Vector, not a linked-list of chunks, there's not much we can do other + // than copy. + MOZ_ASSERT(bytes.empty()); + if (!bytes.resize(bytesNeeded())) { + return false; + } + m_buffer.executableCopy(bytes.begin()); + return true; +} + +void Assembler::executableCopy(uint8_t* buffer) { + MOZ_ASSERT(isFinished); + m_buffer.executableCopy(buffer); +} + +class RelocationIterator { + CompactBufferReader reader_; + // Offset in bytes. + uint32_t offset_; + + public: + explicit RelocationIterator(CompactBufferReader& reader) : reader_(reader) {} + + bool read() { + if (!reader_.more()) { + return false; + } + offset_ = reader_.readUnsigned(); + return true; + } + + uint32_t offset() const { return offset_; } +}; + +template <class Iter> +const uint32_t* Assembler::GetCF32Target(Iter* iter) { + Instruction* inst1 = iter->cur(); + + if (inst1->is<InstBranchImm>()) { + // See if we have a simple case, b #offset. + BOffImm imm; + InstBranchImm* jumpB = inst1->as<InstBranchImm>(); + jumpB->extractImm(&imm); + return imm.getDest(inst1)->raw(); + } + + if (inst1->is<InstMovW>()) { + // See if we have the complex case: + // movw r_temp, #imm1 + // movt r_temp, #imm2 + // bx r_temp + // OR + // movw r_temp, #imm1 + // movt r_temp, #imm2 + // str pc, [sp] + // bx r_temp + + Imm16 targ_bot; + Imm16 targ_top; + Register temp; + + // Extract both the temp register and the bottom immediate. + InstMovW* bottom = inst1->as<InstMovW>(); + bottom->extractImm(&targ_bot); + bottom->extractDest(&temp); + + // Extract the top part of the immediate. + Instruction* inst2 = iter->next(); + MOZ_ASSERT(inst2->is<InstMovT>()); + InstMovT* top = inst2->as<InstMovT>(); + top->extractImm(&targ_top); + + // Make sure they are being loaded into the same register. + MOZ_ASSERT(top->checkDest(temp)); + + // Make sure we're branching to the same register. +#ifdef DEBUG + // A toggled call sometimes has a NOP instead of a branch for the third + // instruction. No way to assert that it's valid in that situation. + Instruction* inst3 = iter->next(); + if (!inst3->is<InstNOP>()) { + InstBranchReg* realBranch = nullptr; + if (inst3->is<InstBranchReg>()) { + realBranch = inst3->as<InstBranchReg>(); + } else { + Instruction* inst4 = iter->next(); + realBranch = inst4->as<InstBranchReg>(); + } + MOZ_ASSERT(realBranch->checkDest(temp)); + } +#endif + + uint32_t* dest = (uint32_t*)(targ_bot.decode() | (targ_top.decode() << 16)); + return dest; + } + + if (inst1->is<InstLDR>()) { + return *(uint32_t**)inst1->as<InstLDR>()->dest(); + } + + MOZ_CRASH("unsupported branch relocation"); +} + +uintptr_t Assembler::GetPointer(uint8_t* instPtr) { + InstructionIterator iter((Instruction*)instPtr); + uintptr_t ret = (uintptr_t)GetPtr32Target(iter, nullptr, nullptr); + return ret; +} + +const uint32_t* Assembler::GetPtr32Target(InstructionIterator start, + Register* dest, RelocStyle* style) { + Instruction* load1 = start.cur(); + Instruction* load2 = start.next(); + + if (load1->is<InstMovW>() && load2->is<InstMovT>()) { + if (style) { + *style = L_MOVWT; + } + + // See if we have the complex case: + // movw r_temp, #imm1 + // movt r_temp, #imm2 + + Imm16 targ_bot; + Imm16 targ_top; + Register temp; + + // Extract both the temp register and the bottom immediate. + InstMovW* bottom = load1->as<InstMovW>(); + bottom->extractImm(&targ_bot); + bottom->extractDest(&temp); + + // Extract the top part of the immediate. + InstMovT* top = load2->as<InstMovT>(); + top->extractImm(&targ_top); + + // Make sure they are being loaded into the same register. + MOZ_ASSERT(top->checkDest(temp)); + + if (dest) { + *dest = temp; + } + + uint32_t* value = + (uint32_t*)(targ_bot.decode() | (targ_top.decode() << 16)); + return value; + } + + if (load1->is<InstLDR>()) { + if (style) { + *style = L_LDR; + } + if (dest) { + *dest = toRD(*load1); + } + return *(uint32_t**)load1->as<InstLDR>()->dest(); + } + + MOZ_CRASH("unsupported relocation"); +} + +static JitCode* CodeFromJump(InstructionIterator* jump) { + uint8_t* target = (uint8_t*)Assembler::GetCF32Target(jump); + return JitCode::FromExecutable(target); +} + +void Assembler::TraceJumpRelocations(JSTracer* trc, JitCode* code, + CompactBufferReader& reader) { + RelocationIterator iter(reader); + while (iter.read()) { + InstructionIterator institer((Instruction*)(code->raw() + iter.offset())); + JitCode* child = CodeFromJump(&institer); + TraceManuallyBarrieredEdge(trc, &child, "rel32"); + } +} + +static void TraceOneDataRelocation(JSTracer* trc, + mozilla::Maybe<AutoWritableJitCode>& awjc, + JitCode* code, InstructionIterator iter) { + Register dest; + Assembler::RelocStyle rs; + const void* prior = Assembler::GetPtr32Target(iter, &dest, &rs); + void* ptr = const_cast<void*>(prior); + + // No barrier needed since these are constants. + TraceManuallyBarrieredGenericPointerEdge( + trc, reinterpret_cast<gc::Cell**>(&ptr), "jit-masm-ptr"); + + if (ptr != prior) { + if (awjc.isNothing()) { + awjc.emplace(code); + } + + MacroAssemblerARM::ma_mov_patch(Imm32(int32_t(ptr)), dest, + Assembler::Always, rs, iter); + } +} + +/* static */ +void Assembler::TraceDataRelocations(JSTracer* trc, JitCode* code, + CompactBufferReader& reader) { + mozilla::Maybe<AutoWritableJitCode> awjc; + while (reader.more()) { + size_t offset = reader.readUnsigned(); + InstructionIterator iter((Instruction*)(code->raw() + offset)); + TraceOneDataRelocation(trc, awjc, code, iter); + } +} + +void Assembler::copyJumpRelocationTable(uint8_t* dest) { + if (jumpRelocations_.length()) { + memcpy(dest, jumpRelocations_.buffer(), jumpRelocations_.length()); + } +} + +void Assembler::copyDataRelocationTable(uint8_t* dest) { + if (dataRelocations_.length()) { + memcpy(dest, dataRelocations_.buffer(), dataRelocations_.length()); + } +} + +void Assembler::processCodeLabels(uint8_t* rawCode) { + for (const CodeLabel& label : codeLabels_) { + Bind(rawCode, label); + } +} + +void Assembler::writeCodePointer(CodeLabel* label) { + m_buffer.assertNoPoolAndNoNops(); + BufferOffset off = writeInst(-1); + label->patchAt()->bind(off.getOffset()); +} + +void Assembler::Bind(uint8_t* rawCode, const CodeLabel& label) { + size_t offset = label.patchAt().offset(); + size_t target = label.target().offset(); + *reinterpret_cast<const void**>(rawCode + offset) = rawCode + target; +} + +Assembler::Condition Assembler::InvertCondition(Condition cond) { + const uint32_t ConditionInversionBit = 0x10000000; + return Condition(ConditionInversionBit ^ cond); +} + +Assembler::Condition Assembler::UnsignedCondition(Condition cond) { + switch (cond) { + case Zero: + case NonZero: + return cond; + case LessThan: + case Below: + return Below; + case LessThanOrEqual: + case BelowOrEqual: + return BelowOrEqual; + case GreaterThan: + case Above: + return Above; + case AboveOrEqual: + case GreaterThanOrEqual: + return AboveOrEqual; + default: + MOZ_CRASH("unexpected condition"); + } +} + +Assembler::Condition Assembler::ConditionWithoutEqual(Condition cond) { + switch (cond) { + case LessThan: + case LessThanOrEqual: + return LessThan; + case Below: + case BelowOrEqual: + return Below; + case GreaterThan: + case GreaterThanOrEqual: + return GreaterThan; + case Above: + case AboveOrEqual: + return Above; + default: + MOZ_CRASH("unexpected condition"); + } +} + +Assembler::DoubleCondition Assembler::InvertCondition(DoubleCondition cond) { + const uint32_t ConditionInversionBit = 0x10000000; + return DoubleCondition(ConditionInversionBit ^ cond); +} + +Imm8::TwoImm8mData Imm8::EncodeTwoImms(uint32_t imm) { + // In the ideal case, we are looking for a number that (in binary) looks + // like: + // 0b((00)*)n_1((00)*)n_2((00)*) + // left n1 mid n2 + // where both n_1 and n_2 fit into 8 bits. + // Since this is being done with rotates, we also need to handle the case + // that one of these numbers is in fact split between the left and right + // sides, in which case the constant will look like: + // 0bn_1a((00)*)n_2((00)*)n_1b + // n1a mid n2 rgh n1b + // Also remember, values are rotated by multiples of two, and left, mid or + // right can have length zero. + uint32_t imm1, imm2; + int left = CountLeadingZeroes32(imm) & 0x1E; + uint32_t no_n1 = imm & ~(0xff << (24 - left)); + + // Not technically needed: this case only happens if we can encode as a + // single imm8m. There is a perfectly reasonable encoding in this case, but + // we shouldn't encourage people to do things like this. + if (no_n1 == 0) { + return TwoImm8mData(); + } + + int mid = CountLeadingZeroes32(no_n1) & 0x1E; + uint32_t no_n2 = + no_n1 & ~((0xff << ((24 - mid) & 0x1f)) | 0xff >> ((8 + mid) & 0x1f)); + + if (no_n2 == 0) { + // We hit the easy case, no wraparound. + // Note: a single constant *may* look like this. + int imm1shift = left + 8; + int imm2shift = mid + 8; + imm1 = (imm >> (32 - imm1shift)) & 0xff; + if (imm2shift >= 32) { + imm2shift = 0; + // This assert does not always hold, in fact, this would lead to + // some incredibly subtle bugs. + // assert((imm & 0xff) == no_n1); + imm2 = no_n1; + } else { + imm2 = ((imm >> (32 - imm2shift)) | (imm << imm2shift)) & 0xff; + MOZ_ASSERT(((no_n1 >> (32 - imm2shift)) | (no_n1 << imm2shift)) == imm2); + } + MOZ_ASSERT((imm1shift & 0x1) == 0); + MOZ_ASSERT((imm2shift & 0x1) == 0); + return TwoImm8mData(datastore::Imm8mData(imm1, imm1shift >> 1), + datastore::Imm8mData(imm2, imm2shift >> 1)); + } + + // Either it wraps, or it does not fit. If we initially chopped off more + // than 8 bits, then it won't fit. + if (left >= 8) { + return TwoImm8mData(); + } + + int right = 32 - (CountLeadingZeroes32(no_n2) & 30); + // All remaining set bits *must* fit into the lower 8 bits. + // The right == 8 case should be handled by the previous case. + if (right > 8) { + return TwoImm8mData(); + } + + // Make sure the initial bits that we removed for no_n1 fit into the + // 8-(32-right) leftmost bits. + if (((imm & (0xff << (24 - left))) << (8 - right)) != 0) { + // BUT we may have removed more bits than we needed to for no_n1 + // 0x04104001 e.g. we can encode 0x104 with a single op, then 0x04000001 + // with a second, but we try to encode 0x0410000 and find that we need a + // second op for 0x4000, and 0x1 cannot be included in the encoding of + // 0x04100000. + no_n1 = imm & ~((0xff >> (8 - right)) | (0xff << (24 + right))); + mid = CountLeadingZeroes32(no_n1) & 30; + no_n2 = no_n1 & ~((0xff << ((24 - mid) & 31)) | 0xff >> ((8 + mid) & 31)); + if (no_n2 != 0) { + return TwoImm8mData(); + } + } + + // Now assemble all of this information into a two coherent constants it is + // a rotate right from the lower 8 bits. + int imm1shift = 8 - right; + imm1 = 0xff & ((imm << imm1shift) | (imm >> (32 - imm1shift))); + MOZ_ASSERT((imm1shift & ~0x1e) == 0); + // left + 8 + mid is the position of the leftmost bit of n_2. + // We needed to rotate 0x000000ab right by 8 in order to get 0xab000000, + // then shift again by the leftmost bit in order to get the constant that we + // care about. + int imm2shift = mid + 8; + imm2 = ((imm >> (32 - imm2shift)) | (imm << imm2shift)) & 0xff; + MOZ_ASSERT((imm1shift & 0x1) == 0); + MOZ_ASSERT((imm2shift & 0x1) == 0); + return TwoImm8mData(datastore::Imm8mData(imm1, imm1shift >> 1), + datastore::Imm8mData(imm2, imm2shift >> 1)); +} + +ALUOp jit::ALUNeg(ALUOp op, Register dest, Register scratch, Imm32* imm, + Register* negDest) { + // Find an alternate ALUOp to get the job done, and use a different imm. + *negDest = dest; + switch (op) { + case OpMov: + *imm = Imm32(~imm->value); + return OpMvn; + case OpMvn: + *imm = Imm32(~imm->value); + return OpMov; + case OpAnd: + *imm = Imm32(~imm->value); + return OpBic; + case OpBic: + *imm = Imm32(~imm->value); + return OpAnd; + case OpAdd: + *imm = Imm32(-imm->value); + return OpSub; + case OpSub: + *imm = Imm32(-imm->value); + return OpAdd; + case OpCmp: + *imm = Imm32(-imm->value); + return OpCmn; + case OpCmn: + *imm = Imm32(-imm->value); + return OpCmp; + case OpTst: + MOZ_ASSERT(dest == InvalidReg); + *imm = Imm32(~imm->value); + *negDest = scratch; + return OpBic; + // orr has orn on thumb2 only. + default: + return OpInvalid; + } +} + +bool jit::can_dbl(ALUOp op) { + // Some instructions can't be processed as two separate instructions such as + // and, and possibly add (when we're setting ccodes). There is also some + // hilarity with *reading* condition codes. For example, adc dest, src1, + // 0xfff; (add with carry) can be split up into adc dest, src1, 0xf00; add + // dest, dest, 0xff, since "reading" the condition code increments the + // result by one conditionally, that only needs to be done on one of the two + // instructions. + switch (op) { + case OpBic: + case OpAdd: + case OpSub: + case OpEor: + case OpOrr: + return true; + default: + return false; + } +} + +bool jit::condsAreSafe(ALUOp op) { + // Even when we are setting condition codes, sometimes we can get away with + // splitting an operation into two. For example, if our immediate is + // 0x00ff00ff, and the operation is eors we can split this in half, since x + // ^ 0x00ff0000 ^ 0x000000ff should set all of its condition codes exactly + // the same as x ^ 0x00ff00ff. However, if the operation were adds, we + // cannot split this in half. If the source on the add is 0xfff00ff0, the + // result sholud be 0xef10ef, but do we set the overflow bit or not? + // Depending on which half is performed first (0x00ff0000 or 0x000000ff) the + // V bit will be set differently, and *not* updating the V bit would be + // wrong. Theoretically, the following should work: + // adds r0, r1, 0x00ff0000; + // addsvs r0, r1, 0x000000ff; + // addvc r0, r1, 0x000000ff; + // But this is 3 instructions, and at that point, we might as well use + // something else. + switch (op) { + case OpBic: + case OpOrr: + case OpEor: + return true; + default: + return false; + } +} + +ALUOp jit::getDestVariant(ALUOp op) { + // All of the compare operations are dest-less variants of a standard + // operation. Given the dest-less variant, return the dest-ful variant. + switch (op) { + case OpCmp: + return OpSub; + case OpCmn: + return OpAdd; + case OpTst: + return OpAnd; + case OpTeq: + return OpEor; + default: + return op; + } +} + +O2RegImmShift jit::O2Reg(Register r) { return O2RegImmShift(r, LSL, 0); } + +O2RegImmShift jit::lsl(Register r, int amt) { + MOZ_ASSERT(0 <= amt && amt <= 31); + return O2RegImmShift(r, LSL, amt); +} + +O2RegImmShift jit::lsr(Register r, int amt) { + MOZ_ASSERT(1 <= amt && amt <= 32); + return O2RegImmShift(r, LSR, amt); +} + +O2RegImmShift jit::ror(Register r, int amt) { + MOZ_ASSERT(1 <= amt && amt <= 31); + return O2RegImmShift(r, ROR, amt); +} +O2RegImmShift jit::rol(Register r, int amt) { + MOZ_ASSERT(1 <= amt && amt <= 31); + return O2RegImmShift(r, ROR, 32 - amt); +} + +O2RegImmShift jit::asr(Register r, int amt) { + MOZ_ASSERT(1 <= amt && amt <= 32); + return O2RegImmShift(r, ASR, amt); +} + +O2RegRegShift jit::lsl(Register r, Register amt) { + return O2RegRegShift(r, LSL, amt); +} + +O2RegRegShift jit::lsr(Register r, Register amt) { + return O2RegRegShift(r, LSR, amt); +} + +O2RegRegShift jit::ror(Register r, Register amt) { + return O2RegRegShift(r, ROR, amt); +} + +O2RegRegShift jit::asr(Register r, Register amt) { + return O2RegRegShift(r, ASR, amt); +} + +static js::jit::DoubleEncoder doubleEncoder; + +/* static */ +const js::jit::VFPImm js::jit::VFPImm::One(0x3FF00000); + +js::jit::VFPImm::VFPImm(uint32_t top) { + data_ = -1; + datastore::Imm8VFPImmData tmp; + if (doubleEncoder.lookup(top, &tmp)) { + data_ = tmp.encode(); + } +} + +BOffImm::BOffImm(const Instruction& inst) : data_(inst.encode() & 0x00ffffff) {} + +Instruction* BOffImm::getDest(Instruction* src) const { + // TODO: It is probably worthwhile to verify that src is actually a branch. + // NOTE: This does not explicitly shift the offset of the destination left by + // 2, since it is indexing into an array of instruction sized objects. + return &src[((int32_t(data_) << 8) >> 8) + 2]; +} + +const js::jit::DoubleEncoder::DoubleEntry js::jit::DoubleEncoder::table[256] = { +#include "jit/arm/DoubleEntryTable.tbl" +}; + +// VFPRegister implementation +VFPRegister VFPRegister::doubleOverlay(unsigned int which) const { + MOZ_ASSERT(!_isInvalid); + MOZ_ASSERT(which == 0); + if (kind != Double) { + return VFPRegister(code_ >> 1, Double); + } + return *this; +} +VFPRegister VFPRegister::singleOverlay(unsigned int which) const { + MOZ_ASSERT(!_isInvalid); + if (kind == Double) { + // There are no corresponding float registers for d16-d31. + MOZ_ASSERT(code_ < 16); + MOZ_ASSERT(which < 2); + return VFPRegister((code_ << 1) + which, Single); + } + MOZ_ASSERT(which == 0); + return VFPRegister(code_, Single); +} + +static_assert( + FloatRegisters::TotalDouble <= 16, + "We assume that every Double register also has an Integer personality"); + +VFPRegister VFPRegister::sintOverlay(unsigned int which) const { + MOZ_ASSERT(!_isInvalid); + if (kind == Double) { + // There are no corresponding float registers for d16-d31. + MOZ_ASSERT(code_ < 16); + MOZ_ASSERT(which < 2); + return VFPRegister((code_ << 1) + which, Int); + } + MOZ_ASSERT(which == 0); + return VFPRegister(code_, Int); +} +VFPRegister VFPRegister::uintOverlay(unsigned int which) const { + MOZ_ASSERT(!_isInvalid); + if (kind == Double) { + // There are no corresponding float registers for d16-d31. + MOZ_ASSERT(code_ < 16); + MOZ_ASSERT(which < 2); + return VFPRegister((code_ << 1) + which, UInt); + } + MOZ_ASSERT(which == 0); + return VFPRegister(code_, UInt); +} + +bool Assembler::oom() const { + return AssemblerShared::oom() || m_buffer.oom() || jumpRelocations_.oom() || + dataRelocations_.oom(); +} + +// Size of the instruction stream, in bytes. Including pools. This function +// expects all pools that need to be placed have been placed. If they haven't +// then we need to go an flush the pools :( +size_t Assembler::size() const { return m_buffer.size(); } +// Size of the relocation table, in bytes. +size_t Assembler::jumpRelocationTableBytes() const { + return jumpRelocations_.length(); +} +size_t Assembler::dataRelocationTableBytes() const { + return dataRelocations_.length(); +} + +// Size of the data table, in bytes. +size_t Assembler::bytesNeeded() const { + return size() + jumpRelocationTableBytes() + dataRelocationTableBytes(); +} + +// Allocate memory for a branch instruction, it will be overwritten +// subsequently and should not be disassembled. + +BufferOffset Assembler::allocBranchInst() { + return m_buffer.putInt(Always | InstNOP::NopInst); +} + +void Assembler::WriteInstStatic(uint32_t x, uint32_t* dest) { + MOZ_ASSERT(dest != nullptr); + *dest = x; +} + +void Assembler::haltingAlign(int alignment) { + // HLT with payload 0xBAAD + m_buffer.align(alignment, 0xE1000070 | (0xBAA << 8) | 0xD); +} + +void Assembler::nopAlign(int alignment) { m_buffer.align(alignment); } + +BufferOffset Assembler::as_nop() { return writeInst(0xe320f000); } + +static uint32_t EncodeAlu(Register dest, Register src1, Operand2 op2, ALUOp op, + SBit s, Assembler::Condition c) { + return (int)op | (int)s | (int)c | op2.encode() | + ((dest == InvalidReg) ? 0 : RD(dest)) | + ((src1 == InvalidReg) ? 0 : RN(src1)); +} + +BufferOffset Assembler::as_alu(Register dest, Register src1, Operand2 op2, + ALUOp op, SBit s, Condition c) { + return writeInst(EncodeAlu(dest, src1, op2, op, s, c)); +} + +BufferOffset Assembler::as_mov(Register dest, Operand2 op2, SBit s, + Condition c) { + return as_alu(dest, InvalidReg, op2, OpMov, s, c); +} + +/* static */ +void Assembler::as_alu_patch(Register dest, Register src1, Operand2 op2, + ALUOp op, SBit s, Condition c, uint32_t* pos) { + WriteInstStatic(EncodeAlu(dest, src1, op2, op, s, c), pos); +} + +/* static */ +void Assembler::as_mov_patch(Register dest, Operand2 op2, SBit s, Condition c, + uint32_t* pos) { + as_alu_patch(dest, InvalidReg, op2, OpMov, s, c, pos); +} + +BufferOffset Assembler::as_mvn(Register dest, Operand2 op2, SBit s, + Condition c) { + return as_alu(dest, InvalidReg, op2, OpMvn, s, c); +} + +// Logical operations. +BufferOffset Assembler::as_and(Register dest, Register src1, Operand2 op2, + SBit s, Condition c) { + return as_alu(dest, src1, op2, OpAnd, s, c); +} +BufferOffset Assembler::as_bic(Register dest, Register src1, Operand2 op2, + SBit s, Condition c) { + return as_alu(dest, src1, op2, OpBic, s, c); +} +BufferOffset Assembler::as_eor(Register dest, Register src1, Operand2 op2, + SBit s, Condition c) { + return as_alu(dest, src1, op2, OpEor, s, c); +} +BufferOffset Assembler::as_orr(Register dest, Register src1, Operand2 op2, + SBit s, Condition c) { + return as_alu(dest, src1, op2, OpOrr, s, c); +} + +// Reverse byte operations. +BufferOffset Assembler::as_rev(Register dest, Register src, Condition c) { + return writeInst((int)c | 0b0000'0110'1011'1111'0000'1111'0011'0000 | + RD(dest) | src.code()); +} +BufferOffset Assembler::as_rev16(Register dest, Register src, Condition c) { + return writeInst((int)c | 0b0000'0110'1011'1111'0000'1111'1011'0000 | + RD(dest) | src.code()); +} +BufferOffset Assembler::as_revsh(Register dest, Register src, Condition c) { + return writeInst((int)c | 0b0000'0110'1111'1111'0000'1111'1011'0000 | + RD(dest) | src.code()); +} + +// Mathematical operations. +BufferOffset Assembler::as_adc(Register dest, Register src1, Operand2 op2, + SBit s, Condition c) { + return as_alu(dest, src1, op2, OpAdc, s, c); +} +BufferOffset Assembler::as_add(Register dest, Register src1, Operand2 op2, + SBit s, Condition c) { + return as_alu(dest, src1, op2, OpAdd, s, c); +} +BufferOffset Assembler::as_sbc(Register dest, Register src1, Operand2 op2, + SBit s, Condition c) { + return as_alu(dest, src1, op2, OpSbc, s, c); +} +BufferOffset Assembler::as_sub(Register dest, Register src1, Operand2 op2, + SBit s, Condition c) { + return as_alu(dest, src1, op2, OpSub, s, c); +} +BufferOffset Assembler::as_rsb(Register dest, Register src1, Operand2 op2, + SBit s, Condition c) { + return as_alu(dest, src1, op2, OpRsb, s, c); +} +BufferOffset Assembler::as_rsc(Register dest, Register src1, Operand2 op2, + SBit s, Condition c) { + return as_alu(dest, src1, op2, OpRsc, s, c); +} + +// Test operations. +BufferOffset Assembler::as_cmn(Register src1, Operand2 op2, Condition c) { + return as_alu(InvalidReg, src1, op2, OpCmn, SetCC, c); +} +BufferOffset Assembler::as_cmp(Register src1, Operand2 op2, Condition c) { + return as_alu(InvalidReg, src1, op2, OpCmp, SetCC, c); +} +BufferOffset Assembler::as_teq(Register src1, Operand2 op2, Condition c) { + return as_alu(InvalidReg, src1, op2, OpTeq, SetCC, c); +} +BufferOffset Assembler::as_tst(Register src1, Operand2 op2, Condition c) { + return as_alu(InvalidReg, src1, op2, OpTst, SetCC, c); +} + +static constexpr Register NoAddend{Registers::pc}; + +static const int SignExtend = 0x06000070; + +enum SignExtend { + SxSxtb = 10 << 20, + SxSxth = 11 << 20, + SxUxtb = 14 << 20, + SxUxth = 15 << 20 +}; + +// Sign extension operations. +BufferOffset Assembler::as_sxtb(Register dest, Register src, int rotate, + Condition c) { + return writeInst((int)c | SignExtend | SxSxtb | RN(NoAddend) | RD(dest) | + ((rotate & 3) << 10) | src.code()); +} +BufferOffset Assembler::as_sxth(Register dest, Register src, int rotate, + Condition c) { + return writeInst((int)c | SignExtend | SxSxth | RN(NoAddend) | RD(dest) | + ((rotate & 3) << 10) | src.code()); +} +BufferOffset Assembler::as_uxtb(Register dest, Register src, int rotate, + Condition c) { + return writeInst((int)c | SignExtend | SxUxtb | RN(NoAddend) | RD(dest) | + ((rotate & 3) << 10) | src.code()); +} +BufferOffset Assembler::as_uxth(Register dest, Register src, int rotate, + Condition c) { + return writeInst((int)c | SignExtend | SxUxth | RN(NoAddend) | RD(dest) | + ((rotate & 3) << 10) | src.code()); +} + +static uint32_t EncodeMovW(Register dest, Imm16 imm, Assembler::Condition c) { + MOZ_ASSERT(HasMOVWT()); + return 0x03000000 | c | imm.encode() | RD(dest); +} + +static uint32_t EncodeMovT(Register dest, Imm16 imm, Assembler::Condition c) { + MOZ_ASSERT(HasMOVWT()); + return 0x03400000 | c | imm.encode() | RD(dest); +} + +// Not quite ALU worthy, but these are useful none the less. These also have +// the isue of these being formatted completly differently from the standard ALU +// operations. +BufferOffset Assembler::as_movw(Register dest, Imm16 imm, Condition c) { + return writeInst(EncodeMovW(dest, imm, c)); +} + +/* static */ +void Assembler::as_movw_patch(Register dest, Imm16 imm, Condition c, + Instruction* pos) { + WriteInstStatic(EncodeMovW(dest, imm, c), (uint32_t*)pos); +} + +BufferOffset Assembler::as_movt(Register dest, Imm16 imm, Condition c) { + return writeInst(EncodeMovT(dest, imm, c)); +} + +/* static */ +void Assembler::as_movt_patch(Register dest, Imm16 imm, Condition c, + Instruction* pos) { + WriteInstStatic(EncodeMovT(dest, imm, c), (uint32_t*)pos); +} + +static const int mull_tag = 0x90; + +BufferOffset Assembler::as_genmul(Register dhi, Register dlo, Register rm, + Register rn, MULOp op, SBit s, Condition c) { + return writeInst(RN(dhi) | maybeRD(dlo) | RM(rm) | rn.code() | op | s | c | + mull_tag); +} +BufferOffset Assembler::as_mul(Register dest, Register src1, Register src2, + SBit s, Condition c) { + return as_genmul(dest, InvalidReg, src1, src2, OpmMul, s, c); +} +BufferOffset Assembler::as_mla(Register dest, Register acc, Register src1, + Register src2, SBit s, Condition c) { + return as_genmul(dest, acc, src1, src2, OpmMla, s, c); +} +BufferOffset Assembler::as_umaal(Register destHI, Register destLO, + Register src1, Register src2, Condition c) { + return as_genmul(destHI, destLO, src1, src2, OpmUmaal, LeaveCC, c); +} +BufferOffset Assembler::as_mls(Register dest, Register acc, Register src1, + Register src2, Condition c) { + return as_genmul(dest, acc, src1, src2, OpmMls, LeaveCC, c); +} + +BufferOffset Assembler::as_umull(Register destHI, Register destLO, + Register src1, Register src2, SBit s, + Condition c) { + return as_genmul(destHI, destLO, src1, src2, OpmUmull, s, c); +} + +BufferOffset Assembler::as_umlal(Register destHI, Register destLO, + Register src1, Register src2, SBit s, + Condition c) { + return as_genmul(destHI, destLO, src1, src2, OpmUmlal, s, c); +} + +BufferOffset Assembler::as_smull(Register destHI, Register destLO, + Register src1, Register src2, SBit s, + Condition c) { + return as_genmul(destHI, destLO, src1, src2, OpmSmull, s, c); +} + +BufferOffset Assembler::as_smlal(Register destHI, Register destLO, + Register src1, Register src2, SBit s, + Condition c) { + return as_genmul(destHI, destLO, src1, src2, OpmSmlal, s, c); +} + +BufferOffset Assembler::as_sdiv(Register rd, Register rn, Register rm, + Condition c) { + return writeInst(0x0710f010 | c | RN(rd) | RM(rm) | rn.code()); +} + +BufferOffset Assembler::as_udiv(Register rd, Register rn, Register rm, + Condition c) { + return writeInst(0x0730f010 | c | RN(rd) | RM(rm) | rn.code()); +} + +BufferOffset Assembler::as_clz(Register dest, Register src, Condition c) { + MOZ_ASSERT(src != pc && dest != pc); + return writeInst(RD(dest) | src.code() | c | 0x016f0f10); +} + +// Data transfer instructions: ldr, str, ldrb, strb. Using an int to +// differentiate between 8 bits and 32 bits is overkill, but meh. + +static uint32_t EncodeDtr(LoadStore ls, int size, Index mode, Register rt, + DTRAddr addr, Assembler::Condition c) { + MOZ_ASSERT(mode == Offset || (rt != addr.getBase() && pc != addr.getBase())); + MOZ_ASSERT(size == 32 || size == 8); + return 0x04000000 | ls | (size == 8 ? 0x00400000 : 0) | mode | c | RT(rt) | + addr.encode(); +} + +BufferOffset Assembler::as_dtr(LoadStore ls, int size, Index mode, Register rt, + DTRAddr addr, Condition c) { + return writeInst(EncodeDtr(ls, size, mode, rt, addr, c)); +} + +/* static */ +void Assembler::as_dtr_patch(LoadStore ls, int size, Index mode, Register rt, + DTRAddr addr, Condition c, uint32_t* dest) { + WriteInstStatic(EncodeDtr(ls, size, mode, rt, addr, c), dest); +} + +class PoolHintData { + public: + enum LoadType { + // Set 0 to bogus, since that is the value most likely to be + // accidentally left somewhere. + PoolBOGUS = 0, + PoolDTR = 1, + PoolBranch = 2, + PoolVDTR = 3 + }; + + private: + uint32_t index_ : 16; + uint32_t cond_ : 4; + uint32_t loadType_ : 2; + uint32_t destReg_ : 5; + uint32_t destType_ : 1; + uint32_t ONES : 4; + + static const uint32_t ExpectedOnes = 0xfu; + + public: + void init(uint32_t index, Assembler::Condition cond, LoadType lt, + Register destReg) { + index_ = index; + MOZ_ASSERT(index_ == index); + cond_ = cond >> 28; + MOZ_ASSERT(cond_ == cond >> 28); + loadType_ = lt; + ONES = ExpectedOnes; + destReg_ = destReg.code(); + destType_ = 0; + } + void init(uint32_t index, Assembler::Condition cond, LoadType lt, + const VFPRegister& destReg) { + MOZ_ASSERT(destReg.isFloat()); + index_ = index; + MOZ_ASSERT(index_ == index); + cond_ = cond >> 28; + MOZ_ASSERT(cond_ == cond >> 28); + loadType_ = lt; + ONES = ExpectedOnes; + destReg_ = destReg.id(); + destType_ = destReg.isDouble(); + } + Assembler::Condition getCond() const { + return Assembler::Condition(cond_ << 28); + } + + Register getReg() const { return Register::FromCode(destReg_); } + VFPRegister getVFPReg() const { + VFPRegister r = VFPRegister( + destReg_, destType_ ? VFPRegister::Double : VFPRegister::Single); + return r; + } + + int32_t getIndex() const { return index_; } + void setIndex(uint32_t index) { + MOZ_ASSERT(ONES == ExpectedOnes && loadType_ != PoolBOGUS); + index_ = index; + MOZ_ASSERT(index_ == index); + } + + LoadType getLoadType() const { + // If this *was* a PoolBranch, but the branch has already been bound + // then this isn't going to look like a real poolhintdata, but we still + // want to lie about it so everyone knows it *used* to be a branch. + if (ONES != ExpectedOnes) { + return PoolHintData::PoolBranch; + } + return static_cast<LoadType>(loadType_); + } + + bool isValidPoolHint() const { + // Most instructions cannot have a condition that is 0xf. Notable + // exceptions are blx and the entire NEON instruction set. For the + // purposes of pool loads, and possibly patched branches, the possible + // instructions are ldr and b, neither of which can have a condition + // code of 0xf. + return ONES == ExpectedOnes; + } +}; + +union PoolHintPun { + PoolHintData phd; + uint32_t raw; +}; + +// Handles all of the other integral data transferring functions: ldrsb, ldrsh, +// ldrd, etc. The size is given in bits. +BufferOffset Assembler::as_extdtr(LoadStore ls, int size, bool IsSigned, + Index mode, Register rt, EDtrAddr addr, + Condition c) { + int extra_bits2 = 0; + int extra_bits1 = 0; + switch (size) { + case 8: + MOZ_ASSERT(IsSigned); + MOZ_ASSERT(ls != IsStore); + extra_bits1 = 0x1; + extra_bits2 = 0x2; + break; + case 16: + // 'case 32' doesn't need to be handled, it is handled by the default + // ldr/str. + extra_bits2 = 0x01; + extra_bits1 = (ls == IsStore) ? 0 : 1; + if (IsSigned) { + MOZ_ASSERT(ls != IsStore); + extra_bits2 |= 0x2; + } + break; + case 64: + extra_bits2 = (ls == IsStore) ? 0x3 : 0x2; + extra_bits1 = 0; + break; + default: + MOZ_CRASH("unexpected size in as_extdtr"); + } + return writeInst(extra_bits2 << 5 | extra_bits1 << 20 | 0x90 | addr.encode() | + RT(rt) | mode | c); +} + +BufferOffset Assembler::as_dtm(LoadStore ls, Register rn, uint32_t mask, + DTMMode mode, DTMWriteBack wb, Condition c) { + return writeInst(0x08000000 | RN(rn) | ls | mode | mask | c | wb); +} + +BufferOffset Assembler::allocLiteralLoadEntry( + size_t numInst, unsigned numPoolEntries, PoolHintPun& php, uint8_t* data, + const LiteralDoc& doc, ARMBuffer::PoolEntry* pe, bool loadToPC) { + uint8_t* inst = (uint8_t*)&php.raw; + + MOZ_ASSERT(inst); + MOZ_ASSERT(numInst == 1); // Or fix the disassembly + + BufferOffset offs = + m_buffer.allocEntry(numInst, numPoolEntries, inst, data, pe); + propagateOOM(offs.assigned()); +#ifdef JS_DISASM_ARM + Instruction* instruction = m_buffer.getInstOrNull(offs); + if (instruction) { + spewLiteralLoad(php, loadToPC, instruction, doc); + } +#endif + return offs; +} + +// This is also used for instructions that might be resolved into branches, +// or might not. If dest==pc then it is effectively a branch. + +BufferOffset Assembler::as_Imm32Pool(Register dest, uint32_t value, + Condition c) { + PoolHintPun php; + php.phd.init(0, c, PoolHintData::PoolDTR, dest); + BufferOffset offs = allocLiteralLoadEntry( + 1, 1, php, (uint8_t*)&value, LiteralDoc(value), nullptr, dest == pc); + return offs; +} + +/* static */ +void Assembler::WritePoolEntry(Instruction* addr, Condition c, uint32_t data) { + MOZ_ASSERT(addr->is<InstLDR>()); + *addr->as<InstLDR>()->dest() = data; + MOZ_ASSERT(addr->extractCond() == c); +} + +BufferOffset Assembler::as_FImm64Pool(VFPRegister dest, double d, Condition c) { + MOZ_ASSERT(dest.isDouble()); + PoolHintPun php; + php.phd.init(0, c, PoolHintData::PoolVDTR, dest); + return allocLiteralLoadEntry(1, 2, php, (uint8_t*)&d, LiteralDoc(d)); +} + +BufferOffset Assembler::as_FImm32Pool(VFPRegister dest, float f, Condition c) { + // Insert floats into the double pool as they have the same limitations on + // immediate offset. This wastes 4 bytes padding per float. An alternative + // would be to have a separate pool for floats. + MOZ_ASSERT(dest.isSingle()); + PoolHintPun php; + php.phd.init(0, c, PoolHintData::PoolVDTR, dest); + return allocLiteralLoadEntry(1, 1, php, (uint8_t*)&f, LiteralDoc(f)); +} + +// Pool callbacks stuff: +void Assembler::InsertIndexIntoTag(uint8_t* load_, uint32_t index) { + uint32_t* load = (uint32_t*)load_; + PoolHintPun php; + php.raw = *load; + php.phd.setIndex(index); + *load = php.raw; +} + +// patchConstantPoolLoad takes the address of the instruction that wants to be +// patched, and the address of the start of the constant pool, and figures +// things out from there. +void Assembler::PatchConstantPoolLoad(void* loadAddr, void* constPoolAddr) { + PoolHintData data = *(PoolHintData*)loadAddr; + uint32_t* instAddr = (uint32_t*)loadAddr; + int offset = (char*)constPoolAddr - (char*)loadAddr; + switch (data.getLoadType()) { + case PoolHintData::PoolBOGUS: + MOZ_CRASH("bogus load type!"); + case PoolHintData::PoolDTR: + Assembler::as_dtr_patch( + IsLoad, 32, Offset, data.getReg(), + DTRAddr(pc, DtrOffImm(offset + 4 * data.getIndex() - 8)), + data.getCond(), instAddr); + break; + case PoolHintData::PoolBranch: + // Either this used to be a poolBranch, and the label was already bound, + // so it was replaced with a real branch, or this may happen in the + // future. If this is going to happen in the future, then the actual + // bits that are written here don't matter (except the condition code, + // since that is always preserved across patchings) but if it does not + // get bound later, then we want to make sure this is a load from the + // pool entry (and the pool entry should be nullptr so it will crash). + if (data.isValidPoolHint()) { + Assembler::as_dtr_patch( + IsLoad, 32, Offset, pc, + DTRAddr(pc, DtrOffImm(offset + 4 * data.getIndex() - 8)), + data.getCond(), instAddr); + } + break; + case PoolHintData::PoolVDTR: { + VFPRegister dest = data.getVFPReg(); + int32_t imm = offset + (data.getIndex() * 4) - 8; + MOZ_ASSERT(-1024 < imm && imm < 1024); + Assembler::as_vdtr_patch(IsLoad, dest, VFPAddr(pc, VFPOffImm(imm)), + data.getCond(), instAddr); + break; + } + } +} + +// Atomic instruction stuff: + +BufferOffset Assembler::as_ldrexd(Register rt, Register rt2, Register rn, + Condition c) { + MOZ_ASSERT(!(rt.code() & 1) && rt2.code() == rt.code() + 1); + MOZ_ASSERT(rt.code() != 14 && rn.code() != 15); + return writeInst(0x01b00f9f | (int)c | RT(rt) | RN(rn)); +} + +BufferOffset Assembler::as_ldrex(Register rt, Register rn, Condition c) { + MOZ_ASSERT(rt.code() != 15 && rn.code() != 15); + return writeInst(0x01900f9f | (int)c | RT(rt) | RN(rn)); +} + +BufferOffset Assembler::as_ldrexh(Register rt, Register rn, Condition c) { + MOZ_ASSERT(rt.code() != 15 && rn.code() != 15); + return writeInst(0x01f00f9f | (int)c | RT(rt) | RN(rn)); +} + +BufferOffset Assembler::as_ldrexb(Register rt, Register rn, Condition c) { + MOZ_ASSERT(rt.code() != 15 && rn.code() != 15); + return writeInst(0x01d00f9f | (int)c | RT(rt) | RN(rn)); +} + +BufferOffset Assembler::as_strexd(Register rd, Register rt, Register rt2, + Register rn, Condition c) { + MOZ_ASSERT(!(rt.code() & 1) && rt2.code() == rt.code() + 1); + MOZ_ASSERT(rt.code() != 14 && rn.code() != 15 && rd.code() != 15); + MOZ_ASSERT(rd != rn && rd != rt && rd != rt2); + return writeInst(0x01a00f90 | (int)c | RD(rd) | RN(rn) | rt.code()); +} + +BufferOffset Assembler::as_strex(Register rd, Register rt, Register rn, + Condition c) { + MOZ_ASSERT(rd != rn && rd != rt); // True restriction on Cortex-A7 (RPi2) + return writeInst(0x01800f90 | (int)c | RD(rd) | RN(rn) | rt.code()); +} + +BufferOffset Assembler::as_strexh(Register rd, Register rt, Register rn, + Condition c) { + MOZ_ASSERT(rd != rn && rd != rt); // True restriction on Cortex-A7 (RPi2) + return writeInst(0x01e00f90 | (int)c | RD(rd) | RN(rn) | rt.code()); +} + +BufferOffset Assembler::as_strexb(Register rd, Register rt, Register rn, + Condition c) { + MOZ_ASSERT(rd != rn && rd != rt); // True restriction on Cortex-A7 (RPi2) + return writeInst(0x01c00f90 | (int)c | RD(rd) | RN(rn) | rt.code()); +} + +BufferOffset Assembler::as_clrex() { return writeInst(0xf57ff01f); } + +// Memory barrier stuff: + +BufferOffset Assembler::as_dmb(BarrierOption option) { + return writeInst(0xf57ff050U | (int)option); +} +BufferOffset Assembler::as_dsb(BarrierOption option) { + return writeInst(0xf57ff040U | (int)option); +} +BufferOffset Assembler::as_isb() { + return writeInst(0xf57ff06fU); // option == SY +} +BufferOffset Assembler::as_dsb_trap() { + // DSB is "mcr 15, 0, r0, c7, c10, 4". + // See eg https://bugs.kde.org/show_bug.cgi?id=228060. + // ARMv7 manual, "VMSA CP15 c7 register summary". + // Flagged as "legacy" starting with ARMv8, may be disabled on chip, see + // ARMv8 manual E2.7.3 and G3.18.16. + return writeInst(0xee070f9a); +} +BufferOffset Assembler::as_dmb_trap() { + // DMB is "mcr 15, 0, r0, c7, c10, 5". + // ARMv7 manual, "VMSA CP15 c7 register summary". + // Flagged as "legacy" starting with ARMv8, may be disabled on chip, see + // ARMv8 manual E2.7.3 and G3.18.16. + return writeInst(0xee070fba); +} +BufferOffset Assembler::as_isb_trap() { + // ISB is "mcr 15, 0, r0, c7, c5, 4". + // ARMv7 manual, "VMSA CP15 c7 register summary". + // Flagged as "legacy" starting with ARMv8, may be disabled on chip, see + // ARMv8 manual E2.7.3 and G3.18.16. + return writeInst(0xee070f94); +} + +BufferOffset Assembler::as_csdb() { + // NOP (see as_nop) on architectures where this instruction is not defined. + // + // https://developer.arm.com/-/media/developer/pdf/Cache_Speculation_Side-channels_22Feb18.pdf + // CSDB A32: 1110_0011_0010_0000_1111_0000_0001_0100 + return writeInst(0xe320f000 | 0x14); +} + +// Control flow stuff: + +// bx can *only* branch to a register, never to an immediate. +BufferOffset Assembler::as_bx(Register r, Condition c) { + BufferOffset ret = writeInst(((int)c) | OpBx | r.code()); + return ret; +} + +void Assembler::WritePoolGuard(BufferOffset branch, Instruction* dest, + BufferOffset afterPool) { + BOffImm off = afterPool.diffB<BOffImm>(branch); + if (off.isInvalid()) { + MOZ_CRASH("BOffImm invalid"); + } + *dest = InstBImm(off, Always); +} + +// Branch can branch to an immediate *or* to a register. +// Branches to immediates are pc relative, branches to registers are absolute. +BufferOffset Assembler::as_b(BOffImm off, Condition c, Label* documentation) { + return writeBranchInst(((int)c) | OpB | off.encode(), + refLabel(documentation)); +} + +BufferOffset Assembler::as_b(Label* l, Condition c) { + if (l->bound()) { + // Note only one instruction is emitted here, the NOP is overwritten. + BufferOffset ret = allocBranchInst(); + if (oom()) { + return BufferOffset(); + } + + BOffImm offset = BufferOffset(l).diffB<BOffImm>(ret); + MOZ_RELEASE_ASSERT(!offset.isInvalid(), + "Buffer size limit should prevent this"); + as_b(offset, c, ret); +#ifdef JS_DISASM_ARM + spewBranch(m_buffer.getInstOrNull(ret), refLabel(l)); +#endif + return ret; + } + + if (oom()) { + return BufferOffset(); + } + + BufferOffset ret; + if (l->used()) { + int32_t old = l->offset(); + MOZ_RELEASE_ASSERT(BOffImm::IsInRange(old), + "Buffer size limit should prevent this"); + ret = as_b(BOffImm(old), c, l); + } else { + BOffImm inv; + ret = as_b(inv, c, l); + } + + if (oom()) { + return BufferOffset(); + } + + l->use(ret.getOffset()); + return ret; +} + +BufferOffset Assembler::as_b(BOffImm off, Condition c, BufferOffset inst) { + // JS_DISASM_ARM NOTE: Can't disassemble here, because numerous callers use + // this to patchup old code. Must disassemble in caller where it makes sense. + // Not many callers. + *editSrc(inst) = InstBImm(off, c); + return inst; +} + +// blx can go to either an immediate or a register. +// When blx'ing to a register, we change processor state depending on the low +// bit of the register when blx'ing to an immediate, we *always* change +// processor state. + +BufferOffset Assembler::as_blx(Register r, Condition c) { + return writeInst(((int)c) | OpBlx | r.code()); +} + +// bl can only branch to an pc-relative immediate offset +// It cannot change the processor state. +BufferOffset Assembler::as_bl(BOffImm off, Condition c, Label* documentation) { + return writeBranchInst(((int)c) | OpBl | off.encode(), + refLabel(documentation)); +} + +BufferOffset Assembler::as_bl(Label* l, Condition c) { + if (l->bound()) { + // Note only one instruction is emitted here, the NOP is overwritten. + BufferOffset ret = allocBranchInst(); + if (oom()) { + return BufferOffset(); + } + + BOffImm offset = BufferOffset(l).diffB<BOffImm>(ret); + MOZ_RELEASE_ASSERT(!offset.isInvalid(), + "Buffer size limit should prevent this"); + + as_bl(offset, c, ret); +#ifdef JS_DISASM_ARM + spewBranch(m_buffer.getInstOrNull(ret), refLabel(l)); +#endif + return ret; + } + + if (oom()) { + return BufferOffset(); + } + + BufferOffset ret; + // See if the list was empty. + if (l->used()) { + int32_t old = l->offset(); + MOZ_RELEASE_ASSERT(BOffImm::IsInRange(old), + "Buffer size limit should prevent this"); + ret = as_bl(BOffImm(old), c, l); + } else { + BOffImm inv; + ret = as_bl(inv, c, l); + } + + if (oom()) { + return BufferOffset(); + } + + l->use(ret.getOffset()); + return ret; +} + +BufferOffset Assembler::as_bl(BOffImm off, Condition c, BufferOffset inst) { + *editSrc(inst) = InstBLImm(off, c); + return inst; +} + +BufferOffset Assembler::as_mrs(Register r, Condition c) { + return writeInst(0x010f0000 | int(c) | RD(r)); +} + +BufferOffset Assembler::as_msr(Register r, Condition c) { + // Hardcode the 'mask' field to 0b11 for now. It is bits 18 and 19, which + // are the two high bits of the 'c' in this constant. + MOZ_ASSERT((r.code() & ~0xf) == 0); + return writeInst(0x012cf000 | int(c) | r.code()); +} + +// VFP instructions! +enum vfp_tags { VfpTag = 0x0C000A00, VfpArith = 0x02000000 }; + +BufferOffset Assembler::writeVFPInst(vfp_size sz, uint32_t blob) { + MOZ_ASSERT((sz & blob) == 0); + MOZ_ASSERT((VfpTag & blob) == 0); + return writeInst(VfpTag | std::underlying_type_t<vfp_size>(sz) | blob); +} + +/* static */ +void Assembler::WriteVFPInstStatic(vfp_size sz, uint32_t blob, uint32_t* dest) { + MOZ_ASSERT((sz & blob) == 0); + MOZ_ASSERT((VfpTag & blob) == 0); + WriteInstStatic(VfpTag | std::underlying_type_t<vfp_size>(sz) | blob, dest); +} + +// Unityped variants: all registers hold the same (ieee754 single/double) +// notably not included are vcvt; vmov vd, #imm; vmov rt, vn. +BufferOffset Assembler::as_vfp_float(VFPRegister vd, VFPRegister vn, + VFPRegister vm, VFPOp op, Condition c) { + // Make sure we believe that all of our operands are the same kind. + MOZ_ASSERT_IF(!vn.isMissing(), vd.equiv(vn)); + MOZ_ASSERT_IF(!vm.isMissing(), vd.equiv(vm)); + vfp_size sz = vd.isDouble() ? IsDouble : IsSingle; + return writeVFPInst(sz, VD(vd) | VN(vn) | VM(vm) | op | VfpArith | c); +} + +BufferOffset Assembler::as_vadd(VFPRegister vd, VFPRegister vn, VFPRegister vm, + Condition c) { + return as_vfp_float(vd, vn, vm, OpvAdd, c); +} + +BufferOffset Assembler::as_vdiv(VFPRegister vd, VFPRegister vn, VFPRegister vm, + Condition c) { + return as_vfp_float(vd, vn, vm, OpvDiv, c); +} + +BufferOffset Assembler::as_vmul(VFPRegister vd, VFPRegister vn, VFPRegister vm, + Condition c) { + return as_vfp_float(vd, vn, vm, OpvMul, c); +} + +BufferOffset Assembler::as_vnmul(VFPRegister vd, VFPRegister vn, VFPRegister vm, + Condition c) { + return as_vfp_float(vd, vn, vm, OpvMul, c); +} + +BufferOffset Assembler::as_vnmla(VFPRegister vd, VFPRegister vn, VFPRegister vm, + Condition c) { + MOZ_CRASH("Feature NYI"); +} + +BufferOffset Assembler::as_vnmls(VFPRegister vd, VFPRegister vn, VFPRegister vm, + Condition c) { + MOZ_CRASH("Feature NYI"); +} + +BufferOffset Assembler::as_vneg(VFPRegister vd, VFPRegister vm, Condition c) { + return as_vfp_float(vd, NoVFPRegister, vm, OpvNeg, c); +} + +BufferOffset Assembler::as_vsqrt(VFPRegister vd, VFPRegister vm, Condition c) { + return as_vfp_float(vd, NoVFPRegister, vm, OpvSqrt, c); +} + +BufferOffset Assembler::as_vabs(VFPRegister vd, VFPRegister vm, Condition c) { + return as_vfp_float(vd, NoVFPRegister, vm, OpvAbs, c); +} + +BufferOffset Assembler::as_vsub(VFPRegister vd, VFPRegister vn, VFPRegister vm, + Condition c) { + return as_vfp_float(vd, vn, vm, OpvSub, c); +} + +BufferOffset Assembler::as_vcmp(VFPRegister vd, VFPRegister vm, Condition c) { + return as_vfp_float(vd, NoVFPRegister, vm, OpvCmp, c); +} + +BufferOffset Assembler::as_vcmpz(VFPRegister vd, Condition c) { + return as_vfp_float(vd, NoVFPRegister, NoVFPRegister, OpvCmpz, c); +} + +// Specifically, a move between two same sized-registers. +BufferOffset Assembler::as_vmov(VFPRegister vd, VFPRegister vsrc, Condition c) { + return as_vfp_float(vd, NoVFPRegister, vsrc, OpvMov, c); +} + +// Transfer between Core and VFP. + +// Unlike the next function, moving between the core registers and vfp registers +// can't be *that* properly typed. Namely, since I don't want to munge the type +// VFPRegister to also include core registers. Thus, the core and vfp registers +// are passed in based on their type, and src/dest is determined by the +// float2core. + +BufferOffset Assembler::as_vxfer(Register vt1, Register vt2, VFPRegister vm, + FloatToCore_ f2c, Condition c, int idx) { + vfp_size sz = IsSingle; + if (vm.isDouble()) { + // Technically, this can be done with a vmov à la ARM ARM under vmov + // however, that requires at least an extra bit saying if the operation + // should be performed on the lower or upper half of the double. Moving + // a single to/from 2N/2N+1 isn't equivalent, since there are 32 single + // registers, and 32 double registers so there is no way to encode the + // last 16 double registers. + sz = IsDouble; + MOZ_ASSERT(idx == 0 || idx == 1); + // If we are transferring a single half of the double then it must be + // moving a VFP reg to a core reg. + MOZ_ASSERT_IF(vt2 == InvalidReg, f2c == FloatToCore); + idx = idx << 21; + } else { + MOZ_ASSERT(idx == 0); + } + + if (vt2 == InvalidReg) { + return writeVFPInst(sz, WordTransfer | + std::underlying_type_t<FloatToCore_>(f2c) | + std::underlying_type_t<Condition>(c) | RT(vt1) | + maybeRN(vt2) | VN(vm) | idx); + } + + // We are doing a 64 bit transfer. + return writeVFPInst(sz, DoubleTransfer | + std::underlying_type_t<FloatToCore_>(f2c) | + std::underlying_type_t<Condition>(c) | RT(vt1) | + maybeRN(vt2) | VM(vm) | idx); +} + +enum vcvt_destFloatness { VcvtToInteger = 1 << 18, VcvtToFloat = 0 << 18 }; +enum vcvt_toZero { + VcvtToZero = + 1 << 7, // Use the default rounding mode, which rounds truncates. + VcvtToFPSCR = 0 << 7 // Use whatever rounding mode the fpscr specifies. +}; +enum vcvt_Signedness { + VcvtToSigned = 1 << 16, + VcvtToUnsigned = 0 << 16, + VcvtFromSigned = 1 << 7, + VcvtFromUnsigned = 0 << 7 +}; + +// Our encoding actually allows just the src and the dest (and their types) to +// uniquely specify the encoding that we are going to use. +BufferOffset Assembler::as_vcvt(VFPRegister vd, VFPRegister vm, bool useFPSCR, + Condition c) { + // Unlike other cases, the source and dest types cannot be the same. + MOZ_ASSERT(!vd.equiv(vm)); + vfp_size sz = IsDouble; + if (vd.isFloat() && vm.isFloat()) { + // Doing a float -> float conversion. + if (vm.isSingle()) { + sz = IsSingle; + } + return writeVFPInst(sz, c | 0x02B700C0 | VM(vm) | VD(vd)); + } + + // At least one of the registers should be a float. + vcvt_destFloatness destFloat; + vcvt_Signedness opSign; + vcvt_toZero doToZero = VcvtToFPSCR; + MOZ_ASSERT(vd.isFloat() || vm.isFloat()); + if (vd.isSingle() || vm.isSingle()) { + sz = IsSingle; + } + + if (vd.isFloat()) { + destFloat = VcvtToFloat; + opSign = (vm.isSInt()) ? VcvtFromSigned : VcvtFromUnsigned; + } else { + destFloat = VcvtToInteger; + opSign = (vd.isSInt()) ? VcvtToSigned : VcvtToUnsigned; + doToZero = useFPSCR ? VcvtToFPSCR : VcvtToZero; + } + return writeVFPInst( + sz, c | 0x02B80040 | VD(vd) | VM(vm) | destFloat | opSign | doToZero); +} + +BufferOffset Assembler::as_vcvtFixed(VFPRegister vd, bool isSigned, + uint32_t fixedPoint, bool toFixed, + Condition c) { + MOZ_ASSERT(vd.isFloat()); + uint32_t sx = 0x1; + vfp_size sf = vd.isDouble() ? IsDouble : IsSingle; + int32_t imm5 = fixedPoint; + imm5 = (sx ? 32 : 16) - imm5; + MOZ_ASSERT(imm5 >= 0); + imm5 = imm5 >> 1 | (imm5 & 1) << 5; + return writeVFPInst(sf, 0x02BA0040 | VD(vd) | toFixed << 18 | sx << 7 | + (!isSigned) << 16 | imm5 | c); +} + +// Transfer between VFP and memory. +static uint32_t EncodeVdtr(LoadStore ls, VFPRegister vd, VFPAddr addr, + Assembler::Condition c) { + return ls | 0x01000000 | addr.encode() | VD(vd) | c; +} + +BufferOffset Assembler::as_vdtr( + LoadStore ls, VFPRegister vd, VFPAddr addr, + Condition c /* vfp doesn't have a wb option */) { + vfp_size sz = vd.isDouble() ? IsDouble : IsSingle; + return writeVFPInst(sz, EncodeVdtr(ls, vd, addr, c)); +} + +/* static */ +void Assembler::as_vdtr_patch(LoadStore ls, VFPRegister vd, VFPAddr addr, + Condition c, uint32_t* dest) { + vfp_size sz = vd.isDouble() ? IsDouble : IsSingle; + WriteVFPInstStatic(sz, EncodeVdtr(ls, vd, addr, c), dest); +} + +// VFP's ldm/stm work differently from the standard arm ones. You can only +// transfer a range. + +BufferOffset Assembler::as_vdtm(LoadStore st, Register rn, VFPRegister vd, + int length, + /* also has update conditions */ Condition c) { + MOZ_ASSERT(length <= 16 && length >= 0); + vfp_size sz = vd.isDouble() ? IsDouble : IsSingle; + + if (vd.isDouble()) { + length *= 2; + } + + return writeVFPInst(sz, dtmLoadStore | RN(rn) | VD(vd) | length | dtmMode | + dtmUpdate | dtmCond); +} + +BufferOffset Assembler::as_vldr_unaligned(VFPRegister vd, Register rn) { + MOZ_ASSERT(HasNEON()); + if (vd.isDouble()) { + // vld1 (multiple single elements) with align=0, size=3, numregs=1 + return writeInst(0xF42007CF | RN(rn) | VD(vd)); + } + // vld1 (single element to single lane) with index=0, size=2 + MOZ_ASSERT(vd.isFloat()); + MOZ_ASSERT((vd.code() & 1) == 0); + return writeInst(0xF4A0080F | RN(rn) | VD(vd.asDouble())); +} + +BufferOffset Assembler::as_vstr_unaligned(VFPRegister vd, Register rn) { + MOZ_ASSERT(HasNEON()); + if (vd.isDouble()) { + // vst1 (multiple single elements) with align=0, size=3, numregs=1 + return writeInst(0xF40007CF | RN(rn) | VD(vd)); + } + // vst1 (single element from one lane) with index=0, size=2 + MOZ_ASSERT(vd.isFloat()); + MOZ_ASSERT((vd.code() & 1) == 0); + return writeInst(0xF480080F | RN(rn) | VD(vd.asDouble())); +} + +BufferOffset Assembler::as_vimm(VFPRegister vd, VFPImm imm, Condition c) { + MOZ_ASSERT(imm.isValid()); + vfp_size sz = vd.isDouble() ? IsDouble : IsSingle; + return writeVFPInst(sz, c | imm.encode() | VD(vd) | 0x02B00000); +} + +BufferOffset Assembler::as_vmrs(Register r, Condition c) { + return writeInst(c | 0x0ef10a10 | RT(r)); +} + +BufferOffset Assembler::as_vmsr(Register r, Condition c) { + return writeInst(c | 0x0ee10a10 | RT(r)); +} + +bool Assembler::nextLink(BufferOffset b, BufferOffset* next) { + Instruction branch = *editSrc(b); + MOZ_ASSERT(branch.is<InstBranchImm>()); + + BOffImm destOff; + branch.as<InstBranchImm>()->extractImm(&destOff); + if (destOff.isInvalid()) { + return false; + } + + // Propagate the next link back to the caller, by constructing a new + // BufferOffset into the space they provided. + new (next) BufferOffset(destOff.decode()); + return true; +} + +void Assembler::bind(Label* label, BufferOffset boff) { +#ifdef JS_DISASM_ARM + spew_.spewBind(label); +#endif + if (oom()) { + // Ensure we always bind the label. This matches what we do on + // x86/x64 and silences the assert in ~Label. + label->bind(0); + return; + } + + if (label->used()) { + bool more; + // If our caller didn't give us an explicit target to bind to then we + // want to bind to the location of the next instruction. + BufferOffset dest = boff.assigned() ? boff : nextOffset(); + BufferOffset b(label); + do { + BufferOffset next; + more = nextLink(b, &next); + Instruction branch = *editSrc(b); + Condition c = branch.extractCond(); + BOffImm offset = dest.diffB<BOffImm>(b); + MOZ_RELEASE_ASSERT(!offset.isInvalid(), + "Buffer size limit should prevent this"); + if (branch.is<InstBImm>()) { + as_b(offset, c, b); + } else if (branch.is<InstBLImm>()) { + as_bl(offset, c, b); + } else { + MOZ_CRASH("crazy fixup!"); + } + b = next; + } while (more); + } + label->bind(nextOffset().getOffset()); + MOZ_ASSERT(!oom()); +} + +void Assembler::retarget(Label* label, Label* target) { +#ifdef JS_DISASM_ARM + spew_.spewRetarget(label, target); +#endif + if (label->used() && !oom()) { + if (target->bound()) { + bind(label, BufferOffset(target)); + } else if (target->used()) { + // The target is not bound but used. Prepend label's branch list + // onto target's. + BufferOffset labelBranchOffset(label); + BufferOffset next; + + // Find the head of the use chain for label. + while (nextLink(labelBranchOffset, &next)) { + labelBranchOffset = next; + } + + // Then patch the head of label's use chain to the tail of target's + // use chain, prepending the entire use chain of target. + Instruction branch = *editSrc(labelBranchOffset); + Condition c = branch.extractCond(); + int32_t prev = target->offset(); + target->use(label->offset()); + if (branch.is<InstBImm>()) { + as_b(BOffImm(prev), c, labelBranchOffset); + } else if (branch.is<InstBLImm>()) { + as_bl(BOffImm(prev), c, labelBranchOffset); + } else { + MOZ_CRASH("crazy fixup!"); + } + } else { + // The target is unbound and unused. We can just take the head of + // the list hanging off of label, and dump that into target. + target->use(label->offset()); + } + } + label->reset(); +} + +static int stopBKPT = -1; +void Assembler::as_bkpt() { + // This is a count of how many times a breakpoint instruction has been + // generated. It is embedded into the instruction for debugging + // purposes. Gdb will print "bkpt xxx" when you attempt to dissassemble a + // breakpoint with the number xxx embedded into it. If this breakpoint is + // being hit, then you can run (in gdb): + // >b dbg_break + // >b main + // >commands + // >set stopBKPT = xxx + // >c + // >end + // which will set a breakpoint on the function dbg_break above set a + // scripted breakpoint on main that will set the (otherwise unmodified) + // value to the number of the breakpoint, so dbg_break will actuall be + // called and finally, when you run the executable, execution will halt when + // that breakpoint is generated. + static int hit = 0; + if (stopBKPT == hit) { + dbg_break(); + } + writeInst(0xe1200070 | (hit & 0xf) | ((hit & 0xfff0) << 4)); + hit++; +} + +BufferOffset Assembler::as_illegal_trap() { + // Encoding of the permanently-undefined 'udf' instruction, with the imm16 + // set to 0. + return writeInst(0xe7f000f0); +} + +void Assembler::flushBuffer() { m_buffer.flushPool(); } + +void Assembler::enterNoPool(size_t maxInst) { m_buffer.enterNoPool(maxInst); } + +void Assembler::leaveNoPool() { m_buffer.leaveNoPool(); } + +void Assembler::enterNoNops() { m_buffer.enterNoNops(); } + +void Assembler::leaveNoNops() { m_buffer.leaveNoNops(); } + +struct PoolHeader : Instruction { + struct Header { + // The size should take into account the pool header. + // The size is in units of Instruction (4 bytes), not byte. + uint32_t size : 15; + uint32_t isNatural : 1; + uint32_t ONES : 16; + + Header(int size_, bool isNatural_) + : size(size_), isNatural(isNatural_), ONES(0xffff) {} + + explicit Header(const Instruction* i) { + static_assert(sizeof(Header) == sizeof(uint32_t)); + memcpy(this, i, sizeof(Header)); + MOZ_ASSERT(ONES == 0xffff); + } + + uint32_t raw() const { + static_assert(sizeof(Header) == sizeof(uint32_t)); + uint32_t dest; + memcpy(&dest, this, sizeof(Header)); + return dest; + } + }; + + PoolHeader(int size_, bool isNatural_) + : Instruction(Header(size_, isNatural_).raw(), true) {} + + uint32_t size() const { + Header tmp(this); + return tmp.size; + } + uint32_t isNatural() const { + Header tmp(this); + return tmp.isNatural; + } + + static bool IsTHIS(const Instruction& i) { + return (*i.raw() & 0xffff0000) == 0xffff0000; + } + static const PoolHeader* AsTHIS(const Instruction& i) { + if (!IsTHIS(i)) { + return nullptr; + } + return static_cast<const PoolHeader*>(&i); + } +}; + +void Assembler::WritePoolHeader(uint8_t* start, Pool* p, bool isNatural) { + static_assert(sizeof(PoolHeader) == 4, + "PoolHandler must have the correct size."); + uint8_t* pool = start + 4; + // Go through the usual rigmarole to get the size of the pool. + pool += p->getPoolSize(); + uint32_t size = pool - start; + MOZ_ASSERT((size & 3) == 0); + size = size >> 2; + MOZ_ASSERT(size < (1 << 15)); + PoolHeader header(size, isNatural); + *(PoolHeader*)start = header; +} + +// The size of an arbitrary 32-bit call in the instruction stream. On ARM this +// sequence is |pc = ldr pc - 4; imm32| given that we never reach the imm32. +uint32_t Assembler::PatchWrite_NearCallSize() { return sizeof(uint32_t); } + +void Assembler::PatchWrite_NearCall(CodeLocationLabel start, + CodeLocationLabel toCall) { + Instruction* inst = (Instruction*)start.raw(); + // Overwrite whatever instruction used to be here with a call. Since the + // destination is in the same function, it will be within range of the + // 24 << 2 byte bl instruction. + uint8_t* dest = toCall.raw(); + new (inst) InstBLImm(BOffImm(dest - (uint8_t*)inst), Always); +} + +void Assembler::PatchDataWithValueCheck(CodeLocationLabel label, + PatchedImmPtr newValue, + PatchedImmPtr expectedValue) { + Instruction* ptr = reinterpret_cast<Instruction*>(label.raw()); + + Register dest; + Assembler::RelocStyle rs; + + { + InstructionIterator iter(ptr); + DebugOnly<const uint32_t*> val = GetPtr32Target(iter, &dest, &rs); + MOZ_ASSERT(uint32_t((const uint32_t*)val) == uint32_t(expectedValue.value)); + } + + // Patch over actual instructions. + { + InstructionIterator iter(ptr); + MacroAssembler::ma_mov_patch(Imm32(int32_t(newValue.value)), dest, Always, + rs, iter); + } +} + +void Assembler::PatchDataWithValueCheck(CodeLocationLabel label, + ImmPtr newValue, ImmPtr expectedValue) { + PatchDataWithValueCheck(label, PatchedImmPtr(newValue.value), + PatchedImmPtr(expectedValue.value)); +} + +// This just stomps over memory with 32 bits of raw data. Its purpose is to +// overwrite the call of JITed code with 32 bits worth of an offset. This will +// is only meant to function on code that has been invalidated, so it should be +// totally safe. Since that instruction will never be executed again, a ICache +// flush should not be necessary +void Assembler::PatchWrite_Imm32(CodeLocationLabel label, Imm32 imm) { + // Raw is going to be the return address. + uint32_t* raw = (uint32_t*)label.raw(); + // Overwrite the 4 bytes before the return address, which will end up being + // the call instruction. + *(raw - 1) = imm.value; +} + +uint8_t* Assembler::NextInstruction(uint8_t* inst_, uint32_t* count) { + if (count != nullptr) { + *count += sizeof(Instruction); + } + + InstructionIterator iter(reinterpret_cast<Instruction*>(inst_)); + return reinterpret_cast<uint8_t*>(iter.next()); +} + +static bool InstIsGuard(Instruction* inst, const PoolHeader** ph) { + Assembler::Condition c = inst->extractCond(); + if (c != Assembler::Always) { + return false; + } + if (!(inst->is<InstBXReg>() || inst->is<InstBImm>())) { + return false; + } + // See if the next instruction is a pool header. + *ph = (inst + 1)->as<const PoolHeader>(); + return *ph != nullptr; +} + +static bool InstIsGuard(BufferInstructionIterator& iter, + const PoolHeader** ph) { + Instruction* inst = iter.cur(); + Assembler::Condition c = inst->extractCond(); + if (c != Assembler::Always) { + return false; + } + if (!(inst->is<InstBXReg>() || inst->is<InstBImm>())) { + return false; + } + // See if the next instruction is a pool header. + *ph = iter.peek()->as<const PoolHeader>(); + return *ph != nullptr; +} + +template <class T> +static bool InstIsBNop(const T& iter) { + // In some special situations, it is necessary to insert a NOP into the + // instruction stream that nobody knows about, since nobody should know + // about it, make sure it gets skipped when Instruction::next() is called. + // this generates a very specific nop, namely a branch to the next + // instruction. + const Instruction* cur = iter.cur(); + Assembler::Condition c = cur->extractCond(); + if (c != Assembler::Always) { + return false; + } + if (!cur->is<InstBImm>()) { + return false; + } + InstBImm* b = cur->as<InstBImm>(); + BOffImm offset; + b->extractImm(&offset); + return offset.decode() == 4; +} + +Instruction* InstructionIterator::maybeSkipAutomaticInstructions() { + // If the current instruction was automatically-inserted, skip past it. + const PoolHeader* ph; + + // Loop until an intentionally-placed instruction is found. + while (true) { + if (InstIsGuard(cur(), &ph)) { + // Don't skip a natural guard. + if (ph->isNatural()) { + return cur(); + } + advanceRaw(1 + ph->size()); + } else if (InstIsBNop<InstructionIterator>(*this)) { + advanceRaw(1); + } else { + return cur(); + } + } +} + +Instruction* BufferInstructionIterator::maybeSkipAutomaticInstructions() { + const PoolHeader* ph; + // If this is a guard, and the next instruction is a header, always work + // around the pool. If it isn't a guard, then start looking ahead. + if (InstIsGuard(*this, &ph)) { + // Don't skip a natural guard. + if (ph->isNatural()) { + return cur(); + } + advance(sizeof(Instruction) * ph->size()); + return next(); + } + if (InstIsBNop<BufferInstructionIterator>(*this)) { + return next(); + } + return cur(); +} + +// Cases to be handled: +// 1) no pools or branches in sight => return this+1 +// 2) branch to next instruction => return this+2, because a nop needed to be +// inserted into the stream. +// 3) this+1 is an artificial guard for a pool => return first instruction +// after the pool +// 4) this+1 is a natural guard => return the branch +// 5) this is a branch, right before a pool => return first instruction after +// the pool +// in assembly form: +// 1) add r0, r0, r0 <= this +// add r1, r1, r1 <= returned value +// add r2, r2, r2 +// +// 2) add r0, r0, r0 <= this +// b foo +// foo: +// add r2, r2, r2 <= returned value +// +// 3) add r0, r0, r0 <= this +// b after_pool; +// .word 0xffff0002 # bit 15 being 0 indicates that the branch was not +// # requested by the assembler +// 0xdeadbeef # the 2 indicates that there is 1 pool entry, and the +// # pool header +// add r4, r4, r4 <= returned value +// 4) add r0, r0, r0 <= this +// b after_pool <= returned value +// .word 0xffff8002 # bit 15 being 1 indicates that the branch was +// # requested by the assembler +// 0xdeadbeef +// add r4, r4, r4 +// 5) b after_pool <= this +// .word 0xffff8002 # bit 15 has no bearing on the returned value +// 0xdeadbeef +// add r4, r4, r4 <= returned value + +Instruction* InstructionIterator::next() { + const PoolHeader* ph; + + // If the current instruction is followed by a pool header, + // move past the current instruction and the pool. + if (InstIsGuard(cur(), &ph)) { + advanceRaw(1 + ph->size()); + return maybeSkipAutomaticInstructions(); + } + + // The next instruction is then known to not be a PoolHeader. + advanceRaw(1); + return maybeSkipAutomaticInstructions(); +} + +void Assembler::ToggleToJmp(CodeLocationLabel inst_) { + uint32_t* ptr = (uint32_t*)inst_.raw(); + + DebugOnly<Instruction*> inst = (Instruction*)inst_.raw(); + MOZ_ASSERT(inst->is<InstCMP>()); + + // Zero bits 20-27, then set 24-27 to be correct for a branch. + // 20-23 will be party of the B's immediate, and should be 0. + *ptr = (*ptr & ~(0xff << 20)) | (0xa0 << 20); +} + +void Assembler::ToggleToCmp(CodeLocationLabel inst_) { + uint32_t* ptr = (uint32_t*)inst_.raw(); + + DebugOnly<Instruction*> inst = (Instruction*)inst_.raw(); + MOZ_ASSERT(inst->is<InstBImm>()); + + // Ensure that this masking operation doesn't affect the offset of the + // branch instruction when it gets toggled back. + MOZ_ASSERT((*ptr & (0xf << 20)) == 0); + + // Also make sure that the CMP is valid. Part of having a valid CMP is that + // all of the bits describing the destination in most ALU instructions are + // all unset (looks like it is encoding r0). + MOZ_ASSERT(toRD(*inst) == r0); + + // Zero out bits 20-27, then set them to be correct for a compare. + *ptr = (*ptr & ~(0xff << 20)) | (0x35 << 20); +} + +void Assembler::ToggleCall(CodeLocationLabel inst_, bool enabled) { + InstructionIterator iter(reinterpret_cast<Instruction*>(inst_.raw())); + MOZ_ASSERT(iter.cur()->is<InstMovW>() || iter.cur()->is<InstLDR>()); + + if (iter.cur()->is<InstMovW>()) { + // If it looks like the start of a movw/movt sequence, then make sure we + // have all of it (and advance the iterator past the full sequence). + iter.next(); + MOZ_ASSERT(iter.cur()->is<InstMovT>()); + } + + iter.next(); + MOZ_ASSERT(iter.cur()->is<InstNOP>() || iter.cur()->is<InstBLXReg>()); + + if (enabled == iter.cur()->is<InstBLXReg>()) { + // Nothing to do. + return; + } + + Instruction* inst = iter.cur(); + + if (enabled) { + *inst = InstBLXReg(ScratchRegister, Always); + } else { + *inst = InstNOP(); + } +} + +size_t Assembler::ToggledCallSize(uint8_t* code) { + InstructionIterator iter(reinterpret_cast<Instruction*>(code)); + MOZ_ASSERT(iter.cur()->is<InstMovW>() || iter.cur()->is<InstLDR>()); + + if (iter.cur()->is<InstMovW>()) { + // If it looks like the start of a movw/movt sequence, then make sure we + // have all of it (and advance the iterator past the full sequence). + iter.next(); + MOZ_ASSERT(iter.cur()->is<InstMovT>()); + } + + iter.next(); + MOZ_ASSERT(iter.cur()->is<InstNOP>() || iter.cur()->is<InstBLXReg>()); + return uintptr_t(iter.cur()) + 4 - uintptr_t(code); +} + +uint32_t Assembler::NopFill = 0; + +uint32_t Assembler::GetNopFill() { + static bool isSet = false; + if (!isSet) { + char* fillStr = getenv("ARM_ASM_NOP_FILL"); + uint32_t fill; + if (fillStr && sscanf(fillStr, "%u", &fill) == 1) { + NopFill = fill; + } + if (NopFill > 8) { + MOZ_CRASH("Nop fill > 8 is not supported"); + } + isSet = true; + } + return NopFill; +} + +uint32_t Assembler::AsmPoolMaxOffset = 1024; + +uint32_t Assembler::GetPoolMaxOffset() { + static bool isSet = false; + if (!isSet) { + char* poolMaxOffsetStr = getenv("ASM_POOL_MAX_OFFSET"); + uint32_t poolMaxOffset; + if (poolMaxOffsetStr && + sscanf(poolMaxOffsetStr, "%u", &poolMaxOffset) == 1) { + AsmPoolMaxOffset = poolMaxOffset; + } + isSet = true; + } + return AsmPoolMaxOffset; +} + +SecondScratchRegisterScope::SecondScratchRegisterScope(MacroAssembler& masm) + : AutoRegisterScope(masm, masm.getSecondScratchReg()) {} + +#ifdef JS_DISASM_ARM + +/* static */ +void Assembler::disassembleInstruction(const Instruction* i, + DisasmBuffer& buffer) { + disasm::NameConverter converter; + disasm::Disassembler dasm(converter); + uint8_t* loc = reinterpret_cast<uint8_t*>(const_cast<uint32_t*>(i->raw())); + dasm.InstructionDecode(buffer, loc); +} + +void Assembler::initDisassembler() { + // The line is normally laid out like this: + // + // xxxxxxxx ldr r, op ; comment + // + // where xx...x is the instruction bit pattern. + // + // Labels are laid out by themselves to line up with the instructions above + // and below: + // + // nnnn: + // + // Branch targets are normally on the same line as the branch instruction, + // but when they cannot be they will be on a line by themselves, indented + // significantly: + // + // -> label + + spew_.setLabelIndent(" "); // 10 + spew_.setTargetIndent(" "); // 20 +} + +void Assembler::finishDisassembler() { spew_.spewOrphans(); } + +// Labels are named as they are encountered by adding names to a +// table, using the Label address as the key. This is made tricky by +// the (memory for) Label objects being reused, but reused label +// objects are recognizable from being marked as not used or not +// bound. See spew_.refLabel(). +// +// In a number of cases there is no information about the target, and +// we just end up printing "patchable constant load to PC". This is +// true especially for jumps to bailout handlers (which have no +// names). See allocLiteralLoadEntry() and its callers. In some cases +// (loop back edges) some information about the intended target may be +// propagated from higher levels, and if so it's printed here. + +void Assembler::spew(Instruction* i) { + if (spew_.isDisabled() || !i) { + return; + } + + DisasmBuffer buffer; + disassembleInstruction(i, buffer); + spew_.spew("%s", buffer.start()); +} + +// If a target label is known, always print that and do not attempt to +// disassemble the branch operands, as they will often be encoding +// metainformation (pointers for a chain of jump instructions), and +// not actual branch targets. + +void Assembler::spewBranch(Instruction* i, const LabelDoc& target) { + if (spew_.isDisabled() || !i) { + return; + } + + DisasmBuffer buffer; + disassembleInstruction(i, buffer); + + char labelBuf[128]; + labelBuf[0] = 0; + + bool haveTarget = target.valid; + if (!haveTarget) { + SprintfLiteral(labelBuf, " -> (link-time target)"); + } + + if (InstBranchImm::IsTHIS(*i)) { + InstBranchImm* bimm = InstBranchImm::AsTHIS(*i); + BOffImm destOff; + bimm->extractImm(&destOff); + if (destOff.isInvalid() || haveTarget) { + // The target information in the instruction is likely garbage, so remove + // it. The target label will in any case be printed if we have it. + // + // The format of the instruction disassembly is [0-9a-f]{8}\s+\S+\s+.*, + // where the \S+ string is the opcode. Strip everything after the opcode, + // and attach the label if we have it. + int i; + for (i = 8; i < buffer.length() && buffer[i] == ' '; i++) { + } + for (; i < buffer.length() && buffer[i] != ' '; i++) { + } + buffer[i] = 0; + if (haveTarget) { + SprintfLiteral(labelBuf, " -> %d%s", target.doc, + !target.bound ? "f" : ""); + haveTarget = false; + } + } + } + spew_.spew("%s%s", buffer.start(), labelBuf); + + if (haveTarget) { + spew_.spewRef(target); + } +} + +void Assembler::spewLiteralLoad(PoolHintPun& php, bool loadToPC, + const Instruction* i, const LiteralDoc& doc) { + if (spew_.isDisabled()) { + return; + } + + char litbuf[2048]; + spew_.formatLiteral(doc, litbuf, sizeof(litbuf)); + + // See patchConstantPoolLoad, above. We assemble the instruction into a + // buffer with a zero offset, as documentation, but the offset will be + // patched later. + + uint32_t inst; + PoolHintData& data = php.phd; + switch (php.phd.getLoadType()) { + case PoolHintData::PoolDTR: + Assembler::as_dtr_patch(IsLoad, 32, Offset, data.getReg(), + DTRAddr(pc, DtrOffImm(0)), data.getCond(), &inst); + break; + case PoolHintData::PoolBranch: + if (data.isValidPoolHint()) { + Assembler::as_dtr_patch(IsLoad, 32, Offset, pc, + DTRAddr(pc, DtrOffImm(0)), data.getCond(), + &inst); + } + break; + case PoolHintData::PoolVDTR: + Assembler::as_vdtr_patch(IsLoad, data.getVFPReg(), + VFPAddr(pc, VFPOffImm(0)), data.getCond(), + &inst); + break; + + default: + MOZ_CRASH(); + } + + DisasmBuffer buffer; + disasm::NameConverter converter; + disasm::Disassembler dasm(converter); + dasm.InstructionDecode(buffer, reinterpret_cast<uint8_t*>(&inst)); + spew_.spew("%s ; .const %s", buffer.start(), litbuf); +} + +#endif // JS_DISASM_ARM diff --git a/js/src/jit/arm/Assembler-arm.h b/js/src/jit/arm/Assembler-arm.h new file mode 100644 index 0000000000..fdbac15a80 --- /dev/null +++ b/js/src/jit/arm/Assembler-arm.h @@ -0,0 +1,2296 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifndef jit_arm_Assembler_arm_h +#define jit_arm_Assembler_arm_h + +#include "mozilla/Attributes.h" +#include "mozilla/MathAlgorithms.h" + +#include <algorithm> +#include <iterator> +#include <type_traits> + +#include "jit/arm/Architecture-arm.h" +#include "jit/arm/disasm/Disasm-arm.h" +#include "jit/CompactBuffer.h" +#include "jit/JitCode.h" +#include "jit/shared/Assembler-shared.h" +#include "jit/shared/Disassembler-shared.h" +#include "jit/shared/IonAssemblerBufferWithConstantPools.h" +#include "wasm/WasmTypeDecls.h" + +union PoolHintPun; + +namespace js { +namespace jit { + +using LiteralDoc = DisassemblerSpew::LiteralDoc; +using LabelDoc = DisassemblerSpew::LabelDoc; + +// NOTE: there are duplicates in this list! Sometimes we want to specifically +// refer to the link register as a link register (bl lr is much clearer than bl +// r14). HOWEVER, this register can easily be a gpr when it is not busy holding +// the return address. +static constexpr Register r0{Registers::r0}; +static constexpr Register r1{Registers::r1}; +static constexpr Register r2{Registers::r2}; +static constexpr Register r3{Registers::r3}; +static constexpr Register r4{Registers::r4}; +static constexpr Register r5{Registers::r5}; +static constexpr Register r6{Registers::r6}; +static constexpr Register r7{Registers::r7}; +static constexpr Register r8{Registers::r8}; +static constexpr Register r9{Registers::r9}; +static constexpr Register r10{Registers::r10}; +static constexpr Register r11{Registers::r11}; +static constexpr Register r12{Registers::ip}; +static constexpr Register ip{Registers::ip}; +static constexpr Register sp{Registers::sp}; +static constexpr Register r14{Registers::lr}; +static constexpr Register lr{Registers::lr}; +static constexpr Register pc{Registers::pc}; + +static constexpr Register ScratchRegister{Registers::ip}; + +// Helper class for ScratchRegister usage. Asserts that only one piece +// of code thinks it has exclusive ownership of the scratch register. +struct ScratchRegisterScope : public AutoRegisterScope { + explicit ScratchRegisterScope(MacroAssembler& masm) + : AutoRegisterScope(masm, ScratchRegister) {} +}; + +struct SecondScratchRegisterScope : public AutoRegisterScope { + explicit SecondScratchRegisterScope(MacroAssembler& masm); +}; + +static constexpr Register OsrFrameReg = r3; +static constexpr Register CallTempReg0 = r5; +static constexpr Register CallTempReg1 = r6; +static constexpr Register CallTempReg2 = r7; +static constexpr Register CallTempReg3 = r8; +static constexpr Register CallTempReg4 = r0; +static constexpr Register CallTempReg5 = r1; + +static constexpr Register IntArgReg0 = r0; +static constexpr Register IntArgReg1 = r1; +static constexpr Register IntArgReg2 = r2; +static constexpr Register IntArgReg3 = r3; +static constexpr Register HeapReg = r10; +static constexpr Register CallTempNonArgRegs[] = {r5, r6, r7, r8}; +static const uint32_t NumCallTempNonArgRegs = std::size(CallTempNonArgRegs); + +// These register assignments for the 64-bit atomic ops are frequently too +// constraining, but we have no way of expressing looser constraints to the +// register allocator. + +// CompareExchange: Any two odd/even pairs would do for `new` and `out`, and any +// pair would do for `old`, so long as none of them overlap. + +static constexpr Register CmpXchgOldLo = r4; +static constexpr Register CmpXchgOldHi = r5; +static constexpr Register64 CmpXchgOld64 = + Register64(CmpXchgOldHi, CmpXchgOldLo); +static constexpr Register CmpXchgNewLo = IntArgReg2; +static constexpr Register CmpXchgNewHi = IntArgReg3; +static constexpr Register64 CmpXchgNew64 = + Register64(CmpXchgNewHi, CmpXchgNewLo); +static constexpr Register CmpXchgOutLo = IntArgReg0; +static constexpr Register CmpXchgOutHi = IntArgReg1; +static constexpr Register64 CmpXchgOut64 = + Register64(CmpXchgOutHi, CmpXchgOutLo); + +// Exchange: Any two non-equal odd/even pairs would do for `new` and `out`. + +static constexpr Register XchgNewLo = IntArgReg2; +static constexpr Register XchgNewHi = IntArgReg3; +static constexpr Register64 XchgNew64 = Register64(XchgNewHi, XchgNewLo); +static constexpr Register XchgOutLo = IntArgReg0; +static constexpr Register XchgOutHi = IntArgReg1; + +// Atomic rmw operations: Any two odd/even pairs would do for `tmp` and `out`, +// and any pair would do for `val`, so long as none of them overlap. + +static constexpr Register FetchOpValLo = r4; +static constexpr Register FetchOpValHi = r5; +static constexpr Register64 FetchOpVal64 = + Register64(FetchOpValHi, FetchOpValLo); +static constexpr Register FetchOpTmpLo = IntArgReg2; +static constexpr Register FetchOpTmpHi = IntArgReg3; +static constexpr Register64 FetchOpTmp64 = + Register64(FetchOpTmpHi, FetchOpTmpLo); +static constexpr Register FetchOpOutLo = IntArgReg0; +static constexpr Register FetchOpOutHi = IntArgReg1; +static constexpr Register64 FetchOpOut64 = + Register64(FetchOpOutHi, FetchOpOutLo); + +class ABIArgGenerator { + unsigned intRegIndex_; + unsigned floatRegIndex_; + uint32_t stackOffset_; + ABIArg current_; + + // ARM can either use HardFp (use float registers for float arguments), or + // SoftFp (use general registers for float arguments) ABI. We keep this + // switch as a runtime switch because wasm always use the HardFp back-end + // while the calls to native functions have to use the one provided by the + // system. + bool useHardFp_; + + ABIArg softNext(MIRType argType); + ABIArg hardNext(MIRType argType); + + public: + ABIArgGenerator(); + + void setUseHardFp(bool useHardFp) { + MOZ_ASSERT(intRegIndex_ == 0 && floatRegIndex_ == 0); + useHardFp_ = useHardFp; + } + ABIArg next(MIRType argType); + ABIArg& current() { return current_; } + uint32_t stackBytesConsumedSoFar() const { return stackOffset_; } + void increaseStackOffset(uint32_t bytes) { stackOffset_ += bytes; } +}; + +bool IsUnaligned(const wasm::MemoryAccessDesc& access); + +// These registers may be volatile or nonvolatile. +static constexpr Register ABINonArgReg0 = r4; +static constexpr Register ABINonArgReg1 = r5; +static constexpr Register ABINonArgReg2 = r6; +static constexpr Register ABINonArgReg3 = r7; + +// This register may be volatile or nonvolatile. Avoid d15 which is the +// ScratchDoubleReg_. +static constexpr FloatRegister ABINonArgDoubleReg{FloatRegisters::d8, + VFPRegister::Double}; + +// These registers may be volatile or nonvolatile. +// Note: these three registers are all guaranteed to be different +static constexpr Register ABINonArgReturnReg0 = r4; +static constexpr Register ABINonArgReturnReg1 = r5; +static constexpr Register ABINonVolatileReg = r6; + +// This register is guaranteed to be clobberable during the prologue and +// epilogue of an ABI call which must preserve both ABI argument, return +// and non-volatile registers. +static constexpr Register ABINonArgReturnVolatileReg = lr; + +// Instance pointer argument register for WebAssembly functions. This must not +// alias any other register used for passing function arguments or return +// values. Preserved by WebAssembly functions. +static constexpr Register InstanceReg = r9; + +// Registers used for wasm table calls. These registers must be disjoint +// from the ABI argument registers, InstanceReg and each other. +static constexpr Register WasmTableCallScratchReg0 = ABINonArgReg0; +static constexpr Register WasmTableCallScratchReg1 = ABINonArgReg1; +static constexpr Register WasmTableCallSigReg = ABINonArgReg2; +static constexpr Register WasmTableCallIndexReg = ABINonArgReg3; + +// Registers used for ref calls. +static constexpr Register WasmCallRefCallScratchReg0 = ABINonArgReg0; +static constexpr Register WasmCallRefCallScratchReg1 = ABINonArgReg1; +static constexpr Register WasmCallRefReg = ABINonArgReg3; + +// Register used as a scratch along the return path in the fast js -> wasm stub +// code. This must not overlap ReturnReg, JSReturnOperand, or InstanceReg. +// It must be a volatile register. +static constexpr Register WasmJitEntryReturnScratch = r5; + +static constexpr Register PreBarrierReg = r1; + +static constexpr Register InterpreterPCReg = r9; + +static constexpr Register InvalidReg{Registers::invalid_reg}; +static constexpr FloatRegister InvalidFloatReg; + +static constexpr Register JSReturnReg_Type = r3; +static constexpr Register JSReturnReg_Data = r2; +static constexpr Register StackPointer = sp; +static constexpr Register FramePointer = r11; +static constexpr Register ReturnReg = r0; +static constexpr Register64 ReturnReg64(r1, r0); + +// The attribute '__value_in_regs' alters the calling convention of a function +// so that a structure of up to four elements can be returned via the argument +// registers rather than being written to memory. +static constexpr Register ReturnRegVal0 = IntArgReg0; +static constexpr Register ReturnRegVal1 = IntArgReg1; +static constexpr Register ReturnRegVal2 = IntArgReg2; +static constexpr Register ReturnRegVal3 = IntArgReg3; + +static constexpr FloatRegister ReturnFloat32Reg = {FloatRegisters::d0, + VFPRegister::Single}; +static constexpr FloatRegister ReturnDoubleReg = {FloatRegisters::d0, + VFPRegister::Double}; +static constexpr FloatRegister ReturnSimd128Reg = InvalidFloatReg; +static constexpr FloatRegister ScratchFloat32Reg_ = {FloatRegisters::s30, + VFPRegister::Single}; +static constexpr FloatRegister ScratchDoubleReg_ = {FloatRegisters::d15, + VFPRegister::Double}; +static constexpr FloatRegister ScratchSimd128Reg = InvalidFloatReg; +static constexpr FloatRegister ScratchUIntReg = {FloatRegisters::d15, + VFPRegister::UInt}; +static constexpr FloatRegister ScratchIntReg = {FloatRegisters::d15, + VFPRegister::Int}; + +// Do not reference ScratchFloat32Reg_ directly, use ScratchFloat32Scope +// instead. +struct ScratchFloat32Scope : public AutoFloatRegisterScope { + explicit ScratchFloat32Scope(MacroAssembler& masm) + : AutoFloatRegisterScope(masm, ScratchFloat32Reg_) {} +}; + +// Do not reference ScratchDoubleReg_ directly, use ScratchDoubleScope instead. +struct ScratchDoubleScope : public AutoFloatRegisterScope { + explicit ScratchDoubleScope(MacroAssembler& masm) + : AutoFloatRegisterScope(masm, ScratchDoubleReg_) {} +}; + +// Registers used by RegExpMatcher and RegExpExecMatch stubs (do not use +// JSReturnOperand). +static constexpr Register RegExpMatcherRegExpReg = CallTempReg0; +static constexpr Register RegExpMatcherStringReg = CallTempReg1; +static constexpr Register RegExpMatcherLastIndexReg = CallTempReg2; + +// Registers used by RegExpExecTest stub (do not use ReturnReg). +static constexpr Register RegExpExecTestRegExpReg = CallTempReg0; +static constexpr Register RegExpExecTestStringReg = CallTempReg1; + +// Registers used by RegExpSearcher stub (do not use ReturnReg). +static constexpr Register RegExpSearcherRegExpReg = CallTempReg0; +static constexpr Register RegExpSearcherStringReg = CallTempReg1; +static constexpr Register RegExpSearcherLastIndexReg = CallTempReg2; + +static constexpr FloatRegister d0 = {FloatRegisters::d0, VFPRegister::Double}; +static constexpr FloatRegister d1 = {FloatRegisters::d1, VFPRegister::Double}; +static constexpr FloatRegister d2 = {FloatRegisters::d2, VFPRegister::Double}; +static constexpr FloatRegister d3 = {FloatRegisters::d3, VFPRegister::Double}; +static constexpr FloatRegister d4 = {FloatRegisters::d4, VFPRegister::Double}; +static constexpr FloatRegister d5 = {FloatRegisters::d5, VFPRegister::Double}; +static constexpr FloatRegister d6 = {FloatRegisters::d6, VFPRegister::Double}; +static constexpr FloatRegister d7 = {FloatRegisters::d7, VFPRegister::Double}; +static constexpr FloatRegister d8 = {FloatRegisters::d8, VFPRegister::Double}; +static constexpr FloatRegister d9 = {FloatRegisters::d9, VFPRegister::Double}; +static constexpr FloatRegister d10 = {FloatRegisters::d10, VFPRegister::Double}; +static constexpr FloatRegister d11 = {FloatRegisters::d11, VFPRegister::Double}; +static constexpr FloatRegister d12 = {FloatRegisters::d12, VFPRegister::Double}; +static constexpr FloatRegister d13 = {FloatRegisters::d13, VFPRegister::Double}; +static constexpr FloatRegister d14 = {FloatRegisters::d14, VFPRegister::Double}; +static constexpr FloatRegister d15 = {FloatRegisters::d15, VFPRegister::Double}; + +// For maximal awesomeness, 8 should be sufficent. ldrd/strd (dual-register +// load/store) operate in a single cycle when the address they are dealing with +// is 8 byte aligned. Also, the ARM abi wants the stack to be 8 byte aligned at +// function boundaries. I'm trying to make sure this is always true. +static constexpr uint32_t ABIStackAlignment = 8; +static constexpr uint32_t CodeAlignment = 8; +static constexpr uint32_t JitStackAlignment = 8; + +static constexpr uint32_t JitStackValueAlignment = + JitStackAlignment / sizeof(Value); +static_assert(JitStackAlignment % sizeof(Value) == 0 && + JitStackValueAlignment >= 1, + "Stack alignment should be a non-zero multiple of sizeof(Value)"); + +static constexpr uint32_t SimdMemoryAlignment = 8; + +static_assert(CodeAlignment % SimdMemoryAlignment == 0, + "Code alignment should be larger than any of the alignments " + "which are used for " + "the constant sections of the code buffer. Thus it should be " + "larger than the " + "alignment for SIMD constants."); + +static_assert(JitStackAlignment % SimdMemoryAlignment == 0, + "Stack alignment should be larger than any of the alignments " + "which are used for " + "spilled values. Thus it should be larger than the alignment " + "for SIMD accesses."); + +static const uint32_t WasmStackAlignment = SimdMemoryAlignment; +static const uint32_t WasmTrapInstructionLength = 4; + +// See comments in wasm::GenerateFunctionPrologue. The difference between these +// is the size of the largest callable prologue on the platform. +static constexpr uint32_t WasmCheckedCallEntryOffset = 0u; + +static const Scale ScalePointer = TimesFour; + +class Instruction; +class InstBranchImm; +uint32_t RM(Register r); +uint32_t RS(Register r); +uint32_t RD(Register r); +uint32_t RT(Register r); +uint32_t RN(Register r); + +uint32_t maybeRD(Register r); +uint32_t maybeRT(Register r); +uint32_t maybeRN(Register r); + +Register toRN(Instruction i); +Register toRM(Instruction i); +Register toRD(Instruction i); +Register toR(Instruction i); + +class VFPRegister; +uint32_t VD(VFPRegister vr); +uint32_t VN(VFPRegister vr); +uint32_t VM(VFPRegister vr); + +// For being passed into the generic vfp instruction generator when there is an +// instruction that only takes two registers. +static constexpr VFPRegister NoVFPRegister(VFPRegister::Double, 0, false, true); + +struct ImmTag : public Imm32 { + explicit ImmTag(JSValueTag mask) : Imm32(int32_t(mask)) {} +}; + +struct ImmType : public ImmTag { + explicit ImmType(JSValueType type) : ImmTag(JSVAL_TYPE_TO_TAG(type)) {} +}; + +enum Index { + Offset = 0 << 21 | 1 << 24, + PreIndex = 1 << 21 | 1 << 24, + PostIndex = 0 << 21 | 0 << 24 + // The docs were rather unclear on this. It sounds like + // 1 << 21 | 0 << 24 encodes dtrt. +}; + +enum IsImmOp2_ { IsImmOp2 = 1 << 25, IsNotImmOp2 = 0 << 25 }; +enum IsImmDTR_ { IsImmDTR = 0 << 25, IsNotImmDTR = 1 << 25 }; +// For the extra memory operations, ldrd, ldrsb, ldrh. +enum IsImmEDTR_ { IsImmEDTR = 1 << 22, IsNotImmEDTR = 0 << 22 }; + +enum ShiftType { + LSL = 0, // << 5 + LSR = 1, // << 5 + ASR = 2, // << 5 + ROR = 3, // << 5 + RRX = ROR // RRX is encoded as ROR with a 0 offset. +}; + +// Modes for STM/LDM. Names are the suffixes applied to the instruction. +enum DTMMode { + A = 0 << 24, // empty / after + B = 1 << 24, // full / before + D = 0 << 23, // decrement + I = 1 << 23, // increment + DA = D | A, + DB = D | B, + IA = I | A, + IB = I | B +}; + +enum DTMWriteBack { WriteBack = 1 << 21, NoWriteBack = 0 << 21 }; + +// Condition code updating mode. +enum SBit { + SetCC = 1 << 20, // Set condition code. + LeaveCC = 0 << 20 // Leave condition code unchanged. +}; + +enum LoadStore { IsLoad = 1 << 20, IsStore = 0 << 20 }; + +// You almost never want to use this directly. Instead, you wantto pass in a +// signed constant, and let this bit be implicitly set for you. This is however, +// necessary if we want a negative index. +enum IsUp_ { IsUp = 1 << 23, IsDown = 0 << 23 }; +enum ALUOp { + OpMov = 0xd << 21, + OpMvn = 0xf << 21, + OpAnd = 0x0 << 21, + OpBic = 0xe << 21, + OpEor = 0x1 << 21, + OpOrr = 0xc << 21, + OpAdc = 0x5 << 21, + OpAdd = 0x4 << 21, + OpSbc = 0x6 << 21, + OpSub = 0x2 << 21, + OpRsb = 0x3 << 21, + OpRsc = 0x7 << 21, + OpCmn = 0xb << 21, + OpCmp = 0xa << 21, + OpTeq = 0x9 << 21, + OpTst = 0x8 << 21, + OpInvalid = -1 +}; + +enum MULOp { + OpmMul = 0 << 21, + OpmMla = 1 << 21, + OpmUmaal = 2 << 21, + OpmMls = 3 << 21, + OpmUmull = 4 << 21, + OpmUmlal = 5 << 21, + OpmSmull = 6 << 21, + OpmSmlal = 7 << 21 +}; +enum BranchTag { + OpB = 0x0a000000, + OpBMask = 0x0f000000, + OpBDestMask = 0x00ffffff, + OpBl = 0x0b000000, + OpBlx = 0x012fff30, + OpBx = 0x012fff10 +}; + +// Just like ALUOp, but for the vfp instruction set. +enum VFPOp { + OpvMul = 0x2 << 20, + OpvAdd = 0x3 << 20, + OpvSub = 0x3 << 20 | 0x1 << 6, + OpvDiv = 0x8 << 20, + OpvMov = 0xB << 20 | 0x1 << 6, + OpvAbs = 0xB << 20 | 0x3 << 6, + OpvNeg = 0xB << 20 | 0x1 << 6 | 0x1 << 16, + OpvSqrt = 0xB << 20 | 0x3 << 6 | 0x1 << 16, + OpvCmp = 0xB << 20 | 0x1 << 6 | 0x4 << 16, + OpvCmpz = 0xB << 20 | 0x1 << 6 | 0x5 << 16 +}; + +// Negate the operation, AND negate the immediate that we were passed in. +ALUOp ALUNeg(ALUOp op, Register dest, Register scratch, Imm32* imm, + Register* negDest); +bool can_dbl(ALUOp op); +bool condsAreSafe(ALUOp op); + +// If there is a variant of op that has a dest (think cmp/sub) return that +// variant of it. +ALUOp getDestVariant(ALUOp op); + +static constexpr ValueOperand JSReturnOperand{JSReturnReg_Type, + JSReturnReg_Data}; +static const ValueOperand softfpReturnOperand = ValueOperand(r1, r0); + +// All of these classes exist solely to shuffle data into the various operands. +// For example Operand2 can be an imm8, a register-shifted-by-a-constant or a +// register-shifted-by-a-register. We represent this in C++ by having a base +// class Operand2, which just stores the 32 bits of data as they will be encoded +// in the instruction. You cannot directly create an Operand2 since it is +// tricky, and not entirely sane to do so. Instead, you create one of its child +// classes, e.g. Imm8. Imm8's constructor takes a single integer argument. Imm8 +// will verify that its argument can be encoded as an ARM 12 bit imm8, encode it +// using an Imm8data, and finally call its parent's (Operand2) constructor with +// the Imm8data. The Operand2 constructor will then call the Imm8data's encode() +// function to extract the raw bits from it. +// +// In the future, we should be able to extract data from the Operand2 by asking +// it for its component Imm8data structures. The reason this is so horribly +// round-about is we wanted to have Imm8 and RegisterShiftedRegister inherit +// directly from Operand2 but have all of them take up only a single word of +// storage. We also wanted to avoid passing around raw integers at all since +// they are error prone. +class Op2Reg; +class O2RegImmShift; +class O2RegRegShift; + +namespace datastore { + +class Reg { + // The "second register". + uint32_t rm_ : 4; + // Do we get another register for shifting. + uint32_t rrs_ : 1; + uint32_t type_ : 2; + // We'd like this to be a more sensible encoding, but that would need to be + // a struct and that would not pack :( + uint32_t shiftAmount_ : 5; + + protected: + // Mark as a protected field to avoid unused private field warnings. + uint32_t pad_ : 20; + + public: + Reg(uint32_t rm, ShiftType type, uint32_t rsr, uint32_t shiftAmount) + : rm_(rm), rrs_(rsr), type_(type), shiftAmount_(shiftAmount), pad_(0) {} + explicit Reg(const Op2Reg& op) { memcpy(this, &op, sizeof(*this)); } + + uint32_t shiftAmount() const { return shiftAmount_; } + + uint32_t encode() const { + return rm_ | (rrs_ << 4) | (type_ << 5) | (shiftAmount_ << 7); + } +}; + +// Op2 has a mode labelled "<imm8m>", which is arm's magical immediate encoding. +// Some instructions actually get 8 bits of data, which is called Imm8Data +// below. These should have edit distance > 1, but this is how it is for now. +class Imm8mData { + uint32_t data_ : 8; + uint32_t rot_ : 4; + + protected: + // Mark as a protected field to avoid unused private field warnings. + uint32_t buff_ : 19; + + private: + // Throw in an extra bit that will be 1 if we can't encode this properly. + // if we can encode it properly, a simple "|" will still suffice to meld it + // into the instruction. + uint32_t invalid_ : 1; + + public: + // Default constructor makes an invalid immediate. + Imm8mData() : data_(0xff), rot_(0xf), buff_(0), invalid_(true) {} + + Imm8mData(uint32_t data, uint32_t rot) + : data_(data), rot_(rot), buff_(0), invalid_(false) { + MOZ_ASSERT(data == data_); + MOZ_ASSERT(rot == rot_); + } + + bool invalid() const { return invalid_; } + + uint32_t encode() const { + MOZ_ASSERT(!invalid_); + return data_ | (rot_ << 8); + }; +}; + +class Imm8Data { + uint32_t imm4L_ : 4; + + protected: + // Mark as a protected field to avoid unused private field warnings. + uint32_t pad_ : 4; + + private: + uint32_t imm4H_ : 4; + + public: + explicit Imm8Data(uint32_t imm) : imm4L_(imm & 0xf), imm4H_(imm >> 4) { + MOZ_ASSERT(imm <= 0xff); + } + + uint32_t encode() const { return imm4L_ | (imm4H_ << 8); }; +}; + +// VLDR/VSTR take an 8 bit offset, which is implicitly left shifted by 2. +class Imm8VFPOffData { + uint32_t data_; + + public: + explicit Imm8VFPOffData(uint32_t imm) : data_(imm) { + MOZ_ASSERT((imm & ~(0xff)) == 0); + } + uint32_t encode() const { return data_; }; +}; + +// ARM can magically encode 256 very special immediates to be moved into a +// register. +struct Imm8VFPImmData { + // This structure's members are public and it has no constructor to + // initialize them, for a very special reason. Were this structure to + // have a constructor, the initialization for DoubleEncoder's internal + // table (see below) would require a rather large static constructor on + // some of our supported compilers. The known solution to this is to mark + // the constructor constexpr, but, again, some of our supported + // compilers don't support constexpr! So we are reduced to public + // members and eschewing a constructor in hopes that the initialization + // of DoubleEncoder's table is correct. + uint32_t imm4L : 4; + uint32_t imm4H : 4; + int32_t isInvalid : 24; + + uint32_t encode() const { + // This assert is an attempting at ensuring that we don't create random + // instances of this structure and then asking to encode() it. + MOZ_ASSERT(isInvalid == 0); + return imm4L | (imm4H << 16); + }; +}; + +class Imm12Data { + uint32_t data_ : 12; + + public: + explicit Imm12Data(uint32_t imm) : data_(imm) { MOZ_ASSERT(data_ == imm); } + + uint32_t encode() const { return data_; } +}; + +class RIS { + uint32_t shiftAmount_ : 5; + + public: + explicit RIS(uint32_t imm) : shiftAmount_(imm) { + MOZ_ASSERT(shiftAmount_ == imm); + } + + explicit RIS(Reg r) : shiftAmount_(r.shiftAmount()) {} + + uint32_t encode() const { return shiftAmount_; } +}; + +class RRS { + protected: + // Mark as a protected field to avoid unused private field warnings. + uint32_t mustZero_ : 1; + + private: + // The register that holds the shift amount. + uint32_t rs_ : 4; + + public: + explicit RRS(uint32_t rs) : rs_(rs) { MOZ_ASSERT(rs_ == rs); } + + uint32_t encode() const { return rs_ << 1; } +}; + +} // namespace datastore + +class MacroAssemblerARM; +class Operand; + +class Operand2 { + friend class Operand; + friend class MacroAssemblerARM; + friend class InstALU; + + uint32_t oper_ : 31; + uint32_t invalid_ : 1; + + protected: + explicit Operand2(datastore::Imm8mData base) + : oper_(base.invalid() ? -1 : (base.encode() | uint32_t(IsImmOp2))), + invalid_(base.invalid()) {} + + explicit Operand2(datastore::Reg base) + : oper_(base.encode() | uint32_t(IsNotImmOp2)), invalid_(false) {} + + private: + explicit Operand2(uint32_t blob) : oper_(blob), invalid_(false) {} + + public: + bool isO2Reg() const { return !(oper_ & IsImmOp2); } + + Op2Reg toOp2Reg() const; + + bool isImm8() const { return oper_ & IsImmOp2; } + + bool invalid() const { return invalid_; } + + uint32_t encode() const { return oper_; } +}; + +class Imm8 : public Operand2 { + public: + explicit Imm8(uint32_t imm) : Operand2(EncodeImm(imm)) {} + + static datastore::Imm8mData EncodeImm(uint32_t imm) { + // RotateLeft below may not be called with a shift of zero. + if (imm <= 0xFF) { + return datastore::Imm8mData(imm, 0); + } + + // An encodable integer has a maximum of 8 contiguous set bits, + // with an optional wrapped left rotation to even bit positions. + for (int rot = 1; rot < 16; rot++) { + uint32_t rotimm = mozilla::RotateLeft(imm, rot * 2); + if (rotimm <= 0xFF) { + return datastore::Imm8mData(rotimm, rot); + } + } + return datastore::Imm8mData(); + } + + // Pair template? + struct TwoImm8mData { + datastore::Imm8mData fst_, snd_; + + TwoImm8mData() = default; + + TwoImm8mData(datastore::Imm8mData fst, datastore::Imm8mData snd) + : fst_(fst), snd_(snd) {} + + datastore::Imm8mData fst() const { return fst_; } + datastore::Imm8mData snd() const { return snd_; } + }; + + static TwoImm8mData EncodeTwoImms(uint32_t); +}; + +class Op2Reg : public Operand2 { + public: + explicit Op2Reg(Register rm, ShiftType type, datastore::RIS shiftImm) + : Operand2(datastore::Reg(rm.code(), type, 0, shiftImm.encode())) {} + + explicit Op2Reg(Register rm, ShiftType type, datastore::RRS shiftReg) + : Operand2(datastore::Reg(rm.code(), type, 1, shiftReg.encode())) {} +}; + +static_assert(sizeof(Op2Reg) == sizeof(datastore::Reg), + "datastore::Reg(const Op2Reg&) constructor relies on Reg/Op2Reg " + "having same size"); + +class O2RegImmShift : public Op2Reg { + public: + explicit O2RegImmShift(Register rn, ShiftType type, uint32_t shift) + : Op2Reg(rn, type, datastore::RIS(shift)) {} +}; + +class O2RegRegShift : public Op2Reg { + public: + explicit O2RegRegShift(Register rn, ShiftType type, Register rs) + : Op2Reg(rn, type, datastore::RRS(rs.code())) {} +}; + +O2RegImmShift O2Reg(Register r); +O2RegImmShift lsl(Register r, int amt); +O2RegImmShift lsr(Register r, int amt); +O2RegImmShift asr(Register r, int amt); +O2RegImmShift rol(Register r, int amt); +O2RegImmShift ror(Register r, int amt); + +O2RegRegShift lsl(Register r, Register amt); +O2RegRegShift lsr(Register r, Register amt); +O2RegRegShift asr(Register r, Register amt); +O2RegRegShift ror(Register r, Register amt); + +// An offset from a register to be used for ldr/str. This should include the +// sign bit, since ARM has "signed-magnitude" offsets. That is it encodes an +// unsigned offset, then the instruction specifies if the offset is positive or +// negative. The +/- bit is necessary if the instruction set wants to be able to +// have a negative register offset e.g. ldr pc, [r1,-r2]; +class DtrOff { + uint32_t data_; + + protected: + explicit DtrOff(datastore::Imm12Data immdata, IsUp_ iu) + : data_(immdata.encode() | uint32_t(IsImmDTR) | uint32_t(iu)) {} + + explicit DtrOff(datastore::Reg reg, IsUp_ iu = IsUp) + : data_(reg.encode() | uint32_t(IsNotImmDTR) | iu) {} + + public: + uint32_t encode() const { return data_; } +}; + +class DtrOffImm : public DtrOff { + public: + explicit DtrOffImm(int32_t imm) + : DtrOff(datastore::Imm12Data(mozilla::Abs(imm)), + imm >= 0 ? IsUp : IsDown) { + MOZ_ASSERT(mozilla::Abs(imm) < 4096); + } +}; + +class DtrOffReg : public DtrOff { + // These are designed to be called by a constructor of a subclass. + // Constructing the necessary RIS/RRS structures is annoying. + + protected: + explicit DtrOffReg(Register rn, ShiftType type, datastore::RIS shiftImm, + IsUp_ iu = IsUp) + : DtrOff(datastore::Reg(rn.code(), type, 0, shiftImm.encode()), iu) {} + + explicit DtrOffReg(Register rn, ShiftType type, datastore::RRS shiftReg, + IsUp_ iu = IsUp) + : DtrOff(datastore::Reg(rn.code(), type, 1, shiftReg.encode()), iu) {} +}; + +class DtrRegImmShift : public DtrOffReg { + public: + explicit DtrRegImmShift(Register rn, ShiftType type, uint32_t shift, + IsUp_ iu = IsUp) + : DtrOffReg(rn, type, datastore::RIS(shift), iu) {} +}; + +class DtrRegRegShift : public DtrOffReg { + public: + explicit DtrRegRegShift(Register rn, ShiftType type, Register rs, + IsUp_ iu = IsUp) + : DtrOffReg(rn, type, datastore::RRS(rs.code()), iu) {} +}; + +// We will frequently want to bundle a register with its offset so that we have +// an "operand" to a load instruction. +class DTRAddr { + friend class Operand; + + uint32_t data_; + + public: + explicit DTRAddr(Register reg, DtrOff dtr) + : data_(dtr.encode() | (reg.code() << 16)) {} + + uint32_t encode() const { return data_; } + + Register getBase() const { return Register::FromCode((data_ >> 16) & 0xf); } +}; + +// Offsets for the extended data transfer instructions: +// ldrsh, ldrd, ldrsb, etc. +class EDtrOff { + uint32_t data_; + + protected: + explicit EDtrOff(datastore::Imm8Data imm8, IsUp_ iu = IsUp) + : data_(imm8.encode() | IsImmEDTR | uint32_t(iu)) {} + + explicit EDtrOff(Register rm, IsUp_ iu = IsUp) + : data_(rm.code() | IsNotImmEDTR | iu) {} + + public: + uint32_t encode() const { return data_; } +}; + +class EDtrOffImm : public EDtrOff { + public: + explicit EDtrOffImm(int32_t imm) + : EDtrOff(datastore::Imm8Data(mozilla::Abs(imm)), + (imm >= 0) ? IsUp : IsDown) { + MOZ_ASSERT(mozilla::Abs(imm) < 256); + } +}; + +// This is the most-derived class, since the extended data transfer instructions +// don't support any sort of modifying the "index" operand. +class EDtrOffReg : public EDtrOff { + public: + explicit EDtrOffReg(Register rm) : EDtrOff(rm) {} +}; + +class EDtrAddr { + uint32_t data_; + + public: + explicit EDtrAddr(Register r, EDtrOff off) : data_(RN(r) | off.encode()) {} + + uint32_t encode() const { return data_; } +#ifdef DEBUG + Register maybeOffsetRegister() const { + if (data_ & IsImmEDTR) { + return InvalidReg; + } + return Register::FromCode(data_ & 0xf); + } +#endif +}; + +class VFPOff { + uint32_t data_; + + protected: + explicit VFPOff(datastore::Imm8VFPOffData imm, IsUp_ isup) + : data_(imm.encode() | uint32_t(isup)) {} + + public: + uint32_t encode() const { return data_; } +}; + +class VFPOffImm : public VFPOff { + public: + explicit VFPOffImm(int32_t imm) + : VFPOff(datastore::Imm8VFPOffData(mozilla::Abs(imm) / 4), + imm < 0 ? IsDown : IsUp) { + MOZ_ASSERT(mozilla::Abs(imm) <= 255 * 4); + } +}; + +class VFPAddr { + friend class Operand; + + uint32_t data_; + + public: + explicit VFPAddr(Register base, VFPOff off) + : data_(RN(base) | off.encode()) {} + + uint32_t encode() const { return data_; } +}; + +class VFPImm { + uint32_t data_; + + public: + explicit VFPImm(uint32_t topWordOfDouble); + + static const VFPImm One; + + uint32_t encode() const { return data_; } + bool isValid() const { return data_ != (~0U); } +}; + +// A BOffImm is an immediate that is used for branches. Namely, it is the offset +// that will be encoded in the branch instruction. This is the only sane way of +// constructing a branch. +class BOffImm { + friend class InstBranchImm; + + uint32_t data_; + + public: + explicit BOffImm(int offset) : data_((offset - 8) >> 2 & 0x00ffffff) { + MOZ_ASSERT((offset & 0x3) == 0); + if (!IsInRange(offset)) { + MOZ_CRASH("BOffImm offset out of range"); + } + } + + explicit BOffImm() : data_(INVALID) {} + + private: + explicit BOffImm(const Instruction& inst); + + public: + static const uint32_t INVALID = 0x00800000; + + uint32_t encode() const { return data_; } + int32_t decode() const { return ((int32_t(data_) << 8) >> 6) + 8; } + + static bool IsInRange(int offset) { + if ((offset - 8) < -33554432) { + return false; + } + if ((offset - 8) > 33554428) { + return false; + } + return true; + } + + bool isInvalid() const { return data_ == INVALID; } + Instruction* getDest(Instruction* src) const; +}; + +class Imm16 { + uint32_t lower_ : 12; + + protected: + // Mark as a protected field to avoid unused private field warnings. + uint32_t pad_ : 4; + + private: + uint32_t upper_ : 4; + uint32_t invalid_ : 12; + + public: + explicit Imm16(); + explicit Imm16(uint32_t imm); + explicit Imm16(Instruction& inst); + + uint32_t encode() const { return lower_ | (upper_ << 16); } + uint32_t decode() const { return lower_ | (upper_ << 12); } + + bool isInvalid() const { return invalid_; } +}; + +// I would preffer that these do not exist, since there are essentially no +// instructions that would ever take more than one of these, however, the MIR +// wants to only have one type of arguments to functions, so bugger. +class Operand { + // The encoding of registers is the same for OP2, DTR and EDTR yet the type + // system doesn't let us express this, so choices must be made. + public: + enum class Tag : uint8_t { OP2, MEM, FOP }; + + private: + uint32_t tag_ : 8; + uint32_t reg_ : 5; + int32_t offset_; + + protected: + Operand(Tag tag, uint32_t regCode, int32_t offset) + : tag_(static_cast<uint32_t>(tag)), reg_(regCode), offset_(offset) {} + + public: + explicit Operand(Register reg) : Operand(Tag::OP2, reg.code(), 0) {} + + explicit Operand(FloatRegister freg) : Operand(Tag::FOP, freg.code(), 0) {} + + explicit Operand(Register base, Imm32 off) + : Operand(Tag::MEM, base.code(), off.value) {} + + explicit Operand(Register base, int32_t off) + : Operand(Tag::MEM, base.code(), off) {} + + explicit Operand(const Address& addr) + : Operand(Tag::MEM, addr.base.code(), addr.offset) {} + + public: + Tag tag() const { return static_cast<Tag>(tag_); } + + Operand2 toOp2() const { + MOZ_ASSERT(tag() == Tag::OP2); + return O2Reg(Register::FromCode(reg_)); + } + + Register toReg() const { + MOZ_ASSERT(tag() == Tag::OP2); + return Register::FromCode(reg_); + } + + Address toAddress() const { + MOZ_ASSERT(tag() == Tag::MEM); + return Address(Register::FromCode(reg_), offset_); + } + int32_t disp() const { + MOZ_ASSERT(tag() == Tag::MEM); + return offset_; + } + + int32_t base() const { + MOZ_ASSERT(tag() == Tag::MEM); + return reg_; + } + Register baseReg() const { + MOZ_ASSERT(tag() == Tag::MEM); + return Register::FromCode(reg_); + } + DTRAddr toDTRAddr() const { + MOZ_ASSERT(tag() == Tag::MEM); + return DTRAddr(baseReg(), DtrOffImm(offset_)); + } + VFPAddr toVFPAddr() const { + MOZ_ASSERT(tag() == Tag::MEM); + return VFPAddr(baseReg(), VFPOffImm(offset_)); + } +}; + +inline Imm32 Imm64::firstHalf() const { return low(); } + +inline Imm32 Imm64::secondHalf() const { return hi(); } + +class InstructionIterator { + private: + Instruction* inst_; + + public: + explicit InstructionIterator(Instruction* inst) : inst_(inst) { + maybeSkipAutomaticInstructions(); + } + + // Advances to the next intentionally-inserted instruction. + Instruction* next(); + + // Advances past any automatically-inserted instructions. + Instruction* maybeSkipAutomaticInstructions(); + + Instruction* cur() const { return inst_; } + + protected: + // Advances past the given number of instruction-length bytes. + inline void advanceRaw(ptrdiff_t instructions = 1); +}; + +class Assembler; +typedef js::jit::AssemblerBufferWithConstantPools<1024, 4, Instruction, + Assembler> + ARMBuffer; + +class Assembler : public AssemblerShared { + public: + // ARM conditional constants: + enum ARMCondition : uint32_t { + EQ = 0x00000000, // Zero + NE = 0x10000000, // Non-zero + CS = 0x20000000, + CC = 0x30000000, + MI = 0x40000000, + PL = 0x50000000, + VS = 0x60000000, + VC = 0x70000000, + HI = 0x80000000, + LS = 0x90000000, + GE = 0xa0000000, + LT = 0xb0000000, + GT = 0xc0000000, + LE = 0xd0000000, + AL = 0xe0000000 + }; + + enum Condition : uint32_t { + Equal = EQ, + NotEqual = NE, + Above = HI, + AboveOrEqual = CS, + Below = CC, + BelowOrEqual = LS, + GreaterThan = GT, + GreaterThanOrEqual = GE, + LessThan = LT, + LessThanOrEqual = LE, + Overflow = VS, + CarrySet = CS, + CarryClear = CC, + Signed = MI, + NotSigned = PL, + Zero = EQ, + NonZero = NE, + Always = AL, + + VFP_NotEqualOrUnordered = NE, + VFP_Equal = EQ, + VFP_Unordered = VS, + VFP_NotUnordered = VC, + VFP_GreaterThanOrEqualOrUnordered = CS, + VFP_GreaterThanOrEqual = GE, + VFP_GreaterThanOrUnordered = HI, + VFP_GreaterThan = GT, + VFP_LessThanOrEqualOrUnordered = LE, + VFP_LessThanOrEqual = LS, + VFP_LessThanOrUnordered = LT, + VFP_LessThan = CC // MI is valid too. + }; + + // Bit set when a DoubleCondition does not map to a single ARM condition. + // The macro assembler has to special-case these conditions, or else + // ConditionFromDoubleCondition will complain. + static const int DoubleConditionBitSpecial = 0x1; + + enum DoubleCondition : uint32_t { + // These conditions will only evaluate to true if the comparison is + // ordered - i.e. neither operand is NaN. + DoubleOrdered = VFP_NotUnordered, + DoubleEqual = VFP_Equal, + DoubleNotEqual = VFP_NotEqualOrUnordered | DoubleConditionBitSpecial, + DoubleGreaterThan = VFP_GreaterThan, + DoubleGreaterThanOrEqual = VFP_GreaterThanOrEqual, + DoubleLessThan = VFP_LessThan, + DoubleLessThanOrEqual = VFP_LessThanOrEqual, + // If either operand is NaN, these conditions always evaluate to true. + DoubleUnordered = VFP_Unordered, + DoubleEqualOrUnordered = VFP_Equal | DoubleConditionBitSpecial, + DoubleNotEqualOrUnordered = VFP_NotEqualOrUnordered, + DoubleGreaterThanOrUnordered = VFP_GreaterThanOrUnordered, + DoubleGreaterThanOrEqualOrUnordered = VFP_GreaterThanOrEqualOrUnordered, + DoubleLessThanOrUnordered = VFP_LessThanOrUnordered, + DoubleLessThanOrEqualOrUnordered = VFP_LessThanOrEqualOrUnordered + }; + + Condition getCondition(uint32_t inst) { + return (Condition)(0xf0000000 & inst); + } + static inline Condition ConditionFromDoubleCondition(DoubleCondition cond) { + MOZ_ASSERT(!(cond & DoubleConditionBitSpecial)); + return static_cast<Condition>(cond); + } + + enum BarrierOption { + BarrierSY = 15, // Full system barrier + BarrierST = 14 // StoreStore barrier + }; + + // This should be protected, but since CodeGenerator wants to use it, it + // needs to go out here :( + + BufferOffset nextOffset() { return m_buffer.nextOffset(); } + + protected: + // Shim around AssemblerBufferWithConstantPools::allocEntry. + BufferOffset allocLiteralLoadEntry(size_t numInst, unsigned numPoolEntries, + PoolHintPun& php, uint8_t* data, + const LiteralDoc& doc = LiteralDoc(), + ARMBuffer::PoolEntry* pe = nullptr, + bool loadToPC = false); + + Instruction* editSrc(BufferOffset bo) { return m_buffer.getInst(bo); } + +#ifdef JS_DISASM_ARM + typedef disasm::EmbeddedVector<char, disasm::ReasonableBufferSize> + DisasmBuffer; + + static void disassembleInstruction(const Instruction* i, + DisasmBuffer& buffer); + + void initDisassembler(); + void finishDisassembler(); + void spew(Instruction* i); + void spewBranch(Instruction* i, const LabelDoc& target); + void spewLiteralLoad(PoolHintPun& php, bool loadToPC, const Instruction* offs, + const LiteralDoc& doc); +#endif + + public: + void resetCounter(); + static uint32_t NopFill; + static uint32_t GetNopFill(); + static uint32_t AsmPoolMaxOffset; + static uint32_t GetPoolMaxOffset(); + + protected: + // Structure for fixing up pc-relative loads/jumps when a the machine code + // gets moved (executable copy, gc, etc.). + class RelativePatch { + void* target_; + RelocationKind kind_; + + public: + RelativePatch(void* target, RelocationKind kind) + : target_(target), kind_(kind) {} + void* target() const { return target_; } + RelocationKind kind() const { return kind_; } + }; + + // TODO: this should actually be a pool-like object. It is currently a big + // hack, and probably shouldn't exist. + js::Vector<RelativePatch, 8, SystemAllocPolicy> jumps_; + + CompactBufferWriter jumpRelocations_; + CompactBufferWriter dataRelocations_; + + ARMBuffer m_buffer; + +#ifdef JS_DISASM_ARM + DisassemblerSpew spew_; +#endif + + public: + // For the alignment fill use NOP: 0x0320f000 or (Always | InstNOP::NopInst). + // For the nopFill use a branch to the next instruction: 0xeaffffff. + Assembler() + : m_buffer(1, 1, 8, GetPoolMaxOffset(), 8, 0xe320f000, 0xeaffffff, + GetNopFill()), + isFinished(false), + dtmActive(false), + dtmCond(Always) { +#ifdef JS_DISASM_ARM + initDisassembler(); +#endif + } + + ~Assembler() { +#ifdef JS_DISASM_ARM + finishDisassembler(); +#endif + } + + void setUnlimitedBuffer() { m_buffer.setUnlimited(); } + + static Condition InvertCondition(Condition cond); + static Condition UnsignedCondition(Condition cond); + static Condition ConditionWithoutEqual(Condition cond); + + static DoubleCondition InvertCondition(DoubleCondition cond); + + void writeDataRelocation(BufferOffset offset, ImmGCPtr ptr) { + // Raw GC pointer relocations and Value relocations both end up in + // Assembler::TraceDataRelocations. + if (ptr.value) { + if (gc::IsInsideNursery(ptr.value)) { + embedsNurseryPointers_ = true; + } + dataRelocations_.writeUnsigned(offset.getOffset()); + } + } + + enum RelocBranchStyle { B_MOVWT, B_LDR_BX, B_LDR, B_MOVW_ADD }; + + enum RelocStyle { L_MOVWT, L_LDR }; + + public: + // Given the start of a Control Flow sequence, grab the value that is + // finally branched to given the start of a function that loads an address + // into a register get the address that ends up in the register. + template <class Iter> + static const uint32_t* GetCF32Target(Iter* iter); + + static uintptr_t GetPointer(uint8_t*); + static const uint32_t* GetPtr32Target(InstructionIterator iter, + Register* dest = nullptr, + RelocStyle* rs = nullptr); + + bool oom() const; + + void setPrinter(Sprinter* sp) { +#ifdef JS_DISASM_ARM + spew_.setPrinter(sp); +#endif + } + + Register getStackPointer() const { return StackPointer; } + + private: + bool isFinished; + + protected: + LabelDoc refLabel(const Label* label) { +#ifdef JS_DISASM_ARM + return spew_.refLabel(label); +#else + return LabelDoc(); +#endif + } + + public: + void finish(); + bool appendRawCode(const uint8_t* code, size_t numBytes); + bool reserve(size_t size); + bool swapBuffer(wasm::Bytes& bytes); + void copyJumpRelocationTable(uint8_t* dest); + void copyDataRelocationTable(uint8_t* dest); + + // Size of the instruction stream, in bytes, after pools are flushed. + size_t size() const; + // Size of the jump relocation table, in bytes. + size_t jumpRelocationTableBytes() const; + size_t dataRelocationTableBytes() const; + + // Size of the data table, in bytes. + size_t bytesNeeded() const; + + // Write a single instruction into the instruction stream. Very hot, + // inlined for performance + MOZ_ALWAYS_INLINE BufferOffset writeInst(uint32_t x) { + MOZ_ASSERT(hasCreator()); + BufferOffset offs = m_buffer.putInt(x); +#ifdef JS_DISASM_ARM + spew(m_buffer.getInstOrNull(offs)); +#endif + return offs; + } + + // As above, but also mark the instruction as a branch. Very hot, inlined + // for performance + MOZ_ALWAYS_INLINE BufferOffset + writeBranchInst(uint32_t x, const LabelDoc& documentation) { + BufferOffset offs = m_buffer.putInt(x); +#ifdef JS_DISASM_ARM + spewBranch(m_buffer.getInstOrNull(offs), documentation); +#endif + return offs; + } + + // Write a placeholder NOP for a branch into the instruction stream + // (in order to adjust assembler addresses and mark it as a branch), it will + // be overwritten subsequently. + BufferOffset allocBranchInst(); + + // A static variant for the cases where we don't want to have an assembler + // object. + static void WriteInstStatic(uint32_t x, uint32_t* dest); + + public: + void writeCodePointer(CodeLabel* label); + + void haltingAlign(int alignment); + void nopAlign(int alignment); + BufferOffset as_nop(); + BufferOffset as_alu(Register dest, Register src1, Operand2 op2, ALUOp op, + SBit s = LeaveCC, Condition c = Always); + BufferOffset as_mov(Register dest, Operand2 op2, SBit s = LeaveCC, + Condition c = Always); + BufferOffset as_mvn(Register dest, Operand2 op2, SBit s = LeaveCC, + Condition c = Always); + + static void as_alu_patch(Register dest, Register src1, Operand2 op2, ALUOp op, + SBit s, Condition c, uint32_t* pos); + static void as_mov_patch(Register dest, Operand2 op2, SBit s, Condition c, + uint32_t* pos); + + // Logical operations: + BufferOffset as_and(Register dest, Register src1, Operand2 op2, + SBit s = LeaveCC, Condition c = Always); + BufferOffset as_bic(Register dest, Register src1, Operand2 op2, + SBit s = LeaveCC, Condition c = Always); + BufferOffset as_eor(Register dest, Register src1, Operand2 op2, + SBit s = LeaveCC, Condition c = Always); + BufferOffset as_orr(Register dest, Register src1, Operand2 op2, + SBit s = LeaveCC, Condition c = Always); + // Reverse byte operations: + BufferOffset as_rev(Register dest, Register src, Condition c = Always); + BufferOffset as_rev16(Register dest, Register src, Condition c = Always); + BufferOffset as_revsh(Register dest, Register src, Condition c = Always); + // Mathematical operations: + BufferOffset as_adc(Register dest, Register src1, Operand2 op2, + SBit s = LeaveCC, Condition c = Always); + BufferOffset as_add(Register dest, Register src1, Operand2 op2, + SBit s = LeaveCC, Condition c = Always); + BufferOffset as_sbc(Register dest, Register src1, Operand2 op2, + SBit s = LeaveCC, Condition c = Always); + BufferOffset as_sub(Register dest, Register src1, Operand2 op2, + SBit s = LeaveCC, Condition c = Always); + BufferOffset as_rsb(Register dest, Register src1, Operand2 op2, + SBit s = LeaveCC, Condition c = Always); + BufferOffset as_rsc(Register dest, Register src1, Operand2 op2, + SBit s = LeaveCC, Condition c = Always); + // Test operations: + BufferOffset as_cmn(Register src1, Operand2 op2, Condition c = Always); + BufferOffset as_cmp(Register src1, Operand2 op2, Condition c = Always); + BufferOffset as_teq(Register src1, Operand2 op2, Condition c = Always); + BufferOffset as_tst(Register src1, Operand2 op2, Condition c = Always); + + // Sign extension operations: + BufferOffset as_sxtb(Register dest, Register src, int rotate, + Condition c = Always); + BufferOffset as_sxth(Register dest, Register src, int rotate, + Condition c = Always); + BufferOffset as_uxtb(Register dest, Register src, int rotate, + Condition c = Always); + BufferOffset as_uxth(Register dest, Register src, int rotate, + Condition c = Always); + + // Not quite ALU worthy, but useful none the less: These also have the issue + // of these being formatted completly differently from the standard ALU + // operations. + BufferOffset as_movw(Register dest, Imm16 imm, Condition c = Always); + BufferOffset as_movt(Register dest, Imm16 imm, Condition c = Always); + + static void as_movw_patch(Register dest, Imm16 imm, Condition c, + Instruction* pos); + static void as_movt_patch(Register dest, Imm16 imm, Condition c, + Instruction* pos); + + BufferOffset as_genmul(Register d1, Register d2, Register rm, Register rn, + MULOp op, SBit s, Condition c = Always); + BufferOffset as_mul(Register dest, Register src1, Register src2, + SBit s = LeaveCC, Condition c = Always); + BufferOffset as_mla(Register dest, Register acc, Register src1, Register src2, + SBit s = LeaveCC, Condition c = Always); + BufferOffset as_umaal(Register dest1, Register dest2, Register src1, + Register src2, Condition c = Always); + BufferOffset as_mls(Register dest, Register acc, Register src1, Register src2, + Condition c = Always); + BufferOffset as_umull(Register dest1, Register dest2, Register src1, + Register src2, SBit s = LeaveCC, Condition c = Always); + BufferOffset as_umlal(Register dest1, Register dest2, Register src1, + Register src2, SBit s = LeaveCC, Condition c = Always); + BufferOffset as_smull(Register dest1, Register dest2, Register src1, + Register src2, SBit s = LeaveCC, Condition c = Always); + BufferOffset as_smlal(Register dest1, Register dest2, Register src1, + Register src2, SBit s = LeaveCC, Condition c = Always); + + BufferOffset as_sdiv(Register dest, Register num, Register div, + Condition c = Always); + BufferOffset as_udiv(Register dest, Register num, Register div, + Condition c = Always); + BufferOffset as_clz(Register dest, Register src, Condition c = Always); + + // Data transfer instructions: ldr, str, ldrb, strb. + // Using an int to differentiate between 8 bits and 32 bits is overkill. + BufferOffset as_dtr(LoadStore ls, int size, Index mode, Register rt, + DTRAddr addr, Condition c = Always); + + static void as_dtr_patch(LoadStore ls, int size, Index mode, Register rt, + DTRAddr addr, Condition c, uint32_t* dest); + + // Handles all of the other integral data transferring functions: + // ldrsb, ldrsh, ldrd, etc. The size is given in bits. + BufferOffset as_extdtr(LoadStore ls, int size, bool IsSigned, Index mode, + Register rt, EDtrAddr addr, Condition c = Always); + + BufferOffset as_dtm(LoadStore ls, Register rn, uint32_t mask, DTMMode mode, + DTMWriteBack wb, Condition c = Always); + + // Overwrite a pool entry with new data. + static void WritePoolEntry(Instruction* addr, Condition c, uint32_t data); + + // Load a 32 bit immediate from a pool into a register. + BufferOffset as_Imm32Pool(Register dest, uint32_t value, + Condition c = Always); + + // Load a 64 bit floating point immediate from a pool into a register. + BufferOffset as_FImm64Pool(VFPRegister dest, double value, + Condition c = Always); + // Load a 32 bit floating point immediate from a pool into a register. + BufferOffset as_FImm32Pool(VFPRegister dest, float value, + Condition c = Always); + + // Atomic instructions: ldrexd, ldrex, ldrexh, ldrexb, strexd, strex, strexh, + // strexb. + // + // The doubleword, halfword, and byte versions are available from ARMv6K + // forward. + // + // The word versions are available from ARMv6 forward and can be used to + // implement the halfword and byte versions on older systems. + + // LDREXD rt, rt2, [rn]. Constraint: rt even register, rt2=rt+1. + BufferOffset as_ldrexd(Register rt, Register rt2, Register rn, + Condition c = Always); + + // LDREX rt, [rn] + BufferOffset as_ldrex(Register rt, Register rn, Condition c = Always); + BufferOffset as_ldrexh(Register rt, Register rn, Condition c = Always); + BufferOffset as_ldrexb(Register rt, Register rn, Condition c = Always); + + // STREXD rd, rt, rt2, [rn]. Constraint: rt even register, rt2=rt+1. + BufferOffset as_strexd(Register rd, Register rt, Register rt2, Register rn, + Condition c = Always); + + // STREX rd, rt, [rn]. Constraint: rd != rn, rd != rt. + BufferOffset as_strex(Register rd, Register rt, Register rn, + Condition c = Always); + BufferOffset as_strexh(Register rd, Register rt, Register rn, + Condition c = Always); + BufferOffset as_strexb(Register rd, Register rt, Register rn, + Condition c = Always); + + // CLREX + BufferOffset as_clrex(); + + // Memory synchronization. + // These are available from ARMv7 forward. + BufferOffset as_dmb(BarrierOption option = BarrierSY); + BufferOffset as_dsb(BarrierOption option = BarrierSY); + BufferOffset as_isb(); + + // Memory synchronization for architectures before ARMv7. + BufferOffset as_dsb_trap(); + BufferOffset as_dmb_trap(); + BufferOffset as_isb_trap(); + + // Speculation barrier + BufferOffset as_csdb(); + + // Control flow stuff: + + // bx can *only* branch to a register never to an immediate. + BufferOffset as_bx(Register r, Condition c = Always); + + // Branch can branch to an immediate *or* to a register. Branches to + // immediates are pc relative, branches to registers are absolute. + BufferOffset as_b(BOffImm off, Condition c, Label* documentation = nullptr); + + BufferOffset as_b(Label* l, Condition c = Always); + BufferOffset as_b(BOffImm off, Condition c, BufferOffset inst); + + // blx can go to either an immediate or a register. When blx'ing to a + // register, we change processor mode depending on the low bit of the + // register when blx'ing to an immediate, we *always* change processor + // state. + BufferOffset as_blx(Label* l); + + BufferOffset as_blx(Register r, Condition c = Always); + BufferOffset as_bl(BOffImm off, Condition c, Label* documentation = nullptr); + // bl can only branch+link to an immediate, never to a register it never + // changes processor state. + BufferOffset as_bl(); + // bl #imm can have a condition code, blx #imm cannot. + // blx reg can be conditional. + BufferOffset as_bl(Label* l, Condition c); + BufferOffset as_bl(BOffImm off, Condition c, BufferOffset inst); + + BufferOffset as_mrs(Register r, Condition c = Always); + BufferOffset as_msr(Register r, Condition c = Always); + + // VFP instructions! + private: + enum vfp_size { IsDouble = 1 << 8, IsSingle = 0 << 8 }; + + BufferOffset writeVFPInst(vfp_size sz, uint32_t blob); + + static void WriteVFPInstStatic(vfp_size sz, uint32_t blob, uint32_t* dest); + + // Unityped variants: all registers hold the same (ieee754 single/double) + // notably not included are vcvt; vmov vd, #imm; vmov rt, vn. + BufferOffset as_vfp_float(VFPRegister vd, VFPRegister vn, VFPRegister vm, + VFPOp op, Condition c = Always); + + public: + BufferOffset as_vadd(VFPRegister vd, VFPRegister vn, VFPRegister vm, + Condition c = Always); + BufferOffset as_vdiv(VFPRegister vd, VFPRegister vn, VFPRegister vm, + Condition c = Always); + BufferOffset as_vmul(VFPRegister vd, VFPRegister vn, VFPRegister vm, + Condition c = Always); + BufferOffset as_vnmul(VFPRegister vd, VFPRegister vn, VFPRegister vm, + Condition c = Always); + BufferOffset as_vnmla(VFPRegister vd, VFPRegister vn, VFPRegister vm, + Condition c = Always); + BufferOffset as_vnmls(VFPRegister vd, VFPRegister vn, VFPRegister vm, + Condition c = Always); + BufferOffset as_vneg(VFPRegister vd, VFPRegister vm, Condition c = Always); + BufferOffset as_vsqrt(VFPRegister vd, VFPRegister vm, Condition c = Always); + BufferOffset as_vabs(VFPRegister vd, VFPRegister vm, Condition c = Always); + BufferOffset as_vsub(VFPRegister vd, VFPRegister vn, VFPRegister vm, + Condition c = Always); + BufferOffset as_vcmp(VFPRegister vd, VFPRegister vm, Condition c = Always); + BufferOffset as_vcmpz(VFPRegister vd, Condition c = Always); + + // Specifically, a move between two same sized-registers. + BufferOffset as_vmov(VFPRegister vd, VFPRegister vsrc, Condition c = Always); + + // Transfer between Core and VFP. + enum FloatToCore_ { FloatToCore = 1 << 20, CoreToFloat = 0 << 20 }; + + private: + enum VFPXferSize { WordTransfer = 0x02000010, DoubleTransfer = 0x00400010 }; + + public: + // Unlike the next function, moving between the core registers and vfp + // registers can't be *that* properly typed. Namely, since I don't want to + // munge the type VFPRegister to also include core registers. Thus, the core + // and vfp registers are passed in based on their type, and src/dest is + // determined by the float2core. + + BufferOffset as_vxfer(Register vt1, Register vt2, VFPRegister vm, + FloatToCore_ f2c, Condition c = Always, int idx = 0); + + // Our encoding actually allows just the src and the dest (and their types) + // to uniquely specify the encoding that we are going to use. + BufferOffset as_vcvt(VFPRegister vd, VFPRegister vm, bool useFPSCR = false, + Condition c = Always); + + // Hard coded to a 32 bit fixed width result for now. + BufferOffset as_vcvtFixed(VFPRegister vd, bool isSigned, uint32_t fixedPoint, + bool toFixed, Condition c = Always); + + // Transfer between VFP and memory. + BufferOffset as_vdtr(LoadStore ls, VFPRegister vd, VFPAddr addr, + Condition c = Always /* vfp doesn't have a wb option*/); + + static void as_vdtr_patch(LoadStore ls, VFPRegister vd, VFPAddr addr, + Condition c /* vfp doesn't have a wb option */, + uint32_t* dest); + + // VFP's ldm/stm work differently from the standard arm ones. You can only + // transfer a range. + + BufferOffset as_vdtm(LoadStore st, Register rn, VFPRegister vd, int length, + /* also has update conditions */ Condition c = Always); + + // vldr/vstr variants that handle unaligned accesses. These encode as NEON + // single-element instructions and can only be used if NEON is available. + // Here, vd must be tagged as a float or double register. + BufferOffset as_vldr_unaligned(VFPRegister vd, Register rn); + BufferOffset as_vstr_unaligned(VFPRegister vd, Register rn); + + BufferOffset as_vimm(VFPRegister vd, VFPImm imm, Condition c = Always); + + BufferOffset as_vmrs(Register r, Condition c = Always); + BufferOffset as_vmsr(Register r, Condition c = Always); + + // Label operations. + bool nextLink(BufferOffset b, BufferOffset* next); + void bind(Label* label, BufferOffset boff = BufferOffset()); + uint32_t currentOffset() { return nextOffset().getOffset(); } + void retarget(Label* label, Label* target); + // I'm going to pretend this doesn't exist for now. + void retarget(Label* label, void* target, RelocationKind reloc); + + static void Bind(uint8_t* rawCode, const CodeLabel& label); + + void as_bkpt(); + BufferOffset as_illegal_trap(); + + public: + static void TraceJumpRelocations(JSTracer* trc, JitCode* code, + CompactBufferReader& reader); + static void TraceDataRelocations(JSTracer* trc, JitCode* code, + CompactBufferReader& reader); + + void assertNoGCThings() const { +#ifdef DEBUG + MOZ_ASSERT(dataRelocations_.length() == 0); + for (auto& j : jumps_) { + MOZ_ASSERT(j.kind() == RelocationKind::HARDCODED); + } +#endif + } + + static bool SupportsFloatingPoint() { return HasVFP(); } + static bool SupportsUnalignedAccesses() { return HasARMv7(); } + // Note, returning false here is technically wrong, but one has to go via the + // as_vldr_unaligned and as_vstr_unaligned instructions to get proper behavior + // and those are NEON-specific and have to be asked for specifically. + static bool SupportsFastUnalignedFPAccesses() { return false; } + + static bool HasRoundInstruction(RoundingMode mode) { return false; } + + protected: + void addPendingJump(BufferOffset src, ImmPtr target, RelocationKind kind) { + enoughMemory_ &= jumps_.append(RelativePatch(target.value, kind)); + if (kind == RelocationKind::JITCODE) { + jumpRelocations_.writeUnsigned(src.getOffset()); + } + } + + public: + // The buffer is about to be linked, make sure any constant pools or excess + // bookkeeping has been flushed to the instruction stream. + void flush() { + MOZ_ASSERT(!isFinished); + m_buffer.flushPool(); + return; + } + + void comment(const char* msg) { +#ifdef JS_DISASM_ARM + spew_.spew("; %s", msg); +#endif + } + + // Copy the assembly code to the given buffer, and perform any pending + // relocations relying on the target address. + void executableCopy(uint8_t* buffer); + + // Actual assembly emitting functions. + + // Since I can't think of a reasonable default for the mode, I'm going to + // leave it as a required argument. + void startDataTransferM(LoadStore ls, Register rm, DTMMode mode, + DTMWriteBack update = NoWriteBack, + Condition c = Always) { + MOZ_ASSERT(!dtmActive); + dtmUpdate = update; + dtmBase = rm; + dtmLoadStore = ls; + dtmLastReg = -1; + dtmRegBitField = 0; + dtmActive = 1; + dtmCond = c; + dtmMode = mode; + } + + void transferReg(Register rn) { + MOZ_ASSERT(dtmActive); + MOZ_ASSERT(rn.code() > dtmLastReg); + dtmRegBitField |= 1 << rn.code(); + if (dtmLoadStore == IsLoad && rn.code() == 13 && dtmBase.code() == 13) { + MOZ_CRASH("ARM Spec says this is invalid"); + } + } + void finishDataTransfer() { + dtmActive = false; + as_dtm(dtmLoadStore, dtmBase, dtmRegBitField, dtmMode, dtmUpdate, dtmCond); + } + + void startFloatTransferM(LoadStore ls, Register rm, DTMMode mode, + DTMWriteBack update = NoWriteBack, + Condition c = Always) { + MOZ_ASSERT(!dtmActive); + dtmActive = true; + dtmUpdate = update; + dtmLoadStore = ls; + dtmBase = rm; + dtmCond = c; + dtmLastReg = -1; + dtmMode = mode; + dtmDelta = 0; + } + void transferFloatReg(VFPRegister rn) { + if (dtmLastReg == -1) { + vdtmFirstReg = rn.code(); + } else { + if (dtmDelta == 0) { + dtmDelta = rn.code() - dtmLastReg; + MOZ_ASSERT(dtmDelta == 1 || dtmDelta == -1); + } + MOZ_ASSERT(dtmLastReg >= 0); + MOZ_ASSERT(rn.code() == unsigned(dtmLastReg) + dtmDelta); + } + + dtmLastReg = rn.code(); + } + void finishFloatTransfer() { + MOZ_ASSERT(dtmActive); + dtmActive = false; + MOZ_ASSERT(dtmLastReg != -1); + dtmDelta = dtmDelta ? dtmDelta : 1; + // The operand for the vstr/vldr instruction is the lowest register in the + // range. + int low = std::min(dtmLastReg, vdtmFirstReg); + int high = std::max(dtmLastReg, vdtmFirstReg); + // Fencepost problem. + int len = high - low + 1; + // vdtm can only transfer 16 registers at once. If we need to transfer + // more, then either hoops are necessary, or we need to be updating the + // register. + MOZ_ASSERT_IF(len > 16, dtmUpdate == WriteBack); + + int adjustLow = dtmLoadStore == IsStore ? 0 : 1; + int adjustHigh = dtmLoadStore == IsStore ? -1 : 0; + while (len > 0) { + // Limit the instruction to 16 registers. + int curLen = std::min(len, 16); + // If it is a store, we want to start at the high end and move down + // (e.g. vpush d16-d31; vpush d0-d15). + int curStart = (dtmLoadStore == IsStore) ? high - curLen + 1 : low; + as_vdtm(dtmLoadStore, dtmBase, + VFPRegister(FloatRegister::FromCode(curStart)), curLen, dtmCond); + // Update the bounds. + low += adjustLow * curLen; + high += adjustHigh * curLen; + // Update the length parameter. + len -= curLen; + } + } + + private: + int dtmRegBitField; + int vdtmFirstReg; + int dtmLastReg; + int dtmDelta; + Register dtmBase; + DTMWriteBack dtmUpdate; + DTMMode dtmMode; + LoadStore dtmLoadStore; + bool dtmActive; + Condition dtmCond; + + public: + enum { + PadForAlign8 = (int)0x00, + PadForAlign16 = (int)0x0000, + PadForAlign32 = (int)0xe12fff7f // 'bkpt 0xffff' + }; + + // API for speaking with the IonAssemblerBufferWithConstantPools generate an + // initial placeholder instruction that we want to later fix up. + static void InsertIndexIntoTag(uint8_t* load, uint32_t index); + + // Take the stub value that was written in before, and write in an actual + // load using the index we'd computed previously as well as the address of + // the pool start. + static void PatchConstantPoolLoad(void* loadAddr, void* constPoolAddr); + + // We're not tracking short-range branches for ARM for now. + static void PatchShortRangeBranchToVeneer(ARMBuffer*, unsigned rangeIdx, + BufferOffset deadline, + BufferOffset veneer) { + MOZ_CRASH(); + } + // END API + + // Move our entire pool into the instruction stream. This is to force an + // opportunistic dump of the pool, prefferably when it is more convenient to + // do a dump. + void flushBuffer(); + void enterNoPool(size_t maxInst); + void leaveNoPool(); + void enterNoNops(); + void leaveNoNops(); + + static void WritePoolHeader(uint8_t* start, Pool* p, bool isNatural); + static void WritePoolGuard(BufferOffset branch, Instruction* inst, + BufferOffset dest); + + static uint32_t PatchWrite_NearCallSize(); + static uint32_t NopSize() { return 4; } + static void PatchWrite_NearCall(CodeLocationLabel start, + CodeLocationLabel toCall); + static void PatchDataWithValueCheck(CodeLocationLabel label, + PatchedImmPtr newValue, + PatchedImmPtr expectedValue); + static void PatchDataWithValueCheck(CodeLocationLabel label, ImmPtr newValue, + ImmPtr expectedValue); + static void PatchWrite_Imm32(CodeLocationLabel label, Imm32 imm); + + static uint32_t AlignDoubleArg(uint32_t offset) { return (offset + 1) & ~1; } + static uint8_t* NextInstruction(uint8_t* instruction, + uint32_t* count = nullptr); + + // Toggle a jmp or cmp emitted by toggledJump(). + static void ToggleToJmp(CodeLocationLabel inst_); + static void ToggleToCmp(CodeLocationLabel inst_); + + static size_t ToggledCallSize(uint8_t* code); + static void ToggleCall(CodeLocationLabel inst_, bool enabled); + + void processCodeLabels(uint8_t* rawCode); + + void verifyHeapAccessDisassembly(uint32_t begin, uint32_t end, + const Disassembler::HeapAccess& heapAccess) { + // Implement this if we implement a disassembler. + } +}; // Assembler + +// An Instruction is a structure for both encoding and decoding any and all ARM +// instructions. Many classes have not been implemented thus far. +class Instruction { + uint32_t data; + + protected: + // This is not for defaulting to always, this is for instructions that + // cannot be made conditional, and have the usually invalid 4b1111 cond + // field. + explicit Instruction(uint32_t data_, bool fake = false) + : data(data_ | 0xf0000000) { + MOZ_ASSERT(fake || ((data_ & 0xf0000000) == 0)); + } + // Standard constructor. + Instruction(uint32_t data_, Assembler::Condition c) + : data(data_ | (uint32_t)c) { + MOZ_ASSERT((data_ & 0xf0000000) == 0); + } + // You should never create an instruction directly. You should create a more + // specific instruction which will eventually call one of these constructors + // for you. + public: + uint32_t encode() const { return data; } + // Check if this instruction is really a particular case. + template <class C> + bool is() const { + return C::IsTHIS(*this); + } + + // Safely get a more specific variant of this pointer. + template <class C> + C* as() const { + return C::AsTHIS(*this); + } + + const Instruction& operator=(Instruction src) { + data = src.data; + return *this; + } + // Since almost all instructions have condition codes, the condition code + // extractor resides in the base class. + Assembler::Condition extractCond() const { + MOZ_ASSERT(data >> 28 != 0xf, + "The instruction does not have condition code"); + return (Assembler::Condition)(data & 0xf0000000); + } + + // Sometimes, an api wants a uint32_t (or a pointer to it) rather than an + // instruction. raw() just coerces this into a pointer to a uint32_t. + const uint32_t* raw() const { return &data; } + uint32_t size() const { return 4; } +}; // Instruction + +// Make sure that it is the right size. +static_assert(sizeof(Instruction) == 4); + +inline void InstructionIterator::advanceRaw(ptrdiff_t instructions) { + inst_ = inst_ + instructions; +} + +// Data Transfer Instructions. +class InstDTR : public Instruction { + public: + enum IsByte_ { IsByte = 0x00400000, IsWord = 0x00000000 }; + static const int IsDTR = 0x04000000; + static const int IsDTRMask = 0x0c000000; + + // TODO: Replace the initialization with something that is safer. + InstDTR(LoadStore ls, IsByte_ ib, Index mode, Register rt, DTRAddr addr, + Assembler::Condition c) + : Instruction(std::underlying_type_t<LoadStore>(ls) | + std::underlying_type_t<IsByte_>(ib) | + std::underlying_type_t<Index>(mode) | RT(rt) | + addr.encode() | IsDTR, + c) {} + + static bool IsTHIS(const Instruction& i); + static InstDTR* AsTHIS(const Instruction& i); +}; +static_assert(sizeof(InstDTR) == sizeof(Instruction)); + +class InstLDR : public InstDTR { + public: + InstLDR(Index mode, Register rt, DTRAddr addr, Assembler::Condition c) + : InstDTR(IsLoad, IsWord, mode, rt, addr, c) {} + + static bool IsTHIS(const Instruction& i); + static InstLDR* AsTHIS(const Instruction& i); + + int32_t signedOffset() const { + int32_t offset = encode() & 0xfff; + if (IsUp_(encode() & IsUp) != IsUp) { + return -offset; + } + return offset; + } + uint32_t* dest() const { + int32_t offset = signedOffset(); + // When patching the load in PatchConstantPoolLoad, we ensure that the + // offset is a multiple of 4, offset by 8 bytes from the actual + // location. Indeed, when the base register is PC, ARM's 3 stages + // pipeline design makes it that PC is off by 8 bytes (= 2 * + // sizeof(uint32*)) when we actually executed it. + MOZ_ASSERT(offset % 4 == 0); + offset >>= 2; + return (uint32_t*)raw() + offset + 2; + } +}; +static_assert(sizeof(InstDTR) == sizeof(InstLDR)); + +class InstNOP : public Instruction { + public: + static const uint32_t NopInst = 0x0320f000; + + InstNOP() : Instruction(NopInst, Assembler::Always) {} + + static bool IsTHIS(const Instruction& i); + static InstNOP* AsTHIS(Instruction& i); +}; + +// Branching to a register, or calling a register +class InstBranchReg : public Instruction { + protected: + // Don't use BranchTag yourself, use a derived instruction. + enum BranchTag { IsBX = 0x012fff10, IsBLX = 0x012fff30 }; + + static const uint32_t IsBRegMask = 0x0ffffff0; + + InstBranchReg(BranchTag tag, Register rm, Assembler::Condition c) + : Instruction(tag | rm.code(), c) {} + + public: + static bool IsTHIS(const Instruction& i); + static InstBranchReg* AsTHIS(const Instruction& i); + + // Get the register that is being branched to + void extractDest(Register* dest); + // Make sure we are branching to a pre-known register + bool checkDest(Register dest); +}; +static_assert(sizeof(InstBranchReg) == sizeof(Instruction)); + +// Branching to an immediate offset, or calling an immediate offset +class InstBranchImm : public Instruction { + protected: + enum BranchTag { IsB = 0x0a000000, IsBL = 0x0b000000 }; + + static const uint32_t IsBImmMask = 0x0f000000; + + InstBranchImm(BranchTag tag, BOffImm off, Assembler::Condition c) + : Instruction(tag | off.encode(), c) {} + + public: + static bool IsTHIS(const Instruction& i); + static InstBranchImm* AsTHIS(const Instruction& i); + + void extractImm(BOffImm* dest); +}; +static_assert(sizeof(InstBranchImm) == sizeof(Instruction)); + +// Very specific branching instructions. +class InstBXReg : public InstBranchReg { + public: + static bool IsTHIS(const Instruction& i); + static InstBXReg* AsTHIS(const Instruction& i); +}; + +class InstBLXReg : public InstBranchReg { + public: + InstBLXReg(Register reg, Assembler::Condition c) + : InstBranchReg(IsBLX, reg, c) {} + + static bool IsTHIS(const Instruction& i); + static InstBLXReg* AsTHIS(const Instruction& i); +}; + +class InstBImm : public InstBranchImm { + public: + InstBImm(BOffImm off, Assembler::Condition c) : InstBranchImm(IsB, off, c) {} + + static bool IsTHIS(const Instruction& i); + static InstBImm* AsTHIS(const Instruction& i); +}; + +class InstBLImm : public InstBranchImm { + public: + InstBLImm(BOffImm off, Assembler::Condition c) + : InstBranchImm(IsBL, off, c) {} + + static bool IsTHIS(const Instruction& i); + static InstBLImm* AsTHIS(const Instruction& i); +}; + +// Both movw and movt. The layout of both the immediate and the destination +// register is the same so the code is being shared. +class InstMovWT : public Instruction { + protected: + enum WT { IsW = 0x03000000, IsT = 0x03400000 }; + static const uint32_t IsWTMask = 0x0ff00000; + + InstMovWT(Register rd, Imm16 imm, WT wt, Assembler::Condition c) + : Instruction(RD(rd) | imm.encode() | wt, c) {} + + public: + void extractImm(Imm16* dest); + void extractDest(Register* dest); + bool checkImm(Imm16 dest); + bool checkDest(Register dest); + + static bool IsTHIS(Instruction& i); + static InstMovWT* AsTHIS(Instruction& i); +}; +static_assert(sizeof(InstMovWT) == sizeof(Instruction)); + +class InstMovW : public InstMovWT { + public: + InstMovW(Register rd, Imm16 imm, Assembler::Condition c) + : InstMovWT(rd, imm, IsW, c) {} + + static bool IsTHIS(const Instruction& i); + static InstMovW* AsTHIS(const Instruction& i); +}; + +class InstMovT : public InstMovWT { + public: + InstMovT(Register rd, Imm16 imm, Assembler::Condition c) + : InstMovWT(rd, imm, IsT, c) {} + + static bool IsTHIS(const Instruction& i); + static InstMovT* AsTHIS(const Instruction& i); +}; + +class InstALU : public Instruction { + static const int32_t ALUMask = 0xc << 24; + + public: + InstALU(Register rd, Register rn, Operand2 op2, ALUOp op, SBit s, + Assembler::Condition c) + : Instruction(maybeRD(rd) | maybeRN(rn) | op2.encode() | op | s, c) {} + + static bool IsTHIS(const Instruction& i); + static InstALU* AsTHIS(const Instruction& i); + + void extractOp(ALUOp* ret); + bool checkOp(ALUOp op); + void extractDest(Register* ret); + bool checkDest(Register rd); + void extractOp1(Register* ret); + bool checkOp1(Register rn); + Operand2 extractOp2(); +}; + +class InstCMP : public InstALU { + public: + static bool IsTHIS(const Instruction& i); + static InstCMP* AsTHIS(const Instruction& i); +}; + +class InstMOV : public InstALU { + public: + static bool IsTHIS(const Instruction& i); + static InstMOV* AsTHIS(const Instruction& i); +}; + +// Compile-time iterator over instructions, with a safe interface that +// references not-necessarily-linear Instructions by linear BufferOffset. +class BufferInstructionIterator + : public ARMBuffer::AssemblerBufferInstIterator { + public: + BufferInstructionIterator(BufferOffset bo, ARMBuffer* buffer) + : ARMBuffer::AssemblerBufferInstIterator(bo, buffer) {} + + // Advances the buffer to the next intentionally-inserted instruction. + Instruction* next() { + advance(cur()->size()); + maybeSkipAutomaticInstructions(); + return cur(); + } + + // Advances the BufferOffset past any automatically-inserted instructions. + Instruction* maybeSkipAutomaticInstructions(); +}; + +static const uint32_t NumIntArgRegs = 4; + +// There are 16 *float* registers available for arguments +// If doubles are used, only half the number of registers are available. +static const uint32_t NumFloatArgRegs = 16; + +static inline bool GetIntArgReg(uint32_t usedIntArgs, uint32_t usedFloatArgs, + Register* out) { + if (usedIntArgs >= NumIntArgRegs) { + return false; + } + + *out = Register::FromCode(usedIntArgs); + return true; +} + +// Get a register in which we plan to put a quantity that will be used as an +// integer argument. This differs from GetIntArgReg in that if we have no more +// actual argument registers to use we will fall back on using whatever +// CallTempReg* don't overlap the argument registers, and only fail once those +// run out too. +static inline bool GetTempRegForIntArg(uint32_t usedIntArgs, + uint32_t usedFloatArgs, Register* out) { + if (GetIntArgReg(usedIntArgs, usedFloatArgs, out)) { + return true; + } + + // Unfortunately, we have to assume things about the point at which + // GetIntArgReg returns false, because we need to know how many registers it + // can allocate. + usedIntArgs -= NumIntArgRegs; + if (usedIntArgs >= NumCallTempNonArgRegs) { + return false; + } + + *out = CallTempNonArgRegs[usedIntArgs]; + return true; +} + +#if defined(JS_CODEGEN_ARM_HARDFP) || defined(JS_SIMULATOR_ARM) + +static inline bool GetFloat32ArgReg(uint32_t usedIntArgs, + uint32_t usedFloatArgs, + FloatRegister* out) { + MOZ_ASSERT(UseHardFpABI()); + if (usedFloatArgs >= NumFloatArgRegs) { + return false; + } + *out = VFPRegister(usedFloatArgs, VFPRegister::Single); + return true; +} +static inline bool GetDoubleArgReg(uint32_t usedIntArgs, uint32_t usedFloatArgs, + FloatRegister* out) { + MOZ_ASSERT(UseHardFpABI()); + MOZ_ASSERT((usedFloatArgs % 2) == 0); + if (usedFloatArgs >= NumFloatArgRegs) { + return false; + } + *out = VFPRegister(usedFloatArgs >> 1, VFPRegister::Double); + return true; +} + +#endif + +class DoubleEncoder { + struct DoubleEntry { + uint32_t dblTop; + datastore::Imm8VFPImmData data; + }; + + static const DoubleEntry table[256]; + + public: + bool lookup(uint32_t top, datastore::Imm8VFPImmData* ret) const { + for (int i = 0; i < 256; i++) { + if (table[i].dblTop == top) { + *ret = table[i].data; + return true; + } + } + return false; + } +}; + +// Forbids nop filling for testing purposes. Not nestable. +class AutoForbidNops { + protected: + Assembler* masm_; + + public: + explicit AutoForbidNops(Assembler* masm) : masm_(masm) { + masm_->enterNoNops(); + } + ~AutoForbidNops() { masm_->leaveNoNops(); } +}; + +class AutoForbidPoolsAndNops : public AutoForbidNops { + public: + // The maxInst argument is the maximum number of word sized instructions + // that will be allocated within this context. It is used to determine if + // the pool needs to be dumped before entering this content. The debug code + // checks that no more than maxInst instructions are actually allocated. + // + // Allocation of pool entries is not supported within this content so the + // code can not use large integers or float constants etc. + AutoForbidPoolsAndNops(Assembler* masm, size_t maxInst) + : AutoForbidNops(masm) { + masm_->enterNoPool(maxInst); + } + + ~AutoForbidPoolsAndNops() { masm_->leaveNoPool(); } +}; + +} // namespace jit +} // namespace js + +#endif /* jit_arm_Assembler_arm_h */ diff --git a/js/src/jit/arm/CodeGenerator-arm.cpp b/js/src/jit/arm/CodeGenerator-arm.cpp new file mode 100644 index 0000000000..1526be81c9 --- /dev/null +++ b/js/src/jit/arm/CodeGenerator-arm.cpp @@ -0,0 +1,3154 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "jit/arm/CodeGenerator-arm.h" + +#include "mozilla/DebugOnly.h" +#include "mozilla/MathAlgorithms.h" +#include "mozilla/Maybe.h" + +#include <iterator> + +#include "jsnum.h" + +#include "jit/CodeGenerator.h" +#include "jit/InlineScriptTree.h" +#include "jit/JitRuntime.h" +#include "jit/MIR.h" +#include "jit/MIRGraph.h" +#include "js/Conversions.h" +#include "js/ScalarType.h" // js::Scalar::Type +#include "vm/JSContext.h" +#include "vm/Realm.h" +#include "vm/Shape.h" + +#include "jit/MacroAssembler-inl.h" +#include "jit/shared/CodeGenerator-shared-inl.h" +#include "vm/JSScript-inl.h" + +using namespace js; +using namespace js::jit; + +using JS::GenericNaN; +using JS::ToInt32; +using mozilla::DebugOnly; +using mozilla::FloorLog2; +using mozilla::NegativeInfinity; + +// shared +CodeGeneratorARM::CodeGeneratorARM(MIRGenerator* gen, LIRGraph* graph, + MacroAssembler* masm) + : CodeGeneratorShared(gen, graph, masm) {} + +Register64 CodeGeneratorARM::ToOperandOrRegister64( + const LInt64Allocation input) { + return ToRegister64(input); +} + +void CodeGeneratorARM::emitBranch(Assembler::Condition cond, + MBasicBlock* mirTrue, MBasicBlock* mirFalse) { + if (isNextBlock(mirFalse->lir())) { + jumpToBlock(mirTrue, cond); + } else { + jumpToBlock(mirFalse, Assembler::InvertCondition(cond)); + jumpToBlock(mirTrue); + } +} + +void OutOfLineBailout::accept(CodeGeneratorARM* codegen) { + codegen->visitOutOfLineBailout(this); +} + +void CodeGenerator::visitTestIAndBranch(LTestIAndBranch* test) { + const LAllocation* opd = test->getOperand(0); + MBasicBlock* ifTrue = test->ifTrue(); + MBasicBlock* ifFalse = test->ifFalse(); + + // Test the operand + masm.as_cmp(ToRegister(opd), Imm8(0)); + + if (isNextBlock(ifFalse->lir())) { + jumpToBlock(ifTrue, Assembler::NonZero); + } else if (isNextBlock(ifTrue->lir())) { + jumpToBlock(ifFalse, Assembler::Zero); + } else { + jumpToBlock(ifFalse, Assembler::Zero); + jumpToBlock(ifTrue); + } +} + +void CodeGenerator::visitCompare(LCompare* comp) { + Assembler::Condition cond = + JSOpToCondition(comp->mir()->compareType(), comp->jsop()); + const LAllocation* left = comp->getOperand(0); + const LAllocation* right = comp->getOperand(1); + const LDefinition* def = comp->getDef(0); + + ScratchRegisterScope scratch(masm); + + if (right->isConstant()) { + masm.ma_cmp(ToRegister(left), Imm32(ToInt32(right)), scratch); + } else if (right->isRegister()) { + masm.ma_cmp(ToRegister(left), ToRegister(right)); + } else { + SecondScratchRegisterScope scratch2(masm); + masm.ma_cmp(ToRegister(left), Operand(ToAddress(right)), scratch, scratch2); + } + masm.ma_mov(Imm32(0), ToRegister(def)); + masm.ma_mov(Imm32(1), ToRegister(def), cond); +} + +void CodeGenerator::visitCompareAndBranch(LCompareAndBranch* comp) { + Assembler::Condition cond = + JSOpToCondition(comp->cmpMir()->compareType(), comp->jsop()); + const LAllocation* left = comp->left(); + const LAllocation* right = comp->right(); + + ScratchRegisterScope scratch(masm); + + if (right->isConstant()) { + masm.ma_cmp(ToRegister(left), Imm32(ToInt32(right)), scratch); + } else if (right->isRegister()) { + masm.ma_cmp(ToRegister(left), ToRegister(right)); + } else { + SecondScratchRegisterScope scratch2(masm); + masm.ma_cmp(ToRegister(left), Operand(ToAddress(right)), scratch, scratch2); + } + emitBranch(cond, comp->ifTrue(), comp->ifFalse()); +} + +bool CodeGeneratorARM::generateOutOfLineCode() { + if (!CodeGeneratorShared::generateOutOfLineCode()) { + return false; + } + + if (deoptLabel_.used()) { + // All non-table-based bailouts will go here. + masm.bind(&deoptLabel_); + + // Push the frame size, so the handler can recover the IonScript. + masm.push(Imm32(frameSize())); + + TrampolinePtr handler = gen->jitRuntime()->getGenericBailoutHandler(); + masm.jump(handler); + } + + return !masm.oom(); +} + +void CodeGeneratorARM::bailoutIf(Assembler::Condition condition, + LSnapshot* snapshot) { + encode(snapshot); + + InlineScriptTree* tree = snapshot->mir()->block()->trackedTree(); + OutOfLineBailout* ool = + new (alloc()) OutOfLineBailout(snapshot, masm.framePushed()); + + // All bailout code is associated with the bytecodeSite of the block we are + // bailing out from. + addOutOfLineCode(ool, + new (alloc()) BytecodeSite(tree, tree->script()->code())); + + masm.ma_b(ool->entry(), condition); +} + +void CodeGeneratorARM::bailoutFrom(Label* label, LSnapshot* snapshot) { + MOZ_ASSERT_IF(!masm.oom(), label->used()); + MOZ_ASSERT_IF(!masm.oom(), !label->bound()); + + encode(snapshot); + + InlineScriptTree* tree = snapshot->mir()->block()->trackedTree(); + OutOfLineBailout* ool = + new (alloc()) OutOfLineBailout(snapshot, masm.framePushed()); + + // All bailout code is associated with the bytecodeSite of the block we are + // bailing out from. + addOutOfLineCode(ool, + new (alloc()) BytecodeSite(tree, tree->script()->code())); + + masm.retarget(label, ool->entry()); +} + +void CodeGeneratorARM::bailout(LSnapshot* snapshot) { + Label label; + masm.ma_b(&label); + bailoutFrom(&label, snapshot); +} + +void CodeGeneratorARM::visitOutOfLineBailout(OutOfLineBailout* ool) { + masm.push(Imm32(ool->snapshot()->snapshotOffset())); + masm.ma_b(&deoptLabel_); +} + +void CodeGenerator::visitMinMaxD(LMinMaxD* ins) { + FloatRegister first = ToFloatRegister(ins->first()); + FloatRegister second = ToFloatRegister(ins->second()); + + MOZ_ASSERT(first == ToFloatRegister(ins->output())); + + if (ins->mir()->isMax()) { + masm.maxDouble(second, first, true); + } else { + masm.minDouble(second, first, true); + } +} + +void CodeGenerator::visitMinMaxF(LMinMaxF* ins) { + FloatRegister first = ToFloatRegister(ins->first()); + FloatRegister second = ToFloatRegister(ins->second()); + + MOZ_ASSERT(first == ToFloatRegister(ins->output())); + + if (ins->mir()->isMax()) { + masm.maxFloat32(second, first, true); + } else { + masm.minFloat32(second, first, true); + } +} + +void CodeGenerator::visitAddI(LAddI* ins) { + const LAllocation* lhs = ins->getOperand(0); + const LAllocation* rhs = ins->getOperand(1); + const LDefinition* dest = ins->getDef(0); + + ScratchRegisterScope scratch(masm); + + if (rhs->isConstant()) { + masm.ma_add(ToRegister(lhs), Imm32(ToInt32(rhs)), ToRegister(dest), scratch, + SetCC); + } else if (rhs->isRegister()) { + masm.ma_add(ToRegister(lhs), ToRegister(rhs), ToRegister(dest), SetCC); + } else { + masm.ma_add(ToRegister(lhs), Operand(ToAddress(rhs)), ToRegister(dest), + SetCC); + } + + if (ins->snapshot()) { + bailoutIf(Assembler::Overflow, ins->snapshot()); + } +} + +void CodeGenerator::visitAddI64(LAddI64* lir) { + const LInt64Allocation lhs = lir->getInt64Operand(LAddI64::Lhs); + const LInt64Allocation rhs = lir->getInt64Operand(LAddI64::Rhs); + + MOZ_ASSERT(ToOutRegister64(lir) == ToRegister64(lhs)); + + if (IsConstant(rhs)) { + masm.add64(Imm64(ToInt64(rhs)), ToRegister64(lhs)); + return; + } + + masm.add64(ToOperandOrRegister64(rhs), ToRegister64(lhs)); +} + +void CodeGenerator::visitSubI(LSubI* ins) { + const LAllocation* lhs = ins->getOperand(0); + const LAllocation* rhs = ins->getOperand(1); + const LDefinition* dest = ins->getDef(0); + + ScratchRegisterScope scratch(masm); + + if (rhs->isConstant()) { + masm.ma_sub(ToRegister(lhs), Imm32(ToInt32(rhs)), ToRegister(dest), scratch, + SetCC); + } else if (rhs->isRegister()) { + masm.ma_sub(ToRegister(lhs), ToRegister(rhs), ToRegister(dest), SetCC); + } else { + masm.ma_sub(ToRegister(lhs), Operand(ToAddress(rhs)), ToRegister(dest), + SetCC); + } + + if (ins->snapshot()) { + bailoutIf(Assembler::Overflow, ins->snapshot()); + } +} + +void CodeGenerator::visitSubI64(LSubI64* lir) { + const LInt64Allocation lhs = lir->getInt64Operand(LSubI64::Lhs); + const LInt64Allocation rhs = lir->getInt64Operand(LSubI64::Rhs); + + MOZ_ASSERT(ToOutRegister64(lir) == ToRegister64(lhs)); + + if (IsConstant(rhs)) { + masm.sub64(Imm64(ToInt64(rhs)), ToRegister64(lhs)); + return; + } + + masm.sub64(ToOperandOrRegister64(rhs), ToRegister64(lhs)); +} + +void CodeGenerator::visitMulI(LMulI* ins) { + const LAllocation* lhs = ins->getOperand(0); + const LAllocation* rhs = ins->getOperand(1); + const LDefinition* dest = ins->getDef(0); + MMul* mul = ins->mir(); + MOZ_ASSERT_IF(mul->mode() == MMul::Integer, + !mul->canBeNegativeZero() && !mul->canOverflow()); + + if (rhs->isConstant()) { + // Bailout when this condition is met. + Assembler::Condition c = Assembler::Overflow; + // Bailout on -0.0 + int32_t constant = ToInt32(rhs); + if (mul->canBeNegativeZero() && constant <= 0) { + Assembler::Condition bailoutCond = + (constant == 0) ? Assembler::LessThan : Assembler::Equal; + masm.as_cmp(ToRegister(lhs), Imm8(0)); + bailoutIf(bailoutCond, ins->snapshot()); + } + // TODO: move these to ma_mul. + switch (constant) { + case -1: + masm.as_rsb(ToRegister(dest), ToRegister(lhs), Imm8(0), SetCC); + break; + case 0: + masm.ma_mov(Imm32(0), ToRegister(dest)); + return; // Escape overflow check; + case 1: + // Nop + masm.ma_mov(ToRegister(lhs), ToRegister(dest)); + return; // Escape overflow check; + case 2: + masm.ma_add(ToRegister(lhs), ToRegister(lhs), ToRegister(dest), SetCC); + // Overflow is handled later. + break; + default: { + bool handled = false; + if (constant > 0) { + // Try shift and add sequences for a positive constant. + if (!mul->canOverflow()) { + // If it cannot overflow, we can do lots of optimizations. + Register src = ToRegister(lhs); + uint32_t shift = FloorLog2(constant); + uint32_t rest = constant - (1 << shift); + // See if the constant has one bit set, meaning it can be + // encoded as a bitshift. + if ((1 << shift) == constant) { + masm.ma_lsl(Imm32(shift), src, ToRegister(dest)); + handled = true; + } else { + // If the constant cannot be encoded as (1 << C1), see + // if it can be encoded as (1 << C1) | (1 << C2), which + // can be computed using an add and a shift. + uint32_t shift_rest = FloorLog2(rest); + if ((1u << shift_rest) == rest) { + masm.as_add(ToRegister(dest), src, + lsl(src, shift - shift_rest)); + if (shift_rest != 0) { + masm.ma_lsl(Imm32(shift_rest), ToRegister(dest), + ToRegister(dest)); + } + handled = true; + } + } + } else if (ToRegister(lhs) != ToRegister(dest)) { + // To stay on the safe side, only optimize things that are a + // power of 2. + + uint32_t shift = FloorLog2(constant); + if ((1 << shift) == constant) { + // dest = lhs * pow(2,shift) + masm.ma_lsl(Imm32(shift), ToRegister(lhs), ToRegister(dest)); + // At runtime, check (lhs == dest >> shift), if this + // does not hold, some bits were lost due to overflow, + // and the computation should be resumed as a double. + masm.as_cmp(ToRegister(lhs), asr(ToRegister(dest), shift)); + c = Assembler::NotEqual; + handled = true; + } + } + } + + if (!handled) { + ScratchRegisterScope scratch(masm); + if (mul->canOverflow()) { + c = masm.ma_check_mul(ToRegister(lhs), Imm32(ToInt32(rhs)), + ToRegister(dest), scratch, c); + } else { + masm.ma_mul(ToRegister(lhs), Imm32(ToInt32(rhs)), ToRegister(dest), + scratch); + } + } + } + } + // Bailout on overflow. + if (mul->canOverflow()) { + bailoutIf(c, ins->snapshot()); + } + } else { + Assembler::Condition c = Assembler::Overflow; + + if (mul->canOverflow()) { + ScratchRegisterScope scratch(masm); + c = masm.ma_check_mul(ToRegister(lhs), ToRegister(rhs), ToRegister(dest), + scratch, c); + } else { + masm.ma_mul(ToRegister(lhs), ToRegister(rhs), ToRegister(dest)); + } + + // Bailout on overflow. + if (mul->canOverflow()) { + bailoutIf(c, ins->snapshot()); + } + + if (mul->canBeNegativeZero()) { + Label done; + masm.as_cmp(ToRegister(dest), Imm8(0)); + masm.ma_b(&done, Assembler::NotEqual); + + // Result is -0 if lhs or rhs is negative. + masm.ma_cmn(ToRegister(lhs), ToRegister(rhs)); + bailoutIf(Assembler::Signed, ins->snapshot()); + + masm.bind(&done); + } + } +} + +void CodeGenerator::visitMulI64(LMulI64* lir) { + const LInt64Allocation lhs = lir->getInt64Operand(LMulI64::Lhs); + const LInt64Allocation rhs = lir->getInt64Operand(LMulI64::Rhs); + + MOZ_ASSERT(ToRegister64(lhs) == ToOutRegister64(lir)); + + if (IsConstant(rhs)) { + int64_t constant = ToInt64(rhs); + switch (constant) { + case -1: + masm.neg64(ToRegister64(lhs)); + return; + case 0: + masm.xor64(ToRegister64(lhs), ToRegister64(lhs)); + return; + case 1: + // nop + return; + case 2: + masm.add64(ToRegister64(lhs), ToRegister64(lhs)); + return; + default: + if (constant > 0) { + // Use shift if constant is power of 2. + int32_t shift = mozilla::FloorLog2(constant); + if (int64_t(1) << shift == constant) { + masm.lshift64(Imm32(shift), ToRegister64(lhs)); + return; + } + } + Register temp = ToTempRegisterOrInvalid(lir->temp()); + masm.mul64(Imm64(constant), ToRegister64(lhs), temp); + } + } else { + Register temp = ToTempRegisterOrInvalid(lir->temp()); + masm.mul64(ToOperandOrRegister64(rhs), ToRegister64(lhs), temp); + } +} + +void CodeGeneratorARM::divICommon(MDiv* mir, Register lhs, Register rhs, + Register output, LSnapshot* snapshot, + Label& done) { + ScratchRegisterScope scratch(masm); + + if (mir->canBeNegativeOverflow()) { + // Handle INT32_MIN / -1; + // The integer division will give INT32_MIN, but we want -(double)INT32_MIN. + + // Sets EQ if lhs == INT32_MIN. + masm.ma_cmp(lhs, Imm32(INT32_MIN), scratch); + // If EQ (LHS == INT32_MIN), sets EQ if rhs == -1. + masm.ma_cmp(rhs, Imm32(-1), scratch, Assembler::Equal); + if (mir->canTruncateOverflow()) { + if (mir->trapOnError()) { + Label ok; + masm.ma_b(&ok, Assembler::NotEqual); + masm.wasmTrap(wasm::Trap::IntegerOverflow, mir->bytecodeOffset()); + masm.bind(&ok); + } else { + // (-INT32_MIN)|0 = INT32_MIN + Label skip; + masm.ma_b(&skip, Assembler::NotEqual); + masm.ma_mov(Imm32(INT32_MIN), output); + masm.ma_b(&done); + masm.bind(&skip); + } + } else { + MOZ_ASSERT(mir->fallible()); + bailoutIf(Assembler::Equal, snapshot); + } + } + + // Handle divide by zero. + if (mir->canBeDivideByZero()) { + masm.as_cmp(rhs, Imm8(0)); + if (mir->canTruncateInfinities()) { + if (mir->trapOnError()) { + Label nonZero; + masm.ma_b(&nonZero, Assembler::NotEqual); + masm.wasmTrap(wasm::Trap::IntegerDivideByZero, mir->bytecodeOffset()); + masm.bind(&nonZero); + } else { + // Infinity|0 == 0 + Label skip; + masm.ma_b(&skip, Assembler::NotEqual); + masm.ma_mov(Imm32(0), output); + masm.ma_b(&done); + masm.bind(&skip); + } + } else { + MOZ_ASSERT(mir->fallible()); + bailoutIf(Assembler::Equal, snapshot); + } + } + + // Handle negative 0. + if (!mir->canTruncateNegativeZero() && mir->canBeNegativeZero()) { + Label nonzero; + masm.as_cmp(lhs, Imm8(0)); + masm.ma_b(&nonzero, Assembler::NotEqual); + masm.as_cmp(rhs, Imm8(0)); + MOZ_ASSERT(mir->fallible()); + bailoutIf(Assembler::LessThan, snapshot); + masm.bind(&nonzero); + } +} + +void CodeGenerator::visitDivI(LDivI* ins) { + Register lhs = ToRegister(ins->lhs()); + Register rhs = ToRegister(ins->rhs()); + Register temp = ToRegister(ins->getTemp(0)); + Register output = ToRegister(ins->output()); + MDiv* mir = ins->mir(); + + Label done; + divICommon(mir, lhs, rhs, output, ins->snapshot(), done); + + if (mir->canTruncateRemainder()) { + masm.ma_sdiv(lhs, rhs, output); + } else { + { + ScratchRegisterScope scratch(masm); + masm.ma_sdiv(lhs, rhs, temp); + masm.ma_mul(temp, rhs, scratch); + masm.ma_cmp(lhs, scratch); + } + bailoutIf(Assembler::NotEqual, ins->snapshot()); + masm.ma_mov(temp, output); + } + + masm.bind(&done); +} + +extern "C" { +extern MOZ_EXPORT int64_t __aeabi_idivmod(int, int); +extern MOZ_EXPORT int64_t __aeabi_uidivmod(int, int); +} + +void CodeGenerator::visitSoftDivI(LSoftDivI* ins) { + Register lhs = ToRegister(ins->lhs()); + Register rhs = ToRegister(ins->rhs()); + Register output = ToRegister(ins->output()); + MDiv* mir = ins->mir(); + + Label done; + divICommon(mir, lhs, rhs, output, ins->snapshot(), done); + + if (gen->compilingWasm()) { + masm.Push(InstanceReg); + int32_t framePushedAfterInstance = masm.framePushed(); + masm.setupWasmABICall(); + masm.passABIArg(lhs); + masm.passABIArg(rhs); + int32_t instanceOffset = masm.framePushed() - framePushedAfterInstance; + masm.callWithABI(mir->bytecodeOffset(), + wasm::SymbolicAddress::aeabi_idivmod, + mozilla::Some(instanceOffset)); + masm.Pop(InstanceReg); + } else { + using Fn = int64_t (*)(int, int); + masm.setupAlignedABICall(); + masm.passABIArg(lhs); + masm.passABIArg(rhs); + masm.callWithABI<Fn, __aeabi_idivmod>( + MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckOther); + } + + // idivmod returns the quotient in r0, and the remainder in r1. + if (!mir->canTruncateRemainder()) { + MOZ_ASSERT(mir->fallible()); + masm.as_cmp(r1, Imm8(0)); + bailoutIf(Assembler::NonZero, ins->snapshot()); + } + + masm.bind(&done); +} + +void CodeGenerator::visitDivPowTwoI(LDivPowTwoI* ins) { + MDiv* mir = ins->mir(); + Register lhs = ToRegister(ins->numerator()); + Register output = ToRegister(ins->output()); + int32_t shift = ins->shift(); + + if (shift == 0) { + masm.ma_mov(lhs, output); + return; + } + + if (!mir->isTruncated()) { + // If the remainder is != 0, bailout since this must be a double. + { + // The bailout code also needs the scratch register. + // Here it is only used as a dummy target to set CC flags. + ScratchRegisterScope scratch(masm); + masm.as_mov(scratch, lsl(lhs, 32 - shift), SetCC); + } + bailoutIf(Assembler::NonZero, ins->snapshot()); + } + + if (!mir->canBeNegativeDividend()) { + // Numerator is unsigned, so needs no adjusting. Do the shift. + masm.as_mov(output, asr(lhs, shift)); + return; + } + + // Adjust the value so that shifting produces a correctly rounded result + // when the numerator is negative. See 10-1 "Signed Division by a Known + // Power of 2" in Henry S. Warren, Jr.'s Hacker's Delight. + ScratchRegisterScope scratch(masm); + + if (shift > 1) { + masm.as_mov(scratch, asr(lhs, 31)); + masm.as_add(scratch, lhs, lsr(scratch, 32 - shift)); + } else { + masm.as_add(scratch, lhs, lsr(lhs, 32 - shift)); + } + + // Do the shift. + masm.as_mov(output, asr(scratch, shift)); +} + +void CodeGeneratorARM::modICommon(MMod* mir, Register lhs, Register rhs, + Register output, LSnapshot* snapshot, + Label& done) { + // X % 0 is bad because it will give garbage (or abort), when it should give + // NaN. + + if (mir->canBeDivideByZero()) { + masm.as_cmp(rhs, Imm8(0)); + if (mir->isTruncated()) { + Label nonZero; + masm.ma_b(&nonZero, Assembler::NotEqual); + if (mir->trapOnError()) { + masm.wasmTrap(wasm::Trap::IntegerDivideByZero, mir->bytecodeOffset()); + } else { + // NaN|0 == 0 + masm.ma_mov(Imm32(0), output); + masm.ma_b(&done); + } + masm.bind(&nonZero); + } else { + MOZ_ASSERT(mir->fallible()); + bailoutIf(Assembler::Equal, snapshot); + } + } +} + +void CodeGenerator::visitModI(LModI* ins) { + Register lhs = ToRegister(ins->lhs()); + Register rhs = ToRegister(ins->rhs()); + Register output = ToRegister(ins->output()); + MMod* mir = ins->mir(); + + // Contrary to other architectures (notably x86) INT_MIN % -1 doesn't need to + // be handled separately. |ma_smod| computes the remainder using the |SDIV| + // and the |MLS| instructions. On overflow, |SDIV| truncates the result to + // 32-bit and returns INT_MIN, see ARM Architecture Reference Manual, SDIV + // instruction. + // + // mls(INT_MIN, sdiv(INT_MIN, -1), -1) + // = INT_MIN - (sdiv(INT_MIN, -1) * -1) + // = INT_MIN - (INT_MIN * -1) + // = INT_MIN - INT_MIN + // = 0 + // + // And a zero remainder with a negative dividend is already handled below. + + Label done; + modICommon(mir, lhs, rhs, output, ins->snapshot(), done); + + { + ScratchRegisterScope scratch(masm); + masm.ma_smod(lhs, rhs, output, scratch); + } + + // If X%Y == 0 and X < 0, then we *actually* wanted to return -0.0. + if (mir->canBeNegativeDividend()) { + if (mir->isTruncated()) { + // -0.0|0 == 0 + } else { + MOZ_ASSERT(mir->fallible()); + // See if X < 0 + masm.as_cmp(output, Imm8(0)); + masm.ma_b(&done, Assembler::NotEqual); + masm.as_cmp(lhs, Imm8(0)); + bailoutIf(Assembler::Signed, ins->snapshot()); + } + } + + masm.bind(&done); +} + +void CodeGenerator::visitSoftModI(LSoftModI* ins) { + // Extract the registers from this instruction. + Register lhs = ToRegister(ins->lhs()); + Register rhs = ToRegister(ins->rhs()); + Register output = ToRegister(ins->output()); + Register callTemp = ToRegister(ins->callTemp()); + MMod* mir = ins->mir(); + Label done; + + // Save the lhs in case we end up with a 0 that should be a -0.0 because lhs < + // 0. + MOZ_ASSERT(callTemp != lhs); + MOZ_ASSERT(callTemp != rhs); + masm.ma_mov(lhs, callTemp); + + // Prevent INT_MIN % -1. + // + // |aeabi_idivmod| is allowed to return any arbitrary value when called with + // |(INT_MIN, -1)|, see "Run-time ABI for the ARM architecture manual". Most + // implementations perform a non-trapping signed integer division and + // return the expected result, i.e. INT_MIN. But since we can't rely on this + // behavior, handle this case separately here. + if (mir->canBeNegativeDividend()) { + { + ScratchRegisterScope scratch(masm); + // Sets EQ if lhs == INT_MIN + masm.ma_cmp(lhs, Imm32(INT_MIN), scratch); + // If EQ (LHS == INT_MIN), sets EQ if rhs == -1 + masm.ma_cmp(rhs, Imm32(-1), scratch, Assembler::Equal); + } + if (mir->isTruncated()) { + // (INT_MIN % -1)|0 == 0 + Label skip; + masm.ma_b(&skip, Assembler::NotEqual); + masm.ma_mov(Imm32(0), output); + masm.ma_b(&done); + masm.bind(&skip); + } else { + MOZ_ASSERT(mir->fallible()); + bailoutIf(Assembler::Equal, ins->snapshot()); + } + } + + modICommon(mir, lhs, rhs, output, ins->snapshot(), done); + + if (gen->compilingWasm()) { + masm.Push(InstanceReg); + int32_t framePushedAfterInstance = masm.framePushed(); + masm.setupWasmABICall(); + masm.passABIArg(lhs); + masm.passABIArg(rhs); + int32_t instanceOffset = masm.framePushed() - framePushedAfterInstance; + masm.callWithABI(mir->bytecodeOffset(), + wasm::SymbolicAddress::aeabi_idivmod, + mozilla::Some(instanceOffset)); + masm.Pop(InstanceReg); + } else { + using Fn = int64_t (*)(int, int); + masm.setupAlignedABICall(); + masm.passABIArg(lhs); + masm.passABIArg(rhs); + masm.callWithABI<Fn, __aeabi_idivmod>( + MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckOther); + } + + MOZ_ASSERT(r1 != output); + masm.move32(r1, output); + + // If X%Y == 0 and X < 0, then we *actually* wanted to return -0.0 + if (mir->canBeNegativeDividend()) { + if (mir->isTruncated()) { + // -0.0|0 == 0 + } else { + MOZ_ASSERT(mir->fallible()); + // See if X < 0 + masm.as_cmp(output, Imm8(0)); + masm.ma_b(&done, Assembler::NotEqual); + masm.as_cmp(callTemp, Imm8(0)); + bailoutIf(Assembler::Signed, ins->snapshot()); + } + } + + masm.bind(&done); +} + +void CodeGenerator::visitModPowTwoI(LModPowTwoI* ins) { + Register in = ToRegister(ins->getOperand(0)); + Register out = ToRegister(ins->getDef(0)); + MMod* mir = ins->mir(); + Label fin; + // bug 739870, jbramley has a different sequence that may help with speed + // here. + + masm.ma_mov(in, out, SetCC); + masm.ma_b(&fin, Assembler::Zero); + masm.as_rsb(out, out, Imm8(0), LeaveCC, Assembler::Signed); + { + ScratchRegisterScope scratch(masm); + masm.ma_and(Imm32((1 << ins->shift()) - 1), out, scratch); + } + masm.as_rsb(out, out, Imm8(0), SetCC, Assembler::Signed); + if (mir->canBeNegativeDividend()) { + if (!mir->isTruncated()) { + MOZ_ASSERT(mir->fallible()); + bailoutIf(Assembler::Zero, ins->snapshot()); + } else { + // -0|0 == 0 + } + } + masm.bind(&fin); +} + +void CodeGenerator::visitModMaskI(LModMaskI* ins) { + Register src = ToRegister(ins->getOperand(0)); + Register dest = ToRegister(ins->getDef(0)); + Register tmp1 = ToRegister(ins->getTemp(0)); + Register tmp2 = ToRegister(ins->getTemp(1)); + MMod* mir = ins->mir(); + + ScratchRegisterScope scratch(masm); + SecondScratchRegisterScope scratch2(masm); + + masm.ma_mod_mask(src, dest, tmp1, tmp2, scratch, scratch2, ins->shift()); + + if (mir->canBeNegativeDividend()) { + if (!mir->isTruncated()) { + MOZ_ASSERT(mir->fallible()); + bailoutIf(Assembler::Zero, ins->snapshot()); + } else { + // -0|0 == 0 + } + } +} + +void CodeGeneratorARM::emitBigIntDiv(LBigIntDiv* ins, Register dividend, + Register divisor, Register output, + Label* fail) { + // Callers handle division by zero and integer overflow. + + if (HasIDIV()) { + masm.ma_sdiv(dividend, divisor, /* result= */ dividend); + + // Create and return the result. + masm.newGCBigInt(output, divisor, initialBigIntHeap(), fail); + masm.initializeBigInt(output, dividend); + + return; + } + + // idivmod returns the quotient in r0, and the remainder in r1. + MOZ_ASSERT(dividend == r0); + MOZ_ASSERT(divisor == r1); + + LiveRegisterSet volatileRegs = liveVolatileRegs(ins); + volatileRegs.takeUnchecked(dividend); + volatileRegs.takeUnchecked(divisor); + volatileRegs.takeUnchecked(output); + + masm.PushRegsInMask(volatileRegs); + + using Fn = int64_t (*)(int, int); + masm.setupUnalignedABICall(output); + masm.passABIArg(dividend); + masm.passABIArg(divisor); + masm.callWithABI<Fn, __aeabi_idivmod>(MoveOp::GENERAL, + CheckUnsafeCallWithABI::DontCheckOther); + + masm.PopRegsInMask(volatileRegs); + + // Create and return the result. + masm.newGCBigInt(output, divisor, initialBigIntHeap(), fail); + masm.initializeBigInt(output, dividend); +} + +void CodeGeneratorARM::emitBigIntMod(LBigIntMod* ins, Register dividend, + Register divisor, Register output, + Label* fail) { + // Callers handle division by zero and integer overflow. + + if (HasIDIV()) { + { + ScratchRegisterScope scratch(masm); + masm.ma_smod(dividend, divisor, /* result= */ dividend, scratch); + } + + // Create and return the result. + masm.newGCBigInt(output, divisor, initialBigIntHeap(), fail); + masm.initializeBigInt(output, dividend); + + return; + } + + // idivmod returns the quotient in r0, and the remainder in r1. + MOZ_ASSERT(dividend == r0); + MOZ_ASSERT(divisor == r1); + + LiveRegisterSet volatileRegs = liveVolatileRegs(ins); + volatileRegs.takeUnchecked(dividend); + volatileRegs.takeUnchecked(divisor); + volatileRegs.takeUnchecked(output); + + masm.PushRegsInMask(volatileRegs); + + using Fn = int64_t (*)(int, int); + masm.setupUnalignedABICall(output); + masm.passABIArg(dividend); + masm.passABIArg(divisor); + masm.callWithABI<Fn, __aeabi_idivmod>(MoveOp::GENERAL, + CheckUnsafeCallWithABI::DontCheckOther); + + masm.PopRegsInMask(volatileRegs); + + // Create and return the result. + masm.newGCBigInt(output, dividend, initialBigIntHeap(), fail); + masm.initializeBigInt(output, divisor); +} + +void CodeGenerator::visitBitNotI(LBitNotI* ins) { + const LAllocation* input = ins->getOperand(0); + const LDefinition* dest = ins->getDef(0); + // This will not actually be true on arm. We can not an imm8m in order to + // get a wider range of numbers + MOZ_ASSERT(!input->isConstant()); + + masm.ma_mvn(ToRegister(input), ToRegister(dest)); +} + +void CodeGenerator::visitBitOpI(LBitOpI* ins) { + const LAllocation* lhs = ins->getOperand(0); + const LAllocation* rhs = ins->getOperand(1); + const LDefinition* dest = ins->getDef(0); + + ScratchRegisterScope scratch(masm); + + // All of these bitops should be either imm32's, or integer registers. + switch (ins->bitop()) { + case JSOp::BitOr: + if (rhs->isConstant()) { + masm.ma_orr(Imm32(ToInt32(rhs)), ToRegister(lhs), ToRegister(dest), + scratch); + } else { + masm.ma_orr(ToRegister(rhs), ToRegister(lhs), ToRegister(dest)); + } + break; + case JSOp::BitXor: + if (rhs->isConstant()) { + masm.ma_eor(Imm32(ToInt32(rhs)), ToRegister(lhs), ToRegister(dest), + scratch); + } else { + masm.ma_eor(ToRegister(rhs), ToRegister(lhs), ToRegister(dest)); + } + break; + case JSOp::BitAnd: + if (rhs->isConstant()) { + masm.ma_and(Imm32(ToInt32(rhs)), ToRegister(lhs), ToRegister(dest), + scratch); + } else { + masm.ma_and(ToRegister(rhs), ToRegister(lhs), ToRegister(dest)); + } + break; + default: + MOZ_CRASH("unexpected binary opcode"); + } +} + +void CodeGenerator::visitShiftI(LShiftI* ins) { + Register lhs = ToRegister(ins->lhs()); + const LAllocation* rhs = ins->rhs(); + Register dest = ToRegister(ins->output()); + + if (rhs->isConstant()) { + int32_t shift = ToInt32(rhs) & 0x1F; + switch (ins->bitop()) { + case JSOp::Lsh: + if (shift) { + masm.ma_lsl(Imm32(shift), lhs, dest); + } else { + masm.ma_mov(lhs, dest); + } + break; + case JSOp::Rsh: + if (shift) { + masm.ma_asr(Imm32(shift), lhs, dest); + } else { + masm.ma_mov(lhs, dest); + } + break; + case JSOp::Ursh: + if (shift) { + masm.ma_lsr(Imm32(shift), lhs, dest); + } else { + // x >>> 0 can overflow. + masm.ma_mov(lhs, dest); + if (ins->mir()->toUrsh()->fallible()) { + masm.as_cmp(dest, Imm8(0)); + bailoutIf(Assembler::LessThan, ins->snapshot()); + } + } + break; + default: + MOZ_CRASH("Unexpected shift op"); + } + } else { + // The shift amounts should be AND'ed into the 0-31 range since arm + // shifts by the lower byte of the register (it will attempt to shift by + // 250 if you ask it to). + masm.as_and(dest, ToRegister(rhs), Imm8(0x1F)); + + switch (ins->bitop()) { + case JSOp::Lsh: + masm.ma_lsl(dest, lhs, dest); + break; + case JSOp::Rsh: + masm.ma_asr(dest, lhs, dest); + break; + case JSOp::Ursh: + masm.ma_lsr(dest, lhs, dest); + if (ins->mir()->toUrsh()->fallible()) { + // x >>> 0 can overflow. + masm.as_cmp(dest, Imm8(0)); + bailoutIf(Assembler::LessThan, ins->snapshot()); + } + break; + default: + MOZ_CRASH("Unexpected shift op"); + } + } +} + +void CodeGenerator::visitUrshD(LUrshD* ins) { + Register lhs = ToRegister(ins->lhs()); + Register temp = ToRegister(ins->temp()); + + const LAllocation* rhs = ins->rhs(); + FloatRegister out = ToFloatRegister(ins->output()); + + if (rhs->isConstant()) { + int32_t shift = ToInt32(rhs) & 0x1F; + if (shift) { + masm.ma_lsr(Imm32(shift), lhs, temp); + } else { + masm.ma_mov(lhs, temp); + } + } else { + masm.as_and(temp, ToRegister(rhs), Imm8(0x1F)); + masm.ma_lsr(temp, lhs, temp); + } + + masm.convertUInt32ToDouble(temp, out); +} + +void CodeGenerator::visitClzI(LClzI* ins) { + Register input = ToRegister(ins->input()); + Register output = ToRegister(ins->output()); + + masm.clz32(input, output, /* knownNotZero = */ false); +} + +void CodeGenerator::visitCtzI(LCtzI* ins) { + Register input = ToRegister(ins->input()); + Register output = ToRegister(ins->output()); + + masm.ctz32(input, output, /* knownNotZero = */ false); +} + +void CodeGenerator::visitPopcntI(LPopcntI* ins) { + Register input = ToRegister(ins->input()); + Register output = ToRegister(ins->output()); + + Register tmp = ToRegister(ins->temp0()); + + masm.popcnt32(input, output, tmp); +} + +void CodeGenerator::visitPowHalfD(LPowHalfD* ins) { + FloatRegister input = ToFloatRegister(ins->input()); + FloatRegister output = ToFloatRegister(ins->output()); + ScratchDoubleScope scratch(masm); + + Label done; + + // Masm.pow(-Infinity, 0.5) == Infinity. + masm.loadConstantDouble(NegativeInfinity<double>(), scratch); + masm.compareDouble(input, scratch); + masm.ma_vneg(scratch, output, Assembler::Equal); + masm.ma_b(&done, Assembler::Equal); + + // Math.pow(-0, 0.5) == 0 == Math.pow(0, 0.5). + // Adding 0 converts any -0 to 0. + masm.loadConstantDouble(0.0, scratch); + masm.ma_vadd(scratch, input, output); + masm.ma_vsqrt(output, output); + + masm.bind(&done); +} + +MoveOperand CodeGeneratorARM::toMoveOperand(LAllocation a) const { + if (a.isGeneralReg()) { + return MoveOperand(ToRegister(a)); + } + if (a.isFloatReg()) { + return MoveOperand(ToFloatRegister(a)); + } + MoveOperand::Kind kind = a.isStackArea() ? MoveOperand::Kind::EffectiveAddress + : MoveOperand::Kind::Memory; + Address addr = ToAddress(a); + MOZ_ASSERT((addr.offset & 3) == 0); + return MoveOperand(addr, kind); +} + +class js::jit::OutOfLineTableSwitch + : public OutOfLineCodeBase<CodeGeneratorARM> { + MTableSwitch* mir_; + Vector<CodeLabel, 8, JitAllocPolicy> codeLabels_; + + void accept(CodeGeneratorARM* codegen) override { + codegen->visitOutOfLineTableSwitch(this); + } + + public: + OutOfLineTableSwitch(TempAllocator& alloc, MTableSwitch* mir) + : mir_(mir), codeLabels_(alloc) {} + + MTableSwitch* mir() const { return mir_; } + + bool addCodeLabel(CodeLabel label) { return codeLabels_.append(label); } + CodeLabel codeLabel(unsigned i) { return codeLabels_[i]; } +}; + +void CodeGeneratorARM::visitOutOfLineTableSwitch(OutOfLineTableSwitch* ool) { + MTableSwitch* mir = ool->mir(); + + size_t numCases = mir->numCases(); + for (size_t i = 0; i < numCases; i++) { + LBlock* caseblock = + skipTrivialBlocks(mir->getCase(numCases - 1 - i))->lir(); + Label* caseheader = caseblock->label(); + uint32_t caseoffset = caseheader->offset(); + + // The entries of the jump table need to be absolute addresses and thus + // must be patched after codegen is finished. + CodeLabel cl = ool->codeLabel(i); + cl.target()->bind(caseoffset); + masm.addCodeLabel(cl); + } +} + +void CodeGeneratorARM::emitTableSwitchDispatch(MTableSwitch* mir, + Register index, Register base) { + // The code generated by this is utter hax. + // The end result looks something like: + // SUBS index, input, #base + // RSBSPL index, index, #max + // LDRPL pc, pc, index lsl 2 + // B default + + // If the range of targets in N through M, we first subtract off the lowest + // case (N), which both shifts the arguments into the range 0 to (M - N) + // with and sets the MInus flag if the argument was out of range on the low + // end. + + // Then we a reverse subtract with the size of the jump table, which will + // reverse the order of range (It is size through 0, rather than 0 through + // size). The main purpose of this is that we set the same flag as the lower + // bound check for the upper bound check. Lastly, we do this conditionally + // on the previous check succeeding. + + // Then we conditionally load the pc offset by the (reversed) index (times + // the address size) into the pc, which branches to the correct case. NOTE: + // when we go to read the pc, the value that we get back is the pc of the + // current instruction *PLUS 8*. This means that ldr foo, [pc, +0] reads + // $pc+8. In other words, there is an empty word after the branch into the + // switch table before the table actually starts. Since the only other + // unhandled case is the default case (both out of range high and out of + // range low) I then insert a branch to default case into the extra slot, + // which ensures we don't attempt to execute the address table. + Label* defaultcase = skipTrivialBlocks(mir->getDefault())->lir()->label(); + + ScratchRegisterScope scratch(masm); + + int32_t cases = mir->numCases(); + // Lower value with low value. + masm.ma_sub(index, Imm32(mir->low()), index, scratch, SetCC); + masm.ma_rsb(index, Imm32(cases - 1), index, scratch, SetCC, + Assembler::NotSigned); + // Inhibit pools within the following sequence because we are indexing into + // a pc relative table. The region will have one instruction for ma_ldr, one + // for ma_b, and each table case takes one word. + AutoForbidPoolsAndNops afp(&masm, 1 + 1 + cases); + masm.ma_ldr(DTRAddr(pc, DtrRegImmShift(index, LSL, 2)), pc, Offset, + Assembler::NotSigned); + masm.ma_b(defaultcase); + + // To fill in the CodeLabels for the case entries, we need to first generate + // the case entries (we don't yet know their offsets in the instruction + // stream). + OutOfLineTableSwitch* ool = new (alloc()) OutOfLineTableSwitch(alloc(), mir); + for (int32_t i = 0; i < cases; i++) { + CodeLabel cl; + masm.writeCodePointer(&cl); + masm.propagateOOM(ool->addCodeLabel(cl)); + } + addOutOfLineCode(ool, mir); +} + +void CodeGenerator::visitMathD(LMathD* math) { + FloatRegister src1 = ToFloatRegister(math->getOperand(0)); + FloatRegister src2 = ToFloatRegister(math->getOperand(1)); + FloatRegister output = ToFloatRegister(math->getDef(0)); + + switch (math->jsop()) { + case JSOp::Add: + masm.ma_vadd(src1, src2, output); + break; + case JSOp::Sub: + masm.ma_vsub(src1, src2, output); + break; + case JSOp::Mul: + masm.ma_vmul(src1, src2, output); + break; + case JSOp::Div: + masm.ma_vdiv(src1, src2, output); + break; + default: + MOZ_CRASH("unexpected opcode"); + } +} + +void CodeGenerator::visitMathF(LMathF* math) { + FloatRegister src1 = ToFloatRegister(math->getOperand(0)); + FloatRegister src2 = ToFloatRegister(math->getOperand(1)); + FloatRegister output = ToFloatRegister(math->getDef(0)); + + switch (math->jsop()) { + case JSOp::Add: + masm.ma_vadd_f32(src1, src2, output); + break; + case JSOp::Sub: + masm.ma_vsub_f32(src1, src2, output); + break; + case JSOp::Mul: + masm.ma_vmul_f32(src1, src2, output); + break; + case JSOp::Div: + masm.ma_vdiv_f32(src1, src2, output); + break; + default: + MOZ_CRASH("unexpected opcode"); + } +} + +void CodeGenerator::visitTruncateDToInt32(LTruncateDToInt32* ins) { + emitTruncateDouble(ToFloatRegister(ins->input()), ToRegister(ins->output()), + ins->mir()); +} + +void CodeGenerator::visitWasmBuiltinTruncateDToInt32( + LWasmBuiltinTruncateDToInt32* ins) { + emitTruncateDouble(ToFloatRegister(ins->getOperand(0)), + ToRegister(ins->getDef(0)), ins->mir()); +} + +void CodeGenerator::visitTruncateFToInt32(LTruncateFToInt32* ins) { + emitTruncateFloat32(ToFloatRegister(ins->input()), ToRegister(ins->output()), + ins->mir()); +} + +void CodeGenerator::visitWasmBuiltinTruncateFToInt32( + LWasmBuiltinTruncateFToInt32* ins) { + emitTruncateFloat32(ToFloatRegister(ins->getOperand(0)), + ToRegister(ins->getDef(0)), ins->mir()); +} + +ValueOperand CodeGeneratorARM::ToValue(LInstruction* ins, size_t pos) { + Register typeReg = ToRegister(ins->getOperand(pos + TYPE_INDEX)); + Register payloadReg = ToRegister(ins->getOperand(pos + PAYLOAD_INDEX)); + return ValueOperand(typeReg, payloadReg); +} + +ValueOperand CodeGeneratorARM::ToTempValue(LInstruction* ins, size_t pos) { + Register typeReg = ToRegister(ins->getTemp(pos + TYPE_INDEX)); + Register payloadReg = ToRegister(ins->getTemp(pos + PAYLOAD_INDEX)); + return ValueOperand(typeReg, payloadReg); +} + +void CodeGenerator::visitValue(LValue* value) { + const ValueOperand out = ToOutValue(value); + + masm.moveValue(value->value(), out); +} + +void CodeGenerator::visitBox(LBox* box) { + const LDefinition* type = box->getDef(TYPE_INDEX); + + MOZ_ASSERT(!box->getOperand(0)->isConstant()); + + // On arm, the input operand and the output payload have the same virtual + // register. All that needs to be written is the type tag for the type + // definition. + masm.ma_mov(Imm32(MIRTypeToTag(box->type())), ToRegister(type)); +} + +void CodeGenerator::visitBoxFloatingPoint(LBoxFloatingPoint* box) { + const AnyRegister in = ToAnyRegister(box->getOperand(0)); + const ValueOperand out = ToOutValue(box); + + masm.moveValue(TypedOrValueRegister(box->type(), in), out); +} + +void CodeGenerator::visitUnbox(LUnbox* unbox) { + // Note that for unbox, the type and payload indexes are switched on the + // inputs. + MUnbox* mir = unbox->mir(); + Register type = ToRegister(unbox->type()); + Register payload = ToRegister(unbox->payload()); + Register output = ToRegister(unbox->output()); + + mozilla::Maybe<ScratchRegisterScope> scratch; + scratch.emplace(masm); + + JSValueTag tag = MIRTypeToTag(mir->type()); + if (mir->fallible()) { + masm.ma_cmp(type, Imm32(tag), *scratch); + bailoutIf(Assembler::NotEqual, unbox->snapshot()); + } else { +#ifdef DEBUG + Label ok; + masm.ma_cmp(type, Imm32(tag), *scratch); + masm.ma_b(&ok, Assembler::Equal); + scratch.reset(); + masm.assumeUnreachable("Infallible unbox type mismatch"); + masm.bind(&ok); +#endif + } + + // Note: If spectreValueMasking is disabled, then this instruction will + // default to a no-op as long as the lowering allocate the same register for + // the output and the payload. + masm.unboxNonDouble(ValueOperand(type, payload), output, + ValueTypeFromMIRType(mir->type())); +} + +void CodeGenerator::visitDouble(LDouble* ins) { + const LDefinition* out = ins->getDef(0); + masm.loadConstantDouble(ins->value(), ToFloatRegister(out)); +} + +void CodeGenerator::visitFloat32(LFloat32* ins) { + const LDefinition* out = ins->getDef(0); + masm.loadConstantFloat32(ins->value(), ToFloatRegister(out)); +} + +void CodeGeneratorARM::splitTagForTest(const ValueOperand& value, + ScratchTagScope& tag) { + MOZ_ASSERT(value.typeReg() == tag); +} + +void CodeGenerator::visitTestDAndBranch(LTestDAndBranch* test) { + const LAllocation* opd = test->input(); + masm.ma_vcmpz(ToFloatRegister(opd)); + masm.as_vmrs(pc); + + MBasicBlock* ifTrue = test->ifTrue(); + MBasicBlock* ifFalse = test->ifFalse(); + // If the compare set the 0 bit, then the result is definitely false. + jumpToBlock(ifFalse, Assembler::Zero); + // It is also false if one of the operands is NAN, which is shown as + // Overflow. + jumpToBlock(ifFalse, Assembler::Overflow); + jumpToBlock(ifTrue); +} + +void CodeGenerator::visitTestFAndBranch(LTestFAndBranch* test) { + const LAllocation* opd = test->input(); + masm.ma_vcmpz_f32(ToFloatRegister(opd)); + masm.as_vmrs(pc); + + MBasicBlock* ifTrue = test->ifTrue(); + MBasicBlock* ifFalse = test->ifFalse(); + // If the compare set the 0 bit, then the result is definitely false. + jumpToBlock(ifFalse, Assembler::Zero); + // It is also false if one of the operands is NAN, which is shown as + // Overflow. + jumpToBlock(ifFalse, Assembler::Overflow); + jumpToBlock(ifTrue); +} + +void CodeGenerator::visitCompareD(LCompareD* comp) { + FloatRegister lhs = ToFloatRegister(comp->left()); + FloatRegister rhs = ToFloatRegister(comp->right()); + + Assembler::DoubleCondition cond = JSOpToDoubleCondition(comp->mir()->jsop()); + masm.compareDouble(lhs, rhs); + masm.emitSet(Assembler::ConditionFromDoubleCondition(cond), + ToRegister(comp->output())); +} + +void CodeGenerator::visitCompareF(LCompareF* comp) { + FloatRegister lhs = ToFloatRegister(comp->left()); + FloatRegister rhs = ToFloatRegister(comp->right()); + + Assembler::DoubleCondition cond = JSOpToDoubleCondition(comp->mir()->jsop()); + masm.compareFloat(lhs, rhs); + masm.emitSet(Assembler::ConditionFromDoubleCondition(cond), + ToRegister(comp->output())); +} + +void CodeGenerator::visitCompareDAndBranch(LCompareDAndBranch* comp) { + FloatRegister lhs = ToFloatRegister(comp->left()); + FloatRegister rhs = ToFloatRegister(comp->right()); + + Assembler::DoubleCondition cond = + JSOpToDoubleCondition(comp->cmpMir()->jsop()); + masm.compareDouble(lhs, rhs); + emitBranch(Assembler::ConditionFromDoubleCondition(cond), comp->ifTrue(), + comp->ifFalse()); +} + +void CodeGenerator::visitCompareFAndBranch(LCompareFAndBranch* comp) { + FloatRegister lhs = ToFloatRegister(comp->left()); + FloatRegister rhs = ToFloatRegister(comp->right()); + + Assembler::DoubleCondition cond = + JSOpToDoubleCondition(comp->cmpMir()->jsop()); + masm.compareFloat(lhs, rhs); + emitBranch(Assembler::ConditionFromDoubleCondition(cond), comp->ifTrue(), + comp->ifFalse()); +} + +void CodeGenerator::visitBitAndAndBranch(LBitAndAndBranch* baab) { + // LBitAndAndBranch only represents single-word ANDs, hence it can't be + // 64-bit here. + MOZ_ASSERT(!baab->is64()); + Register regL = ToRegister(baab->left()); + if (baab->right()->isConstant()) { + ScratchRegisterScope scratch(masm); + masm.ma_tst(regL, Imm32(ToInt32(baab->right())), scratch); + } else { + masm.ma_tst(regL, ToRegister(baab->right())); + } + emitBranch(baab->cond(), baab->ifTrue(), baab->ifFalse()); +} + +void CodeGenerator::visitWasmUint32ToDouble(LWasmUint32ToDouble* lir) { + masm.convertUInt32ToDouble(ToRegister(lir->input()), + ToFloatRegister(lir->output())); +} + +void CodeGenerator::visitWasmUint32ToFloat32(LWasmUint32ToFloat32* lir) { + masm.convertUInt32ToFloat32(ToRegister(lir->input()), + ToFloatRegister(lir->output())); +} + +void CodeGenerator::visitNotI(LNotI* ins) { + // It is hard to optimize !x, so just do it the basic way for now. + masm.as_cmp(ToRegister(ins->input()), Imm8(0)); + masm.emitSet(Assembler::Equal, ToRegister(ins->output())); +} + +void CodeGenerator::visitNotI64(LNotI64* lir) { + Register64 input = ToRegister64(lir->getInt64Operand(0)); + Register output = ToRegister(lir->output()); + + masm.ma_orr(input.low, input.high, output); + masm.as_cmp(output, Imm8(0)); + masm.emitSet(Assembler::Equal, output); +} + +void CodeGenerator::visitNotD(LNotD* ins) { + // Since this operation is not, we want to set a bit if the double is + // falsey, which means 0.0, -0.0 or NaN. When comparing with 0, an input of + // 0 will set the Z bit (30) and NaN will set the V bit (28) of the APSR. + FloatRegister opd = ToFloatRegister(ins->input()); + Register dest = ToRegister(ins->output()); + + // Do the compare. + masm.ma_vcmpz(opd); + // TODO There are three variations here to compare performance-wise. + bool nocond = true; + if (nocond) { + // Load the value into the dest register. + masm.as_vmrs(dest); + masm.ma_lsr(Imm32(28), dest, dest); + // 28 + 2 = 30 + masm.ma_alu(dest, lsr(dest, 2), dest, OpOrr); + masm.as_and(dest, dest, Imm8(1)); + } else { + masm.as_vmrs(pc); + masm.ma_mov(Imm32(0), dest); + masm.ma_mov(Imm32(1), dest, Assembler::Equal); + masm.ma_mov(Imm32(1), dest, Assembler::Overflow); + } +} + +void CodeGenerator::visitNotF(LNotF* ins) { + // Since this operation is not, we want to set a bit if the double is + // falsey, which means 0.0, -0.0 or NaN. When comparing with 0, an input of + // 0 will set the Z bit (30) and NaN will set the V bit (28) of the APSR. + FloatRegister opd = ToFloatRegister(ins->input()); + Register dest = ToRegister(ins->output()); + + // Do the compare. + masm.ma_vcmpz_f32(opd); + // TODO There are three variations here to compare performance-wise. + bool nocond = true; + if (nocond) { + // Load the value into the dest register. + masm.as_vmrs(dest); + masm.ma_lsr(Imm32(28), dest, dest); + // 28 + 2 = 30 + masm.ma_alu(dest, lsr(dest, 2), dest, OpOrr); + masm.as_and(dest, dest, Imm8(1)); + } else { + masm.as_vmrs(pc); + masm.ma_mov(Imm32(0), dest); + masm.ma_mov(Imm32(1), dest, Assembler::Equal); + masm.ma_mov(Imm32(1), dest, Assembler::Overflow); + } +} + +void CodeGeneratorARM::generateInvalidateEpilogue() { + // Ensure that there is enough space in the buffer for the OsiPoint patching + // to occur. Otherwise, we could overwrite the invalidation epilogue. + for (size_t i = 0; i < sizeof(void*); i += Assembler::NopSize()) { + masm.nop(); + } + + masm.bind(&invalidate_); + + // Push the return address of the point that we bailed out at onto the stack. + masm.Push(lr); + + // Push the Ion script onto the stack (when we determine what that pointer + // is). + invalidateEpilogueData_ = masm.pushWithPatch(ImmWord(uintptr_t(-1))); + + // Jump to the invalidator which will replace the current frame. + TrampolinePtr thunk = gen->jitRuntime()->getInvalidationThunk(); + masm.jump(thunk); +} + +void CodeGenerator::visitCompareExchangeTypedArrayElement( + LCompareExchangeTypedArrayElement* lir) { + Register elements = ToRegister(lir->elements()); + AnyRegister output = ToAnyRegister(lir->output()); + Register temp = + lir->temp()->isBogusTemp() ? InvalidReg : ToRegister(lir->temp()); + + Register oldval = ToRegister(lir->oldval()); + Register newval = ToRegister(lir->newval()); + + Scalar::Type arrayType = lir->mir()->arrayType(); + + if (lir->index()->isConstant()) { + Address dest = ToAddress(elements, lir->index(), arrayType); + masm.compareExchangeJS(arrayType, Synchronization::Full(), dest, oldval, + newval, temp, output); + } else { + BaseIndex dest(elements, ToRegister(lir->index()), + ScaleFromScalarType(arrayType)); + masm.compareExchangeJS(arrayType, Synchronization::Full(), dest, oldval, + newval, temp, output); + } +} + +void CodeGenerator::visitAtomicExchangeTypedArrayElement( + LAtomicExchangeTypedArrayElement* lir) { + Register elements = ToRegister(lir->elements()); + AnyRegister output = ToAnyRegister(lir->output()); + Register temp = + lir->temp()->isBogusTemp() ? InvalidReg : ToRegister(lir->temp()); + + Register value = ToRegister(lir->value()); + + Scalar::Type arrayType = lir->mir()->arrayType(); + + if (lir->index()->isConstant()) { + Address dest = ToAddress(elements, lir->index(), arrayType); + masm.atomicExchangeJS(arrayType, Synchronization::Full(), dest, value, temp, + output); + } else { + BaseIndex dest(elements, ToRegister(lir->index()), + ScaleFromScalarType(arrayType)); + masm.atomicExchangeJS(arrayType, Synchronization::Full(), dest, value, temp, + output); + } +} + +void CodeGenerator::visitAtomicTypedArrayElementBinop( + LAtomicTypedArrayElementBinop* lir) { + MOZ_ASSERT(!lir->mir()->isForEffect()); + + AnyRegister output = ToAnyRegister(lir->output()); + Register elements = ToRegister(lir->elements()); + Register flagTemp = ToRegister(lir->temp1()); + Register outTemp = + lir->temp2()->isBogusTemp() ? InvalidReg : ToRegister(lir->temp2()); + Register value = ToRegister(lir->value()); + + Scalar::Type arrayType = lir->mir()->arrayType(); + + if (lir->index()->isConstant()) { + Address mem = ToAddress(elements, lir->index(), arrayType); + masm.atomicFetchOpJS(arrayType, Synchronization::Full(), + lir->mir()->operation(), value, mem, flagTemp, outTemp, + output); + } else { + BaseIndex mem(elements, ToRegister(lir->index()), + ScaleFromScalarType(arrayType)); + masm.atomicFetchOpJS(arrayType, Synchronization::Full(), + lir->mir()->operation(), value, mem, flagTemp, outTemp, + output); + } +} + +void CodeGenerator::visitAtomicTypedArrayElementBinopForEffect( + LAtomicTypedArrayElementBinopForEffect* lir) { + MOZ_ASSERT(lir->mir()->isForEffect()); + + Register elements = ToRegister(lir->elements()); + Register flagTemp = ToRegister(lir->flagTemp()); + Register value = ToRegister(lir->value()); + Scalar::Type arrayType = lir->mir()->arrayType(); + + if (lir->index()->isConstant()) { + Address mem = ToAddress(elements, lir->index(), arrayType); + masm.atomicEffectOpJS(arrayType, Synchronization::Full(), + lir->mir()->operation(), value, mem, flagTemp); + } else { + BaseIndex mem(elements, ToRegister(lir->index()), + ScaleFromScalarType(arrayType)); + masm.atomicEffectOpJS(arrayType, Synchronization::Full(), + lir->mir()->operation(), value, mem, flagTemp); + } +} + +void CodeGenerator::visitAtomicLoad64(LAtomicLoad64* lir) { + Register elements = ToRegister(lir->elements()); + Register temp = ToRegister(lir->temp()); + Register64 temp64 = ToRegister64(lir->temp64()); + Register out = ToRegister(lir->output()); + + const MLoadUnboxedScalar* mir = lir->mir(); + + Scalar::Type storageType = mir->storageType(); + + if (lir->index()->isConstant()) { + Address source = + ToAddress(elements, lir->index(), storageType, mir->offsetAdjustment()); + masm.atomicLoad64(Synchronization::Load(), source, temp64); + } else { + BaseIndex source(elements, ToRegister(lir->index()), + ScaleFromScalarType(storageType), mir->offsetAdjustment()); + masm.atomicLoad64(Synchronization::Load(), source, temp64); + } + + emitCreateBigInt(lir, storageType, temp64, out, temp); +} + +void CodeGenerator::visitAtomicStore64(LAtomicStore64* lir) { + Register elements = ToRegister(lir->elements()); + Register value = ToRegister(lir->value()); + Register64 temp1 = ToRegister64(lir->temp1()); + Register64 temp2 = ToRegister64(lir->temp2()); + + Scalar::Type writeType = lir->mir()->writeType(); + + masm.loadBigInt64(value, temp1); + + if (lir->index()->isConstant()) { + Address dest = ToAddress(elements, lir->index(), writeType); + masm.atomicStore64(Synchronization::Store(), dest, temp1, temp2); + } else { + BaseIndex dest(elements, ToRegister(lir->index()), + ScaleFromScalarType(writeType)); + masm.atomicStore64(Synchronization::Store(), dest, temp1, temp2); + } +} + +void CodeGenerator::visitCompareExchangeTypedArrayElement64( + LCompareExchangeTypedArrayElement64* lir) { + Register elements = ToRegister(lir->elements()); + Register oldval = ToRegister(lir->oldval()); + Register newval = ToRegister(lir->newval()); + Register64 temp1 = ToRegister64(lir->temp1()); + Register64 temp2 = ToRegister64(lir->temp2()); + Register64 temp3 = ToRegister64(lir->temp3()); + Register out = ToRegister(lir->output()); + + Scalar::Type arrayType = lir->mir()->arrayType(); + + masm.loadBigInt64(oldval, temp1); + masm.loadBigInt64(newval, temp2); + + if (lir->index()->isConstant()) { + Address dest = ToAddress(elements, lir->index(), arrayType); + masm.compareExchange64(Synchronization::Full(), dest, temp1, temp2, temp3); + } else { + BaseIndex dest(elements, ToRegister(lir->index()), + ScaleFromScalarType(arrayType)); + masm.compareExchange64(Synchronization::Full(), dest, temp1, temp2, temp3); + } + + emitCreateBigInt(lir, arrayType, temp3, out, temp1.scratchReg()); +} + +void CodeGenerator::visitAtomicExchangeTypedArrayElement64( + LAtomicExchangeTypedArrayElement64* lir) { + Register elements = ToRegister(lir->elements()); + Register value = ToRegister(lir->value()); + Register64 temp1 = ToRegister64(lir->temp1()); + Register temp2 = ToRegister(lir->temp2()); + Register out = ToRegister(lir->output()); + Register64 temp64 = Register64(temp2, out); + + Scalar::Type arrayType = lir->mir()->arrayType(); + + masm.loadBigInt64(value, temp64); + + if (lir->index()->isConstant()) { + Address dest = ToAddress(elements, lir->index(), arrayType); + masm.atomicExchange64(Synchronization::Full(), dest, temp64, temp1); + } else { + BaseIndex dest(elements, ToRegister(lir->index()), + ScaleFromScalarType(arrayType)); + masm.atomicExchange64(Synchronization::Full(), dest, temp64, temp1); + } + + emitCreateBigInt(lir, arrayType, temp1, out, temp2); +} + +void CodeGenerator::visitAtomicTypedArrayElementBinop64( + LAtomicTypedArrayElementBinop64* lir) { + MOZ_ASSERT(!lir->mir()->isForEffect()); + + Register elements = ToRegister(lir->elements()); + Register value = ToRegister(lir->value()); + Register64 temp1 = ToRegister64(lir->temp1()); + Register64 temp2 = ToRegister64(lir->temp2()); + Register64 temp3 = ToRegister64(lir->temp3()); + Register out = ToRegister(lir->output()); + + Scalar::Type arrayType = lir->mir()->arrayType(); + AtomicOp atomicOp = lir->mir()->operation(); + + masm.loadBigInt64(value, temp1); + + if (lir->index()->isConstant()) { + Address dest = ToAddress(elements, lir->index(), arrayType); + masm.atomicFetchOp64(Synchronization::Full(), atomicOp, temp1, dest, temp2, + temp3); + } else { + BaseIndex dest(elements, ToRegister(lir->index()), + ScaleFromScalarType(arrayType)); + masm.atomicFetchOp64(Synchronization::Full(), atomicOp, temp1, dest, temp2, + temp3); + } + + emitCreateBigInt(lir, arrayType, temp3, out, temp2.scratchReg()); +} + +void CodeGenerator::visitAtomicTypedArrayElementBinopForEffect64( + LAtomicTypedArrayElementBinopForEffect64* lir) { + MOZ_ASSERT(lir->mir()->isForEffect()); + + Register elements = ToRegister(lir->elements()); + Register value = ToRegister(lir->value()); + Register64 temp1 = ToRegister64(lir->temp1()); + Register64 temp2 = ToRegister64(lir->temp2()); + + Scalar::Type arrayType = lir->mir()->arrayType(); + AtomicOp atomicOp = lir->mir()->operation(); + + masm.loadBigInt64(value, temp1); + + if (lir->index()->isConstant()) { + Address dest = ToAddress(elements, lir->index(), arrayType); + masm.atomicEffectOp64(Synchronization::Full(), atomicOp, temp1, dest, + temp2); + } else { + BaseIndex dest(elements, ToRegister(lir->index()), + ScaleFromScalarType(arrayType)); + masm.atomicEffectOp64(Synchronization::Full(), atomicOp, temp1, dest, + temp2); + } +} + +void CodeGenerator::visitWasmSelect(LWasmSelect* ins) { + MIRType mirType = ins->mir()->type(); + + Register cond = ToRegister(ins->condExpr()); + masm.as_cmp(cond, Imm8(0)); + + if (mirType == MIRType::Int32 || mirType == MIRType::RefOrNull) { + Register falseExpr = ToRegister(ins->falseExpr()); + Register out = ToRegister(ins->output()); + MOZ_ASSERT(ToRegister(ins->trueExpr()) == out, + "true expr input is reused for output"); + masm.ma_mov(falseExpr, out, LeaveCC, Assembler::Zero); + return; + } + + FloatRegister out = ToFloatRegister(ins->output()); + MOZ_ASSERT(ToFloatRegister(ins->trueExpr()) == out, + "true expr input is reused for output"); + + FloatRegister falseExpr = ToFloatRegister(ins->falseExpr()); + + if (mirType == MIRType::Double) { + masm.moveDouble(falseExpr, out, Assembler::Zero); + } else if (mirType == MIRType::Float32) { + masm.moveFloat32(falseExpr, out, Assembler::Zero); + } else { + MOZ_CRASH("unhandled type in visitWasmSelect!"); + } +} + +// We expect to handle only the case where compare is {U,}Int32 and select is +// {U,}Int32, and the "true" input is reused for the output. +void CodeGenerator::visitWasmCompareAndSelect(LWasmCompareAndSelect* ins) { + bool cmpIs32bit = ins->compareType() == MCompare::Compare_Int32 || + ins->compareType() == MCompare::Compare_UInt32; + bool selIs32bit = ins->mir()->type() == MIRType::Int32; + + MOZ_RELEASE_ASSERT( + cmpIs32bit && selIs32bit, + "CodeGenerator::visitWasmCompareAndSelect: unexpected types"); + + Register trueExprAndDest = ToRegister(ins->output()); + MOZ_ASSERT(ToRegister(ins->ifTrueExpr()) == trueExprAndDest, + "true expr input is reused for output"); + + Assembler::Condition cond = Assembler::InvertCondition( + JSOpToCondition(ins->compareType(), ins->jsop())); + const LAllocation* rhs = ins->rightExpr(); + const LAllocation* falseExpr = ins->ifFalseExpr(); + Register lhs = ToRegister(ins->leftExpr()); + + masm.cmp32Move32(cond, lhs, ToRegister(rhs), ToRegister(falseExpr), + trueExprAndDest); +} + +void CodeGenerator::visitWasmReinterpret(LWasmReinterpret* lir) { + MOZ_ASSERT(gen->compilingWasm()); + MWasmReinterpret* ins = lir->mir(); + + MIRType to = ins->type(); + DebugOnly<MIRType> from = ins->input()->type(); + + switch (to) { + case MIRType::Int32: + MOZ_ASSERT(static_cast<MIRType>(from) == MIRType::Float32); + masm.ma_vxfer(ToFloatRegister(lir->input()), ToRegister(lir->output())); + break; + case MIRType::Float32: + MOZ_ASSERT(static_cast<MIRType>(from) == MIRType::Int32); + masm.ma_vxfer(ToRegister(lir->input()), ToFloatRegister(lir->output())); + break; + case MIRType::Double: + case MIRType::Int64: + MOZ_CRASH("not handled by this LIR opcode"); + default: + MOZ_CRASH("unexpected WasmReinterpret"); + } +} + +void CodeGenerator::visitAsmJSLoadHeap(LAsmJSLoadHeap* ins) { + const MAsmJSLoadHeap* mir = ins->mir(); + + const LAllocation* ptr = ins->ptr(); + const LAllocation* boundsCheckLimit = ins->boundsCheckLimit(); + + bool isSigned; + int size; + bool isFloat = false; + switch (mir->accessType()) { + case Scalar::Int8: + isSigned = true; + size = 8; + break; + case Scalar::Uint8: + isSigned = false; + size = 8; + break; + case Scalar::Int16: + isSigned = true; + size = 16; + break; + case Scalar::Uint16: + isSigned = false; + size = 16; + break; + case Scalar::Int32: + case Scalar::Uint32: + isSigned = true; + size = 32; + break; + case Scalar::Float64: + isFloat = true; + size = 64; + break; + case Scalar::Float32: + isFloat = true; + size = 32; + break; + default: + MOZ_CRASH("unexpected array type"); + } + + if (ptr->isConstant()) { + MOZ_ASSERT(!mir->needsBoundsCheck()); + int32_t ptrImm = ptr->toConstant()->toInt32(); + MOZ_ASSERT(ptrImm >= 0); + if (isFloat) { + ScratchRegisterScope scratch(masm); + VFPRegister vd(ToFloatRegister(ins->output())); + if (size == 32) { + masm.ma_vldr(Address(HeapReg, ptrImm), vd.singleOverlay(), scratch, + Assembler::Always); + } else { + masm.ma_vldr(Address(HeapReg, ptrImm), vd, scratch, Assembler::Always); + } + } else { + ScratchRegisterScope scratch(masm); + masm.ma_dataTransferN(IsLoad, size, isSigned, HeapReg, Imm32(ptrImm), + ToRegister(ins->output()), scratch, Offset, + Assembler::Always); + } + } else { + Register ptrReg = ToRegister(ptr); + if (isFloat) { + FloatRegister output = ToFloatRegister(ins->output()); + if (size == 32) { + output = output.singleOverlay(); + } + + Assembler::Condition cond = Assembler::Always; + if (mir->needsBoundsCheck()) { + Register boundsCheckLimitReg = ToRegister(boundsCheckLimit); + masm.as_cmp(ptrReg, O2Reg(boundsCheckLimitReg)); + if (size == 32) { + masm.ma_vimm_f32(GenericNaN(), output, Assembler::AboveOrEqual); + } else { + masm.ma_vimm(GenericNaN(), output, Assembler::AboveOrEqual); + } + cond = Assembler::Below; + } + + ScratchRegisterScope scratch(masm); + masm.ma_vldr(output, HeapReg, ptrReg, scratch, 0, cond); + } else { + Register output = ToRegister(ins->output()); + + Assembler::Condition cond = Assembler::Always; + if (mir->needsBoundsCheck()) { + Register boundsCheckLimitReg = ToRegister(boundsCheckLimit); + masm.as_cmp(ptrReg, O2Reg(boundsCheckLimitReg)); + masm.ma_mov(Imm32(0), output, Assembler::AboveOrEqual); + cond = Assembler::Below; + } + + ScratchRegisterScope scratch(masm); + masm.ma_dataTransferN(IsLoad, size, isSigned, HeapReg, ptrReg, output, + scratch, Offset, cond); + } + } +} + +void CodeGenerator::visitWasmHeapBase(LWasmHeapBase* ins) { + MOZ_ASSERT(ins->instance()->isBogus()); + masm.movePtr(HeapReg, ToRegister(ins->output())); +} + +template <typename T> +void CodeGeneratorARM::emitWasmLoad(T* lir) { + const MWasmLoad* mir = lir->mir(); + MIRType resultType = mir->type(); + Register ptr; + + if (mir->access().offset() || mir->access().type() == Scalar::Int64) { + ptr = ToRegister(lir->ptrCopy()); + } else { + MOZ_ASSERT(lir->ptrCopy()->isBogusTemp()); + ptr = ToRegister(lir->ptr()); + } + + if (resultType == MIRType::Int64) { + masm.wasmLoadI64(mir->access(), HeapReg, ptr, ptr, ToOutRegister64(lir)); + } else { + masm.wasmLoad(mir->access(), HeapReg, ptr, ptr, + ToAnyRegister(lir->output())); + } +} + +void CodeGenerator::visitWasmLoad(LWasmLoad* lir) { emitWasmLoad(lir); } + +void CodeGenerator::visitWasmLoadI64(LWasmLoadI64* lir) { emitWasmLoad(lir); } + +void CodeGenerator::visitWasmAddOffset(LWasmAddOffset* lir) { + MWasmAddOffset* mir = lir->mir(); + Register base = ToRegister(lir->base()); + Register out = ToRegister(lir->output()); + + ScratchRegisterScope scratch(masm); + masm.ma_add(base, Imm32(mir->offset()), out, scratch, SetCC); + OutOfLineAbortingWasmTrap* ool = new (alloc()) + OutOfLineAbortingWasmTrap(mir->bytecodeOffset(), wasm::Trap::OutOfBounds); + addOutOfLineCode(ool, mir); + masm.ma_b(ool->entry(), Assembler::CarrySet); +} + +void CodeGenerator::visitWasmAddOffset64(LWasmAddOffset64* lir) { + MWasmAddOffset* mir = lir->mir(); + Register64 base = ToRegister64(lir->base()); + Register64 out = ToOutRegister64(lir); + MOZ_ASSERT(base.low != out.high && base.high != out.low); + + ScratchRegisterScope scratch(masm); + masm.ma_add(base.low, Imm32(mir->offset()), out.low, scratch, SetCC); + masm.ma_adc(base.high, Imm32(mir->offset() >> 32), out.high, scratch, SetCC); + OutOfLineAbortingWasmTrap* ool = new (alloc()) + OutOfLineAbortingWasmTrap(mir->bytecodeOffset(), wasm::Trap::OutOfBounds); + addOutOfLineCode(ool, mir); + masm.ma_b(ool->entry(), Assembler::CarrySet); +} + +template <typename T> +void CodeGeneratorARM::emitWasmStore(T* lir) { + const MWasmStore* mir = lir->mir(); + Scalar::Type accessType = mir->access().type(); + Register ptr; + + // Maybe add the offset. + if (mir->access().offset() || accessType == Scalar::Int64) { + ptr = ToRegister(lir->ptrCopy()); + } else { + MOZ_ASSERT(lir->ptrCopy()->isBogusTemp()); + ptr = ToRegister(lir->ptr()); + } + + if (accessType == Scalar::Int64) { + masm.wasmStoreI64(mir->access(), + ToRegister64(lir->getInt64Operand(lir->ValueIndex)), + HeapReg, ptr, ptr); + } else { + masm.wasmStore(mir->access(), + ToAnyRegister(lir->getOperand(lir->ValueIndex)), HeapReg, + ptr, ptr); + } +} + +void CodeGenerator::visitWasmStore(LWasmStore* lir) { emitWasmStore(lir); } + +void CodeGenerator::visitWasmStoreI64(LWasmStoreI64* lir) { + emitWasmStore(lir); +} + +void CodeGenerator::visitAsmJSStoreHeap(LAsmJSStoreHeap* ins) { + const MAsmJSStoreHeap* mir = ins->mir(); + + const LAllocation* ptr = ins->ptr(); + const LAllocation* boundsCheckLimit = ins->boundsCheckLimit(); + + bool isSigned; + int size; + bool isFloat = false; + switch (mir->accessType()) { + case Scalar::Int8: + case Scalar::Uint8: + isSigned = false; + size = 8; + break; + case Scalar::Int16: + case Scalar::Uint16: + isSigned = false; + size = 16; + break; + case Scalar::Int32: + case Scalar::Uint32: + isSigned = true; + size = 32; + break; + case Scalar::Float64: + isFloat = true; + size = 64; + break; + case Scalar::Float32: + isFloat = true; + size = 32; + break; + default: + MOZ_CRASH("unexpected array type"); + } + + if (ptr->isConstant()) { + MOZ_ASSERT(!mir->needsBoundsCheck()); + int32_t ptrImm = ptr->toConstant()->toInt32(); + MOZ_ASSERT(ptrImm >= 0); + if (isFloat) { + VFPRegister vd(ToFloatRegister(ins->value())); + Address addr(HeapReg, ptrImm); + if (size == 32) { + masm.storeFloat32(vd, addr); + } else { + masm.storeDouble(vd, addr); + } + } else { + ScratchRegisterScope scratch(masm); + masm.ma_dataTransferN(IsStore, size, isSigned, HeapReg, Imm32(ptrImm), + ToRegister(ins->value()), scratch, Offset, + Assembler::Always); + } + } else { + Register ptrReg = ToRegister(ptr); + + Assembler::Condition cond = Assembler::Always; + if (mir->needsBoundsCheck()) { + Register boundsCheckLimitReg = ToRegister(boundsCheckLimit); + masm.as_cmp(ptrReg, O2Reg(boundsCheckLimitReg)); + cond = Assembler::Below; + } + + if (isFloat) { + ScratchRegisterScope scratch(masm); + FloatRegister value = ToFloatRegister(ins->value()); + if (size == 32) { + value = value.singleOverlay(); + } + + masm.ma_vstr(value, HeapReg, ptrReg, scratch, 0, Assembler::Below); + } else { + ScratchRegisterScope scratch(masm); + Register value = ToRegister(ins->value()); + masm.ma_dataTransferN(IsStore, size, isSigned, HeapReg, ptrReg, value, + scratch, Offset, cond); + } + } +} + +void CodeGenerator::visitWasmCompareExchangeHeap( + LWasmCompareExchangeHeap* ins) { + MWasmCompareExchangeHeap* mir = ins->mir(); + + const LAllocation* ptr = ins->ptr(); + Register ptrReg = ToRegister(ptr); + BaseIndex srcAddr(HeapReg, ptrReg, TimesOne, mir->access().offset()); + + MOZ_ASSERT(ins->addrTemp()->isBogusTemp()); + + Register oldval = ToRegister(ins->oldValue()); + Register newval = ToRegister(ins->newValue()); + Register out = ToRegister(ins->output()); + + masm.wasmCompareExchange(mir->access(), srcAddr, oldval, newval, out); +} + +void CodeGenerator::visitWasmAtomicExchangeHeap(LWasmAtomicExchangeHeap* ins) { + MWasmAtomicExchangeHeap* mir = ins->mir(); + + Register ptrReg = ToRegister(ins->ptr()); + Register value = ToRegister(ins->value()); + Register output = ToRegister(ins->output()); + BaseIndex srcAddr(HeapReg, ptrReg, TimesOne, mir->access().offset()); + MOZ_ASSERT(ins->addrTemp()->isBogusTemp()); + + masm.wasmAtomicExchange(mir->access(), srcAddr, value, output); +} + +void CodeGenerator::visitWasmAtomicBinopHeap(LWasmAtomicBinopHeap* ins) { + MWasmAtomicBinopHeap* mir = ins->mir(); + MOZ_ASSERT(mir->hasUses()); + + Register ptrReg = ToRegister(ins->ptr()); + Register flagTemp = ToRegister(ins->flagTemp()); + Register output = ToRegister(ins->output()); + const LAllocation* value = ins->value(); + AtomicOp op = mir->operation(); + MOZ_ASSERT(ins->addrTemp()->isBogusTemp()); + + BaseIndex srcAddr(HeapReg, ptrReg, TimesOne, mir->access().offset()); + masm.wasmAtomicFetchOp(mir->access(), op, ToRegister(value), srcAddr, + flagTemp, output); +} + +void CodeGenerator::visitWasmAtomicBinopHeapForEffect( + LWasmAtomicBinopHeapForEffect* ins) { + MWasmAtomicBinopHeap* mir = ins->mir(); + MOZ_ASSERT(!mir->hasUses()); + + Register ptrReg = ToRegister(ins->ptr()); + Register flagTemp = ToRegister(ins->flagTemp()); + const LAllocation* value = ins->value(); + AtomicOp op = mir->operation(); + MOZ_ASSERT(ins->addrTemp()->isBogusTemp()); + + BaseIndex srcAddr(HeapReg, ptrReg, TimesOne, mir->access().offset()); + masm.wasmAtomicEffectOp(mir->access(), op, ToRegister(value), srcAddr, + flagTemp); +} + +void CodeGenerator::visitWasmStackArg(LWasmStackArg* ins) { + const MWasmStackArg* mir = ins->mir(); + Address dst(StackPointer, mir->spOffset()); + ScratchRegisterScope scratch(masm); + SecondScratchRegisterScope scratch2(masm); + + if (ins->arg()->isConstant()) { + masm.ma_mov(Imm32(ToInt32(ins->arg())), scratch); + masm.ma_str(scratch, dst, scratch2); + } else { + if (ins->arg()->isGeneralReg()) { + masm.ma_str(ToRegister(ins->arg()), dst, scratch); + } else { + masm.ma_vstr(ToFloatRegister(ins->arg()), dst, scratch); + } + } +} + +void CodeGenerator::visitUDiv(LUDiv* ins) { + Register lhs = ToRegister(ins->lhs()); + Register rhs = ToRegister(ins->rhs()); + Register output = ToRegister(ins->output()); + + Label done; + generateUDivModZeroCheck(rhs, output, &done, ins->snapshot(), ins->mir()); + + masm.ma_udiv(lhs, rhs, output); + + // Check for large unsigned result - represent as double. + if (!ins->mir()->isTruncated()) { + MOZ_ASSERT(ins->mir()->fallible()); + masm.as_cmp(output, Imm8(0)); + bailoutIf(Assembler::LessThan, ins->snapshot()); + } + + // Check for non-zero remainder if not truncating to int. + if (!ins->mir()->canTruncateRemainder()) { + MOZ_ASSERT(ins->mir()->fallible()); + { + ScratchRegisterScope scratch(masm); + masm.ma_mul(rhs, output, scratch); + masm.ma_cmp(scratch, lhs); + } + bailoutIf(Assembler::NotEqual, ins->snapshot()); + } + + if (done.used()) { + masm.bind(&done); + } +} + +void CodeGenerator::visitUMod(LUMod* ins) { + Register lhs = ToRegister(ins->lhs()); + Register rhs = ToRegister(ins->rhs()); + Register output = ToRegister(ins->output()); + + Label done; + generateUDivModZeroCheck(rhs, output, &done, ins->snapshot(), ins->mir()); + + { + ScratchRegisterScope scratch(masm); + masm.ma_umod(lhs, rhs, output, scratch); + } + + // Check for large unsigned result - represent as double. + if (!ins->mir()->isTruncated()) { + MOZ_ASSERT(ins->mir()->fallible()); + masm.as_cmp(output, Imm8(0)); + bailoutIf(Assembler::LessThan, ins->snapshot()); + } + + if (done.used()) { + masm.bind(&done); + } +} + +template <class T> +void CodeGeneratorARM::generateUDivModZeroCheck(Register rhs, Register output, + Label* done, + LSnapshot* snapshot, T* mir) { + if (!mir) { + return; + } + if (mir->canBeDivideByZero()) { + masm.as_cmp(rhs, Imm8(0)); + if (mir->isTruncated()) { + if (mir->trapOnError()) { + Label nonZero; + masm.ma_b(&nonZero, Assembler::NotEqual); + masm.wasmTrap(wasm::Trap::IntegerDivideByZero, mir->bytecodeOffset()); + masm.bind(&nonZero); + } else { + Label skip; + masm.ma_b(&skip, Assembler::NotEqual); + // Infinity|0 == 0 + masm.ma_mov(Imm32(0), output); + masm.ma_b(done); + masm.bind(&skip); + } + } else { + // Bailout for divide by zero + MOZ_ASSERT(mir->fallible()); + bailoutIf(Assembler::Equal, snapshot); + } + } +} + +void CodeGenerator::visitSoftUDivOrMod(LSoftUDivOrMod* ins) { + Register lhs = ToRegister(ins->lhs()); + Register rhs = ToRegister(ins->rhs()); + Register output = ToRegister(ins->output()); + + MOZ_ASSERT(lhs == r0); + MOZ_ASSERT(rhs == r1); + MOZ_ASSERT(output == r0); + + Label done; + MDiv* div = ins->mir()->isDiv() ? ins->mir()->toDiv() : nullptr; + MMod* mod = !div ? ins->mir()->toMod() : nullptr; + + generateUDivModZeroCheck(rhs, output, &done, ins->snapshot(), div); + generateUDivModZeroCheck(rhs, output, &done, ins->snapshot(), mod); + + if (gen->compilingWasm()) { + masm.Push(InstanceReg); + int32_t framePushedAfterInstance = masm.framePushed(); + masm.setupWasmABICall(); + masm.passABIArg(lhs); + masm.passABIArg(rhs); + wasm::BytecodeOffset bytecodeOffset = + (div ? div->bytecodeOffset() : mod->bytecodeOffset()); + int32_t instanceOffset = masm.framePushed() - framePushedAfterInstance; + masm.callWithABI(bytecodeOffset, wasm::SymbolicAddress::aeabi_uidivmod, + mozilla::Some(instanceOffset)); + masm.Pop(InstanceReg); + } else { + using Fn = int64_t (*)(int, int); + masm.setupAlignedABICall(); + masm.passABIArg(lhs); + masm.passABIArg(rhs); + masm.callWithABI<Fn, __aeabi_uidivmod>( + MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckOther); + } + + if (mod) { + MOZ_ASSERT(output == r0, "output should not be r1 for mod"); + masm.move32(r1, output); + } + + // uidivmod returns the quotient in r0, and the remainder in r1. + if (div && !div->canTruncateRemainder()) { + MOZ_ASSERT(div->fallible()); + masm.as_cmp(r1, Imm8(0)); + bailoutIf(Assembler::NonZero, ins->snapshot()); + } + + // Bailout for big unsigned results + if ((div && !div->isTruncated()) || (mod && !mod->isTruncated())) { + DebugOnly<bool> isFallible = + (div && div->fallible()) || (mod && mod->fallible()); + MOZ_ASSERT(isFallible); + masm.as_cmp(output, Imm8(0)); + bailoutIf(Assembler::LessThan, ins->snapshot()); + } + + masm.bind(&done); +} + +void CodeGenerator::visitEffectiveAddress(LEffectiveAddress* ins) { + const MEffectiveAddress* mir = ins->mir(); + Register base = ToRegister(ins->base()); + Register index = ToRegister(ins->index()); + Register output = ToRegister(ins->output()); + + ScratchRegisterScope scratch(masm); + + masm.as_add(output, base, lsl(index, mir->scale())); + masm.ma_add(Imm32(mir->displacement()), output, scratch); +} + +void CodeGenerator::visitNegI(LNegI* ins) { + Register input = ToRegister(ins->input()); + masm.ma_neg(input, ToRegister(ins->output())); +} + +void CodeGenerator::visitNegI64(LNegI64* ins) { + Register64 input = ToRegister64(ins->getInt64Operand(0)); + MOZ_ASSERT(input == ToOutRegister64(ins)); + masm.neg64(input); +} + +void CodeGenerator::visitNegD(LNegD* ins) { + FloatRegister input = ToFloatRegister(ins->input()); + masm.ma_vneg(input, ToFloatRegister(ins->output())); +} + +void CodeGenerator::visitNegF(LNegF* ins) { + FloatRegister input = ToFloatRegister(ins->input()); + masm.ma_vneg_f32(input, ToFloatRegister(ins->output())); +} + +void CodeGenerator::visitMemoryBarrier(LMemoryBarrier* ins) { + masm.memoryBarrier(ins->type()); +} + +void CodeGenerator::visitWasmTruncateToInt32(LWasmTruncateToInt32* lir) { + auto input = ToFloatRegister(lir->input()); + auto output = ToRegister(lir->output()); + + MWasmTruncateToInt32* mir = lir->mir(); + MIRType fromType = mir->input()->type(); + + OutOfLineWasmTruncateCheck* ool = nullptr; + Label* oolEntry = nullptr; + if (!lir->mir()->isSaturating()) { + ool = new (alloc()) + OutOfLineWasmTruncateCheck(mir, input, Register::Invalid()); + addOutOfLineCode(ool, mir); + oolEntry = ool->entry(); + } + + masm.wasmTruncateToInt32(input, output, fromType, mir->isUnsigned(), + mir->isSaturating(), oolEntry); + + if (!lir->mir()->isSaturating()) { + masm.bind(ool->rejoin()); + } +} + +void CodeGenerator::visitWasmTruncateToInt64(LWasmTruncateToInt64* lir) { + MOZ_ASSERT(gen->compilingWasm()); + MOZ_ASSERT(ToRegister(lir->instance()) == InstanceReg); + masm.Push(InstanceReg); + int32_t framePushedAfterInstance = masm.framePushed(); + + FloatRegister input = ToFloatRegister(lir->input()); + FloatRegister inputDouble = input; + Register64 output = ToOutRegister64(lir); + + MWasmBuiltinTruncateToInt64* mir = lir->mir(); + MIRType fromType = mir->input()->type(); + + OutOfLineWasmTruncateCheck* ool = nullptr; + if (!lir->mir()->isSaturating()) { + ool = new (alloc()) + OutOfLineWasmTruncateCheck(mir, input, Register64::Invalid()); + addOutOfLineCode(ool, mir); + } + + ScratchDoubleScope fpscratch(masm); + if (fromType == MIRType::Float32) { + inputDouble = fpscratch; + masm.convertFloat32ToDouble(input, inputDouble); + } + + masm.Push(input); + + masm.setupWasmABICall(); + masm.passABIArg(inputDouble, MoveOp::DOUBLE); + + int32_t instanceOffset = masm.framePushed() - framePushedAfterInstance; + if (lir->mir()->isSaturating()) { + if (lir->mir()->isUnsigned()) { + masm.callWithABI(mir->bytecodeOffset(), + wasm::SymbolicAddress::SaturatingTruncateDoubleToUint64, + mozilla::Some(instanceOffset)); + } else { + masm.callWithABI(mir->bytecodeOffset(), + wasm::SymbolicAddress::SaturatingTruncateDoubleToInt64, + mozilla::Some(instanceOffset)); + } + } else { + if (lir->mir()->isUnsigned()) { + masm.callWithABI(mir->bytecodeOffset(), + wasm::SymbolicAddress::TruncateDoubleToUint64, + mozilla::Some(instanceOffset)); + } else { + masm.callWithABI(mir->bytecodeOffset(), + wasm::SymbolicAddress::TruncateDoubleToInt64, + mozilla::Some(instanceOffset)); + } + } + + masm.Pop(input); + masm.Pop(InstanceReg); + + // TruncateDoubleTo{UI,I}nt64 returns 0x8000000000000000 to indicate + // exceptional results, so check for that and produce the appropriate + // traps. The Saturating form always returns a normal value and never + // needs traps. + if (!lir->mir()->isSaturating()) { + ScratchRegisterScope scratch(masm); + masm.ma_cmp(output.high, Imm32(0x80000000), scratch); + masm.as_cmp(output.low, Imm8(0x00000000), Assembler::Equal); + masm.ma_b(ool->entry(), Assembler::Equal); + + masm.bind(ool->rejoin()); + } + + MOZ_ASSERT(ReturnReg64 == output); +} + +void CodeGeneratorARM::visitOutOfLineWasmTruncateCheck( + OutOfLineWasmTruncateCheck* ool) { + // On ARM, saturating truncation codegen handles saturating itself rather than + // relying on out-of-line fixup code. + if (ool->isSaturating()) { + return; + } + + masm.outOfLineWasmTruncateToIntCheck(ool->input(), ool->fromType(), + ool->toType(), ool->isUnsigned(), + ool->rejoin(), ool->bytecodeOffset()); +} + +void CodeGenerator::visitInt64ToFloatingPointCall( + LInt64ToFloatingPointCall* lir) { + MOZ_ASSERT(gen->compilingWasm()); + MOZ_ASSERT(ToRegister(lir->getOperand(LInt64ToFloatingPointCall::Instance)) == + InstanceReg); + masm.Push(InstanceReg); + int32_t framePushedAfterInstance = masm.framePushed(); + + Register64 input = ToRegister64(lir->getInt64Operand(0)); + + MBuiltinInt64ToFloatingPoint* mir = lir->mir(); + MIRType toType = mir->type(); + + masm.setupWasmABICall(); + masm.passABIArg(input.high); + masm.passABIArg(input.low); + + bool isUnsigned = mir->isUnsigned(); + wasm::SymbolicAddress callee = + toType == MIRType::Float32 + ? (isUnsigned ? wasm::SymbolicAddress::Uint64ToFloat32 + : wasm::SymbolicAddress::Int64ToFloat32) + : (isUnsigned ? wasm::SymbolicAddress::Uint64ToDouble + : wasm::SymbolicAddress::Int64ToDouble); + + int32_t instanceOffset = masm.framePushed() - framePushedAfterInstance; + MoveOp::Type result = + toType == MIRType::Float32 ? MoveOp::FLOAT32 : MoveOp::DOUBLE; + masm.callWithABI(mir->bytecodeOffset(), callee, mozilla::Some(instanceOffset), + result); + + DebugOnly<FloatRegister> output(ToFloatRegister(lir->output())); + MOZ_ASSERT_IF(toType == MIRType::Double, output.value == ReturnDoubleReg); + MOZ_ASSERT_IF(toType == MIRType::Float32, output.value == ReturnFloat32Reg); + + masm.Pop(InstanceReg); +} + +void CodeGenerator::visitCopySignF(LCopySignF* ins) { + FloatRegister lhs = ToFloatRegister(ins->getOperand(0)); + FloatRegister rhs = ToFloatRegister(ins->getOperand(1)); + FloatRegister output = ToFloatRegister(ins->getDef(0)); + + Register lhsi = ToRegister(ins->getTemp(0)); + Register rhsi = ToRegister(ins->getTemp(1)); + + masm.ma_vxfer(lhs, lhsi); + masm.ma_vxfer(rhs, rhsi); + + ScratchRegisterScope scratch(masm); + + // Clear lhs's sign. + masm.ma_and(Imm32(INT32_MAX), lhsi, lhsi, scratch); + + // Keep rhs's sign. + masm.ma_and(Imm32(INT32_MIN), rhsi, rhsi, scratch); + + // Combine. + masm.ma_orr(lhsi, rhsi, rhsi); + + masm.ma_vxfer(rhsi, output); +} + +void CodeGenerator::visitCopySignD(LCopySignD* ins) { + FloatRegister lhs = ToFloatRegister(ins->getOperand(0)); + FloatRegister rhs = ToFloatRegister(ins->getOperand(1)); + FloatRegister output = ToFloatRegister(ins->getDef(0)); + + Register lhsi = ToRegister(ins->getTemp(0)); + Register rhsi = ToRegister(ins->getTemp(1)); + + // Manipulate high words of double inputs. + masm.as_vxfer(lhsi, InvalidReg, lhs, Assembler::FloatToCore, + Assembler::Always, 1); + masm.as_vxfer(rhsi, InvalidReg, rhs, Assembler::FloatToCore, + Assembler::Always, 1); + + ScratchRegisterScope scratch(masm); + + // Clear lhs's sign. + masm.ma_and(Imm32(INT32_MAX), lhsi, lhsi, scratch); + + // Keep rhs's sign. + masm.ma_and(Imm32(INT32_MIN), rhsi, rhsi, scratch); + + // Combine. + masm.ma_orr(lhsi, rhsi, rhsi); + + // Reconstruct the output. + masm.as_vxfer(lhsi, InvalidReg, lhs, Assembler::FloatToCore, + Assembler::Always, 0); + masm.ma_vxfer(lhsi, rhsi, output); +} + +void CodeGenerator::visitWrapInt64ToInt32(LWrapInt64ToInt32* lir) { + const LInt64Allocation& input = lir->getInt64Operand(0); + Register output = ToRegister(lir->output()); + + if (lir->mir()->bottomHalf()) { + masm.move32(ToRegister(input.low()), output); + } else { + masm.move32(ToRegister(input.high()), output); + } +} + +void CodeGenerator::visitExtendInt32ToInt64(LExtendInt32ToInt64* lir) { + Register64 output = ToOutRegister64(lir); + MOZ_ASSERT(ToRegister(lir->input()) == output.low); + + if (lir->mir()->isUnsigned()) { + masm.ma_mov(Imm32(0), output.high); + } else { + masm.ma_asr(Imm32(31), output.low, output.high); + } +} + +void CodeGenerator::visitSignExtendInt64(LSignExtendInt64* lir) { + Register64 input = ToRegister64(lir->getInt64Operand(0)); + Register64 output = ToOutRegister64(lir); + switch (lir->mode()) { + case MSignExtendInt64::Byte: + masm.move8SignExtend(input.low, output.low); + break; + case MSignExtendInt64::Half: + masm.move16SignExtend(input.low, output.low); + break; + case MSignExtendInt64::Word: + masm.move32(input.low, output.low); + break; + } + masm.ma_asr(Imm32(31), output.low, output.high); +} + +void CodeGenerator::visitWasmExtendU32Index(LWasmExtendU32Index*) { + MOZ_CRASH("64-bit only"); +} + +void CodeGenerator::visitWasmWrapU32Index(LWasmWrapU32Index* lir) { + // Generates no code on this platform because we just return the low part of + // the input register pair. + MOZ_ASSERT(ToRegister(lir->input()) == ToRegister(lir->output())); +} + +void CodeGenerator::visitDivOrModI64(LDivOrModI64* lir) { + MOZ_ASSERT(gen->compilingWasm()); + MOZ_ASSERT(ToRegister(lir->getOperand(LDivOrModI64::Instance)) == + InstanceReg); + masm.Push(InstanceReg); + int32_t framePushedAfterInstance = masm.framePushed(); + + Register64 lhs = ToRegister64(lir->getInt64Operand(LDivOrModI64::Lhs)); + Register64 rhs = ToRegister64(lir->getInt64Operand(LDivOrModI64::Rhs)); + Register64 output = ToOutRegister64(lir); + + MOZ_ASSERT(output == ReturnReg64); + + Label done; + + // Handle divide by zero. + if (lir->canBeDivideByZero()) { + Label nonZero; + // We can use InstanceReg as temp register because we preserved it + // before. + masm.branchTest64(Assembler::NonZero, rhs, rhs, InstanceReg, &nonZero); + masm.wasmTrap(wasm::Trap::IntegerDivideByZero, lir->bytecodeOffset()); + masm.bind(&nonZero); + } + + auto* mir = lir->mir(); + + // Handle an integer overflow exception from INT64_MIN / -1. + if (lir->canBeNegativeOverflow()) { + Label notmin; + masm.branch64(Assembler::NotEqual, lhs, Imm64(INT64_MIN), ¬min); + masm.branch64(Assembler::NotEqual, rhs, Imm64(-1), ¬min); + if (mir->isWasmBuiltinModI64()) { + masm.xor64(output, output); + } else { + masm.wasmTrap(wasm::Trap::IntegerOverflow, lir->bytecodeOffset()); + } + masm.jump(&done); + masm.bind(¬min); + } + + masm.setupWasmABICall(); + masm.passABIArg(lhs.high); + masm.passABIArg(lhs.low); + masm.passABIArg(rhs.high); + masm.passABIArg(rhs.low); + + int32_t instanceOffset = masm.framePushed() - framePushedAfterInstance; + if (mir->isWasmBuiltinModI64()) { + masm.callWithABI(lir->bytecodeOffset(), wasm::SymbolicAddress::ModI64, + mozilla::Some(instanceOffset)); + } else { + masm.callWithABI(lir->bytecodeOffset(), wasm::SymbolicAddress::DivI64, + mozilla::Some(instanceOffset)); + } + + MOZ_ASSERT(ReturnReg64 == output); + + masm.bind(&done); + masm.Pop(InstanceReg); +} + +void CodeGenerator::visitUDivOrModI64(LUDivOrModI64* lir) { + MOZ_ASSERT(gen->compilingWasm()); + MOZ_ASSERT(ToRegister(lir->getOperand(LDivOrModI64::Instance)) == + InstanceReg); + masm.Push(InstanceReg); + int32_t framePushedAfterInstance = masm.framePushed(); + + Register64 lhs = ToRegister64(lir->getInt64Operand(LDivOrModI64::Lhs)); + Register64 rhs = ToRegister64(lir->getInt64Operand(LDivOrModI64::Rhs)); + + MOZ_ASSERT(ToOutRegister64(lir) == ReturnReg64); + + // Prevent divide by zero. + if (lir->canBeDivideByZero()) { + Label nonZero; + // We can use InstanceReg as temp register because we preserved it + // before. + masm.branchTest64(Assembler::NonZero, rhs, rhs, InstanceReg, &nonZero); + masm.wasmTrap(wasm::Trap::IntegerDivideByZero, lir->bytecodeOffset()); + masm.bind(&nonZero); + } + + masm.setupWasmABICall(); + masm.passABIArg(lhs.high); + masm.passABIArg(lhs.low); + masm.passABIArg(rhs.high); + masm.passABIArg(rhs.low); + + MDefinition* mir = lir->mir(); + int32_t instanceOffset = masm.framePushed() - framePushedAfterInstance; + if (mir->isWasmBuiltinModI64()) { + masm.callWithABI(lir->bytecodeOffset(), wasm::SymbolicAddress::UModI64, + mozilla::Some(instanceOffset)); + } else { + masm.callWithABI(lir->bytecodeOffset(), wasm::SymbolicAddress::UDivI64, + mozilla::Some(instanceOffset)); + } + masm.Pop(InstanceReg); +} + +void CodeGenerator::visitCompareI64(LCompareI64* lir) { + MCompare* mir = lir->mir(); + MOZ_ASSERT(mir->compareType() == MCompare::Compare_Int64 || + mir->compareType() == MCompare::Compare_UInt64); + + const LInt64Allocation lhs = lir->getInt64Operand(LCompareI64::Lhs); + const LInt64Allocation rhs = lir->getInt64Operand(LCompareI64::Rhs); + Register64 lhsRegs = ToRegister64(lhs); + Register output = ToRegister(lir->output()); + + bool isSigned = mir->compareType() == MCompare::Compare_Int64; + Assembler::Condition condition = JSOpToCondition(lir->jsop(), isSigned); + Label done; + + masm.move32(Imm32(1), output); + + if (IsConstant(rhs)) { + Imm64 imm = Imm64(ToInt64(rhs)); + masm.branch64(condition, lhsRegs, imm, &done); + } else { + Register64 rhsRegs = ToRegister64(rhs); + masm.branch64(condition, lhsRegs, rhsRegs, &done); + } + + masm.move32(Imm32(0), output); + masm.bind(&done); +} + +void CodeGenerator::visitCompareI64AndBranch(LCompareI64AndBranch* lir) { + MCompare* mir = lir->cmpMir(); + MOZ_ASSERT(mir->compareType() == MCompare::Compare_Int64 || + mir->compareType() == MCompare::Compare_UInt64); + + const LInt64Allocation lhs = lir->getInt64Operand(LCompareI64::Lhs); + const LInt64Allocation rhs = lir->getInt64Operand(LCompareI64::Rhs); + Register64 lhsRegs = ToRegister64(lhs); + + bool isSigned = mir->compareType() == MCompare::Compare_Int64; + Assembler::Condition condition = JSOpToCondition(lir->jsop(), isSigned); + + Label* trueLabel = getJumpLabelForBranch(lir->ifTrue()); + Label* falseLabel = getJumpLabelForBranch(lir->ifFalse()); + + if (isNextBlock(lir->ifFalse()->lir())) { + falseLabel = nullptr; + } else if (isNextBlock(lir->ifTrue()->lir())) { + condition = Assembler::InvertCondition(condition); + trueLabel = falseLabel; + falseLabel = nullptr; + } + + if (IsConstant(rhs)) { + Imm64 imm = Imm64(ToInt64(rhs)); + masm.branch64(condition, lhsRegs, imm, trueLabel, falseLabel); + } else { + Register64 rhsRegs = ToRegister64(rhs); + masm.branch64(condition, lhsRegs, rhsRegs, trueLabel, falseLabel); + } +} + +void CodeGenerator::visitShiftI64(LShiftI64* lir) { + const LInt64Allocation lhs = lir->getInt64Operand(LShiftI64::Lhs); + LAllocation* rhs = lir->getOperand(LShiftI64::Rhs); + + MOZ_ASSERT(ToOutRegister64(lir) == ToRegister64(lhs)); + + if (rhs->isConstant()) { + int32_t shift = int32_t(rhs->toConstant()->toInt64() & 0x3F); + switch (lir->bitop()) { + case JSOp::Lsh: + if (shift) { + masm.lshift64(Imm32(shift), ToRegister64(lhs)); + } + break; + case JSOp::Rsh: + if (shift) { + masm.rshift64Arithmetic(Imm32(shift), ToRegister64(lhs)); + } + break; + case JSOp::Ursh: + if (shift) { + masm.rshift64(Imm32(shift), ToRegister64(lhs)); + } + break; + default: + MOZ_CRASH("Unexpected shift op"); + } + return; + } + + switch (lir->bitop()) { + case JSOp::Lsh: + masm.lshift64(ToRegister(rhs), ToRegister64(lhs)); + break; + case JSOp::Rsh: + masm.rshift64Arithmetic(ToRegister(rhs), ToRegister64(lhs)); + break; + case JSOp::Ursh: + masm.rshift64(ToRegister(rhs), ToRegister64(lhs)); + break; + default: + MOZ_CRASH("Unexpected shift op"); + } +} + +void CodeGenerator::visitBitOpI64(LBitOpI64* lir) { + const LInt64Allocation lhs = lir->getInt64Operand(LBitOpI64::Lhs); + const LInt64Allocation rhs = lir->getInt64Operand(LBitOpI64::Rhs); + + MOZ_ASSERT(ToOutRegister64(lir) == ToRegister64(lhs)); + + switch (lir->bitop()) { + case JSOp::BitOr: + if (IsConstant(rhs)) { + masm.or64(Imm64(ToInt64(rhs)), ToRegister64(lhs)); + } else { + masm.or64(ToOperandOrRegister64(rhs), ToRegister64(lhs)); + } + break; + case JSOp::BitXor: + if (IsConstant(rhs)) { + masm.xor64(Imm64(ToInt64(rhs)), ToRegister64(lhs)); + } else { + masm.xor64(ToOperandOrRegister64(rhs), ToRegister64(lhs)); + } + break; + case JSOp::BitAnd: + if (IsConstant(rhs)) { + masm.and64(Imm64(ToInt64(rhs)), ToRegister64(lhs)); + } else { + masm.and64(ToOperandOrRegister64(rhs), ToRegister64(lhs)); + } + break; + default: + MOZ_CRASH("unexpected binary opcode"); + } +} + +void CodeGenerator::visitRotateI64(LRotateI64* lir) { + MRotate* mir = lir->mir(); + LAllocation* count = lir->count(); + + Register64 input = ToRegister64(lir->input()); + Register64 output = ToOutRegister64(lir); + Register temp = ToTempRegisterOrInvalid(lir->temp()); + + if (count->isConstant()) { + int32_t c = int32_t(count->toConstant()->toInt64() & 0x3F); + if (!c) { + masm.move64(input, output); + return; + } + if (mir->isLeftRotate()) { + masm.rotateLeft64(Imm32(c), input, output, temp); + } else { + masm.rotateRight64(Imm32(c), input, output, temp); + } + } else { + if (mir->isLeftRotate()) { + masm.rotateLeft64(ToRegister(count), input, output, temp); + } else { + masm.rotateRight64(ToRegister(count), input, output, temp); + } + } +} + +void CodeGenerator::visitWasmStackArgI64(LWasmStackArgI64* ins) { + const MWasmStackArg* mir = ins->mir(); + Address dst(StackPointer, mir->spOffset()); + if (IsConstant(ins->arg())) { + masm.store64(Imm64(ToInt64(ins->arg())), dst); + } else { + masm.store64(ToRegister64(ins->arg()), dst); + } +} + +void CodeGenerator::visitWasmSelectI64(LWasmSelectI64* lir) { + Register cond = ToRegister(lir->condExpr()); + const LInt64Allocation falseExpr = lir->falseExpr(); + + Register64 out = ToOutRegister64(lir); + MOZ_ASSERT(ToRegister64(lir->trueExpr()) == out, + "true expr is reused for input"); + + masm.as_cmp(cond, Imm8(0)); + if (falseExpr.low().isRegister()) { + masm.ma_mov(ToRegister(falseExpr.low()), out.low, LeaveCC, + Assembler::Equal); + masm.ma_mov(ToRegister(falseExpr.high()), out.high, LeaveCC, + Assembler::Equal); + } else { + ScratchRegisterScope scratch(masm); + masm.ma_ldr(ToAddress(falseExpr.low()), out.low, scratch, Offset, + Assembler::Equal); + masm.ma_ldr(ToAddress(falseExpr.high()), out.high, scratch, Offset, + Assembler::Equal); + } +} + +void CodeGenerator::visitWasmReinterpretFromI64(LWasmReinterpretFromI64* lir) { + MOZ_ASSERT(lir->mir()->type() == MIRType::Double); + MOZ_ASSERT(lir->mir()->input()->type() == MIRType::Int64); + Register64 input = ToRegister64(lir->getInt64Operand(0)); + FloatRegister output = ToFloatRegister(lir->output()); + + masm.ma_vxfer(input.low, input.high, output); +} + +void CodeGenerator::visitWasmReinterpretToI64(LWasmReinterpretToI64* lir) { + MOZ_ASSERT(lir->mir()->type() == MIRType::Int64); + MOZ_ASSERT(lir->mir()->input()->type() == MIRType::Double); + FloatRegister input = ToFloatRegister(lir->getOperand(0)); + Register64 output = ToOutRegister64(lir); + + masm.ma_vxfer(input, output.low, output.high); +} + +void CodeGenerator::visitPopcntI64(LPopcntI64* lir) { + Register64 input = ToRegister64(lir->getInt64Operand(0)); + Register64 output = ToOutRegister64(lir); + Register temp = ToRegister(lir->getTemp(0)); + + masm.popcnt64(input, output, temp); +} + +void CodeGenerator::visitClzI64(LClzI64* lir) { + Register64 input = ToRegister64(lir->getInt64Operand(0)); + Register64 output = ToOutRegister64(lir); + + masm.clz64(input, output.low); + masm.move32(Imm32(0), output.high); +} + +void CodeGenerator::visitCtzI64(LCtzI64* lir) { + Register64 input = ToRegister64(lir->getInt64Operand(0)); + Register64 output = ToOutRegister64(lir); + + masm.ctz64(input, output.low); + masm.move32(Imm32(0), output.high); +} + +void CodeGenerator::visitBitNotI64(LBitNotI64* lir) { + Register64 input = ToRegister64(lir->getInt64Operand(0)); + MOZ_ASSERT(input == ToOutRegister64(lir)); + masm.ma_mvn(input.high, input.high); + masm.ma_mvn(input.low, input.low); +} + +void CodeGenerator::visitTestI64AndBranch(LTestI64AndBranch* lir) { + Register64 input = ToRegister64(lir->getInt64Operand(0)); + + masm.as_cmp(input.high, Imm8(0)); + jumpToBlock(lir->ifTrue(), Assembler::NonZero); + masm.as_cmp(input.low, Imm8(0)); + emitBranch(Assembler::NonZero, lir->ifTrue(), lir->ifFalse()); +} + +void CodeGenerator::visitWasmAtomicLoadI64(LWasmAtomicLoadI64* lir) { + Register ptr = ToRegister(lir->ptr()); + Register64 output = ToOutRegister64(lir); + Register64 tmp(InvalidReg, InvalidReg); + + BaseIndex addr(HeapReg, ptr, TimesOne, lir->mir()->access().offset()); + masm.wasmAtomicLoad64(lir->mir()->access(), addr, tmp, output); +} + +void CodeGenerator::visitWasmAtomicStoreI64(LWasmAtomicStoreI64* lir) { + Register ptr = ToRegister(lir->ptr()); + Register64 value = ToRegister64(lir->value()); + Register64 tmp(ToRegister(lir->tmpHigh()), ToRegister(lir->tmpLow())); + + BaseIndex addr(HeapReg, ptr, TimesOne, lir->mir()->access().offset()); + masm.wasmAtomicExchange64(lir->mir()->access(), addr, value, tmp); +} + +void CodeGenerator::visitWasmCompareExchangeI64(LWasmCompareExchangeI64* lir) { + Register ptr = ToRegister(lir->ptr()); + Register64 expected = ToRegister64(lir->expected()); + Register64 replacement = ToRegister64(lir->replacement()); + Register64 out = ToOutRegister64(lir); + + BaseIndex addr(HeapReg, ptr, TimesOne, lir->mir()->access().offset()); + masm.wasmCompareExchange64(lir->mir()->access(), addr, expected, replacement, + out); +} + +void CodeGenerator::visitWasmAtomicBinopI64(LWasmAtomicBinopI64* lir) { + Register ptr = ToRegister(lir->ptr()); + Register64 value = ToRegister64(lir->value()); + Register64 out = ToOutRegister64(lir); + + BaseIndex addr(HeapReg, ptr, TimesOne, lir->access().offset()); + Register64 tmp(ToRegister(lir->tmpHigh()), ToRegister(lir->tmpLow())); + masm.wasmAtomicFetchOp64(lir->access(), lir->operation(), value, addr, tmp, + out); +} + +void CodeGenerator::visitWasmAtomicExchangeI64(LWasmAtomicExchangeI64* lir) { + Register ptr = ToRegister(lir->ptr()); + Register64 value = ToRegister64(lir->value()); + Register64 out = ToOutRegister64(lir); + + BaseIndex addr(HeapReg, ptr, TimesOne, lir->access().offset()); + masm.wasmAtomicExchange64(lir->access(), addr, value, out); +} + +void CodeGenerator::visitNearbyInt(LNearbyInt*) { MOZ_CRASH("NYI"); } + +void CodeGenerator::visitNearbyIntF(LNearbyIntF*) { MOZ_CRASH("NYI"); } + +void CodeGenerator::visitSimd128(LSimd128* ins) { MOZ_CRASH("No SIMD"); } + +void CodeGenerator::visitWasmTernarySimd128(LWasmTernarySimd128* ins) { + MOZ_CRASH("No SIMD"); +} + +void CodeGenerator::visitWasmBinarySimd128(LWasmBinarySimd128* ins) { + MOZ_CRASH("No SIMD"); +} + +void CodeGenerator::visitWasmBinarySimd128WithConstant( + LWasmBinarySimd128WithConstant* ins) { + MOZ_CRASH("No SIMD"); +} + +void CodeGenerator::visitWasmVariableShiftSimd128( + LWasmVariableShiftSimd128* ins) { + MOZ_CRASH("No SIMD"); +} + +void CodeGenerator::visitWasmConstantShiftSimd128( + LWasmConstantShiftSimd128* ins) { + MOZ_CRASH("No SIMD"); +} + +void CodeGenerator::visitWasmSignReplicationSimd128( + LWasmSignReplicationSimd128* ins) { + MOZ_CRASH("No SIMD"); +} + +void CodeGenerator::visitWasmShuffleSimd128(LWasmShuffleSimd128* ins) { + MOZ_CRASH("No SIMD"); +} + +void CodeGenerator::visitWasmPermuteSimd128(LWasmPermuteSimd128* ins) { + MOZ_CRASH("No SIMD"); +} + +void CodeGenerator::visitWasmReplaceLaneSimd128(LWasmReplaceLaneSimd128* ins) { + MOZ_CRASH("No SIMD"); +} + +void CodeGenerator::visitWasmReplaceInt64LaneSimd128( + LWasmReplaceInt64LaneSimd128* ins) { + MOZ_CRASH("No SIMD"); +} + +void CodeGenerator::visitWasmScalarToSimd128(LWasmScalarToSimd128* ins) { + MOZ_CRASH("No SIMD"); +} + +void CodeGenerator::visitWasmInt64ToSimd128(LWasmInt64ToSimd128* ins) { + MOZ_CRASH("No SIMD"); +} + +void CodeGenerator::visitWasmUnarySimd128(LWasmUnarySimd128* ins) { + MOZ_CRASH("No SIMD"); +} + +void CodeGenerator::visitWasmReduceSimd128(LWasmReduceSimd128* ins) { + MOZ_CRASH("No SIMD"); +} + +void CodeGenerator::visitWasmReduceAndBranchSimd128( + LWasmReduceAndBranchSimd128* ins) { + MOZ_CRASH("No SIMD"); +} + +void CodeGenerator::visitWasmReduceSimd128ToInt64( + LWasmReduceSimd128ToInt64* ins) { + MOZ_CRASH("No SIMD"); +} + +void CodeGenerator::visitWasmLoadLaneSimd128(LWasmLoadLaneSimd128* ins) { + MOZ_CRASH("No SIMD"); +} + +void CodeGenerator::visitWasmStoreLaneSimd128(LWasmStoreLaneSimd128* ins) { + MOZ_CRASH("No SIMD"); +} diff --git a/js/src/jit/arm/CodeGenerator-arm.h b/js/src/jit/arm/CodeGenerator-arm.h new file mode 100644 index 0000000000..f7cf2b263e --- /dev/null +++ b/js/src/jit/arm/CodeGenerator-arm.h @@ -0,0 +1,172 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifndef jit_arm_CodeGenerator_arm_h +#define jit_arm_CodeGenerator_arm_h + +#include "jit/arm/Assembler-arm.h" +#include "jit/shared/CodeGenerator-shared.h" +#include "js/ScalarType.h" // js::Scalar::Type + +namespace js { +namespace jit { + +class CodeGeneratorARM; +class OutOfLineBailout; +class OutOfLineTableSwitch; + +using OutOfLineWasmTruncateCheck = + OutOfLineWasmTruncateCheckBase<CodeGeneratorARM>; + +class CodeGeneratorARM : public CodeGeneratorShared { + friend class MoveResolverARM; + + protected: + CodeGeneratorARM(MIRGenerator* gen, LIRGraph* graph, MacroAssembler* masm); + + NonAssertingLabel deoptLabel_; + + MoveOperand toMoveOperand(LAllocation a) const; + + void bailoutIf(Assembler::Condition condition, LSnapshot* snapshot); + void bailoutFrom(Label* label, LSnapshot* snapshot); + void bailout(LSnapshot* snapshot); + + template <typename T1, typename T2> + void bailoutCmpPtr(Assembler::Condition c, T1 lhs, T2 rhs, + LSnapshot* snapshot) { + masm.cmpPtr(lhs, rhs); + bailoutIf(c, snapshot); + } + void bailoutTestPtr(Assembler::Condition c, Register lhs, Register rhs, + LSnapshot* snapshot) { + masm.testPtr(lhs, rhs); + bailoutIf(c, snapshot); + } + template <typename T1, typename T2> + void bailoutCmp32(Assembler::Condition c, T1 lhs, T2 rhs, + LSnapshot* snapshot) { + masm.cmp32(lhs, rhs); + bailoutIf(c, snapshot); + } + template <typename T1, typename T2> + void bailoutTest32(Assembler::Condition c, T1 lhs, T2 rhs, + LSnapshot* snapshot) { + masm.test32(lhs, rhs); + bailoutIf(c, snapshot); + } + void bailoutIfFalseBool(Register reg, LSnapshot* snapshot) { + masm.test32(reg, Imm32(0xFF)); + bailoutIf(Assembler::Zero, snapshot); + } + + template <class T> + void generateUDivModZeroCheck(Register rhs, Register output, Label* done, + LSnapshot* snapshot, T* mir); + + bool generateOutOfLineCode(); + + // Emits a branch that directs control flow to the true block if |cond| is + // true, and the false block if |cond| is false. + void emitBranch(Assembler::Condition cond, MBasicBlock* ifTrue, + MBasicBlock* ifFalse); + + void testNullEmitBranch(Assembler::Condition cond, const ValueOperand& value, + MBasicBlock* ifTrue, MBasicBlock* ifFalse) { + cond = masm.testNull(cond, value); + emitBranch(cond, ifTrue, ifFalse); + } + void testUndefinedEmitBranch(Assembler::Condition cond, + const ValueOperand& value, MBasicBlock* ifTrue, + MBasicBlock* ifFalse) { + cond = masm.testUndefined(cond, value); + emitBranch(cond, ifTrue, ifFalse); + } + void testObjectEmitBranch(Assembler::Condition cond, + const ValueOperand& value, MBasicBlock* ifTrue, + MBasicBlock* ifFalse) { + cond = masm.testObject(cond, value); + emitBranch(cond, ifTrue, ifFalse); + } + void testZeroEmitBranch(Assembler::Condition cond, Register reg, + MBasicBlock* ifTrue, MBasicBlock* ifFalse) { + MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual); + masm.cmpPtr(reg, ImmWord(0)); + emitBranch(cond, ifTrue, ifFalse); + } + + void emitTableSwitchDispatch(MTableSwitch* mir, Register index, + Register base); + + void emitBigIntDiv(LBigIntDiv* ins, Register dividend, Register divisor, + Register output, Label* fail); + void emitBigIntMod(LBigIntMod* ins, Register dividend, Register divisor, + Register output, Label* fail); + + template <typename T> + void emitWasmLoad(T* ins); + template <typename T> + void emitWasmUnalignedLoad(T* ins); + template <typename T> + void emitWasmStore(T* ins); + template <typename T> + void emitWasmUnalignedStore(T* ins); + + ValueOperand ToValue(LInstruction* ins, size_t pos); + ValueOperand ToTempValue(LInstruction* ins, size_t pos); + + Register64 ToOperandOrRegister64(const LInt64Allocation input); + + // Functions for LTestVAndBranch. + void splitTagForTest(const ValueOperand& value, ScratchTagScope& tag); + + void divICommon(MDiv* mir, Register lhs, Register rhs, Register output, + LSnapshot* snapshot, Label& done); + void modICommon(MMod* mir, Register lhs, Register rhs, Register output, + LSnapshot* snapshot, Label& done); + + void generateInvalidateEpilogue(); + + // Generating a result. + template <typename S, typename T> + void atomicBinopToTypedIntArray(AtomicOp op, Scalar::Type arrayType, + const S& value, const T& mem, + Register flagTemp, Register outTemp, + AnyRegister output); + + // Generating no result. + template <typename S, typename T> + void atomicBinopToTypedIntArray(AtomicOp op, Scalar::Type arrayType, + const S& value, const T& mem, + Register flagTemp); + + public: + void visitOutOfLineBailout(OutOfLineBailout* ool); + void visitOutOfLineTableSwitch(OutOfLineTableSwitch* ool); + void visitOutOfLineWasmTruncateCheck(OutOfLineWasmTruncateCheck* ool); +}; + +typedef CodeGeneratorARM CodeGeneratorSpecific; + +// An out-of-line bailout thunk. +class OutOfLineBailout : public OutOfLineCodeBase<CodeGeneratorARM> { + protected: // Silence Clang warning. + LSnapshot* snapshot_; + uint32_t frameSize_; + + public: + OutOfLineBailout(LSnapshot* snapshot, uint32_t frameSize) + : snapshot_(snapshot), frameSize_(frameSize) {} + + void accept(CodeGeneratorARM* codegen) override; + + LSnapshot* snapshot() const { return snapshot_; } +}; + +} // namespace jit +} // namespace js + +#endif /* jit_arm_CodeGenerator_arm_h */ diff --git a/js/src/jit/arm/DoubleEntryTable.tbl b/js/src/jit/arm/DoubleEntryTable.tbl new file mode 100644 index 0000000000..2e9e8c4a34 --- /dev/null +++ b/js/src/jit/arm/DoubleEntryTable.tbl @@ -0,0 +1,257 @@ +/* THIS FILE IS AUTOMATICALLY GENERATED BY gen-double-encode-table.py. */ + { 0x40000000, { 0, 0, 0 } }, + { 0x40010000, { 1, 0, 0 } }, + { 0x40020000, { 2, 0, 0 } }, + { 0x40030000, { 3, 0, 0 } }, + { 0x40040000, { 4, 0, 0 } }, + { 0x40050000, { 5, 0, 0 } }, + { 0x40060000, { 6, 0, 0 } }, + { 0x40070000, { 7, 0, 0 } }, + { 0x40080000, { 8, 0, 0 } }, + { 0x40090000, { 9, 0, 0 } }, + { 0x400a0000, { 10, 0, 0 } }, + { 0x400b0000, { 11, 0, 0 } }, + { 0x400c0000, { 12, 0, 0 } }, + { 0x400d0000, { 13, 0, 0 } }, + { 0x400e0000, { 14, 0, 0 } }, + { 0x400f0000, { 15, 0, 0 } }, + { 0x40100000, { 0, 1, 0 } }, + { 0x40110000, { 1, 1, 0 } }, + { 0x40120000, { 2, 1, 0 } }, + { 0x40130000, { 3, 1, 0 } }, + { 0x40140000, { 4, 1, 0 } }, + { 0x40150000, { 5, 1, 0 } }, + { 0x40160000, { 6, 1, 0 } }, + { 0x40170000, { 7, 1, 0 } }, + { 0x40180000, { 8, 1, 0 } }, + { 0x40190000, { 9, 1, 0 } }, + { 0x401a0000, { 10, 1, 0 } }, + { 0x401b0000, { 11, 1, 0 } }, + { 0x401c0000, { 12, 1, 0 } }, + { 0x401d0000, { 13, 1, 0 } }, + { 0x401e0000, { 14, 1, 0 } }, + { 0x401f0000, { 15, 1, 0 } }, + { 0x40200000, { 0, 2, 0 } }, + { 0x40210000, { 1, 2, 0 } }, + { 0x40220000, { 2, 2, 0 } }, + { 0x40230000, { 3, 2, 0 } }, + { 0x40240000, { 4, 2, 0 } }, + { 0x40250000, { 5, 2, 0 } }, + { 0x40260000, { 6, 2, 0 } }, + { 0x40270000, { 7, 2, 0 } }, + { 0x40280000, { 8, 2, 0 } }, + { 0x40290000, { 9, 2, 0 } }, + { 0x402a0000, { 10, 2, 0 } }, + { 0x402b0000, { 11, 2, 0 } }, + { 0x402c0000, { 12, 2, 0 } }, + { 0x402d0000, { 13, 2, 0 } }, + { 0x402e0000, { 14, 2, 0 } }, + { 0x402f0000, { 15, 2, 0 } }, + { 0x40300000, { 0, 3, 0 } }, + { 0x40310000, { 1, 3, 0 } }, + { 0x40320000, { 2, 3, 0 } }, + { 0x40330000, { 3, 3, 0 } }, + { 0x40340000, { 4, 3, 0 } }, + { 0x40350000, { 5, 3, 0 } }, + { 0x40360000, { 6, 3, 0 } }, + { 0x40370000, { 7, 3, 0 } }, + { 0x40380000, { 8, 3, 0 } }, + { 0x40390000, { 9, 3, 0 } }, + { 0x403a0000, { 10, 3, 0 } }, + { 0x403b0000, { 11, 3, 0 } }, + { 0x403c0000, { 12, 3, 0 } }, + { 0x403d0000, { 13, 3, 0 } }, + { 0x403e0000, { 14, 3, 0 } }, + { 0x403f0000, { 15, 3, 0 } }, + { 0x3fc00000, { 0, 4, 0 } }, + { 0x3fc10000, { 1, 4, 0 } }, + { 0x3fc20000, { 2, 4, 0 } }, + { 0x3fc30000, { 3, 4, 0 } }, + { 0x3fc40000, { 4, 4, 0 } }, + { 0x3fc50000, { 5, 4, 0 } }, + { 0x3fc60000, { 6, 4, 0 } }, + { 0x3fc70000, { 7, 4, 0 } }, + { 0x3fc80000, { 8, 4, 0 } }, + { 0x3fc90000, { 9, 4, 0 } }, + { 0x3fca0000, { 10, 4, 0 } }, + { 0x3fcb0000, { 11, 4, 0 } }, + { 0x3fcc0000, { 12, 4, 0 } }, + { 0x3fcd0000, { 13, 4, 0 } }, + { 0x3fce0000, { 14, 4, 0 } }, + { 0x3fcf0000, { 15, 4, 0 } }, + { 0x3fd00000, { 0, 5, 0 } }, + { 0x3fd10000, { 1, 5, 0 } }, + { 0x3fd20000, { 2, 5, 0 } }, + { 0x3fd30000, { 3, 5, 0 } }, + { 0x3fd40000, { 4, 5, 0 } }, + { 0x3fd50000, { 5, 5, 0 } }, + { 0x3fd60000, { 6, 5, 0 } }, + { 0x3fd70000, { 7, 5, 0 } }, + { 0x3fd80000, { 8, 5, 0 } }, + { 0x3fd90000, { 9, 5, 0 } }, + { 0x3fda0000, { 10, 5, 0 } }, + { 0x3fdb0000, { 11, 5, 0 } }, + { 0x3fdc0000, { 12, 5, 0 } }, + { 0x3fdd0000, { 13, 5, 0 } }, + { 0x3fde0000, { 14, 5, 0 } }, + { 0x3fdf0000, { 15, 5, 0 } }, + { 0x3fe00000, { 0, 6, 0 } }, + { 0x3fe10000, { 1, 6, 0 } }, + { 0x3fe20000, { 2, 6, 0 } }, + { 0x3fe30000, { 3, 6, 0 } }, + { 0x3fe40000, { 4, 6, 0 } }, + { 0x3fe50000, { 5, 6, 0 } }, + { 0x3fe60000, { 6, 6, 0 } }, + { 0x3fe70000, { 7, 6, 0 } }, + { 0x3fe80000, { 8, 6, 0 } }, + { 0x3fe90000, { 9, 6, 0 } }, + { 0x3fea0000, { 10, 6, 0 } }, + { 0x3feb0000, { 11, 6, 0 } }, + { 0x3fec0000, { 12, 6, 0 } }, + { 0x3fed0000, { 13, 6, 0 } }, + { 0x3fee0000, { 14, 6, 0 } }, + { 0x3fef0000, { 15, 6, 0 } }, + { 0x3ff00000, { 0, 7, 0 } }, + { 0x3ff10000, { 1, 7, 0 } }, + { 0x3ff20000, { 2, 7, 0 } }, + { 0x3ff30000, { 3, 7, 0 } }, + { 0x3ff40000, { 4, 7, 0 } }, + { 0x3ff50000, { 5, 7, 0 } }, + { 0x3ff60000, { 6, 7, 0 } }, + { 0x3ff70000, { 7, 7, 0 } }, + { 0x3ff80000, { 8, 7, 0 } }, + { 0x3ff90000, { 9, 7, 0 } }, + { 0x3ffa0000, { 10, 7, 0 } }, + { 0x3ffb0000, { 11, 7, 0 } }, + { 0x3ffc0000, { 12, 7, 0 } }, + { 0x3ffd0000, { 13, 7, 0 } }, + { 0x3ffe0000, { 14, 7, 0 } }, + { 0x3fff0000, { 15, 7, 0 } }, + { 0xc0000000, { 0, 8, 0 } }, + { 0xc0010000, { 1, 8, 0 } }, + { 0xc0020000, { 2, 8, 0 } }, + { 0xc0030000, { 3, 8, 0 } }, + { 0xc0040000, { 4, 8, 0 } }, + { 0xc0050000, { 5, 8, 0 } }, + { 0xc0060000, { 6, 8, 0 } }, + { 0xc0070000, { 7, 8, 0 } }, + { 0xc0080000, { 8, 8, 0 } }, + { 0xc0090000, { 9, 8, 0 } }, + { 0xc00a0000, { 10, 8, 0 } }, + { 0xc00b0000, { 11, 8, 0 } }, + { 0xc00c0000, { 12, 8, 0 } }, + { 0xc00d0000, { 13, 8, 0 } }, + { 0xc00e0000, { 14, 8, 0 } }, + { 0xc00f0000, { 15, 8, 0 } }, + { 0xc0100000, { 0, 9, 0 } }, + { 0xc0110000, { 1, 9, 0 } }, + { 0xc0120000, { 2, 9, 0 } }, + { 0xc0130000, { 3, 9, 0 } }, + { 0xc0140000, { 4, 9, 0 } }, + { 0xc0150000, { 5, 9, 0 } }, + { 0xc0160000, { 6, 9, 0 } }, + { 0xc0170000, { 7, 9, 0 } }, + { 0xc0180000, { 8, 9, 0 } }, + { 0xc0190000, { 9, 9, 0 } }, + { 0xc01a0000, { 10, 9, 0 } }, + { 0xc01b0000, { 11, 9, 0 } }, + { 0xc01c0000, { 12, 9, 0 } }, + { 0xc01d0000, { 13, 9, 0 } }, + { 0xc01e0000, { 14, 9, 0 } }, + { 0xc01f0000, { 15, 9, 0 } }, + { 0xc0200000, { 0, 10, 0 } }, + { 0xc0210000, { 1, 10, 0 } }, + { 0xc0220000, { 2, 10, 0 } }, + { 0xc0230000, { 3, 10, 0 } }, + { 0xc0240000, { 4, 10, 0 } }, + { 0xc0250000, { 5, 10, 0 } }, + { 0xc0260000, { 6, 10, 0 } }, + { 0xc0270000, { 7, 10, 0 } }, + { 0xc0280000, { 8, 10, 0 } }, + { 0xc0290000, { 9, 10, 0 } }, + { 0xc02a0000, { 10, 10, 0 } }, + { 0xc02b0000, { 11, 10, 0 } }, + { 0xc02c0000, { 12, 10, 0 } }, + { 0xc02d0000, { 13, 10, 0 } }, + { 0xc02e0000, { 14, 10, 0 } }, + { 0xc02f0000, { 15, 10, 0 } }, + { 0xc0300000, { 0, 11, 0 } }, + { 0xc0310000, { 1, 11, 0 } }, + { 0xc0320000, { 2, 11, 0 } }, + { 0xc0330000, { 3, 11, 0 } }, + { 0xc0340000, { 4, 11, 0 } }, + { 0xc0350000, { 5, 11, 0 } }, + { 0xc0360000, { 6, 11, 0 } }, + { 0xc0370000, { 7, 11, 0 } }, + { 0xc0380000, { 8, 11, 0 } }, + { 0xc0390000, { 9, 11, 0 } }, + { 0xc03a0000, { 10, 11, 0 } }, + { 0xc03b0000, { 11, 11, 0 } }, + { 0xc03c0000, { 12, 11, 0 } }, + { 0xc03d0000, { 13, 11, 0 } }, + { 0xc03e0000, { 14, 11, 0 } }, + { 0xc03f0000, { 15, 11, 0 } }, + { 0xbfc00000, { 0, 12, 0 } }, + { 0xbfc10000, { 1, 12, 0 } }, + { 0xbfc20000, { 2, 12, 0 } }, + { 0xbfc30000, { 3, 12, 0 } }, + { 0xbfc40000, { 4, 12, 0 } }, + { 0xbfc50000, { 5, 12, 0 } }, + { 0xbfc60000, { 6, 12, 0 } }, + { 0xbfc70000, { 7, 12, 0 } }, + { 0xbfc80000, { 8, 12, 0 } }, + { 0xbfc90000, { 9, 12, 0 } }, + { 0xbfca0000, { 10, 12, 0 } }, + { 0xbfcb0000, { 11, 12, 0 } }, + { 0xbfcc0000, { 12, 12, 0 } }, + { 0xbfcd0000, { 13, 12, 0 } }, + { 0xbfce0000, { 14, 12, 0 } }, + { 0xbfcf0000, { 15, 12, 0 } }, + { 0xbfd00000, { 0, 13, 0 } }, + { 0xbfd10000, { 1, 13, 0 } }, + { 0xbfd20000, { 2, 13, 0 } }, + { 0xbfd30000, { 3, 13, 0 } }, + { 0xbfd40000, { 4, 13, 0 } }, + { 0xbfd50000, { 5, 13, 0 } }, + { 0xbfd60000, { 6, 13, 0 } }, + { 0xbfd70000, { 7, 13, 0 } }, + { 0xbfd80000, { 8, 13, 0 } }, + { 0xbfd90000, { 9, 13, 0 } }, + { 0xbfda0000, { 10, 13, 0 } }, + { 0xbfdb0000, { 11, 13, 0 } }, + { 0xbfdc0000, { 12, 13, 0 } }, + { 0xbfdd0000, { 13, 13, 0 } }, + { 0xbfde0000, { 14, 13, 0 } }, + { 0xbfdf0000, { 15, 13, 0 } }, + { 0xbfe00000, { 0, 14, 0 } }, + { 0xbfe10000, { 1, 14, 0 } }, + { 0xbfe20000, { 2, 14, 0 } }, + { 0xbfe30000, { 3, 14, 0 } }, + { 0xbfe40000, { 4, 14, 0 } }, + { 0xbfe50000, { 5, 14, 0 } }, + { 0xbfe60000, { 6, 14, 0 } }, + { 0xbfe70000, { 7, 14, 0 } }, + { 0xbfe80000, { 8, 14, 0 } }, + { 0xbfe90000, { 9, 14, 0 } }, + { 0xbfea0000, { 10, 14, 0 } }, + { 0xbfeb0000, { 11, 14, 0 } }, + { 0xbfec0000, { 12, 14, 0 } }, + { 0xbfed0000, { 13, 14, 0 } }, + { 0xbfee0000, { 14, 14, 0 } }, + { 0xbfef0000, { 15, 14, 0 } }, + { 0xbff00000, { 0, 15, 0 } }, + { 0xbff10000, { 1, 15, 0 } }, + { 0xbff20000, { 2, 15, 0 } }, + { 0xbff30000, { 3, 15, 0 } }, + { 0xbff40000, { 4, 15, 0 } }, + { 0xbff50000, { 5, 15, 0 } }, + { 0xbff60000, { 6, 15, 0 } }, + { 0xbff70000, { 7, 15, 0 } }, + { 0xbff80000, { 8, 15, 0 } }, + { 0xbff90000, { 9, 15, 0 } }, + { 0xbffa0000, { 10, 15, 0 } }, + { 0xbffb0000, { 11, 15, 0 } }, + { 0xbffc0000, { 12, 15, 0 } }, + { 0xbffd0000, { 13, 15, 0 } }, + { 0xbffe0000, { 14, 15, 0 } }, + { 0xbfff0000, { 15, 15, 0 } }, diff --git a/js/src/jit/arm/LIR-arm.h b/js/src/jit/arm/LIR-arm.h new file mode 100644 index 0000000000..395b285c93 --- /dev/null +++ b/js/src/jit/arm/LIR-arm.h @@ -0,0 +1,511 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifndef jit_arm_LIR_arm_h +#define jit_arm_LIR_arm_h + +namespace js { +namespace jit { + +class LBoxFloatingPoint : public LInstructionHelper<2, 1, 1> { + MIRType type_; + + public: + LIR_HEADER(BoxFloatingPoint); + + LBoxFloatingPoint(const LAllocation& in, const LDefinition& temp, + MIRType type) + : LInstructionHelper(classOpcode), type_(type) { + setOperand(0, in); + setTemp(0, temp); + } + + MIRType type() const { return type_; } + const char* extraName() const { return StringFromMIRType(type_); } +}; + +class LUnbox : public LInstructionHelper<1, 2, 0> { + public: + LIR_HEADER(Unbox); + + LUnbox() : LInstructionHelper(classOpcode) {} + + MUnbox* mir() const { return mir_->toUnbox(); } + const LAllocation* payload() { return getOperand(0); } + const LAllocation* type() { return getOperand(1); } + const char* extraName() const { return StringFromMIRType(mir()->type()); } +}; + +class LUnboxFloatingPoint : public LInstructionHelper<1, 2, 0> { + MIRType type_; + + public: + LIR_HEADER(UnboxFloatingPoint); + + static const size_t Input = 0; + + LUnboxFloatingPoint(const LBoxAllocation& input, MIRType type) + : LInstructionHelper(classOpcode), type_(type) { + setBoxOperand(Input, input); + } + + MUnbox* mir() const { return mir_->toUnbox(); } + + MIRType type() const { return type_; } + const char* extraName() const { return StringFromMIRType(type_); } +}; + +// Convert a 32-bit unsigned integer to a double. +class LWasmUint32ToDouble : public LInstructionHelper<1, 1, 0> { + public: + LIR_HEADER(WasmUint32ToDouble) + + explicit LWasmUint32ToDouble(const LAllocation& input) + : LInstructionHelper(classOpcode) { + setOperand(0, input); + } +}; + +// Convert a 32-bit unsigned integer to a float32. +class LWasmUint32ToFloat32 : public LInstructionHelper<1, 1, 0> { + public: + LIR_HEADER(WasmUint32ToFloat32) + + explicit LWasmUint32ToFloat32(const LAllocation& input) + : LInstructionHelper(classOpcode) { + setOperand(0, input); + } +}; + +class LDivI : public LBinaryMath<1> { + public: + LIR_HEADER(DivI); + + LDivI(const LAllocation& lhs, const LAllocation& rhs, const LDefinition& temp) + : LBinaryMath(classOpcode) { + setOperand(0, lhs); + setOperand(1, rhs); + setTemp(0, temp); + } + + MDiv* mir() const { return mir_->toDiv(); } +}; + +class LDivOrModI64 + : public LCallInstructionHelper<INT64_PIECES, INT64_PIECES * 2 + 1, 0> { + public: + LIR_HEADER(DivOrModI64) + + static const size_t Lhs = 0; + static const size_t Rhs = INT64_PIECES; + static const size_t Instance = 2 * INT64_PIECES; + + LDivOrModI64(const LInt64Allocation& lhs, const LInt64Allocation& rhs, + const LAllocation& instance) + : LCallInstructionHelper(classOpcode) { + setInt64Operand(Lhs, lhs); + setInt64Operand(Rhs, rhs); + setOperand(Instance, instance); + } + + MDefinition* mir() const { + MOZ_ASSERT(mir_->isWasmBuiltinDivI64() || mir_->isWasmBuiltinModI64()); + return mir_; + } + bool canBeDivideByZero() const { + if (mir_->isWasmBuiltinModI64()) { + return mir_->toWasmBuiltinModI64()->canBeDivideByZero(); + } + return mir_->toWasmBuiltinDivI64()->canBeDivideByZero(); + } + bool canBeNegativeOverflow() const { + if (mir_->isWasmBuiltinModI64()) { + return mir_->toWasmBuiltinModI64()->canBeNegativeDividend(); + } + return mir_->toWasmBuiltinDivI64()->canBeNegativeOverflow(); + } + wasm::BytecodeOffset bytecodeOffset() const { + MOZ_ASSERT(mir_->isWasmBuiltinDivI64() || mir_->isWasmBuiltinModI64()); + if (mir_->isWasmBuiltinModI64()) { + return mir_->toWasmBuiltinModI64()->bytecodeOffset(); + } + return mir_->toWasmBuiltinDivI64()->bytecodeOffset(); + } +}; + +class LUDivOrModI64 + : public LCallInstructionHelper<INT64_PIECES, INT64_PIECES * 2 + 1, 0> { + public: + LIR_HEADER(UDivOrModI64) + + static const size_t Lhs = 0; + static const size_t Rhs = INT64_PIECES; + static const size_t Instance = 2 * INT64_PIECES; + + LUDivOrModI64(const LInt64Allocation& lhs, const LInt64Allocation& rhs, + const LAllocation& instance) + : LCallInstructionHelper(classOpcode) { + setInt64Operand(Lhs, lhs); + setInt64Operand(Rhs, rhs); + setOperand(Instance, instance); + } + + MDefinition* mir() const { + MOZ_ASSERT(mir_->isWasmBuiltinDivI64() || mir_->isWasmBuiltinModI64()); + return mir_; + } + bool canBeDivideByZero() const { + if (mir_->isWasmBuiltinModI64()) { + return mir_->toWasmBuiltinModI64()->canBeDivideByZero(); + } + return mir_->toWasmBuiltinDivI64()->canBeDivideByZero(); + } + bool canBeNegativeOverflow() const { + if (mir_->isWasmBuiltinModI64()) { + return mir_->toWasmBuiltinModI64()->canBeNegativeDividend(); + } + return mir_->toWasmBuiltinDivI64()->canBeNegativeOverflow(); + } + wasm::BytecodeOffset bytecodeOffset() const { + MOZ_ASSERT(mir_->isWasmBuiltinDivI64() || mir_->isWasmBuiltinModI64()); + if (mir_->isWasmBuiltinModI64()) { + return mir_->toWasmBuiltinModI64()->bytecodeOffset(); + } + return mir_->toWasmBuiltinDivI64()->bytecodeOffset(); + } +}; + +// LSoftDivI is a software divide for ARM cores that don't support a hardware +// divide instruction, implemented as a C++ native call. +class LSoftDivI : public LBinaryCallInstructionHelper<1, 0> { + public: + LIR_HEADER(SoftDivI); + + LSoftDivI(const LAllocation& lhs, const LAllocation& rhs) + : LBinaryCallInstructionHelper(classOpcode) { + setOperand(0, lhs); + setOperand(1, rhs); + } + + MDiv* mir() const { return mir_->toDiv(); } +}; + +class LDivPowTwoI : public LInstructionHelper<1, 1, 0> { + const int32_t shift_; + + public: + LIR_HEADER(DivPowTwoI) + + LDivPowTwoI(const LAllocation& lhs, int32_t shift) + : LInstructionHelper(classOpcode), shift_(shift) { + setOperand(0, lhs); + } + + const LAllocation* numerator() { return getOperand(0); } + + int32_t shift() { return shift_; } + + MDiv* mir() const { return mir_->toDiv(); } +}; + +class LModI : public LBinaryMath<0> { + public: + LIR_HEADER(ModI); + + LModI(const LAllocation& lhs, const LAllocation& rhs) + : LBinaryMath(classOpcode) { + setOperand(0, lhs); + setOperand(1, rhs); + } + + MMod* mir() const { return mir_->toMod(); } +}; + +class LSoftModI : public LBinaryCallInstructionHelper<1, 1> { + public: + LIR_HEADER(SoftModI); + + LSoftModI(const LAllocation& lhs, const LAllocation& rhs, + const LDefinition& temp) + : LBinaryCallInstructionHelper(classOpcode) { + setOperand(0, lhs); + setOperand(1, rhs); + setTemp(0, temp); + } + + const LDefinition* callTemp() { return getTemp(0); } + + MMod* mir() const { return mir_->toMod(); } +}; + +class LModPowTwoI : public LInstructionHelper<1, 1, 0> { + const int32_t shift_; + + public: + LIR_HEADER(ModPowTwoI); + int32_t shift() { return shift_; } + + LModPowTwoI(const LAllocation& lhs, int32_t shift) + : LInstructionHelper(classOpcode), shift_(shift) { + setOperand(0, lhs); + } + + MMod* mir() const { return mir_->toMod(); } +}; + +class LModMaskI : public LInstructionHelper<1, 1, 2> { + const int32_t shift_; + + public: + LIR_HEADER(ModMaskI); + + LModMaskI(const LAllocation& lhs, const LDefinition& temp1, + const LDefinition& temp2, int32_t shift) + : LInstructionHelper(classOpcode), shift_(shift) { + setOperand(0, lhs); + setTemp(0, temp1); + setTemp(1, temp2); + } + + int32_t shift() const { return shift_; } + + MMod* mir() const { return mir_->toMod(); } +}; + +// Takes a tableswitch with an integer to decide. +class LTableSwitch : public LInstructionHelper<0, 1, 1> { + public: + LIR_HEADER(TableSwitch); + + LTableSwitch(const LAllocation& in, const LDefinition& inputCopy, + MTableSwitch* ins) + : LInstructionHelper(classOpcode) { + setOperand(0, in); + setTemp(0, inputCopy); + setMir(ins); + } + + MTableSwitch* mir() const { return mir_->toTableSwitch(); } + + const LAllocation* index() { return getOperand(0); } + const LDefinition* tempInt() { return getTemp(0); } + // This is added to share the same CodeGenerator prefixes. + const LDefinition* tempPointer() { return nullptr; } +}; + +// Takes a tableswitch with an integer to decide. +class LTableSwitchV : public LInstructionHelper<0, BOX_PIECES, 2> { + public: + LIR_HEADER(TableSwitchV); + + LTableSwitchV(const LBoxAllocation& input, const LDefinition& inputCopy, + const LDefinition& floatCopy, MTableSwitch* ins) + : LInstructionHelper(classOpcode) { + setBoxOperand(InputValue, input); + setTemp(0, inputCopy); + setTemp(1, floatCopy); + setMir(ins); + } + + MTableSwitch* mir() const { return mir_->toTableSwitch(); } + + static const size_t InputValue = 0; + + const LDefinition* tempInt() { return getTemp(0); } + const LDefinition* tempFloat() { return getTemp(1); } + const LDefinition* tempPointer() { return nullptr; } +}; + +class LMulI : public LBinaryMath<0> { + public: + LIR_HEADER(MulI); + + LMulI() : LBinaryMath(classOpcode) {} + + MMul* mir() { return mir_->toMul(); } +}; + +class LUDiv : public LBinaryMath<0> { + public: + LIR_HEADER(UDiv); + + LUDiv() : LBinaryMath(classOpcode) {} + + MDiv* mir() { return mir_->toDiv(); } +}; + +class LUMod : public LBinaryMath<0> { + public: + LIR_HEADER(UMod); + + LUMod() : LBinaryMath(classOpcode) {} + + MMod* mir() { return mir_->toMod(); } +}; + +class LSoftUDivOrMod : public LBinaryCallInstructionHelper<1, 0> { + public: + LIR_HEADER(SoftUDivOrMod); + + LSoftUDivOrMod(const LAllocation& lhs, const LAllocation& rhs) + : LBinaryCallInstructionHelper(classOpcode) { + setOperand(0, lhs); + setOperand(1, rhs); + } + + MInstruction* mir() { return mir_->toInstruction(); } +}; + +class LWasmTruncateToInt64 : public LCallInstructionHelper<INT64_PIECES, 2, 0> { + static const size_t Input = 0; + static const size_t Instance = 1; + + public: + LIR_HEADER(WasmTruncateToInt64); + + LWasmTruncateToInt64(const LAllocation& in, const LAllocation& instance) + : LCallInstructionHelper(classOpcode) { + setOperand(Input, in); + setOperand(Instance, instance); + } + + LAllocation* input() { return getOperand(Input); } + LAllocation* instance() { return getOperand(Instance); } + + MWasmBuiltinTruncateToInt64* mir() const { + return mir_->toWasmBuiltinTruncateToInt64(); + } +}; + +class LInt64ToFloatingPointCall + : public LCallInstructionHelper<1, INT64_PIECES + 1, 0> { + public: + LIR_HEADER(Int64ToFloatingPointCall); + + static const size_t Input = 0; + static const size_t Instance = INT64_PIECES; + + LInt64ToFloatingPointCall(const LInt64Allocation& in, + const LAllocation& instance) + : LCallInstructionHelper(classOpcode) { + setInt64Operand(Input, in); + setOperand(Instance, instance); + } + + LAllocation* input() { return getOperand(Input); } + LAllocation* instance() { return getOperand(Instance); } + + MBuiltinInt64ToFloatingPoint* mir() const { + return mir_->toBuiltinInt64ToFloatingPoint(); + } +}; + +class LWasmAtomicLoadI64 : public LInstructionHelper<INT64_PIECES, 1, 0> { + public: + LIR_HEADER(WasmAtomicLoadI64); + + explicit LWasmAtomicLoadI64(const LAllocation& ptr) + : LInstructionHelper(classOpcode) { + setOperand(0, ptr); + } + + MWasmLoad* mir() const { return mir_->toWasmLoad(); } + const LAllocation* ptr() { return getOperand(0); } +}; + +class LWasmAtomicStoreI64 : public LInstructionHelper<0, 1 + INT64_PIECES, 2> { + public: + LIR_HEADER(WasmAtomicStoreI64); + + LWasmAtomicStoreI64(const LAllocation& ptr, const LInt64Allocation& value, + const LDefinition& tmpLow, const LDefinition& tmpHigh) + : LInstructionHelper(classOpcode) { + setOperand(0, ptr); + setInt64Operand(1, value); + setTemp(0, tmpLow); + setTemp(1, tmpHigh); + } + + MWasmStore* mir() const { return mir_->toWasmStore(); } + const LAllocation* ptr() { return getOperand(0); } + const LInt64Allocation value() { return getInt64Operand(1); } + const LDefinition* tmpLow() { return getTemp(0); } + const LDefinition* tmpHigh() { return getTemp(1); } +}; + +class LWasmCompareExchangeI64 + : public LInstructionHelper<INT64_PIECES, 1 + 2 * INT64_PIECES, 0> { + public: + LIR_HEADER(WasmCompareExchangeI64); + + LWasmCompareExchangeI64(const LAllocation& ptr, + const LInt64Allocation& expected, + const LInt64Allocation& replacement) + : LInstructionHelper(classOpcode) { + setOperand(0, ptr); + setInt64Operand(1, expected); + setInt64Operand(1 + INT64_PIECES, replacement); + } + + MWasmCompareExchangeHeap* mir() const { + return mir_->toWasmCompareExchangeHeap(); + } + const LAllocation* ptr() { return getOperand(0); } + const LInt64Allocation expected() { return getInt64Operand(1); } + const LInt64Allocation replacement() { + return getInt64Operand(1 + INT64_PIECES); + } +}; + +class LWasmAtomicBinopI64 + : public LInstructionHelper<INT64_PIECES, 1 + INT64_PIECES, 2> { + const wasm::MemoryAccessDesc& access_; + AtomicOp op_; + + public: + LIR_HEADER(WasmAtomicBinopI64); + + LWasmAtomicBinopI64(const LAllocation& ptr, const LInt64Allocation& value, + const LDefinition& tmpLow, const LDefinition& tmpHigh, + const wasm::MemoryAccessDesc& access, AtomicOp op) + : LInstructionHelper(classOpcode), access_(access), op_(op) { + setOperand(0, ptr); + setInt64Operand(1, value); + setTemp(0, tmpLow); + setTemp(1, tmpHigh); + } + + const LAllocation* ptr() { return getOperand(0); } + const LInt64Allocation value() { return getInt64Operand(1); } + const wasm::MemoryAccessDesc& access() { return access_; } + AtomicOp operation() const { return op_; } + const LDefinition* tmpLow() { return getTemp(0); } + const LDefinition* tmpHigh() { return getTemp(1); } +}; + +class LWasmAtomicExchangeI64 + : public LInstructionHelper<INT64_PIECES, 1 + INT64_PIECES, 0> { + const wasm::MemoryAccessDesc& access_; + + public: + LIR_HEADER(WasmAtomicExchangeI64); + + LWasmAtomicExchangeI64(const LAllocation& ptr, const LInt64Allocation& value, + const wasm::MemoryAccessDesc& access) + : LInstructionHelper(classOpcode), access_(access) { + setOperand(0, ptr); + setInt64Operand(1, value); + } + + const LAllocation* ptr() { return getOperand(0); } + const LInt64Allocation value() { return getInt64Operand(1); } + const wasm::MemoryAccessDesc& access() { return access_; } +}; + +} // namespace jit +} // namespace js + +#endif /* jit_arm_LIR_arm_h */ diff --git a/js/src/jit/arm/Lowering-arm.cpp b/js/src/jit/arm/Lowering-arm.cpp new file mode 100644 index 0000000000..e384ee7911 --- /dev/null +++ b/js/src/jit/arm/Lowering-arm.cpp @@ -0,0 +1,1223 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "jit/arm/Lowering-arm.h" + +#include "mozilla/MathAlgorithms.h" + +#include "jit/arm/Assembler-arm.h" +#include "jit/Lowering.h" +#include "jit/MIR.h" +#include "jit/shared/Lowering-shared-inl.h" + +using namespace js; +using namespace js::jit; + +using mozilla::FloorLog2; + +LBoxAllocation LIRGeneratorARM::useBoxFixed(MDefinition* mir, Register reg1, + Register reg2, bool useAtStart) { + MOZ_ASSERT(mir->type() == MIRType::Value); + MOZ_ASSERT(reg1 != reg2); + + ensureDefined(mir); + return LBoxAllocation(LUse(reg1, mir->virtualRegister(), useAtStart), + LUse(reg2, VirtualRegisterOfPayload(mir), useAtStart)); +} + +LAllocation LIRGeneratorARM::useByteOpRegister(MDefinition* mir) { + return useRegister(mir); +} + +LAllocation LIRGeneratorARM::useByteOpRegisterAtStart(MDefinition* mir) { + return useRegisterAtStart(mir); +} + +LAllocation LIRGeneratorARM::useByteOpRegisterOrNonDoubleConstant( + MDefinition* mir) { + return useRegisterOrNonDoubleConstant(mir); +} + +LDefinition LIRGeneratorARM::tempByteOpRegister() { return temp(); } + +void LIRGenerator::visitBox(MBox* box) { + MDefinition* inner = box->getOperand(0); + + // If the box wrapped a double, it needs a new register. + if (IsFloatingPointType(inner->type())) { + defineBox(new (alloc()) LBoxFloatingPoint( + useRegisterAtStart(inner), tempCopy(inner, 0), inner->type()), + box); + return; + } + + if (box->canEmitAtUses()) { + emitAtUses(box); + return; + } + + if (inner->isConstant()) { + defineBox(new (alloc()) LValue(inner->toConstant()->toJSValue()), box); + return; + } + + LBox* lir = new (alloc()) LBox(use(inner), inner->type()); + + // Otherwise, we should not define a new register for the payload portion + // of the output, so bypass defineBox(). + uint32_t vreg = getVirtualRegister(); + + // Note that because we're using BogusTemp(), we do not change the type of + // the definition. We also do not define the first output as "TYPE", + // because it has no corresponding payload at (vreg + 1). Also note that + // although we copy the input's original type for the payload half of the + // definition, this is only for clarity. BogusTemp() definitions are + // ignored. + lir->setDef(0, LDefinition(vreg, LDefinition::GENERAL)); + lir->setDef(1, LDefinition::BogusTemp()); + box->setVirtualRegister(vreg); + add(lir); +} + +void LIRGenerator::visitUnbox(MUnbox* unbox) { + MDefinition* inner = unbox->getOperand(0); + + // An unbox on arm reads in a type tag (either in memory or a register) and + // a payload. Unlike most instructions consuming a box, we ask for the type + // second, so that the result can re-use the first input. + MOZ_ASSERT(inner->type() == MIRType::Value); + + ensureDefined(inner); + + if (IsFloatingPointType(unbox->type())) { + LUnboxFloatingPoint* lir = + new (alloc()) LUnboxFloatingPoint(useBox(inner), unbox->type()); + if (unbox->fallible()) { + assignSnapshot(lir, unbox->bailoutKind()); + } + define(lir, unbox); + return; + } + + // Swap the order we use the box pieces so we can re-use the payload register. + LUnbox* lir = new (alloc()) LUnbox; + lir->setOperand(0, usePayloadInRegisterAtStart(inner)); + lir->setOperand(1, useType(inner, LUse::REGISTER)); + + if (unbox->fallible()) { + assignSnapshot(lir, unbox->bailoutKind()); + } + + // Types and payloads form two separate intervals. If the type becomes dead + // before the payload, it could be used as a Value without the type being + // recoverable. Unbox's purpose is to eagerly kill the definition of a type + // tag, so keeping both alive (for the purpose of gcmaps) is unappealing. + // Instead, we create a new virtual register. + defineReuseInput(lir, unbox, 0); +} + +void LIRGenerator::visitReturnImpl(MDefinition* opd, bool isGenerator) { + MOZ_ASSERT(opd->type() == MIRType::Value); + + LReturn* ins = new (alloc()) LReturn(isGenerator); + ins->setOperand(0, LUse(JSReturnReg_Type)); + ins->setOperand(1, LUse(JSReturnReg_Data)); + fillBoxUses(ins, 0, opd); + add(ins); +} + +void LIRGeneratorARM::defineInt64Phi(MPhi* phi, size_t lirIndex) { + LPhi* low = current->getPhi(lirIndex + INT64LOW_INDEX); + LPhi* high = current->getPhi(lirIndex + INT64HIGH_INDEX); + + uint32_t lowVreg = getVirtualRegister(); + + phi->setVirtualRegister(lowVreg); + + uint32_t highVreg = getVirtualRegister(); + MOZ_ASSERT(lowVreg + INT64HIGH_INDEX == highVreg + INT64LOW_INDEX); + + low->setDef(0, LDefinition(lowVreg, LDefinition::INT32)); + high->setDef(0, LDefinition(highVreg, LDefinition::INT32)); + annotate(high); + annotate(low); +} + +void LIRGeneratorARM::lowerInt64PhiInput(MPhi* phi, uint32_t inputPosition, + LBlock* block, size_t lirIndex) { + MDefinition* operand = phi->getOperand(inputPosition); + LPhi* low = block->getPhi(lirIndex + INT64LOW_INDEX); + LPhi* high = block->getPhi(lirIndex + INT64HIGH_INDEX); + low->setOperand(inputPosition, + LUse(operand->virtualRegister() + INT64LOW_INDEX, LUse::ANY)); + high->setOperand( + inputPosition, + LUse(operand->virtualRegister() + INT64HIGH_INDEX, LUse::ANY)); +} + +// x = !y +void LIRGeneratorARM::lowerForALU(LInstructionHelper<1, 1, 0>* ins, + MDefinition* mir, MDefinition* input) { + ins->setOperand( + 0, ins->snapshot() ? useRegister(input) : useRegisterAtStart(input)); + define( + ins, mir, + LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER)); +} + +// z = x+y +void LIRGeneratorARM::lowerForALU(LInstructionHelper<1, 2, 0>* ins, + MDefinition* mir, MDefinition* lhs, + MDefinition* rhs) { + // Some operations depend on checking inputs after writing the result, e.g. + // MulI, but only for bail out paths so useAtStart when no bailouts. + ins->setOperand(0, + ins->snapshot() ? useRegister(lhs) : useRegisterAtStart(lhs)); + ins->setOperand(1, ins->snapshot() ? useRegisterOrConstant(rhs) + : useRegisterOrConstantAtStart(rhs)); + define( + ins, mir, + LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER)); +} + +void LIRGeneratorARM::lowerForALUInt64( + LInstructionHelper<INT64_PIECES, INT64_PIECES, 0>* ins, MDefinition* mir, + MDefinition* input) { + ins->setInt64Operand(0, useInt64RegisterAtStart(input)); + defineInt64ReuseInput(ins, mir, 0); +} + +void LIRGeneratorARM::lowerForALUInt64( + LInstructionHelper<INT64_PIECES, 2 * INT64_PIECES, 0>* ins, + MDefinition* mir, MDefinition* lhs, MDefinition* rhs) { + ins->setInt64Operand(0, useInt64RegisterAtStart(lhs)); + ins->setInt64Operand(INT64_PIECES, useInt64OrConstant(rhs)); + defineInt64ReuseInput(ins, mir, 0); +} + +void LIRGeneratorARM::lowerForMulInt64(LMulI64* ins, MMul* mir, + MDefinition* lhs, MDefinition* rhs) { + bool needsTemp = true; + + if (rhs->isConstant()) { + int64_t constant = rhs->toConstant()->toInt64(); + int32_t shift = mozilla::FloorLog2(constant); + // See special cases in CodeGeneratorARM::visitMulI64 + if (constant >= -1 && constant <= 2) { + needsTemp = false; + } + if (constant > 0 && int64_t(1) << shift == constant) { + needsTemp = false; + } + } + + ins->setInt64Operand(0, useInt64RegisterAtStart(lhs)); + ins->setInt64Operand(INT64_PIECES, useInt64OrConstant(rhs)); + if (needsTemp) { + ins->setTemp(0, temp()); + } + + defineInt64ReuseInput(ins, mir, 0); +} + +void LIRGeneratorARM::lowerForCompareI64AndBranch(MTest* mir, MCompare* comp, + JSOp op, MDefinition* left, + MDefinition* right, + MBasicBlock* ifTrue, + MBasicBlock* ifFalse) { + LCompareI64AndBranch* lir = new (alloc()) + LCompareI64AndBranch(comp, op, useInt64Register(left), + useInt64OrConstant(right), ifTrue, ifFalse); + add(lir, mir); +} + +void LIRGeneratorARM::lowerForFPU(LInstructionHelper<1, 1, 0>* ins, + MDefinition* mir, MDefinition* input) { + ins->setOperand(0, useRegisterAtStart(input)); + define( + ins, mir, + LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER)); +} + +template <size_t Temps> +void LIRGeneratorARM::lowerForFPU(LInstructionHelper<1, 2, Temps>* ins, + MDefinition* mir, MDefinition* lhs, + MDefinition* rhs) { + ins->setOperand(0, useRegisterAtStart(lhs)); + ins->setOperand(1, useRegisterAtStart(rhs)); + define( + ins, mir, + LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER)); +} + +template void LIRGeneratorARM::lowerForFPU(LInstructionHelper<1, 2, 0>* ins, + MDefinition* mir, MDefinition* lhs, + MDefinition* rhs); +template void LIRGeneratorARM::lowerForFPU(LInstructionHelper<1, 2, 1>* ins, + MDefinition* mir, MDefinition* lhs, + MDefinition* rhs); + +void LIRGeneratorARM::lowerForBitAndAndBranch(LBitAndAndBranch* baab, + MInstruction* mir, + MDefinition* lhs, + MDefinition* rhs) { + baab->setOperand(0, useRegisterAtStart(lhs)); + baab->setOperand(1, useRegisterOrConstantAtStart(rhs)); + add(baab, mir); +} + +void LIRGeneratorARM::lowerWasmBuiltinTruncateToInt32( + MWasmBuiltinTruncateToInt32* ins) { + MDefinition* opd = ins->input(); + MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32); + + if (opd->type() == MIRType::Double) { + define(new (alloc()) LWasmBuiltinTruncateDToInt32( + useRegister(opd), useFixedAtStart(ins->instance(), InstanceReg), + LDefinition::BogusTemp()), + ins); + return; + } + + define(new (alloc()) LWasmBuiltinTruncateFToInt32( + useRegister(opd), useFixedAtStart(ins->instance(), InstanceReg), + LDefinition::BogusTemp()), + ins); +} + +void LIRGeneratorARM::lowerUntypedPhiInput(MPhi* phi, uint32_t inputPosition, + LBlock* block, size_t lirIndex) { + MDefinition* operand = phi->getOperand(inputPosition); + LPhi* type = block->getPhi(lirIndex + VREG_TYPE_OFFSET); + LPhi* payload = block->getPhi(lirIndex + VREG_DATA_OFFSET); + type->setOperand( + inputPosition, + LUse(operand->virtualRegister() + VREG_TYPE_OFFSET, LUse::ANY)); + payload->setOperand(inputPosition, + LUse(VirtualRegisterOfPayload(operand), LUse::ANY)); +} + +void LIRGeneratorARM::lowerForShift(LInstructionHelper<1, 2, 0>* ins, + MDefinition* mir, MDefinition* lhs, + MDefinition* rhs) { + ins->setOperand(0, useRegister(lhs)); + ins->setOperand(1, useRegisterOrConstant(rhs)); + define(ins, mir); +} + +template <size_t Temps> +void LIRGeneratorARM::lowerForShiftInt64( + LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, Temps>* ins, + MDefinition* mir, MDefinition* lhs, MDefinition* rhs) { + if (mir->isRotate() && !rhs->isConstant()) { + ins->setTemp(0, temp()); + } + + ins->setInt64Operand(0, useInt64RegisterAtStart(lhs)); + ins->setOperand(INT64_PIECES, useRegisterOrConstant(rhs)); + defineInt64ReuseInput(ins, mir, 0); +} + +template void LIRGeneratorARM::lowerForShiftInt64( + LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, 0>* ins, + MDefinition* mir, MDefinition* lhs, MDefinition* rhs); +template void LIRGeneratorARM::lowerForShiftInt64( + LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, 1>* ins, + MDefinition* mir, MDefinition* lhs, MDefinition* rhs); + +void LIRGeneratorARM::lowerDivI(MDiv* div) { + if (div->isUnsigned()) { + lowerUDiv(div); + return; + } + + // Division instructions are slow. Division by constant denominators can be + // rewritten to use other instructions. + if (div->rhs()->isConstant()) { + int32_t rhs = div->rhs()->toConstant()->toInt32(); + // Check for division by a positive power of two, which is an easy and + // important case to optimize. Note that other optimizations are also + // possible; division by negative powers of two can be optimized in a + // similar manner as positive powers of two, and division by other + // constants can be optimized by a reciprocal multiplication technique. + int32_t shift = FloorLog2(rhs); + if (rhs > 0 && 1 << shift == rhs) { + LDivPowTwoI* lir = + new (alloc()) LDivPowTwoI(useRegisterAtStart(div->lhs()), shift); + if (div->fallible()) { + assignSnapshot(lir, div->bailoutKind()); + } + define(lir, div); + return; + } + } + + if (HasIDIV()) { + LDivI* lir = new (alloc()) + LDivI(useRegister(div->lhs()), useRegister(div->rhs()), temp()); + if (div->fallible()) { + assignSnapshot(lir, div->bailoutKind()); + } + define(lir, div); + return; + } + + LSoftDivI* lir = new (alloc()) LSoftDivI(useFixedAtStart(div->lhs(), r0), + useFixedAtStart(div->rhs(), r1)); + + if (div->fallible()) { + assignSnapshot(lir, div->bailoutKind()); + } + + defineReturn(lir, div); +} + +void LIRGeneratorARM::lowerNegI(MInstruction* ins, MDefinition* input) { + define(new (alloc()) LNegI(useRegisterAtStart(input)), ins); +} + +void LIRGeneratorARM::lowerNegI64(MInstruction* ins, MDefinition* input) { + // Reuse the input. Define + use-at-start would create risk that the output + // uses the same register pair as the input but in reverse order. Reusing + // probably has less spilling than the alternative, define + use. + defineInt64ReuseInput(new (alloc()) LNegI64(useInt64RegisterAtStart(input)), + ins, 0); +} + +void LIRGenerator::visitAbs(MAbs* ins) { + define(allocateAbs(ins, useRegisterAtStart(ins->input())), ins); +} + +void LIRGeneratorARM::lowerMulI(MMul* mul, MDefinition* lhs, MDefinition* rhs) { + LMulI* lir = new (alloc()) LMulI; + if (mul->fallible()) { + assignSnapshot(lir, mul->bailoutKind()); + } + lowerForALU(lir, mul, lhs, rhs); +} + +void LIRGeneratorARM::lowerModI(MMod* mod) { + if (mod->isUnsigned()) { + lowerUMod(mod); + return; + } + + if (mod->rhs()->isConstant()) { + int32_t rhs = mod->rhs()->toConstant()->toInt32(); + int32_t shift = FloorLog2(rhs); + if (rhs > 0 && 1 << shift == rhs) { + LModPowTwoI* lir = + new (alloc()) LModPowTwoI(useRegister(mod->lhs()), shift); + if (mod->fallible()) { + assignSnapshot(lir, mod->bailoutKind()); + } + define(lir, mod); + return; + } + if (shift < 31 && (1 << (shift + 1)) - 1 == rhs) { + MOZ_ASSERT(rhs); + LModMaskI* lir = new (alloc()) + LModMaskI(useRegister(mod->lhs()), temp(), temp(), shift + 1); + if (mod->fallible()) { + assignSnapshot(lir, mod->bailoutKind()); + } + define(lir, mod); + return; + } + } + + if (HasIDIV()) { + LModI* lir = + new (alloc()) LModI(useRegister(mod->lhs()), useRegister(mod->rhs())); + if (mod->fallible()) { + assignSnapshot(lir, mod->bailoutKind()); + } + define(lir, mod); + return; + } + + LSoftModI* lir = + new (alloc()) LSoftModI(useFixedAtStart(mod->lhs(), r0), + useFixedAtStart(mod->rhs(), r1), tempFixed(r2)); + + if (mod->fallible()) { + assignSnapshot(lir, mod->bailoutKind()); + } + + defineReturn(lir, mod); +} + +void LIRGeneratorARM::lowerDivI64(MDiv* div) { + MOZ_CRASH("We use MWasmBuiltinDivI64 instead."); +} + +void LIRGeneratorARM::lowerWasmBuiltinDivI64(MWasmBuiltinDivI64* div) { + if (div->isUnsigned()) { + LUDivOrModI64* lir = new (alloc()) + LUDivOrModI64(useInt64RegisterAtStart(div->lhs()), + useInt64RegisterAtStart(div->rhs()), + useFixedAtStart(div->instance(), InstanceReg)); + defineReturn(lir, div); + return; + } + + LDivOrModI64* lir = new (alloc()) LDivOrModI64( + useInt64RegisterAtStart(div->lhs()), useInt64RegisterAtStart(div->rhs()), + useFixedAtStart(div->instance(), InstanceReg)); + defineReturn(lir, div); +} + +void LIRGeneratorARM::lowerModI64(MMod* mod) { + MOZ_CRASH("We use MWasmBuiltinModI64 instead."); +} + +void LIRGeneratorARM::lowerWasmBuiltinModI64(MWasmBuiltinModI64* mod) { + if (mod->isUnsigned()) { + LUDivOrModI64* lir = new (alloc()) + LUDivOrModI64(useInt64RegisterAtStart(mod->lhs()), + useInt64RegisterAtStart(mod->rhs()), + useFixedAtStart(mod->instance(), InstanceReg)); + defineReturn(lir, mod); + return; + } + + LDivOrModI64* lir = new (alloc()) LDivOrModI64( + useInt64RegisterAtStart(mod->lhs()), useInt64RegisterAtStart(mod->rhs()), + useFixedAtStart(mod->instance(), InstanceReg)); + defineReturn(lir, mod); +} + +void LIRGeneratorARM::lowerUDivI64(MDiv* div) { + MOZ_CRASH("We use MWasmBuiltinDivI64 instead."); +} + +void LIRGeneratorARM::lowerUModI64(MMod* mod) { + MOZ_CRASH("We use MWasmBuiltinModI64 instead."); +} + +void LIRGenerator::visitPowHalf(MPowHalf* ins) { + MDefinition* input = ins->input(); + MOZ_ASSERT(input->type() == MIRType::Double); + LPowHalfD* lir = new (alloc()) LPowHalfD(useRegisterAtStart(input)); + defineReuseInput(lir, ins, 0); +} + +void LIRGeneratorARM::lowerWasmSelectI(MWasmSelect* select) { + auto* lir = new (alloc()) + LWasmSelect(useRegisterAtStart(select->trueExpr()), + useAny(select->falseExpr()), useRegister(select->condExpr())); + defineReuseInput(lir, select, LWasmSelect::TrueExprIndex); +} + +void LIRGeneratorARM::lowerWasmSelectI64(MWasmSelect* select) { + auto* lir = new (alloc()) LWasmSelectI64( + useInt64RegisterAtStart(select->trueExpr()), + useInt64(select->falseExpr()), useRegister(select->condExpr())); + defineInt64ReuseInput(lir, select, LWasmSelectI64::TrueExprIndex); +} + +LTableSwitch* LIRGeneratorARM::newLTableSwitch(const LAllocation& in, + const LDefinition& inputCopy, + MTableSwitch* tableswitch) { + return new (alloc()) LTableSwitch(in, inputCopy, tableswitch); +} + +LTableSwitchV* LIRGeneratorARM::newLTableSwitchV(MTableSwitch* tableswitch) { + return new (alloc()) LTableSwitchV(useBox(tableswitch->getOperand(0)), temp(), + tempDouble(), tableswitch); +} + +void LIRGeneratorARM::lowerUrshD(MUrsh* mir) { + MDefinition* lhs = mir->lhs(); + MDefinition* rhs = mir->rhs(); + + MOZ_ASSERT(lhs->type() == MIRType::Int32); + MOZ_ASSERT(rhs->type() == MIRType::Int32); + + LUrshD* lir = new (alloc()) + LUrshD(useRegister(lhs), useRegisterOrConstant(rhs), temp()); + define(lir, mir); +} + +void LIRGeneratorARM::lowerPowOfTwoI(MPow* mir) { + int32_t base = mir->input()->toConstant()->toInt32(); + MDefinition* power = mir->power(); + + auto* lir = new (alloc()) LPowOfTwoI(useRegister(power), base); + assignSnapshot(lir, mir->bailoutKind()); + define(lir, mir); +} + +void LIRGeneratorARM::lowerBigIntLsh(MBigIntLsh* ins) { + auto* lir = new (alloc()) LBigIntLsh( + useRegister(ins->lhs()), useRegister(ins->rhs()), temp(), temp(), temp()); + define(lir, ins); + assignSafepoint(lir, ins); +} + +void LIRGeneratorARM::lowerBigIntRsh(MBigIntRsh* ins) { + auto* lir = new (alloc()) LBigIntRsh( + useRegister(ins->lhs()), useRegister(ins->rhs()), temp(), temp(), temp()); + define(lir, ins); + assignSafepoint(lir, ins); +} + +void LIRGeneratorARM::lowerBigIntDiv(MBigIntDiv* ins) { + LDefinition temp1, temp2; + if (HasIDIV()) { + temp1 = temp(); + temp2 = temp(); + } else { + temp1 = tempFixed(r0); + temp2 = tempFixed(r1); + } + auto* lir = new (alloc()) LBigIntDiv(useRegister(ins->lhs()), + useRegister(ins->rhs()), temp1, temp2); + define(lir, ins); + assignSafepoint(lir, ins); +} + +void LIRGeneratorARM::lowerBigIntMod(MBigIntMod* ins) { + LDefinition temp1, temp2; + if (HasIDIV()) { + temp1 = temp(); + temp2 = temp(); + } else { + temp1 = tempFixed(r0); + temp2 = tempFixed(r1); + } + auto* lir = new (alloc()) LBigIntMod(useRegister(ins->lhs()), + useRegister(ins->rhs()), temp1, temp2); + define(lir, ins); + assignSafepoint(lir, ins); +} + +void LIRGenerator::visitWasmNeg(MWasmNeg* ins) { + if (ins->type() == MIRType::Int32) { + define(new (alloc()) LNegI(useRegisterAtStart(ins->input())), ins); + } else if (ins->type() == MIRType::Float32) { + define(new (alloc()) LNegF(useRegisterAtStart(ins->input())), ins); + } else { + MOZ_ASSERT(ins->type() == MIRType::Double); + define(new (alloc()) LNegD(useRegisterAtStart(ins->input())), ins); + } +} + +void LIRGeneratorARM::lowerUDiv(MDiv* div) { + MDefinition* lhs = div->getOperand(0); + MDefinition* rhs = div->getOperand(1); + + if (HasIDIV()) { + LUDiv* lir = new (alloc()) LUDiv; + lir->setOperand(0, useRegister(lhs)); + lir->setOperand(1, useRegister(rhs)); + if (div->fallible()) { + assignSnapshot(lir, div->bailoutKind()); + } + define(lir, div); + return; + } + + LSoftUDivOrMod* lir = new (alloc()) + LSoftUDivOrMod(useFixedAtStart(lhs, r0), useFixedAtStart(rhs, r1)); + + if (div->fallible()) { + assignSnapshot(lir, div->bailoutKind()); + } + + defineReturn(lir, div); +} + +void LIRGeneratorARM::lowerUMod(MMod* mod) { + MDefinition* lhs = mod->getOperand(0); + MDefinition* rhs = mod->getOperand(1); + + if (HasIDIV()) { + LUMod* lir = new (alloc()) LUMod; + lir->setOperand(0, useRegister(lhs)); + lir->setOperand(1, useRegister(rhs)); + if (mod->fallible()) { + assignSnapshot(lir, mod->bailoutKind()); + } + define(lir, mod); + return; + } + + LSoftUDivOrMod* lir = new (alloc()) + LSoftUDivOrMod(useFixedAtStart(lhs, r0), useFixedAtStart(rhs, r1)); + + if (mod->fallible()) { + assignSnapshot(lir, mod->bailoutKind()); + } + + defineReturn(lir, mod); +} + +void LIRGenerator::visitWasmUnsignedToDouble(MWasmUnsignedToDouble* ins) { + MOZ_ASSERT(ins->input()->type() == MIRType::Int32); + LWasmUint32ToDouble* lir = + new (alloc()) LWasmUint32ToDouble(useRegisterAtStart(ins->input())); + define(lir, ins); +} + +void LIRGenerator::visitWasmUnsignedToFloat32(MWasmUnsignedToFloat32* ins) { + MOZ_ASSERT(ins->input()->type() == MIRType::Int32); + LWasmUint32ToFloat32* lir = + new (alloc()) LWasmUint32ToFloat32(useRegisterAtStart(ins->input())); + define(lir, ins); +} + +void LIRGenerator::visitWasmHeapBase(MWasmHeapBase* ins) { + auto* lir = new (alloc()) LWasmHeapBase(LAllocation()); + define(lir, ins); +} + +void LIRGenerator::visitWasmLoad(MWasmLoad* ins) { + MDefinition* base = ins->base(); + MOZ_ASSERT(base->type() == MIRType::Int32); + + if (ins->access().type() == Scalar::Int64 && ins->access().isAtomic()) { + auto* lir = new (alloc()) LWasmAtomicLoadI64(useRegisterAtStart(base)); + defineInt64Fixed(lir, ins, + LInt64Allocation(LAllocation(AnyRegister(IntArgReg1)), + LAllocation(AnyRegister(IntArgReg0)))); + return; + } + + LAllocation ptr = useRegisterAtStart(base); + + if (ins->type() == MIRType::Int64) { + auto* lir = new (alloc()) LWasmLoadI64(ptr); + if (ins->access().offset() || ins->access().type() == Scalar::Int64) { + lir->setTemp(0, tempCopy(base, 0)); + } + defineInt64(lir, ins); + return; + } + + auto* lir = new (alloc()) LWasmLoad(ptr); + if (ins->access().offset()) { + lir->setTemp(0, tempCopy(base, 0)); + } + + define(lir, ins); +} + +void LIRGenerator::visitWasmStore(MWasmStore* ins) { + MDefinition* base = ins->base(); + MOZ_ASSERT(base->type() == MIRType::Int32); + + if (ins->access().type() == Scalar::Int64 && ins->access().isAtomic()) { + auto* lir = new (alloc()) LWasmAtomicStoreI64( + useRegister(base), + useInt64Fixed(ins->value(), Register64(IntArgReg1, IntArgReg0)), + tempFixed(IntArgReg2), tempFixed(IntArgReg3)); + add(lir, ins); + return; + } + + LAllocation ptr = useRegisterAtStart(base); + + if (ins->value()->type() == MIRType::Int64) { + LInt64Allocation value = useInt64RegisterAtStart(ins->value()); + auto* lir = new (alloc()) LWasmStoreI64(ptr, value); + if (ins->access().offset() || ins->access().type() == Scalar::Int64) { + lir->setTemp(0, tempCopy(base, 0)); + } + add(lir, ins); + return; + } + + LAllocation value = useRegisterAtStart(ins->value()); + auto* lir = new (alloc()) LWasmStore(ptr, value); + + if (ins->access().offset()) { + lir->setTemp(0, tempCopy(base, 0)); + } + + add(lir, ins); +} + +void LIRGenerator::visitAsmJSLoadHeap(MAsmJSLoadHeap* ins) { + MDefinition* base = ins->base(); + MOZ_ASSERT(base->type() == MIRType::Int32); + + // For the ARM it is best to keep the 'base' in a register if a bounds check + // is needed. + LAllocation baseAlloc; + LAllocation limitAlloc; + + if (base->isConstant() && !ins->needsBoundsCheck()) { + // A bounds check is only skipped for a positive index. + MOZ_ASSERT(base->toConstant()->toInt32() >= 0); + baseAlloc = LAllocation(base->toConstant()); + } else { + baseAlloc = useRegisterAtStart(base); + if (ins->needsBoundsCheck()) { + MDefinition* boundsCheckLimit = ins->boundsCheckLimit(); + MOZ_ASSERT(boundsCheckLimit->type() == MIRType::Int32); + limitAlloc = useRegisterAtStart(boundsCheckLimit); + } + } + + define(new (alloc()) LAsmJSLoadHeap(baseAlloc, limitAlloc, LAllocation()), + ins); +} + +void LIRGenerator::visitAsmJSStoreHeap(MAsmJSStoreHeap* ins) { + MDefinition* base = ins->base(); + MOZ_ASSERT(base->type() == MIRType::Int32); + + LAllocation baseAlloc; + LAllocation limitAlloc; + + if (base->isConstant() && !ins->needsBoundsCheck()) { + MOZ_ASSERT(base->toConstant()->toInt32() >= 0); + baseAlloc = LAllocation(base->toConstant()); + } else { + baseAlloc = useRegisterAtStart(base); + if (ins->needsBoundsCheck()) { + MDefinition* boundsCheckLimit = ins->boundsCheckLimit(); + MOZ_ASSERT(boundsCheckLimit->type() == MIRType::Int32); + limitAlloc = useRegisterAtStart(boundsCheckLimit); + } + } + + add(new (alloc()) LAsmJSStoreHeap(baseAlloc, useRegisterAtStart(ins->value()), + limitAlloc, LAllocation()), + ins); +} + +void LIRGeneratorARM::lowerTruncateDToInt32(MTruncateToInt32* ins) { + MDefinition* opd = ins->input(); + MOZ_ASSERT(opd->type() == MIRType::Double); + + define(new (alloc()) + LTruncateDToInt32(useRegister(opd), LDefinition::BogusTemp()), + ins); +} + +void LIRGeneratorARM::lowerTruncateFToInt32(MTruncateToInt32* ins) { + MDefinition* opd = ins->input(); + MOZ_ASSERT(opd->type() == MIRType::Float32); + + define(new (alloc()) + LTruncateFToInt32(useRegister(opd), LDefinition::BogusTemp()), + ins); +} + +void LIRGenerator::visitAtomicExchangeTypedArrayElement( + MAtomicExchangeTypedArrayElement* ins) { + MOZ_ASSERT(HasLDSTREXBHD()); + + MOZ_ASSERT(ins->elements()->type() == MIRType::Elements); + MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr); + + const LUse elements = useRegister(ins->elements()); + const LAllocation index = + useRegisterOrIndexConstant(ins->index(), ins->arrayType()); + const LAllocation value = useRegister(ins->value()); + + if (Scalar::isBigIntType(ins->arrayType())) { + // The two register pairs must be distinct. + LInt64Definition temp1 = tempInt64Fixed(Register64(IntArgReg3, IntArgReg2)); + LDefinition temp2 = tempFixed(IntArgReg1); + + auto* lir = new (alloc()) LAtomicExchangeTypedArrayElement64( + elements, index, value, temp1, temp2); + defineFixed(lir, ins, LAllocation(AnyRegister(IntArgReg0))); + assignSafepoint(lir, ins); + return; + } + + MOZ_ASSERT(ins->arrayType() <= Scalar::Uint32); + + // If the target is a floating register then we need a temp at the + // CodeGenerator level for creating the result. + + LDefinition tempDef = LDefinition::BogusTemp(); + if (ins->arrayType() == Scalar::Uint32) { + MOZ_ASSERT(ins->type() == MIRType::Double); + tempDef = temp(); + } + + LAtomicExchangeTypedArrayElement* lir = new (alloc()) + LAtomicExchangeTypedArrayElement(elements, index, value, tempDef); + + define(lir, ins); +} + +void LIRGenerator::visitAtomicTypedArrayElementBinop( + MAtomicTypedArrayElementBinop* ins) { + MOZ_ASSERT(ins->arrayType() != Scalar::Uint8Clamped); + MOZ_ASSERT(ins->arrayType() != Scalar::Float32); + MOZ_ASSERT(ins->arrayType() != Scalar::Float64); + + MOZ_ASSERT(ins->elements()->type() == MIRType::Elements); + MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr); + + const LUse elements = useRegister(ins->elements()); + const LAllocation index = + useRegisterOrIndexConstant(ins->index(), ins->arrayType()); + const LAllocation value = useRegister(ins->value()); + + if (Scalar::isBigIntType(ins->arrayType())) { + // Wasm additionally pins the value register to `FetchOpVal64`, but it's + // unclear why this was deemed necessary. + LInt64Definition temp1 = tempInt64(); + LInt64Definition temp2 = tempInt64Fixed(FetchOpTmp64); + + if (ins->isForEffect()) { + auto* lir = new (alloc()) LAtomicTypedArrayElementBinopForEffect64( + elements, index, value, temp1, temp2); + add(lir, ins); + return; + } + + LInt64Definition temp3 = tempInt64Fixed(FetchOpOut64); + + auto* lir = new (alloc()) LAtomicTypedArrayElementBinop64( + elements, index, value, temp1, temp2, temp3); + define(lir, ins); + assignSafepoint(lir, ins); + return; + } + + if (ins->isForEffect()) { + LAtomicTypedArrayElementBinopForEffect* lir = new (alloc()) + LAtomicTypedArrayElementBinopForEffect(elements, index, value, + /* flagTemp= */ temp()); + add(lir, ins); + return; + } + + // For a Uint32Array with a known double result we need a temp for + // the intermediate output. + // + // Optimization opportunity (bug 1077317): We can do better by + // allowing 'value' to remain as an imm32 if it is small enough to + // fit in an instruction. + + LDefinition flagTemp = temp(); + LDefinition outTemp = LDefinition::BogusTemp(); + + if (ins->arrayType() == Scalar::Uint32 && IsFloatingPointType(ins->type())) { + outTemp = temp(); + } + + // On arm, map flagTemp to temp1 and outTemp to temp2, at least for now. + + LAtomicTypedArrayElementBinop* lir = new (alloc()) + LAtomicTypedArrayElementBinop(elements, index, value, flagTemp, outTemp); + define(lir, ins); +} + +void LIRGenerator::visitCompareExchangeTypedArrayElement( + MCompareExchangeTypedArrayElement* ins) { + MOZ_ASSERT(ins->arrayType() != Scalar::Float32); + MOZ_ASSERT(ins->arrayType() != Scalar::Float64); + + MOZ_ASSERT(ins->elements()->type() == MIRType::Elements); + MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr); + + const LUse elements = useRegister(ins->elements()); + const LAllocation index = + useRegisterOrIndexConstant(ins->index(), ins->arrayType()); + + const LAllocation newval = useRegister(ins->newval()); + const LAllocation oldval = useRegister(ins->oldval()); + + if (Scalar::isBigIntType(ins->arrayType())) { + // The three register pairs must be distinct. + LInt64Definition temp1 = tempInt64Fixed(CmpXchgOld64); + LInt64Definition temp2 = tempInt64Fixed(CmpXchgNew64); + LInt64Definition temp3 = tempInt64Fixed(CmpXchgOut64); + + auto* lir = new (alloc()) LCompareExchangeTypedArrayElement64( + elements, index, oldval, newval, temp1, temp2, temp3); + define(lir, ins); + assignSafepoint(lir, ins); + return; + } + + // If the target is a floating register then we need a temp at the + // CodeGenerator level for creating the result. + // + // Optimization opportunity (bug 1077317): We could do better by + // allowing oldval to remain an immediate, if it is small enough + // to fit in an instruction. + + LDefinition tempDef = LDefinition::BogusTemp(); + if (ins->arrayType() == Scalar::Uint32 && IsFloatingPointType(ins->type())) { + tempDef = temp(); + } + + LCompareExchangeTypedArrayElement* lir = + new (alloc()) LCompareExchangeTypedArrayElement(elements, index, oldval, + newval, tempDef); + + define(lir, ins); +} + +void LIRGeneratorARM::lowerAtomicLoad64(MLoadUnboxedScalar* ins) { + const LUse elements = useRegister(ins->elements()); + const LAllocation index = + useRegisterOrIndexConstant(ins->index(), ins->storageType()); + + auto* lir = new (alloc()) + LAtomicLoad64(elements, index, temp(), + tempInt64Fixed(Register64(IntArgReg1, IntArgReg0))); + define(lir, ins); + assignSafepoint(lir, ins); +} + +void LIRGeneratorARM::lowerAtomicStore64(MStoreUnboxedScalar* ins) { + LUse elements = useRegister(ins->elements()); + LAllocation index = + useRegisterOrIndexConstant(ins->index(), ins->writeType()); + LAllocation value = useRegister(ins->value()); + LInt64Definition temp1 = tempInt64Fixed(Register64(IntArgReg1, IntArgReg0)); + LInt64Definition temp2 = tempInt64Fixed(Register64(IntArgReg3, IntArgReg2)); + + add(new (alloc()) LAtomicStore64(elements, index, value, temp1, temp2), ins); +} + +void LIRGenerator::visitWasmCompareExchangeHeap(MWasmCompareExchangeHeap* ins) { + MDefinition* base = ins->base(); + MOZ_ASSERT(base->type() == MIRType::Int32); + + if (ins->access().type() == Scalar::Int64) { + // The three register pairs must be distinct. + auto* lir = new (alloc()) LWasmCompareExchangeI64( + useRegister(base), useInt64Fixed(ins->oldValue(), CmpXchgOld64), + useInt64Fixed(ins->newValue(), CmpXchgNew64)); + defineInt64Fixed(lir, ins, + LInt64Allocation(LAllocation(AnyRegister(CmpXchgOutHi)), + LAllocation(AnyRegister(CmpXchgOutLo)))); + return; + } + + MOZ_ASSERT(ins->access().type() < Scalar::Float32); + MOZ_ASSERT(HasLDSTREXBHD(), "by HasPlatformSupport() constraints"); + + LWasmCompareExchangeHeap* lir = new (alloc()) + LWasmCompareExchangeHeap(useRegister(base), useRegister(ins->oldValue()), + useRegister(ins->newValue())); + + define(lir, ins); +} + +void LIRGenerator::visitWasmAtomicExchangeHeap(MWasmAtomicExchangeHeap* ins) { + MOZ_ASSERT(ins->base()->type() == MIRType::Int32); + + if (ins->access().type() == Scalar::Int64) { + auto* lir = new (alloc()) LWasmAtomicExchangeI64( + useRegister(ins->base()), useInt64Fixed(ins->value(), XchgNew64), + ins->access()); + defineInt64Fixed(lir, ins, + LInt64Allocation(LAllocation(AnyRegister(XchgOutHi)), + LAllocation(AnyRegister(XchgOutLo)))); + return; + } + + MOZ_ASSERT(ins->access().type() < Scalar::Float32); + MOZ_ASSERT(HasLDSTREXBHD(), "by HasPlatformSupport() constraints"); + + const LAllocation base = useRegister(ins->base()); + const LAllocation value = useRegister(ins->value()); + define(new (alloc()) LWasmAtomicExchangeHeap(base, value), ins); +} + +void LIRGenerator::visitWasmAtomicBinopHeap(MWasmAtomicBinopHeap* ins) { + if (ins->access().type() == Scalar::Int64) { + auto* lir = new (alloc()) LWasmAtomicBinopI64( + useRegister(ins->base()), useInt64Fixed(ins->value(), FetchOpVal64), + tempFixed(FetchOpTmpLo), tempFixed(FetchOpTmpHi), ins->access(), + ins->operation()); + defineInt64Fixed(lir, ins, + LInt64Allocation(LAllocation(AnyRegister(FetchOpOutHi)), + LAllocation(AnyRegister(FetchOpOutLo)))); + return; + } + + MOZ_ASSERT(ins->access().type() < Scalar::Float32); + MOZ_ASSERT(HasLDSTREXBHD(), "by HasPlatformSupport() constraints"); + + MDefinition* base = ins->base(); + MOZ_ASSERT(base->type() == MIRType::Int32); + + if (!ins->hasUses()) { + LWasmAtomicBinopHeapForEffect* lir = + new (alloc()) LWasmAtomicBinopHeapForEffect(useRegister(base), + useRegister(ins->value()), + /* flagTemp= */ temp()); + add(lir, ins); + return; + } + + LWasmAtomicBinopHeap* lir = new (alloc()) + LWasmAtomicBinopHeap(useRegister(base), useRegister(ins->value()), + /* temp = */ LDefinition::BogusTemp(), + /* flagTemp= */ temp()); + define(lir, ins); +} + +void LIRGenerator::visitSubstr(MSubstr* ins) { + LSubstr* lir = new (alloc()) + LSubstr(useRegister(ins->string()), useRegister(ins->begin()), + useRegister(ins->length()), temp(), temp(), tempByteOpRegister()); + define(lir, ins); + assignSafepoint(lir, ins); +} + +void LIRGenerator::visitWasmTruncateToInt64(MWasmTruncateToInt64* ins) { + MOZ_CRASH("We don't use MWasmTruncateToInt64 for arm"); +} + +void LIRGeneratorARM::lowerWasmBuiltinTruncateToInt64( + MWasmBuiltinTruncateToInt64* ins) { + MDefinition* opd = ins->input(); + MDefinition* instance = ins->instance(); + MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32); + + defineReturn(new (alloc()) + LWasmTruncateToInt64(useRegisterAtStart(opd), + useFixedAtStart(instance, InstanceReg)), + ins); +} + +void LIRGenerator::visitInt64ToFloatingPoint(MInt64ToFloatingPoint* ins) { + MOZ_CRASH("We use BuiltinInt64ToFloatingPoint instead."); +} + +void LIRGeneratorARM::lowerBuiltinInt64ToFloatingPoint( + MBuiltinInt64ToFloatingPoint* ins) { + MOZ_ASSERT(ins->type() == MIRType::Double || ins->type() == MIRType::Float32); + + auto* lir = new (alloc()) + LInt64ToFloatingPointCall(useInt64RegisterAtStart(ins->input()), + useFixedAtStart(ins->instance(), InstanceReg)); + defineReturn(lir, ins); +} + +void LIRGenerator::visitCopySign(MCopySign* ins) { + MDefinition* lhs = ins->lhs(); + MDefinition* rhs = ins->rhs(); + + MOZ_ASSERT(IsFloatingPointType(lhs->type())); + MOZ_ASSERT(lhs->type() == rhs->type()); + MOZ_ASSERT(lhs->type() == ins->type()); + + LInstructionHelper<1, 2, 2>* lir; + if (lhs->type() == MIRType::Double) { + lir = new (alloc()) LCopySignD(); + } else { + lir = new (alloc()) LCopySignF(); + } + + lir->setTemp(0, temp()); + lir->setTemp(1, temp()); + + lowerForFPU(lir, ins, lhs, rhs); +} + +void LIRGenerator::visitExtendInt32ToInt64(MExtendInt32ToInt64* ins) { + auto* lir = + new (alloc()) LExtendInt32ToInt64(useRegisterAtStart(ins->input())); + defineInt64(lir, ins); + + LDefinition def(LDefinition::GENERAL, LDefinition::MUST_REUSE_INPUT); + def.setReusedInput(0); + def.setVirtualRegister(ins->virtualRegister()); + + lir->setDef(0, def); +} + +void LIRGenerator::visitSignExtendInt64(MSignExtendInt64* ins) { + defineInt64(new (alloc()) + LSignExtendInt64(useInt64RegisterAtStart(ins->input())), + ins); +} + +// On arm we specialize the only cases where compare is {U,}Int32 and select +// is {U,}Int32. +bool LIRGeneratorShared::canSpecializeWasmCompareAndSelect( + MCompare::CompareType compTy, MIRType insTy) { + return insTy == MIRType::Int32 && (compTy == MCompare::Compare_Int32 || + compTy == MCompare::Compare_UInt32); +} + +void LIRGeneratorShared::lowerWasmCompareAndSelect(MWasmSelect* ins, + MDefinition* lhs, + MDefinition* rhs, + MCompare::CompareType compTy, + JSOp jsop) { + MOZ_ASSERT(canSpecializeWasmCompareAndSelect(compTy, ins->type())); + auto* lir = new (alloc()) LWasmCompareAndSelect( + useRegister(lhs), useRegister(rhs), compTy, jsop, + useRegisterAtStart(ins->trueExpr()), useRegister(ins->falseExpr())); + defineReuseInput(lir, ins, LWasmCompareAndSelect::IfTrueExprIndex); +} + +void LIRGenerator::visitWasmTernarySimd128(MWasmTernarySimd128* ins) { + MOZ_CRASH("ternary SIMD NYI"); +} + +void LIRGenerator::visitWasmBinarySimd128(MWasmBinarySimd128* ins) { + MOZ_CRASH("binary SIMD NYI"); +} + +#ifdef ENABLE_WASM_SIMD +bool MWasmTernarySimd128::specializeBitselectConstantMaskAsShuffle( + int8_t shuffle[16]) { + return false; +} +bool MWasmTernarySimd128::canRelaxBitselect() { return false; } + +bool MWasmBinarySimd128::canPmaddubsw() { return false; } +#endif + +bool MWasmBinarySimd128::specializeForConstantRhs() { + // Probably many we want to do here + return false; +} + +void LIRGenerator::visitWasmBinarySimd128WithConstant( + MWasmBinarySimd128WithConstant* ins) { + MOZ_CRASH("binary SIMD with constant NYI"); +} + +void LIRGenerator::visitWasmShiftSimd128(MWasmShiftSimd128* ins) { + MOZ_CRASH("shift SIMD NYI"); +} + +void LIRGenerator::visitWasmShuffleSimd128(MWasmShuffleSimd128* ins) { + MOZ_CRASH("shuffle SIMD NYI"); +} + +void LIRGenerator::visitWasmReplaceLaneSimd128(MWasmReplaceLaneSimd128* ins) { + MOZ_CRASH("replace-lane SIMD NYI"); +} + +void LIRGenerator::visitWasmScalarToSimd128(MWasmScalarToSimd128* ins) { + MOZ_CRASH("scalar-to-SIMD NYI"); +} + +void LIRGenerator::visitWasmUnarySimd128(MWasmUnarySimd128* ins) { + MOZ_CRASH("unary SIMD NYI"); +} + +void LIRGenerator::visitWasmReduceSimd128(MWasmReduceSimd128* ins) { + MOZ_CRASH("reduce-SIMD NYI"); +} + +void LIRGenerator::visitWasmLoadLaneSimd128(MWasmLoadLaneSimd128* ins) { + MOZ_CRASH("load-lane SIMD NYI"); +} + +void LIRGenerator::visitWasmStoreLaneSimd128(MWasmStoreLaneSimd128* ins) { + MOZ_CRASH("store-lane SIMD NYI"); +} diff --git a/js/src/jit/arm/Lowering-arm.h b/js/src/jit/arm/Lowering-arm.h new file mode 100644 index 0000000000..3f03d22941 --- /dev/null +++ b/js/src/jit/arm/Lowering-arm.h @@ -0,0 +1,118 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifndef jit_arm_Lowering_arm_h +#define jit_arm_Lowering_arm_h + +#include "jit/shared/Lowering-shared.h" + +namespace js { +namespace jit { + +class LIRGeneratorARM : public LIRGeneratorShared { + protected: + LIRGeneratorARM(MIRGenerator* gen, MIRGraph& graph, LIRGraph& lirGraph) + : LIRGeneratorShared(gen, graph, lirGraph) {} + + // Returns a box allocation with type set to reg1 and payload set to reg2. + LBoxAllocation useBoxFixed(MDefinition* mir, Register reg1, Register reg2, + bool useAtStart = false); + + // x86 has constraints on what registers can be formatted for 1-byte + // stores and loads; on ARM all registers are okay. + LAllocation useByteOpRegister(MDefinition* mir); + LAllocation useByteOpRegisterAtStart(MDefinition* mir); + LAllocation useByteOpRegisterOrNonDoubleConstant(MDefinition* mir); + LDefinition tempByteOpRegister(); + + inline LDefinition tempToUnbox() { return LDefinition::BogusTemp(); } + + bool needTempForPostBarrier() { return false; } + + void lowerUntypedPhiInput(MPhi* phi, uint32_t inputPosition, LBlock* block, + size_t lirIndex); + void lowerInt64PhiInput(MPhi* phi, uint32_t inputPosition, LBlock* block, + size_t lirIndex); + void defineInt64Phi(MPhi* phi, size_t lirIndex); + + void lowerForShift(LInstructionHelper<1, 2, 0>* ins, MDefinition* mir, + MDefinition* lhs, MDefinition* rhs); + void lowerUrshD(MUrsh* mir); + + void lowerPowOfTwoI(MPow* mir); + + void lowerForALU(LInstructionHelper<1, 1, 0>* ins, MDefinition* mir, + MDefinition* input); + void lowerForALU(LInstructionHelper<1, 2, 0>* ins, MDefinition* mir, + MDefinition* lhs, MDefinition* rhs); + + void lowerForALUInt64(LInstructionHelper<INT64_PIECES, INT64_PIECES, 0>* ins, + MDefinition* mir, MDefinition* input); + void lowerForALUInt64( + LInstructionHelper<INT64_PIECES, 2 * INT64_PIECES, 0>* ins, + MDefinition* mir, MDefinition* lhs, MDefinition* rhs); + void lowerForMulInt64(LMulI64* ins, MMul* mir, MDefinition* lhs, + MDefinition* rhs); + template <size_t Temps> + void lowerForShiftInt64( + LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, Temps>* ins, + MDefinition* mir, MDefinition* lhs, MDefinition* rhs); + + void lowerForCompareI64AndBranch(MTest* mir, MCompare* comp, JSOp op, + MDefinition* left, MDefinition* right, + MBasicBlock* ifTrue, MBasicBlock* ifFalse); + + void lowerForFPU(LInstructionHelper<1, 1, 0>* ins, MDefinition* mir, + MDefinition* src); + template <size_t Temps> + void lowerForFPU(LInstructionHelper<1, 2, Temps>* ins, MDefinition* mir, + MDefinition* lhs, MDefinition* rhs); + + void lowerBuiltinInt64ToFloatingPoint(MBuiltinInt64ToFloatingPoint* ins); + void lowerWasmBuiltinTruncateToInt64(MWasmBuiltinTruncateToInt64* ins); + void lowerForBitAndAndBranch(LBitAndAndBranch* baab, MInstruction* mir, + MDefinition* lhs, MDefinition* rhs); + void lowerWasmBuiltinTruncateToInt32(MWasmBuiltinTruncateToInt32* ins); + void lowerTruncateDToInt32(MTruncateToInt32* ins); + void lowerTruncateFToInt32(MTruncateToInt32* ins); + void lowerDivI(MDiv* div); + void lowerModI(MMod* mod); + void lowerDivI64(MDiv* div); + void lowerWasmBuiltinDivI64(MWasmBuiltinDivI64* div); + void lowerModI64(MMod* mod); + void lowerWasmBuiltinModI64(MWasmBuiltinModI64* mod); + void lowerUDivI64(MDiv* div); + void lowerUModI64(MMod* mod); + void lowerNegI(MInstruction* ins, MDefinition* input); + void lowerNegI64(MInstruction* ins, MDefinition* input); + void lowerMulI(MMul* mul, MDefinition* lhs, MDefinition* rhs); + void lowerUDiv(MDiv* div); + void lowerUMod(MMod* mod); + void lowerWasmSelectI(MWasmSelect* select); + void lowerWasmSelectI64(MWasmSelect* select); + + void lowerBigIntLsh(MBigIntLsh* ins); + void lowerBigIntRsh(MBigIntRsh* ins); + void lowerBigIntDiv(MBigIntDiv* ins); + void lowerBigIntMod(MBigIntMod* ins); + + void lowerAtomicLoad64(MLoadUnboxedScalar* ins); + void lowerAtomicStore64(MStoreUnboxedScalar* ins); + + LTableSwitch* newLTableSwitch(const LAllocation& in, + const LDefinition& inputCopy, + MTableSwitch* ins); + LTableSwitchV* newLTableSwitchV(MTableSwitch* ins); + + void lowerPhi(MPhi* phi); +}; + +typedef LIRGeneratorARM LIRGeneratorSpecific; + +} // namespace jit +} // namespace js + +#endif /* jit_arm_Lowering_arm_h */ diff --git a/js/src/jit/arm/MacroAssembler-arm-inl.h b/js/src/jit/arm/MacroAssembler-arm-inl.h new file mode 100644 index 0000000000..94d323207e --- /dev/null +++ b/js/src/jit/arm/MacroAssembler-arm-inl.h @@ -0,0 +1,2582 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifndef jit_arm_MacroAssembler_arm_inl_h +#define jit_arm_MacroAssembler_arm_inl_h + +#include "jit/arm/MacroAssembler-arm.h" + +namespace js { +namespace jit { + +//{{{ check_macroassembler_style + +void MacroAssembler::move64(Register64 src, Register64 dest) { + move32(src.low, dest.low); + move32(src.high, dest.high); +} + +void MacroAssembler::move64(Imm64 imm, Register64 dest) { + move32(Imm32(imm.value & 0xFFFFFFFFL), dest.low); + move32(Imm32((imm.value >> 32) & 0xFFFFFFFFL), dest.high); +} + +void MacroAssembler::moveFloat32ToGPR(FloatRegister src, Register dest) { + ma_vxfer(src, dest); +} + +void MacroAssembler::moveGPRToFloat32(Register src, FloatRegister dest) { + ma_vxfer(src, dest); +} + +void MacroAssembler::move8SignExtend(Register src, Register dest) { + as_sxtb(dest, src, 0); +} + +void MacroAssembler::move16SignExtend(Register src, Register dest) { + as_sxth(dest, src, 0); +} + +void MacroAssembler::moveDoubleToGPR64(FloatRegister src, Register64 dest) { + ma_vxfer(src, dest.low, dest.high); +} + +void MacroAssembler::moveGPR64ToDouble(Register64 src, FloatRegister dest) { + ma_vxfer(src.low, src.high, dest); +} + +void MacroAssembler::move64To32(Register64 src, Register dest) { + if (src.low != dest) { + move32(src.low, dest); + } +} + +void MacroAssembler::move32To64ZeroExtend(Register src, Register64 dest) { + if (src != dest.low) { + move32(src, dest.low); + } + move32(Imm32(0), dest.high); +} + +void MacroAssembler::move8To64SignExtend(Register src, Register64 dest) { + as_sxtb(dest.low, src, 0); + ma_asr(Imm32(31), dest.low, dest.high); +} + +void MacroAssembler::move16To64SignExtend(Register src, Register64 dest) { + as_sxth(dest.low, src, 0); + ma_asr(Imm32(31), dest.low, dest.high); +} + +void MacroAssembler::move32To64SignExtend(Register src, Register64 dest) { + if (src != dest.low) { + move32(src, dest.low); + } + ma_asr(Imm32(31), dest.low, dest.high); +} + +void MacroAssembler::move32SignExtendToPtr(Register src, Register dest) { + move32(src, dest); +} + +void MacroAssembler::move32ZeroExtendToPtr(Register src, Register dest) { + move32(src, dest); +} + +// =============================================================== +// Load instructions + +void MacroAssembler::load32SignExtendToPtr(const Address& src, Register dest) { + load32(src, dest); +} + +void MacroAssembler::loadAbiReturnAddress(Register dest) { movePtr(lr, dest); } + +// =============================================================== +// Logical instructions + +void MacroAssembler::not32(Register reg) { ma_mvn(reg, reg); } + +void MacroAssembler::notPtr(Register reg) { ma_mvn(reg, reg); } + +void MacroAssembler::and32(Register src, Register dest) { + ma_and(src, dest, SetCC); +} + +void MacroAssembler::and32(Imm32 imm, Register dest) { + ScratchRegisterScope scratch(*this); + ma_and(imm, dest, scratch, SetCC); +} + +void MacroAssembler::and32(Imm32 imm, const Address& dest) { + ScratchRegisterScope scratch(*this); + SecondScratchRegisterScope scratch2(*this); + + ma_ldr(dest, scratch, scratch2); + ma_and(imm, scratch, scratch2); + ma_str(scratch, dest, scratch2); +} + +void MacroAssembler::and32(const Address& src, Register dest) { + ScratchRegisterScope scratch(*this); + SecondScratchRegisterScope scratch2(*this); + + ma_ldr(src, scratch, scratch2); + ma_and(scratch, dest, SetCC); +} + +void MacroAssembler::andPtr(Register src, Register dest) { ma_and(src, dest); } + +void MacroAssembler::andPtr(Imm32 imm, Register dest) { + ScratchRegisterScope scratch(*this); + ma_and(imm, dest, scratch); +} + +void MacroAssembler::and64(Imm64 imm, Register64 dest) { + if (imm.low().value != int32_t(0xFFFFFFFF)) { + and32(imm.low(), dest.low); + } + if (imm.hi().value != int32_t(0xFFFFFFFF)) { + and32(imm.hi(), dest.high); + } +} + +void MacroAssembler::or64(Imm64 imm, Register64 dest) { + if (imm.low().value) { + or32(imm.low(), dest.low); + } + if (imm.hi().value) { + or32(imm.hi(), dest.high); + } +} + +void MacroAssembler::xor64(Imm64 imm, Register64 dest) { + if (imm.low().value) { + xor32(imm.low(), dest.low); + } + if (imm.hi().value) { + xor32(imm.hi(), dest.high); + } +} + +void MacroAssembler::or32(Register src, Register dest) { ma_orr(src, dest); } + +void MacroAssembler::or32(Imm32 imm, Register dest) { + ScratchRegisterScope scratch(*this); + ma_orr(imm, dest, scratch); +} + +void MacroAssembler::or32(Imm32 imm, const Address& dest) { + ScratchRegisterScope scratch(*this); + SecondScratchRegisterScope scratch2(*this); + + ma_ldr(dest, scratch, scratch2); + ma_orr(imm, scratch, scratch2); + ma_str(scratch, dest, scratch2); +} + +void MacroAssembler::orPtr(Register src, Register dest) { ma_orr(src, dest); } + +void MacroAssembler::orPtr(Imm32 imm, Register dest) { + ScratchRegisterScope scratch(*this); + ma_orr(imm, dest, scratch); +} + +void MacroAssembler::and64(Register64 src, Register64 dest) { + and32(src.low, dest.low); + and32(src.high, dest.high); +} + +void MacroAssembler::or64(Register64 src, Register64 dest) { + or32(src.low, dest.low); + or32(src.high, dest.high); +} + +void MacroAssembler::xor64(Register64 src, Register64 dest) { + ma_eor(src.low, dest.low); + ma_eor(src.high, dest.high); +} + +void MacroAssembler::xor32(Register src, Register dest) { + ma_eor(src, dest, SetCC); +} + +void MacroAssembler::xor32(Imm32 imm, Register dest) { + ScratchRegisterScope scratch(*this); + ma_eor(imm, dest, scratch, SetCC); +} + +void MacroAssembler::xor32(Imm32 imm, const Address& dest) { + ScratchRegisterScope scratch(*this); + SecondScratchRegisterScope scratch2(*this); + + ma_ldr(dest, scratch, scratch2); + ma_eor(imm, scratch, scratch2); + ma_str(scratch, dest, scratch2); +} + +void MacroAssembler::xor32(const Address& src, Register dest) { + ScratchRegisterScope scratch(*this); + SecondScratchRegisterScope scratch2(*this); + + ma_ldr(src, scratch, scratch2); + ma_eor(scratch, dest, SetCC); +} + +void MacroAssembler::xorPtr(Register src, Register dest) { ma_eor(src, dest); } + +void MacroAssembler::xorPtr(Imm32 imm, Register dest) { + ScratchRegisterScope scratch(*this); + ma_eor(imm, dest, scratch); +} + +// =============================================================== +// Swap instructions + +void MacroAssembler::byteSwap16SignExtend(Register reg) { as_revsh(reg, reg); } + +void MacroAssembler::byteSwap16ZeroExtend(Register reg) { + as_rev16(reg, reg); + as_uxth(reg, reg, 0); +} + +void MacroAssembler::byteSwap32(Register reg) { as_rev(reg, reg); } + +void MacroAssembler::byteSwap64(Register64 reg) { + as_rev(reg.high, reg.high); + as_rev(reg.low, reg.low); + + ScratchRegisterScope scratch(*this); + ma_mov(reg.high, scratch); + ma_mov(reg.low, reg.high); + ma_mov(scratch, reg.low); +} + +// =============================================================== +// Arithmetic functions + +void MacroAssembler::add32(Register src, Register dest) { + ma_add(src, dest, SetCC); +} + +void MacroAssembler::add32(Imm32 imm, Register dest) { + ScratchRegisterScope scratch(*this); + ma_add(imm, dest, scratch, SetCC); +} + +void MacroAssembler::add32(Imm32 imm, const Address& dest) { + ScratchRegisterScope scratch(*this); + SecondScratchRegisterScope scratch2(*this); + + ma_ldr(dest, scratch, scratch2); + ma_add(imm, scratch, scratch2, SetCC); + ma_str(scratch, dest, scratch2); +} + +void MacroAssembler::addPtr(Register src, Register dest) { ma_add(src, dest); } + +void MacroAssembler::addPtr(Imm32 imm, Register dest) { + ScratchRegisterScope scratch(*this); + ma_add(imm, dest, scratch); +} + +void MacroAssembler::addPtr(ImmWord imm, Register dest) { + addPtr(Imm32(imm.value), dest); +} + +void MacroAssembler::addPtr(Imm32 imm, const Address& dest) { + ScratchRegisterScope scratch(*this); + SecondScratchRegisterScope scratch2(*this); + + ma_ldr(dest, scratch, scratch2); + ma_add(imm, scratch, scratch2); + ma_str(scratch, dest, scratch2); +} + +void MacroAssembler::addPtr(const Address& src, Register dest) { + ScratchRegisterScope scratch(*this); + SecondScratchRegisterScope scratch2(*this); + + ma_ldr(src, scratch, scratch2); + ma_add(scratch, dest, SetCC); +} + +void MacroAssembler::add64(Register64 src, Register64 dest) { + ma_add(src.low, dest.low, SetCC); + ma_adc(src.high, dest.high); +} + +void MacroAssembler::add64(Imm32 imm, Register64 dest) { + ScratchRegisterScope scratch(*this); + ma_add(imm, dest.low, scratch, SetCC); + as_adc(dest.high, dest.high, Imm8(0), LeaveCC); +} + +void MacroAssembler::add64(Imm64 imm, Register64 dest) { + ScratchRegisterScope scratch(*this); + ma_add(imm.low(), dest.low, scratch, SetCC); + ma_adc(imm.hi(), dest.high, scratch, LeaveCC); +} + +CodeOffset MacroAssembler::sub32FromStackPtrWithPatch(Register dest) { + ScratchRegisterScope scratch(*this); + CodeOffset offs = CodeOffset(currentOffset()); + ma_movPatchable(Imm32(0), scratch, Always); + ma_sub(getStackPointer(), scratch, dest); + return offs; +} + +void MacroAssembler::patchSub32FromStackPtr(CodeOffset offset, Imm32 imm) { + ScratchRegisterScope scratch(*this); + BufferInstructionIterator iter(BufferOffset(offset.offset()), &m_buffer); + iter.maybeSkipAutomaticInstructions(); + ma_mov_patch(imm, scratch, Always, HasMOVWT() ? L_MOVWT : L_LDR, iter); +} + +void MacroAssembler::addDouble(FloatRegister src, FloatRegister dest) { + ma_vadd(dest, src, dest); +} + +void MacroAssembler::addFloat32(FloatRegister src, FloatRegister dest) { + ma_vadd_f32(dest, src, dest); +} + +void MacroAssembler::sub32(Register src, Register dest) { + ma_sub(src, dest, SetCC); +} + +void MacroAssembler::sub32(Imm32 imm, Register dest) { + ScratchRegisterScope scratch(*this); + ma_sub(imm, dest, scratch, SetCC); +} + +void MacroAssembler::sub32(const Address& src, Register dest) { + ScratchRegisterScope scratch(*this); + SecondScratchRegisterScope scratch2(*this); + + ma_ldr(src, scratch, scratch2); + ma_sub(scratch, dest, SetCC); +} + +void MacroAssembler::subPtr(Register src, Register dest) { ma_sub(src, dest); } + +void MacroAssembler::subPtr(Register src, const Address& dest) { + ScratchRegisterScope scratch(*this); + SecondScratchRegisterScope scratch2(*this); + + ma_ldr(dest, scratch, scratch2); + ma_sub(src, scratch); + ma_str(scratch, dest, scratch2); +} + +void MacroAssembler::subPtr(Imm32 imm, Register dest) { + ScratchRegisterScope scratch(*this); + ma_sub(imm, dest, scratch); +} + +void MacroAssembler::subPtr(const Address& addr, Register dest) { + ScratchRegisterScope scratch(*this); + SecondScratchRegisterScope scratch2(*this); + + ma_ldr(addr, scratch, scratch2); + ma_sub(scratch, dest); +} + +void MacroAssembler::sub64(Register64 src, Register64 dest) { + ma_sub(src.low, dest.low, SetCC); + ma_sbc(src.high, dest.high, LeaveCC); +} + +void MacroAssembler::sub64(Imm64 imm, Register64 dest) { + ScratchRegisterScope scratch(*this); + ma_sub(imm.low(), dest.low, scratch, SetCC); + ma_sbc(imm.hi(), dest.high, scratch, LeaveCC); +} + +void MacroAssembler::subDouble(FloatRegister src, FloatRegister dest) { + ma_vsub(dest, src, dest); +} + +void MacroAssembler::subFloat32(FloatRegister src, FloatRegister dest) { + ma_vsub_f32(dest, src, dest); +} + +void MacroAssembler::mul32(Register rhs, Register srcDest) { + as_mul(srcDest, srcDest, rhs); +} + +void MacroAssembler::mul32(Imm32 imm, Register srcDest) { + ScratchRegisterScope scratch(*this); + move32(imm, scratch); + mul32(scratch, srcDest); +} + +void MacroAssembler::mulHighUnsigned32(Imm32 imm, Register src, Register dest) { + ScratchRegisterScope scratch(*this); + ma_umull(src, imm, dest, scratch, scratch); +} + +void MacroAssembler::mulPtr(Register rhs, Register srcDest) { + as_mul(srcDest, srcDest, rhs); +} + +void MacroAssembler::mul64(Imm64 imm, const Register64& dest) { + // LOW32 = LOW(LOW(dest) * LOW(imm)); + // HIGH32 = LOW(HIGH(dest) * LOW(imm)) [multiply imm into upper bits] + // + LOW(LOW(dest) * HIGH(imm)) [multiply dest into upper bits] + // + HIGH(LOW(dest) * LOW(imm)) [carry] + + ScratchRegisterScope scratch(*this); + SecondScratchRegisterScope scratch2(*this); + + // HIGH(dest) = LOW(HIGH(dest) * LOW(imm)); + ma_mov(Imm32(imm.value & 0xFFFFFFFFL), scratch); + as_mul(dest.high, dest.high, scratch); + + // high:low = LOW(dest) * LOW(imm); + as_umull(scratch2, scratch, dest.low, scratch); + + // HIGH(dest) += high; + as_add(dest.high, dest.high, O2Reg(scratch2)); + + // HIGH(dest) += LOW(LOW(dest) * HIGH(imm)); + if (((imm.value >> 32) & 0xFFFFFFFFL) == 5) { + as_add(scratch2, dest.low, lsl(dest.low, 2)); + } else { + MOZ_CRASH("Not supported imm"); + } + as_add(dest.high, dest.high, O2Reg(scratch2)); + + // LOW(dest) = low; + ma_mov(scratch, dest.low); +} + +void MacroAssembler::mul64(Imm64 imm, const Register64& dest, + const Register temp) { + // LOW32 = LOW(LOW(dest) * LOW(src)); (1) + // HIGH32 = LOW(HIGH(dest) * LOW(src)) [multiply src into upper bits] (2) + // + LOW(LOW(dest) * HIGH(src)) [multiply dest into upper bits] (3) + // + HIGH(LOW(dest) * LOW(src)) [carry] (4) + + MOZ_ASSERT(temp != dest.high && temp != dest.low); + + // Compute mul64 + ScratchRegisterScope scratch(*this); + ma_mul(dest.high, imm.low(), dest.high, scratch); // (2) + ma_mul(dest.low, imm.hi(), temp, scratch); // (3) + ma_add(dest.high, temp, temp); + ma_umull(dest.low, imm.low(), dest.high, dest.low, scratch); // (4) + (1) + ma_add(temp, dest.high, dest.high); +} + +void MacroAssembler::mul64(const Register64& src, const Register64& dest, + const Register temp) { + // LOW32 = LOW(LOW(dest) * LOW(src)); (1) + // HIGH32 = LOW(HIGH(dest) * LOW(src)) [multiply src into upper bits] (2) + // + LOW(LOW(dest) * HIGH(src)) [multiply dest into upper bits] (3) + // + HIGH(LOW(dest) * LOW(src)) [carry] (4) + + MOZ_ASSERT(dest != src); + MOZ_ASSERT(dest.low != src.high && dest.high != src.low); + + // Compute mul64 + ma_mul(dest.high, src.low, dest.high); // (2) + ma_mul(src.high, dest.low, temp); // (3) + ma_add(dest.high, temp, temp); + ma_umull(dest.low, src.low, dest.high, dest.low); // (4) + (1) + ma_add(temp, dest.high, dest.high); +} + +void MacroAssembler::mulBy3(Register src, Register dest) { + as_add(dest, src, lsl(src, 1)); +} + +void MacroAssembler::mulFloat32(FloatRegister src, FloatRegister dest) { + ma_vmul_f32(dest, src, dest); +} + +void MacroAssembler::mulDouble(FloatRegister src, FloatRegister dest) { + ma_vmul(dest, src, dest); +} + +void MacroAssembler::mulDoublePtr(ImmPtr imm, Register temp, + FloatRegister dest) { + ScratchRegisterScope scratch(*this); + ScratchDoubleScope scratchDouble(*this); + + movePtr(imm, scratch); + ma_vldr(Operand(Address(scratch, 0)).toVFPAddr(), scratchDouble); + mulDouble(scratchDouble, dest); +} + +void MacroAssembler::quotient32(Register rhs, Register srcDest, + bool isUnsigned) { + MOZ_ASSERT(HasIDIV()); + if (isUnsigned) { + ma_udiv(srcDest, rhs, srcDest); + } else { + ma_sdiv(srcDest, rhs, srcDest); + } +} + +void MacroAssembler::remainder32(Register rhs, Register srcDest, + bool isUnsigned) { + MOZ_ASSERT(HasIDIV()); + + ScratchRegisterScope scratch(*this); + if (isUnsigned) { + ma_umod(srcDest, rhs, srcDest, scratch); + } else { + ma_smod(srcDest, rhs, srcDest, scratch); + } +} + +void MacroAssembler::divFloat32(FloatRegister src, FloatRegister dest) { + ma_vdiv_f32(dest, src, dest); +} + +void MacroAssembler::divDouble(FloatRegister src, FloatRegister dest) { + ma_vdiv(dest, src, dest); +} + +void MacroAssembler::inc64(AbsoluteAddress dest) { + ScratchRegisterScope scratch(*this); + + ma_strd(r0, r1, EDtrAddr(sp, EDtrOffImm(-8)), PreIndex); + + ma_mov(Imm32((int32_t)dest.addr), scratch); + ma_ldrd(EDtrAddr(scratch, EDtrOffImm(0)), r0, r1); + + as_add(r0, r0, Imm8(1), SetCC); + as_adc(r1, r1, Imm8(0), LeaveCC); + + ma_strd(r0, r1, EDtrAddr(scratch, EDtrOffImm(0))); + ma_ldrd(EDtrAddr(sp, EDtrOffImm(8)), r0, r1, PostIndex); +} + +void MacroAssembler::neg32(Register reg) { ma_neg(reg, reg, SetCC); } + +void MacroAssembler::neg64(Register64 reg) { + as_rsb(reg.low, reg.low, Imm8(0), SetCC); + as_rsc(reg.high, reg.high, Imm8(0)); +} + +void MacroAssembler::negPtr(Register reg) { neg32(reg); } + +void MacroAssembler::negateDouble(FloatRegister reg) { ma_vneg(reg, reg); } + +void MacroAssembler::negateFloat(FloatRegister reg) { ma_vneg_f32(reg, reg); } + +void MacroAssembler::abs32(Register src, Register dest) { + as_cmp(src, Imm8(0)); + as_rsb(dest, src, Imm8(0), LeaveCC, LessThan); + if (dest != src) { + as_mov(dest, O2Reg(src), LeaveCC, GreaterThanOrEqual); + } +} + +void MacroAssembler::absFloat32(FloatRegister src, FloatRegister dest) { + ma_vabs_f32(src, dest); +} + +void MacroAssembler::absDouble(FloatRegister src, FloatRegister dest) { + ma_vabs(src, dest); +} + +void MacroAssembler::sqrtFloat32(FloatRegister src, FloatRegister dest) { + ma_vsqrt_f32(src, dest); +} + +void MacroAssembler::sqrtDouble(FloatRegister src, FloatRegister dest) { + ma_vsqrt(src, dest); +} + +void MacroAssembler::minFloat32(FloatRegister other, FloatRegister srcDest, + bool handleNaN) { + minMaxFloat32(srcDest, other, handleNaN, false); +} + +void MacroAssembler::minDouble(FloatRegister other, FloatRegister srcDest, + bool handleNaN) { + minMaxDouble(srcDest, other, handleNaN, false); +} + +void MacroAssembler::maxFloat32(FloatRegister other, FloatRegister srcDest, + bool handleNaN) { + minMaxFloat32(srcDest, other, handleNaN, true); +} + +void MacroAssembler::maxDouble(FloatRegister other, FloatRegister srcDest, + bool handleNaN) { + minMaxDouble(srcDest, other, handleNaN, true); +} + +// =============================================================== +// Shift functions + +void MacroAssembler::lshiftPtr(Imm32 imm, Register dest) { + MOZ_ASSERT(0 <= imm.value && imm.value < 32); + ma_lsl(imm, dest, dest); +} + +void MacroAssembler::lshiftPtr(Register src, Register dest) { + ma_lsl(src, dest, dest); +} + +void MacroAssembler::lshift64(Imm32 imm, Register64 dest) { + MOZ_ASSERT(0 <= imm.value && imm.value < 64); + if (imm.value == 0) { + return; + } + + if (imm.value < 32) { + as_mov(dest.high, lsl(dest.high, imm.value)); + as_orr(dest.high, dest.high, lsr(dest.low, 32 - imm.value)); + as_mov(dest.low, lsl(dest.low, imm.value)); + } else { + as_mov(dest.high, lsl(dest.low, imm.value - 32)); + ma_mov(Imm32(0), dest.low); + } +} + +void MacroAssembler::lshift64(Register unmaskedShift, Register64 dest) { + // dest.high = dest.high << shift | dest.low << shift - 32 | dest.low >> 32 - + // shift Note: one of the two dest.low shift will always yield zero due to + // negative shift. + + ScratchRegisterScope shift(*this); + as_and(shift, unmaskedShift, Imm8(0x3f)); + as_mov(dest.high, lsl(dest.high, shift)); + as_sub(shift, shift, Imm8(32)); + as_orr(dest.high, dest.high, lsl(dest.low, shift)); + ma_neg(shift, shift); + as_orr(dest.high, dest.high, lsr(dest.low, shift)); + as_and(shift, unmaskedShift, Imm8(0x3f)); + as_mov(dest.low, lsl(dest.low, shift)); +} + +void MacroAssembler::lshift32(Register src, Register dest) { + ma_lsl(src, dest, dest); +} + +void MacroAssembler::flexibleLshift32(Register src, Register dest) { + ScratchRegisterScope scratch(*this); + as_and(scratch, src, Imm8(0x1F)); + lshift32(scratch, dest); +} + +void MacroAssembler::lshift32(Imm32 imm, Register dest) { + MOZ_ASSERT(0 <= imm.value && imm.value < 32); + lshiftPtr(imm, dest); +} + +void MacroAssembler::rshiftPtr(Imm32 imm, Register dest) { + MOZ_ASSERT(0 <= imm.value && imm.value < 32); + if (imm.value) { + ma_lsr(imm, dest, dest); + } +} + +void MacroAssembler::rshiftPtr(Register src, Register dest) { + ma_lsr(src, dest, dest); +} + +void MacroAssembler::rshift32(Register src, Register dest) { + ma_lsr(src, dest, dest); +} + +void MacroAssembler::flexibleRshift32(Register src, Register dest) { + ScratchRegisterScope scratch(*this); + as_and(scratch, src, Imm8(0x1F)); + rshift32(scratch, dest); +} + +void MacroAssembler::rshift32(Imm32 imm, Register dest) { + MOZ_ASSERT(0 <= imm.value && imm.value < 32); + rshiftPtr(imm, dest); +} + +void MacroAssembler::rshiftPtrArithmetic(Imm32 imm, Register dest) { + MOZ_ASSERT(0 <= imm.value && imm.value < 32); + if (imm.value) { + ma_asr(imm, dest, dest); + } +} + +void MacroAssembler::rshift64Arithmetic(Imm32 imm, Register64 dest) { + MOZ_ASSERT(0 <= imm.value && imm.value < 64); + if (!imm.value) { + return; + } + + if (imm.value < 32) { + as_mov(dest.low, lsr(dest.low, imm.value)); + as_orr(dest.low, dest.low, lsl(dest.high, 32 - imm.value)); + as_mov(dest.high, asr(dest.high, imm.value)); + } else if (imm.value == 32) { + as_mov(dest.low, O2Reg(dest.high)); + as_mov(dest.high, asr(dest.high, 31)); + } else { + as_mov(dest.low, asr(dest.high, imm.value - 32)); + as_mov(dest.high, asr(dest.high, 31)); + } +} + +void MacroAssembler::rshift64Arithmetic(Register unmaskedShift, + Register64 dest) { + Label proceed; + + // dest.low = dest.low >>> shift | dest.high <<< 32 - shift + // if (shift - 32 >= 0) + // dest.low |= dest.high >>> shift - 32 + // Note: Negative shifts yield a zero as result, except for the signed + // right shift. Therefore we need to test for it and only do it if + // it isn't negative. + ScratchRegisterScope shift(*this); + + as_and(shift, unmaskedShift, Imm8(0x3f)); + as_mov(dest.low, lsr(dest.low, shift)); + as_rsb(shift, shift, Imm8(32)); + as_orr(dest.low, dest.low, lsl(dest.high, shift)); + ma_neg(shift, shift, SetCC); + ma_b(&proceed, Signed); + + as_orr(dest.low, dest.low, asr(dest.high, shift)); + + bind(&proceed); + as_and(shift, unmaskedShift, Imm8(0x3f)); + as_mov(dest.high, asr(dest.high, shift)); +} + +void MacroAssembler::rshift32Arithmetic(Register src, Register dest) { + ma_asr(src, dest, dest); +} + +void MacroAssembler::rshift32Arithmetic(Imm32 imm, Register dest) { + MOZ_ASSERT(0 <= imm.value && imm.value < 32); + rshiftPtrArithmetic(imm, dest); +} + +void MacroAssembler::flexibleRshift32Arithmetic(Register src, Register dest) { + ScratchRegisterScope scratch(*this); + as_and(scratch, src, Imm8(0x1F)); + rshift32Arithmetic(scratch, dest); +} + +void MacroAssembler::rshift64(Imm32 imm, Register64 dest) { + MOZ_ASSERT(0 <= imm.value && imm.value < 64); + MOZ_ASSERT(0 <= imm.value && imm.value < 64); + if (!imm.value) { + return; + } + + if (imm.value < 32) { + as_mov(dest.low, lsr(dest.low, imm.value)); + as_orr(dest.low, dest.low, lsl(dest.high, 32 - imm.value)); + as_mov(dest.high, lsr(dest.high, imm.value)); + } else if (imm.value == 32) { + ma_mov(dest.high, dest.low); + ma_mov(Imm32(0), dest.high); + } else { + ma_lsr(Imm32(imm.value - 32), dest.high, dest.low); + ma_mov(Imm32(0), dest.high); + } +} + +void MacroAssembler::rshift64(Register unmaskedShift, Register64 dest) { + // dest.low = dest.low >> shift | dest.high >> shift - 32 | dest.high << 32 - + // shift Note: one of the two dest.high shifts will always yield zero due to + // negative shift. + + ScratchRegisterScope shift(*this); + as_and(shift, unmaskedShift, Imm8(0x3f)); + as_mov(dest.low, lsr(dest.low, shift)); + as_sub(shift, shift, Imm8(32)); + as_orr(dest.low, dest.low, lsr(dest.high, shift)); + ma_neg(shift, shift); + as_orr(dest.low, dest.low, lsl(dest.high, shift)); + as_and(shift, unmaskedShift, Imm8(0x3f)); + as_mov(dest.high, lsr(dest.high, shift)); +} + +// =============================================================== +// Rotate functions +void MacroAssembler::rotateLeft(Imm32 count, Register input, Register dest) { + if (count.value) { + ma_rol(count, input, dest); + } else { + ma_mov(input, dest); + } +} + +void MacroAssembler::rotateLeft(Register count, Register input, Register dest) { + ScratchRegisterScope scratch(*this); + ma_rol(count, input, dest, scratch); +} + +void MacroAssembler::rotateLeft64(Imm32 count, Register64 input, + Register64 dest, Register temp) { + MOZ_ASSERT(temp == InvalidReg); + MOZ_ASSERT(input.low != dest.high && input.high != dest.low); + + int32_t amount = count.value & 0x3f; + if (amount > 32) { + rotateRight64(Imm32(64 - amount), input, dest, temp); + } else { + ScratchRegisterScope scratch(*this); + if (amount == 0) { + ma_mov(input.low, dest.low); + ma_mov(input.high, dest.high); + } else if (amount == 32) { + ma_mov(input.low, scratch); + ma_mov(input.high, dest.low); + ma_mov(scratch, dest.high); + } else { + MOZ_ASSERT(0 < amount && amount < 32); + ma_mov(dest.high, scratch); + as_mov(dest.high, lsl(dest.high, amount)); + as_orr(dest.high, dest.high, lsr(dest.low, 32 - amount)); + as_mov(dest.low, lsl(dest.low, amount)); + as_orr(dest.low, dest.low, lsr(scratch, 32 - amount)); + } + } +} + +void MacroAssembler::rotateLeft64(Register shift, Register64 src, + Register64 dest, Register temp) { + MOZ_ASSERT(shift != temp); + MOZ_ASSERT(src == dest); + MOZ_ASSERT(temp != src.low && temp != src.high); + MOZ_ASSERT(shift != src.low && shift != src.high); + MOZ_ASSERT(temp != InvalidReg); + + ScratchRegisterScope shift_value(*this); + Label high, done; + + ma_mov(src.high, temp); + as_and(shift_value, shift, Imm8(0x3f)); + as_cmp(shift_value, Imm8(32)); + ma_b(&high, GreaterThanOrEqual); + + // high = high << shift | low >> 32 - shift + // low = low << shift | high >> 32 - shift + as_mov(dest.high, lsl(src.high, shift_value)); + as_rsb(shift_value, shift_value, Imm8(32)); + as_orr(dest.high, dest.high, lsr(src.low, shift_value)); + + as_rsb(shift_value, shift_value, Imm8(32)); + as_mov(dest.low, lsl(src.low, shift_value)); + as_rsb(shift_value, shift_value, Imm8(32)); + as_orr(dest.low, dest.low, lsr(temp, shift_value)); + + ma_b(&done); + + // A 32 - 64 shift is a 0 - 32 shift in the other direction. + bind(&high); + as_rsb(shift_value, shift_value, Imm8(64)); + + as_mov(dest.high, lsr(src.high, shift_value)); + as_rsb(shift_value, shift_value, Imm8(32)); + as_orr(dest.high, dest.high, lsl(src.low, shift_value)); + + as_rsb(shift_value, shift_value, Imm8(32)); + as_mov(dest.low, lsr(src.low, shift_value)); + as_rsb(shift_value, shift_value, Imm8(32)); + as_orr(dest.low, dest.low, lsl(temp, shift_value)); + + bind(&done); +} + +void MacroAssembler::rotateRight(Imm32 count, Register input, Register dest) { + if (count.value) { + ma_ror(count, input, dest); + } else { + ma_mov(input, dest); + } +} + +void MacroAssembler::rotateRight(Register count, Register input, + Register dest) { + ma_ror(count, input, dest); +} + +void MacroAssembler::rotateRight64(Imm32 count, Register64 input, + Register64 dest, Register temp) { + MOZ_ASSERT(temp == InvalidReg); + MOZ_ASSERT(input.low != dest.high && input.high != dest.low); + + int32_t amount = count.value & 0x3f; + if (amount > 32) { + rotateLeft64(Imm32(64 - amount), input, dest, temp); + } else { + ScratchRegisterScope scratch(*this); + if (amount == 0) { + ma_mov(input.low, dest.low); + ma_mov(input.high, dest.high); + } else if (amount == 32) { + ma_mov(input.low, scratch); + ma_mov(input.high, dest.low); + ma_mov(scratch, dest.high); + } else { + MOZ_ASSERT(0 < amount && amount < 32); + ma_mov(dest.high, scratch); + as_mov(dest.high, lsr(dest.high, amount)); + as_orr(dest.high, dest.high, lsl(dest.low, 32 - amount)); + as_mov(dest.low, lsr(dest.low, amount)); + as_orr(dest.low, dest.low, lsl(scratch, 32 - amount)); + } + } +} + +void MacroAssembler::rotateRight64(Register shift, Register64 src, + Register64 dest, Register temp) { + MOZ_ASSERT(shift != temp); + MOZ_ASSERT(src == dest); + MOZ_ASSERT(temp != src.low && temp != src.high); + MOZ_ASSERT(shift != src.low && shift != src.high); + MOZ_ASSERT(temp != InvalidReg); + + ScratchRegisterScope shift_value(*this); + Label high, done; + + ma_mov(src.high, temp); + as_and(shift_value, shift, Imm8(0x3f)); + as_cmp(shift_value, Imm8(32)); + ma_b(&high, GreaterThanOrEqual); + + // high = high >> shift | low << 32 - shift + // low = low >> shift | high << 32 - shift + as_mov(dest.high, lsr(src.high, shift_value)); + as_rsb(shift_value, shift_value, Imm8(32)); + as_orr(dest.high, dest.high, lsl(src.low, shift_value)); + + as_rsb(shift_value, shift_value, Imm8(32)); + as_mov(dest.low, lsr(src.low, shift_value)); + as_rsb(shift_value, shift_value, Imm8(32)); + as_orr(dest.low, dest.low, lsl(temp, shift_value)); + + ma_b(&done); + + // A 32 - 64 shift is a 0 - 32 shift in the other direction. + bind(&high); + as_rsb(shift_value, shift_value, Imm8(64)); + + as_mov(dest.high, lsl(src.high, shift_value)); + as_rsb(shift_value, shift_value, Imm8(32)); + as_orr(dest.high, dest.high, lsr(src.low, shift_value)); + + as_rsb(shift_value, shift_value, Imm8(32)); + as_mov(dest.low, lsl(src.low, shift_value)); + as_rsb(shift_value, shift_value, Imm8(32)); + as_orr(dest.low, dest.low, lsr(temp, shift_value)); + + bind(&done); +} + +// =============================================================== +// Condition functions + +void MacroAssembler::cmp8Set(Condition cond, Address lhs, Imm32 rhs, + Register dest) { + ScratchRegisterScope scratch(*this); + SecondScratchRegisterScope scratch2(*this); + + // Inlined calls to load8{Zero,Sign}Extend() and cmp32Set() to acquire + // exclusive access to scratch registers. + + bool isSigned; + Imm32 imm(0); + switch (cond) { + case Assembler::Equal: + case Assembler::NotEqual: + case Assembler::Above: + case Assembler::AboveOrEqual: + case Assembler::Below: + case Assembler::BelowOrEqual: + isSigned = false; + imm = Imm32(uint8_t(rhs.value)); + break; + + case Assembler::GreaterThan: + case Assembler::GreaterThanOrEqual: + case Assembler::LessThan: + case Assembler::LessThanOrEqual: + isSigned = true; + imm = Imm32(int8_t(rhs.value)); + break; + + default: + MOZ_CRASH("unexpected condition"); + } + + ma_dataTransferN(IsLoad, 8, isSigned, lhs.base, Imm32(lhs.offset), scratch, + scratch2); + ma_cmp(scratch, imm, scratch2); + emitSet(cond, dest); +} + +void MacroAssembler::cmp16Set(Condition cond, Address lhs, Imm32 rhs, + Register dest) { + ScratchRegisterScope scratch(*this); + SecondScratchRegisterScope scratch2(*this); + + // Inlined calls to load16{Zero,Sign}Extend() and cmp32Set() to acquire + // exclusive access to scratch registers. + + bool isSigned; + Imm32 imm(0); + switch (cond) { + case Assembler::Equal: + case Assembler::NotEqual: + case Assembler::Above: + case Assembler::AboveOrEqual: + case Assembler::Below: + case Assembler::BelowOrEqual: + isSigned = false; + imm = Imm32(uint16_t(rhs.value)); + break; + + case Assembler::GreaterThan: + case Assembler::GreaterThanOrEqual: + case Assembler::LessThan: + case Assembler::LessThanOrEqual: + isSigned = true; + imm = Imm32(int16_t(rhs.value)); + break; + + default: + MOZ_CRASH("unexpected condition"); + } + + ma_dataTransferN(IsLoad, 16, isSigned, lhs.base, Imm32(lhs.offset), scratch, + scratch2); + ma_cmp(scratch, imm, scratch2); + emitSet(cond, dest); +} + +template <typename T1, typename T2> +void MacroAssembler::cmp32Set(Condition cond, T1 lhs, T2 rhs, Register dest) { + cmp32(lhs, rhs); + emitSet(cond, dest); +} + +void MacroAssembler::cmp64Set(Condition cond, Address lhs, Imm64 rhs, + Register dest) { + Label success, done; + + branch64(cond, lhs, rhs, &success); + move32(Imm32(0), dest); + jump(&done); + bind(&success); + move32(Imm32(1), dest); + bind(&done); +} + +template <typename T1, typename T2> +void MacroAssembler::cmpPtrSet(Condition cond, T1 lhs, T2 rhs, Register dest) { + cmpPtr(lhs, rhs); + emitSet(cond, dest); +} + +// =============================================================== +// Bit counting functions + +void MacroAssembler::clz32(Register src, Register dest, bool knownNotZero) { + ma_clz(src, dest); +} + +void MacroAssembler::clz64(Register64 src, Register dest) { + ScratchRegisterScope scratch(*this); + + ma_clz(src.high, scratch); + as_cmp(scratch, Imm8(32)); + ma_mov(scratch, dest, LeaveCC, NotEqual); + ma_clz(src.low, dest, Equal); + as_add(dest, dest, Imm8(32), LeaveCC, Equal); +} + +void MacroAssembler::ctz32(Register src, Register dest, bool knownNotZero) { + ScratchRegisterScope scratch(*this); + ma_ctz(src, dest, scratch); +} + +void MacroAssembler::ctz64(Register64 src, Register dest) { + Label done, high; + as_cmp(src.low, Imm8(0)); + ma_b(&high, Equal); + + ctz32(src.low, dest, /* knownNotZero = */ true); + ma_b(&done); + + bind(&high); + ctz32(src.high, dest, /* knownNotZero = */ false); + as_add(dest, dest, Imm8(32)); + + bind(&done); +} + +void MacroAssembler::popcnt32(Register input, Register output, Register tmp) { + // Equivalent to GCC output of mozilla::CountPopulation32() + + ScratchRegisterScope scratch(*this); + + if (input != output) { + ma_mov(input, output); + } + as_mov(tmp, asr(output, 1)); + ma_and(Imm32(0x55555555), tmp, scratch); + ma_sub(output, tmp, output); + as_mov(tmp, asr(output, 2)); + ma_mov(Imm32(0x33333333), scratch); + ma_and(scratch, output); + ma_and(scratch, tmp); + ma_add(output, tmp, output); + as_add(output, output, lsr(output, 4)); + ma_and(Imm32(0xF0F0F0F), output, scratch); + as_add(output, output, lsl(output, 8)); + as_add(output, output, lsl(output, 16)); + as_mov(output, asr(output, 24)); +} + +void MacroAssembler::popcnt64(Register64 src, Register64 dest, Register tmp) { + MOZ_ASSERT(dest.low != tmp); + MOZ_ASSERT(dest.high != tmp); + MOZ_ASSERT(dest.low != dest.high); + // The source and destination can overlap. Therefore make sure we don't + // clobber the source before we have the data. + if (dest.low != src.high) { + popcnt32(src.low, dest.low, tmp); + popcnt32(src.high, dest.high, tmp); + } else { + MOZ_ASSERT(dest.high != src.high); + popcnt32(src.low, dest.high, tmp); + popcnt32(src.high, dest.low, tmp); + } + ma_add(dest.high, dest.low); + ma_mov(Imm32(0), dest.high); +} + +// =============================================================== +// Branch functions + +void MacroAssembler::branch8(Condition cond, const Address& lhs, Imm32 rhs, + Label* label) { + ScratchRegisterScope scratch(*this); + SecondScratchRegisterScope scratch2(*this); + + // Inlined calls to load8{Zero,Sign}Extend() and branch32() to acquire + // exclusive access to scratch registers. + + bool isSigned; + Imm32 imm(0); + switch (cond) { + case Assembler::Equal: + case Assembler::NotEqual: + case Assembler::Above: + case Assembler::AboveOrEqual: + case Assembler::Below: + case Assembler::BelowOrEqual: + isSigned = false; + imm = Imm32(uint8_t(rhs.value)); + break; + + case Assembler::GreaterThan: + case Assembler::GreaterThanOrEqual: + case Assembler::LessThan: + case Assembler::LessThanOrEqual: + isSigned = true; + imm = Imm32(int8_t(rhs.value)); + break; + + default: + MOZ_CRASH("unexpected condition"); + } + + ma_dataTransferN(IsLoad, 8, isSigned, lhs.base, Imm32(lhs.offset), scratch, + scratch2); + ma_cmp(scratch, imm, scratch2); + ma_b(label, cond); +} + +void MacroAssembler::branch8(Condition cond, const BaseIndex& lhs, Register rhs, + Label* label) { + ScratchRegisterScope scratch(*this); + SecondScratchRegisterScope scratch2(*this); + + // Inlined calls to load8{Zero,Sign}Extend() and branch32() to acquire + // exclusive access to scratch registers. + + bool isSigned; + switch (cond) { + case Assembler::Equal: + case Assembler::NotEqual: + case Assembler::Above: + case Assembler::AboveOrEqual: + case Assembler::Below: + case Assembler::BelowOrEqual: + isSigned = false; + break; + + case Assembler::GreaterThan: + case Assembler::GreaterThanOrEqual: + case Assembler::LessThan: + case Assembler::LessThanOrEqual: + isSigned = true; + break; + + default: + MOZ_CRASH("unexpected condition"); + } + + if (isSigned) { + Register index = lhs.index; + + // ARMv7 does not have LSL on an index register with an extended load. + if (lhs.scale != TimesOne) { + ma_lsl(Imm32::ShiftOf(lhs.scale), index, scratch); + index = scratch; + } + + if (lhs.offset != 0) { + if (index != scratch) { + ma_mov(index, scratch); + index = scratch; + } + ma_add(Imm32(lhs.offset), index, scratch2); + } + ma_ldrsb(EDtrAddr(lhs.base, EDtrOffReg(index)), scratch); + } else { + Register base = lhs.base; + uint32_t scale = Imm32::ShiftOf(lhs.scale).value; + + if (lhs.offset == 0) { + ma_ldrb(DTRAddr(base, DtrRegImmShift(lhs.index, LSL, scale)), scratch); + } else { + ma_add(base, Imm32(lhs.offset), scratch, scratch2); + ma_ldrb(DTRAddr(scratch, DtrRegImmShift(lhs.index, LSL, scale)), scratch); + } + } + + ma_cmp(scratch, rhs); + ma_b(label, cond); +} + +void MacroAssembler::branch16(Condition cond, const Address& lhs, Imm32 rhs, + Label* label) { + ScratchRegisterScope scratch(*this); + SecondScratchRegisterScope scratch2(*this); + + // Inlined calls to load16{Zero,Sign}Extend() and branch32() to acquire + // exclusive access to scratch registers. + + bool isSigned; + Imm32 imm(0); + switch (cond) { + case Assembler::Equal: + case Assembler::NotEqual: + case Assembler::Above: + case Assembler::AboveOrEqual: + case Assembler::Below: + case Assembler::BelowOrEqual: + isSigned = false; + imm = Imm32(uint16_t(rhs.value)); + break; + + case Assembler::GreaterThan: + case Assembler::GreaterThanOrEqual: + case Assembler::LessThan: + case Assembler::LessThanOrEqual: + isSigned = true; + imm = Imm32(int16_t(rhs.value)); + break; + + default: + MOZ_CRASH("unexpected condition"); + } + + ma_dataTransferN(IsLoad, 16, isSigned, lhs.base, Imm32(lhs.offset), scratch, + scratch2); + ma_cmp(scratch, imm, scratch2); + ma_b(label, cond); +} + +template <class L> +void MacroAssembler::branch32(Condition cond, Register lhs, Register rhs, + L label) { + ma_cmp(lhs, rhs); + ma_b(label, cond); +} + +template <class L> +void MacroAssembler::branch32(Condition cond, Register lhs, Imm32 rhs, + L label) { + ScratchRegisterScope scratch(*this); + + ma_cmp(lhs, rhs, scratch); + ma_b(label, cond); +} + +void MacroAssembler::branch32(Condition cond, const Address& lhs, Register rhs, + Label* label) { + ScratchRegisterScope scratch(*this); + SecondScratchRegisterScope scratch2(*this); + + ma_ldr(lhs, scratch, scratch2); + ma_cmp(scratch, rhs); + ma_b(label, cond); +} + +void MacroAssembler::branch32(Condition cond, const Address& lhs, Imm32 rhs, + Label* label) { + ScratchRegisterScope scratch(*this); + SecondScratchRegisterScope scratch2(*this); + + ma_ldr(lhs, scratch, scratch2); + ma_cmp(scratch, rhs, scratch2); + ma_b(label, cond); +} + +void MacroAssembler::branch32(Condition cond, const AbsoluteAddress& lhs, + Register rhs, Label* label) { + ScratchRegisterScope scratch(*this); + + // Load into scratch. + movePtr(ImmWord(uintptr_t(lhs.addr)), scratch); + ma_ldr(DTRAddr(scratch, DtrOffImm(0)), scratch); + + ma_cmp(scratch, rhs); + ma_b(label, cond); +} + +void MacroAssembler::branch32(Condition cond, const AbsoluteAddress& lhs, + Imm32 rhs, Label* label) { + ScratchRegisterScope scratch(*this); + SecondScratchRegisterScope scratch2(*this); + + // Load into scratch. + movePtr(ImmWord(uintptr_t(lhs.addr)), scratch); + ma_ldr(DTRAddr(scratch, DtrOffImm(0)), scratch); + + ma_cmp(scratch, rhs, scratch2); + ma_b(label, cond); +} + +void MacroAssembler::branch32(Condition cond, const BaseIndex& lhs, Imm32 rhs, + Label* label) { + SecondScratchRegisterScope scratch2(*this); + { + ScratchRegisterScope scratch(*this); + + Register base = lhs.base; + uint32_t scale = Imm32::ShiftOf(lhs.scale).value; + + // Load lhs into scratch2. + if (lhs.offset != 0) { + ma_add(base, Imm32(lhs.offset), scratch, scratch2); + ma_ldr(DTRAddr(scratch, DtrRegImmShift(lhs.index, LSL, scale)), scratch2); + } else { + ma_ldr(DTRAddr(base, DtrRegImmShift(lhs.index, LSL, scale)), scratch2); + } + } + branch32(cond, scratch2, rhs, label); +} + +void MacroAssembler::branch32(Condition cond, const BaseIndex& lhs, + Register rhs, Label* label) { + SecondScratchRegisterScope scratch2(*this); + { + ScratchRegisterScope scratch(*this); + + Register base = lhs.base; + uint32_t scale = Imm32::ShiftOf(lhs.scale).value; + + // Load lhs into scratch2. + if (lhs.offset != 0) { + ma_add(base, Imm32(lhs.offset), scratch, scratch2); + ma_ldr(DTRAddr(scratch, DtrRegImmShift(lhs.index, LSL, scale)), scratch2); + } else { + ma_ldr(DTRAddr(base, DtrRegImmShift(lhs.index, LSL, scale)), scratch2); + } + } + branch32(cond, scratch2, rhs, label); +} + +void MacroAssembler::branch32(Condition cond, wasm::SymbolicAddress lhs, + Imm32 rhs, Label* label) { + ScratchRegisterScope scratch(*this); + SecondScratchRegisterScope scratch2(*this); + + movePtr(lhs, scratch); + ma_ldr(DTRAddr(scratch, DtrOffImm(0)), scratch); + + ma_cmp(scratch, rhs, scratch2); + ma_b(label, cond); +} + +void MacroAssembler::branch64(Condition cond, const Address& lhs, Imm64 val, + Label* label) { + MOZ_ASSERT(cond == Assembler::NotEqual || cond == Assembler::Equal, + "other condition codes not supported"); + + Label done; + + if (cond == Assembler::Equal) { + branch32(Assembler::NotEqual, lhs, val.firstHalf(), &done); + } else { + branch32(Assembler::NotEqual, lhs, val.firstHalf(), label); + } + branch32(cond, Address(lhs.base, lhs.offset + sizeof(uint32_t)), + val.secondHalf(), label); + + bind(&done); +} + +void MacroAssembler::branch64(Condition cond, const Address& lhs, + Register64 rhs, Label* label) { + MOZ_ASSERT(cond == Assembler::NotEqual || cond == Assembler::Equal, + "other condition codes not supported"); + + Label done; + + if (cond == Assembler::Equal) { + branch32(Assembler::NotEqual, lhs, rhs.low, &done); + } else { + branch32(Assembler::NotEqual, lhs, rhs.low, label); + } + branch32(cond, Address(lhs.base, lhs.offset + sizeof(uint32_t)), rhs.high, + label); + + bind(&done); +} + +void MacroAssembler::branch64(Condition cond, const Address& lhs, + const Address& rhs, Register scratch, + Label* label) { + MOZ_ASSERT(cond == Assembler::NotEqual || cond == Assembler::Equal, + "other condition codes not supported"); + MOZ_ASSERT(lhs.base != scratch); + MOZ_ASSERT(rhs.base != scratch); + + Label done; + + load32(rhs, scratch); + if (cond == Assembler::Equal) { + branch32(Assembler::NotEqual, lhs, scratch, &done); + } else { + branch32(Assembler::NotEqual, lhs, scratch, label); + } + + load32(Address(rhs.base, rhs.offset + sizeof(uint32_t)), scratch); + branch32(cond, Address(lhs.base, lhs.offset + sizeof(uint32_t)), scratch, + label); + + bind(&done); +} + +void MacroAssembler::branch64(Condition cond, Register64 lhs, Imm64 val, + Label* success, Label* fail) { + bool fallthrough = false; + Label fallthroughLabel; + + if (!fail) { + fail = &fallthroughLabel; + fallthrough = true; + } + + switch (cond) { + case Assembler::Equal: + branch32(Assembler::NotEqual, lhs.low, val.low(), fail); + branch32(Assembler::Equal, lhs.high, val.hi(), success); + if (!fallthrough) { + jump(fail); + } + break; + case Assembler::NotEqual: + branch32(Assembler::NotEqual, lhs.low, val.low(), success); + branch32(Assembler::NotEqual, lhs.high, val.hi(), success); + if (!fallthrough) { + jump(fail); + } + break; + case Assembler::LessThan: + case Assembler::LessThanOrEqual: + case Assembler::GreaterThan: + case Assembler::GreaterThanOrEqual: + case Assembler::Below: + case Assembler::BelowOrEqual: + case Assembler::Above: + case Assembler::AboveOrEqual: { + Assembler::Condition cond1 = Assembler::ConditionWithoutEqual(cond); + Assembler::Condition cond2 = + Assembler::ConditionWithoutEqual(Assembler::InvertCondition(cond)); + Assembler::Condition cond3 = Assembler::UnsignedCondition(cond); + + cmp32(lhs.high, val.hi()); + ma_b(success, cond1); + ma_b(fail, cond2); + cmp32(lhs.low, val.low()); + ma_b(success, cond3); + if (!fallthrough) { + jump(fail); + } + break; + } + default: + MOZ_CRASH("Condition code not supported"); + break; + } + + if (fallthrough) { + bind(fail); + } +} + +void MacroAssembler::branch64(Condition cond, Register64 lhs, Register64 rhs, + Label* success, Label* fail) { + bool fallthrough = false; + Label fallthroughLabel; + + if (!fail) { + fail = &fallthroughLabel; + fallthrough = true; + } + + switch (cond) { + case Assembler::Equal: + branch32(Assembler::NotEqual, lhs.low, rhs.low, fail); + branch32(Assembler::Equal, lhs.high, rhs.high, success); + if (!fallthrough) { + jump(fail); + } + break; + case Assembler::NotEqual: + branch32(Assembler::NotEqual, lhs.low, rhs.low, success); + branch32(Assembler::NotEqual, lhs.high, rhs.high, success); + if (!fallthrough) { + jump(fail); + } + break; + case Assembler::LessThan: + case Assembler::LessThanOrEqual: + case Assembler::GreaterThan: + case Assembler::GreaterThanOrEqual: + case Assembler::Below: + case Assembler::BelowOrEqual: + case Assembler::Above: + case Assembler::AboveOrEqual: { + Assembler::Condition cond1 = Assembler::ConditionWithoutEqual(cond); + Assembler::Condition cond2 = + Assembler::ConditionWithoutEqual(Assembler::InvertCondition(cond)); + Assembler::Condition cond3 = Assembler::UnsignedCondition(cond); + + cmp32(lhs.high, rhs.high); + ma_b(success, cond1); + ma_b(fail, cond2); + cmp32(lhs.low, rhs.low); + ma_b(success, cond3); + if (!fallthrough) { + jump(fail); + } + break; + } + default: + MOZ_CRASH("Condition code not supported"); + break; + } + + if (fallthrough) { + bind(fail); + } +} + +template <class L> +void MacroAssembler::branchPtr(Condition cond, Register lhs, Register rhs, + L label) { + branch32(cond, lhs, rhs, label); +} + +void MacroAssembler::branchPtr(Condition cond, Register lhs, Imm32 rhs, + Label* label) { + branch32(cond, lhs, rhs, label); +} + +void MacroAssembler::branchPtr(Condition cond, Register lhs, ImmPtr rhs, + Label* label) { + branchPtr(cond, lhs, ImmWord(uintptr_t(rhs.value)), label); +} + +void MacroAssembler::branchPtr(Condition cond, Register lhs, ImmGCPtr rhs, + Label* label) { + ScratchRegisterScope scratch(*this); + movePtr(rhs, scratch); + branchPtr(cond, lhs, scratch, label); +} + +void MacroAssembler::branchPtr(Condition cond, Register lhs, ImmWord rhs, + Label* label) { + branch32(cond, lhs, Imm32(rhs.value), label); +} + +template <class L> +void MacroAssembler::branchPtr(Condition cond, const Address& lhs, Register rhs, + L label) { + branch32(cond, lhs, rhs, label); +} + +void MacroAssembler::branchPtr(Condition cond, const Address& lhs, ImmPtr rhs, + Label* label) { + branchPtr(cond, lhs, ImmWord(uintptr_t(rhs.value)), label); +} + +void MacroAssembler::branchPtr(Condition cond, const Address& lhs, ImmGCPtr rhs, + Label* label) { + SecondScratchRegisterScope scratch2(*this); + loadPtr(lhs, scratch2); + branchPtr(cond, scratch2, rhs, label); +} + +void MacroAssembler::branchPtr(Condition cond, const Address& lhs, ImmWord rhs, + Label* label) { + SecondScratchRegisterScope scratch2(*this); + loadPtr(lhs, scratch2); + branchPtr(cond, scratch2, rhs, label); +} + +void MacroAssembler::branchPtr(Condition cond, const AbsoluteAddress& lhs, + Register rhs, Label* label) { + SecondScratchRegisterScope scratch2(*this); + loadPtr(lhs, scratch2); + branchPtr(cond, scratch2, rhs, label); +} + +void MacroAssembler::branchPtr(Condition cond, const AbsoluteAddress& lhs, + ImmWord rhs, Label* label) { + SecondScratchRegisterScope scratch2(*this); + loadPtr(lhs, scratch2); + branchPtr(cond, scratch2, rhs, label); +} + +void MacroAssembler::branchPtr(Condition cond, wasm::SymbolicAddress lhs, + Register rhs, Label* label) { + SecondScratchRegisterScope scratch2(*this); + loadPtr(lhs, scratch2); + branchPtr(cond, scratch2, rhs, label); +} + +void MacroAssembler::branchPtr(Condition cond, const BaseIndex& lhs, + ImmWord rhs, Label* label) { + branch32(cond, lhs, Imm32(rhs.value), label); +} + +void MacroAssembler::branchPtr(Condition cond, const BaseIndex& lhs, + Register rhs, Label* label) { + branch32(cond, lhs, rhs, label); +} + +void MacroAssembler::branchPrivatePtr(Condition cond, const Address& lhs, + Register rhs, Label* label) { + branchPtr(cond, lhs, rhs, label); +} + +void MacroAssembler::branchFloat(DoubleCondition cond, FloatRegister lhs, + FloatRegister rhs, Label* label) { + compareFloat(lhs, rhs); + + if (cond == DoubleNotEqual) { + // Force the unordered cases not to jump. + Label unordered; + ma_b(&unordered, VFP_Unordered); + ma_b(label, VFP_NotEqualOrUnordered); + bind(&unordered); + return; + } + + if (cond == DoubleEqualOrUnordered) { + ma_b(label, VFP_Unordered); + ma_b(label, VFP_Equal); + return; + } + + ma_b(label, ConditionFromDoubleCondition(cond)); +} + +void MacroAssembler::branchTruncateFloat32MaybeModUint32(FloatRegister src, + Register dest, + Label* fail) { + branchTruncateFloat32ToInt32(src, dest, fail); +} + +void MacroAssembler::branchTruncateFloat32ToInt32(FloatRegister src, + Register dest, Label* fail) { + ScratchFloat32Scope scratchFloat32(*this); + ScratchRegisterScope scratch(*this); + + ma_vcvt_F32_I32(src, scratchFloat32.sintOverlay()); + ma_vxfer(scratchFloat32, dest); + ma_cmp(dest, Imm32(0x7fffffff), scratch); + ma_cmp(dest, Imm32(0x80000000), scratch, Assembler::NotEqual); + ma_b(fail, Assembler::Equal); +} + +void MacroAssembler::branchDouble(DoubleCondition cond, FloatRegister lhs, + FloatRegister rhs, Label* label) { + compareDouble(lhs, rhs); + + if (cond == DoubleNotEqual) { + // Force the unordered cases not to jump. + Label unordered; + ma_b(&unordered, VFP_Unordered); + ma_b(label, VFP_NotEqualOrUnordered); + bind(&unordered); + return; + } + + if (cond == DoubleEqualOrUnordered) { + ma_b(label, VFP_Unordered); + ma_b(label, VFP_Equal); + return; + } + + ma_b(label, ConditionFromDoubleCondition(cond)); +} + +void MacroAssembler::branchTruncateDoubleMaybeModUint32(FloatRegister src, + Register dest, + Label* fail) { + branchTruncateDoubleToInt32(src, dest, fail); +} + +// There are two options for implementing branchTruncateDoubleToInt32: +// +// 1. Convert the floating point value to an integer, if it did not fit, then it +// was clamped to INT_MIN/INT_MAX, and we can test it. NOTE: if the value +// really was supposed to be INT_MAX / INT_MIN then it will be wrong. +// +// 2. Convert the floating point value to an integer, if it did not fit, then it +// set one or two bits in the fpcsr. Check those. +void MacroAssembler::branchTruncateDoubleToInt32(FloatRegister src, + Register dest, Label* fail) { + ScratchDoubleScope scratchDouble(*this); + FloatRegister scratchSIntReg = scratchDouble.sintOverlay(); + ScratchRegisterScope scratch(*this); + + ma_vcvt_F64_I32(src, scratchSIntReg); + ma_vxfer(scratchSIntReg, dest); + ma_cmp(dest, Imm32(0x7fffffff), scratch); + ma_cmp(dest, Imm32(0x80000000), scratch, Assembler::NotEqual); + ma_b(fail, Assembler::Equal); +} + +template <typename T> +void MacroAssembler::branchAdd32(Condition cond, T src, Register dest, + Label* label) { + add32(src, dest); + as_b(label, cond); +} + +template <typename T> +void MacroAssembler::branchSub32(Condition cond, T src, Register dest, + Label* label) { + sub32(src, dest); + j(cond, label); +} + +template <typename T> +void MacroAssembler::branchMul32(Condition cond, T src, Register dest, + Label* label) { + MOZ_ASSERT(cond == Assembler::Overflow); + ScratchRegisterScope scratch(*this); + Assembler::Condition overflow_cond = + ma_check_mul(src, dest, dest, scratch, cond); + j(overflow_cond, label); +} + +template <typename T> +void MacroAssembler::branchRshift32(Condition cond, T src, Register dest, + Label* label) { + MOZ_ASSERT(cond == Zero || cond == NonZero); + rshift32(src, dest); + branch32(cond == Zero ? Equal : NotEqual, dest, Imm32(0), label); +} + +void MacroAssembler::branchNeg32(Condition cond, Register reg, Label* label) { + MOZ_ASSERT(cond == Overflow); + neg32(reg); + j(cond, label); +} + +void MacroAssembler::branchAdd64(Condition cond, Imm64 imm, Register64 dest, + Label* label) { + ScratchRegisterScope scratch(*this); + ma_add(imm.low(), dest.low, scratch, SetCC); + ma_adc(imm.hi(), dest.high, scratch, SetCC); + j(cond, label); +} + +template <typename T> +void MacroAssembler::branchAddPtr(Condition cond, T src, Register dest, + Label* label) { + branchAdd32(cond, src, dest, label); +} + +template <typename T> +void MacroAssembler::branchSubPtr(Condition cond, T src, Register dest, + Label* label) { + branchSub32(cond, src, dest, label); +} + +void MacroAssembler::branchMulPtr(Condition cond, Register src, Register dest, + Label* label) { + branchMul32(cond, src, dest, label); +} + +void MacroAssembler::decBranchPtr(Condition cond, Register lhs, Imm32 rhs, + Label* label) { + ScratchRegisterScope scratch(*this); + ma_sub(rhs, lhs, scratch, SetCC); + as_b(label, cond); +} + +template <class L> +void MacroAssembler::branchTest32(Condition cond, Register lhs, Register rhs, + L label) { + MOZ_ASSERT(cond == Zero || cond == NonZero || cond == Signed || + cond == NotSigned); + // x86 likes test foo, foo rather than cmp foo, #0. + // Convert the former into the latter. + if (lhs == rhs && (cond == Zero || cond == NonZero)) { + as_cmp(lhs, Imm8(0)); + } else { + ma_tst(lhs, rhs); + } + ma_b(label, cond); +} + +template <class L> +void MacroAssembler::branchTest32(Condition cond, Register lhs, Imm32 rhs, + L label) { + MOZ_ASSERT(cond == Zero || cond == NonZero || cond == Signed || + cond == NotSigned); + ScratchRegisterScope scratch(*this); + ma_tst(lhs, rhs, scratch); + ma_b(label, cond); +} + +void MacroAssembler::branchTest32(Condition cond, const Address& lhs, Imm32 rhs, + Label* label) { + SecondScratchRegisterScope scratch2(*this); + load32(lhs, scratch2); + branchTest32(cond, scratch2, rhs, label); +} + +void MacroAssembler::branchTest32(Condition cond, const AbsoluteAddress& lhs, + Imm32 rhs, Label* label) { + SecondScratchRegisterScope scratch2(*this); + load32(lhs, scratch2); + branchTest32(cond, scratch2, rhs, label); +} + +template <class L> +void MacroAssembler::branchTestPtr(Condition cond, Register lhs, Register rhs, + L label) { + branchTest32(cond, lhs, rhs, label); +} + +void MacroAssembler::branchTestPtr(Condition cond, Register lhs, Imm32 rhs, + Label* label) { + branchTest32(cond, lhs, rhs, label); +} + +void MacroAssembler::branchTestPtr(Condition cond, const Address& lhs, + Imm32 rhs, Label* label) { + branchTest32(cond, lhs, rhs, label); +} + +template <class L> +void MacroAssembler::branchTest64(Condition cond, Register64 lhs, + Register64 rhs, Register temp, L label) { + if (cond == Assembler::Zero || cond == Assembler::NonZero) { + ScratchRegisterScope scratch(*this); + + MOZ_ASSERT(lhs.low == rhs.low); + MOZ_ASSERT(lhs.high == rhs.high); + ma_orr(lhs.low, lhs.high, scratch); + branchTestPtr(cond, scratch, scratch, label); + } else if (cond == Assembler::Signed || cond == Assembler::NotSigned) { + branchTest32(cond, lhs.high, rhs.high, label); + } else { + MOZ_CRASH("Unsupported condition"); + } +} + +void MacroAssembler::branchTestUndefined(Condition cond, Register tag, + Label* label) { + branchTestUndefinedImpl(cond, tag, label); +} + +void MacroAssembler::branchTestUndefined(Condition cond, const Address& address, + Label* label) { + branchTestUndefinedImpl(cond, address, label); +} + +void MacroAssembler::branchTestUndefined(Condition cond, + const BaseIndex& address, + Label* label) { + branchTestUndefinedImpl(cond, address, label); +} + +void MacroAssembler::branchTestUndefined(Condition cond, + const ValueOperand& value, + Label* label) { + branchTestUndefinedImpl(cond, value, label); +} + +template <typename T> +void MacroAssembler::branchTestUndefinedImpl(Condition cond, const T& t, + Label* label) { + Condition c = testUndefined(cond, t); + ma_b(label, c); +} + +void MacroAssembler::branchTestInt32(Condition cond, Register tag, + Label* label) { + branchTestInt32Impl(cond, tag, label); +} + +void MacroAssembler::branchTestInt32(Condition cond, const Address& address, + Label* label) { + branchTestInt32Impl(cond, address, label); +} + +void MacroAssembler::branchTestInt32(Condition cond, const BaseIndex& address, + Label* label) { + branchTestInt32Impl(cond, address, label); +} + +void MacroAssembler::branchTestInt32(Condition cond, const ValueOperand& value, + Label* label) { + branchTestInt32Impl(cond, value, label); +} + +template <typename T> +void MacroAssembler::branchTestInt32Impl(Condition cond, const T& t, + Label* label) { + Condition c = testInt32(cond, t); + ma_b(label, c); +} + +void MacroAssembler::branchTestInt32Truthy(bool truthy, + const ValueOperand& value, + Label* label) { + Condition c = testInt32Truthy(truthy, value); + ma_b(label, c); +} + +void MacroAssembler::branchTestDouble(Condition cond, Register tag, + Label* label) { + branchTestDoubleImpl(cond, tag, label); +} + +void MacroAssembler::branchTestDouble(Condition cond, const Address& address, + Label* label) { + branchTestDoubleImpl(cond, address, label); +} + +void MacroAssembler::branchTestDouble(Condition cond, const BaseIndex& address, + Label* label) { + branchTestDoubleImpl(cond, address, label); +} + +void MacroAssembler::branchTestDouble(Condition cond, const ValueOperand& value, + Label* label) { + branchTestDoubleImpl(cond, value, label); +} + +template <typename T> +void MacroAssembler::branchTestDoubleImpl(Condition cond, const T& t, + Label* label) { + Condition c = testDouble(cond, t); + ma_b(label, c); +} + +void MacroAssembler::branchTestDoubleTruthy(bool truthy, FloatRegister reg, + Label* label) { + Condition c = testDoubleTruthy(truthy, reg); + ma_b(label, c); +} + +void MacroAssembler::branchTestNumber(Condition cond, Register tag, + Label* label) { + branchTestNumberImpl(cond, tag, label); +} + +void MacroAssembler::branchTestNumber(Condition cond, const ValueOperand& value, + Label* label) { + branchTestNumberImpl(cond, value, label); +} + +template <typename T> +void MacroAssembler::branchTestNumberImpl(Condition cond, const T& t, + Label* label) { + cond = testNumber(cond, t); + ma_b(label, cond); +} + +void MacroAssembler::branchTestBoolean(Condition cond, Register tag, + Label* label) { + branchTestBooleanImpl(cond, tag, label); +} + +void MacroAssembler::branchTestBoolean(Condition cond, const Address& address, + Label* label) { + branchTestBooleanImpl(cond, address, label); +} + +void MacroAssembler::branchTestBoolean(Condition cond, const BaseIndex& address, + Label* label) { + branchTestBooleanImpl(cond, address, label); +} + +void MacroAssembler::branchTestBoolean(Condition cond, + const ValueOperand& value, + Label* label) { + branchTestBooleanImpl(cond, value, label); +} + +template <typename T> +void MacroAssembler::branchTestBooleanImpl(Condition cond, const T& t, + Label* label) { + Condition c = testBoolean(cond, t); + ma_b(label, c); +} + +void MacroAssembler::branchTestBooleanTruthy(bool truthy, + const ValueOperand& value, + Label* label) { + Condition c = testBooleanTruthy(truthy, value); + ma_b(label, c); +} + +void MacroAssembler::branchTestString(Condition cond, Register tag, + Label* label) { + branchTestStringImpl(cond, tag, label); +} + +void MacroAssembler::branchTestString(Condition cond, const Address& address, + Label* label) { + branchTestStringImpl(cond, address, label); +} + +void MacroAssembler::branchTestString(Condition cond, const BaseIndex& address, + Label* label) { + branchTestStringImpl(cond, address, label); +} + +void MacroAssembler::branchTestString(Condition cond, const ValueOperand& value, + Label* label) { + branchTestStringImpl(cond, value, label); +} + +template <typename T> +void MacroAssembler::branchTestStringImpl(Condition cond, const T& t, + Label* label) { + Condition c = testString(cond, t); + ma_b(label, c); +} + +void MacroAssembler::branchTestStringTruthy(bool truthy, + const ValueOperand& value, + Label* label) { + Condition c = testStringTruthy(truthy, value); + ma_b(label, c); +} + +void MacroAssembler::branchTestSymbol(Condition cond, Register tag, + Label* label) { + branchTestSymbolImpl(cond, tag, label); +} + +void MacroAssembler::branchTestSymbol(Condition cond, const Address& address, + Label* label) { + branchTestSymbolImpl(cond, address, label); +} + +void MacroAssembler::branchTestSymbol(Condition cond, const BaseIndex& address, + Label* label) { + branchTestSymbolImpl(cond, address, label); +} + +void MacroAssembler::branchTestSymbol(Condition cond, const ValueOperand& value, + Label* label) { + branchTestSymbolImpl(cond, value, label); +} + +template <typename T> +void MacroAssembler::branchTestSymbolImpl(Condition cond, const T& t, + Label* label) { + Condition c = testSymbol(cond, t); + ma_b(label, c); +} + +void MacroAssembler::branchTestBigInt(Condition cond, Register tag, + Label* label) { + branchTestBigIntImpl(cond, tag, label); +} + +void MacroAssembler::branchTestBigInt(Condition cond, const Address& address, + Label* label) { + branchTestBigIntImpl(cond, address, label); +} + +void MacroAssembler::branchTestBigInt(Condition cond, const BaseIndex& address, + Label* label) { + branchTestBigIntImpl(cond, address, label); +} + +void MacroAssembler::branchTestBigInt(Condition cond, const ValueOperand& value, + Label* label) { + branchTestBigIntImpl(cond, value, label); +} + +template <typename T> +void MacroAssembler::branchTestBigIntImpl(Condition cond, const T& t, + Label* label) { + Condition c = testBigInt(cond, t); + ma_b(label, c); +} + +void MacroAssembler::branchTestBigIntTruthy(bool truthy, + const ValueOperand& value, + Label* label) { + Condition c = testBigIntTruthy(truthy, value); + ma_b(label, c); +} + +void MacroAssembler::branchTestNull(Condition cond, Register tag, + Label* label) { + branchTestNullImpl(cond, tag, label); +} + +void MacroAssembler::branchTestNull(Condition cond, const Address& address, + Label* label) { + branchTestNullImpl(cond, address, label); +} + +void MacroAssembler::branchTestNull(Condition cond, const BaseIndex& address, + Label* label) { + branchTestNullImpl(cond, address, label); +} + +void MacroAssembler::branchTestNull(Condition cond, const ValueOperand& value, + Label* label) { + branchTestNullImpl(cond, value, label); +} + +template <typename T> +void MacroAssembler::branchTestNullImpl(Condition cond, const T& t, + Label* label) { + Condition c = testNull(cond, t); + ma_b(label, c); +} + +void MacroAssembler::branchTestObject(Condition cond, Register tag, + Label* label) { + branchTestObjectImpl(cond, tag, label); +} + +void MacroAssembler::branchTestObject(Condition cond, const Address& address, + Label* label) { + branchTestObjectImpl(cond, address, label); +} + +void MacroAssembler::branchTestObject(Condition cond, const BaseIndex& address, + Label* label) { + branchTestObjectImpl(cond, address, label); +} + +void MacroAssembler::branchTestObject(Condition cond, const ValueOperand& value, + Label* label) { + branchTestObjectImpl(cond, value, label); +} + +template <typename T> +void MacroAssembler::branchTestObjectImpl(Condition cond, const T& t, + Label* label) { + Condition c = testObject(cond, t); + ma_b(label, c); +} + +void MacroAssembler::branchTestGCThing(Condition cond, const Address& address, + Label* label) { + branchTestGCThingImpl(cond, address, label); +} + +void MacroAssembler::branchTestGCThing(Condition cond, const BaseIndex& address, + Label* label) { + branchTestGCThingImpl(cond, address, label); +} + +void MacroAssembler::branchTestGCThing(Condition cond, + const ValueOperand& value, + Label* label) { + branchTestGCThingImpl(cond, value, label); +} + +template <typename T> +void MacroAssembler::branchTestGCThingImpl(Condition cond, const T& t, + Label* label) { + Condition c = testGCThing(cond, t); + ma_b(label, c); +} + +void MacroAssembler::branchTestPrimitive(Condition cond, Register tag, + Label* label) { + branchTestPrimitiveImpl(cond, tag, label); +} + +void MacroAssembler::branchTestPrimitive(Condition cond, + const ValueOperand& value, + Label* label) { + branchTestPrimitiveImpl(cond, value, label); +} + +template <typename T> +void MacroAssembler::branchTestPrimitiveImpl(Condition cond, const T& t, + Label* label) { + Condition c = testPrimitive(cond, t); + ma_b(label, c); +} + +void MacroAssembler::branchTestMagic(Condition cond, Register tag, + Label* label) { + branchTestMagicImpl(cond, tag, label); +} + +void MacroAssembler::branchTestMagic(Condition cond, const Address& address, + Label* label) { + branchTestMagicImpl(cond, address, label); +} + +void MacroAssembler::branchTestMagic(Condition cond, const BaseIndex& address, + Label* label) { + branchTestMagicImpl(cond, address, label); +} + +template <class L> +void MacroAssembler::branchTestMagic(Condition cond, const ValueOperand& value, + L label) { + branchTestMagicImpl(cond, value, label); +} + +template <typename T, class L> +void MacroAssembler::branchTestMagicImpl(Condition cond, const T& t, L label) { + cond = testMagic(cond, t); + ma_b(label, cond); +} + +void MacroAssembler::branchTestMagic(Condition cond, const Address& valaddr, + JSWhyMagic why, Label* label) { + MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual); + + Label notMagic; + if (cond == Assembler::Equal) { + branchTestMagic(Assembler::NotEqual, valaddr, ¬Magic); + } else { + branchTestMagic(Assembler::NotEqual, valaddr, label); + } + + branch32(cond, ToPayload(valaddr), Imm32(why), label); + bind(¬Magic); +} + +void MacroAssembler::branchTestValue(Condition cond, const BaseIndex& lhs, + const ValueOperand& rhs, Label* label) { + MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual); + + Label notSameValue; + if (cond == Assembler::Equal) { + branch32(Assembler::NotEqual, ToType(lhs), rhs.typeReg(), ¬SameValue); + } else { + branch32(Assembler::NotEqual, ToType(lhs), rhs.typeReg(), label); + } + + branch32(cond, ToPayload(lhs), rhs.payloadReg(), label); + bind(¬SameValue); +} + +template <typename T> +void MacroAssembler::testNumberSet(Condition cond, const T& src, + Register dest) { + cond = testNumber(cond, src); + emitSet(cond, dest); +} + +template <typename T> +void MacroAssembler::testBooleanSet(Condition cond, const T& src, + Register dest) { + cond = testBoolean(cond, src); + emitSet(cond, dest); +} + +template <typename T> +void MacroAssembler::testStringSet(Condition cond, const T& src, + Register dest) { + cond = testString(cond, src); + emitSet(cond, dest); +} + +template <typename T> +void MacroAssembler::testSymbolSet(Condition cond, const T& src, + Register dest) { + cond = testSymbol(cond, src); + emitSet(cond, dest); +} + +template <typename T> +void MacroAssembler::testBigIntSet(Condition cond, const T& src, + Register dest) { + cond = testBigInt(cond, src); + emitSet(cond, dest); +} + +void MacroAssembler::branchToComputedAddress(const BaseIndex& addr) { + MOZ_ASSERT( + addr.offset == 0, + "NYI: offsets from pc should be shifted by the number of instructions."); + + Register base = addr.base; + uint32_t scale = Imm32::ShiftOf(addr.scale).value; + + ma_ldr(DTRAddr(base, DtrRegImmShift(addr.index, LSL, scale)), pc); + + if (base == pc) { + // When loading from pc, the pc is shifted to the next instruction, we + // add one extra instruction to accomodate for this shifted offset. + breakpoint(); + } +} + +void MacroAssembler::cmp32Move32(Condition cond, Register lhs, Register rhs, + Register src, Register dest) { + cmp32(lhs, rhs); + ma_mov(src, dest, LeaveCC, cond); +} + +void MacroAssembler::cmp32MovePtr(Condition cond, Register lhs, Imm32 rhs, + Register src, Register dest) { + cmp32(lhs, rhs); + ma_mov(src, dest, LeaveCC, cond); +} + +void MacroAssembler::cmp32Move32(Condition cond, Register lhs, + const Address& rhs, Register src, + Register dest) { + ScratchRegisterScope scratch(*this); + SecondScratchRegisterScope scratch2(*this); + ma_ldr(rhs, scratch, scratch2); + cmp32Move32(cond, lhs, scratch, src, dest); +} + +void MacroAssembler::cmpPtrMovePtr(Condition cond, Register lhs, Register rhs, + Register src, Register dest) { + cmp32Move32(cond, lhs, rhs, src, dest); +} + +void MacroAssembler::cmpPtrMovePtr(Condition cond, Register lhs, + const Address& rhs, Register src, + Register dest) { + cmp32Move32(cond, lhs, rhs, src, dest); +} + +void MacroAssembler::cmp32Load32(Condition cond, Register lhs, + const Address& rhs, const Address& src, + Register dest) { + // This is never used, but must be present to facilitate linking on arm. + MOZ_CRASH("No known use cases"); +} + +void MacroAssembler::cmp32Load32(Condition cond, Register lhs, Register rhs, + const Address& src, Register dest) { + // This is never used, but must be present to facilitate linking on arm. + MOZ_CRASH("No known use cases"); +} + +void MacroAssembler::cmp32LoadPtr(Condition cond, const Address& lhs, Imm32 rhs, + const Address& src, Register dest) { + cmp32(lhs, rhs); + ScratchRegisterScope scratch(*this); + ma_ldr(src, dest, scratch, Offset, cond); +} + +void MacroAssembler::test32LoadPtr(Condition cond, const Address& addr, + Imm32 mask, const Address& src, + Register dest) { + MOZ_ASSERT(cond == Assembler::Zero || cond == Assembler::NonZero); + test32(addr, mask); + ScratchRegisterScope scratch(*this); + ma_ldr(src, dest, scratch, Offset, cond); +} + +void MacroAssembler::test32MovePtr(Condition cond, const Address& addr, + Imm32 mask, Register src, Register dest) { + MOZ_ASSERT(cond == Assembler::Zero || cond == Assembler::NonZero); + test32(addr, mask); + ma_mov(src, dest, LeaveCC, cond); +} + +void MacroAssembler::spectreMovePtr(Condition cond, Register src, + Register dest) { + ma_mov(src, dest, LeaveCC, cond); +} + +void MacroAssembler::spectreZeroRegister(Condition cond, Register, + Register dest) { + ma_mov(Imm32(0), dest, cond); +} + +void MacroAssembler::spectreBoundsCheck32(Register index, Register length, + Register maybeScratch, + Label* failure) { + MOZ_ASSERT(length != maybeScratch); + MOZ_ASSERT(index != maybeScratch); + + branch32(Assembler::BelowOrEqual, length, index, failure); + + if (JitOptions.spectreIndexMasking) { + ma_mov(Imm32(0), index, Assembler::BelowOrEqual); + } +} + +void MacroAssembler::spectreBoundsCheck32(Register index, const Address& length, + Register maybeScratch, + Label* failure) { + MOZ_ASSERT(index != length.base); + MOZ_ASSERT(length.base != maybeScratch); + MOZ_ASSERT(index != maybeScratch); + + branch32(Assembler::BelowOrEqual, length, index, failure); + + if (JitOptions.spectreIndexMasking) { + ma_mov(Imm32(0), index, Assembler::BelowOrEqual); + } +} + +void MacroAssembler::spectreBoundsCheckPtr(Register index, Register length, + Register maybeScratch, + Label* failure) { + spectreBoundsCheck32(index, length, maybeScratch, failure); +} + +void MacroAssembler::spectreBoundsCheckPtr(Register index, + const Address& length, + Register maybeScratch, + Label* failure) { + spectreBoundsCheck32(index, length, maybeScratch, failure); +} + +// ======================================================================== +// Memory access primitives. +void MacroAssembler::storeUncanonicalizedDouble(FloatRegister src, + const Address& addr) { + ScratchRegisterScope scratch(*this); + ma_vstr(src, addr, scratch); +} +void MacroAssembler::storeUncanonicalizedDouble(FloatRegister src, + const BaseIndex& addr) { + ScratchRegisterScope scratch(*this); + SecondScratchRegisterScope scratch2(*this); + uint32_t scale = Imm32::ShiftOf(addr.scale).value; + ma_vstr(src, addr.base, addr.index, scratch, scratch2, scale, addr.offset); +} + +void MacroAssembler::storeUncanonicalizedFloat32(FloatRegister src, + const Address& addr) { + ScratchRegisterScope scratch(*this); + ma_vstr(src.asSingle(), addr, scratch); +} +void MacroAssembler::storeUncanonicalizedFloat32(FloatRegister src, + const BaseIndex& addr) { + ScratchRegisterScope scratch(*this); + SecondScratchRegisterScope scratch2(*this); + uint32_t scale = Imm32::ShiftOf(addr.scale).value; + ma_vstr(src.asSingle(), addr.base, addr.index, scratch, scratch2, scale, + addr.offset); +} + +void MacroAssembler::memoryBarrier(MemoryBarrierBits barrier) { + // On ARMv6 the optional argument (BarrierST, etc) is ignored. + if (barrier == (MembarStoreStore | MembarSynchronizing)) { + ma_dsb(BarrierST); + } else if (barrier & MembarSynchronizing) { + ma_dsb(); + } else if (barrier == MembarStoreStore) { + ma_dmb(BarrierST); + } else if (barrier) { + ma_dmb(); + } +} + +// =============================================================== +// Clamping functions. + +void MacroAssembler::clampIntToUint8(Register reg) { + // Look at (reg >> 8) if it is 0, then reg shouldn't be clamped if it is + // <0, then we want to clamp to 0, otherwise, we wish to clamp to 255 + ScratchRegisterScope scratch(*this); + as_mov(scratch, asr(reg, 8), SetCC); + ma_mov(Imm32(0xff), reg, NotEqual); + ma_mov(Imm32(0), reg, Signed); +} + +template <typename T> +void MacroAssemblerARMCompat::fallibleUnboxPtrImpl(const T& src, Register dest, + JSValueType type, + Label* fail) { + switch (type) { + case JSVAL_TYPE_OBJECT: + asMasm().branchTestObject(Assembler::NotEqual, src, fail); + break; + case JSVAL_TYPE_STRING: + asMasm().branchTestString(Assembler::NotEqual, src, fail); + break; + case JSVAL_TYPE_SYMBOL: + asMasm().branchTestSymbol(Assembler::NotEqual, src, fail); + break; + case JSVAL_TYPE_BIGINT: + asMasm().branchTestBigInt(Assembler::NotEqual, src, fail); + break; + default: + MOZ_CRASH("Unexpected type"); + } + unboxNonDouble(src, dest, type); +} + +void MacroAssembler::fallibleUnboxPtr(const ValueOperand& src, Register dest, + JSValueType type, Label* fail) { + fallibleUnboxPtrImpl(src, dest, type, fail); +} + +void MacroAssembler::fallibleUnboxPtr(const Address& src, Register dest, + JSValueType type, Label* fail) { + fallibleUnboxPtrImpl(src, dest, type, fail); +} + +void MacroAssembler::fallibleUnboxPtr(const BaseIndex& src, Register dest, + JSValueType type, Label* fail) { + fallibleUnboxPtrImpl(src, dest, type, fail); +} + +//}}} check_macroassembler_style +// =============================================================== + +void MacroAssemblerARMCompat::incrementInt32Value(const Address& addr) { + asMasm().add32(Imm32(1), ToPayload(addr)); +} + +} // namespace jit +} // namespace js + +#endif /* jit_arm_MacroAssembler_arm_inl_h */ diff --git a/js/src/jit/arm/MacroAssembler-arm.cpp b/js/src/jit/arm/MacroAssembler-arm.cpp new file mode 100644 index 0000000000..fe4f36ab26 --- /dev/null +++ b/js/src/jit/arm/MacroAssembler-arm.cpp @@ -0,0 +1,6382 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "jit/arm/MacroAssembler-arm.h" + +#include "mozilla/Casting.h" +#include "mozilla/DebugOnly.h" +#include "mozilla/MathAlgorithms.h" +#include "mozilla/Maybe.h" + +#include "jsmath.h" + +#include "jit/arm/Simulator-arm.h" +#include "jit/AtomicOp.h" +#include "jit/AtomicOperations.h" +#include "jit/Bailouts.h" +#include "jit/BaselineFrame.h" +#include "jit/JitFrames.h" +#include "jit/JitRuntime.h" +#include "jit/MacroAssembler.h" +#include "jit/MoveEmitter.h" +#include "js/ScalarType.h" // js::Scalar::Type +#include "util/Memory.h" +#include "vm/BigIntType.h" +#include "vm/JitActivation.h" // js::jit::JitActivation +#include "vm/JSContext.h" +#include "vm/StringType.h" + +#include "jit/MacroAssembler-inl.h" + +using namespace js; +using namespace jit; + +using mozilla::Abs; +using mozilla::BitwiseCast; +using mozilla::DebugOnly; +using mozilla::IsPositiveZero; +using mozilla::Maybe; + +bool isValueDTRDCandidate(ValueOperand& val) { + // In order to be used for a DTRD memory function, the two target registers + // need to be a) Adjacent, with the tag larger than the payload, and b) + // Aligned to a multiple of two. + if ((val.typeReg().code() != (val.payloadReg().code() + 1))) { + return false; + } + if ((val.payloadReg().code() & 1) != 0) { + return false; + } + return true; +} + +void MacroAssemblerARM::convertBoolToInt32(Register source, Register dest) { + // Note that C++ bool is only 1 byte, so zero extend it to clear the + // higher-order bits. + as_and(dest, source, Imm8(0xff)); +} + +void MacroAssemblerARM::convertInt32ToDouble(Register src, + FloatRegister dest_) { + // Direct conversions aren't possible. + VFPRegister dest = VFPRegister(dest_); + as_vxfer(src, InvalidReg, dest.sintOverlay(), CoreToFloat); + as_vcvt(dest, dest.sintOverlay()); +} + +void MacroAssemblerARM::convertInt32ToDouble(const Address& src, + FloatRegister dest) { + ScratchDoubleScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + ma_vldr(src, scratch, scratch2); + as_vcvt(dest, VFPRegister(scratch).sintOverlay()); +} + +void MacroAssemblerARM::convertInt32ToDouble(const BaseIndex& src, + FloatRegister dest) { + Register base = src.base; + uint32_t scale = Imm32::ShiftOf(src.scale).value; + + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + + if (src.offset != 0) { + ma_add(base, Imm32(src.offset), scratch, scratch2); + base = scratch; + } + ma_ldr(DTRAddr(base, DtrRegImmShift(src.index, LSL, scale)), scratch); + convertInt32ToDouble(scratch, dest); +} + +void MacroAssemblerARM::convertUInt32ToDouble(Register src, + FloatRegister dest_) { + // Direct conversions aren't possible. + VFPRegister dest = VFPRegister(dest_); + as_vxfer(src, InvalidReg, dest.uintOverlay(), CoreToFloat); + as_vcvt(dest, dest.uintOverlay()); +} + +static const double TO_DOUBLE_HIGH_SCALE = 0x100000000; + +void MacroAssemblerARM::convertUInt32ToFloat32(Register src, + FloatRegister dest_) { + // Direct conversions aren't possible. + VFPRegister dest = VFPRegister(dest_); + as_vxfer(src, InvalidReg, dest.uintOverlay(), CoreToFloat); + as_vcvt(VFPRegister(dest).singleOverlay(), dest.uintOverlay()); +} + +void MacroAssemblerARM::convertDoubleToFloat32(FloatRegister src, + FloatRegister dest, + Condition c) { + as_vcvt(VFPRegister(dest).singleOverlay(), VFPRegister(src), false, c); +} + +// Checks whether a double is representable as a 32-bit integer. If so, the +// integer is written to the output register. Otherwise, a bailout is taken to +// the given snapshot. This function overwrites the scratch float register. +void MacroAssemblerARM::convertDoubleToInt32(FloatRegister src, Register dest, + Label* fail, + bool negativeZeroCheck) { + // Convert the floating point value to an integer, if it did not fit, then + // when we convert it *back* to a float, it will have a different value, + // which we can test. + ScratchDoubleScope scratchDouble(asMasm()); + ScratchRegisterScope scratch(asMasm()); + + FloatRegister scratchSIntReg = scratchDouble.sintOverlay(); + + ma_vcvt_F64_I32(src, scratchSIntReg); + // Move the value into the dest register. + ma_vxfer(scratchSIntReg, dest); + ma_vcvt_I32_F64(scratchSIntReg, scratchDouble); + ma_vcmp(src, scratchDouble); + as_vmrs(pc); + ma_b(fail, Assembler::VFP_NotEqualOrUnordered); + + if (negativeZeroCheck) { + as_cmp(dest, Imm8(0)); + // Test and bail for -0.0, when integer result is 0. Move the top word + // of the double into the output reg, if it is non-zero, then the + // original value was -0.0. + as_vxfer(dest, InvalidReg, src, FloatToCore, Assembler::Equal, 1); + ma_cmp(dest, Imm32(0x80000000), scratch, Assembler::Equal); + ma_b(fail, Assembler::Equal); + } +} + +// Checks whether a float32 is representable as a 32-bit integer. If so, the +// integer is written to the output register. Otherwise, a bailout is taken to +// the given snapshot. This function overwrites the scratch float register. +void MacroAssemblerARM::convertFloat32ToInt32(FloatRegister src, Register dest, + Label* fail, + bool negativeZeroCheck) { + // Converting the floating point value to an integer and then converting it + // back to a float32 would not work, as float to int32 conversions are + // clamping (e.g. float(INT32_MAX + 1) would get converted into INT32_MAX + // and then back to float(INT32_MAX + 1)). If this ever happens, we just + // bail out. + ScratchFloat32Scope scratchFloat(asMasm()); + ScratchRegisterScope scratch(asMasm()); + + FloatRegister ScratchSIntReg = scratchFloat.sintOverlay(); + ma_vcvt_F32_I32(src, ScratchSIntReg); + + // Store the result + ma_vxfer(ScratchSIntReg, dest); + + ma_vcvt_I32_F32(ScratchSIntReg, scratchFloat); + ma_vcmp(src, scratchFloat); + as_vmrs(pc); + ma_b(fail, Assembler::VFP_NotEqualOrUnordered); + + // Bail out in the clamped cases. + ma_cmp(dest, Imm32(0x7fffffff), scratch); + ma_cmp(dest, Imm32(0x80000000), scratch, Assembler::NotEqual); + ma_b(fail, Assembler::Equal); + + if (negativeZeroCheck) { + as_cmp(dest, Imm8(0)); + // Test and bail for -0.0, when integer result is 0. Move the float into + // the output reg, and if it is non-zero then the original value was + // -0.0 + as_vxfer(dest, InvalidReg, VFPRegister(src).singleOverlay(), FloatToCore, + Assembler::Equal, 0); + ma_cmp(dest, Imm32(0x80000000), scratch, Assembler::Equal); + ma_b(fail, Assembler::Equal); + } +} + +void MacroAssemblerARM::convertFloat32ToDouble(FloatRegister src, + FloatRegister dest) { + MOZ_ASSERT(dest.isDouble()); + MOZ_ASSERT(src.isSingle()); + as_vcvt(VFPRegister(dest), VFPRegister(src).singleOverlay()); +} + +void MacroAssemblerARM::convertInt32ToFloat32(Register src, + FloatRegister dest) { + // Direct conversions aren't possible. + as_vxfer(src, InvalidReg, dest.sintOverlay(), CoreToFloat); + as_vcvt(dest.singleOverlay(), dest.sintOverlay()); +} + +void MacroAssemblerARM::convertInt32ToFloat32(const Address& src, + FloatRegister dest) { + ScratchFloat32Scope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + ma_vldr(src, scratch, scratch2); + as_vcvt(dest, VFPRegister(scratch).sintOverlay()); +} + +bool MacroAssemblerARM::alu_dbl(Register src1, Imm32 imm, Register dest, + ALUOp op, SBit s, Condition c) { + if ((s == SetCC && !condsAreSafe(op)) || !can_dbl(op)) { + return false; + } + + ALUOp interop = getDestVariant(op); + Imm8::TwoImm8mData both = Imm8::EncodeTwoImms(imm.value); + if (both.fst().invalid()) { + return false; + } + + // For the most part, there is no good reason to set the condition codes for + // the first instruction. We can do better things if the second instruction + // doesn't have a dest, such as check for overflow by doing first operation + // don't do second operation if first operation overflowed. This preserves + // the overflow condition code. Unfortunately, it is horribly brittle. + as_alu(dest, src1, Operand2(both.fst()), interop, LeaveCC, c); + as_alu(dest, dest, Operand2(both.snd()), op, s, c); + return true; +} + +void MacroAssemblerARM::ma_alu(Register src1, Imm32 imm, Register dest, + AutoRegisterScope& scratch, ALUOp op, SBit s, + Condition c) { + // ma_mov should be used for moves. + MOZ_ASSERT(op != OpMov); + MOZ_ASSERT(op != OpMvn); + MOZ_ASSERT(src1 != scratch); + + // As it turns out, if you ask for a compare-like instruction you *probably* + // want it to set condition codes. + MOZ_ASSERT_IF(dest == InvalidReg, s == SetCC); + + // The operator gives us the ability to determine how this can be used. + Imm8 imm8 = Imm8(imm.value); + // One instruction: If we can encode it using an imm8m, then do so. + if (!imm8.invalid()) { + as_alu(dest, src1, imm8, op, s, c); + return; + } + + // One instruction, negated: + Imm32 negImm = imm; + Register negDest; + ALUOp negOp = ALUNeg(op, dest, scratch, &negImm, &negDest); + Imm8 negImm8 = Imm8(negImm.value); + // 'add r1, r2, -15' can be replaced with 'sub r1, r2, 15'. + // The dest can be replaced (InvalidReg => scratch). + // This is useful if we wish to negate tst. tst has an invalid (aka not + // used) dest, but its negation bic requires a dest. + if (negOp != OpInvalid && !negImm8.invalid()) { + as_alu(negDest, src1, negImm8, negOp, s, c); + return; + } + + // Start by attempting to generate a two instruction form. Some things + // cannot be made into two-inst forms correctly. Namely, adds dest, src, + // 0xffff. Since we want the condition codes (and don't know which ones + // will be checked), we need to assume that the overflow flag will be + // checked and add{,s} dest, src, 0xff00; add{,s} dest, dest, 0xff is not + // guaranteed to set the overflof flag the same as the (theoretical) one + // instruction variant. + if (alu_dbl(src1, imm, dest, op, s, c)) { + return; + } + + // And try with its negative. + if (negOp != OpInvalid && alu_dbl(src1, negImm, negDest, negOp, s, c)) { + return; + } + + ma_mov(imm, scratch, c); + as_alu(dest, src1, O2Reg(scratch), op, s, c); +} + +void MacroAssemblerARM::ma_alu(Register src1, Operand op2, Register dest, + ALUOp op, SBit s, Assembler::Condition c) { + MOZ_ASSERT(op2.tag() == Operand::Tag::OP2); + as_alu(dest, src1, op2.toOp2(), op, s, c); +} + +void MacroAssemblerARM::ma_alu(Register src1, Operand2 op2, Register dest, + ALUOp op, SBit s, Condition c) { + as_alu(dest, src1, op2, op, s, c); +} + +void MacroAssemblerARM::ma_nop() { as_nop(); } + +BufferOffset MacroAssemblerARM::ma_movPatchable(Imm32 imm_, Register dest, + Assembler::Condition c) { + int32_t imm = imm_.value; + if (HasMOVWT()) { + BufferOffset offset = as_movw(dest, Imm16(imm & 0xffff), c); + as_movt(dest, Imm16(imm >> 16 & 0xffff), c); + return offset; + } else { + return as_Imm32Pool(dest, imm, c); + } +} + +BufferOffset MacroAssemblerARM::ma_movPatchable(ImmPtr imm, Register dest, + Assembler::Condition c) { + return ma_movPatchable(Imm32(int32_t(imm.value)), dest, c); +} + +/* static */ +template <class Iter> +void MacroAssemblerARM::ma_mov_patch(Imm32 imm32, Register dest, + Assembler::Condition c, RelocStyle rs, + Iter iter) { + // The current instruction must be an actual instruction, + // not automatically-inserted boilerplate. + MOZ_ASSERT(iter.cur()); + MOZ_ASSERT(iter.cur() == iter.maybeSkipAutomaticInstructions()); + + int32_t imm = imm32.value; + switch (rs) { + case L_MOVWT: + Assembler::as_movw_patch(dest, Imm16(imm & 0xffff), c, iter.cur()); + Assembler::as_movt_patch(dest, Imm16(imm >> 16 & 0xffff), c, iter.next()); + break; + case L_LDR: + Assembler::WritePoolEntry(iter.cur(), c, imm); + break; + } +} + +template void MacroAssemblerARM::ma_mov_patch(Imm32 imm32, Register dest, + Assembler::Condition c, + RelocStyle rs, + InstructionIterator iter); +template void MacroAssemblerARM::ma_mov_patch(Imm32 imm32, Register dest, + Assembler::Condition c, + RelocStyle rs, + BufferInstructionIterator iter); + +void MacroAssemblerARM::ma_mov(Register src, Register dest, SBit s, + Assembler::Condition c) { + if (s == SetCC || dest != src) { + as_mov(dest, O2Reg(src), s, c); + } +} + +void MacroAssemblerARM::ma_mov(Imm32 imm, Register dest, + Assembler::Condition c) { + // Try mov with Imm8 operand. + Imm8 imm8 = Imm8(imm.value); + if (!imm8.invalid()) { + as_alu(dest, InvalidReg, imm8, OpMov, LeaveCC, c); + return; + } + + // Try mvn with Imm8 operand. + Imm8 negImm8 = Imm8(~imm.value); + if (!negImm8.invalid()) { + as_alu(dest, InvalidReg, negImm8, OpMvn, LeaveCC, c); + return; + } + + // Try movw/movt. + if (HasMOVWT()) { + // ARMv7 supports movw/movt. movw zero-extends its 16 bit argument, + // so we can set the register this way. movt leaves the bottom 16 + // bits in tact, so we always need a movw. + as_movw(dest, Imm16(imm.value & 0xffff), c); + if (uint32_t(imm.value) >> 16) { + as_movt(dest, Imm16(uint32_t(imm.value) >> 16), c); + } + return; + } + + // If we don't have movw/movt, we need a load. + as_Imm32Pool(dest, imm.value, c); +} + +void MacroAssemblerARM::ma_mov(ImmWord imm, Register dest, + Assembler::Condition c) { + ma_mov(Imm32(imm.value), dest, c); +} + +void MacroAssemblerARM::ma_mov(ImmGCPtr ptr, Register dest) { + BufferOffset offset = + ma_movPatchable(Imm32(uintptr_t(ptr.value)), dest, Always); + writeDataRelocation(offset, ptr); +} + +// Shifts (just a move with a shifting op2) +void MacroAssemblerARM::ma_lsl(Imm32 shift, Register src, Register dst) { + as_mov(dst, lsl(src, shift.value)); +} + +void MacroAssemblerARM::ma_lsr(Imm32 shift, Register src, Register dst) { + as_mov(dst, lsr(src, shift.value)); +} + +void MacroAssemblerARM::ma_asr(Imm32 shift, Register src, Register dst) { + as_mov(dst, asr(src, shift.value)); +} + +void MacroAssemblerARM::ma_ror(Imm32 shift, Register src, Register dst) { + as_mov(dst, ror(src, shift.value)); +} + +void MacroAssemblerARM::ma_rol(Imm32 shift, Register src, Register dst) { + as_mov(dst, rol(src, shift.value)); +} + +// Shifts (just a move with a shifting op2) +void MacroAssemblerARM::ma_lsl(Register shift, Register src, Register dst) { + as_mov(dst, lsl(src, shift)); +} + +void MacroAssemblerARM::ma_lsr(Register shift, Register src, Register dst) { + as_mov(dst, lsr(src, shift)); +} + +void MacroAssemblerARM::ma_asr(Register shift, Register src, Register dst) { + as_mov(dst, asr(src, shift)); +} + +void MacroAssemblerARM::ma_ror(Register shift, Register src, Register dst) { + as_mov(dst, ror(src, shift)); +} + +void MacroAssemblerARM::ma_rol(Register shift, Register src, Register dst, + AutoRegisterScope& scratch) { + as_rsb(scratch, shift, Imm8(32)); + as_mov(dst, ror(src, scratch)); +} + +// Move not (dest <- ~src) +void MacroAssemblerARM::ma_mvn(Register src1, Register dest, SBit s, + Assembler::Condition c) { + as_alu(dest, InvalidReg, O2Reg(src1), OpMvn, s, c); +} + +// Negate (dest <- -src), src is a register, rather than a general op2. +void MacroAssemblerARM::ma_neg(Register src1, Register dest, SBit s, + Assembler::Condition c) { + as_rsb(dest, src1, Imm8(0), s, c); +} + +void MacroAssemblerARM::ma_neg(Register64 src, Register64 dest) { + as_rsb(dest.low, src.low, Imm8(0), SetCC); + as_rsc(dest.high, src.high, Imm8(0)); +} + +// And. +void MacroAssemblerARM::ma_and(Register src, Register dest, SBit s, + Assembler::Condition c) { + ma_and(dest, src, dest); +} + +void MacroAssemblerARM::ma_and(Register src1, Register src2, Register dest, + SBit s, Assembler::Condition c) { + as_and(dest, src1, O2Reg(src2), s, c); +} + +void MacroAssemblerARM::ma_and(Imm32 imm, Register dest, + AutoRegisterScope& scratch, SBit s, + Assembler::Condition c) { + ma_alu(dest, imm, dest, scratch, OpAnd, s, c); +} + +void MacroAssemblerARM::ma_and(Imm32 imm, Register src1, Register dest, + AutoRegisterScope& scratch, SBit s, + Assembler::Condition c) { + ma_alu(src1, imm, dest, scratch, OpAnd, s, c); +} + +// Bit clear (dest <- dest & ~imm) or (dest <- src1 & ~src2). +void MacroAssemblerARM::ma_bic(Imm32 imm, Register dest, + AutoRegisterScope& scratch, SBit s, + Assembler::Condition c) { + ma_alu(dest, imm, dest, scratch, OpBic, s, c); +} + +// Exclusive or. +void MacroAssemblerARM::ma_eor(Register src, Register dest, SBit s, + Assembler::Condition c) { + ma_eor(dest, src, dest, s, c); +} + +void MacroAssemblerARM::ma_eor(Register src1, Register src2, Register dest, + SBit s, Assembler::Condition c) { + as_eor(dest, src1, O2Reg(src2), s, c); +} + +void MacroAssemblerARM::ma_eor(Imm32 imm, Register dest, + AutoRegisterScope& scratch, SBit s, + Assembler::Condition c) { + ma_alu(dest, imm, dest, scratch, OpEor, s, c); +} + +void MacroAssemblerARM::ma_eor(Imm32 imm, Register src1, Register dest, + AutoRegisterScope& scratch, SBit s, + Assembler::Condition c) { + ma_alu(src1, imm, dest, scratch, OpEor, s, c); +} + +// Or. +void MacroAssemblerARM::ma_orr(Register src, Register dest, SBit s, + Assembler::Condition c) { + ma_orr(dest, src, dest, s, c); +} + +void MacroAssemblerARM::ma_orr(Register src1, Register src2, Register dest, + SBit s, Assembler::Condition c) { + as_orr(dest, src1, O2Reg(src2), s, c); +} + +void MacroAssemblerARM::ma_orr(Imm32 imm, Register dest, + AutoRegisterScope& scratch, SBit s, + Assembler::Condition c) { + ma_alu(dest, imm, dest, scratch, OpOrr, s, c); +} + +void MacroAssemblerARM::ma_orr(Imm32 imm, Register src1, Register dest, + AutoRegisterScope& scratch, SBit s, + Assembler::Condition c) { + ma_alu(src1, imm, dest, scratch, OpOrr, s, c); +} + +// Arithmetic-based ops. +// Add with carry. +void MacroAssemblerARM::ma_adc(Imm32 imm, Register dest, + AutoRegisterScope& scratch, SBit s, + Condition c) { + ma_alu(dest, imm, dest, scratch, OpAdc, s, c); +} + +void MacroAssemblerARM::ma_adc(Register src, Register dest, SBit s, + Condition c) { + as_alu(dest, dest, O2Reg(src), OpAdc, s, c); +} + +void MacroAssemblerARM::ma_adc(Register src1, Register src2, Register dest, + SBit s, Condition c) { + as_alu(dest, src1, O2Reg(src2), OpAdc, s, c); +} + +void MacroAssemblerARM::ma_adc(Register src1, Imm32 op, Register dest, + AutoRegisterScope& scratch, SBit s, + Condition c) { + ma_alu(src1, op, dest, scratch, OpAdc, s, c); +} + +// Add. +void MacroAssemblerARM::ma_add(Imm32 imm, Register dest, + AutoRegisterScope& scratch, SBit s, + Condition c) { + ma_alu(dest, imm, dest, scratch, OpAdd, s, c); +} + +void MacroAssemblerARM::ma_add(Register src1, Register dest, SBit s, + Condition c) { + ma_alu(dest, O2Reg(src1), dest, OpAdd, s, c); +} + +void MacroAssemblerARM::ma_add(Register src1, Register src2, Register dest, + SBit s, Condition c) { + as_alu(dest, src1, O2Reg(src2), OpAdd, s, c); +} + +void MacroAssemblerARM::ma_add(Register src1, Operand op, Register dest, SBit s, + Condition c) { + ma_alu(src1, op, dest, OpAdd, s, c); +} + +void MacroAssemblerARM::ma_add(Register src1, Imm32 op, Register dest, + AutoRegisterScope& scratch, SBit s, + Condition c) { + ma_alu(src1, op, dest, scratch, OpAdd, s, c); +} + +// Subtract with carry. +void MacroAssemblerARM::ma_sbc(Imm32 imm, Register dest, + AutoRegisterScope& scratch, SBit s, + Condition c) { + ma_alu(dest, imm, dest, scratch, OpSbc, s, c); +} + +void MacroAssemblerARM::ma_sbc(Register src1, Register dest, SBit s, + Condition c) { + as_alu(dest, dest, O2Reg(src1), OpSbc, s, c); +} + +void MacroAssemblerARM::ma_sbc(Register src1, Register src2, Register dest, + SBit s, Condition c) { + as_alu(dest, src1, O2Reg(src2), OpSbc, s, c); +} + +// Subtract. +void MacroAssemblerARM::ma_sub(Imm32 imm, Register dest, + AutoRegisterScope& scratch, SBit s, + Condition c) { + ma_alu(dest, imm, dest, scratch, OpSub, s, c); +} + +void MacroAssemblerARM::ma_sub(Register src1, Register dest, SBit s, + Condition c) { + ma_alu(dest, Operand(src1), dest, OpSub, s, c); +} + +void MacroAssemblerARM::ma_sub(Register src1, Register src2, Register dest, + SBit s, Condition c) { + ma_alu(src1, Operand(src2), dest, OpSub, s, c); +} + +void MacroAssemblerARM::ma_sub(Register src1, Operand op, Register dest, SBit s, + Condition c) { + ma_alu(src1, op, dest, OpSub, s, c); +} + +void MacroAssemblerARM::ma_sub(Register src1, Imm32 op, Register dest, + AutoRegisterScope& scratch, SBit s, + Condition c) { + ma_alu(src1, op, dest, scratch, OpSub, s, c); +} + +// Reverse subtract. +void MacroAssemblerARM::ma_rsb(Imm32 imm, Register dest, + AutoRegisterScope& scratch, SBit s, + Condition c) { + ma_alu(dest, imm, dest, scratch, OpRsb, s, c); +} + +void MacroAssemblerARM::ma_rsb(Register src1, Register dest, SBit s, + Condition c) { + as_alu(dest, src1, O2Reg(dest), OpRsb, s, c); +} + +void MacroAssemblerARM::ma_rsb(Register src1, Register src2, Register dest, + SBit s, Condition c) { + as_alu(dest, src1, O2Reg(src2), OpRsb, s, c); +} + +void MacroAssemblerARM::ma_rsb(Register src1, Imm32 op2, Register dest, + AutoRegisterScope& scratch, SBit s, + Condition c) { + ma_alu(src1, op2, dest, scratch, OpRsb, s, c); +} + +// Reverse subtract with carry. +void MacroAssemblerARM::ma_rsc(Imm32 imm, Register dest, + AutoRegisterScope& scratch, SBit s, + Condition c) { + ma_alu(dest, imm, dest, scratch, OpRsc, s, c); +} + +void MacroAssemblerARM::ma_rsc(Register src1, Register dest, SBit s, + Condition c) { + as_alu(dest, dest, O2Reg(src1), OpRsc, s, c); +} + +void MacroAssemblerARM::ma_rsc(Register src1, Register src2, Register dest, + SBit s, Condition c) { + as_alu(dest, src1, O2Reg(src2), OpRsc, s, c); +} + +// Compares/tests. +// Compare negative (sets condition codes as src1 + src2 would). +void MacroAssemblerARM::ma_cmn(Register src1, Imm32 imm, + AutoRegisterScope& scratch, Condition c) { + ma_alu(src1, imm, InvalidReg, scratch, OpCmn, SetCC, c); +} + +void MacroAssemblerARM::ma_cmn(Register src1, Register src2, Condition c) { + as_alu(InvalidReg, src2, O2Reg(src1), OpCmn, SetCC, c); +} + +void MacroAssemblerARM::ma_cmn(Register src1, Operand op, Condition c) { + MOZ_CRASH("Feature NYI"); +} + +// Compare (src - src2). +void MacroAssemblerARM::ma_cmp(Register src1, Imm32 imm, + AutoRegisterScope& scratch, Condition c) { + ma_alu(src1, imm, InvalidReg, scratch, OpCmp, SetCC, c); +} + +void MacroAssemblerARM::ma_cmp(Register src1, ImmTag tag, Condition c) { + // ImmTag comparisons can always be done without use of a scratch register. + Imm8 negtag = Imm8(-tag.value); + MOZ_ASSERT(!negtag.invalid()); + as_cmn(src1, negtag, c); +} + +void MacroAssemblerARM::ma_cmp(Register src1, ImmWord ptr, + AutoRegisterScope& scratch, Condition c) { + ma_cmp(src1, Imm32(ptr.value), scratch, c); +} + +void MacroAssemblerARM::ma_cmp(Register src1, ImmGCPtr ptr, + AutoRegisterScope& scratch, Condition c) { + ma_mov(ptr, scratch); + ma_cmp(src1, scratch, c); +} + +void MacroAssemblerARM::ma_cmp(Register src1, Operand op, + AutoRegisterScope& scratch, + AutoRegisterScope& scratch2, Condition c) { + switch (op.tag()) { + case Operand::Tag::OP2: + as_cmp(src1, op.toOp2(), c); + break; + case Operand::Tag::MEM: + ma_ldr(op.toAddress(), scratch, scratch2); + as_cmp(src1, O2Reg(scratch), c); + break; + default: + MOZ_CRASH("trying to compare FP and integer registers"); + } +} + +void MacroAssemblerARM::ma_cmp(Register src1, Register src2, Condition c) { + as_cmp(src1, O2Reg(src2), c); +} + +// Test for equality, (src1 ^ src2). +void MacroAssemblerARM::ma_teq(Register src1, Imm32 imm, + AutoRegisterScope& scratch, Condition c) { + ma_alu(src1, imm, InvalidReg, scratch, OpTeq, SetCC, c); +} + +void MacroAssemblerARM::ma_teq(Register src1, Register src2, Condition c) { + as_tst(src1, O2Reg(src2), c); +} + +void MacroAssemblerARM::ma_teq(Register src1, Operand op, Condition c) { + as_teq(src1, op.toOp2(), c); +} + +// Test (src1 & src2). +void MacroAssemblerARM::ma_tst(Register src1, Imm32 imm, + AutoRegisterScope& scratch, Condition c) { + ma_alu(src1, imm, InvalidReg, scratch, OpTst, SetCC, c); +} + +void MacroAssemblerARM::ma_tst(Register src1, Register src2, Condition c) { + as_tst(src1, O2Reg(src2), c); +} + +void MacroAssemblerARM::ma_tst(Register src1, Operand op, Condition c) { + as_tst(src1, op.toOp2(), c); +} + +void MacroAssemblerARM::ma_mul(Register src1, Register src2, Register dest) { + as_mul(dest, src1, src2); +} + +void MacroAssemblerARM::ma_mul(Register src1, Imm32 imm, Register dest, + AutoRegisterScope& scratch) { + ma_mov(imm, scratch); + as_mul(dest, src1, scratch); +} + +Assembler::Condition MacroAssemblerARM::ma_check_mul(Register src1, + Register src2, + Register dest, + AutoRegisterScope& scratch, + Condition cond) { + // TODO: this operation is illegal on armv6 and earlier + // if src2 == scratch or src2 == dest. + if (cond == Equal || cond == NotEqual) { + as_smull(scratch, dest, src1, src2, SetCC); + return cond; + } + + if (cond == Overflow) { + as_smull(scratch, dest, src1, src2); + as_cmp(scratch, asr(dest, 31)); + return NotEqual; + } + + MOZ_CRASH("Condition NYI"); +} + +Assembler::Condition MacroAssemblerARM::ma_check_mul(Register src1, Imm32 imm, + Register dest, + AutoRegisterScope& scratch, + Condition cond) { + ma_mov(imm, scratch); + + if (cond == Equal || cond == NotEqual) { + as_smull(scratch, dest, scratch, src1, SetCC); + return cond; + } + + if (cond == Overflow) { + as_smull(scratch, dest, scratch, src1); + as_cmp(scratch, asr(dest, 31)); + return NotEqual; + } + + MOZ_CRASH("Condition NYI"); +} + +void MacroAssemblerARM::ma_umull(Register src1, Imm32 imm, Register destHigh, + Register destLow, AutoRegisterScope& scratch) { + ma_mov(imm, scratch); + as_umull(destHigh, destLow, src1, scratch); +} + +void MacroAssemblerARM::ma_umull(Register src1, Register src2, + Register destHigh, Register destLow) { + as_umull(destHigh, destLow, src1, src2); +} + +void MacroAssemblerARM::ma_mod_mask(Register src, Register dest, Register hold, + Register tmp, AutoRegisterScope& scratch, + AutoRegisterScope& scratch2, + int32_t shift) { + // We wish to compute x % (1<<y) - 1 for a known constant, y. + // + // 1. Let b = (1<<y) and C = (1<<y)-1, then think of the 32 bit dividend as + // a number in base b, namely c_0*1 + c_1*b + c_2*b^2 ... c_n*b^n + // + // 2. Since both addition and multiplication commute with modulus: + // x % C == (c_0 + c_1*b + ... + c_n*b^n) % C == + // (c_0 % C) + (c_1%C) * (b % C) + (c_2 % C) * (b^2 % C)... + // + // 3. Since b == C + 1, b % C == 1, and b^n % C == 1 the whole thing + // simplifies to: c_0 + c_1 + c_2 ... c_n % C + // + // Each c_n can easily be computed by a shift/bitextract, and the modulus + // can be maintained by simply subtracting by C whenever the number gets + // over C. + int32_t mask = (1 << shift) - 1; + Label head; + + // Register 'hold' holds -1 if the value was negative, 1 otherwise. The + // scratch reg holds the remaining bits that have not been processed lr + // serves as a temporary location to store extracted bits into as well as + // holding the trial subtraction as a temp value dest is the accumulator + // (and holds the final result) + // + // Move the whole value into tmp, setting the codition codes so we can muck + // with them later. + as_mov(tmp, O2Reg(src), SetCC); + // Zero out the dest. + ma_mov(Imm32(0), dest); + // Set the hold appropriately. + ma_mov(Imm32(1), hold); + ma_mov(Imm32(-1), hold, Signed); + as_rsb(tmp, tmp, Imm8(0), SetCC, Signed); + + // Begin the main loop. + bind(&head); + { + // Extract the bottom bits. + ma_and(Imm32(mask), tmp, scratch, scratch2); + // Add those bits to the accumulator. + ma_add(scratch, dest, dest); + // Do a trial subtraction, this is the same operation as cmp, but we store + // the dest. + ma_sub(dest, Imm32(mask), scratch, scratch2, SetCC); + // If (sum - C) > 0, store sum - C back into sum, thus performing a modulus. + ma_mov(scratch, dest, LeaveCC, NotSigned); + // Get rid of the bits that we extracted before, and set the condition + // codes. + as_mov(tmp, lsr(tmp, shift), SetCC); + // If the shift produced zero, finish, otherwise, continue in the loop. + ma_b(&head, NonZero); + } + + // Check the hold to see if we need to negate the result. Hold can only be + // 1 or -1, so this will never set the 0 flag. + as_cmp(hold, Imm8(0)); + // If the hold was non-zero, negate the result to be in line with what JS + // wants this will set the condition codes if we try to negate. + as_rsb(dest, dest, Imm8(0), SetCC, Signed); + // Since the Zero flag is not set by the compare, we can *only* set the Zero + // flag in the rsb, so Zero is set iff we negated zero (e.g. the result of + // the computation was -0.0). +} + +void MacroAssemblerARM::ma_smod(Register num, Register div, Register dest, + AutoRegisterScope& scratch) { + as_sdiv(scratch, num, div); + as_mls(dest, num, scratch, div); +} + +void MacroAssemblerARM::ma_umod(Register num, Register div, Register dest, + AutoRegisterScope& scratch) { + as_udiv(scratch, num, div); + as_mls(dest, num, scratch, div); +} + +// Division +void MacroAssemblerARM::ma_sdiv(Register num, Register div, Register dest, + Condition cond) { + as_sdiv(dest, num, div, cond); +} + +void MacroAssemblerARM::ma_udiv(Register num, Register div, Register dest, + Condition cond) { + as_udiv(dest, num, div, cond); +} + +// Miscellaneous instructions. +void MacroAssemblerARM::ma_clz(Register src, Register dest, Condition cond) { + as_clz(dest, src, cond); +} + +void MacroAssemblerARM::ma_ctz(Register src, Register dest, + AutoRegisterScope& scratch) { + // int c = __clz(a & -a); + // return a ? 31 - c : c; + as_rsb(scratch, src, Imm8(0), SetCC); + as_and(dest, src, O2Reg(scratch), LeaveCC); + as_clz(dest, dest); + as_rsb(dest, dest, Imm8(0x1F), LeaveCC, Assembler::NotEqual); +} + +// Memory. +// Shortcut for when we know we're transferring 32 bits of data. +void MacroAssemblerARM::ma_dtr(LoadStore ls, Register rn, Imm32 offset, + Register rt, AutoRegisterScope& scratch, + Index mode, Assembler::Condition cc) { + ma_dataTransferN(ls, 32, true, rn, offset, rt, scratch, mode, cc); +} + +void MacroAssemblerARM::ma_dtr(LoadStore ls, Register rt, const Address& addr, + AutoRegisterScope& scratch, Index mode, + Condition cc) { + ma_dataTransferN(ls, 32, true, addr.base, Imm32(addr.offset), rt, scratch, + mode, cc); +} + +void MacroAssemblerARM::ma_str(Register rt, DTRAddr addr, Index mode, + Condition cc) { + as_dtr(IsStore, 32, mode, rt, addr, cc); +} + +void MacroAssemblerARM::ma_str(Register rt, const Address& addr, + AutoRegisterScope& scratch, Index mode, + Condition cc) { + ma_dtr(IsStore, rt, addr, scratch, mode, cc); +} + +void MacroAssemblerARM::ma_strd(Register rt, DebugOnly<Register> rt2, + EDtrAddr addr, Index mode, Condition cc) { + MOZ_ASSERT((rt.code() & 1) == 0); + MOZ_ASSERT(rt2.value.code() == rt.code() + 1); + as_extdtr(IsStore, 64, true, mode, rt, addr, cc); +} + +void MacroAssemblerARM::ma_ldr(DTRAddr addr, Register rt, Index mode, + Condition cc) { + as_dtr(IsLoad, 32, mode, rt, addr, cc); +} + +void MacroAssemblerARM::ma_ldr(const Address& addr, Register rt, + AutoRegisterScope& scratch, Index mode, + Condition cc) { + ma_dtr(IsLoad, rt, addr, scratch, mode, cc); +} + +void MacroAssemblerARM::ma_ldrb(DTRAddr addr, Register rt, Index mode, + Condition cc) { + as_dtr(IsLoad, 8, mode, rt, addr, cc); +} + +void MacroAssemblerARM::ma_ldrsh(EDtrAddr addr, Register rt, Index mode, + Condition cc) { + as_extdtr(IsLoad, 16, true, mode, rt, addr, cc); +} + +void MacroAssemblerARM::ma_ldrh(EDtrAddr addr, Register rt, Index mode, + Condition cc) { + as_extdtr(IsLoad, 16, false, mode, rt, addr, cc); +} + +void MacroAssemblerARM::ma_ldrsb(EDtrAddr addr, Register rt, Index mode, + Condition cc) { + as_extdtr(IsLoad, 8, true, mode, rt, addr, cc); +} + +void MacroAssemblerARM::ma_ldrd(EDtrAddr addr, Register rt, + DebugOnly<Register> rt2, Index mode, + Condition cc) { + MOZ_ASSERT((rt.code() & 1) == 0); + MOZ_ASSERT(rt2.value.code() == rt.code() + 1); + MOZ_ASSERT(addr.maybeOffsetRegister() != + rt); // Undefined behavior if rm == rt/rt2. + MOZ_ASSERT(addr.maybeOffsetRegister() != rt2); + as_extdtr(IsLoad, 64, true, mode, rt, addr, cc); +} + +void MacroAssemblerARM::ma_strh(Register rt, EDtrAddr addr, Index mode, + Condition cc) { + as_extdtr(IsStore, 16, false, mode, rt, addr, cc); +} + +void MacroAssemblerARM::ma_strb(Register rt, DTRAddr addr, Index mode, + Condition cc) { + as_dtr(IsStore, 8, mode, rt, addr, cc); +} + +// Specialty for moving N bits of data, where n == 8,16,32,64. +BufferOffset MacroAssemblerARM::ma_dataTransferN( + LoadStore ls, int size, bool IsSigned, Register rn, Register rm, + Register rt, AutoRegisterScope& scratch, Index mode, + Assembler::Condition cc, Scale scale) { + MOZ_ASSERT(size == 8 || size == 16 || size == 32 || size == 64); + + if (size == 32 || (size == 8 && !IsSigned)) { + return as_dtr(ls, size, mode, rt, + DTRAddr(rn, DtrRegImmShift(rm, LSL, scale)), cc); + } + + if (scale != TimesOne) { + ma_lsl(Imm32(scale), rm, scratch); + rm = scratch; + } + + return as_extdtr(ls, size, IsSigned, mode, rt, EDtrAddr(rn, EDtrOffReg(rm)), + cc); +} + +// No scratch register is required if scale is TimesOne. +BufferOffset MacroAssemblerARM::ma_dataTransferN(LoadStore ls, int size, + bool IsSigned, Register rn, + Register rm, Register rt, + Index mode, + Assembler::Condition cc) { + MOZ_ASSERT(size == 8 || size == 16 || size == 32 || size == 64); + if (size == 32 || (size == 8 && !IsSigned)) { + return as_dtr(ls, size, mode, rt, + DTRAddr(rn, DtrRegImmShift(rm, LSL, TimesOne)), cc); + } + return as_extdtr(ls, size, IsSigned, mode, rt, EDtrAddr(rn, EDtrOffReg(rm)), + cc); +} + +BufferOffset MacroAssemblerARM::ma_dataTransferN(LoadStore ls, int size, + bool IsSigned, Register rn, + Imm32 offset, Register rt, + AutoRegisterScope& scratch, + Index mode, + Assembler::Condition cc) { + MOZ_ASSERT(!(ls == IsLoad && mode == PostIndex && rt == pc), + "Large-offset PostIndex loading into PC requires special logic: " + "see ma_popn_pc()."); + + int off = offset.value; + + // We can encode this as a standard ldr. + if (size == 32 || (size == 8 && !IsSigned)) { + if (off < 4096 && off > -4096) { + // This encodes as a single instruction, Emulating mode's behavior + // in a multi-instruction sequence is not necessary. + return as_dtr(ls, size, mode, rt, DTRAddr(rn, DtrOffImm(off)), cc); + } + + // We cannot encode this offset in a single ldr. For mode == index, + // try to encode it as |add scratch, base, imm; ldr dest, [scratch, + // +offset]|. This does not wark for mode == PreIndex or mode == PostIndex. + // PreIndex is simple, just do the add into the base register first, + // then do a PreIndex'ed load. PostIndexed loads can be tricky. + // Normally, doing the load with an index of 0, then doing an add would + // work, but if the destination is the PC, you don't get to execute the + // instruction after the branch, which will lead to the base register + // not being updated correctly. Explicitly handle this case, without + // doing anything fancy, then handle all of the other cases. + + // mode == Offset + // add scratch, base, offset_hi + // ldr dest, [scratch, +offset_lo] + // + // mode == PreIndex + // add base, base, offset_hi + // ldr dest, [base, +offset_lo]! + + int bottom = off & 0xfff; + int neg_bottom = 0x1000 - bottom; + + MOZ_ASSERT(rn != scratch); + MOZ_ASSERT(mode != PostIndex); + + // At this point, both off - bottom and off + neg_bottom will be + // reasonable-ish quantities. + // + // Note a neg_bottom of 0x1000 can not be encoded as an immediate + // negative offset in the instruction and this occurs when bottom is + // zero, so this case is guarded against below. + if (off < 0) { + Operand2 sub_off = Imm8(-(off - bottom)); // sub_off = bottom - off + if (!sub_off.invalid()) { + // - sub_off = off - bottom + as_sub(scratch, rn, sub_off, LeaveCC, cc); + return as_dtr(ls, size, Offset, rt, DTRAddr(scratch, DtrOffImm(bottom)), + cc); + } + + // sub_off = -neg_bottom - off + sub_off = Imm8(-(off + neg_bottom)); + if (!sub_off.invalid() && bottom != 0) { + // Guarded against by: bottom != 0 + MOZ_ASSERT(neg_bottom < 0x1000); + // - sub_off = neg_bottom + off + as_sub(scratch, rn, sub_off, LeaveCC, cc); + return as_dtr(ls, size, Offset, rt, + DTRAddr(scratch, DtrOffImm(-neg_bottom)), cc); + } + } else { + // sub_off = off - bottom + Operand2 sub_off = Imm8(off - bottom); + if (!sub_off.invalid()) { + // sub_off = off - bottom + as_add(scratch, rn, sub_off, LeaveCC, cc); + return as_dtr(ls, size, Offset, rt, DTRAddr(scratch, DtrOffImm(bottom)), + cc); + } + + // sub_off = neg_bottom + off + sub_off = Imm8(off + neg_bottom); + if (!sub_off.invalid() && bottom != 0) { + // Guarded against by: bottom != 0 + MOZ_ASSERT(neg_bottom < 0x1000); + // sub_off = neg_bottom + off + as_add(scratch, rn, sub_off, LeaveCC, cc); + return as_dtr(ls, size, Offset, rt, + DTRAddr(scratch, DtrOffImm(-neg_bottom)), cc); + } + } + + ma_mov(offset, scratch); + return as_dtr(ls, size, mode, rt, + DTRAddr(rn, DtrRegImmShift(scratch, LSL, 0))); + } else { + // Should attempt to use the extended load/store instructions. + if (off < 256 && off > -256) { + return as_extdtr(ls, size, IsSigned, mode, rt, + EDtrAddr(rn, EDtrOffImm(off)), cc); + } + + // We cannot encode this offset in a single extldr. Try to encode it as + // an add scratch, base, imm; extldr dest, [scratch, +offset]. + int bottom = off & 0xff; + int neg_bottom = 0x100 - bottom; + // At this point, both off - bottom and off + neg_bottom will be + // reasonable-ish quantities. + // + // Note a neg_bottom of 0x100 can not be encoded as an immediate + // negative offset in the instruction and this occurs when bottom is + // zero, so this case is guarded against below. + if (off < 0) { + // sub_off = bottom - off + Operand2 sub_off = Imm8(-(off - bottom)); + if (!sub_off.invalid()) { + // - sub_off = off - bottom + as_sub(scratch, rn, sub_off, LeaveCC, cc); + return as_extdtr(ls, size, IsSigned, Offset, rt, + EDtrAddr(scratch, EDtrOffImm(bottom)), cc); + } + // sub_off = -neg_bottom - off + sub_off = Imm8(-(off + neg_bottom)); + if (!sub_off.invalid() && bottom != 0) { + // Guarded against by: bottom != 0 + MOZ_ASSERT(neg_bottom < 0x100); + // - sub_off = neg_bottom + off + as_sub(scratch, rn, sub_off, LeaveCC, cc); + return as_extdtr(ls, size, IsSigned, Offset, rt, + EDtrAddr(scratch, EDtrOffImm(-neg_bottom)), cc); + } + } else { + // sub_off = off - bottom + Operand2 sub_off = Imm8(off - bottom); + if (!sub_off.invalid()) { + // sub_off = off - bottom + as_add(scratch, rn, sub_off, LeaveCC, cc); + return as_extdtr(ls, size, IsSigned, Offset, rt, + EDtrAddr(scratch, EDtrOffImm(bottom)), cc); + } + // sub_off = neg_bottom + off + sub_off = Imm8(off + neg_bottom); + if (!sub_off.invalid() && bottom != 0) { + // Guarded against by: bottom != 0 + MOZ_ASSERT(neg_bottom < 0x100); + // sub_off = neg_bottom + off + as_add(scratch, rn, sub_off, LeaveCC, cc); + return as_extdtr(ls, size, IsSigned, Offset, rt, + EDtrAddr(scratch, EDtrOffImm(-neg_bottom)), cc); + } + } + ma_mov(offset, scratch); + return as_extdtr(ls, size, IsSigned, mode, rt, + EDtrAddr(rn, EDtrOffReg(scratch)), cc); + } +} + +void MacroAssemblerARM::ma_pop(Register r) { + as_dtr(IsLoad, 32, PostIndex, r, DTRAddr(sp, DtrOffImm(4))); +} + +void MacroAssemblerARM::ma_popn_pc(Imm32 n, AutoRegisterScope& scratch, + AutoRegisterScope& scratch2) { + // pc <- [sp]; sp += n + int32_t nv = n.value; + + if (nv < 4096 && nv >= -4096) { + as_dtr(IsLoad, 32, PostIndex, pc, DTRAddr(sp, DtrOffImm(nv))); + } else { + ma_mov(sp, scratch); + ma_add(Imm32(n), sp, scratch2); + as_dtr(IsLoad, 32, Offset, pc, DTRAddr(scratch, DtrOffImm(0))); + } +} + +void MacroAssemblerARM::ma_push(Register r) { + MOZ_ASSERT(r != sp, "Use ma_push_sp()."); + as_dtr(IsStore, 32, PreIndex, r, DTRAddr(sp, DtrOffImm(-4))); +} + +void MacroAssemblerARM::ma_push_sp(Register r, AutoRegisterScope& scratch) { + // Pushing sp is not well-defined: use two instructions. + MOZ_ASSERT(r == sp); + ma_mov(sp, scratch); + as_dtr(IsStore, 32, PreIndex, scratch, DTRAddr(sp, DtrOffImm(-4))); +} + +void MacroAssemblerARM::ma_vpop(VFPRegister r) { + startFloatTransferM(IsLoad, sp, IA, WriteBack); + transferFloatReg(r); + finishFloatTransfer(); +} + +void MacroAssemblerARM::ma_vpush(VFPRegister r) { + startFloatTransferM(IsStore, sp, DB, WriteBack); + transferFloatReg(r); + finishFloatTransfer(); +} + +// Barriers +void MacroAssemblerARM::ma_dmb(BarrierOption option) { + if (HasDMBDSBISB()) { + as_dmb(option); + } else { + as_dmb_trap(); + } +} + +void MacroAssemblerARM::ma_dsb(BarrierOption option) { + if (HasDMBDSBISB()) { + as_dsb(option); + } else { + as_dsb_trap(); + } +} + +// Branches when done from within arm-specific code. +BufferOffset MacroAssemblerARM::ma_b(Label* dest, Assembler::Condition c) { + return as_b(dest, c); +} + +void MacroAssemblerARM::ma_bx(Register dest, Assembler::Condition c) { + as_bx(dest, c); +} + +void MacroAssemblerARM::ma_b(void* target, Assembler::Condition c) { + // An immediate pool is used for easier patching. + as_Imm32Pool(pc, uint32_t(target), c); +} + +// This is almost NEVER necessary: we'll basically never be calling a label, +// except possibly in the crazy bailout-table case. +void MacroAssemblerARM::ma_bl(Label* dest, Assembler::Condition c) { + as_bl(dest, c); +} + +void MacroAssemblerARM::ma_blx(Register reg, Assembler::Condition c) { + as_blx(reg, c); +} + +// VFP/ALU +void MacroAssemblerARM::ma_vadd(FloatRegister src1, FloatRegister src2, + FloatRegister dst) { + as_vadd(VFPRegister(dst), VFPRegister(src1), VFPRegister(src2)); +} + +void MacroAssemblerARM::ma_vadd_f32(FloatRegister src1, FloatRegister src2, + FloatRegister dst) { + as_vadd(VFPRegister(dst).singleOverlay(), VFPRegister(src1).singleOverlay(), + VFPRegister(src2).singleOverlay()); +} + +void MacroAssemblerARM::ma_vsub(FloatRegister src1, FloatRegister src2, + FloatRegister dst) { + as_vsub(VFPRegister(dst), VFPRegister(src1), VFPRegister(src2)); +} + +void MacroAssemblerARM::ma_vsub_f32(FloatRegister src1, FloatRegister src2, + FloatRegister dst) { + as_vsub(VFPRegister(dst).singleOverlay(), VFPRegister(src1).singleOverlay(), + VFPRegister(src2).singleOverlay()); +} + +void MacroAssemblerARM::ma_vmul(FloatRegister src1, FloatRegister src2, + FloatRegister dst) { + as_vmul(VFPRegister(dst), VFPRegister(src1), VFPRegister(src2)); +} + +void MacroAssemblerARM::ma_vmul_f32(FloatRegister src1, FloatRegister src2, + FloatRegister dst) { + as_vmul(VFPRegister(dst).singleOverlay(), VFPRegister(src1).singleOverlay(), + VFPRegister(src2).singleOverlay()); +} + +void MacroAssemblerARM::ma_vdiv(FloatRegister src1, FloatRegister src2, + FloatRegister dst) { + as_vdiv(VFPRegister(dst), VFPRegister(src1), VFPRegister(src2)); +} + +void MacroAssemblerARM::ma_vdiv_f32(FloatRegister src1, FloatRegister src2, + FloatRegister dst) { + as_vdiv(VFPRegister(dst).singleOverlay(), VFPRegister(src1).singleOverlay(), + VFPRegister(src2).singleOverlay()); +} + +void MacroAssemblerARM::ma_vmov(FloatRegister src, FloatRegister dest, + Condition cc) { + as_vmov(dest, src, cc); +} + +void MacroAssemblerARM::ma_vmov_f32(FloatRegister src, FloatRegister dest, + Condition cc) { + as_vmov(VFPRegister(dest).singleOverlay(), VFPRegister(src).singleOverlay(), + cc); +} + +void MacroAssemblerARM::ma_vneg(FloatRegister src, FloatRegister dest, + Condition cc) { + as_vneg(dest, src, cc); +} + +void MacroAssemblerARM::ma_vneg_f32(FloatRegister src, FloatRegister dest, + Condition cc) { + as_vneg(VFPRegister(dest).singleOverlay(), VFPRegister(src).singleOverlay(), + cc); +} + +void MacroAssemblerARM::ma_vabs(FloatRegister src, FloatRegister dest, + Condition cc) { + as_vabs(dest, src, cc); +} + +void MacroAssemblerARM::ma_vabs_f32(FloatRegister src, FloatRegister dest, + Condition cc) { + as_vabs(VFPRegister(dest).singleOverlay(), VFPRegister(src).singleOverlay(), + cc); +} + +void MacroAssemblerARM::ma_vsqrt(FloatRegister src, FloatRegister dest, + Condition cc) { + as_vsqrt(dest, src, cc); +} + +void MacroAssemblerARM::ma_vsqrt_f32(FloatRegister src, FloatRegister dest, + Condition cc) { + as_vsqrt(VFPRegister(dest).singleOverlay(), VFPRegister(src).singleOverlay(), + cc); +} + +static inline uint32_t DoubleHighWord(double d) { + return static_cast<uint32_t>(BitwiseCast<uint64_t>(d) >> 32); +} + +static inline uint32_t DoubleLowWord(double d) { + return static_cast<uint32_t>(BitwiseCast<uint64_t>(d)) & uint32_t(0xffffffff); +} + +void MacroAssemblerARM::ma_vimm(double value, FloatRegister dest, + Condition cc) { + if (HasVFPv3()) { + if (DoubleLowWord(value) == 0) { + if (DoubleHighWord(value) == 0) { + // To zero a register, load 1.0, then execute dN <- dN - dN + as_vimm(dest, VFPImm::One, cc); + as_vsub(dest, dest, dest, cc); + return; + } + + VFPImm enc(DoubleHighWord(value)); + if (enc.isValid()) { + as_vimm(dest, enc, cc); + return; + } + } + } + // Fall back to putting the value in a pool. + as_FImm64Pool(dest, value, cc); +} + +void MacroAssemblerARM::ma_vimm_f32(float value, FloatRegister dest, + Condition cc) { + VFPRegister vd = VFPRegister(dest).singleOverlay(); + if (HasVFPv3()) { + if (IsPositiveZero(value)) { + // To zero a register, load 1.0, then execute sN <- sN - sN. + as_vimm(vd, VFPImm::One, cc); + as_vsub(vd, vd, vd, cc); + return; + } + + // Note that the vimm immediate float32 instruction encoding differs + // from the vimm immediate double encoding, but this difference matches + // the difference in the floating point formats, so it is possible to + // convert the float32 to a double and then use the double encoding + // paths. It is still necessary to firstly check that the double low + // word is zero because some float32 numbers set these bits and this can + // not be ignored. + double doubleValue(value); + if (DoubleLowWord(doubleValue) == 0) { + VFPImm enc(DoubleHighWord(doubleValue)); + if (enc.isValid()) { + as_vimm(vd, enc, cc); + return; + } + } + } + + // Fall back to putting the value in a pool. + as_FImm32Pool(vd, value, cc); +} + +void MacroAssemblerARM::ma_vcmp(FloatRegister src1, FloatRegister src2, + Condition cc) { + as_vcmp(VFPRegister(src1), VFPRegister(src2), cc); +} + +void MacroAssemblerARM::ma_vcmp_f32(FloatRegister src1, FloatRegister src2, + Condition cc) { + as_vcmp(VFPRegister(src1).singleOverlay(), VFPRegister(src2).singleOverlay(), + cc); +} + +void MacroAssemblerARM::ma_vcmpz(FloatRegister src1, Condition cc) { + as_vcmpz(VFPRegister(src1), cc); +} + +void MacroAssemblerARM::ma_vcmpz_f32(FloatRegister src1, Condition cc) { + as_vcmpz(VFPRegister(src1).singleOverlay(), cc); +} + +void MacroAssemblerARM::ma_vcvt_F64_I32(FloatRegister src, FloatRegister dest, + Condition cc) { + MOZ_ASSERT(src.isDouble()); + MOZ_ASSERT(dest.isSInt()); + as_vcvt(dest, src, false, cc); +} + +void MacroAssemblerARM::ma_vcvt_F64_U32(FloatRegister src, FloatRegister dest, + Condition cc) { + MOZ_ASSERT(src.isDouble()); + MOZ_ASSERT(dest.isUInt()); + as_vcvt(dest, src, false, cc); +} + +void MacroAssemblerARM::ma_vcvt_I32_F64(FloatRegister src, FloatRegister dest, + Condition cc) { + MOZ_ASSERT(src.isSInt()); + MOZ_ASSERT(dest.isDouble()); + as_vcvt(dest, src, false, cc); +} + +void MacroAssemblerARM::ma_vcvt_U32_F64(FloatRegister src, FloatRegister dest, + Condition cc) { + MOZ_ASSERT(src.isUInt()); + MOZ_ASSERT(dest.isDouble()); + as_vcvt(dest, src, false, cc); +} + +void MacroAssemblerARM::ma_vcvt_F32_I32(FloatRegister src, FloatRegister dest, + Condition cc) { + MOZ_ASSERT(src.isSingle()); + MOZ_ASSERT(dest.isSInt()); + as_vcvt(VFPRegister(dest).sintOverlay(), VFPRegister(src).singleOverlay(), + false, cc); +} + +void MacroAssemblerARM::ma_vcvt_F32_U32(FloatRegister src, FloatRegister dest, + Condition cc) { + MOZ_ASSERT(src.isSingle()); + MOZ_ASSERT(dest.isUInt()); + as_vcvt(VFPRegister(dest).uintOverlay(), VFPRegister(src).singleOverlay(), + false, cc); +} + +void MacroAssemblerARM::ma_vcvt_I32_F32(FloatRegister src, FloatRegister dest, + Condition cc) { + MOZ_ASSERT(src.isSInt()); + MOZ_ASSERT(dest.isSingle()); + as_vcvt(VFPRegister(dest).singleOverlay(), VFPRegister(src).sintOverlay(), + false, cc); +} + +void MacroAssemblerARM::ma_vcvt_U32_F32(FloatRegister src, FloatRegister dest, + Condition cc) { + MOZ_ASSERT(src.isUInt()); + MOZ_ASSERT(dest.isSingle()); + as_vcvt(VFPRegister(dest).singleOverlay(), VFPRegister(src).uintOverlay(), + false, cc); +} + +void MacroAssemblerARM::ma_vxfer(FloatRegister src, Register dest, + Condition cc) { + as_vxfer(dest, InvalidReg, VFPRegister(src).singleOverlay(), FloatToCore, cc); +} + +void MacroAssemblerARM::ma_vxfer(FloatRegister src, Register dest1, + Register dest2, Condition cc) { + as_vxfer(dest1, dest2, VFPRegister(src), FloatToCore, cc); +} + +void MacroAssemblerARM::ma_vxfer(Register src, FloatRegister dest, + Condition cc) { + as_vxfer(src, InvalidReg, VFPRegister(dest).singleOverlay(), CoreToFloat, cc); +} + +void MacroAssemblerARM::ma_vxfer(Register src1, Register src2, + FloatRegister dest, Condition cc) { + as_vxfer(src1, src2, VFPRegister(dest), CoreToFloat, cc); +} + +BufferOffset MacroAssemblerARM::ma_vdtr(LoadStore ls, const Address& addr, + VFPRegister rt, + AutoRegisterScope& scratch, + Condition cc) { + int off = addr.offset; + MOZ_ASSERT((off & 3) == 0); + Register base = addr.base; + if (off > -1024 && off < 1024) { + return as_vdtr(ls, rt, Operand(addr).toVFPAddr(), cc); + } + + // We cannot encode this offset in a a single ldr. Try to encode it as an + // add scratch, base, imm; ldr dest, [scratch, +offset]. + int bottom = off & (0xff << 2); + int neg_bottom = (0x100 << 2) - bottom; + // At this point, both off - bottom and off + neg_bottom will be + // reasonable-ish quantities. + // + // Note a neg_bottom of 0x400 can not be encoded as an immediate negative + // offset in the instruction and this occurs when bottom is zero, so this + // case is guarded against below. + if (off < 0) { + // sub_off = bottom - off + Operand2 sub_off = Imm8(-(off - bottom)); + if (!sub_off.invalid()) { + // - sub_off = off - bottom + as_sub(scratch, base, sub_off, LeaveCC, cc); + return as_vdtr(ls, rt, VFPAddr(scratch, VFPOffImm(bottom)), cc); + } + // sub_off = -neg_bottom - off + sub_off = Imm8(-(off + neg_bottom)); + if (!sub_off.invalid() && bottom != 0) { + // Guarded against by: bottom != 0 + MOZ_ASSERT(neg_bottom < 0x400); + // - sub_off = neg_bottom + off + as_sub(scratch, base, sub_off, LeaveCC, cc); + return as_vdtr(ls, rt, VFPAddr(scratch, VFPOffImm(-neg_bottom)), cc); + } + } else { + // sub_off = off - bottom + Operand2 sub_off = Imm8(off - bottom); + if (!sub_off.invalid()) { + // sub_off = off - bottom + as_add(scratch, base, sub_off, LeaveCC, cc); + return as_vdtr(ls, rt, VFPAddr(scratch, VFPOffImm(bottom)), cc); + } + // sub_off = neg_bottom + off + sub_off = Imm8(off + neg_bottom); + if (!sub_off.invalid() && bottom != 0) { + // Guarded against by: bottom != 0 + MOZ_ASSERT(neg_bottom < 0x400); + // sub_off = neg_bottom + off + as_add(scratch, base, sub_off, LeaveCC, cc); + return as_vdtr(ls, rt, VFPAddr(scratch, VFPOffImm(-neg_bottom)), cc); + } + } + + // Safe to use scratch as dest, since ma_add() overwrites dest at the end + // and can't use it as internal scratch since it may also == base. + ma_add(base, Imm32(off), scratch, scratch, LeaveCC, cc); + return as_vdtr(ls, rt, VFPAddr(scratch, VFPOffImm(0)), cc); +} + +BufferOffset MacroAssemblerARM::ma_vldr(VFPAddr addr, VFPRegister dest, + Condition cc) { + return as_vdtr(IsLoad, dest, addr, cc); +} + +BufferOffset MacroAssemblerARM::ma_vldr(const Address& addr, VFPRegister dest, + AutoRegisterScope& scratch, + Condition cc) { + return ma_vdtr(IsLoad, addr, dest, scratch, cc); +} + +BufferOffset MacroAssemblerARM::ma_vldr(VFPRegister src, Register base, + Register index, + AutoRegisterScope& scratch, + int32_t shift, Condition cc) { + as_add(scratch, base, lsl(index, shift), LeaveCC, cc); + return as_vdtr(IsLoad, src, Operand(Address(scratch, 0)).toVFPAddr(), cc); +} + +BufferOffset MacroAssemblerARM::ma_vstr(VFPRegister src, VFPAddr addr, + Condition cc) { + return as_vdtr(IsStore, src, addr, cc); +} + +BufferOffset MacroAssemblerARM::ma_vstr(VFPRegister src, const Address& addr, + AutoRegisterScope& scratch, + Condition cc) { + return ma_vdtr(IsStore, addr, src, scratch, cc); +} + +BufferOffset MacroAssemblerARM::ma_vstr( + VFPRegister src, Register base, Register index, AutoRegisterScope& scratch, + AutoRegisterScope& scratch2, int32_t shift, int32_t offset, Condition cc) { + as_add(scratch, base, lsl(index, shift), LeaveCC, cc); + return ma_vstr(src, Address(scratch, offset), scratch2, cc); +} + +// Without an offset, no second scratch register is necessary. +BufferOffset MacroAssemblerARM::ma_vstr(VFPRegister src, Register base, + Register index, + AutoRegisterScope& scratch, + int32_t shift, Condition cc) { + as_add(scratch, base, lsl(index, shift), LeaveCC, cc); + return as_vdtr(IsStore, src, Operand(Address(scratch, 0)).toVFPAddr(), cc); +} + +bool MacroAssemblerARMCompat::buildOOLFakeExitFrame(void* fakeReturnAddr) { + asMasm().PushFrameDescriptor(FrameType::IonJS); // descriptor_ + asMasm().Push(ImmPtr(fakeReturnAddr)); + asMasm().Push(FramePointer); + return true; +} + +void MacroAssemblerARMCompat::move32(Imm32 imm, Register dest) { + ma_mov(imm, dest); +} + +void MacroAssemblerARMCompat::move32(Register src, Register dest) { + ma_mov(src, dest); +} + +void MacroAssemblerARMCompat::movePtr(Register src, Register dest) { + ma_mov(src, dest); +} + +void MacroAssemblerARMCompat::movePtr(ImmWord imm, Register dest) { + ma_mov(Imm32(imm.value), dest); +} + +void MacroAssemblerARMCompat::movePtr(ImmGCPtr imm, Register dest) { + ma_mov(imm, dest); +} + +void MacroAssemblerARMCompat::movePtr(ImmPtr imm, Register dest) { + movePtr(ImmWord(uintptr_t(imm.value)), dest); +} + +void MacroAssemblerARMCompat::movePtr(wasm::SymbolicAddress imm, + Register dest) { + append(wasm::SymbolicAccess(CodeOffset(currentOffset()), imm)); + ma_movPatchable(Imm32(-1), dest, Always); +} + +void MacroAssemblerARMCompat::load8ZeroExtend(const Address& address, + Register dest) { + ScratchRegisterScope scratch(asMasm()); + ma_dataTransferN(IsLoad, 8, false, address.base, Imm32(address.offset), dest, + scratch); +} + +void MacroAssemblerARMCompat::load8ZeroExtend(const BaseIndex& src, + Register dest) { + Register base = src.base; + uint32_t scale = Imm32::ShiftOf(src.scale).value; + + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + + if (src.offset == 0) { + ma_ldrb(DTRAddr(base, DtrRegImmShift(src.index, LSL, scale)), dest); + } else { + ma_add(base, Imm32(src.offset), scratch, scratch2); + ma_ldrb(DTRAddr(scratch, DtrRegImmShift(src.index, LSL, scale)), dest); + } +} + +void MacroAssemblerARMCompat::load8SignExtend(const Address& address, + Register dest) { + ScratchRegisterScope scratch(asMasm()); + ma_dataTransferN(IsLoad, 8, true, address.base, Imm32(address.offset), dest, + scratch); +} + +void MacroAssemblerARMCompat::load8SignExtend(const BaseIndex& src, + Register dest) { + Register index = src.index; + + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + + // ARMv7 does not have LSL on an index register with an extended load. + if (src.scale != TimesOne) { + ma_lsl(Imm32::ShiftOf(src.scale), index, scratch); + index = scratch; + } + + if (src.offset != 0) { + if (index != scratch) { + ma_mov(index, scratch); + index = scratch; + } + ma_add(Imm32(src.offset), index, scratch2); + } + ma_ldrsb(EDtrAddr(src.base, EDtrOffReg(index)), dest); +} + +void MacroAssemblerARMCompat::load16ZeroExtend(const Address& address, + Register dest) { + ScratchRegisterScope scratch(asMasm()); + ma_dataTransferN(IsLoad, 16, false, address.base, Imm32(address.offset), dest, + scratch); +} + +void MacroAssemblerARMCompat::load16ZeroExtend(const BaseIndex& src, + Register dest) { + Register index = src.index; + + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + + // ARMv7 does not have LSL on an index register with an extended load. + if (src.scale != TimesOne) { + ma_lsl(Imm32::ShiftOf(src.scale), index, scratch); + index = scratch; + } + + if (src.offset != 0) { + if (index != scratch) { + ma_mov(index, scratch); + index = scratch; + } + ma_add(Imm32(src.offset), index, scratch2); + } + ma_ldrh(EDtrAddr(src.base, EDtrOffReg(index)), dest); +} + +void MacroAssemblerARMCompat::load16SignExtend(const Address& address, + Register dest) { + ScratchRegisterScope scratch(asMasm()); + ma_dataTransferN(IsLoad, 16, true, address.base, Imm32(address.offset), dest, + scratch); +} + +void MacroAssemblerARMCompat::load16SignExtend(const BaseIndex& src, + Register dest) { + Register index = src.index; + + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + + // We don't have LSL on index register yet. + if (src.scale != TimesOne) { + ma_lsl(Imm32::ShiftOf(src.scale), index, scratch); + index = scratch; + } + + if (src.offset != 0) { + if (index != scratch) { + ma_mov(index, scratch); + index = scratch; + } + ma_add(Imm32(src.offset), index, scratch2); + } + ma_ldrsh(EDtrAddr(src.base, EDtrOffReg(index)), dest); +} + +void MacroAssemblerARMCompat::load32(const Address& address, Register dest) { + loadPtr(address, dest); +} + +void MacroAssemblerARMCompat::load32(const BaseIndex& address, Register dest) { + loadPtr(address, dest); +} + +void MacroAssemblerARMCompat::load32(AbsoluteAddress address, Register dest) { + loadPtr(address, dest); +} + +void MacroAssemblerARMCompat::loadPtr(const Address& address, Register dest) { + ScratchRegisterScope scratch(asMasm()); + ma_ldr(address, dest, scratch); +} + +void MacroAssemblerARMCompat::loadPtr(const BaseIndex& src, Register dest) { + Register base = src.base; + uint32_t scale = Imm32::ShiftOf(src.scale).value; + + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + + if (src.offset != 0) { + ma_add(base, Imm32(src.offset), scratch, scratch2); + ma_ldr(DTRAddr(scratch, DtrRegImmShift(src.index, LSL, scale)), dest); + } else { + ma_ldr(DTRAddr(base, DtrRegImmShift(src.index, LSL, scale)), dest); + } +} + +void MacroAssemblerARMCompat::loadPtr(AbsoluteAddress address, Register dest) { + MOZ_ASSERT(dest != pc); // Use dest as a scratch register. + movePtr(ImmWord(uintptr_t(address.addr)), dest); + loadPtr(Address(dest, 0), dest); +} + +void MacroAssemblerARMCompat::loadPtr(wasm::SymbolicAddress address, + Register dest) { + MOZ_ASSERT(dest != pc); // Use dest as a scratch register. + movePtr(address, dest); + loadPtr(Address(dest, 0), dest); +} + +void MacroAssemblerARMCompat::loadPrivate(const Address& address, + Register dest) { + ScratchRegisterScope scratch(asMasm()); + ma_ldr(ToPayload(address), dest, scratch); +} + +void MacroAssemblerARMCompat::loadDouble(const Address& address, + FloatRegister dest) { + ScratchRegisterScope scratch(asMasm()); + ma_vldr(address, dest, scratch); +} + +void MacroAssemblerARMCompat::loadDouble(const BaseIndex& src, + FloatRegister dest) { + // VFP instructions don't even support register Base + register Index modes, + // so just add the index, then handle the offset like normal. + Register base = src.base; + Register index = src.index; + uint32_t scale = Imm32::ShiftOf(src.scale).value; + int32_t offset = src.offset; + + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + + as_add(scratch, base, lsl(index, scale)); + ma_vldr(Address(scratch, offset), dest, scratch2); +} + +void MacroAssemblerARMCompat::loadFloatAsDouble(const Address& address, + FloatRegister dest) { + ScratchRegisterScope scratch(asMasm()); + + VFPRegister rt = dest; + ma_vldr(address, rt.singleOverlay(), scratch); + as_vcvt(rt, rt.singleOverlay()); +} + +void MacroAssemblerARMCompat::loadFloatAsDouble(const BaseIndex& src, + FloatRegister dest) { + // VFP instructions don't even support register Base + register Index modes, + // so just add the index, then handle the offset like normal. + Register base = src.base; + Register index = src.index; + uint32_t scale = Imm32::ShiftOf(src.scale).value; + int32_t offset = src.offset; + VFPRegister rt = dest; + + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + + as_add(scratch, base, lsl(index, scale)); + ma_vldr(Address(scratch, offset), rt.singleOverlay(), scratch2); + as_vcvt(rt, rt.singleOverlay()); +} + +void MacroAssemblerARMCompat::loadFloat32(const Address& address, + FloatRegister dest) { + ScratchRegisterScope scratch(asMasm()); + ma_vldr(address, VFPRegister(dest).singleOverlay(), scratch); +} + +void MacroAssemblerARMCompat::loadFloat32(const BaseIndex& src, + FloatRegister dest) { + // VFP instructions don't even support register Base + register Index modes, + // so just add the index, then handle the offset like normal. + Register base = src.base; + Register index = src.index; + uint32_t scale = Imm32::ShiftOf(src.scale).value; + int32_t offset = src.offset; + + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + + as_add(scratch, base, lsl(index, scale)); + ma_vldr(Address(scratch, offset), VFPRegister(dest).singleOverlay(), + scratch2); +} + +void MacroAssemblerARMCompat::store8(Imm32 imm, const Address& address) { + SecondScratchRegisterScope scratch2(asMasm()); + ma_mov(imm, scratch2); + store8(scratch2, address); +} + +void MacroAssemblerARMCompat::store8(Register src, const Address& address) { + ScratchRegisterScope scratch(asMasm()); + ma_dataTransferN(IsStore, 8, false, address.base, Imm32(address.offset), src, + scratch); +} + +void MacroAssemblerARMCompat::store8(Imm32 imm, const BaseIndex& dest) { + Register base = dest.base; + uint32_t scale = Imm32::ShiftOf(dest.scale).value; + + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + + if (dest.offset != 0) { + ma_add(base, Imm32(dest.offset), scratch, scratch2); + ma_mov(imm, scratch2); + ma_strb(scratch2, DTRAddr(scratch, DtrRegImmShift(dest.index, LSL, scale))); + } else { + ma_mov(imm, scratch2); + ma_strb(scratch2, DTRAddr(base, DtrRegImmShift(dest.index, LSL, scale))); + } +} + +void MacroAssemblerARMCompat::store8(Register src, const BaseIndex& dest) { + Register base = dest.base; + uint32_t scale = Imm32::ShiftOf(dest.scale).value; + + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + + if (dest.offset != 0) { + ma_add(base, Imm32(dest.offset), scratch, scratch2); + ma_strb(src, DTRAddr(scratch, DtrRegImmShift(dest.index, LSL, scale))); + } else { + ma_strb(src, DTRAddr(base, DtrRegImmShift(dest.index, LSL, scale))); + } +} + +void MacroAssemblerARMCompat::store16(Imm32 imm, const Address& address) { + SecondScratchRegisterScope scratch2(asMasm()); + ma_mov(imm, scratch2); + store16(scratch2, address); +} + +void MacroAssemblerARMCompat::store16(Register src, const Address& address) { + ScratchRegisterScope scratch(asMasm()); + ma_dataTransferN(IsStore, 16, false, address.base, Imm32(address.offset), src, + scratch); +} + +void MacroAssemblerARMCompat::store16(Imm32 imm, const BaseIndex& dest) { + Register index = dest.index; + + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + + // We don't have LSL on index register yet. + if (dest.scale != TimesOne) { + ma_lsl(Imm32::ShiftOf(dest.scale), index, scratch); + index = scratch; + } + + if (dest.offset != 0) { + ma_add(index, Imm32(dest.offset), scratch, scratch2); + index = scratch; + } + + ma_mov(imm, scratch2); + ma_strh(scratch2, EDtrAddr(dest.base, EDtrOffReg(index))); +} + +void MacroAssemblerARMCompat::store16(Register src, const BaseIndex& address) { + Register index = address.index; + + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + + // We don't have LSL on index register yet. + if (address.scale != TimesOne) { + ma_lsl(Imm32::ShiftOf(address.scale), index, scratch); + index = scratch; + } + + if (address.offset != 0) { + ma_add(index, Imm32(address.offset), scratch, scratch2); + index = scratch; + } + ma_strh(src, EDtrAddr(address.base, EDtrOffReg(index))); +} + +void MacroAssemblerARMCompat::store32(Register src, AbsoluteAddress address) { + storePtr(src, address); +} + +void MacroAssemblerARMCompat::store32(Register src, const Address& address) { + storePtr(src, address); +} + +void MacroAssemblerARMCompat::store32(Imm32 src, const Address& address) { + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + move32(src, scratch); + ma_str(scratch, address, scratch2); +} + +void MacroAssemblerARMCompat::store32(Imm32 imm, const BaseIndex& dest) { + Register base = dest.base; + uint32_t scale = Imm32::ShiftOf(dest.scale).value; + + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + + if (dest.offset != 0) { + ma_add(base, Imm32(dest.offset), scratch, scratch2); + ma_mov(imm, scratch2); + ma_str(scratch2, DTRAddr(scratch, DtrRegImmShift(dest.index, LSL, scale))); + } else { + ma_mov(imm, scratch); + ma_str(scratch, DTRAddr(base, DtrRegImmShift(dest.index, LSL, scale))); + } +} + +void MacroAssemblerARMCompat::store32(Register src, const BaseIndex& dest) { + Register base = dest.base; + uint32_t scale = Imm32::ShiftOf(dest.scale).value; + + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + + if (dest.offset != 0) { + ma_add(base, Imm32(dest.offset), scratch, scratch2); + ma_str(src, DTRAddr(scratch, DtrRegImmShift(dest.index, LSL, scale))); + } else { + ma_str(src, DTRAddr(base, DtrRegImmShift(dest.index, LSL, scale))); + } +} + +void MacroAssemblerARMCompat::storePtr(ImmWord imm, const Address& address) { + store32(Imm32(imm.value), address); +} + +void MacroAssemblerARMCompat::storePtr(ImmWord imm, const BaseIndex& address) { + store32(Imm32(imm.value), address); +} + +void MacroAssemblerARMCompat::storePtr(ImmPtr imm, const Address& address) { + store32(Imm32(uintptr_t(imm.value)), address); +} + +void MacroAssemblerARMCompat::storePtr(ImmPtr imm, const BaseIndex& address) { + store32(Imm32(uintptr_t(imm.value)), address); +} + +void MacroAssemblerARMCompat::storePtr(ImmGCPtr imm, const Address& address) { + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + ma_mov(imm, scratch); + ma_str(scratch, address, scratch2); +} + +void MacroAssemblerARMCompat::storePtr(ImmGCPtr imm, const BaseIndex& address) { + Register base = address.base; + uint32_t scale = Imm32::ShiftOf(address.scale).value; + + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + + if (address.offset != 0) { + ma_add(base, Imm32(address.offset), scratch, scratch2); + ma_mov(imm, scratch2); + ma_str(scratch2, + DTRAddr(scratch, DtrRegImmShift(address.index, LSL, scale))); + } else { + ma_mov(imm, scratch); + ma_str(scratch, DTRAddr(base, DtrRegImmShift(address.index, LSL, scale))); + } +} + +void MacroAssemblerARMCompat::storePtr(Register src, const Address& address) { + SecondScratchRegisterScope scratch2(asMasm()); + ma_str(src, address, scratch2); +} + +void MacroAssemblerARMCompat::storePtr(Register src, const BaseIndex& address) { + store32(src, address); +} + +void MacroAssemblerARMCompat::storePtr(Register src, AbsoluteAddress dest) { + ScratchRegisterScope scratch(asMasm()); + movePtr(ImmWord(uintptr_t(dest.addr)), scratch); + ma_str(src, DTRAddr(scratch, DtrOffImm(0))); +} + +// Note: this function clobbers the input register. +void MacroAssembler::clampDoubleToUint8(FloatRegister input, Register output) { + if (HasVFPv3()) { + Label notSplit; + { + ScratchDoubleScope scratchDouble(*this); + MOZ_ASSERT(input != scratchDouble); + loadConstantDouble(0.5, scratchDouble); + + ma_vadd(input, scratchDouble, scratchDouble); + // Convert the double into an unsigned fixed point value with 24 bits of + // precision. The resulting number will look like 0xII.DDDDDD + as_vcvtFixed(scratchDouble, false, 24, true); + } + + // Move the fixed point value into an integer register. + { + ScratchFloat32Scope scratchFloat(*this); + as_vxfer(output, InvalidReg, scratchFloat.uintOverlay(), FloatToCore); + } + + ScratchRegisterScope scratch(*this); + + // See if this value *might* have been an exact integer after adding + // 0.5. This tests the 1/2 through 1/16,777,216th places, but 0.5 needs + // to be tested out to the 1/140,737,488,355,328th place. + ma_tst(output, Imm32(0x00ffffff), scratch); + // Convert to a uint8 by shifting out all of the fraction bits. + ma_lsr(Imm32(24), output, output); + // If any of the bottom 24 bits were non-zero, then we're good, since + // this number can't be exactly XX.0 + ma_b(¬Split, NonZero); + as_vxfer(scratch, InvalidReg, input, FloatToCore); + as_cmp(scratch, Imm8(0)); + // If the lower 32 bits of the double were 0, then this was an exact number, + // and it should be even. + as_bic(output, output, Imm8(1), LeaveCC, Zero); + bind(¬Split); + } else { + ScratchDoubleScope scratchDouble(*this); + MOZ_ASSERT(input != scratchDouble); + loadConstantDouble(0.5, scratchDouble); + + Label outOfRange; + ma_vcmpz(input); + // Do the add, in place so we can reference it later. + ma_vadd(input, scratchDouble, input); + // Do the conversion to an integer. + as_vcvt(VFPRegister(scratchDouble).uintOverlay(), VFPRegister(input)); + // Copy the converted value out. + as_vxfer(output, InvalidReg, scratchDouble, FloatToCore); + as_vmrs(pc); + ma_mov(Imm32(0), output, Overflow); // NaN => 0 + ma_b(&outOfRange, Overflow); // NaN + as_cmp(output, Imm8(0xff)); + ma_mov(Imm32(0xff), output, Above); + ma_b(&outOfRange, Above); + // Convert it back to see if we got the same value back. + as_vcvt(scratchDouble, VFPRegister(scratchDouble).uintOverlay()); + // Do the check. + as_vcmp(scratchDouble, input); + as_vmrs(pc); + as_bic(output, output, Imm8(1), LeaveCC, Zero); + bind(&outOfRange); + } +} + +void MacroAssemblerARMCompat::cmp32(Register lhs, Imm32 rhs) { + ScratchRegisterScope scratch(asMasm()); + ma_cmp(lhs, rhs, scratch); +} + +void MacroAssemblerARMCompat::cmp32(Register lhs, Register rhs) { + ma_cmp(lhs, rhs); +} + +void MacroAssemblerARMCompat::cmp32(const Address& lhs, Imm32 rhs) { + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + ma_ldr(lhs, scratch, scratch2); + ma_cmp(scratch, rhs, scratch2); +} + +void MacroAssemblerARMCompat::cmp32(const Address& lhs, Register rhs) { + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + ma_ldr(lhs, scratch, scratch2); + ma_cmp(scratch, rhs); +} + +void MacroAssemblerARMCompat::cmpPtr(Register lhs, ImmWord rhs) { + cmp32(lhs, Imm32(rhs.value)); +} + +void MacroAssemblerARMCompat::cmpPtr(Register lhs, ImmPtr rhs) { + cmpPtr(lhs, ImmWord(uintptr_t(rhs.value))); +} + +void MacroAssemblerARMCompat::cmpPtr(Register lhs, Register rhs) { + ma_cmp(lhs, rhs); +} + +void MacroAssemblerARMCompat::cmpPtr(Register lhs, ImmGCPtr rhs) { + ScratchRegisterScope scratch(asMasm()); + ma_cmp(lhs, rhs, scratch); +} + +void MacroAssemblerARMCompat::cmpPtr(Register lhs, Imm32 rhs) { + cmp32(lhs, rhs); +} + +void MacroAssemblerARMCompat::cmpPtr(const Address& lhs, Register rhs) { + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + ma_ldr(lhs, scratch, scratch2); + ma_cmp(scratch, rhs); +} + +void MacroAssemblerARMCompat::cmpPtr(const Address& lhs, ImmWord rhs) { + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + ma_ldr(lhs, scratch, scratch2); + ma_cmp(scratch, Imm32(rhs.value), scratch2); +} + +void MacroAssemblerARMCompat::cmpPtr(const Address& lhs, ImmPtr rhs) { + cmpPtr(lhs, ImmWord(uintptr_t(rhs.value))); +} + +void MacroAssemblerARMCompat::cmpPtr(const Address& lhs, ImmGCPtr rhs) { + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + ma_ldr(lhs, scratch, scratch2); + ma_cmp(scratch, rhs, scratch2); +} + +void MacroAssemblerARMCompat::cmpPtr(const Address& lhs, Imm32 rhs) { + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + ma_ldr(lhs, scratch, scratch2); + ma_cmp(scratch, rhs, scratch2); +} + +void MacroAssemblerARMCompat::setStackArg(Register reg, uint32_t arg) { + ScratchRegisterScope scratch(asMasm()); + ma_dataTransferN(IsStore, 32, true, sp, Imm32(arg * sizeof(intptr_t)), reg, + scratch); +} + +void MacroAssemblerARMCompat::minMaxDouble(FloatRegister srcDest, + FloatRegister second, bool canBeNaN, + bool isMax) { + FloatRegister first = srcDest; + + Label nan, equal, returnSecond, done; + + Assembler::Condition cond = isMax ? Assembler::VFP_LessThanOrEqual + : Assembler::VFP_GreaterThanOrEqual; + + compareDouble(first, second); + // First or second is NaN, result is NaN. + ma_b(&nan, Assembler::VFP_Unordered); + // Make sure we handle -0 and 0 right. + ma_b(&equal, Assembler::VFP_Equal); + ma_b(&returnSecond, cond); + ma_b(&done); + + // Check for zero. + bind(&equal); + compareDouble(first, NoVFPRegister); + // First wasn't 0 or -0, so just return it. + ma_b(&done, Assembler::VFP_NotEqualOrUnordered); + // So now both operands are either -0 or 0. + if (isMax) { + // -0 + -0 = -0 and -0 + 0 = 0. + ma_vadd(second, first, first); + } else { + ma_vneg(first, first); + ma_vsub(first, second, first); + ma_vneg(first, first); + } + ma_b(&done); + + bind(&nan); + // If the first argument is the NaN, return it; otherwise return the second + // operand. + compareDouble(first, first); + ma_vmov(first, srcDest, Assembler::VFP_Unordered); + ma_b(&done, Assembler::VFP_Unordered); + + bind(&returnSecond); + ma_vmov(second, srcDest); + + bind(&done); +} + +void MacroAssemblerARMCompat::minMaxFloat32(FloatRegister srcDest, + FloatRegister second, bool canBeNaN, + bool isMax) { + FloatRegister first = srcDest; + + Label nan, equal, returnSecond, done; + + Assembler::Condition cond = isMax ? Assembler::VFP_LessThanOrEqual + : Assembler::VFP_GreaterThanOrEqual; + + compareFloat(first, second); + // First or second is NaN, result is NaN. + ma_b(&nan, Assembler::VFP_Unordered); + // Make sure we handle -0 and 0 right. + ma_b(&equal, Assembler::VFP_Equal); + ma_b(&returnSecond, cond); + ma_b(&done); + + // Check for zero. + bind(&equal); + compareFloat(first, NoVFPRegister); + // First wasn't 0 or -0, so just return it. + ma_b(&done, Assembler::VFP_NotEqualOrUnordered); + // So now both operands are either -0 or 0. + if (isMax) { + // -0 + -0 = -0 and -0 + 0 = 0. + ma_vadd_f32(second, first, first); + } else { + ma_vneg_f32(first, first); + ma_vsub_f32(first, second, first); + ma_vneg_f32(first, first); + } + ma_b(&done); + + bind(&nan); + // See comment in minMaxDouble. + compareFloat(first, first); + ma_vmov_f32(first, srcDest, Assembler::VFP_Unordered); + ma_b(&done, Assembler::VFP_Unordered); + + bind(&returnSecond); + ma_vmov_f32(second, srcDest); + + bind(&done); +} + +void MacroAssemblerARMCompat::compareDouble(FloatRegister lhs, + FloatRegister rhs) { + // Compare the doubles, setting vector status flags. + if (rhs.isMissing()) { + ma_vcmpz(lhs); + } else { + ma_vcmp(lhs, rhs); + } + + // Move vector status bits to normal status flags. + as_vmrs(pc); +} + +void MacroAssemblerARMCompat::compareFloat(FloatRegister lhs, + FloatRegister rhs) { + // Compare the doubles, setting vector status flags. + if (rhs.isMissing()) { + as_vcmpz(VFPRegister(lhs).singleOverlay()); + } else { + as_vcmp(VFPRegister(lhs).singleOverlay(), VFPRegister(rhs).singleOverlay()); + } + + // Move vector status bits to normal status flags. + as_vmrs(pc); +} + +Assembler::Condition MacroAssemblerARMCompat::testInt32( + Assembler::Condition cond, const ValueOperand& value) { + MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual); + ma_cmp(value.typeReg(), ImmType(JSVAL_TYPE_INT32)); + return cond; +} + +Assembler::Condition MacroAssemblerARMCompat::testBoolean( + Assembler::Condition cond, const ValueOperand& value) { + MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual); + ma_cmp(value.typeReg(), ImmType(JSVAL_TYPE_BOOLEAN)); + return cond; +} + +Assembler::Condition MacroAssemblerARMCompat::testDouble( + Assembler::Condition cond, const ValueOperand& value) { + MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual); + Assembler::Condition actual = (cond == Equal) ? Below : AboveOrEqual; + ScratchRegisterScope scratch(asMasm()); + ma_cmp(value.typeReg(), ImmTag(JSVAL_TAG_CLEAR), scratch); + return actual; +} + +Assembler::Condition MacroAssemblerARMCompat::testNull( + Assembler::Condition cond, const ValueOperand& value) { + MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual); + ma_cmp(value.typeReg(), ImmType(JSVAL_TYPE_NULL)); + return cond; +} + +Assembler::Condition MacroAssemblerARMCompat::testUndefined( + Assembler::Condition cond, const ValueOperand& value) { + MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual); + ma_cmp(value.typeReg(), ImmType(JSVAL_TYPE_UNDEFINED)); + return cond; +} + +Assembler::Condition MacroAssemblerARMCompat::testString( + Assembler::Condition cond, const ValueOperand& value) { + return testString(cond, value.typeReg()); +} + +Assembler::Condition MacroAssemblerARMCompat::testSymbol( + Assembler::Condition cond, const ValueOperand& value) { + return testSymbol(cond, value.typeReg()); +} + +Assembler::Condition MacroAssemblerARMCompat::testBigInt( + Assembler::Condition cond, const ValueOperand& value) { + return testBigInt(cond, value.typeReg()); +} + +Assembler::Condition MacroAssemblerARMCompat::testObject( + Assembler::Condition cond, const ValueOperand& value) { + return testObject(cond, value.typeReg()); +} + +Assembler::Condition MacroAssemblerARMCompat::testNumber( + Assembler::Condition cond, const ValueOperand& value) { + return testNumber(cond, value.typeReg()); +} + +Assembler::Condition MacroAssemblerARMCompat::testMagic( + Assembler::Condition cond, const ValueOperand& value) { + return testMagic(cond, value.typeReg()); +} + +Assembler::Condition MacroAssemblerARMCompat::testPrimitive( + Assembler::Condition cond, const ValueOperand& value) { + return testPrimitive(cond, value.typeReg()); +} + +Assembler::Condition MacroAssemblerARMCompat::testGCThing( + Assembler::Condition cond, const ValueOperand& value) { + return testGCThing(cond, value.typeReg()); +} + +// Register-based tests. +Assembler::Condition MacroAssemblerARMCompat::testInt32( + Assembler::Condition cond, Register tag) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ma_cmp(tag, ImmTag(JSVAL_TAG_INT32)); + return cond; +} + +Assembler::Condition MacroAssemblerARMCompat::testBoolean( + Assembler::Condition cond, Register tag) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ma_cmp(tag, ImmTag(JSVAL_TAG_BOOLEAN)); + return cond; +} + +Assembler::Condition MacroAssemblerARMCompat::testNull( + Assembler::Condition cond, Register tag) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ma_cmp(tag, ImmTag(JSVAL_TAG_NULL)); + return cond; +} + +Assembler::Condition MacroAssemblerARMCompat::testUndefined( + Assembler::Condition cond, Register tag) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ma_cmp(tag, ImmTag(JSVAL_TAG_UNDEFINED)); + return cond; +} + +Assembler::Condition MacroAssemblerARMCompat::testString( + Assembler::Condition cond, Register tag) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ma_cmp(tag, ImmTag(JSVAL_TAG_STRING)); + return cond; +} + +Assembler::Condition MacroAssemblerARMCompat::testSymbol( + Assembler::Condition cond, Register tag) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ma_cmp(tag, ImmTag(JSVAL_TAG_SYMBOL)); + return cond; +} + +Assembler::Condition MacroAssemblerARMCompat::testBigInt( + Assembler::Condition cond, Register tag) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ma_cmp(tag, ImmTag(JSVAL_TAG_BIGINT)); + return cond; +} + +Assembler::Condition MacroAssemblerARMCompat::testObject( + Assembler::Condition cond, Register tag) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ma_cmp(tag, ImmTag(JSVAL_TAG_OBJECT)); + return cond; +} + +Assembler::Condition MacroAssemblerARMCompat::testMagic( + Assembler::Condition cond, Register tag) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ma_cmp(tag, ImmTag(JSVAL_TAG_MAGIC)); + return cond; +} + +Assembler::Condition MacroAssemblerARMCompat::testPrimitive( + Assembler::Condition cond, Register tag) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ma_cmp(tag, ImmTag(JS::detail::ValueUpperExclPrimitiveTag)); + return cond == Equal ? Below : AboveOrEqual; +} + +Assembler::Condition MacroAssemblerARMCompat::testGCThing( + Assembler::Condition cond, Register tag) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ma_cmp(tag, ImmTag(JS::detail::ValueLowerInclGCThingTag)); + return cond == Equal ? AboveOrEqual : Below; +} + +Assembler::Condition MacroAssemblerARMCompat::testGCThing( + Assembler::Condition cond, const Address& address) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ScratchRegisterScope scratch(asMasm()); + Register tag = extractTag(address, scratch); + ma_cmp(tag, ImmTag(JS::detail::ValueLowerInclGCThingTag)); + return cond == Equal ? AboveOrEqual : Below; +} + +Assembler::Condition MacroAssemblerARMCompat::testMagic( + Assembler::Condition cond, const Address& address) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ScratchRegisterScope scratch(asMasm()); + Register tag = extractTag(address, scratch); + ma_cmp(tag, ImmTag(JSVAL_TAG_MAGIC)); + return cond; +} + +Assembler::Condition MacroAssemblerARMCompat::testInt32( + Assembler::Condition cond, const Address& address) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ScratchRegisterScope scratch(asMasm()); + Register tag = extractTag(address, scratch); + ma_cmp(tag, ImmTag(JSVAL_TAG_INT32)); + return cond; +} + +Assembler::Condition MacroAssemblerARMCompat::testDouble( + Condition cond, const Address& address) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ScratchRegisterScope scratch(asMasm()); + Register tag = extractTag(address, scratch); + return testDouble(cond, tag); +} + +Assembler::Condition MacroAssemblerARMCompat::testBoolean( + Condition cond, const Address& address) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ScratchRegisterScope scratch(asMasm()); + Register tag = extractTag(address, scratch); + return testBoolean(cond, tag); +} + +Assembler::Condition MacroAssemblerARMCompat::testNull(Condition cond, + const Address& address) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ScratchRegisterScope scratch(asMasm()); + Register tag = extractTag(address, scratch); + return testNull(cond, tag); +} + +Assembler::Condition MacroAssemblerARMCompat::testUndefined( + Condition cond, const Address& address) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ScratchRegisterScope scratch(asMasm()); + Register tag = extractTag(address, scratch); + return testUndefined(cond, tag); +} + +Assembler::Condition MacroAssemblerARMCompat::testString( + Condition cond, const Address& address) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ScratchRegisterScope scratch(asMasm()); + Register tag = extractTag(address, scratch); + return testString(cond, tag); +} + +Assembler::Condition MacroAssemblerARMCompat::testSymbol( + Condition cond, const Address& address) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ScratchRegisterScope scratch(asMasm()); + Register tag = extractTag(address, scratch); + return testSymbol(cond, tag); +} + +Assembler::Condition MacroAssemblerARMCompat::testBigInt( + Condition cond, const Address& address) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ScratchRegisterScope scratch(asMasm()); + Register tag = extractTag(address, scratch); + return testBigInt(cond, tag); +} + +Assembler::Condition MacroAssemblerARMCompat::testObject( + Condition cond, const Address& address) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ScratchRegisterScope scratch(asMasm()); + Register tag = extractTag(address, scratch); + return testObject(cond, tag); +} + +Assembler::Condition MacroAssemblerARMCompat::testNumber( + Condition cond, const Address& address) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ScratchRegisterScope scratch(asMasm()); + Register tag = extractTag(address, scratch); + return testNumber(cond, tag); +} + +Assembler::Condition MacroAssemblerARMCompat::testDouble(Condition cond, + Register tag) { + MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual); + Condition actual = (cond == Equal) ? Below : AboveOrEqual; + ma_cmp(tag, ImmTag(JSVAL_TAG_CLEAR)); + return actual; +} + +Assembler::Condition MacroAssemblerARMCompat::testNumber(Condition cond, + Register tag) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ma_cmp(tag, ImmTag(JS::detail::ValueUpperInclNumberTag)); + return cond == Equal ? BelowOrEqual : Above; +} + +Assembler::Condition MacroAssemblerARMCompat::testUndefined( + Condition cond, const BaseIndex& src) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ScratchRegisterScope scratch(asMasm()); + Register tag = extractTag(src, scratch); + ma_cmp(tag, ImmTag(JSVAL_TAG_UNDEFINED)); + return cond; +} + +Assembler::Condition MacroAssemblerARMCompat::testNull(Condition cond, + const BaseIndex& src) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ScratchRegisterScope scratch(asMasm()); + Register tag = extractTag(src, scratch); + ma_cmp(tag, ImmTag(JSVAL_TAG_NULL)); + return cond; +} + +Assembler::Condition MacroAssemblerARMCompat::testBoolean( + Condition cond, const BaseIndex& src) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ScratchRegisterScope scratch(asMasm()); + Register tag = extractTag(src, scratch); + ma_cmp(tag, ImmTag(JSVAL_TAG_BOOLEAN)); + return cond; +} + +Assembler::Condition MacroAssemblerARMCompat::testString(Condition cond, + const BaseIndex& src) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ScratchRegisterScope scratch(asMasm()); + Register tag = extractTag(src, scratch); + ma_cmp(tag, ImmTag(JSVAL_TAG_STRING)); + return cond; +} + +Assembler::Condition MacroAssemblerARMCompat::testSymbol(Condition cond, + const BaseIndex& src) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ScratchRegisterScope scratch(asMasm()); + Register tag = extractTag(src, scratch); + ma_cmp(tag, ImmTag(JSVAL_TAG_SYMBOL)); + return cond; +} + +Assembler::Condition MacroAssemblerARMCompat::testBigInt(Condition cond, + const BaseIndex& src) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ScratchRegisterScope scratch(asMasm()); + Register tag = extractTag(src, scratch); + ma_cmp(tag, ImmTag(JSVAL_TAG_BIGINT)); + return cond; +} + +Assembler::Condition MacroAssemblerARMCompat::testInt32(Condition cond, + const BaseIndex& src) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ScratchRegisterScope scratch(asMasm()); + Register tag = extractTag(src, scratch); + ma_cmp(tag, ImmTag(JSVAL_TAG_INT32)); + return cond; +} + +Assembler::Condition MacroAssemblerARMCompat::testObject(Condition cond, + const BaseIndex& src) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ScratchRegisterScope scratch(asMasm()); + Register tag = extractTag(src, scratch); + ma_cmp(tag, ImmTag(JSVAL_TAG_OBJECT)); + return cond; +} + +Assembler::Condition MacroAssemblerARMCompat::testDouble(Condition cond, + const BaseIndex& src) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + Assembler::Condition actual = (cond == Equal) ? Below : AboveOrEqual; + ScratchRegisterScope scratch(asMasm()); + Register tag = extractTag(src, scratch); + ma_cmp(tag, ImmTag(JSVAL_TAG_CLEAR)); + return actual; +} + +Assembler::Condition MacroAssemblerARMCompat::testMagic( + Condition cond, const BaseIndex& address) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ScratchRegisterScope scratch(asMasm()); + Register tag = extractTag(address, scratch); + ma_cmp(tag, ImmTag(JSVAL_TAG_MAGIC)); + return cond; +} + +Assembler::Condition MacroAssemblerARMCompat::testGCThing( + Condition cond, const BaseIndex& address) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + ScratchRegisterScope scratch(asMasm()); + Register tag = extractTag(address, scratch); + ma_cmp(tag, ImmTag(JS::detail::ValueLowerInclGCThingTag)); + return cond == Equal ? AboveOrEqual : Below; +} + +// Unboxing code. +void MacroAssemblerARMCompat::unboxNonDouble(const ValueOperand& operand, + Register dest, JSValueType type) { + auto movPayloadToDest = [&]() { + if (operand.payloadReg() != dest) { + ma_mov(operand.payloadReg(), dest, LeaveCC); + } + }; + if (!JitOptions.spectreValueMasking) { + movPayloadToDest(); + return; + } + + // Spectre mitigation: We zero the payload if the tag does not match the + // expected type and if this is a pointer type. + if (type == JSVAL_TYPE_INT32 || type == JSVAL_TYPE_BOOLEAN) { + movPayloadToDest(); + return; + } + + // We zero the destination register and move the payload into it if + // the tag corresponds to the given type. + ma_cmp(operand.typeReg(), ImmType(type)); + movPayloadToDest(); + ma_mov(Imm32(0), dest, NotEqual); +} + +void MacroAssemblerARMCompat::unboxNonDouble(const Address& src, Register dest, + JSValueType type) { + ScratchRegisterScope scratch(asMasm()); + if (!JitOptions.spectreValueMasking) { + ma_ldr(ToPayload(src), dest, scratch); + return; + } + + // Spectre mitigation: We zero the payload if the tag does not match the + // expected type and if this is a pointer type. + if (type == JSVAL_TYPE_INT32 || type == JSVAL_TYPE_BOOLEAN) { + ma_ldr(ToPayload(src), dest, scratch); + return; + } + + // We zero the destination register and move the payload into it if + // the tag corresponds to the given type. + ma_ldr(ToType(src), scratch, scratch); + ma_cmp(scratch, ImmType(type)); + ma_ldr(ToPayload(src), dest, scratch, Offset, Equal); + ma_mov(Imm32(0), dest, NotEqual); +} + +void MacroAssemblerARMCompat::unboxNonDouble(const BaseIndex& src, + Register dest, JSValueType type) { + SecondScratchRegisterScope scratch2(asMasm()); + ma_alu(src.base, lsl(src.index, src.scale), scratch2, OpAdd); + Address value(scratch2, src.offset); + unboxNonDouble(value, dest, type); +} + +void MacroAssemblerARMCompat::unboxDouble(const ValueOperand& operand, + FloatRegister dest) { + MOZ_ASSERT(dest.isDouble()); + as_vxfer(operand.payloadReg(), operand.typeReg(), VFPRegister(dest), + CoreToFloat); +} + +void MacroAssemblerARMCompat::unboxDouble(const Address& src, + FloatRegister dest) { + MOZ_ASSERT(dest.isDouble()); + loadDouble(src, dest); +} + +void MacroAssemblerARMCompat::unboxDouble(const BaseIndex& src, + FloatRegister dest) { + MOZ_ASSERT(dest.isDouble()); + loadDouble(src, dest); +} + +void MacroAssemblerARMCompat::unboxValue(const ValueOperand& src, + AnyRegister dest, JSValueType type) { + if (dest.isFloat()) { + Label notInt32, end; + asMasm().branchTestInt32(Assembler::NotEqual, src, ¬Int32); + convertInt32ToDouble(src.payloadReg(), dest.fpu()); + ma_b(&end); + bind(¬Int32); + unboxDouble(src, dest.fpu()); + bind(&end); + } else { + unboxNonDouble(src, dest.gpr(), type); + } +} + +void MacroAssemblerARMCompat::boxDouble(FloatRegister src, + const ValueOperand& dest, + FloatRegister) { + as_vxfer(dest.payloadReg(), dest.typeReg(), VFPRegister(src), FloatToCore); +} + +void MacroAssemblerARMCompat::boxNonDouble(JSValueType type, Register src, + const ValueOperand& dest) { + if (src != dest.payloadReg()) { + ma_mov(src, dest.payloadReg()); + } + ma_mov(ImmType(type), dest.typeReg()); +} + +void MacroAssemblerARMCompat::boolValueToDouble(const ValueOperand& operand, + FloatRegister dest) { + VFPRegister d = VFPRegister(dest); + loadConstantDouble(1.0, dest); + as_cmp(operand.payloadReg(), Imm8(0)); + // If the source is 0, then subtract the dest from itself, producing 0. + as_vsub(d, d, d, Equal); +} + +void MacroAssemblerARMCompat::int32ValueToDouble(const ValueOperand& operand, + FloatRegister dest) { + // Transfer the integral value to a floating point register. + VFPRegister vfpdest = VFPRegister(dest); + as_vxfer(operand.payloadReg(), InvalidReg, vfpdest.sintOverlay(), + CoreToFloat); + // Convert the value to a double. + as_vcvt(vfpdest, vfpdest.sintOverlay()); +} + +void MacroAssemblerARMCompat::boolValueToFloat32(const ValueOperand& operand, + FloatRegister dest) { + VFPRegister d = VFPRegister(dest).singleOverlay(); + loadConstantFloat32(1.0, dest); + as_cmp(operand.payloadReg(), Imm8(0)); + // If the source is 0, then subtract the dest from itself, producing 0. + as_vsub(d, d, d, Equal); +} + +void MacroAssemblerARMCompat::int32ValueToFloat32(const ValueOperand& operand, + FloatRegister dest) { + // Transfer the integral value to a floating point register. + VFPRegister vfpdest = VFPRegister(dest).singleOverlay(); + as_vxfer(operand.payloadReg(), InvalidReg, vfpdest.sintOverlay(), + CoreToFloat); + // Convert the value to a float. + as_vcvt(vfpdest, vfpdest.sintOverlay()); +} + +void MacroAssemblerARMCompat::loadConstantFloat32(float f, FloatRegister dest) { + ma_vimm_f32(f, dest); +} + +void MacroAssemblerARMCompat::loadInt32OrDouble(const Address& src, + FloatRegister dest) { + Label notInt32, end; + + // If it's an int, convert to a double. + { + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + + ma_ldr(ToType(src), scratch, scratch2); + asMasm().branchTestInt32(Assembler::NotEqual, scratch, ¬Int32); + ma_ldr(ToPayload(src), scratch, scratch2); + convertInt32ToDouble(scratch, dest); + ma_b(&end); + } + + // Not an int, just load as double. + bind(¬Int32); + { + ScratchRegisterScope scratch(asMasm()); + ma_vldr(src, dest, scratch); + } + bind(&end); +} + +void MacroAssemblerARMCompat::loadInt32OrDouble(Register base, Register index, + FloatRegister dest, + int32_t shift) { + Label notInt32, end; + + static_assert(NUNBOX32_PAYLOAD_OFFSET == 0); + + ScratchRegisterScope scratch(asMasm()); + + // If it's an int, convert it to double. + ma_alu(base, lsl(index, shift), scratch, OpAdd); + + // Since we only have one scratch register, we need to stomp over it with + // the tag. + ma_ldr(DTRAddr(scratch, DtrOffImm(NUNBOX32_TYPE_OFFSET)), scratch); + asMasm().branchTestInt32(Assembler::NotEqual, scratch, ¬Int32); + + // Implicitly requires NUNBOX32_PAYLOAD_OFFSET == 0: no offset provided + ma_ldr(DTRAddr(base, DtrRegImmShift(index, LSL, shift)), scratch); + convertInt32ToDouble(scratch, dest); + ma_b(&end); + + // Not an int, just load as double. + bind(¬Int32); + // First, recompute the offset that had been stored in the scratch register + // since the scratch register was overwritten loading in the type. + ma_alu(base, lsl(index, shift), scratch, OpAdd); + ma_vldr(VFPAddr(scratch, VFPOffImm(0)), dest); + bind(&end); +} + +void MacroAssemblerARMCompat::loadConstantDouble(double dp, + FloatRegister dest) { + ma_vimm(dp, dest); +} + +// Treat the value as a boolean, and set condition codes accordingly. +Assembler::Condition MacroAssemblerARMCompat::testInt32Truthy( + bool truthy, const ValueOperand& operand) { + ma_tst(operand.payloadReg(), operand.payloadReg()); + return truthy ? NonZero : Zero; +} + +Assembler::Condition MacroAssemblerARMCompat::testBooleanTruthy( + bool truthy, const ValueOperand& operand) { + ma_tst(operand.payloadReg(), operand.payloadReg()); + return truthy ? NonZero : Zero; +} + +Assembler::Condition MacroAssemblerARMCompat::testDoubleTruthy( + bool truthy, FloatRegister reg) { + as_vcmpz(VFPRegister(reg)); + as_vmrs(pc); + as_cmp(r0, O2Reg(r0), Overflow); + return truthy ? NonZero : Zero; +} + +Register MacroAssemblerARMCompat::extractObject(const Address& address, + Register scratch) { + SecondScratchRegisterScope scratch2(asMasm()); + ma_ldr(ToPayload(address), scratch, scratch2); + return scratch; +} + +Register MacroAssemblerARMCompat::extractTag(const Address& address, + Register scratch) { + SecondScratchRegisterScope scratch2(asMasm()); + ma_ldr(ToType(address), scratch, scratch2); + return scratch; +} + +Register MacroAssemblerARMCompat::extractTag(const BaseIndex& address, + Register scratch) { + ma_alu(address.base, lsl(address.index, address.scale), scratch, OpAdd, + LeaveCC); + return extractTag(Address(scratch, address.offset), scratch); +} + +///////////////////////////////////////////////////////////////// +// X86/X64-common (ARM too now) interface. +///////////////////////////////////////////////////////////////// +void MacroAssemblerARMCompat::storeValue(ValueOperand val, const Address& dst) { + SecondScratchRegisterScope scratch2(asMasm()); + ma_str(val.payloadReg(), ToPayload(dst), scratch2); + ma_str(val.typeReg(), ToType(dst), scratch2); +} + +void MacroAssemblerARMCompat::storeValue(ValueOperand val, + const BaseIndex& dest) { + ScratchRegisterScope scratch(asMasm()); + + if (isValueDTRDCandidate(val) && Abs(dest.offset) <= 255) { + Register tmpIdx; + if (dest.offset == 0) { + if (dest.scale == TimesOne) { + tmpIdx = dest.index; + } else { + ma_lsl(Imm32(dest.scale), dest.index, scratch); + tmpIdx = scratch; + } + ma_strd(val.payloadReg(), val.typeReg(), + EDtrAddr(dest.base, EDtrOffReg(tmpIdx))); + } else { + ma_alu(dest.base, lsl(dest.index, dest.scale), scratch, OpAdd); + ma_strd(val.payloadReg(), val.typeReg(), + EDtrAddr(scratch, EDtrOffImm(dest.offset))); + } + } else { + ma_alu(dest.base, lsl(dest.index, dest.scale), scratch, OpAdd); + storeValue(val, Address(scratch, dest.offset)); + } +} + +void MacroAssemblerARMCompat::loadValue(const BaseIndex& addr, + ValueOperand val) { + ScratchRegisterScope scratch(asMasm()); + + if (isValueDTRDCandidate(val) && Abs(addr.offset) <= 255) { + Register tmpIdx; + if (addr.offset == 0) { + if (addr.scale == TimesOne) { + // If the offset register is the same as one of the destination + // registers, LDRD's behavior is undefined. Use the scratch + // register to avoid this. + if (val.aliases(addr.index)) { + ma_mov(addr.index, scratch); + tmpIdx = scratch; + } else { + tmpIdx = addr.index; + } + } else { + ma_lsl(Imm32(addr.scale), addr.index, scratch); + tmpIdx = scratch; + } + ma_ldrd(EDtrAddr(addr.base, EDtrOffReg(tmpIdx)), val.payloadReg(), + val.typeReg()); + } else { + ma_alu(addr.base, lsl(addr.index, addr.scale), scratch, OpAdd); + ma_ldrd(EDtrAddr(scratch, EDtrOffImm(addr.offset)), val.payloadReg(), + val.typeReg()); + } + } else { + ma_alu(addr.base, lsl(addr.index, addr.scale), scratch, OpAdd); + loadValue(Address(scratch, addr.offset), val); + } +} + +void MacroAssemblerARMCompat::loadValue(Address src, ValueOperand val) { + // TODO: copy this code into a generic function that acts on all sequences + // of memory accesses + if (isValueDTRDCandidate(val)) { + // If the value we want is in two consecutive registers starting with an + // even register, they can be combined as a single ldrd. + int offset = src.offset; + if (offset < 256 && offset > -256) { + ma_ldrd(EDtrAddr(src.base, EDtrOffImm(src.offset)), val.payloadReg(), + val.typeReg()); + return; + } + } + // If the value is lower than the type, then we may be able to use an ldm + // instruction. + + if (val.payloadReg().code() < val.typeReg().code()) { + if (src.offset <= 4 && src.offset >= -8 && (src.offset & 3) == 0) { + // Turns out each of the 4 value -8, -4, 0, 4 corresponds exactly + // with one of LDM{DB, DA, IA, IB} + DTMMode mode; + switch (src.offset) { + case -8: + mode = DB; + break; + case -4: + mode = DA; + break; + case 0: + mode = IA; + break; + case 4: + mode = IB; + break; + default: + MOZ_CRASH("Bogus Offset for LoadValue as DTM"); + } + startDataTransferM(IsLoad, src.base, mode); + transferReg(val.payloadReg()); + transferReg(val.typeReg()); + finishDataTransfer(); + return; + } + } + + loadUnalignedValue(src, val); +} + +void MacroAssemblerARMCompat::loadUnalignedValue(const Address& src, + ValueOperand dest) { + Address payload = ToPayload(src); + Address type = ToType(src); + + // Ensure that loading the payload does not erase the pointer to the Value + // in memory. + if (type.base != dest.payloadReg()) { + SecondScratchRegisterScope scratch2(asMasm()); + ma_ldr(payload, dest.payloadReg(), scratch2); + ma_ldr(type, dest.typeReg(), scratch2); + } else { + SecondScratchRegisterScope scratch2(asMasm()); + ma_ldr(type, dest.typeReg(), scratch2); + ma_ldr(payload, dest.payloadReg(), scratch2); + } +} + +void MacroAssemblerARMCompat::tagValue(JSValueType type, Register payload, + ValueOperand dest) { + MOZ_ASSERT(dest.typeReg() != dest.payloadReg()); + if (payload != dest.payloadReg()) { + ma_mov(payload, dest.payloadReg()); + } + ma_mov(ImmType(type), dest.typeReg()); +} + +void MacroAssemblerARMCompat::pushValue(ValueOperand val) { + ma_push(val.typeReg()); + ma_push(val.payloadReg()); +} + +void MacroAssemblerARMCompat::pushValue(const Address& addr) { + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + + ma_ldr(ToType(addr), scratch, scratch2); + ma_push(scratch); + ma_ldr(ToPayloadAfterStackPush(addr), scratch, scratch2); + ma_push(scratch); +} + +void MacroAssemblerARMCompat::pushValue(const BaseIndex& addr, + Register scratch) { + computeEffectiveAddress(addr, scratch); + pushValue(Address(scratch, 0)); +} + +void MacroAssemblerARMCompat::popValue(ValueOperand val) { + ma_pop(val.payloadReg()); + ma_pop(val.typeReg()); +} + +void MacroAssemblerARMCompat::storePayload(const Value& val, + const Address& dest) { + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + + if (val.isGCThing()) { + ma_mov(ImmGCPtr(val.toGCThing()), scratch); + } else { + ma_mov(Imm32(val.toNunboxPayload()), scratch); + } + ma_str(scratch, ToPayload(dest), scratch2); +} + +void MacroAssemblerARMCompat::storePayload(Register src, const Address& dest) { + ScratchRegisterScope scratch(asMasm()); + ma_str(src, ToPayload(dest), scratch); +} + +void MacroAssemblerARMCompat::storePayload(const Value& val, + const BaseIndex& dest) { + unsigned shift = ScaleToShift(dest.scale); + + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + + if (val.isGCThing()) { + ma_mov(ImmGCPtr(val.toGCThing()), scratch); + } else { + ma_mov(Imm32(val.toNunboxPayload()), scratch); + } + + // If NUNBOX32_PAYLOAD_OFFSET is not zero, the memory operand [base + index + // << shift + imm] cannot be encoded into a single instruction, and cannot + // be integrated into the as_dtr call. + static_assert(NUNBOX32_PAYLOAD_OFFSET == 0); + + // If an offset is used, modify the base so that a [base + index << shift] + // instruction format can be used. + if (dest.offset != 0) { + ma_add(dest.base, Imm32(dest.offset), dest.base, scratch2); + } + + as_dtr(IsStore, 32, Offset, scratch, + DTRAddr(dest.base, DtrRegImmShift(dest.index, LSL, shift))); + + // Restore the original value of the base, if necessary. + if (dest.offset != 0) { + ma_sub(dest.base, Imm32(dest.offset), dest.base, scratch); + } +} + +void MacroAssemblerARMCompat::storePayload(Register src, + const BaseIndex& dest) { + unsigned shift = ScaleToShift(dest.scale); + MOZ_ASSERT(shift < 32); + + ScratchRegisterScope scratch(asMasm()); + + // If NUNBOX32_PAYLOAD_OFFSET is not zero, the memory operand [base + index + // << shift + imm] cannot be encoded into a single instruction, and cannot + // be integrated into the as_dtr call. + static_assert(NUNBOX32_PAYLOAD_OFFSET == 0); + + // Save/restore the base if the BaseIndex has an offset, as above. + if (dest.offset != 0) { + ma_add(dest.base, Imm32(dest.offset), dest.base, scratch); + } + + // Technically, shift > -32 can be handle by changing LSL to ASR, but should + // never come up, and this is one less code path to get wrong. + as_dtr(IsStore, 32, Offset, src, + DTRAddr(dest.base, DtrRegImmShift(dest.index, LSL, shift))); + + if (dest.offset != 0) { + ma_sub(dest.base, Imm32(dest.offset), dest.base, scratch); + } +} + +void MacroAssemblerARMCompat::storeTypeTag(ImmTag tag, const Address& dest) { + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + + ma_mov(tag, scratch); + ma_str(scratch, ToType(dest), scratch2); +} + +void MacroAssemblerARMCompat::storeTypeTag(ImmTag tag, const BaseIndex& dest) { + Register base = dest.base; + Register index = dest.index; + unsigned shift = ScaleToShift(dest.scale); + + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + + MOZ_ASSERT(base != scratch && base != scratch2); + MOZ_ASSERT(index != scratch && index != scratch2); + + ma_add(base, Imm32(dest.offset + NUNBOX32_TYPE_OFFSET), scratch2, scratch); + ma_mov(tag, scratch); + ma_str(scratch, DTRAddr(scratch2, DtrRegImmShift(index, LSL, shift))); +} + +void MacroAssemblerARM::ma_call(ImmPtr dest) { + ma_movPatchable(dest, CallReg, Always); + as_blx(CallReg); +} + +void MacroAssemblerARMCompat::breakpoint() { as_bkpt(); } + +void MacroAssemblerARMCompat::simulatorStop(const char* msg) { +#ifdef JS_SIMULATOR_ARM + MOZ_ASSERT(sizeof(char*) == 4); + writeInst(0xefffffff); + writeInst((int)msg); +#endif +} + +void MacroAssemblerARMCompat::ensureDouble(const ValueOperand& source, + FloatRegister dest, Label* failure) { + Label isDouble, done; + asMasm().branchTestDouble(Assembler::Equal, source.typeReg(), &isDouble); + asMasm().branchTestInt32(Assembler::NotEqual, source.typeReg(), failure); + + convertInt32ToDouble(source.payloadReg(), dest); + jump(&done); + + bind(&isDouble); + unboxDouble(source, dest); + + bind(&done); +} + +void MacroAssemblerARMCompat::breakpoint(Condition cc) { + ma_ldr(DTRAddr(r12, DtrRegImmShift(r12, LSL, 0, IsDown)), r12, Offset, cc); +} + +void MacroAssemblerARMCompat::checkStackAlignment() { + asMasm().assertStackAlignment(ABIStackAlignment); +} + +void MacroAssemblerARMCompat::handleFailureWithHandlerTail( + Label* profilerExitTail, Label* bailoutTail) { + // Reserve space for exception information. + int size = (sizeof(ResumeFromException) + 7) & ~7; + + Imm8 size8(size); + as_sub(sp, sp, size8); + ma_mov(sp, r0); + + // Call the handler. + using Fn = void (*)(ResumeFromException * rfe); + asMasm().setupUnalignedABICall(r1); + asMasm().passABIArg(r0); + asMasm().callWithABI<Fn, HandleException>( + MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckHasExitFrame); + + Label entryFrame; + Label catch_; + Label finally; + Label returnBaseline; + Label returnIon; + Label bailout; + Label wasm; + Label wasmCatch; + + { + ScratchRegisterScope scratch(asMasm()); + ma_ldr(Address(sp, ResumeFromException::offsetOfKind()), r0, scratch); + } + + asMasm().branch32(Assembler::Equal, r0, + Imm32(ExceptionResumeKind::EntryFrame), &entryFrame); + asMasm().branch32(Assembler::Equal, r0, Imm32(ExceptionResumeKind::Catch), + &catch_); + asMasm().branch32(Assembler::Equal, r0, Imm32(ExceptionResumeKind::Finally), + &finally); + asMasm().branch32(Assembler::Equal, r0, + Imm32(ExceptionResumeKind::ForcedReturnBaseline), + &returnBaseline); + asMasm().branch32(Assembler::Equal, r0, + Imm32(ExceptionResumeKind::ForcedReturnIon), &returnIon); + asMasm().branch32(Assembler::Equal, r0, Imm32(ExceptionResumeKind::Bailout), + &bailout); + asMasm().branch32(Assembler::Equal, r0, Imm32(ExceptionResumeKind::Wasm), + &wasm); + asMasm().branch32(Assembler::Equal, r0, Imm32(ExceptionResumeKind::WasmCatch), + &wasmCatch); + + breakpoint(); // Invalid kind. + + // No exception handler. Load the error value, restore state and return from + // the entry frame. + bind(&entryFrame); + asMasm().moveValue(MagicValue(JS_ION_ERROR), JSReturnOperand); + { + ScratchRegisterScope scratch(asMasm()); + ma_ldr(Address(sp, ResumeFromException::offsetOfFramePointer()), r11, + scratch); + ma_ldr(Address(sp, ResumeFromException::offsetOfStackPointer()), sp, + scratch); + } + + // We're going to be returning by the ion calling convention, which returns + // by ??? (for now, I think ldr pc, [sp]!) + as_dtr(IsLoad, 32, PostIndex, pc, DTRAddr(sp, DtrOffImm(4))); + + // If we found a catch handler, this must be a baseline frame. Restore state + // and jump to the catch block. + bind(&catch_); + { + ScratchRegisterScope scratch(asMasm()); + ma_ldr(Address(sp, ResumeFromException::offsetOfTarget()), r0, scratch); + ma_ldr(Address(sp, ResumeFromException::offsetOfFramePointer()), r11, + scratch); + ma_ldr(Address(sp, ResumeFromException::offsetOfStackPointer()), sp, + scratch); + } + jump(r0); + + // If we found a finally block, this must be a baseline frame. Push two + // values expected by the finally block: the exception and BooleanValue(true). + bind(&finally); + ValueOperand exception = ValueOperand(r1, r2); + loadValue(Operand(sp, ResumeFromException::offsetOfException()), exception); + { + ScratchRegisterScope scratch(asMasm()); + ma_ldr(Address(sp, ResumeFromException::offsetOfTarget()), r0, scratch); + ma_ldr(Address(sp, ResumeFromException::offsetOfFramePointer()), r11, + scratch); + ma_ldr(Address(sp, ResumeFromException::offsetOfStackPointer()), sp, + scratch); + } + + pushValue(exception); + pushValue(BooleanValue(true)); + jump(r0); + + // Return BaselineFrame->returnValue() to the caller. + // Used in debug mode and for GeneratorReturn. + Label profilingInstrumentation; + bind(&returnBaseline); + { + ScratchRegisterScope scratch(asMasm()); + ma_ldr(Address(sp, ResumeFromException::offsetOfFramePointer()), r11, + scratch); + ma_ldr(Address(sp, ResumeFromException::offsetOfStackPointer()), sp, + scratch); + } + loadValue(Address(r11, BaselineFrame::reverseOffsetOfReturnValue()), + JSReturnOperand); + jump(&profilingInstrumentation); + + // Return the given value to the caller. + bind(&returnIon); + loadValue(Address(sp, ResumeFromException::offsetOfException()), + JSReturnOperand); + { + ScratchRegisterScope scratch(asMasm()); + ma_ldr(Address(sp, ResumeFromException::offsetOfFramePointer()), r11, + scratch); + ma_ldr(Address(sp, ResumeFromException::offsetOfStackPointer()), sp, + scratch); + } + + // If profiling is enabled, then update the lastProfilingFrame to refer to + // caller frame before returning. This code is shared by ForcedReturnIon + // and ForcedReturnBaseline. + bind(&profilingInstrumentation); + { + Label skipProfilingInstrumentation; + // Test if profiler enabled. + AbsoluteAddress addressOfEnabled( + asMasm().runtime()->geckoProfiler().addressOfEnabled()); + asMasm().branch32(Assembler::Equal, addressOfEnabled, Imm32(0), + &skipProfilingInstrumentation); + jump(profilerExitTail); + bind(&skipProfilingInstrumentation); + } + + ma_mov(r11, sp); + pop(r11); + ret(); + + // If we are bailing out to baseline to handle an exception, jump to the + // bailout tail stub. Load 1 (true) in ReturnReg to indicate success. + bind(&bailout); + { + ScratchRegisterScope scratch(asMasm()); + ma_ldr(Address(sp, ResumeFromException::offsetOfBailoutInfo()), r2, + scratch); + ma_ldr(Address(sp, ResumeFromException::offsetOfStackPointer()), sp, + scratch); + ma_mov(Imm32(1), ReturnReg); + } + jump(bailoutTail); + + // If we are throwing and the innermost frame was a wasm frame, reset SP and + // FP; SP is pointing to the unwound return address to the wasm entry, so + // we can just ret(). + bind(&wasm); + { + ScratchRegisterScope scratch(asMasm()); + ma_ldr(Address(sp, ResumeFromException::offsetOfFramePointer()), r11, + scratch); + ma_ldr(Address(sp, ResumeFromException::offsetOfStackPointer()), sp, + scratch); + ma_mov(Imm32(int32_t(wasm::FailInstanceReg)), InstanceReg); + } + as_dtr(IsLoad, 32, PostIndex, pc, DTRAddr(sp, DtrOffImm(4))); + + // Found a wasm catch handler, restore state and jump to it. + bind(&wasmCatch); + { + ScratchRegisterScope scratch(asMasm()); + ma_ldr(Address(sp, ResumeFromException::offsetOfTarget()), r1, scratch); + ma_ldr(Address(sp, ResumeFromException::offsetOfFramePointer()), r11, + scratch); + ma_ldr(Address(sp, ResumeFromException::offsetOfStackPointer()), sp, + scratch); + } + jump(r1); +} + +Assembler::Condition MacroAssemblerARMCompat::testStringTruthy( + bool truthy, const ValueOperand& value) { + Register string = value.payloadReg(); + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + + ma_dtr(IsLoad, string, Imm32(JSString::offsetOfLength()), scratch, scratch2); + as_cmp(scratch, Imm8(0)); + return truthy ? Assembler::NotEqual : Assembler::Equal; +} + +Assembler::Condition MacroAssemblerARMCompat::testBigIntTruthy( + bool truthy, const ValueOperand& value) { + Register bi = value.payloadReg(); + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + + ma_dtr(IsLoad, bi, Imm32(BigInt::offsetOfDigitLength()), scratch, scratch2); + as_cmp(scratch, Imm8(0)); + return truthy ? Assembler::NotEqual : Assembler::Equal; +} + +void MacroAssemblerARMCompat::floor(FloatRegister input, Register output, + Label* bail) { + Label handleZero; + Label handleNeg; + Label fin; + + ScratchDoubleScope scratchDouble(asMasm()); + + compareDouble(input, NoVFPRegister); + ma_b(&handleZero, Assembler::Equal); + ma_b(&handleNeg, Assembler::Signed); + // NaN is always a bail condition, just bail directly. + ma_b(bail, Assembler::Overflow); + + // The argument is a positive number, truncation is the path to glory. Since + // it is known to be > 0.0, explicitly convert to a larger range, then a + // value that rounds to INT_MAX is explicitly different from an argument + // that clamps to INT_MAX. + ma_vcvt_F64_U32(input, scratchDouble.uintOverlay()); + ma_vxfer(scratchDouble.uintOverlay(), output); + ma_mov(output, output, SetCC); + ma_b(bail, Signed); + ma_b(&fin); + + bind(&handleZero); + // Move the top word of the double into the output reg, if it is non-zero, + // then the original value was -0.0. + as_vxfer(output, InvalidReg, input, FloatToCore, Always, 1); + as_cmp(output, Imm8(0)); + ma_b(bail, NonZero); + ma_b(&fin); + + bind(&handleNeg); + // Negative case, negate, then start dancing. + ma_vneg(input, input); + ma_vcvt_F64_U32(input, scratchDouble.uintOverlay()); + ma_vxfer(scratchDouble.uintOverlay(), output); + ma_vcvt_U32_F64(scratchDouble.uintOverlay(), scratchDouble); + compareDouble(scratchDouble, input); + as_add(output, output, Imm8(1), LeaveCC, NotEqual); + // Negate the output. Since INT_MIN < -INT_MAX, even after adding 1, the + // result will still be a negative number. + as_rsb(output, output, Imm8(0), SetCC); + // Flip the negated input back to its original value. + ma_vneg(input, input); + // If the result looks non-negative, then this value didn't actually fit + // into the int range, and special handling is required. Zero is also caught + // by this case, but floor of a negative number should never be zero. + ma_b(bail, NotSigned); + + bind(&fin); +} + +void MacroAssemblerARMCompat::floorf(FloatRegister input, Register output, + Label* bail) { + Label handleZero; + Label handleNeg; + Label fin; + compareFloat(input, NoVFPRegister); + ma_b(&handleZero, Assembler::Equal); + ma_b(&handleNeg, Assembler::Signed); + // NaN is always a bail condition, just bail directly. + ma_b(bail, Assembler::Overflow); + + // The argument is a positive number, truncation is the path to glory; Since + // it is known to be > 0.0, explicitly convert to a larger range, then a + // value that rounds to INT_MAX is explicitly different from an argument + // that clamps to INT_MAX. + { + ScratchFloat32Scope scratch(asMasm()); + ma_vcvt_F32_U32(input, scratch.uintOverlay()); + ma_vxfer(VFPRegister(scratch).uintOverlay(), output); + } + ma_mov(output, output, SetCC); + ma_b(bail, Signed); + ma_b(&fin); + + bind(&handleZero); + // Move the top word of the double into the output reg, if it is non-zero, + // then the original value was -0.0. + as_vxfer(output, InvalidReg, VFPRegister(input).singleOverlay(), FloatToCore, + Always, 0); + as_cmp(output, Imm8(0)); + ma_b(bail, NonZero); + ma_b(&fin); + + bind(&handleNeg); + // Negative case, negate, then start dancing. + { + ScratchFloat32Scope scratch(asMasm()); + ma_vneg_f32(input, input); + ma_vcvt_F32_U32(input, scratch.uintOverlay()); + ma_vxfer(VFPRegister(scratch).uintOverlay(), output); + ma_vcvt_U32_F32(scratch.uintOverlay(), scratch); + compareFloat(scratch, input); + as_add(output, output, Imm8(1), LeaveCC, NotEqual); + } + // Negate the output. Since INT_MIN < -INT_MAX, even after adding 1, the + // result will still be a negative number. + as_rsb(output, output, Imm8(0), SetCC); + // Flip the negated input back to its original value. + ma_vneg_f32(input, input); + // If the result looks non-negative, then this value didn't actually fit + // into the int range, and special handling is required. Zero is also caught + // by this case, but floor of a negative number should never be zero. + ma_b(bail, NotSigned); + + bind(&fin); +} + +void MacroAssemblerARMCompat::ceil(FloatRegister input, Register output, + Label* bail) { + Label handleZero; + Label handlePos; + Label fin; + + compareDouble(input, NoVFPRegister); + // NaN is always a bail condition, just bail directly. + ma_b(bail, Assembler::Overflow); + ma_b(&handleZero, Assembler::Equal); + ma_b(&handlePos, Assembler::NotSigned); + + ScratchDoubleScope scratchDouble(asMasm()); + + // We are in the ]-Inf; 0[ range + // If we are in the ]-1; 0[ range => bailout + loadConstantDouble(-1.0, scratchDouble); + compareDouble(input, scratchDouble); + ma_b(bail, Assembler::GreaterThan); + + // We are in the ]-Inf; -1] range: ceil(x) == -floor(-x) and floor can be + // computed with direct truncation here (x > 0). + ma_vneg(input, scratchDouble); + FloatRegister ScratchUIntReg = scratchDouble.uintOverlay(); + ma_vcvt_F64_U32(scratchDouble, ScratchUIntReg); + ma_vxfer(ScratchUIntReg, output); + ma_neg(output, output, SetCC); + ma_b(bail, NotSigned); + ma_b(&fin); + + // Test for 0.0 / -0.0: if the top word of the input double is not zero, + // then it was -0 and we need to bail out. + bind(&handleZero); + as_vxfer(output, InvalidReg, input, FloatToCore, Always, 1); + as_cmp(output, Imm8(0)); + ma_b(bail, NonZero); + ma_b(&fin); + + // We are in the ]0; +inf] range: truncate integer values, maybe add 1 for + // non integer values, maybe bail if overflow. + bind(&handlePos); + ma_vcvt_F64_U32(input, ScratchUIntReg); + ma_vxfer(ScratchUIntReg, output); + ma_vcvt_U32_F64(ScratchUIntReg, scratchDouble); + compareDouble(scratchDouble, input); + as_add(output, output, Imm8(1), LeaveCC, NotEqual); + // Bail out if the add overflowed or the result is non positive. + ma_mov(output, output, SetCC); + ma_b(bail, Signed); + ma_b(bail, Zero); + + bind(&fin); +} + +void MacroAssemblerARMCompat::ceilf(FloatRegister input, Register output, + Label* bail) { + Label handleZero; + Label handlePos; + Label fin; + + compareFloat(input, NoVFPRegister); + // NaN is always a bail condition, just bail directly. + ma_b(bail, Assembler::Overflow); + ma_b(&handleZero, Assembler::Equal); + ma_b(&handlePos, Assembler::NotSigned); + + // We are in the ]-Inf; 0[ range + // If we are in the ]-1; 0[ range => bailout + { + ScratchFloat32Scope scratch(asMasm()); + loadConstantFloat32(-1.f, scratch); + compareFloat(input, scratch); + ma_b(bail, Assembler::GreaterThan); + } + + // We are in the ]-Inf; -1] range: ceil(x) == -floor(-x) and floor can be + // computed with direct truncation here (x > 0). + { + ScratchDoubleScope scratchDouble(asMasm()); + FloatRegister scratchFloat = scratchDouble.asSingle(); + FloatRegister scratchUInt = scratchDouble.uintOverlay(); + + ma_vneg_f32(input, scratchFloat); + ma_vcvt_F32_U32(scratchFloat, scratchUInt); + ma_vxfer(scratchUInt, output); + ma_neg(output, output, SetCC); + ma_b(bail, NotSigned); + ma_b(&fin); + } + + // Test for 0.0 / -0.0: if the top word of the input double is not zero, + // then it was -0 and we need to bail out. + bind(&handleZero); + as_vxfer(output, InvalidReg, VFPRegister(input).singleOverlay(), FloatToCore, + Always, 0); + as_cmp(output, Imm8(0)); + ma_b(bail, NonZero); + ma_b(&fin); + + // We are in the ]0; +inf] range: truncate integer values, maybe add 1 for + // non integer values, maybe bail if overflow. + bind(&handlePos); + { + ScratchDoubleScope scratchDouble(asMasm()); + FloatRegister scratchFloat = scratchDouble.asSingle(); + FloatRegister scratchUInt = scratchDouble.uintOverlay(); + + ma_vcvt_F32_U32(input, scratchUInt); + ma_vxfer(scratchUInt, output); + ma_vcvt_U32_F32(scratchUInt, scratchFloat); + compareFloat(scratchFloat, input); + as_add(output, output, Imm8(1), LeaveCC, NotEqual); + + // Bail on overflow or non-positive result. + ma_mov(output, output, SetCC); + ma_b(bail, Signed); + ma_b(bail, Zero); + } + + bind(&fin); +} + +CodeOffset MacroAssemblerARMCompat::toggledJump(Label* label) { + // Emit a B that can be toggled to a CMP. See ToggleToJmp(), ToggleToCmp(). + BufferOffset b = ma_b(label, Always); + CodeOffset ret(b.getOffset()); + return ret; +} + +CodeOffset MacroAssemblerARMCompat::toggledCall(JitCode* target, bool enabled) { + BufferOffset bo = nextOffset(); + addPendingJump(bo, ImmPtr(target->raw()), RelocationKind::JITCODE); + ScratchRegisterScope scratch(asMasm()); + ma_movPatchable(ImmPtr(target->raw()), scratch, Always); + if (enabled) { + ma_blx(scratch); + } else { + ma_nop(); + } + return CodeOffset(bo.getOffset()); +} + +void MacroAssemblerARMCompat::round(FloatRegister input, Register output, + Label* bail, FloatRegister tmp) { + Label handleZero; + Label handleNeg; + Label fin; + + ScratchDoubleScope scratchDouble(asMasm()); + + // Do a compare based on the original value, then do most other things based + // on the shifted value. + ma_vcmpz(input); + // Since we already know the sign bit, flip all numbers to be positive, + // stored in tmp. + ma_vabs(input, tmp); + as_vmrs(pc); + ma_b(&handleZero, Assembler::Equal); + ma_b(&handleNeg, Assembler::Signed); + // NaN is always a bail condition, just bail directly. + ma_b(bail, Assembler::Overflow); + + // The argument is a positive number, truncation is the path to glory; Since + // it is known to be > 0.0, explicitly convert to a larger range, then a + // value that rounds to INT_MAX is explicitly different from an argument + // that clamps to INT_MAX. + + // Add the biggest number less than 0.5 (not 0.5, because adding that to + // the biggest number less than 0.5 would undesirably round up to 1), and + // store the result into tmp. + loadConstantDouble(GetBiggestNumberLessThan(0.5), scratchDouble); + ma_vadd(scratchDouble, tmp, tmp); + + ma_vcvt_F64_U32(tmp, scratchDouble.uintOverlay()); + ma_vxfer(VFPRegister(scratchDouble).uintOverlay(), output); + ma_mov(output, output, SetCC); + ma_b(bail, Signed); + ma_b(&fin); + + bind(&handleZero); + // Move the top word of the double into the output reg, if it is non-zero, + // then the original value was -0.0 + as_vxfer(output, InvalidReg, input, FloatToCore, Always, 1); + as_cmp(output, Imm8(0)); + ma_b(bail, NonZero); + ma_b(&fin); + + bind(&handleNeg); + // Negative case, negate, then start dancing. This number may be positive, + // since we added 0.5. + + // Add 0.5 to negative numbers, store the result into tmp + loadConstantDouble(0.5, scratchDouble); + ma_vadd(scratchDouble, tmp, tmp); + + ma_vcvt_F64_U32(tmp, scratchDouble.uintOverlay()); + ma_vxfer(VFPRegister(scratchDouble).uintOverlay(), output); + + // -output is now a correctly rounded value, unless the original value was + // exactly halfway between two integers, at which point, it has been rounded + // away from zero, when it should be rounded towards \infty. + ma_vcvt_U32_F64(scratchDouble.uintOverlay(), scratchDouble); + compareDouble(scratchDouble, tmp); + as_sub(output, output, Imm8(1), LeaveCC, Equal); + // Negate the output. Since INT_MIN < -INT_MAX, even after adding 1, the + // result will still be a negative number. + as_rsb(output, output, Imm8(0), SetCC); + + // If the result looks non-negative, then this value didn't actually fit + // into the int range, and special handling is required, or it was zero, + // which means the result is actually -0.0 which also requires special + // handling. + ma_b(bail, NotSigned); + + bind(&fin); +} + +void MacroAssemblerARMCompat::roundf(FloatRegister input, Register output, + Label* bail, FloatRegister tmp) { + Label handleZero; + Label handleNeg; + Label fin; + + ScratchFloat32Scope scratchFloat(asMasm()); + + // Do a compare based on the original value, then do most other things based + // on the shifted value. + compareFloat(input, NoVFPRegister); + ma_b(&handleZero, Assembler::Equal); + ma_b(&handleNeg, Assembler::Signed); + + // NaN is always a bail condition, just bail directly. + ma_b(bail, Assembler::Overflow); + + // The argument is a positive number, truncation is the path to glory; Since + // it is known to be > 0.0, explicitly convert to a larger range, then a + // value that rounds to INT_MAX is explicitly different from an argument + // that clamps to INT_MAX. + + // Add the biggest number less than 0.5f (not 0.5f, because adding that to + // the biggest number less than 0.5f would undesirably round up to 1), and + // store the result into tmp. + loadConstantFloat32(GetBiggestNumberLessThan(0.5f), scratchFloat); + ma_vadd_f32(scratchFloat, input, tmp); + + // Note: it doesn't matter whether x + .5 === x or not here, as it doesn't + // affect the semantics of the float to unsigned conversion (in particular, + // we are not applying any fixup after the operation). + ma_vcvt_F32_U32(tmp, scratchFloat.uintOverlay()); + ma_vxfer(VFPRegister(scratchFloat).uintOverlay(), output); + ma_mov(output, output, SetCC); + ma_b(bail, Signed); + ma_b(&fin); + + bind(&handleZero); + + // Move the whole float32 into the output reg, if it is non-zero, then the + // original value was -0.0. + as_vxfer(output, InvalidReg, input, FloatToCore, Always, 0); + as_cmp(output, Imm8(0)); + ma_b(bail, NonZero); + ma_b(&fin); + + bind(&handleNeg); + + // Add 0.5 to negative numbers, storing the result into tmp. + ma_vneg_f32(input, tmp); + loadConstantFloat32(0.5f, scratchFloat); + ma_vadd_f32(tmp, scratchFloat, scratchFloat); + + // Adding 0.5 to a float input has chances to yield the wrong result, if + // the input is too large. In this case, skip the -1 adjustment made below. + compareFloat(scratchFloat, tmp); + + // Negative case, negate, then start dancing. This number may be positive, + // since we added 0.5. + // /!\ The conditional jump afterwards depends on these two instructions + // *not* setting the status flags. They need to not change after the + // comparison above. + ma_vcvt_F32_U32(scratchFloat, tmp.uintOverlay()); + ma_vxfer(VFPRegister(tmp).uintOverlay(), output); + + Label flipSign; + ma_b(&flipSign, Equal); + + // -output is now a correctly rounded value, unless the original value was + // exactly halfway between two integers, at which point, it has been rounded + // away from zero, when it should be rounded towards \infty. + ma_vcvt_U32_F32(tmp.uintOverlay(), tmp); + compareFloat(tmp, scratchFloat); + as_sub(output, output, Imm8(1), LeaveCC, Equal); + + // Negate the output. Since INT_MIN < -INT_MAX, even after adding 1, the + // result will still be a negative number. + bind(&flipSign); + as_rsb(output, output, Imm8(0), SetCC); + + // If the result looks non-negative, then this value didn't actually fit + // into the int range, and special handling is required, or it was zero, + // which means the result is actually -0.0 which also requires special + // handling. + ma_b(bail, NotSigned); + + bind(&fin); +} + +void MacroAssemblerARMCompat::trunc(FloatRegister input, Register output, + Label* bail) { + Label handleZero; + Label handlePos; + Label fin; + + compareDouble(input, NoVFPRegister); + // NaN is always a bail condition, just bail directly. + ma_b(bail, Assembler::Overflow); + ma_b(&handleZero, Assembler::Equal); + ma_b(&handlePos, Assembler::NotSigned); + + ScratchDoubleScope scratchDouble(asMasm()); + + // We are in the ]-Inf; 0[ range + // If we are in the ]-1; 0[ range => bailout + loadConstantDouble(-1.0, scratchDouble); + compareDouble(input, scratchDouble); + ma_b(bail, Assembler::GreaterThan); + + // We are in the ]-Inf; -1] range: trunc(x) == -floor(-x) and floor can be + // computed with direct truncation here (x > 0). + ma_vneg(input, scratchDouble); + ma_vcvt_F64_U32(scratchDouble, scratchDouble.uintOverlay()); + ma_vxfer(scratchDouble.uintOverlay(), output); + ma_neg(output, output, SetCC); + ma_b(bail, NotSigned); + ma_b(&fin); + + // Test for 0.0 / -0.0: if the top word of the input double is not zero, + // then it was -0 and we need to bail out. + bind(&handleZero); + as_vxfer(output, InvalidReg, input, FloatToCore, Always, 1); + as_cmp(output, Imm8(0)); + ma_b(bail, NonZero); + ma_b(&fin); + + // We are in the ]0; +inf] range: truncation is the path to glory. Since + // it is known to be > 0.0, explicitly convert to a larger range, then a + // value that rounds to INT_MAX is explicitly different from an argument + // that clamps to INT_MAX. + bind(&handlePos); + ma_vcvt_F64_U32(input, scratchDouble.uintOverlay()); + ma_vxfer(scratchDouble.uintOverlay(), output); + ma_mov(output, output, SetCC); + ma_b(bail, Signed); + + bind(&fin); +} + +void MacroAssemblerARMCompat::truncf(FloatRegister input, Register output, + Label* bail) { + Label handleZero; + Label handlePos; + Label fin; + + compareFloat(input, NoVFPRegister); + // NaN is always a bail condition, just bail directly. + ma_b(bail, Assembler::Overflow); + ma_b(&handleZero, Assembler::Equal); + ma_b(&handlePos, Assembler::NotSigned); + + // We are in the ]-Inf; 0[ range + // If we are in the ]-1; 0[ range => bailout + { + ScratchFloat32Scope scratch(asMasm()); + loadConstantFloat32(-1.f, scratch); + compareFloat(input, scratch); + ma_b(bail, Assembler::GreaterThan); + } + + // We are in the ]-Inf; -1] range: trunc(x) == -floor(-x) and floor can be + // computed with direct truncation here (x > 0). + { + ScratchDoubleScope scratchDouble(asMasm()); + FloatRegister scratchFloat = scratchDouble.asSingle(); + FloatRegister scratchUInt = scratchDouble.uintOverlay(); + + ma_vneg_f32(input, scratchFloat); + ma_vcvt_F32_U32(scratchFloat, scratchUInt); + ma_vxfer(scratchUInt, output); + ma_neg(output, output, SetCC); + ma_b(bail, NotSigned); + ma_b(&fin); + } + + // Test for 0.0 / -0.0: if the top word of the input double is not zero, + // then it was -0 and we need to bail out. + bind(&handleZero); + as_vxfer(output, InvalidReg, VFPRegister(input).singleOverlay(), FloatToCore, + Always, 0); + as_cmp(output, Imm8(0)); + ma_b(bail, NonZero); + ma_b(&fin); + + // We are in the ]0; +inf] range: truncation is the path to glory; Since + // it is known to be > 0.0, explicitly convert to a larger range, then a + // value that rounds to INT_MAX is explicitly different from an argument + bind(&handlePos); + { + // The argument is a positive number, + // that clamps to INT_MAX. + { + ScratchFloat32Scope scratch(asMasm()); + ma_vcvt_F32_U32(input, scratch.uintOverlay()); + ma_vxfer(VFPRegister(scratch).uintOverlay(), output); + } + ma_mov(output, output, SetCC); + ma_b(bail, Signed); + } + + bind(&fin); +} + +void MacroAssemblerARMCompat::profilerEnterFrame(Register framePtr, + Register scratch) { + asMasm().loadJSContext(scratch); + loadPtr(Address(scratch, offsetof(JSContext, profilingActivation_)), scratch); + storePtr(framePtr, + Address(scratch, JitActivation::offsetOfLastProfilingFrame())); + storePtr(ImmPtr(nullptr), + Address(scratch, JitActivation::offsetOfLastProfilingCallSite())); +} + +void MacroAssemblerARMCompat::profilerExitFrame() { + jump(asMasm().runtime()->jitRuntime()->getProfilerExitFrameTail()); +} + +MacroAssembler& MacroAssemblerARM::asMasm() { + return *static_cast<MacroAssembler*>(this); +} + +const MacroAssembler& MacroAssemblerARM::asMasm() const { + return *static_cast<const MacroAssembler*>(this); +} + +MacroAssembler& MacroAssemblerARMCompat::asMasm() { + return *static_cast<MacroAssembler*>(this); +} + +const MacroAssembler& MacroAssemblerARMCompat::asMasm() const { + return *static_cast<const MacroAssembler*>(this); +} + +void MacroAssembler::subFromStackPtr(Imm32 imm32) { + ScratchRegisterScope scratch(*this); + if (imm32.value) { + ma_sub(imm32, sp, scratch); + } +} + +//{{{ check_macroassembler_style +// =============================================================== +// MacroAssembler high-level usage. + +void MacroAssembler::flush() { Assembler::flush(); } + +void MacroAssembler::comment(const char* msg) { Assembler::comment(msg); } + +// =============================================================== +// Stack manipulation functions. + +size_t MacroAssembler::PushRegsInMaskSizeInBytes(LiveRegisterSet set) { + return set.gprs().size() * sizeof(intptr_t) + set.fpus().getPushSizeInBytes(); +} + +void MacroAssembler::PushRegsInMask(LiveRegisterSet set) { + mozilla::DebugOnly<size_t> framePushedInitial = framePushed(); + + int32_t diffF = set.fpus().getPushSizeInBytes(); + int32_t diffG = set.gprs().size() * sizeof(intptr_t); + + if (set.gprs().size() > 1) { + adjustFrame(diffG); + startDataTransferM(IsStore, StackPointer, DB, WriteBack); + for (GeneralRegisterBackwardIterator iter(set.gprs()); iter.more(); + ++iter) { + diffG -= sizeof(intptr_t); + transferReg(*iter); + } + finishDataTransfer(); + } else { + reserveStack(diffG); + for (GeneralRegisterBackwardIterator iter(set.gprs()); iter.more(); + ++iter) { + diffG -= sizeof(intptr_t); + storePtr(*iter, Address(StackPointer, diffG)); + } + } + MOZ_ASSERT(diffG == 0); + + // It's possible that the logic is just fine as it is if the reduced set + // maps SIMD pairs to plain doubles and transferMultipleByRuns() stores + // and loads doubles. +#ifdef ENABLE_WASM_SIMD +# error "Needs more careful logic if SIMD is enabled" +#endif + + adjustFrame(diffF); + diffF += transferMultipleByRuns(set.fpus(), IsStore, StackPointer, DB); + MOZ_ASSERT(diffF == 0); + + MOZ_ASSERT(framePushed() - framePushedInitial == + PushRegsInMaskSizeInBytes(set)); +} + +void MacroAssembler::storeRegsInMask(LiveRegisterSet set, Address dest, + Register scratch) { + mozilla::DebugOnly<size_t> offsetInitial = dest.offset; + + int32_t diffF = set.fpus().getPushSizeInBytes(); + int32_t diffG = set.gprs().size() * sizeof(intptr_t); + + MOZ_ASSERT(dest.offset >= diffF + diffG); + + if (set.gprs().size() > 1) { + computeEffectiveAddress(dest, scratch); + + startDataTransferM(IsStore, scratch, DB, WriteBack); + for (GeneralRegisterBackwardIterator iter(set.gprs()); iter.more(); + ++iter) { + diffG -= sizeof(intptr_t); + dest.offset -= sizeof(intptr_t); + transferReg(*iter); + } + finishDataTransfer(); + } else { + for (GeneralRegisterBackwardIterator iter(set.gprs()); iter.more(); + ++iter) { + diffG -= sizeof(intptr_t); + dest.offset -= sizeof(intptr_t); + storePtr(*iter, dest); + } + } + MOZ_ASSERT(diffG == 0); + (void)diffG; + + // See above. +#ifdef ENABLE_WASM_SIMD +# error "Needs more careful logic if SIMD is enabled" +#endif + + MOZ_ASSERT(diffF >= 0); + if (diffF > 0) { + computeEffectiveAddress(dest, scratch); + diffF += transferMultipleByRuns(set.fpus(), IsStore, scratch, DB); + } + + MOZ_ASSERT(diffF == 0); + + // "The amount of space actually used does not exceed what + // `PushRegsInMaskSizeInBytes` claims will be used." + MOZ_ASSERT(offsetInitial - dest.offset <= PushRegsInMaskSizeInBytes(set)); +} + +void MacroAssembler::PopRegsInMaskIgnore(LiveRegisterSet set, + LiveRegisterSet ignore) { + mozilla::DebugOnly<size_t> framePushedInitial = framePushed(); + + int32_t diffG = set.gprs().size() * sizeof(intptr_t); + int32_t diffF = set.fpus().getPushSizeInBytes(); + const int32_t reservedG = diffG; + const int32_t reservedF = diffF; + + // See above. +#ifdef ENABLE_WASM_SIMD +# error "Needs more careful logic if SIMD is enabled" +#endif + + // ARM can load multiple registers at once, but only if we want back all + // the registers we previously saved to the stack. + if (ignore.emptyFloat()) { + diffF -= transferMultipleByRuns(set.fpus(), IsLoad, StackPointer, IA); + adjustFrame(-reservedF); + } else { + LiveFloatRegisterSet fpset(set.fpus().reduceSetForPush()); + LiveFloatRegisterSet fpignore(ignore.fpus().reduceSetForPush()); + for (FloatRegisterBackwardIterator iter(fpset); iter.more(); ++iter) { + diffF -= (*iter).size(); + if (!fpignore.has(*iter)) { + loadDouble(Address(StackPointer, diffF), *iter); + } + } + freeStack(reservedF); + } + MOZ_ASSERT(diffF == 0); + + if (set.gprs().size() > 1 && ignore.emptyGeneral()) { + startDataTransferM(IsLoad, StackPointer, IA, WriteBack); + for (GeneralRegisterBackwardIterator iter(set.gprs()); iter.more(); + ++iter) { + diffG -= sizeof(intptr_t); + transferReg(*iter); + } + finishDataTransfer(); + adjustFrame(-reservedG); + } else { + for (GeneralRegisterBackwardIterator iter(set.gprs()); iter.more(); + ++iter) { + diffG -= sizeof(intptr_t); + if (!ignore.has(*iter)) { + loadPtr(Address(StackPointer, diffG), *iter); + } + } + freeStack(reservedG); + } + MOZ_ASSERT(diffG == 0); + + MOZ_ASSERT(framePushedInitial - framePushed() == + PushRegsInMaskSizeInBytes(set)); +} + +void MacroAssembler::Push(Register reg) { + push(reg); + adjustFrame(sizeof(intptr_t)); +} + +void MacroAssembler::Push(const Imm32 imm) { + push(imm); + adjustFrame(sizeof(intptr_t)); +} + +void MacroAssembler::Push(const ImmWord imm) { + push(imm); + adjustFrame(sizeof(intptr_t)); +} + +void MacroAssembler::Push(const ImmPtr imm) { + Push(ImmWord(uintptr_t(imm.value))); +} + +void MacroAssembler::Push(const ImmGCPtr ptr) { + push(ptr); + adjustFrame(sizeof(intptr_t)); +} + +void MacroAssembler::Push(FloatRegister reg) { + VFPRegister r = VFPRegister(reg); + ma_vpush(VFPRegister(reg)); + adjustFrame(r.size()); +} + +void MacroAssembler::PushBoxed(FloatRegister reg) { + MOZ_ASSERT(reg.isDouble()); + Push(reg); +} + +void MacroAssembler::Pop(Register reg) { + ma_pop(reg); + adjustFrame(-sizeof(intptr_t)); +} + +void MacroAssembler::Pop(FloatRegister reg) { + ma_vpop(reg); + adjustFrame(-reg.size()); +} + +void MacroAssembler::Pop(const ValueOperand& val) { + popValue(val); + adjustFrame(-sizeof(Value)); +} + +void MacroAssembler::PopStackPtr() { + as_dtr(IsLoad, 32, Offset, sp, DTRAddr(sp, DtrOffImm(0))); + adjustFrame(-sizeof(intptr_t)); +} + +// =============================================================== +// Simple call functions. + +CodeOffset MacroAssembler::call(Register reg) { + as_blx(reg); + return CodeOffset(currentOffset()); +} + +CodeOffset MacroAssembler::call(Label* label) { + // For now, assume that it'll be nearby. + as_bl(label, Always); + return CodeOffset(currentOffset()); +} + +void MacroAssembler::call(ImmWord imm) { call(ImmPtr((void*)imm.value)); } + +void MacroAssembler::call(ImmPtr imm) { + BufferOffset bo = m_buffer.nextOffset(); + addPendingJump(bo, imm, RelocationKind::HARDCODED); + ma_call(imm); +} + +CodeOffset MacroAssembler::call(wasm::SymbolicAddress imm) { + movePtr(imm, CallReg); + return call(CallReg); +} + +void MacroAssembler::call(const Address& addr) { + loadPtr(addr, CallReg); + call(CallReg); +} + +void MacroAssembler::call(JitCode* c) { + BufferOffset bo = m_buffer.nextOffset(); + addPendingJump(bo, ImmPtr(c->raw()), RelocationKind::JITCODE); + ScratchRegisterScope scratch(*this); + ma_movPatchable(ImmPtr(c->raw()), scratch, Always); + callJitNoProfiler(scratch); +} + +CodeOffset MacroAssembler::callWithPatch() { + // The caller ensures that the call is always in range using thunks (below) + // as necessary. + as_bl(BOffImm(), Always, /* documentation */ nullptr); + return CodeOffset(currentOffset()); +} + +void MacroAssembler::patchCall(uint32_t callerOffset, uint32_t calleeOffset) { + BufferOffset inst(callerOffset - 4); + BOffImm off = BufferOffset(calleeOffset).diffB<BOffImm>(inst); + MOZ_RELEASE_ASSERT(!off.isInvalid(), + "Failed to insert necessary far jump islands"); + as_bl(off, Always, inst); +} + +CodeOffset MacroAssembler::farJumpWithPatch() { + static_assert(32 * 1024 * 1024 - JumpImmediateRange > + wasm::MaxFuncs * 3 * sizeof(Instruction), + "always enough space for thunks"); + + // The goal of the thunk is to be able to jump to any address without the + // usual 32MiB branch range limitation. Additionally, to make the thunk + // simple to use, the thunk does not use the constant pool or require + // patching an absolute address. Instead, a relative offset is used which + // can be patched during compilation. + + // Inhibit pools since these three words must be contiguous so that the offset + // calculations below are valid. + AutoForbidPoolsAndNops afp(this, 3); + + // When pc is used, the read value is the address of the instruction + 8. + // This is exactly the address of the uint32 word we want to load. + ScratchRegisterScope scratch(*this); + ma_ldr(DTRAddr(pc, DtrOffImm(0)), scratch); + + // Branch by making pc the destination register. + ma_add(pc, scratch, pc, LeaveCC, Always); + + // Allocate space which will be patched by patchFarJump(). + CodeOffset farJump(currentOffset()); + writeInst(UINT32_MAX); + + return farJump; +} + +void MacroAssembler::patchFarJump(CodeOffset farJump, uint32_t targetOffset) { + uint32_t* u32 = + reinterpret_cast<uint32_t*>(editSrc(BufferOffset(farJump.offset()))); + MOZ_ASSERT(*u32 == UINT32_MAX); + + uint32_t addOffset = farJump.offset() - 4; + MOZ_ASSERT(editSrc(BufferOffset(addOffset))->is<InstALU>()); + + // When pc is read as the operand of the add, its value is the address of + // the add instruction + 8. + *u32 = (targetOffset - addOffset) - 8; +} + +CodeOffset MacroAssembler::nopPatchableToCall() { + AutoForbidPoolsAndNops afp(this, + /* max number of instructions in scope = */ 1); + ma_nop(); + return CodeOffset(currentOffset()); +} + +void MacroAssembler::patchNopToCall(uint8_t* call, uint8_t* target) { + uint8_t* inst = call - 4; + MOZ_ASSERT(reinterpret_cast<Instruction*>(inst)->is<InstBLImm>() || + reinterpret_cast<Instruction*>(inst)->is<InstNOP>()); + + new (inst) InstBLImm(BOffImm(target - inst), Assembler::Always); +} + +void MacroAssembler::patchCallToNop(uint8_t* call) { + uint8_t* inst = call - 4; + MOZ_ASSERT(reinterpret_cast<Instruction*>(inst)->is<InstBLImm>() || + reinterpret_cast<Instruction*>(inst)->is<InstNOP>()); + new (inst) InstNOP(); +} + +void MacroAssembler::pushReturnAddress() { push(lr); } + +void MacroAssembler::popReturnAddress() { pop(lr); } + +// =============================================================== +// ABI function calls. + +void MacroAssembler::setupUnalignedABICall(Register scratch) { + setupNativeABICall(); + dynamicAlignment_ = true; + + ma_mov(sp, scratch); + // Force sp to be aligned. + as_bic(sp, sp, Imm8(ABIStackAlignment - 1)); + ma_push(scratch); +} + +void MacroAssembler::callWithABIPre(uint32_t* stackAdjust, bool callFromWasm) { + MOZ_ASSERT(inCall_); + uint32_t stackForCall = abiArgs_.stackBytesConsumedSoFar(); + + if (dynamicAlignment_) { + // sizeof(intptr_t) accounts for the saved stack pointer pushed by + // setupUnalignedABICall. + stackForCall += ComputeByteAlignment(stackForCall + sizeof(intptr_t), + ABIStackAlignment); + } else { + uint32_t alignmentAtPrologue = callFromWasm ? sizeof(wasm::Frame) : 0; + stackForCall += ComputeByteAlignment( + stackForCall + framePushed() + alignmentAtPrologue, ABIStackAlignment); + } + + *stackAdjust = stackForCall; + reserveStack(stackForCall); + + // Position all arguments. + { + enoughMemory_ &= moveResolver_.resolve(); + if (!enoughMemory_) { + return; + } + + MoveEmitter emitter(*this); + emitter.emit(moveResolver_); + emitter.finish(); + } + + assertStackAlignment(ABIStackAlignment); + + // Save the lr register if we need to preserve it. + if (secondScratchReg_ != lr) { + ma_mov(lr, secondScratchReg_); + } +} + +void MacroAssembler::callWithABIPost(uint32_t stackAdjust, MoveOp::Type result, + bool callFromWasm) { + if (secondScratchReg_ != lr) { + ma_mov(secondScratchReg_, lr); + } + + // Calls to native functions in wasm pass through a thunk which already + // fixes up the return value for us. + if (!callFromWasm && !UseHardFpABI()) { + switch (result) { + case MoveOp::DOUBLE: + // Move double from r0/r1 to ReturnFloatReg. + ma_vxfer(r0, r1, ReturnDoubleReg); + break; + case MoveOp::FLOAT32: + // Move float32 from r0 to ReturnFloatReg. + ma_vxfer(r0, ReturnFloat32Reg); + break; + case MoveOp::GENERAL: + break; + default: + MOZ_CRASH("unexpected callWithABI result"); + } + } + + freeStack(stackAdjust); + + if (dynamicAlignment_) { + // While the x86 supports pop esp, on ARM that isn't well defined, so + // just do it manually. + as_dtr(IsLoad, 32, Offset, sp, DTRAddr(sp, DtrOffImm(0))); + } + +#ifdef DEBUG + MOZ_ASSERT(inCall_); + inCall_ = false; +#endif +} + +void MacroAssembler::callWithABINoProfiler(Register fun, MoveOp::Type result) { + // Load the callee in r12, as above. + ma_mov(fun, r12); + uint32_t stackAdjust; + callWithABIPre(&stackAdjust); + call(r12); + callWithABIPost(stackAdjust, result); +} + +void MacroAssembler::callWithABINoProfiler(const Address& fun, + MoveOp::Type result) { + // Load the callee in r12, no instruction between the ldr and call should + // clobber it. Note that we can't use fun.base because it may be one of the + // IntArg registers clobbered before the call. + { + ScratchRegisterScope scratch(*this); + ma_ldr(fun, r12, scratch); + } + uint32_t stackAdjust; + callWithABIPre(&stackAdjust); + call(r12); + callWithABIPost(stackAdjust, result); +} + +// =============================================================== +// Jit Frames. + +uint32_t MacroAssembler::pushFakeReturnAddress(Register scratch) { + // On ARM any references to the pc, adds an additional 8 to it, which + // correspond to 2 instructions of 4 bytes. Thus we use an additional nop + // to pad until we reach the pushed pc. + // + // Note: In practice this should not be necessary, as this fake return + // address is never used for resuming any execution. Thus theoriticaly we + // could just do a Push(pc), and ignore the nop as well as the pool. + enterNoPool(2); + DebugOnly<uint32_t> offsetBeforePush = currentOffset(); + Push(pc); // actually pushes $pc + 8. + ma_nop(); + uint32_t pseudoReturnOffset = currentOffset(); + leaveNoPool(); + + MOZ_ASSERT_IF(!oom(), pseudoReturnOffset - offsetBeforePush == 8); + return pseudoReturnOffset; +} + +void MacroAssembler::enterFakeExitFrameForWasm(Register cxreg, Register scratch, + ExitFrameType type) { + enterFakeExitFrame(cxreg, scratch, type); +} + +// =============================================================== +// Move instructions + +void MacroAssembler::moveValue(const TypedOrValueRegister& src, + const ValueOperand& dest) { + if (src.hasValue()) { + moveValue(src.valueReg(), dest); + return; + } + + MIRType type = src.type(); + AnyRegister reg = src.typedReg(); + + if (!IsFloatingPointType(type)) { + if (reg.gpr() != dest.payloadReg()) { + mov(reg.gpr(), dest.payloadReg()); + } + mov(ImmWord(MIRTypeToTag(type)), dest.typeReg()); + return; + } + + ScratchDoubleScope scratch(*this); + FloatRegister freg = reg.fpu(); + if (type == MIRType::Float32) { + convertFloat32ToDouble(freg, scratch); + freg = scratch; + } + ma_vxfer(freg, dest.payloadReg(), dest.typeReg()); +} + +void MacroAssembler::moveValue(const ValueOperand& src, + const ValueOperand& dest) { + Register s0 = src.typeReg(); + Register s1 = src.payloadReg(); + Register d0 = dest.typeReg(); + Register d1 = dest.payloadReg(); + + // Either one or both of the source registers could be the same as a + // destination register. + if (s1 == d0) { + if (s0 == d1) { + // If both are, this is just a swap of two registers. + ScratchRegisterScope scratch(*this); + MOZ_ASSERT(d1 != scratch); + MOZ_ASSERT(d0 != scratch); + ma_mov(d1, scratch); + ma_mov(d0, d1); + ma_mov(scratch, d0); + return; + } + // If only one is, copy that source first. + std::swap(s0, s1); + std::swap(d0, d1); + } + + if (s0 != d0) { + ma_mov(s0, d0); + } + if (s1 != d1) { + ma_mov(s1, d1); + } +} + +void MacroAssembler::moveValue(const Value& src, const ValueOperand& dest) { + ma_mov(Imm32(src.toNunboxTag()), dest.typeReg()); + if (src.isGCThing()) { + ma_mov(ImmGCPtr(src.toGCThing()), dest.payloadReg()); + } else { + ma_mov(Imm32(src.toNunboxPayload()), dest.payloadReg()); + } +} + +// =============================================================== +// Branch functions + +void MacroAssembler::loadStoreBuffer(Register ptr, Register buffer) { + ma_lsr(Imm32(gc::ChunkShift), ptr, buffer); + ma_lsl(Imm32(gc::ChunkShift), buffer, buffer); + load32(Address(buffer, gc::ChunkStoreBufferOffset), buffer); +} + +void MacroAssembler::branchPtrInNurseryChunk(Condition cond, Register ptr, + Register temp, Label* label) { + Maybe<SecondScratchRegisterScope> scratch2; + if (temp == Register::Invalid()) { + scratch2.emplace(*this); + temp = scratch2.ref(); + } + + MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual); + MOZ_ASSERT(ptr != temp); + + ma_lsr(Imm32(gc::ChunkShift), ptr, temp); + ma_lsl(Imm32(gc::ChunkShift), temp, temp); + loadPtr(Address(temp, gc::ChunkStoreBufferOffset), temp); + branchPtr(InvertCondition(cond), temp, ImmWord(0), label); +} + +void MacroAssembler::branchValueIsNurseryCell(Condition cond, + const Address& address, + Register temp, Label* label) { + MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual); + + Label done; + + branchTestGCThing(Assembler::NotEqual, address, + cond == Assembler::Equal ? &done : label); + + loadPtr(ToPayload(address), temp); + SecondScratchRegisterScope scratch2(*this); + branchPtrInNurseryChunk(cond, temp, scratch2, label); + + bind(&done); +} + +void MacroAssembler::branchValueIsNurseryCell(Condition cond, + ValueOperand value, Register temp, + Label* label) { + MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual); + + Label done; + + branchTestGCThing(Assembler::NotEqual, value, + cond == Assembler::Equal ? &done : label); + branchPtrInNurseryChunk(cond, value.payloadReg(), temp, label); + + bind(&done); +} + +void MacroAssembler::branchTestValue(Condition cond, const ValueOperand& lhs, + const Value& rhs, Label* label) { + MOZ_ASSERT(cond == Equal || cond == NotEqual); + // If cond == NotEqual, branch when a.payload != b.payload || a.tag != + // b.tag. If the payloads are equal, compare the tags. If the payloads are + // not equal, short circuit true (NotEqual). + // + // If cand == Equal, branch when a.payload == b.payload && a.tag == b.tag. + // If the payloads are equal, compare the tags. If the payloads are not + // equal, short circuit false (NotEqual). + ScratchRegisterScope scratch(*this); + + if (rhs.isGCThing()) { + ma_cmp(lhs.payloadReg(), ImmGCPtr(rhs.toGCThing()), scratch); + } else { + ma_cmp(lhs.payloadReg(), Imm32(rhs.toNunboxPayload()), scratch); + } + ma_cmp(lhs.typeReg(), Imm32(rhs.toNunboxTag()), scratch, Equal); + ma_b(label, cond); +} + +// ======================================================================== +// Memory access primitives. +template <typename T> +void MacroAssembler::storeUnboxedValue(const ConstantOrRegister& value, + MIRType valueType, const T& dest) { + MOZ_ASSERT(valueType < MIRType::Value); + + if (valueType == MIRType::Double) { + storeDouble(value.reg().typedReg().fpu(), dest); + return; + } + + // Store the type tag. + storeTypeTag(ImmType(ValueTypeFromMIRType(valueType)), dest); + + // Store the payload. + if (value.constant()) { + storePayload(value.value(), dest); + } else { + storePayload(value.reg().typedReg().gpr(), dest); + } +} + +template void MacroAssembler::storeUnboxedValue(const ConstantOrRegister& value, + MIRType valueType, + const Address& dest); +template void MacroAssembler::storeUnboxedValue( + const ConstantOrRegister& value, MIRType valueType, + const BaseObjectElementIndex& dest); + +CodeOffset MacroAssembler::wasmTrapInstruction() { + return CodeOffset(as_illegal_trap().getOffset()); +} + +void MacroAssembler::wasmBoundsCheck32(Condition cond, Register index, + Register boundsCheckLimit, Label* ok) { + as_cmp(index, O2Reg(boundsCheckLimit)); + as_b(ok, cond); + if (JitOptions.spectreIndexMasking) { + ma_mov(boundsCheckLimit, index, LeaveCC, cond); + } +} + +void MacroAssembler::wasmBoundsCheck32(Condition cond, Register index, + Address boundsCheckLimit, Label* ok) { + ScratchRegisterScope scratch(*this); + ma_ldr(DTRAddr(boundsCheckLimit.base, DtrOffImm(boundsCheckLimit.offset)), + scratch); + as_cmp(index, O2Reg(scratch)); + as_b(ok, cond); + if (JitOptions.spectreIndexMasking) { + ma_mov(scratch, index, LeaveCC, cond); + } +} + +void MacroAssembler::wasmBoundsCheck64(Condition cond, Register64 index, + Register64 boundsCheckLimit, Label* ok) { + Label notOk; + cmp32(index.high, Imm32(0)); + j(Assembler::NonZero, ¬Ok); + wasmBoundsCheck32(cond, index.low, boundsCheckLimit.low, ok); + bind(¬Ok); +} + +void MacroAssembler::wasmBoundsCheck64(Condition cond, Register64 index, + Address boundsCheckLimit, Label* ok) { + Label notOk; + cmp32(index.high, Imm32(0)); + j(Assembler::NonZero, ¬Ok); + wasmBoundsCheck32(cond, index.low, boundsCheckLimit, ok); + bind(¬Ok); +} + +void MacroAssembler::wasmTruncateDoubleToUInt32(FloatRegister input, + Register output, + bool isSaturating, + Label* oolEntry) { + wasmTruncateToInt32(input, output, MIRType::Double, /* isUnsigned= */ true, + isSaturating, oolEntry); +} + +void MacroAssembler::wasmTruncateDoubleToInt32(FloatRegister input, + Register output, + bool isSaturating, + Label* oolEntry) { + wasmTruncateToInt32(input, output, MIRType::Double, /* isUnsigned= */ false, + isSaturating, oolEntry); +} + +void MacroAssembler::wasmTruncateFloat32ToUInt32(FloatRegister input, + Register output, + bool isSaturating, + Label* oolEntry) { + wasmTruncateToInt32(input, output, MIRType::Float32, /* isUnsigned= */ true, + isSaturating, oolEntry); +} + +void MacroAssembler::wasmTruncateFloat32ToInt32(FloatRegister input, + Register output, + bool isSaturating, + Label* oolEntry) { + wasmTruncateToInt32(input, output, MIRType::Float32, /* isUnsigned= */ false, + isSaturating, oolEntry); +} + +void MacroAssembler::oolWasmTruncateCheckF32ToI32(FloatRegister input, + Register output, + TruncFlags flags, + wasm::BytecodeOffset off, + Label* rejoin) { + outOfLineWasmTruncateToIntCheck(input, MIRType::Float32, MIRType::Int32, + flags, rejoin, off); +} + +void MacroAssembler::oolWasmTruncateCheckF64ToI32(FloatRegister input, + Register output, + TruncFlags flags, + wasm::BytecodeOffset off, + Label* rejoin) { + outOfLineWasmTruncateToIntCheck(input, MIRType::Double, MIRType::Int32, flags, + rejoin, off); +} + +void MacroAssembler::oolWasmTruncateCheckF32ToI64(FloatRegister input, + Register64 output, + TruncFlags flags, + wasm::BytecodeOffset off, + Label* rejoin) { + outOfLineWasmTruncateToIntCheck(input, MIRType::Float32, MIRType::Int64, + flags, rejoin, off); +} + +void MacroAssembler::oolWasmTruncateCheckF64ToI64(FloatRegister input, + Register64 output, + TruncFlags flags, + wasm::BytecodeOffset off, + Label* rejoin) { + outOfLineWasmTruncateToIntCheck(input, MIRType::Double, MIRType::Int64, flags, + rejoin, off); +} + +void MacroAssembler::wasmLoad(const wasm::MemoryAccessDesc& access, + Register memoryBase, Register ptr, + Register ptrScratch, AnyRegister output) { + wasmLoadImpl(access, memoryBase, ptr, ptrScratch, output, + Register64::Invalid()); +} + +void MacroAssembler::wasmLoadI64(const wasm::MemoryAccessDesc& access, + Register memoryBase, Register ptr, + Register ptrScratch, Register64 output) { + MOZ_ASSERT_IF(access.isAtomic(), access.byteSize() <= 4); + wasmLoadImpl(access, memoryBase, ptr, ptrScratch, AnyRegister(), output); +} + +void MacroAssembler::wasmStore(const wasm::MemoryAccessDesc& access, + AnyRegister value, Register memoryBase, + Register ptr, Register ptrScratch) { + wasmStoreImpl(access, value, Register64::Invalid(), memoryBase, ptr, + ptrScratch); +} + +void MacroAssembler::wasmStoreI64(const wasm::MemoryAccessDesc& access, + Register64 value, Register memoryBase, + Register ptr, Register ptrScratch) { + MOZ_ASSERT(!access.isAtomic()); + wasmStoreImpl(access, AnyRegister(), value, memoryBase, ptr, ptrScratch); +} + +// ======================================================================== +// Primitive atomic operations. + +static Register ComputePointerForAtomic(MacroAssembler& masm, + const BaseIndex& src, Register r) { + Register base = src.base; + Register index = src.index; + uint32_t scale = Imm32::ShiftOf(src.scale).value; + int32_t offset = src.offset; + + ScratchRegisterScope scratch(masm); + + masm.as_add(r, base, lsl(index, scale)); + if (offset != 0) { + masm.ma_add(r, Imm32(offset), r, scratch); + } + return r; +} + +static Register ComputePointerForAtomic(MacroAssembler& masm, + const Address& src, Register r) { + ScratchRegisterScope scratch(masm); + if (src.offset == 0) { + return src.base; + } + masm.ma_add(src.base, Imm32(src.offset), r, scratch); + return r; +} + +// General algorithm: +// +// ... ptr, <addr> ; compute address of item +// dmb +// L0 ldrex* output, [ptr] +// sxt* output, output, 0 ; sign-extend if applicable +// *xt* tmp, oldval, 0 ; sign-extend or zero-extend if applicable +// cmp output, tmp +// bne L1 ; failed - values are different +// strex* tmp, newval, [ptr] +// cmp tmp, 1 +// beq L0 ; failed - location is dirty, retry +// L1 dmb +// +// Discussion here: http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html. +// However note that that discussion uses 'isb' as the trailing fence. +// I've not quite figured out why, and I've gone with dmb here which +// is safe. Also see the LLVM source, which uses 'dmb ish' generally. +// (Apple's Swift CPU apparently handles ish in a non-default, faster +// way.) + +template <typename T> +static void CompareExchange(MacroAssembler& masm, + const wasm::MemoryAccessDesc* access, + Scalar::Type type, const Synchronization& sync, + const T& mem, Register oldval, Register newval, + Register output) { + bool signExtend = Scalar::isSignedIntType(type); + unsigned nbytes = Scalar::byteSize(type); + + MOZ_ASSERT(nbytes <= 4); + + Label again; + Label done; + + SecondScratchRegisterScope scratch2(masm); + Register ptr = ComputePointerForAtomic(masm, mem, scratch2); + + ScratchRegisterScope scratch(masm); + + // NOTE: the generated code must match the assembly code in gen_cmpxchg in + // GenerateAtomicOperations.py + masm.memoryBarrierBefore(sync); + + masm.bind(&again); + + BufferOffset firstAccess; + switch (nbytes) { + case 1: + firstAccess = masm.as_ldrexb(output, ptr); + if (signExtend) { + masm.as_sxtb(output, output, 0); + masm.as_sxtb(scratch, oldval, 0); + } else { + masm.as_uxtb(scratch, oldval, 0); + } + break; + case 2: + firstAccess = masm.as_ldrexh(output, ptr); + if (signExtend) { + masm.as_sxth(output, output, 0); + masm.as_sxth(scratch, oldval, 0); + } else { + masm.as_uxth(scratch, oldval, 0); + } + break; + case 4: + firstAccess = masm.as_ldrex(output, ptr); + break; + } + if (access) { + masm.append(*access, firstAccess.getOffset()); + } + + if (nbytes < 4) { + masm.as_cmp(output, O2Reg(scratch)); + } else { + masm.as_cmp(output, O2Reg(oldval)); + } + masm.as_b(&done, MacroAssembler::NotEqual); + switch (nbytes) { + case 1: + masm.as_strexb(scratch, newval, ptr); + break; + case 2: + masm.as_strexh(scratch, newval, ptr); + break; + case 4: + masm.as_strex(scratch, newval, ptr); + break; + } + masm.as_cmp(scratch, Imm8(1)); + masm.as_b(&again, MacroAssembler::Equal); + masm.bind(&done); + + masm.memoryBarrierAfter(sync); +} + +void MacroAssembler::compareExchange(Scalar::Type type, + const Synchronization& sync, + const Address& address, Register oldval, + Register newval, Register output) { + CompareExchange(*this, nullptr, type, sync, address, oldval, newval, output); +} + +void MacroAssembler::compareExchange(Scalar::Type type, + const Synchronization& sync, + const BaseIndex& address, Register oldval, + Register newval, Register output) { + CompareExchange(*this, nullptr, type, sync, address, oldval, newval, output); +} + +void MacroAssembler::wasmCompareExchange(const wasm::MemoryAccessDesc& access, + const Address& mem, Register oldval, + Register newval, Register output) { + CompareExchange(*this, &access, access.type(), access.sync(), mem, oldval, + newval, output); +} + +void MacroAssembler::wasmCompareExchange(const wasm::MemoryAccessDesc& access, + const BaseIndex& mem, Register oldval, + Register newval, Register output) { + CompareExchange(*this, &access, access.type(), access.sync(), mem, oldval, + newval, output); +} + +template <typename T> +static void AtomicExchange(MacroAssembler& masm, + const wasm::MemoryAccessDesc* access, + Scalar::Type type, const Synchronization& sync, + const T& mem, Register value, Register output) { + bool signExtend = Scalar::isSignedIntType(type); + unsigned nbytes = Scalar::byteSize(type); + + MOZ_ASSERT(nbytes <= 4); + + // Bug 1077321: We may further optimize for ARMv8 (AArch32) here. + Label again; + Label done; + + SecondScratchRegisterScope scratch2(masm); + Register ptr = ComputePointerForAtomic(masm, mem, scratch2); + + ScratchRegisterScope scratch(masm); + + // NOTE: the generated code must match the assembly code in gen_exchange in + // GenerateAtomicOperations.py + masm.memoryBarrierBefore(sync); + + masm.bind(&again); + + BufferOffset firstAccess; + switch (nbytes) { + case 1: + firstAccess = masm.as_ldrexb(output, ptr); + if (signExtend) { + masm.as_sxtb(output, output, 0); + } + masm.as_strexb(scratch, value, ptr); + break; + case 2: + firstAccess = masm.as_ldrexh(output, ptr); + if (signExtend) { + masm.as_sxth(output, output, 0); + } + masm.as_strexh(scratch, value, ptr); + break; + case 4: + firstAccess = masm.as_ldrex(output, ptr); + masm.as_strex(scratch, value, ptr); + break; + } + if (access) { + masm.append(*access, firstAccess.getOffset()); + } + + masm.as_cmp(scratch, Imm8(1)); + masm.as_b(&again, MacroAssembler::Equal); + masm.bind(&done); + + masm.memoryBarrierAfter(sync); +} + +void MacroAssembler::atomicExchange(Scalar::Type type, + const Synchronization& sync, + const Address& address, Register value, + Register output) { + AtomicExchange(*this, nullptr, type, sync, address, value, output); +} + +void MacroAssembler::atomicExchange(Scalar::Type type, + const Synchronization& sync, + const BaseIndex& address, Register value, + Register output) { + AtomicExchange(*this, nullptr, type, sync, address, value, output); +} + +void MacroAssembler::wasmAtomicExchange(const wasm::MemoryAccessDesc& access, + const Address& mem, Register value, + Register output) { + AtomicExchange(*this, &access, access.type(), access.sync(), mem, value, + output); +} + +void MacroAssembler::wasmAtomicExchange(const wasm::MemoryAccessDesc& access, + const BaseIndex& mem, Register value, + Register output) { + AtomicExchange(*this, &access, access.type(), access.sync(), mem, value, + output); +} + +// General algorithm: +// +// ... ptr, <addr> ; compute address of item +// dmb +// L0 ldrex* output, [ptr] +// sxt* output, output, 0 ; sign-extend if applicable +// OP tmp, output, value ; compute value to store +// strex* tmp2, tmp, [ptr] ; tmp2 required by strex +// cmp tmp2, 1 +// beq L0 ; failed - location is dirty, retry +// dmb ; ordering barrier required +// +// Also see notes above at compareExchange re the barrier strategy. +// +// Observe that the value being operated into the memory element need +// not be sign-extended because no OP will make use of bits to the +// left of the bits indicated by the width of the element, and neither +// output nor the bits stored are affected by OP. + +template <typename T> +static void AtomicFetchOp(MacroAssembler& masm, + const wasm::MemoryAccessDesc* access, + Scalar::Type type, const Synchronization& sync, + AtomicOp op, const Register& value, const T& mem, + Register flagTemp, Register output) { + bool signExtend = Scalar::isSignedIntType(type); + unsigned nbytes = Scalar::byteSize(type); + + MOZ_ASSERT(nbytes <= 4); + MOZ_ASSERT(flagTemp != InvalidReg); + MOZ_ASSERT(output != value); + + Label again; + + SecondScratchRegisterScope scratch2(masm); + Register ptr = ComputePointerForAtomic(masm, mem, scratch2); + + // NOTE: the generated code must match the assembly code in gen_fetchop in + // GenerateAtomicOperations.py + masm.memoryBarrierBefore(sync); + + ScratchRegisterScope scratch(masm); + + masm.bind(&again); + + BufferOffset firstAccess; + switch (nbytes) { + case 1: + firstAccess = masm.as_ldrexb(output, ptr); + if (signExtend) { + masm.as_sxtb(output, output, 0); + } + break; + case 2: + firstAccess = masm.as_ldrexh(output, ptr); + if (signExtend) { + masm.as_sxth(output, output, 0); + } + break; + case 4: + firstAccess = masm.as_ldrex(output, ptr); + break; + } + if (access) { + masm.append(*access, firstAccess.getOffset()); + } + + switch (op) { + case AtomicFetchAddOp: + masm.as_add(scratch, output, O2Reg(value)); + break; + case AtomicFetchSubOp: + masm.as_sub(scratch, output, O2Reg(value)); + break; + case AtomicFetchAndOp: + masm.as_and(scratch, output, O2Reg(value)); + break; + case AtomicFetchOrOp: + masm.as_orr(scratch, output, O2Reg(value)); + break; + case AtomicFetchXorOp: + masm.as_eor(scratch, output, O2Reg(value)); + break; + } + // Rd must differ from the two other arguments to strex. + switch (nbytes) { + case 1: + masm.as_strexb(flagTemp, scratch, ptr); + break; + case 2: + masm.as_strexh(flagTemp, scratch, ptr); + break; + case 4: + masm.as_strex(flagTemp, scratch, ptr); + break; + } + masm.as_cmp(flagTemp, Imm8(1)); + masm.as_b(&again, MacroAssembler::Equal); + + masm.memoryBarrierAfter(sync); +} + +void MacroAssembler::atomicFetchOp(Scalar::Type type, + const Synchronization& sync, AtomicOp op, + Register value, const Address& mem, + Register temp, Register output) { + AtomicFetchOp(*this, nullptr, type, sync, op, value, mem, temp, output); +} + +void MacroAssembler::atomicFetchOp(Scalar::Type type, + const Synchronization& sync, AtomicOp op, + Register value, const BaseIndex& mem, + Register temp, Register output) { + AtomicFetchOp(*this, nullptr, type, sync, op, value, mem, temp, output); +} + +void MacroAssembler::wasmAtomicFetchOp(const wasm::MemoryAccessDesc& access, + AtomicOp op, Register value, + const Address& mem, Register temp, + Register output) { + AtomicFetchOp(*this, &access, access.type(), access.sync(), op, value, mem, + temp, output); +} + +void MacroAssembler::wasmAtomicFetchOp(const wasm::MemoryAccessDesc& access, + AtomicOp op, Register value, + const BaseIndex& mem, Register temp, + Register output) { + AtomicFetchOp(*this, &access, access.type(), access.sync(), op, value, mem, + temp, output); +} + +// Uses both scratch registers, one for the address and one for a temp, +// but needs two temps for strex: +// +// ... ptr, <addr> ; compute address of item +// dmb +// L0 ldrex* temp, [ptr] +// OP temp, temp, value ; compute value to store +// strex* temp2, temp, [ptr] +// cmp temp2, 1 +// beq L0 ; failed - location is dirty, retry +// dmb ; ordering barrier required + +template <typename T> +static void AtomicEffectOp(MacroAssembler& masm, + const wasm::MemoryAccessDesc* access, + Scalar::Type type, const Synchronization& sync, + AtomicOp op, const Register& value, const T& mem, + Register flagTemp) { + unsigned nbytes = Scalar::byteSize(type); + + MOZ_ASSERT(nbytes <= 4); + MOZ_ASSERT(flagTemp != InvalidReg); + + Label again; + + SecondScratchRegisterScope scratch2(masm); + Register ptr = ComputePointerForAtomic(masm, mem, scratch2); + + masm.memoryBarrierBefore(sync); + + ScratchRegisterScope scratch(masm); + + masm.bind(&again); + + BufferOffset firstAccess; + switch (nbytes) { + case 1: + firstAccess = masm.as_ldrexb(scratch, ptr); + break; + case 2: + firstAccess = masm.as_ldrexh(scratch, ptr); + break; + case 4: + firstAccess = masm.as_ldrex(scratch, ptr); + break; + } + if (access) { + masm.append(*access, firstAccess.getOffset()); + } + + switch (op) { + case AtomicFetchAddOp: + masm.as_add(scratch, scratch, O2Reg(value)); + break; + case AtomicFetchSubOp: + masm.as_sub(scratch, scratch, O2Reg(value)); + break; + case AtomicFetchAndOp: + masm.as_and(scratch, scratch, O2Reg(value)); + break; + case AtomicFetchOrOp: + masm.as_orr(scratch, scratch, O2Reg(value)); + break; + case AtomicFetchXorOp: + masm.as_eor(scratch, scratch, O2Reg(value)); + break; + } + // Rd must differ from the two other arguments to strex. + switch (nbytes) { + case 1: + masm.as_strexb(flagTemp, scratch, ptr); + break; + case 2: + masm.as_strexh(flagTemp, scratch, ptr); + break; + case 4: + masm.as_strex(flagTemp, scratch, ptr); + break; + } + masm.as_cmp(flagTemp, Imm8(1)); + masm.as_b(&again, MacroAssembler::Equal); + + masm.memoryBarrierAfter(sync); +} + +void MacroAssembler::wasmAtomicEffectOp(const wasm::MemoryAccessDesc& access, + AtomicOp op, Register value, + const Address& mem, Register temp) { + AtomicEffectOp(*this, &access, access.type(), access.sync(), op, value, mem, + temp); +} + +void MacroAssembler::wasmAtomicEffectOp(const wasm::MemoryAccessDesc& access, + AtomicOp op, Register value, + const BaseIndex& mem, Register temp) { + AtomicEffectOp(*this, &access, access.type(), access.sync(), op, value, mem, + temp); +} + +template <typename T> +static void AtomicLoad64(MacroAssembler& masm, + const wasm::MemoryAccessDesc* access, + const Synchronization& sync, const T& mem, + Register64 output) { + MOZ_ASSERT((output.low.code() & 1) == 0); + MOZ_ASSERT(output.low.code() + 1 == output.high.code()); + + masm.memoryBarrierBefore(sync); + + SecondScratchRegisterScope scratch2(masm); + Register ptr = ComputePointerForAtomic(masm, mem, scratch2); + + BufferOffset load = masm.as_ldrexd(output.low, output.high, ptr); + if (access) { + masm.append(*access, load.getOffset()); + } + masm.as_clrex(); + + masm.memoryBarrierAfter(sync); +} + +template <typename T> +static void WasmAtomicLoad64(MacroAssembler& masm, + const wasm::MemoryAccessDesc& access, const T& mem, + Register64 temp, Register64 output) { + MOZ_ASSERT(temp.low == InvalidReg && temp.high == InvalidReg); + + AtomicLoad64(masm, &access, access.sync(), mem, output); +} + +void MacroAssembler::wasmAtomicLoad64(const wasm::MemoryAccessDesc& access, + const Address& mem, Register64 temp, + Register64 output) { + WasmAtomicLoad64(*this, access, mem, temp, output); +} + +void MacroAssembler::wasmAtomicLoad64(const wasm::MemoryAccessDesc& access, + const BaseIndex& mem, Register64 temp, + Register64 output) { + WasmAtomicLoad64(*this, access, mem, temp, output); +} + +template <typename T> +static void CompareExchange64(MacroAssembler& masm, + const wasm::MemoryAccessDesc* access, + const Synchronization& sync, const T& mem, + Register64 expect, Register64 replace, + Register64 output) { + MOZ_ASSERT(expect != replace && replace != output && output != expect); + + MOZ_ASSERT((replace.low.code() & 1) == 0); + MOZ_ASSERT(replace.low.code() + 1 == replace.high.code()); + + MOZ_ASSERT((output.low.code() & 1) == 0); + MOZ_ASSERT(output.low.code() + 1 == output.high.code()); + + Label again; + Label done; + + SecondScratchRegisterScope scratch2(masm); + Register ptr = ComputePointerForAtomic(masm, mem, scratch2); + + // NOTE: the generated code must match the assembly code in gen_cmpxchg in + // GenerateAtomicOperations.py + masm.memoryBarrierBefore(sync); + + masm.bind(&again); + BufferOffset load = masm.as_ldrexd(output.low, output.high, ptr); + if (access) { + masm.append(*access, load.getOffset()); + } + + masm.as_cmp(output.low, O2Reg(expect.low)); + masm.as_cmp(output.high, O2Reg(expect.high), MacroAssembler::Equal); + masm.as_b(&done, MacroAssembler::NotEqual); + + ScratchRegisterScope scratch(masm); + + // Rd (temp) must differ from the two other arguments to strex. + masm.as_strexd(scratch, replace.low, replace.high, ptr); + masm.as_cmp(scratch, Imm8(1)); + masm.as_b(&again, MacroAssembler::Equal); + masm.bind(&done); + + masm.memoryBarrierAfter(sync); +} + +void MacroAssembler::wasmCompareExchange64(const wasm::MemoryAccessDesc& access, + const Address& mem, + Register64 expect, + Register64 replace, + Register64 output) { + CompareExchange64(*this, &access, access.sync(), mem, expect, replace, + output); +} + +void MacroAssembler::wasmCompareExchange64(const wasm::MemoryAccessDesc& access, + const BaseIndex& mem, + Register64 expect, + Register64 replace, + Register64 output) { + CompareExchange64(*this, &access, access.sync(), mem, expect, replace, + output); +} + +void MacroAssembler::compareExchange64(const Synchronization& sync, + const Address& mem, Register64 expect, + Register64 replace, Register64 output) { + CompareExchange64(*this, nullptr, sync, mem, expect, replace, output); +} + +void MacroAssembler::compareExchange64(const Synchronization& sync, + const BaseIndex& mem, Register64 expect, + Register64 replace, Register64 output) { + CompareExchange64(*this, nullptr, sync, mem, expect, replace, output); +} + +template <typename T> +static void AtomicExchange64(MacroAssembler& masm, + const wasm::MemoryAccessDesc* access, + const Synchronization& sync, const T& mem, + Register64 value, Register64 output) { + MOZ_ASSERT(output != value); + + MOZ_ASSERT((value.low.code() & 1) == 0); + MOZ_ASSERT(value.low.code() + 1 == value.high.code()); + + MOZ_ASSERT((output.low.code() & 1) == 0); + MOZ_ASSERT(output.low.code() + 1 == output.high.code()); + + Label again; + + SecondScratchRegisterScope scratch2(masm); + Register ptr = ComputePointerForAtomic(masm, mem, scratch2); + + masm.memoryBarrierBefore(sync); + + masm.bind(&again); + BufferOffset load = masm.as_ldrexd(output.low, output.high, ptr); + if (access) { + masm.append(*access, load.getOffset()); + } + + ScratchRegisterScope scratch(masm); + + masm.as_strexd(scratch, value.low, value.high, ptr); + masm.as_cmp(scratch, Imm8(1)); + masm.as_b(&again, MacroAssembler::Equal); + + masm.memoryBarrierAfter(sync); +} + +template <typename T> +static void WasmAtomicExchange64(MacroAssembler& masm, + const wasm::MemoryAccessDesc& access, + const T& mem, Register64 value, + Register64 output) { + AtomicExchange64(masm, &access, access.sync(), mem, value, output); +} + +void MacroAssembler::wasmAtomicExchange64(const wasm::MemoryAccessDesc& access, + const Address& mem, Register64 value, + Register64 output) { + WasmAtomicExchange64(*this, access, mem, value, output); +} + +void MacroAssembler::wasmAtomicExchange64(const wasm::MemoryAccessDesc& access, + const BaseIndex& mem, + Register64 value, Register64 output) { + WasmAtomicExchange64(*this, access, mem, value, output); +} + +void MacroAssembler::atomicExchange64(const Synchronization& sync, + const Address& mem, Register64 value, + Register64 output) { + AtomicExchange64(*this, nullptr, sync, mem, value, output); +} + +void MacroAssembler::atomicExchange64(const Synchronization& sync, + const BaseIndex& mem, Register64 value, + Register64 output) { + AtomicExchange64(*this, nullptr, sync, mem, value, output); +} + +template <typename T> +static void AtomicFetchOp64(MacroAssembler& masm, + const wasm::MemoryAccessDesc* access, + const Synchronization& sync, AtomicOp op, + Register64 value, const T& mem, Register64 temp, + Register64 output) { + MOZ_ASSERT(temp.low != InvalidReg && temp.high != InvalidReg); + MOZ_ASSERT(output != value); + MOZ_ASSERT(temp != value); + + MOZ_ASSERT((temp.low.code() & 1) == 0); + MOZ_ASSERT(temp.low.code() + 1 == temp.high.code()); + + // We could avoid this pair requirement but in that case we would end up + // with two moves in the loop to preserve the loaded value in output. The + // prize would be less register spilling around this op since the pair + // requirement will tend to force more spilling. + + MOZ_ASSERT((output.low.code() & 1) == 0); + MOZ_ASSERT(output.low.code() + 1 == output.high.code()); + + Label again; + + SecondScratchRegisterScope scratch2(masm); + Register ptr = ComputePointerForAtomic(masm, mem, scratch2); + + masm.memoryBarrierBefore(sync); + + masm.bind(&again); + BufferOffset load = masm.as_ldrexd(output.low, output.high, ptr); + if (access) { + masm.append(*access, load.getOffset()); + } + switch (op) { + case AtomicFetchAddOp: + masm.as_add(temp.low, output.low, O2Reg(value.low), SetCC); + masm.as_adc(temp.high, output.high, O2Reg(value.high)); + break; + case AtomicFetchSubOp: + masm.as_sub(temp.low, output.low, O2Reg(value.low), SetCC); + masm.as_sbc(temp.high, output.high, O2Reg(value.high)); + break; + case AtomicFetchAndOp: + masm.as_and(temp.low, output.low, O2Reg(value.low)); + masm.as_and(temp.high, output.high, O2Reg(value.high)); + break; + case AtomicFetchOrOp: + masm.as_orr(temp.low, output.low, O2Reg(value.low)); + masm.as_orr(temp.high, output.high, O2Reg(value.high)); + break; + case AtomicFetchXorOp: + masm.as_eor(temp.low, output.low, O2Reg(value.low)); + masm.as_eor(temp.high, output.high, O2Reg(value.high)); + break; + } + + ScratchRegisterScope scratch(masm); + + // Rd (temp) must differ from the two other arguments to strex. + masm.as_strexd(scratch, temp.low, temp.high, ptr); + masm.as_cmp(scratch, Imm8(1)); + masm.as_b(&again, MacroAssembler::Equal); + + masm.memoryBarrierAfter(sync); +} + +template <typename T> +static void WasmAtomicFetchOp64(MacroAssembler& masm, + const wasm::MemoryAccessDesc& access, + AtomicOp op, Register64 value, const T& mem, + Register64 temp, Register64 output) { + AtomicFetchOp64(masm, &access, access.sync(), op, value, mem, temp, output); +} + +void MacroAssembler::wasmAtomicFetchOp64(const wasm::MemoryAccessDesc& access, + AtomicOp op, Register64 value, + const Address& mem, Register64 temp, + Register64 output) { + WasmAtomicFetchOp64(*this, access, op, value, mem, temp, output); +} + +void MacroAssembler::wasmAtomicFetchOp64(const wasm::MemoryAccessDesc& access, + AtomicOp op, Register64 value, + const BaseIndex& mem, Register64 temp, + Register64 output) { + WasmAtomicFetchOp64(*this, access, op, value, mem, temp, output); +} + +void MacroAssembler::atomicFetchOp64(const Synchronization& sync, AtomicOp op, + Register64 value, const Address& mem, + Register64 temp, Register64 output) { + AtomicFetchOp64(*this, nullptr, sync, op, value, mem, temp, output); +} + +void MacroAssembler::atomicFetchOp64(const Synchronization& sync, AtomicOp op, + Register64 value, const BaseIndex& mem, + Register64 temp, Register64 output) { + AtomicFetchOp64(*this, nullptr, sync, op, value, mem, temp, output); +} + +void MacroAssembler::atomicEffectOp64(const Synchronization& sync, AtomicOp op, + Register64 value, const Address& mem, + Register64 temp) { + AtomicFetchOp64(*this, nullptr, sync, op, value, mem, temp, temp); +} + +void MacroAssembler::atomicEffectOp64(const Synchronization& sync, AtomicOp op, + Register64 value, const BaseIndex& mem, + Register64 temp) { + AtomicFetchOp64(*this, nullptr, sync, op, value, mem, temp, temp); +} + +// ======================================================================== +// JS atomic operations. + +template <typename T> +static void CompareExchangeJS(MacroAssembler& masm, Scalar::Type arrayType, + const Synchronization& sync, const T& mem, + Register oldval, Register newval, Register temp, + AnyRegister output) { + if (arrayType == Scalar::Uint32) { + masm.compareExchange(arrayType, sync, mem, oldval, newval, temp); + masm.convertUInt32ToDouble(temp, output.fpu()); + } else { + masm.compareExchange(arrayType, sync, mem, oldval, newval, output.gpr()); + } +} + +void MacroAssembler::compareExchangeJS(Scalar::Type arrayType, + const Synchronization& sync, + const Address& mem, Register oldval, + Register newval, Register temp, + AnyRegister output) { + CompareExchangeJS(*this, arrayType, sync, mem, oldval, newval, temp, output); +} + +void MacroAssembler::compareExchangeJS(Scalar::Type arrayType, + const Synchronization& sync, + const BaseIndex& mem, Register oldval, + Register newval, Register temp, + AnyRegister output) { + CompareExchangeJS(*this, arrayType, sync, mem, oldval, newval, temp, output); +} + +template <typename T> +static void AtomicExchangeJS(MacroAssembler& masm, Scalar::Type arrayType, + const Synchronization& sync, const T& mem, + Register value, Register temp, + AnyRegister output) { + if (arrayType == Scalar::Uint32) { + masm.atomicExchange(arrayType, sync, mem, value, temp); + masm.convertUInt32ToDouble(temp, output.fpu()); + } else { + masm.atomicExchange(arrayType, sync, mem, value, output.gpr()); + } +} + +void MacroAssembler::atomicExchangeJS(Scalar::Type arrayType, + const Synchronization& sync, + const Address& mem, Register value, + Register temp, AnyRegister output) { + AtomicExchangeJS(*this, arrayType, sync, mem, value, temp, output); +} + +void MacroAssembler::atomicExchangeJS(Scalar::Type arrayType, + const Synchronization& sync, + const BaseIndex& mem, Register value, + Register temp, AnyRegister output) { + AtomicExchangeJS(*this, arrayType, sync, mem, value, temp, output); +} + +template <typename T> +static void AtomicFetchOpJS(MacroAssembler& masm, Scalar::Type arrayType, + const Synchronization& sync, AtomicOp op, + Register value, const T& mem, Register temp1, + Register temp2, AnyRegister output) { + if (arrayType == Scalar::Uint32) { + masm.atomicFetchOp(arrayType, sync, op, value, mem, temp2, temp1); + masm.convertUInt32ToDouble(temp1, output.fpu()); + } else { + masm.atomicFetchOp(arrayType, sync, op, value, mem, temp1, output.gpr()); + } +} + +void MacroAssembler::atomicFetchOpJS(Scalar::Type arrayType, + const Synchronization& sync, AtomicOp op, + Register value, const Address& mem, + Register temp1, Register temp2, + AnyRegister output) { + AtomicFetchOpJS(*this, arrayType, sync, op, value, mem, temp1, temp2, output); +} + +void MacroAssembler::atomicFetchOpJS(Scalar::Type arrayType, + const Synchronization& sync, AtomicOp op, + Register value, const BaseIndex& mem, + Register temp1, Register temp2, + AnyRegister output) { + AtomicFetchOpJS(*this, arrayType, sync, op, value, mem, temp1, temp2, output); +} + +void MacroAssembler::atomicEffectOpJS(Scalar::Type arrayType, + const Synchronization& sync, AtomicOp op, + Register value, const BaseIndex& mem, + Register temp) { + AtomicEffectOp(*this, nullptr, arrayType, sync, op, value, mem, temp); +} + +void MacroAssembler::atomicEffectOpJS(Scalar::Type arrayType, + const Synchronization& sync, AtomicOp op, + Register value, const Address& mem, + Register temp) { + AtomicEffectOp(*this, nullptr, arrayType, sync, op, value, mem, temp); +} + +// ======================================================================== +// Primitive atomic operations. + +void MacroAssembler::atomicLoad64(const Synchronization& sync, + const Address& mem, Register64 output) { + AtomicLoad64(*this, nullptr, sync, mem, output); +} + +void MacroAssembler::atomicLoad64(const Synchronization& sync, + const BaseIndex& mem, Register64 output) { + AtomicLoad64(*this, nullptr, sync, mem, output); +} + +void MacroAssembler::atomicStore64(const Synchronization& sync, + const Address& mem, Register64 value, + Register64 temp) { + AtomicExchange64(*this, nullptr, sync, mem, value, temp); +} + +void MacroAssembler::atomicStore64(const Synchronization& sync, + const BaseIndex& mem, Register64 value, + Register64 temp) { + AtomicExchange64(*this, nullptr, sync, mem, value, temp); +} + +// ======================================================================== +// Convert floating point. + +bool MacroAssembler::convertUInt64ToDoubleNeedsTemp() { return false; } + +void MacroAssembler::convertUInt64ToDouble(Register64 src, FloatRegister dest, + Register temp) { + MOZ_ASSERT(temp == Register::Invalid()); + ScratchDoubleScope scratchDouble(*this); + + convertUInt32ToDouble(src.high, dest); + { + ScratchRegisterScope scratch(*this); + movePtr(ImmPtr(&TO_DOUBLE_HIGH_SCALE), scratch); + ma_vldr(Operand(Address(scratch, 0)).toVFPAddr(), scratchDouble); + } + mulDouble(scratchDouble, dest); + convertUInt32ToDouble(src.low, scratchDouble); + addDouble(scratchDouble, dest); +} + +void MacroAssembler::convertInt64ToDouble(Register64 src, FloatRegister dest) { + ScratchDoubleScope scratchDouble(*this); + + convertInt32ToDouble(src.high, dest); + { + ScratchRegisterScope scratch(*this); + movePtr(ImmPtr(&TO_DOUBLE_HIGH_SCALE), scratch); + ma_vldr(Operand(Address(scratch, 0)).toVFPAddr(), scratchDouble); + } + mulDouble(scratchDouble, dest); + convertUInt32ToDouble(src.low, scratchDouble); + addDouble(scratchDouble, dest); +} + +void MacroAssembler::convertIntPtrToDouble(Register src, FloatRegister dest) { + convertInt32ToDouble(src, dest); +} + +extern "C" { +extern MOZ_EXPORT int64_t __aeabi_idivmod(int, int); +extern MOZ_EXPORT int64_t __aeabi_uidivmod(int, int); +} + +inline void EmitRemainderOrQuotient(bool isRemainder, MacroAssembler& masm, + Register rhs, Register lhsOutput, + bool isUnsigned, + const LiveRegisterSet& volatileLiveRegs) { + // Currently this helper can't handle this situation. + MOZ_ASSERT(lhsOutput != rhs); + + if (HasIDIV()) { + if (isRemainder) { + masm.remainder32(rhs, lhsOutput, isUnsigned); + } else { + masm.quotient32(rhs, lhsOutput, isUnsigned); + } + } else { + // Ensure that the output registers are saved and restored properly, + MOZ_ASSERT(volatileLiveRegs.has(ReturnRegVal0)); + MOZ_ASSERT(volatileLiveRegs.has(ReturnRegVal1)); + + masm.PushRegsInMask(volatileLiveRegs); + using Fn = int64_t (*)(int, int); + { + ScratchRegisterScope scratch(masm); + masm.setupUnalignedABICall(scratch); + } + masm.passABIArg(lhsOutput); + masm.passABIArg(rhs); + if (isUnsigned) { + masm.callWithABI<Fn, __aeabi_uidivmod>( + MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckOther); + } else { + masm.callWithABI<Fn, __aeabi_idivmod>( + MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckOther); + } + if (isRemainder) { + masm.mov(ReturnRegVal1, lhsOutput); + } else { + masm.mov(ReturnRegVal0, lhsOutput); + } + + LiveRegisterSet ignore; + ignore.add(lhsOutput); + masm.PopRegsInMaskIgnore(volatileLiveRegs, ignore); + } +} + +void MacroAssembler::flexibleQuotient32( + Register rhs, Register srcDest, bool isUnsigned, + const LiveRegisterSet& volatileLiveRegs) { + EmitRemainderOrQuotient(false, *this, rhs, srcDest, isUnsigned, + volatileLiveRegs); +} + +void MacroAssembler::flexibleRemainder32( + Register rhs, Register srcDest, bool isUnsigned, + const LiveRegisterSet& volatileLiveRegs) { + EmitRemainderOrQuotient(true, *this, rhs, srcDest, isUnsigned, + volatileLiveRegs); +} + +void MacroAssembler::flexibleDivMod32(Register rhs, Register lhsOutput, + Register remOutput, bool isUnsigned, + const LiveRegisterSet& volatileLiveRegs) { + // Currently this helper can't handle this situation. + MOZ_ASSERT(lhsOutput != rhs); + + if (HasIDIV()) { + mov(lhsOutput, remOutput); + remainder32(rhs, remOutput, isUnsigned); + quotient32(rhs, lhsOutput, isUnsigned); + } else { + // Ensure that the output registers are saved and restored properly, + MOZ_ASSERT(volatileLiveRegs.has(ReturnRegVal0)); + MOZ_ASSERT(volatileLiveRegs.has(ReturnRegVal1)); + PushRegsInMask(volatileLiveRegs); + + using Fn = int64_t (*)(int, int); + { + ScratchRegisterScope scratch(*this); + setupUnalignedABICall(scratch); + } + passABIArg(lhsOutput); + passABIArg(rhs); + if (isUnsigned) { + callWithABI<Fn, __aeabi_uidivmod>(MoveOp::GENERAL, + CheckUnsafeCallWithABI::DontCheckOther); + } else { + callWithABI<Fn, __aeabi_idivmod>(MoveOp::GENERAL, + CheckUnsafeCallWithABI::DontCheckOther); + } + moveRegPair(ReturnRegVal0, ReturnRegVal1, lhsOutput, remOutput); + + LiveRegisterSet ignore; + ignore.add(remOutput); + ignore.add(lhsOutput); + PopRegsInMaskIgnore(volatileLiveRegs, ignore); + } +} + +CodeOffset MacroAssembler::moveNearAddressWithPatch(Register dest) { + return movWithPatch(ImmPtr(nullptr), dest); +} + +void MacroAssembler::patchNearAddressMove(CodeLocationLabel loc, + CodeLocationLabel target) { + PatchDataWithValueCheck(loc, ImmPtr(target.raw()), ImmPtr(nullptr)); +} + +// ======================================================================== +// Spectre Mitigations. + +void MacroAssembler::speculationBarrier() { + // Spectre mitigation recommended by ARM for cases where csel/cmov cannot be + // used. + as_csdb(); +} + +void MacroAssembler::floorFloat32ToInt32(FloatRegister src, Register dest, + Label* fail) { + floorf(src, dest, fail); +} + +void MacroAssembler::floorDoubleToInt32(FloatRegister src, Register dest, + Label* fail) { + floor(src, dest, fail); +} + +void MacroAssembler::ceilFloat32ToInt32(FloatRegister src, Register dest, + Label* fail) { + ceilf(src, dest, fail); +} + +void MacroAssembler::ceilDoubleToInt32(FloatRegister src, Register dest, + Label* fail) { + ceil(src, dest, fail); +} + +void MacroAssembler::roundFloat32ToInt32(FloatRegister src, Register dest, + FloatRegister temp, Label* fail) { + roundf(src, dest, fail, temp); +} + +void MacroAssembler::roundDoubleToInt32(FloatRegister src, Register dest, + FloatRegister temp, Label* fail) { + round(src, dest, fail, temp); +} + +void MacroAssembler::truncFloat32ToInt32(FloatRegister src, Register dest, + Label* fail) { + truncf(src, dest, fail); +} + +void MacroAssembler::truncDoubleToInt32(FloatRegister src, Register dest, + Label* fail) { + trunc(src, dest, fail); +} + +void MacroAssembler::nearbyIntDouble(RoundingMode mode, FloatRegister src, + FloatRegister dest) { + MOZ_CRASH("not supported on this platform"); +} + +void MacroAssembler::nearbyIntFloat32(RoundingMode mode, FloatRegister src, + FloatRegister dest) { + MOZ_CRASH("not supported on this platform"); +} + +void MacroAssembler::copySignDouble(FloatRegister lhs, FloatRegister rhs, + FloatRegister output) { + MOZ_CRASH("not supported on this platform"); +} + +void MacroAssembler::shiftIndex32AndAdd(Register indexTemp32, int shift, + Register pointer) { + if (IsShiftInScaleRange(shift)) { + computeEffectiveAddress( + BaseIndex(pointer, indexTemp32, ShiftToScale(shift)), pointer); + return; + } + lshift32(Imm32(shift), indexTemp32); + addPtr(indexTemp32, pointer); +} + +//}}} check_macroassembler_style + +void MacroAssemblerARM::wasmTruncateToInt32(FloatRegister input, + Register output, MIRType fromType, + bool isUnsigned, bool isSaturating, + Label* oolEntry) { + ScratchDoubleScope scratchScope(asMasm()); + ScratchRegisterScope scratchReg(asMasm()); + FloatRegister scratch = scratchScope.uintOverlay(); + + // ARM conversion instructions clamp the value to ensure it fits within the + // target's type bounds, so every time we see those, we need to check the + // input. A NaN check is not necessary because NaN is converted to zero and + // on a zero result we branch out of line to do further processing anyway. + if (isUnsigned) { + if (fromType == MIRType::Double) { + ma_vcvt_F64_U32(input, scratch); + } else if (fromType == MIRType::Float32) { + ma_vcvt_F32_U32(input, scratch); + } else { + MOZ_CRASH("unexpected type in visitWasmTruncateToInt32"); + } + + ma_vxfer(scratch, output); + + if (!isSaturating) { + // int32_t(UINT32_MAX) == -1. + ma_cmp(output, Imm32(-1), scratchReg); + as_cmp(output, Imm8(0), Assembler::NotEqual); + ma_b(oolEntry, Assembler::Equal); + } + + return; + } + + // vcvt* converts NaN into 0, so check for NaNs here. + if (!isSaturating) { + if (fromType == MIRType::Double) { + asMasm().compareDouble(input, input); + } else if (fromType == MIRType::Float32) { + asMasm().compareFloat(input, input); + } else { + MOZ_CRASH("unexpected type in visitWasmTruncateToInt32"); + } + + ma_b(oolEntry, Assembler::VFP_Unordered); + } + + scratch = scratchScope.sintOverlay(); + + if (fromType == MIRType::Double) { + ma_vcvt_F64_I32(input, scratch); + } else if (fromType == MIRType::Float32) { + ma_vcvt_F32_I32(input, scratch); + } else { + MOZ_CRASH("unexpected type in visitWasmTruncateToInt32"); + } + + ma_vxfer(scratch, output); + + if (!isSaturating) { + ma_cmp(output, Imm32(INT32_MAX), scratchReg); + ma_cmp(output, Imm32(INT32_MIN), scratchReg, Assembler::NotEqual); + ma_b(oolEntry, Assembler::Equal); + } +} + +void MacroAssemblerARM::outOfLineWasmTruncateToIntCheck( + FloatRegister input, MIRType fromType, MIRType toType, TruncFlags flags, + Label* rejoin, wasm::BytecodeOffset trapOffset) { + // On ARM, saturating truncation codegen handles saturating itself rather + // than relying on out-of-line fixup code. + if (flags & TRUNC_SATURATING) { + return; + } + + bool isUnsigned = flags & TRUNC_UNSIGNED; + ScratchDoubleScope scratchScope(asMasm()); + FloatRegister scratch; + + // Eagerly take care of NaNs. + Label inputIsNaN; + if (fromType == MIRType::Double) { + asMasm().branchDouble(Assembler::DoubleUnordered, input, input, + &inputIsNaN); + } else if (fromType == MIRType::Float32) { + asMasm().branchFloat(Assembler::DoubleUnordered, input, input, &inputIsNaN); + } else { + MOZ_CRASH("unexpected type in visitOutOfLineWasmTruncateCheck"); + } + + // Handle special values. + Label fail; + + // By default test for the following inputs and bail: + // signed: ] -Inf, INTXX_MIN - 1.0 ] and [ INTXX_MAX + 1.0 : +Inf [ + // unsigned: ] -Inf, -1.0 ] and [ UINTXX_MAX + 1.0 : +Inf [ + // Note: we cannot always represent those exact values. As a result + // this changes the actual comparison a bit. + double minValue, maxValue; + Assembler::DoubleCondition minCond = Assembler::DoubleLessThanOrEqual; + Assembler::DoubleCondition maxCond = Assembler::DoubleGreaterThanOrEqual; + if (toType == MIRType::Int64) { + if (isUnsigned) { + minValue = -1; + maxValue = double(UINT64_MAX) + 1.0; + } else { + // In the float32/double range there exists no value between + // INT64_MIN and INT64_MIN - 1.0. Making INT64_MIN the lower-bound. + minValue = double(INT64_MIN); + minCond = Assembler::DoubleLessThan; + maxValue = double(INT64_MAX) + 1.0; + } + } else { + if (isUnsigned) { + minValue = -1; + maxValue = double(UINT32_MAX) + 1.0; + } else { + if (fromType == MIRType::Float32) { + // In the float32 range there exists no value between + // INT32_MIN and INT32_MIN - 1.0. Making INT32_MIN the lower-bound. + minValue = double(INT32_MIN); + minCond = Assembler::DoubleLessThan; + } else { + minValue = double(INT32_MIN) - 1.0; + } + maxValue = double(INT32_MAX) + 1.0; + } + } + + if (fromType == MIRType::Double) { + scratch = scratchScope.doubleOverlay(); + asMasm().loadConstantDouble(minValue, scratch); + asMasm().branchDouble(minCond, input, scratch, &fail); + + asMasm().loadConstantDouble(maxValue, scratch); + asMasm().branchDouble(maxCond, input, scratch, &fail); + } else { + MOZ_ASSERT(fromType == MIRType::Float32); + scratch = scratchScope.singleOverlay(); + asMasm().loadConstantFloat32(float(minValue), scratch); + asMasm().branchFloat(minCond, input, scratch, &fail); + + asMasm().loadConstantFloat32(float(maxValue), scratch); + asMasm().branchFloat(maxCond, input, scratch, &fail); + } + + // We had an actual correct value, get back to where we were. + ma_b(rejoin); + + // Handle errors. + bind(&fail); + asMasm().wasmTrap(wasm::Trap::IntegerOverflow, trapOffset); + + bind(&inputIsNaN); + asMasm().wasmTrap(wasm::Trap::InvalidConversionToInteger, trapOffset); +} + +void MacroAssemblerARM::wasmLoadImpl(const wasm::MemoryAccessDesc& access, + Register memoryBase, Register ptr, + Register ptrScratch, AnyRegister output, + Register64 out64) { + MOZ_ASSERT(ptr == ptrScratch); + MOZ_ASSERT(!access.isZeroExtendSimd128Load()); + MOZ_ASSERT(!access.isSplatSimd128Load()); + MOZ_ASSERT(!access.isWidenSimd128Load()); + + uint32_t offset = access.offset(); + MOZ_ASSERT(offset < asMasm().wasmMaxOffsetGuardLimit()); + + Scalar::Type type = access.type(); + + // Maybe add the offset. + if (offset || type == Scalar::Int64) { + ScratchRegisterScope scratch(asMasm()); + if (offset) { + ma_add(Imm32(offset), ptr, scratch); + } + } + + bool isSigned = type == Scalar::Int8 || type == Scalar::Int16 || + type == Scalar::Int32 || type == Scalar::Int64; + unsigned byteSize = access.byteSize(); + + // NOTE: the generated code must match the assembly code in gen_load in + // GenerateAtomicOperations.py + asMasm().memoryBarrierBefore(access.sync()); + + BufferOffset load; + if (out64 != Register64::Invalid()) { + if (type == Scalar::Int64) { + static_assert(INT64LOW_OFFSET == 0); + + load = ma_dataTransferN(IsLoad, 32, /* signed = */ false, memoryBase, ptr, + out64.low); + append(access, load.getOffset()); + + as_add(ptr, ptr, Imm8(INT64HIGH_OFFSET)); + + load = + ma_dataTransferN(IsLoad, 32, isSigned, memoryBase, ptr, out64.high); + append(access, load.getOffset()); + } else { + load = ma_dataTransferN(IsLoad, byteSize * 8, isSigned, memoryBase, ptr, + out64.low); + append(access, load.getOffset()); + + if (isSigned) { + ma_asr(Imm32(31), out64.low, out64.high); + } else { + ma_mov(Imm32(0), out64.high); + } + } + } else { + bool isFloat = output.isFloat(); + if (isFloat) { + MOZ_ASSERT((byteSize == 4) == output.fpu().isSingle()); + ScratchRegisterScope scratch(asMasm()); + FloatRegister dest = output.fpu(); + ma_add(memoryBase, ptr, scratch); + + // FP loads can't use VLDR as that has stringent alignment checks and will + // SIGBUS on unaligned accesses. Choose a different strategy depending on + // the available hardware. We don't gate Wasm on the presence of NEON. + if (HasNEON()) { + // NEON available: The VLD1 multiple-single-elements variant will only + // trap if SCTRL.A==1, but we already assume (for integer accesses) that + // the hardware/OS handles that transparently. + // + // An additional complication is that if we're targeting the high single + // then an unaligned load is not possible, and we may need to go via the + // FPR scratch. + if (byteSize == 4 && dest.code() & 1) { + ScratchFloat32Scope fscratch(asMasm()); + load = as_vldr_unaligned(fscratch, scratch); + as_vmov(dest, fscratch); + } else { + load = as_vldr_unaligned(dest, scratch); + } + } else { + // NEON not available: Load to GPR scratch, move to FPR destination. We + // don't have adjacent scratches for the f64, so use individual LDRs, + // not LDRD. + SecondScratchRegisterScope scratch2(asMasm()); + if (byteSize == 4) { + load = as_dtr(IsLoad, 32, Offset, scratch2, + DTRAddr(scratch, DtrOffImm(0)), Always); + as_vxfer(scratch2, InvalidReg, VFPRegister(dest), CoreToFloat, + Always); + } else { + // The trap information is associated with the load of the high word, + // which must be done first. + load = as_dtr(IsLoad, 32, Offset, scratch2, + DTRAddr(scratch, DtrOffImm(4)), Always); + as_dtr(IsLoad, 32, Offset, scratch, DTRAddr(scratch, DtrOffImm(0)), + Always); + as_vxfer(scratch, scratch2, VFPRegister(dest), CoreToFloat, Always); + } + } + append(access, load.getOffset()); + } else { + load = ma_dataTransferN(IsLoad, byteSize * 8, isSigned, memoryBase, ptr, + output.gpr()); + append(access, load.getOffset()); + } + } + + asMasm().memoryBarrierAfter(access.sync()); +} + +void MacroAssemblerARM::wasmStoreImpl(const wasm::MemoryAccessDesc& access, + AnyRegister value, Register64 val64, + Register memoryBase, Register ptr, + Register ptrScratch) { + static_assert(INT64LOW_OFFSET == 0); + static_assert(INT64HIGH_OFFSET == 4); + + MOZ_ASSERT(ptr == ptrScratch); + + uint32_t offset = access.offset(); + MOZ_ASSERT(offset < asMasm().wasmMaxOffsetGuardLimit()); + + unsigned byteSize = access.byteSize(); + Scalar::Type type = access.type(); + + // Maybe add the offset. + if (offset || type == Scalar::Int64) { + ScratchRegisterScope scratch(asMasm()); + // We need to store the high word of an Int64 first, so always adjust the + // pointer to point to the high word in this case. The adjustment is always + // OK because wasmMaxOffsetGuardLimit is computed so that we can add up to + // sizeof(LargestValue)-1 without skipping past the guard page, and we + // assert above that offset < wasmMaxOffsetGuardLimit. + if (type == Scalar::Int64) { + offset += INT64HIGH_OFFSET; + } + if (offset) { + ma_add(Imm32(offset), ptr, scratch); + } + } + + // NOTE: the generated code must match the assembly code in gen_store in + // GenerateAtomicOperations.py + asMasm().memoryBarrierBefore(access.sync()); + + BufferOffset store; + if (type == Scalar::Int64) { + store = ma_dataTransferN(IsStore, 32 /* bits */, /* signed */ false, + memoryBase, ptr, val64.high); + append(access, store.getOffset()); + + as_sub(ptr, ptr, Imm8(INT64HIGH_OFFSET)); + + store = ma_dataTransferN(IsStore, 32 /* bits */, /* signed */ true, + memoryBase, ptr, val64.low); + append(access, store.getOffset()); + } else { + if (value.isFloat()) { + ScratchRegisterScope scratch(asMasm()); + FloatRegister val = value.fpu(); + MOZ_ASSERT((byteSize == 4) == val.isSingle()); + ma_add(memoryBase, ptr, scratch); + + // See comments above at wasmLoadImpl for more about this logic. + if (HasNEON()) { + if (byteSize == 4 && (val.code() & 1)) { + ScratchFloat32Scope fscratch(asMasm()); + as_vmov(fscratch, val); + store = as_vstr_unaligned(fscratch, scratch); + } else { + store = as_vstr_unaligned(val, scratch); + } + } else { + // NEON not available: Move FPR to GPR scratch, store GPR. We have only + // one scratch to hold the value, so for f64 we must do two separate + // moves. That's OK - this is really a corner case. If we really cared + // we would pass in a temp to avoid the second move. + SecondScratchRegisterScope scratch2(asMasm()); + if (byteSize == 4) { + as_vxfer(scratch2, InvalidReg, VFPRegister(val), FloatToCore, Always); + store = as_dtr(IsStore, 32, Offset, scratch2, + DTRAddr(scratch, DtrOffImm(0)), Always); + } else { + // The trap information is associated with the store of the high word, + // which must be done first. + as_vxfer(scratch2, InvalidReg, VFPRegister(val).singleOverlay(1), + FloatToCore, Always); + store = as_dtr(IsStore, 32, Offset, scratch2, + DTRAddr(scratch, DtrOffImm(4)), Always); + as_vxfer(scratch2, InvalidReg, VFPRegister(val).singleOverlay(0), + FloatToCore, Always); + as_dtr(IsStore, 32, Offset, scratch2, DTRAddr(scratch, DtrOffImm(0)), + Always); + } + } + append(access, store.getOffset()); + } else { + bool isSigned = type == Scalar::Uint32 || + type == Scalar::Int32; // see AsmJSStoreHeap; + Register val = value.gpr(); + + store = ma_dataTransferN(IsStore, 8 * byteSize /* bits */, isSigned, + memoryBase, ptr, val); + append(access, store.getOffset()); + } + } + + asMasm().memoryBarrierAfter(access.sync()); +} diff --git a/js/src/jit/arm/MacroAssembler-arm.h b/js/src/jit/arm/MacroAssembler-arm.h new file mode 100644 index 0000000000..958cdf4718 --- /dev/null +++ b/js/src/jit/arm/MacroAssembler-arm.h @@ -0,0 +1,1392 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifndef jit_arm_MacroAssembler_arm_h +#define jit_arm_MacroAssembler_arm_h + +#include "mozilla/DebugOnly.h" + +#include "jit/arm/Assembler-arm.h" +#include "jit/MoveResolver.h" +#include "vm/BytecodeUtil.h" +#include "wasm/WasmBuiltins.h" +#include "wasm/WasmCodegenTypes.h" + +namespace js { +namespace jit { + +static Register CallReg = ip; +static const int defaultShift = 3; +static_assert(1 << defaultShift == sizeof(JS::Value)); + +// See documentation for ScratchTagScope and ScratchTagScopeRelease in +// MacroAssembler-x64.h. + +class ScratchTagScope { + const ValueOperand& v_; + + public: + ScratchTagScope(MacroAssembler&, const ValueOperand& v) : v_(v) {} + operator Register() { return v_.typeReg(); } + void release() {} + void reacquire() {} +}; + +class ScratchTagScopeRelease { + public: + explicit ScratchTagScopeRelease(ScratchTagScope*) {} +}; + +// MacroAssemblerARM is inheriting form Assembler defined in +// Assembler-arm.{h,cpp} +class MacroAssemblerARM : public Assembler { + private: + // Perform a downcast. Should be removed by Bug 996602. + MacroAssembler& asMasm(); + const MacroAssembler& asMasm() const; + + protected: + // On ARM, some instructions require a second scratch register. This + // register defaults to lr, since it's non-allocatable (as it can be + // clobbered by some instructions). Allow the baseline compiler to override + // this though, since baseline IC stubs rely on lr holding the return + // address. + Register secondScratchReg_; + + public: + Register getSecondScratchReg() const { return secondScratchReg_; } + + public: + // Higher level tag testing code. + // TODO: Can probably remove the Operand versions. + Operand ToPayload(Operand base) const { + return Operand(Register::FromCode(base.base()), base.disp()); + } + Address ToPayload(const Address& base) const { return base; } + BaseIndex ToPayload(const BaseIndex& base) const { return base; } + + protected: + Operand ToType(Operand base) const { + return Operand(Register::FromCode(base.base()), + base.disp() + sizeof(void*)); + } + Address ToType(const Address& base) const { + return ToType(Operand(base)).toAddress(); + } + BaseIndex ToType(const BaseIndex& base) const { + return BaseIndex(base.base, base.index, base.scale, + base.offset + sizeof(void*)); + } + + Address ToPayloadAfterStackPush(const Address& base) const { + // If we are based on StackPointer, pass over the type tag just pushed. + if (base.base == StackPointer) { + return Address(base.base, base.offset + sizeof(void*)); + } + return ToPayload(base); + } + + public: + MacroAssemblerARM() : secondScratchReg_(lr) {} + + void setSecondScratchReg(Register reg) { + MOZ_ASSERT(reg != ScratchRegister); + secondScratchReg_ = reg; + } + + void convertBoolToInt32(Register source, Register dest); + void convertInt32ToDouble(Register src, FloatRegister dest); + void convertInt32ToDouble(const Address& src, FloatRegister dest); + void convertInt32ToDouble(const BaseIndex& src, FloatRegister dest); + void convertUInt32ToFloat32(Register src, FloatRegister dest); + void convertUInt32ToDouble(Register src, FloatRegister dest); + void convertDoubleToFloat32(FloatRegister src, FloatRegister dest, + Condition c = Always); + void convertDoubleToInt32(FloatRegister src, Register dest, Label* fail, + bool negativeZeroCheck = true); + void convertDoubleToPtr(FloatRegister src, Register dest, Label* fail, + bool negativeZeroCheck = true) { + convertDoubleToInt32(src, dest, fail, negativeZeroCheck); + } + void convertFloat32ToInt32(FloatRegister src, Register dest, Label* fail, + bool negativeZeroCheck = true); + + void convertFloat32ToDouble(FloatRegister src, FloatRegister dest); + void convertInt32ToFloat32(Register src, FloatRegister dest); + void convertInt32ToFloat32(const Address& src, FloatRegister dest); + + void wasmTruncateToInt32(FloatRegister input, Register output, + MIRType fromType, bool isUnsigned, bool isSaturating, + Label* oolEntry); + void outOfLineWasmTruncateToIntCheck(FloatRegister input, MIRType fromType, + MIRType toType, TruncFlags flags, + Label* rejoin, + wasm::BytecodeOffset trapOffset); + + // Somewhat direct wrappers for the low-level assembler funcitons + // bitops. Attempt to encode a virtual alu instruction using two real + // instructions. + private: + bool alu_dbl(Register src1, Imm32 imm, Register dest, ALUOp op, SBit s, + Condition c); + + public: + void ma_alu(Register src1, Imm32 imm, Register dest, + AutoRegisterScope& scratch, ALUOp op, SBit s = LeaveCC, + Condition c = Always); + void ma_alu(Register src1, Operand2 op2, Register dest, ALUOp op, + SBit s = LeaveCC, Condition c = Always); + void ma_alu(Register src1, Operand op2, Register dest, ALUOp op, + SBit s = LeaveCC, Condition c = Always); + void ma_nop(); + + BufferOffset ma_movPatchable(Imm32 imm, Register dest, + Assembler::Condition c); + BufferOffset ma_movPatchable(ImmPtr imm, Register dest, + Assembler::Condition c); + + // To be used with Iter := InstructionIterator or BufferInstructionIterator. + template <class Iter> + static void ma_mov_patch(Imm32 imm, Register dest, Assembler::Condition c, + RelocStyle rs, Iter iter); + + // ALU based ops + // mov + void ma_mov(Register src, Register dest, SBit s = LeaveCC, + Condition c = Always); + + void ma_mov(Imm32 imm, Register dest, Condition c = Always); + void ma_mov(ImmWord imm, Register dest, Condition c = Always); + + void ma_mov(ImmGCPtr ptr, Register dest); + + // Shifts (just a move with a shifting op2) + void ma_lsl(Imm32 shift, Register src, Register dst); + void ma_lsr(Imm32 shift, Register src, Register dst); + void ma_asr(Imm32 shift, Register src, Register dst); + void ma_ror(Imm32 shift, Register src, Register dst); + void ma_rol(Imm32 shift, Register src, Register dst); + + void ma_lsl(Register shift, Register src, Register dst); + void ma_lsr(Register shift, Register src, Register dst); + void ma_asr(Register shift, Register src, Register dst); + void ma_ror(Register shift, Register src, Register dst); + void ma_rol(Register shift, Register src, Register dst, + AutoRegisterScope& scratch); + + // Move not (dest <- ~src) + void ma_mvn(Register src1, Register dest, SBit s = LeaveCC, + Condition c = Always); + + // Negate (dest <- -src) implemented as rsb dest, src, 0 + void ma_neg(Register src, Register dest, SBit s = LeaveCC, + Condition c = Always); + + void ma_neg(Register64 src, Register64 dest); + + // And + void ma_and(Register src, Register dest, SBit s = LeaveCC, + Condition c = Always); + + void ma_and(Register src1, Register src2, Register dest, SBit s = LeaveCC, + Condition c = Always); + + void ma_and(Imm32 imm, Register dest, AutoRegisterScope& scratch, + SBit s = LeaveCC, Condition c = Always); + + void ma_and(Imm32 imm, Register src1, Register dest, + AutoRegisterScope& scratch, SBit s = LeaveCC, + Condition c = Always); + + // Bit clear (dest <- dest & ~imm) or (dest <- src1 & ~src2) + void ma_bic(Imm32 imm, Register dest, AutoRegisterScope& scratch, + SBit s = LeaveCC, Condition c = Always); + + // Exclusive or + void ma_eor(Register src, Register dest, SBit s = LeaveCC, + Condition c = Always); + + void ma_eor(Register src1, Register src2, Register dest, SBit s = LeaveCC, + Condition c = Always); + + void ma_eor(Imm32 imm, Register dest, AutoRegisterScope& scratch, + SBit s = LeaveCC, Condition c = Always); + + void ma_eor(Imm32 imm, Register src1, Register dest, + AutoRegisterScope& scratch, SBit s = LeaveCC, + Condition c = Always); + + // Or + void ma_orr(Register src, Register dest, SBit s = LeaveCC, + Condition c = Always); + + void ma_orr(Register src1, Register src2, Register dest, SBit s = LeaveCC, + Condition c = Always); + + void ma_orr(Imm32 imm, Register dest, AutoRegisterScope& scratch, + SBit s = LeaveCC, Condition c = Always); + + void ma_orr(Imm32 imm, Register src1, Register dest, + AutoRegisterScope& scratch, SBit s = LeaveCC, + Condition c = Always); + + // Arithmetic based ops. + // Add with carry: + void ma_adc(Imm32 imm, Register dest, AutoRegisterScope& scratch, + SBit s = LeaveCC, Condition c = Always); + void ma_adc(Register src, Register dest, SBit s = LeaveCC, + Condition c = Always); + void ma_adc(Register src1, Register src2, Register dest, SBit s = LeaveCC, + Condition c = Always); + void ma_adc(Register src1, Imm32 op, Register dest, + AutoRegisterScope& scratch, SBit s = LeaveCC, + Condition c = Always); + + // Add: + void ma_add(Imm32 imm, Register dest, AutoRegisterScope& scratch, + SBit s = LeaveCC, Condition c = Always); + void ma_add(Register src1, Register dest, SBit s = LeaveCC, + Condition c = Always); + void ma_add(Register src1, Register src2, Register dest, SBit s = LeaveCC, + Condition c = Always); + void ma_add(Register src1, Operand op, Register dest, SBit s = LeaveCC, + Condition c = Always); + void ma_add(Register src1, Imm32 op, Register dest, + AutoRegisterScope& scratch, SBit s = LeaveCC, + Condition c = Always); + + // Subtract with carry: + void ma_sbc(Imm32 imm, Register dest, AutoRegisterScope& scratch, + SBit s = LeaveCC, Condition c = Always); + void ma_sbc(Register src1, Register dest, SBit s = LeaveCC, + Condition c = Always); + void ma_sbc(Register src1, Register src2, Register dest, SBit s = LeaveCC, + Condition c = Always); + + // Subtract: + void ma_sub(Imm32 imm, Register dest, AutoRegisterScope& scratch, + SBit s = LeaveCC, Condition c = Always); + void ma_sub(Register src1, Register dest, SBit s = LeaveCC, + Condition c = Always); + void ma_sub(Register src1, Register src2, Register dest, SBit s = LeaveCC, + Condition c = Always); + void ma_sub(Register src1, Operand op, Register dest, SBit s = LeaveCC, + Condition c = Always); + void ma_sub(Register src1, Imm32 op, Register dest, + AutoRegisterScope& scratch, SBit s = LeaveCC, + Condition c = Always); + + // Reverse subtract: + void ma_rsb(Imm32 imm, Register dest, AutoRegisterScope& scratch, + SBit s = LeaveCC, Condition c = Always); + void ma_rsb(Register src1, Register dest, SBit s = LeaveCC, + Condition c = Always); + void ma_rsb(Register src1, Register src2, Register dest, SBit s = LeaveCC, + Condition c = Always); + void ma_rsb(Register src1, Imm32 op2, Register dest, + AutoRegisterScope& scratch, SBit s = LeaveCC, + Condition c = Always); + + // Reverse subtract with carry: + void ma_rsc(Imm32 imm, Register dest, AutoRegisterScope& scratch, + SBit s = LeaveCC, Condition c = Always); + void ma_rsc(Register src1, Register dest, SBit s = LeaveCC, + Condition c = Always); + void ma_rsc(Register src1, Register src2, Register dest, SBit s = LeaveCC, + Condition c = Always); + + // Compares/tests. + // Compare negative (sets condition codes as src1 + src2 would): + void ma_cmn(Register src1, Imm32 imm, AutoRegisterScope& scratch, + Condition c = Always); + void ma_cmn(Register src1, Register src2, Condition c = Always); + void ma_cmn(Register src1, Operand op, Condition c = Always); + + // Compare (src - src2): + void ma_cmp(Register src1, Imm32 imm, AutoRegisterScope& scratch, + Condition c = Always); + void ma_cmp(Register src1, ImmTag tag, Condition c = Always); + void ma_cmp(Register src1, ImmWord ptr, AutoRegisterScope& scratch, + Condition c = Always); + void ma_cmp(Register src1, ImmGCPtr ptr, AutoRegisterScope& scratch, + Condition c = Always); + void ma_cmp(Register src1, Operand op, AutoRegisterScope& scratch, + AutoRegisterScope& scratch2, Condition c = Always); + void ma_cmp(Register src1, Register src2, Condition c = Always); + + // Test for equality, (src1 ^ src2): + void ma_teq(Register src1, Imm32 imm, AutoRegisterScope& scratch, + Condition c = Always); + void ma_teq(Register src1, Register src2, Condition c = Always); + void ma_teq(Register src1, Operand op, Condition c = Always); + + // Test (src1 & src2): + void ma_tst(Register src1, Imm32 imm, AutoRegisterScope& scratch, + Condition c = Always); + void ma_tst(Register src1, Register src2, Condition c = Always); + void ma_tst(Register src1, Operand op, Condition c = Always); + + // Multiplies. For now, there are only two that we care about. + void ma_mul(Register src1, Register src2, Register dest); + void ma_mul(Register src1, Imm32 imm, Register dest, + AutoRegisterScope& scratch); + Condition ma_check_mul(Register src1, Register src2, Register dest, + AutoRegisterScope& scratch, Condition cond); + Condition ma_check_mul(Register src1, Imm32 imm, Register dest, + AutoRegisterScope& scratch, Condition cond); + + void ma_umull(Register src1, Imm32 imm, Register destHigh, Register destLow, + AutoRegisterScope& scratch); + void ma_umull(Register src1, Register src2, Register destHigh, + Register destLow); + + // Fast mod, uses scratch registers, and thus needs to be in the assembler + // implicitly assumes that we can overwrite dest at the beginning of the + // sequence. + void ma_mod_mask(Register src, Register dest, Register hold, Register tmp, + AutoRegisterScope& scratch, AutoRegisterScope& scratch2, + int32_t shift); + + // Mod - depends on integer divide instructions being supported. + void ma_smod(Register num, Register div, Register dest, + AutoRegisterScope& scratch); + void ma_umod(Register num, Register div, Register dest, + AutoRegisterScope& scratch); + + // Division - depends on integer divide instructions being supported. + void ma_sdiv(Register num, Register div, Register dest, + Condition cond = Always); + void ma_udiv(Register num, Register div, Register dest, + Condition cond = Always); + // Misc operations + void ma_clz(Register src, Register dest, Condition cond = Always); + void ma_ctz(Register src, Register dest, AutoRegisterScope& scratch); + // Memory: + // Shortcut for when we know we're transferring 32 bits of data. + void ma_dtr(LoadStore ls, Register rn, Imm32 offset, Register rt, + AutoRegisterScope& scratch, Index mode = Offset, + Condition cc = Always); + void ma_dtr(LoadStore ls, Register rt, const Address& addr, + AutoRegisterScope& scratch, Index mode, Condition cc); + + void ma_str(Register rt, DTRAddr addr, Index mode = Offset, + Condition cc = Always); + void ma_str(Register rt, const Address& addr, AutoRegisterScope& scratch, + Index mode = Offset, Condition cc = Always); + + void ma_ldr(DTRAddr addr, Register rt, Index mode = Offset, + Condition cc = Always); + void ma_ldr(const Address& addr, Register rt, AutoRegisterScope& scratch, + Index mode = Offset, Condition cc = Always); + + void ma_ldrb(DTRAddr addr, Register rt, Index mode = Offset, + Condition cc = Always); + void ma_ldrh(EDtrAddr addr, Register rt, Index mode = Offset, + Condition cc = Always); + void ma_ldrsh(EDtrAddr addr, Register rt, Index mode = Offset, + Condition cc = Always); + void ma_ldrsb(EDtrAddr addr, Register rt, Index mode = Offset, + Condition cc = Always); + void ma_ldrd(EDtrAddr addr, Register rt, mozilla::DebugOnly<Register> rt2, + Index mode = Offset, Condition cc = Always); + void ma_strb(Register rt, DTRAddr addr, Index mode = Offset, + Condition cc = Always); + void ma_strh(Register rt, EDtrAddr addr, Index mode = Offset, + Condition cc = Always); + void ma_strd(Register rt, mozilla::DebugOnly<Register> rt2, EDtrAddr addr, + Index mode = Offset, Condition cc = Always); + + // Specialty for moving N bits of data, where n == 8,16,32,64. + BufferOffset ma_dataTransferN(LoadStore ls, int size, bool IsSigned, + Register rn, Register rm, Register rt, + AutoRegisterScope& scratch, Index mode = Offset, + Condition cc = Always, Scale scale = TimesOne); + + BufferOffset ma_dataTransferN(LoadStore ls, int size, bool IsSigned, + Register rn, Register rm, Register rt, + Index mode = Offset, Condition cc = Always); + + BufferOffset ma_dataTransferN(LoadStore ls, int size, bool IsSigned, + Register rn, Imm32 offset, Register rt, + AutoRegisterScope& scratch, Index mode = Offset, + Condition cc = Always); + + void ma_pop(Register r); + void ma_popn_pc(Imm32 n, AutoRegisterScope& scratch, + AutoRegisterScope& scratch2); + void ma_push(Register r); + void ma_push_sp(Register r, AutoRegisterScope& scratch); + + void ma_vpop(VFPRegister r); + void ma_vpush(VFPRegister r); + + // Barriers. + void ma_dmb(BarrierOption option = BarrierSY); + void ma_dsb(BarrierOption option = BarrierSY); + + // Branches when done from within arm-specific code. + BufferOffset ma_b(Label* dest, Condition c = Always); + void ma_b(void* target, Condition c = Always); + void ma_bx(Register dest, Condition c = Always); + + // This is almost NEVER necessary, we'll basically never be calling a label + // except, possibly in the crazy bailout-table case. + void ma_bl(Label* dest, Condition c = Always); + + void ma_blx(Register dest, Condition c = Always); + + // VFP/ALU: + void ma_vadd(FloatRegister src1, FloatRegister src2, FloatRegister dst); + void ma_vsub(FloatRegister src1, FloatRegister src2, FloatRegister dst); + + void ma_vmul(FloatRegister src1, FloatRegister src2, FloatRegister dst); + void ma_vdiv(FloatRegister src1, FloatRegister src2, FloatRegister dst); + + void ma_vneg(FloatRegister src, FloatRegister dest, Condition cc = Always); + void ma_vmov(FloatRegister src, FloatRegister dest, Condition cc = Always); + void ma_vmov_f32(FloatRegister src, FloatRegister dest, + Condition cc = Always); + void ma_vabs(FloatRegister src, FloatRegister dest, Condition cc = Always); + void ma_vabs_f32(FloatRegister src, FloatRegister dest, + Condition cc = Always); + + void ma_vsqrt(FloatRegister src, FloatRegister dest, Condition cc = Always); + void ma_vsqrt_f32(FloatRegister src, FloatRegister dest, + Condition cc = Always); + + void ma_vimm(double value, FloatRegister dest, Condition cc = Always); + void ma_vimm_f32(float value, FloatRegister dest, Condition cc = Always); + + void ma_vcmp(FloatRegister src1, FloatRegister src2, Condition cc = Always); + void ma_vcmp_f32(FloatRegister src1, FloatRegister src2, + Condition cc = Always); + void ma_vcmpz(FloatRegister src1, Condition cc = Always); + void ma_vcmpz_f32(FloatRegister src1, Condition cc = Always); + + void ma_vadd_f32(FloatRegister src1, FloatRegister src2, FloatRegister dst); + void ma_vsub_f32(FloatRegister src1, FloatRegister src2, FloatRegister dst); + + void ma_vmul_f32(FloatRegister src1, FloatRegister src2, FloatRegister dst); + void ma_vdiv_f32(FloatRegister src1, FloatRegister src2, FloatRegister dst); + + void ma_vneg_f32(FloatRegister src, FloatRegister dest, + Condition cc = Always); + + // Source is F64, dest is I32: + void ma_vcvt_F64_I32(FloatRegister src, FloatRegister dest, + Condition cc = Always); + void ma_vcvt_F64_U32(FloatRegister src, FloatRegister dest, + Condition cc = Always); + + // Source is I32, dest is F64: + void ma_vcvt_I32_F64(FloatRegister src, FloatRegister dest, + Condition cc = Always); + void ma_vcvt_U32_F64(FloatRegister src, FloatRegister dest, + Condition cc = Always); + + // Source is F32, dest is I32: + void ma_vcvt_F32_I32(FloatRegister src, FloatRegister dest, + Condition cc = Always); + void ma_vcvt_F32_U32(FloatRegister src, FloatRegister dest, + Condition cc = Always); + + // Source is I32, dest is F32: + void ma_vcvt_I32_F32(FloatRegister src, FloatRegister dest, + Condition cc = Always); + void ma_vcvt_U32_F32(FloatRegister src, FloatRegister dest, + Condition cc = Always); + + // Transfer (do not coerce) a float into a gpr. + void ma_vxfer(VFPRegister src, Register dest, Condition cc = Always); + // Transfer (do not coerce) a double into a couple of gpr. + void ma_vxfer(VFPRegister src, Register dest1, Register dest2, + Condition cc = Always); + + // Transfer (do not coerce) a gpr into a float + void ma_vxfer(Register src, FloatRegister dest, Condition cc = Always); + // Transfer (do not coerce) a couple of gpr into a double + void ma_vxfer(Register src1, Register src2, FloatRegister dest, + Condition cc = Always); + + BufferOffset ma_vdtr(LoadStore ls, const Address& addr, VFPRegister dest, + AutoRegisterScope& scratch, Condition cc = Always); + + BufferOffset ma_vldr(VFPAddr addr, VFPRegister dest, Condition cc = Always); + BufferOffset ma_vldr(const Address& addr, VFPRegister dest, + AutoRegisterScope& scratch, Condition cc = Always); + BufferOffset ma_vldr(VFPRegister src, Register base, Register index, + AutoRegisterScope& scratch, int32_t shift = defaultShift, + Condition cc = Always); + + BufferOffset ma_vstr(VFPRegister src, VFPAddr addr, Condition cc = Always); + BufferOffset ma_vstr(VFPRegister src, const Address& addr, + AutoRegisterScope& scratch, Condition cc = Always); + BufferOffset ma_vstr(VFPRegister src, Register base, Register index, + AutoRegisterScope& scratch, AutoRegisterScope& scratch2, + int32_t shift, int32_t offset, Condition cc = Always); + BufferOffset ma_vstr(VFPRegister src, Register base, Register index, + AutoRegisterScope& scratch, int32_t shift, + Condition cc = Always); + + void ma_call(ImmPtr dest); + + // Float registers can only be loaded/stored in continuous runs when using + // vstm/vldm. This function breaks set into continuous runs and loads/stores + // them at [rm]. rm will be modified and left in a state logically suitable + // for the next load/store. Returns the offset from [dm] for the logical + // next load/store. + int32_t transferMultipleByRuns(FloatRegisterSet set, LoadStore ls, + Register rm, DTMMode mode) { + if (mode == IA) { + return transferMultipleByRunsImpl<FloatRegisterForwardIterator>( + set, ls, rm, mode, 1); + } + if (mode == DB) { + return transferMultipleByRunsImpl<FloatRegisterBackwardIterator>( + set, ls, rm, mode, -1); + } + MOZ_CRASH("Invalid data transfer addressing mode"); + } + + // `outAny` is valid if and only if `out64` == Register64::Invalid(). + void wasmLoadImpl(const wasm::MemoryAccessDesc& access, Register memoryBase, + Register ptr, Register ptrScratch, AnyRegister outAny, + Register64 out64); + + // `valAny` is valid if and only if `val64` == Register64::Invalid(). + void wasmStoreImpl(const wasm::MemoryAccessDesc& access, AnyRegister valAny, + Register64 val64, Register memoryBase, Register ptr, + Register ptrScratch); + + private: + // Implementation for transferMultipleByRuns so we can use different + // iterators for forward/backward traversals. The sign argument should be 1 + // if we traverse forwards, -1 if we traverse backwards. + template <typename RegisterIterator> + int32_t transferMultipleByRunsImpl(FloatRegisterSet set, LoadStore ls, + Register rm, DTMMode mode, int32_t sign) { + MOZ_ASSERT(sign == 1 || sign == -1); + + int32_t delta = sign * sizeof(float); + int32_t offset = 0; + // Build up a new set, which is the sum of all of the single and double + // registers. This set can have up to 48 registers in it total + // s0-s31 and d16-d31 + FloatRegisterSet mod = set.reduceSetForPush(); + + RegisterIterator iter(mod); + while (iter.more()) { + startFloatTransferM(ls, rm, mode, WriteBack); + int32_t reg = (*iter).code(); + do { + offset += delta; + if ((*iter).isDouble()) { + offset += delta; + } + transferFloatReg(*iter); + } while ((++iter).more() && int32_t((*iter).code()) == (reg += sign)); + finishFloatTransfer(); + } + return offset; + } +}; + +class MacroAssembler; + +class MacroAssemblerARMCompat : public MacroAssemblerARM { + private: + // Perform a downcast. Should be removed by Bug 996602. + MacroAssembler& asMasm(); + const MacroAssembler& asMasm() const; + + public: + MacroAssemblerARMCompat() {} + + public: + // Jumps + other functions that should be called from non-arm specific + // code. Basically, an x86 front end on top of the ARM code. + void j(Condition code, Label* dest) { as_b(dest, code); } + void j(Label* dest) { as_b(dest, Always); } + + void mov(Register src, Register dest) { ma_mov(src, dest); } + void mov(ImmWord imm, Register dest) { ma_mov(Imm32(imm.value), dest); } + void mov(ImmPtr imm, Register dest) { + mov(ImmWord(uintptr_t(imm.value)), dest); + } + + void branch(JitCode* c) { + BufferOffset bo = m_buffer.nextOffset(); + addPendingJump(bo, ImmPtr(c->raw()), RelocationKind::JITCODE); + ScratchRegisterScope scratch(asMasm()); + ma_movPatchable(ImmPtr(c->raw()), scratch, Always); + ma_bx(scratch); + } + void branch(const Register reg) { ma_bx(reg); } + void nop() { ma_nop(); } + void shortJumpSizedNop() { ma_nop(); } + void ret() { ma_pop(pc); } + void retn(Imm32 n) { + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + ma_popn_pc(n, scratch, scratch2); + } + void push(Imm32 imm) { + ScratchRegisterScope scratch(asMasm()); + ma_mov(imm, scratch); + ma_push(scratch); + } + void push(ImmWord imm) { push(Imm32(imm.value)); } + void push(ImmGCPtr imm) { + ScratchRegisterScope scratch(asMasm()); + ma_mov(imm, scratch); + ma_push(scratch); + } + void push(const Address& addr) { + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + ma_ldr(addr, scratch, scratch2); + ma_push(scratch); + } + void push(Register reg) { + if (reg == sp) { + ScratchRegisterScope scratch(asMasm()); + ma_push_sp(reg, scratch); + } else { + ma_push(reg); + } + } + void push(FloatRegister reg) { ma_vpush(VFPRegister(reg)); } + void pushWithPadding(Register reg, const Imm32 extraSpace) { + ScratchRegisterScope scratch(asMasm()); + Imm32 totSpace = Imm32(extraSpace.value + 4); + ma_dtr(IsStore, sp, totSpace, reg, scratch, PreIndex); + } + void pushWithPadding(Imm32 imm, const Imm32 extraSpace) { + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + Imm32 totSpace = Imm32(extraSpace.value + 4); + ma_mov(imm, scratch); + ma_dtr(IsStore, sp, totSpace, scratch, scratch2, PreIndex); + } + + void pop(Register reg) { ma_pop(reg); } + void pop(FloatRegister reg) { ma_vpop(VFPRegister(reg)); } + + void popN(Register reg, Imm32 extraSpace) { + ScratchRegisterScope scratch(asMasm()); + Imm32 totSpace = Imm32(extraSpace.value + 4); + ma_dtr(IsLoad, sp, totSpace, reg, scratch, PostIndex); + } + + CodeOffset toggledJump(Label* label); + + // Emit a BLX or NOP instruction. ToggleCall can be used to patch this + // instruction. + CodeOffset toggledCall(JitCode* target, bool enabled); + + CodeOffset pushWithPatch(ImmWord imm) { + ScratchRegisterScope scratch(asMasm()); + CodeOffset label = movWithPatch(imm, scratch); + ma_push(scratch); + return label; + } + + CodeOffset movWithPatch(ImmWord imm, Register dest) { + CodeOffset label = CodeOffset(currentOffset()); + ma_movPatchable(Imm32(imm.value), dest, Always); + return label; + } + CodeOffset movWithPatch(ImmPtr imm, Register dest) { + return movWithPatch(ImmWord(uintptr_t(imm.value)), dest); + } + + void jump(Label* label) { as_b(label); } + void jump(JitCode* code) { branch(code); } + void jump(ImmPtr ptr) { + ScratchRegisterScope scratch(asMasm()); + movePtr(ptr, scratch); + ma_bx(scratch); + } + void jump(TrampolinePtr code) { jump(ImmPtr(code.value)); } + void jump(Register reg) { ma_bx(reg); } + void jump(const Address& addr) { + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + ma_ldr(addr, scratch, scratch2); + ma_bx(scratch); + } + + void negl(Register reg) { ma_neg(reg, reg, SetCC); } + void test32(Register lhs, Register rhs) { ma_tst(lhs, rhs); } + void test32(Register lhs, Imm32 imm) { + ScratchRegisterScope scratch(asMasm()); + ma_tst(lhs, imm, scratch); + } + void test32(const Address& addr, Imm32 imm) { + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + ma_ldr(addr, scratch, scratch2); + ma_tst(scratch, imm, scratch2); + } + void testPtr(Register lhs, Register rhs) { test32(lhs, rhs); } + + void splitTagForTest(const ValueOperand& value, ScratchTagScope& tag) { + MOZ_ASSERT(value.typeReg() == tag); + } + + // Higher level tag testing code. + Condition testInt32(Condition cond, const ValueOperand& value); + Condition testBoolean(Condition cond, const ValueOperand& value); + Condition testDouble(Condition cond, const ValueOperand& value); + Condition testNull(Condition cond, const ValueOperand& value); + Condition testUndefined(Condition cond, const ValueOperand& value); + Condition testString(Condition cond, const ValueOperand& value); + Condition testSymbol(Condition cond, const ValueOperand& value); + Condition testBigInt(Condition cond, const ValueOperand& value); + Condition testObject(Condition cond, const ValueOperand& value); + Condition testNumber(Condition cond, const ValueOperand& value); + Condition testMagic(Condition cond, const ValueOperand& value); + + Condition testPrimitive(Condition cond, const ValueOperand& value); + Condition testGCThing(Condition cond, const ValueOperand& value); + + // Register-based tests. + Condition testInt32(Condition cond, Register tag); + Condition testBoolean(Condition cond, Register tag); + Condition testNull(Condition cond, Register tag); + Condition testUndefined(Condition cond, Register tag); + Condition testString(Condition cond, Register tag); + Condition testSymbol(Condition cond, Register tag); + Condition testBigInt(Condition cond, Register tag); + Condition testObject(Condition cond, Register tag); + Condition testDouble(Condition cond, Register tag); + Condition testNumber(Condition cond, Register tag); + Condition testMagic(Condition cond, Register tag); + Condition testPrimitive(Condition cond, Register tag); + Condition testGCThing(Condition cond, Register tag); + + Condition testGCThing(Condition cond, const Address& address); + Condition testMagic(Condition cond, const Address& address); + Condition testInt32(Condition cond, const Address& address); + Condition testDouble(Condition cond, const Address& address); + Condition testBoolean(Condition cond, const Address& address); + Condition testNull(Condition cond, const Address& address); + Condition testUndefined(Condition cond, const Address& address); + Condition testString(Condition cond, const Address& address); + Condition testSymbol(Condition cond, const Address& address); + Condition testBigInt(Condition cond, const Address& address); + Condition testObject(Condition cond, const Address& address); + Condition testNumber(Condition cond, const Address& address); + + Condition testUndefined(Condition cond, const BaseIndex& src); + Condition testNull(Condition cond, const BaseIndex& src); + Condition testBoolean(Condition cond, const BaseIndex& src); + Condition testString(Condition cond, const BaseIndex& src); + Condition testSymbol(Condition cond, const BaseIndex& src); + Condition testBigInt(Condition cond, const BaseIndex& src); + Condition testInt32(Condition cond, const BaseIndex& src); + Condition testObject(Condition cond, const BaseIndex& src); + Condition testDouble(Condition cond, const BaseIndex& src); + Condition testMagic(Condition cond, const BaseIndex& src); + Condition testGCThing(Condition cond, const BaseIndex& src); + + // Unboxing code. + void unboxNonDouble(const ValueOperand& operand, Register dest, + JSValueType type); + void unboxNonDouble(const Address& src, Register dest, JSValueType type); + void unboxNonDouble(const BaseIndex& src, Register dest, JSValueType type); + void unboxInt32(const ValueOperand& src, Register dest) { + unboxNonDouble(src, dest, JSVAL_TYPE_INT32); + } + void unboxInt32(const Address& src, Register dest) { + unboxNonDouble(src, dest, JSVAL_TYPE_INT32); + } + void unboxInt32(const BaseIndex& src, Register dest) { + unboxNonDouble(src, dest, JSVAL_TYPE_INT32); + } + void unboxBoolean(const ValueOperand& src, Register dest) { + unboxNonDouble(src, dest, JSVAL_TYPE_BOOLEAN); + } + void unboxBoolean(const Address& src, Register dest) { + unboxNonDouble(src, dest, JSVAL_TYPE_BOOLEAN); + } + void unboxBoolean(const BaseIndex& src, Register dest) { + unboxNonDouble(src, dest, JSVAL_TYPE_BOOLEAN); + } + void unboxString(const ValueOperand& src, Register dest) { + unboxNonDouble(src, dest, JSVAL_TYPE_STRING); + } + void unboxString(const Address& src, Register dest) { + unboxNonDouble(src, dest, JSVAL_TYPE_STRING); + } + void unboxSymbol(const ValueOperand& src, Register dest) { + unboxNonDouble(src, dest, JSVAL_TYPE_SYMBOL); + } + void unboxSymbol(const Address& src, Register dest) { + unboxNonDouble(src, dest, JSVAL_TYPE_SYMBOL); + } + void unboxBigInt(const ValueOperand& src, Register dest) { + unboxNonDouble(src, dest, JSVAL_TYPE_BIGINT); + } + void unboxBigInt(const Address& src, Register dest) { + unboxNonDouble(src, dest, JSVAL_TYPE_BIGINT); + } + void unboxObject(const ValueOperand& src, Register dest) { + unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT); + } + void unboxObject(const Address& src, Register dest) { + unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT); + } + void unboxObject(const BaseIndex& src, Register dest) { + unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT); + } + void unboxObjectOrNull(const ValueOperand& src, Register dest) { + // Due to Spectre mitigation logic (see Value.h), if the value is an Object + // then this yields the object; otherwise it yields zero (null), as desired. + unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT); + } + void unboxObjectOrNull(const Address& src, Register dest) { + unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT); + } + void unboxObjectOrNull(const BaseIndex& src, Register dest) { + unboxNonDouble(src, dest, JSVAL_TYPE_OBJECT); + } + void unboxDouble(const ValueOperand& src, FloatRegister dest); + void unboxDouble(const Address& src, FloatRegister dest); + void unboxDouble(const BaseIndex& src, FloatRegister dest); + + void unboxValue(const ValueOperand& src, AnyRegister dest, JSValueType type); + + // See comment in MacroAssembler-x64.h. + void unboxGCThingForGCBarrier(const Address& src, Register dest) { + load32(ToPayload(src), dest); + } + + void notBoolean(const ValueOperand& val) { + as_eor(val.payloadReg(), val.payloadReg(), Imm8(1)); + } + + template <typename T> + void fallibleUnboxPtrImpl(const T& src, Register dest, JSValueType type, + Label* fail); + + // Boxing code. + void boxDouble(FloatRegister src, const ValueOperand& dest, FloatRegister); + void boxNonDouble(JSValueType type, Register src, const ValueOperand& dest); + + // Extended unboxing API. If the payload is already in a register, returns + // that register. Otherwise, provides a move to the given scratch register, + // and returns that. + [[nodiscard]] Register extractObject(const Address& address, + Register scratch); + [[nodiscard]] Register extractObject(const ValueOperand& value, + Register scratch) { + unboxNonDouble(value, value.payloadReg(), JSVAL_TYPE_OBJECT); + return value.payloadReg(); + } + [[nodiscard]] Register extractSymbol(const ValueOperand& value, + Register scratch) { + unboxNonDouble(value, value.payloadReg(), JSVAL_TYPE_SYMBOL); + return value.payloadReg(); + } + [[nodiscard]] Register extractInt32(const ValueOperand& value, + Register scratch) { + return value.payloadReg(); + } + [[nodiscard]] Register extractBoolean(const ValueOperand& value, + Register scratch) { + return value.payloadReg(); + } + [[nodiscard]] Register extractTag(const Address& address, Register scratch); + [[nodiscard]] Register extractTag(const BaseIndex& address, Register scratch); + [[nodiscard]] Register extractTag(const ValueOperand& value, + Register scratch) { + return value.typeReg(); + } + + void boolValueToDouble(const ValueOperand& operand, FloatRegister dest); + void int32ValueToDouble(const ValueOperand& operand, FloatRegister dest); + void loadInt32OrDouble(const Address& src, FloatRegister dest); + void loadInt32OrDouble(Register base, Register index, FloatRegister dest, + int32_t shift = defaultShift); + void loadConstantDouble(double dp, FloatRegister dest); + + // Treat the value as a boolean, and set condition codes accordingly. + Condition testInt32Truthy(bool truthy, const ValueOperand& operand); + Condition testBooleanTruthy(bool truthy, const ValueOperand& operand); + Condition testDoubleTruthy(bool truthy, FloatRegister reg); + Condition testStringTruthy(bool truthy, const ValueOperand& value); + Condition testBigIntTruthy(bool truthy, const ValueOperand& value); + + void boolValueToFloat32(const ValueOperand& operand, FloatRegister dest); + void int32ValueToFloat32(const ValueOperand& operand, FloatRegister dest); + void loadConstantFloat32(float f, FloatRegister dest); + + void loadUnboxedValue(Address address, MIRType type, AnyRegister dest) { + if (dest.isFloat()) { + loadInt32OrDouble(address, dest.fpu()); + } else { + ScratchRegisterScope scratch(asMasm()); + ma_ldr(address, dest.gpr(), scratch); + } + } + + void loadUnboxedValue(BaseIndex address, MIRType type, AnyRegister dest) { + if (dest.isFloat()) { + loadInt32OrDouble(address.base, address.index, dest.fpu(), address.scale); + } else { + load32(address, dest.gpr()); + } + } + + template <typename T> + void storeUnboxedPayload(ValueOperand value, T address, size_t nbytes, + JSValueType) { + switch (nbytes) { + case 4: + storePtr(value.payloadReg(), address); + return; + case 1: + store8(value.payloadReg(), address); + return; + default: + MOZ_CRASH("Bad payload width"); + } + } + + void storeValue(ValueOperand val, const Address& dst); + void storeValue(ValueOperand val, const BaseIndex& dest); + void storeValue(JSValueType type, Register reg, BaseIndex dest) { + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + + int32_t payloadoffset = dest.offset + NUNBOX32_PAYLOAD_OFFSET; + int32_t typeoffset = dest.offset + NUNBOX32_TYPE_OFFSET; + + ma_alu(dest.base, lsl(dest.index, dest.scale), scratch, OpAdd); + + // Store the payload. + if (payloadoffset < 4096 && payloadoffset > -4096) { + ma_str(reg, DTRAddr(scratch, DtrOffImm(payloadoffset))); + } else { + ma_str(reg, Address(scratch, payloadoffset), scratch2); + } + + // Store the type. + if (typeoffset < 4096 && typeoffset > -4096) { + // Encodable as DTRAddr, so only two instructions needed. + ma_mov(ImmTag(JSVAL_TYPE_TO_TAG(type)), scratch2); + ma_str(scratch2, DTRAddr(scratch, DtrOffImm(typeoffset))); + } else { + // Since there are only two scratch registers, the offset must be + // applied early using a third instruction to be safe. + ma_add(Imm32(typeoffset), scratch, scratch2); + ma_mov(ImmTag(JSVAL_TYPE_TO_TAG(type)), scratch2); + ma_str(scratch2, DTRAddr(scratch, DtrOffImm(0))); + } + } + void storeValue(JSValueType type, Register reg, Address dest) { + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + + ma_str(reg, dest, scratch2); + ma_mov(ImmTag(JSVAL_TYPE_TO_TAG(type)), scratch); + ma_str(scratch, Address(dest.base, dest.offset + NUNBOX32_TYPE_OFFSET), + scratch2); + } + void storeValue(const Value& val, const Address& dest) { + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + + ma_mov(Imm32(val.toNunboxTag()), scratch); + ma_str(scratch, ToType(dest), scratch2); + if (val.isGCThing()) { + ma_mov(ImmGCPtr(val.toGCThing()), scratch); + } else { + ma_mov(Imm32(val.toNunboxPayload()), scratch); + } + ma_str(scratch, ToPayload(dest), scratch2); + } + void storeValue(const Value& val, BaseIndex dest) { + ScratchRegisterScope scratch(asMasm()); + SecondScratchRegisterScope scratch2(asMasm()); + + int32_t typeoffset = dest.offset + NUNBOX32_TYPE_OFFSET; + int32_t payloadoffset = dest.offset + NUNBOX32_PAYLOAD_OFFSET; + + ma_alu(dest.base, lsl(dest.index, dest.scale), scratch, OpAdd); + + // Store the type. + if (typeoffset < 4096 && typeoffset > -4096) { + ma_mov(Imm32(val.toNunboxTag()), scratch2); + ma_str(scratch2, DTRAddr(scratch, DtrOffImm(typeoffset))); + } else { + ma_add(Imm32(typeoffset), scratch, scratch2); + ma_mov(Imm32(val.toNunboxTag()), scratch2); + ma_str(scratch2, DTRAddr(scratch, DtrOffImm(0))); + // Restore scratch for the payload store. + ma_alu(dest.base, lsl(dest.index, dest.scale), scratch, OpAdd); + } + + // Store the payload, marking if necessary. + if (payloadoffset < 4096 && payloadoffset > -4096) { + if (val.isGCThing()) { + ma_mov(ImmGCPtr(val.toGCThing()), scratch2); + } else { + ma_mov(Imm32(val.toNunboxPayload()), scratch2); + } + ma_str(scratch2, DTRAddr(scratch, DtrOffImm(payloadoffset))); + } else { + ma_add(Imm32(payloadoffset), scratch, scratch2); + if (val.isGCThing()) { + ma_mov(ImmGCPtr(val.toGCThing()), scratch2); + } else { + ma_mov(Imm32(val.toNunboxPayload()), scratch2); + } + ma_str(scratch2, DTRAddr(scratch, DtrOffImm(0))); + } + } + void storeValue(const Address& src, const Address& dest, Register temp) { + load32(ToType(src), temp); + store32(temp, ToType(dest)); + + load32(ToPayload(src), temp); + store32(temp, ToPayload(dest)); + } + + void storePrivateValue(Register src, const Address& dest) { + store32(Imm32(0), ToType(dest)); + store32(src, ToPayload(dest)); + } + void storePrivateValue(ImmGCPtr imm, const Address& dest) { + store32(Imm32(0), ToType(dest)); + storePtr(imm, ToPayload(dest)); + } + + void loadValue(Address src, ValueOperand val); + void loadValue(Operand dest, ValueOperand val) { + loadValue(dest.toAddress(), val); + } + void loadValue(const BaseIndex& addr, ValueOperand val); + + // Like loadValue but guaranteed to not use LDRD or LDM instructions (these + // don't support unaligned accesses). + void loadUnalignedValue(const Address& src, ValueOperand dest); + + void tagValue(JSValueType type, Register payload, ValueOperand dest); + + void pushValue(ValueOperand val); + void popValue(ValueOperand val); + void pushValue(const Value& val) { + push(Imm32(val.toNunboxTag())); + if (val.isGCThing()) { + push(ImmGCPtr(val.toGCThing())); + } else { + push(Imm32(val.toNunboxPayload())); + } + } + void pushValue(JSValueType type, Register reg) { + push(ImmTag(JSVAL_TYPE_TO_TAG(type))); + ma_push(reg); + } + void pushValue(const Address& addr); + void pushValue(const BaseIndex& addr, Register scratch); + + void storePayload(const Value& val, const Address& dest); + void storePayload(Register src, const Address& dest); + void storePayload(const Value& val, const BaseIndex& dest); + void storePayload(Register src, const BaseIndex& dest); + void storeTypeTag(ImmTag tag, const Address& dest); + void storeTypeTag(ImmTag tag, const BaseIndex& dest); + + void handleFailureWithHandlerTail(Label* profilerExitTail, + Label* bailoutTail); + + ///////////////////////////////////////////////////////////////// + // Common interface. + ///////////////////////////////////////////////////////////////// + public: + void not32(Register reg); + + void move32(Imm32 imm, Register dest); + void move32(Register src, Register dest); + + void movePtr(Register src, Register dest); + void movePtr(ImmWord imm, Register dest); + void movePtr(ImmPtr imm, Register dest); + void movePtr(wasm::SymbolicAddress imm, Register dest); + void movePtr(ImmGCPtr imm, Register dest); + + void load8SignExtend(const Address& address, Register dest); + void load8SignExtend(const BaseIndex& src, Register dest); + + void load8ZeroExtend(const Address& address, Register dest); + void load8ZeroExtend(const BaseIndex& src, Register dest); + + void load16SignExtend(const Address& address, Register dest); + void load16SignExtend(const BaseIndex& src, Register dest); + + template <typename S> + void load16UnalignedSignExtend(const S& src, Register dest) { + // load16SignExtend uses |ldrsh|, which supports unaligned access. + load16SignExtend(src, dest); + } + + void load16ZeroExtend(const Address& address, Register dest); + void load16ZeroExtend(const BaseIndex& src, Register dest); + + template <typename S> + void load16UnalignedZeroExtend(const S& src, Register dest) { + // load16ZeroExtend uses |ldrh|, which supports unaligned access. + load16ZeroExtend(src, dest); + } + + void load32(const Address& address, Register dest); + void load32(const BaseIndex& address, Register dest); + void load32(AbsoluteAddress address, Register dest); + + template <typename S> + void load32Unaligned(const S& src, Register dest) { + // load32 uses |ldr|, which supports unaligned access. + load32(src, dest); + } + + void load64(const Address& address, Register64 dest) { + bool highBeforeLow = address.base == dest.low; + if (highBeforeLow) { + load32(HighWord(address), dest.high); + load32(LowWord(address), dest.low); + } else { + load32(LowWord(address), dest.low); + load32(HighWord(address), dest.high); + } + } + void load64(const BaseIndex& address, Register64 dest) { + // If you run into this, relax your register allocation constraints. + MOZ_RELEASE_ASSERT( + !((address.base == dest.low || address.base == dest.high) && + (address.index == dest.low || address.index == dest.high))); + bool highBeforeLow = address.base == dest.low || address.index == dest.low; + if (highBeforeLow) { + load32(HighWord(address), dest.high); + load32(LowWord(address), dest.low); + } else { + load32(LowWord(address), dest.low); + load32(HighWord(address), dest.high); + } + } + + template <typename S> + void load64Unaligned(const S& src, Register64 dest) { + // load64 calls load32, which supports unaligned accesses. + load64(src, dest); + } + + void loadPtr(const Address& address, Register dest); + void loadPtr(const BaseIndex& src, Register dest); + void loadPtr(AbsoluteAddress address, Register dest); + void loadPtr(wasm::SymbolicAddress address, Register dest); + + void loadPrivate(const Address& address, Register dest); + + void loadDouble(const Address& addr, FloatRegister dest); + void loadDouble(const BaseIndex& src, FloatRegister dest); + + // Load a float value into a register, then expand it to a double. + void loadFloatAsDouble(const Address& addr, FloatRegister dest); + void loadFloatAsDouble(const BaseIndex& src, FloatRegister dest); + + void loadFloat32(const Address& addr, FloatRegister dest); + void loadFloat32(const BaseIndex& src, FloatRegister dest); + + void store8(Register src, const Address& address); + void store8(Imm32 imm, const Address& address); + void store8(Register src, const BaseIndex& address); + void store8(Imm32 imm, const BaseIndex& address); + + void store16(Register src, const Address& address); + void store16(Imm32 imm, const Address& address); + void store16(Register src, const BaseIndex& address); + void store16(Imm32 imm, const BaseIndex& address); + + template <typename S, typename T> + void store16Unaligned(const S& src, const T& dest) { + // store16 uses |strh|, which supports unaligned access. + store16(src, dest); + } + + void store32(Register src, AbsoluteAddress address); + void store32(Register src, const Address& address); + void store32(Register src, const BaseIndex& address); + void store32(Imm32 src, const Address& address); + void store32(Imm32 src, const BaseIndex& address); + + template <typename S, typename T> + void store32Unaligned(const S& src, const T& dest) { + // store32 uses |str|, which supports unaligned access. + store32(src, dest); + } + + void store64(Register64 src, Address address) { + store32(src.low, LowWord(address)); + store32(src.high, HighWord(address)); + } + + void store64(Register64 src, const BaseIndex& address) { + store32(src.low, LowWord(address)); + store32(src.high, HighWord(address)); + } + + void store64(Imm64 imm, Address address) { + store32(imm.low(), LowWord(address)); + store32(imm.hi(), HighWord(address)); + } + + void store64(Imm64 imm, const BaseIndex& address) { + store32(imm.low(), LowWord(address)); + store32(imm.hi(), HighWord(address)); + } + + template <typename S, typename T> + void store64Unaligned(const S& src, const T& dest) { + // store64 calls store32, which supports unaligned access. + store64(src, dest); + } + + void storePtr(ImmWord imm, const Address& address); + void storePtr(ImmWord imm, const BaseIndex& address); + void storePtr(ImmPtr imm, const Address& address); + void storePtr(ImmPtr imm, const BaseIndex& address); + void storePtr(ImmGCPtr imm, const Address& address); + void storePtr(ImmGCPtr imm, const BaseIndex& address); + void storePtr(Register src, const Address& address); + void storePtr(Register src, const BaseIndex& address); + void storePtr(Register src, AbsoluteAddress dest); + + void moveDouble(FloatRegister src, FloatRegister dest, + Condition cc = Always) { + ma_vmov(src, dest, cc); + } + + inline void incrementInt32Value(const Address& addr); + + void cmp32(Register lhs, Imm32 rhs); + void cmp32(Register lhs, Register rhs); + void cmp32(const Address& lhs, Imm32 rhs); + void cmp32(const Address& lhs, Register rhs); + + void cmpPtr(Register lhs, Register rhs); + void cmpPtr(Register lhs, ImmWord rhs); + void cmpPtr(Register lhs, ImmPtr rhs); + void cmpPtr(Register lhs, ImmGCPtr rhs); + void cmpPtr(Register lhs, Imm32 rhs); + void cmpPtr(const Address& lhs, Register rhs); + void cmpPtr(const Address& lhs, ImmWord rhs); + void cmpPtr(const Address& lhs, ImmPtr rhs); + void cmpPtr(const Address& lhs, ImmGCPtr rhs); + void cmpPtr(const Address& lhs, Imm32 rhs); + + void setStackArg(Register reg, uint32_t arg); + + void breakpoint(); + // Conditional breakpoint. + void breakpoint(Condition cc); + + // Trigger the simulator's interactive read-eval-print loop. + // The message will be printed at the stopping point. + // (On non-simulator builds, does nothing.) + void simulatorStop(const char* msg); + + // Evaluate srcDest = minmax<isMax>{Float32,Double}(srcDest, other). + // Checks for NaN if canBeNaN is true. + void minMaxDouble(FloatRegister srcDest, FloatRegister other, bool canBeNaN, + bool isMax); + void minMaxFloat32(FloatRegister srcDest, FloatRegister other, bool canBeNaN, + bool isMax); + + void compareDouble(FloatRegister lhs, FloatRegister rhs); + + void compareFloat(FloatRegister lhs, FloatRegister rhs); + + void checkStackAlignment(); + + // If source is a double, load it into dest. If source is int32, convert it + // to double. Else, branch to failure. + void ensureDouble(const ValueOperand& source, FloatRegister dest, + Label* failure); + + void emitSet(Assembler::Condition cond, Register dest) { + ma_mov(Imm32(0), dest); + ma_mov(Imm32(1), dest, cond); + } + + void testNullSet(Condition cond, const ValueOperand& value, Register dest) { + cond = testNull(cond, value); + emitSet(cond, dest); + } + + void testObjectSet(Condition cond, const ValueOperand& value, Register dest) { + cond = testObject(cond, value); + emitSet(cond, dest); + } + + void testUndefinedSet(Condition cond, const ValueOperand& value, + Register dest) { + cond = testUndefined(cond, value); + emitSet(cond, dest); + } + + protected: + bool buildOOLFakeExitFrame(void* fakeReturnAddr); + + public: + void computeEffectiveAddress(const Address& address, Register dest) { + ScratchRegisterScope scratch(asMasm()); + ma_add(address.base, Imm32(address.offset), dest, scratch, LeaveCC); + } + void computeEffectiveAddress(const BaseIndex& address, Register dest) { + ScratchRegisterScope scratch(asMasm()); + ma_alu(address.base, lsl(address.index, address.scale), dest, OpAdd, + LeaveCC); + if (address.offset) { + ma_add(dest, Imm32(address.offset), dest, scratch, LeaveCC); + } + } + void floor(FloatRegister input, Register output, Label* handleNotAnInt); + void floorf(FloatRegister input, Register output, Label* handleNotAnInt); + void ceil(FloatRegister input, Register output, Label* handleNotAnInt); + void ceilf(FloatRegister input, Register output, Label* handleNotAnInt); + void round(FloatRegister input, Register output, Label* handleNotAnInt, + FloatRegister tmp); + void roundf(FloatRegister input, Register output, Label* handleNotAnInt, + FloatRegister tmp); + void trunc(FloatRegister input, Register output, Label* handleNotAnInt); + void truncf(FloatRegister input, Register output, Label* handleNotAnInt); + + void lea(Operand addr, Register dest) { + ScratchRegisterScope scratch(asMasm()); + ma_add(addr.baseReg(), Imm32(addr.disp()), dest, scratch); + } + + void abiret() { as_bx(lr); } + + void moveFloat32(FloatRegister src, FloatRegister dest, + Condition cc = Always) { + as_vmov(VFPRegister(dest).singleOverlay(), VFPRegister(src).singleOverlay(), + cc); + } + + // Instrumentation for entering and leaving the profiler. + void profilerEnterFrame(Register framePtr, Register scratch); + void profilerExitFrame(); +}; + +typedef MacroAssemblerARMCompat MacroAssemblerSpecific; + +} // namespace jit +} // namespace js + +#endif /* jit_arm_MacroAssembler_arm_h */ diff --git a/js/src/jit/arm/MoveEmitter-arm.cpp b/js/src/jit/arm/MoveEmitter-arm.cpp new file mode 100644 index 0000000000..1807c41b50 --- /dev/null +++ b/js/src/jit/arm/MoveEmitter-arm.cpp @@ -0,0 +1,413 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "jit/arm/MoveEmitter-arm.h" + +#include "jit/MacroAssembler-inl.h" + +using namespace js; +using namespace js::jit; + +MoveEmitterARM::MoveEmitterARM(MacroAssembler& masm) + : inCycle_(0), + masm(masm), + pushedAtCycle_(-1), + pushedAtSpill_(-1), + spilledReg_(InvalidReg), + spilledFloatReg_(InvalidFloatReg) { + pushedAtStart_ = masm.framePushed(); +} + +void MoveEmitterARM::emit(const MoveResolver& moves) { + if (moves.numCycles()) { + // Reserve stack for cycle resolution + static_assert(SpillSlotSize == 8); + masm.reserveStack(moves.numCycles() * SpillSlotSize); + pushedAtCycle_ = masm.framePushed(); + } + + for (size_t i = 0; i < moves.numMoves(); i++) { + emit(moves.getMove(i)); + } +} + +MoveEmitterARM::~MoveEmitterARM() { assertDone(); } + +Address MoveEmitterARM::cycleSlot(uint32_t slot, uint32_t subslot) const { + int32_t offset = masm.framePushed() - pushedAtCycle_; + MOZ_ASSERT(offset < 4096 && offset > -4096); + return Address(StackPointer, offset + slot * sizeof(double) + subslot); +} + +Address MoveEmitterARM::spillSlot() const { + int32_t offset = masm.framePushed() - pushedAtSpill_; + MOZ_ASSERT(offset < 4096 && offset > -4096); + return Address(StackPointer, offset); +} + +Address MoveEmitterARM::toAddress(const MoveOperand& operand) const { + MOZ_ASSERT(operand.isMemoryOrEffectiveAddress()); + + if (operand.base() != StackPointer) { + return Address(operand.base(), operand.disp()); + } + + MOZ_ASSERT(operand.disp() >= 0); + + // Otherwise, the stack offset may need to be adjusted. + return Address(StackPointer, + operand.disp() + (masm.framePushed() - pushedAtStart_)); +} + +Register MoveEmitterARM::tempReg() { + if (spilledReg_ != InvalidReg) { + return spilledReg_; + } + + // For now, just pick r12/ip as the eviction point. This is totally random, + // and if it ends up being bad, we can use actual heuristics later. r12 is + // actually a bad choice. It is the scratch register, which is frequently + // used for address computations, such as those found when we attempt to + // access values more than 4096 off of the stack pointer. Instead, use lr, + // the LinkRegister. + spilledReg_ = r14; + if (pushedAtSpill_ == -1) { + masm.Push(spilledReg_); + pushedAtSpill_ = masm.framePushed(); + } else { + ScratchRegisterScope scratch(masm); + masm.ma_str(spilledReg_, spillSlot(), scratch); + } + return spilledReg_; +} + +void MoveEmitterARM::breakCycle(const MoveOperand& from, const MoveOperand& to, + MoveOp::Type type, uint32_t slotId) { + // There is some pattern: + // (A -> B) + // (B -> A) + // + // This case handles (A -> B), which we reach first. We save B, then allow + // the original move to continue. + + ScratchRegisterScope scratch(masm); + + switch (type) { + case MoveOp::FLOAT32: + if (to.isMemory()) { + ScratchFloat32Scope scratchFloat32(masm); + masm.ma_vldr(toAddress(to), scratchFloat32, scratch); + // Since it is uncertain if the load will be aligned or not + // just fill both of them with the same value. + masm.ma_vstr(scratchFloat32, cycleSlot(slotId, 0), scratch); + masm.ma_vstr(scratchFloat32, cycleSlot(slotId, 4), scratch); + } else if (to.isGeneralReg()) { + // Since it is uncertain if the load will be aligned or not + // just fill both of them with the same value. + masm.ma_str(to.reg(), cycleSlot(slotId, 0), scratch); + masm.ma_str(to.reg(), cycleSlot(slotId, 4), scratch); + } else { + FloatRegister src = to.floatReg(); + // Just always store the largest possible size. Currently, this is + // a double. When SIMD is added, two doubles will need to be stored. + masm.ma_vstr(src.doubleOverlay(), cycleSlot(slotId, 0), scratch); + } + break; + case MoveOp::DOUBLE: + if (to.isMemory()) { + ScratchDoubleScope scratchDouble(masm); + masm.ma_vldr(toAddress(to), scratchDouble, scratch); + masm.ma_vstr(scratchDouble, cycleSlot(slotId, 0), scratch); + } else if (to.isGeneralRegPair()) { + ScratchDoubleScope scratchDouble(masm); + masm.ma_vxfer(to.evenReg(), to.oddReg(), scratchDouble); + masm.ma_vstr(scratchDouble, cycleSlot(slotId, 0), scratch); + } else { + masm.ma_vstr(to.floatReg().doubleOverlay(), cycleSlot(slotId, 0), + scratch); + } + break; + case MoveOp::INT32: + case MoveOp::GENERAL: + // an non-vfp value + if (to.isMemory()) { + Register temp = tempReg(); + masm.ma_ldr(toAddress(to), temp, scratch); + masm.ma_str(temp, cycleSlot(0, 0), scratch); + } else { + if (to.reg() == spilledReg_) { + // If the destination was spilled, restore it first. + masm.ma_ldr(spillSlot(), spilledReg_, scratch); + spilledReg_ = InvalidReg; + } + masm.ma_str(to.reg(), cycleSlot(0, 0), scratch); + } + break; + default: + MOZ_CRASH("Unexpected move type"); + } +} + +void MoveEmitterARM::completeCycle(const MoveOperand& from, + const MoveOperand& to, MoveOp::Type type, + uint32_t slotId) { + // There is some pattern: + // (A -> B) + // (B -> A) + // + // This case handles (B -> A), which we reach last. We emit a move from the + // saved value of B, to A. + + ScratchRegisterScope scratch(masm); + + switch (type) { + case MoveOp::FLOAT32: + MOZ_ASSERT(!to.isGeneralRegPair()); + if (to.isMemory()) { + ScratchFloat32Scope scratchFloat32(masm); + masm.ma_vldr(cycleSlot(slotId, 0), scratchFloat32, scratch); + masm.ma_vstr(scratchFloat32, toAddress(to), scratch); + } else if (to.isGeneralReg()) { + MOZ_ASSERT(type == MoveOp::FLOAT32); + masm.ma_ldr(toAddress(from), to.reg(), scratch); + } else { + uint32_t offset = 0; + if ((!from.isMemory()) && from.floatReg().numAlignedAliased() == 1) { + offset = sizeof(float); + } + masm.ma_vldr(cycleSlot(slotId, offset), to.floatReg(), scratch); + } + break; + case MoveOp::DOUBLE: + MOZ_ASSERT(!to.isGeneralReg()); + if (to.isMemory()) { + ScratchDoubleScope scratchDouble(masm); + masm.ma_vldr(cycleSlot(slotId, 0), scratchDouble, scratch); + masm.ma_vstr(scratchDouble, toAddress(to), scratch); + } else if (to.isGeneralRegPair()) { + MOZ_ASSERT(type == MoveOp::DOUBLE); + ScratchDoubleScope scratchDouble(masm); + masm.ma_vldr(toAddress(from), scratchDouble, scratch); + masm.ma_vxfer(scratchDouble, to.evenReg(), to.oddReg()); + } else { + uint32_t offset = 0; + if ((!from.isMemory()) && from.floatReg().numAlignedAliased() == 1) { + offset = sizeof(float); + } + masm.ma_vldr(cycleSlot(slotId, offset), to.floatReg(), scratch); + } + break; + case MoveOp::INT32: + case MoveOp::GENERAL: + MOZ_ASSERT(slotId == 0); + if (to.isMemory()) { + Register temp = tempReg(); + masm.ma_ldr(cycleSlot(slotId, 0), temp, scratch); + masm.ma_str(temp, toAddress(to), scratch); + } else { + if (to.reg() == spilledReg_) { + // Make sure we don't re-clobber the spilled register later. + spilledReg_ = InvalidReg; + } + masm.ma_ldr(cycleSlot(slotId, 0), to.reg(), scratch); + } + break; + default: + MOZ_CRASH("Unexpected move type"); + } +} + +void MoveEmitterARM::emitMove(const MoveOperand& from, const MoveOperand& to) { + // Register pairs are used to store Double values during calls. + MOZ_ASSERT(!from.isGeneralRegPair()); + MOZ_ASSERT(!to.isGeneralRegPair()); + + ScratchRegisterScope scratch(masm); + + if (to.isGeneralReg() && to.reg() == spilledReg_) { + // If the destination is the spilled register, make sure we + // don't re-clobber its value. + spilledReg_ = InvalidReg; + } + + if (from.isGeneralReg()) { + if (from.reg() == spilledReg_) { + // If the source is a register that has been spilled, make sure + // to load the source back into that register. + masm.ma_ldr(spillSlot(), spilledReg_, scratch); + spilledReg_ = InvalidReg; + } + if (to.isMemoryOrEffectiveAddress()) { + masm.ma_str(from.reg(), toAddress(to), scratch); + } else { + masm.ma_mov(from.reg(), to.reg()); + } + } else if (to.isGeneralReg()) { + MOZ_ASSERT(from.isMemoryOrEffectiveAddress()); + if (from.isMemory()) { + masm.ma_ldr(toAddress(from), to.reg(), scratch); + } else { + masm.ma_add(from.base(), Imm32(from.disp()), to.reg(), scratch); + } + } else { + // Memory to memory gpr move. + Register reg = tempReg(); + + MOZ_ASSERT(from.isMemoryOrEffectiveAddress()); + if (from.isMemory()) { + masm.ma_ldr(toAddress(from), reg, scratch); + } else { + masm.ma_add(from.base(), Imm32(from.disp()), reg, scratch); + } + MOZ_ASSERT(to.base() != reg); + masm.ma_str(reg, toAddress(to), scratch); + } +} + +void MoveEmitterARM::emitFloat32Move(const MoveOperand& from, + const MoveOperand& to) { + // Register pairs are used to store Double values during calls. + MOZ_ASSERT(!from.isGeneralRegPair()); + MOZ_ASSERT(!to.isGeneralRegPair()); + + ScratchRegisterScope scratch(masm); + + if (from.isFloatReg()) { + if (to.isFloatReg()) { + masm.ma_vmov_f32(from.floatReg(), to.floatReg()); + } else if (to.isGeneralReg()) { + masm.ma_vxfer(from.floatReg(), to.reg()); + } else { + masm.ma_vstr(VFPRegister(from.floatReg()).singleOverlay(), toAddress(to), + scratch); + } + } else if (from.isGeneralReg()) { + if (to.isFloatReg()) { + masm.ma_vxfer(from.reg(), to.floatReg()); + } else if (to.isGeneralReg()) { + masm.ma_mov(from.reg(), to.reg()); + } else { + masm.ma_str(from.reg(), toAddress(to), scratch); + } + } else if (to.isFloatReg()) { + masm.ma_vldr(toAddress(from), VFPRegister(to.floatReg()).singleOverlay(), + scratch); + } else if (to.isGeneralReg()) { + masm.ma_ldr(toAddress(from), to.reg(), scratch); + } else { + // Memory to memory move. + MOZ_ASSERT(from.isMemory()); + ScratchFloat32Scope scratchFloat32(masm); + masm.ma_vldr(toAddress(from), scratchFloat32, scratch); + masm.ma_vstr(scratchFloat32, toAddress(to), scratch); + } +} + +void MoveEmitterARM::emitDoubleMove(const MoveOperand& from, + const MoveOperand& to) { + // Registers are used to store pointers / int32 / float32 values. + MOZ_ASSERT(!from.isGeneralReg()); + MOZ_ASSERT(!to.isGeneralReg()); + + ScratchRegisterScope scratch(masm); + + if (from.isFloatReg()) { + if (to.isFloatReg()) { + masm.ma_vmov(from.floatReg(), to.floatReg()); + } else if (to.isGeneralRegPair()) { + masm.ma_vxfer(from.floatReg(), to.evenReg(), to.oddReg()); + } else { + masm.ma_vstr(from.floatReg(), toAddress(to), scratch); + } + } else if (from.isGeneralRegPair()) { + if (to.isFloatReg()) { + masm.ma_vxfer(from.evenReg(), from.oddReg(), to.floatReg()); + } else if (to.isGeneralRegPair()) { + MOZ_ASSERT(!from.aliases(to)); + masm.ma_mov(from.evenReg(), to.evenReg()); + masm.ma_mov(from.oddReg(), to.oddReg()); + } else { + ScratchDoubleScope scratchDouble(masm); + masm.ma_vxfer(from.evenReg(), from.oddReg(), scratchDouble); + masm.ma_vstr(scratchDouble, toAddress(to), scratch); + } + } else if (to.isFloatReg()) { + masm.ma_vldr(toAddress(from), to.floatReg(), scratch); + } else if (to.isGeneralRegPair()) { + MOZ_ASSERT(from.isMemory()); + Address src = toAddress(from); + // Note: We can safely use the MoveOperand's displacement here, + // even if the base is SP: MoveEmitter::toOperand adjusts + // SP-relative operands by the difference between the current + // stack usage and stackAdjust, which emitter.finish() resets to + // 0. + // + // Warning: if the offset isn't within [-255,+255] then this + // will assert-fail (or, if non-debug, load the wrong words). + // Nothing uses such an offset at the time of this writing. + masm.ma_ldrd(EDtrAddr(src.base, EDtrOffImm(src.offset)), to.evenReg(), + to.oddReg()); + } else { + // Memory to memory move. + MOZ_ASSERT(from.isMemory()); + ScratchDoubleScope scratchDouble(masm); + masm.ma_vldr(toAddress(from), scratchDouble, scratch); + masm.ma_vstr(scratchDouble, toAddress(to), scratch); + } +} + +void MoveEmitterARM::emit(const MoveOp& move) { + const MoveOperand& from = move.from(); + const MoveOperand& to = move.to(); + + if (move.isCycleEnd() && move.isCycleBegin()) { + // A fun consequence of aliased registers is you can have multiple + // cycles at once, and one can end exactly where another begins. + breakCycle(from, to, move.endCycleType(), move.cycleBeginSlot()); + completeCycle(from, to, move.type(), move.cycleEndSlot()); + return; + } + + if (move.isCycleEnd()) { + MOZ_ASSERT(inCycle_); + completeCycle(from, to, move.type(), move.cycleEndSlot()); + MOZ_ASSERT(inCycle_ > 0); + inCycle_--; + return; + } + + if (move.isCycleBegin()) { + breakCycle(from, to, move.endCycleType(), move.cycleBeginSlot()); + inCycle_++; + } + + switch (move.type()) { + case MoveOp::FLOAT32: + emitFloat32Move(from, to); + break; + case MoveOp::DOUBLE: + emitDoubleMove(from, to); + break; + case MoveOp::INT32: + case MoveOp::GENERAL: + emitMove(from, to); + break; + default: + MOZ_CRASH("Unexpected move type"); + } +} + +void MoveEmitterARM::assertDone() { MOZ_ASSERT(inCycle_ == 0); } + +void MoveEmitterARM::finish() { + assertDone(); + + if (pushedAtSpill_ != -1 && spilledReg_ != InvalidReg) { + ScratchRegisterScope scratch(masm); + masm.ma_ldr(spillSlot(), spilledReg_, scratch); + } + masm.freeStack(masm.framePushed() - pushedAtStart_); +} diff --git a/js/src/jit/arm/MoveEmitter-arm.h b/js/src/jit/arm/MoveEmitter-arm.h new file mode 100644 index 0000000000..26a84fdbcc --- /dev/null +++ b/js/src/jit/arm/MoveEmitter-arm.h @@ -0,0 +1,70 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifndef jit_arm_MoveEmitter_arm_h +#define jit_arm_MoveEmitter_arm_h + +#include <stdint.h> + +#include "jit/MoveResolver.h" +#include "jit/Registers.h" + +namespace js { +namespace jit { + +struct Address; +class MacroAssembler; + +class MoveEmitterARM { + uint32_t inCycle_; + MacroAssembler& masm; + + // Original stack push value. + uint32_t pushedAtStart_; + + // These store stack offsets to spill locations, snapshotting + // codegen->framePushed_ at the time they were allocated. They are -1 if no + // stack space has been allocated for that particular spill. + int32_t pushedAtCycle_; + int32_t pushedAtSpill_; + + // These are registers that are available for temporary use. They may be + // assigned InvalidReg. If no corresponding spill space has been assigned, + // then these registers do not need to be spilled. + Register spilledReg_; + FloatRegister spilledFloatReg_; + + void assertDone(); + Register tempReg(); + FloatRegister tempFloatReg(); + Address cycleSlot(uint32_t slot, uint32_t subslot) const; + Address spillSlot() const; + Address toAddress(const MoveOperand& operand) const; + + void emitMove(const MoveOperand& from, const MoveOperand& to); + void emitFloat32Move(const MoveOperand& from, const MoveOperand& to); + void emitDoubleMove(const MoveOperand& from, const MoveOperand& to); + void breakCycle(const MoveOperand& from, const MoveOperand& to, + MoveOp::Type type, uint32_t slot); + void completeCycle(const MoveOperand& from, const MoveOperand& to, + MoveOp::Type type, uint32_t slot); + void emit(const MoveOp& move); + + public: + explicit MoveEmitterARM(MacroAssembler& masm); + ~MoveEmitterARM(); + void emit(const MoveResolver& moves); + void finish(); + + void setScratchRegister(Register reg) {} +}; + +typedef MoveEmitterARM MoveEmitter; + +} // namespace jit +} // namespace js + +#endif /* jit_arm_MoveEmitter_arm_h */ diff --git a/js/src/jit/arm/SharedICHelpers-arm-inl.h b/js/src/jit/arm/SharedICHelpers-arm-inl.h new file mode 100644 index 0000000000..2943bafbd8 --- /dev/null +++ b/js/src/jit/arm/SharedICHelpers-arm-inl.h @@ -0,0 +1,79 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifndef jit_arm_SharedICHelpers_arm_inl_h +#define jit_arm_SharedICHelpers_arm_inl_h + +#include "jit/BaselineFrame.h" +#include "jit/SharedICHelpers.h" + +#include "jit/MacroAssembler-inl.h" + +namespace js { +namespace jit { + +inline void EmitBaselineTailCallVM(TrampolinePtr target, MacroAssembler& masm, + uint32_t argSize) { +#ifdef DEBUG + // We assume during this that R0 and R1 have been pushed, and that R2 is + // unused. + static_assert(R2 == ValueOperand(r1, r0)); + + // Store frame size without VMFunction arguments for debug assertions. + masm.movePtr(FramePointer, r0); + masm.ma_sub(StackPointer, r0); + masm.sub32(Imm32(argSize), r0); + Address frameSizeAddr(FramePointer, + BaselineFrame::reverseOffsetOfDebugFrameSize()); + masm.store32(r0, frameSizeAddr); +#endif + + // Push frame descriptor and perform the tail call. + // ICTailCallReg (lr) already contains the return address (as we keep + // it there through the stub calls), but the VMWrapper code being called + // expects the return address to also be pushed on the stack. + static_assert(ICTailCallReg == lr); + masm.pushFrameDescriptor(FrameType::BaselineJS); + masm.push(lr); + masm.jump(target); +} + +inline void EmitBaselineCallVM(TrampolinePtr target, MacroAssembler& masm) { + masm.pushFrameDescriptor(FrameType::BaselineStub); + masm.call(target); +} + +inline void EmitBaselineEnterStubFrame(MacroAssembler& masm, Register scratch) { + MOZ_ASSERT(scratch != ICTailCallReg); + +#ifdef DEBUG + // Compute frame size. + masm.mov(FramePointer, scratch); + masm.ma_sub(StackPointer, scratch); + + Address frameSizeAddr(FramePointer, + BaselineFrame::reverseOffsetOfDebugFrameSize()); + masm.store32(scratch, frameSizeAddr); +#endif + + // Push frame descriptor and return address. + masm.PushFrameDescriptor(FrameType::BaselineJS); + masm.Push(ICTailCallReg); + + // Save old frame pointer, stack pointer and stub reg. + masm.Push(FramePointer); + masm.mov(StackPointer, FramePointer); + + masm.Push(ICStubReg); + + // We pushed 4 words, so the stack is still aligned to 8 bytes. + masm.checkStackAlignment(); +} + +} // namespace jit +} // namespace js + +#endif /* jit_arm_SharedICHelpers_arm_inl_h */ diff --git a/js/src/jit/arm/SharedICHelpers-arm.h b/js/src/jit/arm/SharedICHelpers-arm.h new file mode 100644 index 0000000000..93475abc62 --- /dev/null +++ b/js/src/jit/arm/SharedICHelpers-arm.h @@ -0,0 +1,80 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifndef jit_arm_SharedICHelpers_arm_h +#define jit_arm_SharedICHelpers_arm_h + +#include "jit/BaselineIC.h" +#include "jit/JitFrames.h" +#include "jit/MacroAssembler.h" +#include "jit/SharedICRegisters.h" + +namespace js { +namespace jit { + +// Distance from sp to the top Value inside an IC stub (no return address on the +// stack on ARM). +static const size_t ICStackValueOffset = 0; + +inline void EmitRestoreTailCallReg(MacroAssembler& masm) { + // No-op on ARM because link register is always holding the return address. +} + +inline void EmitRepushTailCallReg(MacroAssembler& masm) { + // No-op on ARM because link register is always holding the return address. +} + +inline void EmitCallIC(MacroAssembler& masm, CodeOffset* callOffset) { + // The stub pointer must already be in ICStubReg. + // Load stubcode pointer from the ICStub. + // R2 won't be active when we call ICs, so we can use r0. + static_assert(R2 == ValueOperand(r1, r0)); + masm.loadPtr(Address(ICStubReg, ICStub::offsetOfStubCode()), r0); + + // Call the stubcode via a direct branch-and-link. + masm.ma_blx(r0); + *callOffset = CodeOffset(masm.currentOffset()); +} + +inline void EmitReturnFromIC(MacroAssembler& masm) { masm.ma_mov(lr, pc); } + +inline void EmitBaselineLeaveStubFrame(MacroAssembler& masm) { + Address stubAddr(FramePointer, BaselineStubFrameLayout::ICStubOffsetFromFP); + masm.loadPtr(stubAddr, ICStubReg); + + masm.mov(FramePointer, StackPointer); + masm.Pop(FramePointer); + + // Load the return address. + masm.Pop(ICTailCallReg); + + // Discard the frame descriptor. + ScratchRegisterScope scratch(masm); + masm.Pop(scratch); +} + +template <typename AddrType> +inline void EmitPreBarrier(MacroAssembler& masm, const AddrType& addr, + MIRType type) { + // On ARM, lr is clobbered by guardedCallPreBarrier. Save it first. + masm.push(lr); + masm.guardedCallPreBarrier(addr, type); + masm.pop(lr); +} + +inline void EmitStubGuardFailure(MacroAssembler& masm) { + // Load next stub into ICStubReg. + masm.loadPtr(Address(ICStubReg, ICCacheIRStub::offsetOfNext()), ICStubReg); + + // Return address is already loaded, just jump to the next stubcode. + static_assert(ICTailCallReg == lr); + masm.jump(Address(ICStubReg, ICStub::offsetOfStubCode())); +} + +} // namespace jit +} // namespace js + +#endif /* jit_arm_SharedICHelpers_arm_h */ diff --git a/js/src/jit/arm/SharedICRegisters-arm.h b/js/src/jit/arm/SharedICRegisters-arm.h new file mode 100644 index 0000000000..16aabbf0b3 --- /dev/null +++ b/js/src/jit/arm/SharedICRegisters-arm.h @@ -0,0 +1,52 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifndef jit_arm_SharedICRegisters_arm_h +#define jit_arm_SharedICRegisters_arm_h + +#include "jit/arm/Assembler-arm.h" +#include "jit/Registers.h" +#include "jit/RegisterSets.h" + +namespace js { +namespace jit { + +// r15 = program-counter +// r14 = link-register +// r13 = stack-pointer +// r11 = frame-pointer + +// ValueOperands R0, R1, and R2. +// R0 == JSReturnReg, and R2 uses registers not preserved across calls. R1 value +// should be preserved across calls. +static constexpr ValueOperand R0(r3, r2); +static constexpr ValueOperand R1(r5, r4); +static constexpr ValueOperand R2(r1, r0); + +// ICTailCallReg and ICStubReg +// These use registers that are not preserved across calls. +static constexpr Register ICTailCallReg = r14; +static constexpr Register ICStubReg = r9; + +// Register used internally by MacroAssemblerARM. +static constexpr Register BaselineSecondScratchReg = r6; + +// R7 - R9 are generally available for use within stubcode. + +// Note that ICTailCallReg is actually just the link register. In ARM code +// emission, we do not clobber ICTailCallReg since we keep the return +// address for calls there. + +// FloatReg0 must be equal to ReturnFloatReg. +static constexpr FloatRegister FloatReg0 = d0; +static constexpr FloatRegister FloatReg1 = d1; +static constexpr FloatRegister FloatReg2 = d2; +static constexpr FloatRegister FloatReg3 = d3; + +} // namespace jit +} // namespace js + +#endif /* jit_arm_SharedICRegisters_arm_h */ diff --git a/js/src/jit/arm/Simulator-arm.cpp b/js/src/jit/arm/Simulator-arm.cpp new file mode 100644 index 0000000000..2afd6cb0de --- /dev/null +++ b/js/src/jit/arm/Simulator-arm.cpp @@ -0,0 +1,5472 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +// Copyright 2012 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following +// disclaimer in the documentation and/or other materials provided +// with the distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived +// from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include "jit/arm/Simulator-arm.h" + +#include "mozilla/Casting.h" +#include "mozilla/DebugOnly.h" +#include "mozilla/EndianUtils.h" +#include "mozilla/FloatingPoint.h" +#include "mozilla/Likely.h" +#include "mozilla/MathAlgorithms.h" + +#include "jit/arm/Assembler-arm.h" +#include "jit/arm/disasm/Constants-arm.h" +#include "jit/AtomicOperations.h" +#include "js/UniquePtr.h" +#include "js/Utility.h" +#include "threading/LockGuard.h" +#include "vm/JSContext.h" +#include "vm/Runtime.h" +#include "vm/SharedMem.h" +#include "wasm/WasmInstance.h" +#include "wasm/WasmSignalHandlers.h" + +extern "C" { + +MOZ_EXPORT int64_t __aeabi_idivmod(int x, int y) { + // Run-time ABI for the ARM architecture specifies that for |INT_MIN / -1| + // "an implementation is (sic) may return any convenient value, possibly the + // original numerator." + // + // |INT_MIN / -1| traps on x86, which isn't listed as an allowed behavior in + // the ARM docs, so instead follow LLVM and return the numerator. (And zero + // for the remainder.) + + if (x == INT32_MIN && y == -1) { + return uint32_t(x); + } + + uint32_t lo = uint32_t(x / y); + uint32_t hi = uint32_t(x % y); + return (int64_t(hi) << 32) | lo; +} + +MOZ_EXPORT int64_t __aeabi_uidivmod(int x, int y) { + uint32_t lo = uint32_t(x) / uint32_t(y); + uint32_t hi = uint32_t(x) % uint32_t(y); + return (int64_t(hi) << 32) | lo; +} +} + +namespace js { +namespace jit { + +// For decoding load-exclusive and store-exclusive instructions. +namespace excl { + +// Bit positions. +enum { + ExclusiveOpHi = 24, // Hi bit of opcode field + ExclusiveOpLo = 23, // Lo bit of opcode field + ExclusiveSizeHi = 22, // Hi bit of operand size field + ExclusiveSizeLo = 21, // Lo bit of operand size field + ExclusiveLoad = 20 // Bit indicating load +}; + +// Opcode bits for exclusive instructions. +enum { ExclusiveOpcode = 3 }; + +// Operand size, Bits(ExclusiveSizeHi,ExclusiveSizeLo). +enum { + ExclusiveWord = 0, + ExclusiveDouble = 1, + ExclusiveByte = 2, + ExclusiveHalf = 3 +}; + +} // namespace excl + +// Load/store multiple addressing mode. +enum BlockAddrMode { + // Alias modes for comparison when writeback does not matter. + da_x = (0 | 0 | 0) << 21, // Decrement after. + ia_x = (0 | 4 | 0) << 21, // Increment after. + db_x = (8 | 0 | 0) << 21, // Decrement before. + ib_x = (8 | 4 | 0) << 21, // Increment before. +}; + +// Type of VFP register. Determines register encoding. +enum VFPRegPrecision { kSinglePrecision = 0, kDoublePrecision = 1 }; + +enum NeonListType { nlt_1 = 0x7, nlt_2 = 0xA, nlt_3 = 0x6, nlt_4 = 0x2 }; + +// Supervisor Call (svc) specific support. + +// Special Software Interrupt codes when used in the presence of the ARM +// simulator. +// svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for +// standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature. +enum SoftwareInterruptCodes { + kCallRtRedirected = 0x10, // Transition to C code. + kBreakpoint = 0x20, // Breakpoint. + kStopCode = 1 << 23 // Stop. +}; + +const uint32_t kStopCodeMask = kStopCode - 1; +const uint32_t kMaxStopCode = kStopCode - 1; + +// ----------------------------------------------------------------------------- +// Instruction abstraction. + +// The class Instruction enables access to individual fields defined in the ARM +// architecture instruction set encoding as described in figure A3-1. +// Note that the Assembler uses typedef int32_t Instr. +// +// Example: Test whether the instruction at ptr does set the condition code +// bits. +// +// bool InstructionSetsConditionCodes(byte* ptr) { +// Instruction* instr = Instruction::At(ptr); +// int type = instr->TypeValue(); +// return ((type == 0) || (type == 1)) && instr->hasS(); +// } +// +class SimInstruction { + public: + enum { kInstrSize = 4, kPCReadOffset = 8 }; + + // Get the raw instruction bits. + inline Instr instructionBits() const { + return *reinterpret_cast<const Instr*>(this); + } + + // Set the raw instruction bits to value. + inline void setInstructionBits(Instr value) { + *reinterpret_cast<Instr*>(this) = value; + } + + // Read one particular bit out of the instruction bits. + inline int bit(int nr) const { return (instructionBits() >> nr) & 1; } + + // Read a bit field's value out of the instruction bits. + inline int bits(int hi, int lo) const { + return (instructionBits() >> lo) & ((2 << (hi - lo)) - 1); + } + + // Read a bit field out of the instruction bits. + inline int bitField(int hi, int lo) const { + return instructionBits() & (((2 << (hi - lo)) - 1) << lo); + } + + // Accessors for the different named fields used in the ARM encoding. + // The naming of these accessor corresponds to figure A3-1. + // + // Two kind of accessors are declared: + // - <Name>Field() will return the raw field, i.e. the field's bits at their + // original place in the instruction encoding. + // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as + // 0xC0810002 conditionField(instr) will return 0xC0000000. + // - <Name>Value() will return the field value, shifted back to bit 0. + // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as + // 0xC0810002 conditionField(instr) will return 0xC. + + // Generally applicable fields + inline Assembler::ARMCondition conditionField() const { + return static_cast<Assembler::ARMCondition>(bitField(31, 28)); + } + inline int typeValue() const { return bits(27, 25); } + inline int specialValue() const { return bits(27, 23); } + + inline int rnValue() const { return bits(19, 16); } + inline int rdValue() const { return bits(15, 12); } + + inline int coprocessorValue() const { return bits(11, 8); } + + // Support for VFP. + // Vn(19-16) | Vd(15-12) | Vm(3-0) + inline int vnValue() const { return bits(19, 16); } + inline int vmValue() const { return bits(3, 0); } + inline int vdValue() const { return bits(15, 12); } + inline int nValue() const { return bit(7); } + inline int mValue() const { return bit(5); } + inline int dValue() const { return bit(22); } + inline int rtValue() const { return bits(15, 12); } + inline int pValue() const { return bit(24); } + inline int uValue() const { return bit(23); } + inline int opc1Value() const { return (bit(23) << 2) | bits(21, 20); } + inline int opc2Value() const { return bits(19, 16); } + inline int opc3Value() const { return bits(7, 6); } + inline int szValue() const { return bit(8); } + inline int VLValue() const { return bit(20); } + inline int VCValue() const { return bit(8); } + inline int VAValue() const { return bits(23, 21); } + inline int VBValue() const { return bits(6, 5); } + inline int VFPNRegValue(VFPRegPrecision pre) { + return VFPGlueRegValue(pre, 16, 7); + } + inline int VFPMRegValue(VFPRegPrecision pre) { + return VFPGlueRegValue(pre, 0, 5); + } + inline int VFPDRegValue(VFPRegPrecision pre) { + return VFPGlueRegValue(pre, 12, 22); + } + + // Fields used in Data processing instructions. + inline int opcodeValue() const { return static_cast<ALUOp>(bits(24, 21)); } + inline ALUOp opcodeField() const { + return static_cast<ALUOp>(bitField(24, 21)); + } + inline int sValue() const { return bit(20); } + + // With register. + inline int rmValue() const { return bits(3, 0); } + inline ShiftType shifttypeValue() const { + return static_cast<ShiftType>(bits(6, 5)); + } + inline int rsValue() const { return bits(11, 8); } + inline int shiftAmountValue() const { return bits(11, 7); } + + // With immediate. + inline int rotateValue() const { return bits(11, 8); } + inline int immed8Value() const { return bits(7, 0); } + inline int immed4Value() const { return bits(19, 16); } + inline int immedMovwMovtValue() const { + return immed4Value() << 12 | offset12Value(); + } + + // Fields used in Load/Store instructions. + inline int PUValue() const { return bits(24, 23); } + inline int PUField() const { return bitField(24, 23); } + inline int bValue() const { return bit(22); } + inline int wValue() const { return bit(21); } + inline int lValue() const { return bit(20); } + + // With register uses same fields as Data processing instructions above with + // immediate. + inline int offset12Value() const { return bits(11, 0); } + + // Multiple. + inline int rlistValue() const { return bits(15, 0); } + + // Extra loads and stores. + inline int signValue() const { return bit(6); } + inline int hValue() const { return bit(5); } + inline int immedHValue() const { return bits(11, 8); } + inline int immedLValue() const { return bits(3, 0); } + + // Fields used in Branch instructions. + inline int linkValue() const { return bit(24); } + inline int sImmed24Value() const { return ((instructionBits() << 8) >> 8); } + + // Fields used in Software interrupt instructions. + inline SoftwareInterruptCodes svcValue() const { + return static_cast<SoftwareInterruptCodes>(bits(23, 0)); + } + + // Test for special encodings of type 0 instructions (extra loads and + // stores, as well as multiplications). + inline bool isSpecialType0() const { return (bit(7) == 1) && (bit(4) == 1); } + + // Test for miscellaneous instructions encodings of type 0 instructions. + inline bool isMiscType0() const { + return bit(24) == 1 && bit(23) == 0 && bit(20) == 0 && (bit(7) == 0); + } + + // Test for a nop instruction, which falls under type 1. + inline bool isNopType1() const { return bits(24, 0) == 0x0120F000; } + + // Test for a nop instruction, which falls under type 1. + inline bool isCsdbType1() const { return bits(24, 0) == 0x0120F014; } + + // Test for a stop instruction. + inline bool isStop() const { + return typeValue() == 7 && bit(24) == 1 && svcValue() >= kStopCode; + } + + // Test for a udf instruction, which falls under type 3. + inline bool isUDF() const { + return (instructionBits() & 0xfff000f0) == 0xe7f000f0; + } + + // Special accessors that test for existence of a value. + inline bool hasS() const { return sValue() == 1; } + inline bool hasB() const { return bValue() == 1; } + inline bool hasW() const { return wValue() == 1; } + inline bool hasL() const { return lValue() == 1; } + inline bool hasU() const { return uValue() == 1; } + inline bool hasSign() const { return signValue() == 1; } + inline bool hasH() const { return hValue() == 1; } + inline bool hasLink() const { return linkValue() == 1; } + + // Decoding the double immediate in the vmov instruction. + double doubleImmedVmov() const; + // Decoding the float32 immediate in the vmov.f32 instruction. + float float32ImmedVmov() const; + + private: + // Join split register codes, depending on single or double precision. + // four_bit is the position of the least-significant bit of the four + // bit specifier. one_bit is the position of the additional single bit + // specifier. + inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) { + if (pre == kSinglePrecision) { + return (bits(four_bit + 3, four_bit) << 1) | bit(one_bit); + } + return (bit(one_bit) << 4) | bits(four_bit + 3, four_bit); + } + + SimInstruction() = delete; + SimInstruction(const SimInstruction& other) = delete; + void operator=(const SimInstruction& other) = delete; +}; + +double SimInstruction::doubleImmedVmov() const { + // Reconstruct a double from the immediate encoded in the vmov instruction. + // + // instruction: [xxxxxxxx,xxxxabcd,xxxxxxxx,xxxxefgh] + // double: [aBbbbbbb,bbcdefgh,00000000,00000000, + // 00000000,00000000,00000000,00000000] + // + // where B = ~b. Only the high 16 bits are affected. + uint64_t high16; + high16 = (bits(17, 16) << 4) | bits(3, 0); // xxxxxxxx,xxcdefgh. + high16 |= (0xff * bit(18)) << 6; // xxbbbbbb,bbxxxxxx. + high16 |= (bit(18) ^ 1) << 14; // xBxxxxxx,xxxxxxxx. + high16 |= bit(19) << 15; // axxxxxxx,xxxxxxxx. + + uint64_t imm = high16 << 48; + return mozilla::BitwiseCast<double>(imm); +} + +float SimInstruction::float32ImmedVmov() const { + // Reconstruct a float32 from the immediate encoded in the vmov instruction. + // + // instruction: [xxxxxxxx,xxxxabcd,xxxxxxxx,xxxxefgh] + // float32: [aBbbbbbc, defgh000, 00000000, 00000000] + // + // where B = ~b. Only the high 16 bits are affected. + uint32_t imm; + imm = (bits(17, 16) << 23) | (bits(3, 0) << 19); // xxxxxxxc,defgh000.0.0 + imm |= (0x1f * bit(18)) << 25; // xxbbbbbx,xxxxxxxx.0.0 + imm |= (bit(18) ^ 1) << 30; // xBxxxxxx,xxxxxxxx.0.0 + imm |= bit(19) << 31; // axxxxxxx,xxxxxxxx.0.0 + + return mozilla::BitwiseCast<float>(imm); +} + +class CachePage { + public: + static const int LINE_VALID = 0; + static const int LINE_INVALID = 1; + static const int kPageShift = 12; + static const int kPageSize = 1 << kPageShift; + static const int kPageMask = kPageSize - 1; + static const int kLineShift = 2; // The cache line is only 4 bytes right now. + static const int kLineLength = 1 << kLineShift; + static const int kLineMask = kLineLength - 1; + + CachePage() { memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); } + char* validityByte(int offset) { + return &validity_map_[offset >> kLineShift]; + } + char* cachedData(int offset) { return &data_[offset]; } + + private: + char data_[kPageSize]; // The cached data. + static const int kValidityMapSize = kPageSize >> kLineShift; + char validity_map_[kValidityMapSize]; // One byte per line. +}; + +// Protects the icache() and redirection() properties of the +// Simulator. +class AutoLockSimulatorCache : public LockGuard<Mutex> { + using Base = LockGuard<Mutex>; + + public: + explicit AutoLockSimulatorCache() + : Base(SimulatorProcess::singleton_->cacheLock_) {} +}; + +mozilla::Atomic<size_t, mozilla::ReleaseAcquire> + SimulatorProcess::ICacheCheckingDisableCount( + 1); // Checking is disabled by default. +SimulatorProcess* SimulatorProcess::singleton_ = nullptr; + +int64_t Simulator::StopSimAt = -1L; + +Simulator* Simulator::Create() { + auto sim = MakeUnique<Simulator>(); + if (!sim) { + return nullptr; + } + + if (!sim->init()) { + return nullptr; + } + + char* stopAtStr = getenv("ARM_SIM_STOP_AT"); + int64_t stopAt; + if (stopAtStr && sscanf(stopAtStr, "%lld", &stopAt) == 1) { + fprintf(stderr, "\nStopping simulation at icount %lld\n", stopAt); + Simulator::StopSimAt = stopAt; + } + + return sim.release(); +} + +void Simulator::Destroy(Simulator* sim) { js_delete(sim); } + +void Simulator::disassemble(SimInstruction* instr, size_t n) { +#ifdef JS_DISASM_ARM + disasm::NameConverter converter; + disasm::Disassembler dasm(converter); + disasm::EmbeddedVector<char, disasm::ReasonableBufferSize> buffer; + while (n-- > 0) { + dasm.InstructionDecode(buffer, reinterpret_cast<uint8_t*>(instr)); + fprintf(stderr, " 0x%08x %s\n", uint32_t(instr), buffer.start()); + instr = reinterpret_cast<SimInstruction*>( + reinterpret_cast<uint8_t*>(instr) + 4); + } +#endif +} + +void Simulator::disasm(SimInstruction* instr) { disassemble(instr, 1); } + +void Simulator::disasm(SimInstruction* instr, size_t n) { + disassemble(instr, n); +} + +void Simulator::disasm(SimInstruction* instr, size_t m, size_t n) { + disassemble(reinterpret_cast<SimInstruction*>( + reinterpret_cast<uint8_t*>(instr) - m * 4), + n); +} + +// The ArmDebugger class is used by the simulator while debugging simulated ARM +// code. +class ArmDebugger { + public: + explicit ArmDebugger(Simulator* sim) : sim_(sim) {} + + void stop(SimInstruction* instr); + void debug(); + + private: + static const Instr kBreakpointInstr = + (Assembler::AL | (7 * (1 << 25)) | (1 * (1 << 24)) | kBreakpoint); + static const Instr kNopInstr = (Assembler::AL | (13 * (1 << 21))); + + Simulator* sim_; + + int32_t getRegisterValue(int regnum); + double getRegisterPairDoubleValue(int regnum); + void getVFPDoubleRegisterValue(int regnum, double* value); + bool getValue(const char* desc, int32_t* value); + bool getVFPDoubleValue(const char* desc, double* value); + + // Set or delete a breakpoint. Returns true if successful. + bool setBreakpoint(SimInstruction* breakpc); + bool deleteBreakpoint(SimInstruction* breakpc); + + // Undo and redo all breakpoints. This is needed to bracket disassembly and + // execution to skip past breakpoints when run from the debugger. + void undoBreakpoints(); + void redoBreakpoints(); +}; + +void ArmDebugger::stop(SimInstruction* instr) { + // Get the stop code. + uint32_t code = instr->svcValue() & kStopCodeMask; + // Retrieve the encoded address, which comes just after this stop. + char* msg = + *reinterpret_cast<char**>(sim_->get_pc() + SimInstruction::kInstrSize); + // Update this stop description. + if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) { + sim_->watched_stops_[code].desc = msg; + } + // Print the stop message and code if it is not the default code. + if (code != kMaxStopCode) { + printf("Simulator hit stop %u: %s\n", code, msg); + } else { + printf("Simulator hit %s\n", msg); + } + sim_->set_pc(sim_->get_pc() + 2 * SimInstruction::kInstrSize); + debug(); +} + +int32_t ArmDebugger::getRegisterValue(int regnum) { + if (regnum == Registers::pc) { + return sim_->get_pc(); + } + return sim_->get_register(regnum); +} + +double ArmDebugger::getRegisterPairDoubleValue(int regnum) { + return sim_->get_double_from_register_pair(regnum); +} + +void ArmDebugger::getVFPDoubleRegisterValue(int regnum, double* out) { + sim_->get_double_from_d_register(regnum, out); +} + +bool ArmDebugger::getValue(const char* desc, int32_t* value) { + Register reg = Register::FromName(desc); + if (reg != InvalidReg) { + *value = getRegisterValue(reg.code()); + return true; + } + if (strncmp(desc, "0x", 2) == 0) { + return sscanf(desc + 2, "%x", reinterpret_cast<uint32_t*>(value)) == 1; + } + return sscanf(desc, "%u", reinterpret_cast<uint32_t*>(value)) == 1; +} + +bool ArmDebugger::getVFPDoubleValue(const char* desc, double* value) { + FloatRegister reg = FloatRegister::FromCode(FloatRegister::FromName(desc)); + if (reg.isInvalid()) { + return false; + } + + if (reg.isSingle()) { + float fval; + sim_->get_float_from_s_register(reg.id(), &fval); + *value = fval; + return true; + } + + sim_->get_double_from_d_register(reg.id(), value); + return true; +} + +bool ArmDebugger::setBreakpoint(SimInstruction* breakpc) { + // Check if a breakpoint can be set. If not return without any side-effects. + if (sim_->break_pc_) { + return false; + } + + // Set the breakpoint. + sim_->break_pc_ = breakpc; + sim_->break_instr_ = breakpc->instructionBits(); + // Not setting the breakpoint instruction in the code itself. It will be set + // when the debugger shell continues. + return true; +} + +bool ArmDebugger::deleteBreakpoint(SimInstruction* breakpc) { + if (sim_->break_pc_ != nullptr) { + sim_->break_pc_->setInstructionBits(sim_->break_instr_); + } + + sim_->break_pc_ = nullptr; + sim_->break_instr_ = 0; + return true; +} + +void ArmDebugger::undoBreakpoints() { + if (sim_->break_pc_) { + sim_->break_pc_->setInstructionBits(sim_->break_instr_); + } +} + +void ArmDebugger::redoBreakpoints() { + if (sim_->break_pc_) { + sim_->break_pc_->setInstructionBits(kBreakpointInstr); + } +} + +static char* ReadLine(const char* prompt) { + UniqueChars result; + char line_buf[256]; + int offset = 0; + bool keep_going = true; + fprintf(stdout, "%s", prompt); + fflush(stdout); + while (keep_going) { + if (fgets(line_buf, sizeof(line_buf), stdin) == nullptr) { + // fgets got an error. Just give up. + return nullptr; + } + int len = strlen(line_buf); + if (len > 0 && line_buf[len - 1] == '\n') { + // Since we read a new line we are done reading the line. This will + // exit the loop after copying this buffer into the result. + keep_going = false; + } + if (!result) { + // Allocate the initial result and make room for the terminating + // '\0'. + result.reset(js_pod_malloc<char>(len + 1)); + if (!result) { + return nullptr; + } + } else { + // Allocate a new result with enough room for the new addition. + int new_len = offset + len + 1; + char* new_result = js_pod_malloc<char>(new_len); + if (!new_result) { + return nullptr; + } + // Copy the existing input into the new array and set the new + // array as the result. + memcpy(new_result, result.get(), offset * sizeof(char)); + result.reset(new_result); + } + // Copy the newly read line into the result. + memcpy(result.get() + offset, line_buf, len * sizeof(char)); + offset += len; + } + + MOZ_ASSERT(result); + result[offset] = '\0'; + return result.release(); +} + +void ArmDebugger::debug() { + intptr_t last_pc = -1; + bool done = false; + +#define COMMAND_SIZE 63 +#define ARG_SIZE 255 + +#define STR(a) #a +#define XSTR(a) STR(a) + + char cmd[COMMAND_SIZE + 1]; + char arg1[ARG_SIZE + 1]; + char arg2[ARG_SIZE + 1]; + char* argv[3] = {cmd, arg1, arg2}; + + // Make sure to have a proper terminating character if reaching the limit. + cmd[COMMAND_SIZE] = 0; + arg1[ARG_SIZE] = 0; + arg2[ARG_SIZE] = 0; + + // Undo all set breakpoints while running in the debugger shell. This will + // make them invisible to all commands. + undoBreakpoints(); + +#ifndef JS_DISASM_ARM + static bool disasm_warning_printed = false; + if (!disasm_warning_printed) { + printf( + " No ARM disassembler present. Enable JS_DISASM_ARM in " + "configure.in."); + disasm_warning_printed = true; + } +#endif + + while (!done && !sim_->has_bad_pc()) { + if (last_pc != sim_->get_pc()) { +#ifdef JS_DISASM_ARM + disasm::NameConverter converter; + disasm::Disassembler dasm(converter); + disasm::EmbeddedVector<char, disasm::ReasonableBufferSize> buffer; + dasm.InstructionDecode(buffer, + reinterpret_cast<uint8_t*>(sim_->get_pc())); + printf(" 0x%08x %s\n", sim_->get_pc(), buffer.start()); +#endif + last_pc = sim_->get_pc(); + } + char* line = ReadLine("sim> "); + if (line == nullptr) { + break; + } else { + char* last_input = sim_->lastDebuggerInput(); + if (strcmp(line, "\n") == 0 && last_input != nullptr) { + line = last_input; + } else { + // Ownership is transferred to sim_; + sim_->setLastDebuggerInput(line); + } + + // Use sscanf to parse the individual parts of the command line. At the + // moment no command expects more than two parameters. + int argc = sscanf(line, + "%" XSTR(COMMAND_SIZE) "s " + "%" XSTR(ARG_SIZE) "s " + "%" XSTR(ARG_SIZE) "s", + cmd, arg1, arg2); + if (argc < 0) { + continue; + } else if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { + sim_->instructionDecode( + reinterpret_cast<SimInstruction*>(sim_->get_pc())); + sim_->icount_++; + } else if ((strcmp(cmd, "skip") == 0)) { + sim_->set_pc(sim_->get_pc() + 4); + sim_->icount_++; + } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { + // Execute the one instruction we broke at with breakpoints + // disabled. + sim_->instructionDecode( + reinterpret_cast<SimInstruction*>(sim_->get_pc())); + sim_->icount_++; + // Leave the debugger shell. + done = true; + } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { + if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) { + int32_t value; + double dvalue; + if (strcmp(arg1, "all") == 0) { + for (uint32_t i = 0; i < Registers::Total; i++) { + value = getRegisterValue(i); + printf("%3s: 0x%08x %10d", Registers::GetName(i), value, value); + if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 && + (i % 2) == 0) { + dvalue = getRegisterPairDoubleValue(i); + printf(" (%.16g)\n", dvalue); + } else { + printf("\n"); + } + } + for (uint32_t i = 0; i < FloatRegisters::TotalPhys; i++) { + getVFPDoubleRegisterValue(i, &dvalue); + uint64_t as_words = mozilla::BitwiseCast<uint64_t>(dvalue); + printf("%3s: %.16g 0x%08x %08x\n", + FloatRegister::FromCode(i).name(), dvalue, + static_cast<uint32_t>(as_words >> 32), + static_cast<uint32_t>(as_words & 0xffffffff)); + } + } else { + if (getValue(arg1, &value)) { + printf("%s: 0x%08x %d \n", arg1, value, value); + } else if (getVFPDoubleValue(arg1, &dvalue)) { + uint64_t as_words = mozilla::BitwiseCast<uint64_t>(dvalue); + printf("%s: %.16g 0x%08x %08x\n", arg1, dvalue, + static_cast<uint32_t>(as_words >> 32), + static_cast<uint32_t>(as_words & 0xffffffff)); + } else { + printf("%s unrecognized\n", arg1); + } + } + } else { + printf("print <register>\n"); + } + } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) { + int32_t* cur = nullptr; + int32_t* end = nullptr; + int next_arg = 1; + + if (strcmp(cmd, "stack") == 0) { + cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp)); + } else { // "mem" + int32_t value; + if (!getValue(arg1, &value)) { + printf("%s unrecognized\n", arg1); + continue; + } + cur = reinterpret_cast<int32_t*>(value); + next_arg++; + } + + int32_t words; + if (argc == next_arg) { + words = 10; + } else { + if (!getValue(argv[next_arg], &words)) { + words = 10; + } + } + end = cur + words; + + while (cur < end) { + printf(" %p: 0x%08x %10d", cur, *cur, *cur); + printf("\n"); + cur++; + } + } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) { +#ifdef JS_DISASM_ARM + uint8_t* prev = nullptr; + uint8_t* cur = nullptr; + uint8_t* end = nullptr; + + if (argc == 1) { + cur = reinterpret_cast<uint8_t*>(sim_->get_pc()); + end = cur + (10 * SimInstruction::kInstrSize); + } else if (argc == 2) { + Register reg = Register::FromName(arg1); + if (reg != InvalidReg || strncmp(arg1, "0x", 2) == 0) { + // The argument is an address or a register name. + int32_t value; + if (getValue(arg1, &value)) { + cur = reinterpret_cast<uint8_t*>(value); + // Disassemble 10 instructions at <arg1>. + end = cur + (10 * SimInstruction::kInstrSize); + } + } else { + // The argument is the number of instructions. + int32_t value; + if (getValue(arg1, &value)) { + cur = reinterpret_cast<uint8_t*>(sim_->get_pc()); + // Disassemble <arg1> instructions. + end = cur + (value * SimInstruction::kInstrSize); + } + } + } else { + int32_t value1; + int32_t value2; + if (getValue(arg1, &value1) && getValue(arg2, &value2)) { + cur = reinterpret_cast<uint8_t*>(value1); + end = cur + (value2 * SimInstruction::kInstrSize); + } + } + while (cur < end) { + disasm::NameConverter converter; + disasm::Disassembler dasm(converter); + disasm::EmbeddedVector<char, disasm::ReasonableBufferSize> buffer; + + prev = cur; + cur += dasm.InstructionDecode(buffer, cur); + printf(" 0x%08x %s\n", reinterpret_cast<uint32_t>(prev), + buffer.start()); + } +#endif + } else if (strcmp(cmd, "gdb") == 0) { + printf("relinquishing control to gdb\n"); +#ifdef _MSC_VER + __debugbreak(); +#else + asm("int $3"); +#endif + printf("regaining control from gdb\n"); + } else if (strcmp(cmd, "break") == 0) { + if (argc == 2) { + int32_t value; + if (getValue(arg1, &value)) { + if (!setBreakpoint(reinterpret_cast<SimInstruction*>(value))) { + printf("setting breakpoint failed\n"); + } + } else { + printf("%s unrecognized\n", arg1); + } + } else { + printf("break <address>\n"); + } + } else if (strcmp(cmd, "del") == 0) { + if (!deleteBreakpoint(nullptr)) { + printf("deleting breakpoint failed\n"); + } + } else if (strcmp(cmd, "flags") == 0) { + printf("N flag: %d; ", sim_->n_flag_); + printf("Z flag: %d; ", sim_->z_flag_); + printf("C flag: %d; ", sim_->c_flag_); + printf("V flag: %d\n", sim_->v_flag_); + printf("INVALID OP flag: %d; ", sim_->inv_op_vfp_flag_); + printf("DIV BY ZERO flag: %d; ", sim_->div_zero_vfp_flag_); + printf("OVERFLOW flag: %d; ", sim_->overflow_vfp_flag_); + printf("UNDERFLOW flag: %d; ", sim_->underflow_vfp_flag_); + printf("INEXACT flag: %d;\n", sim_->inexact_vfp_flag_); + } else if (strcmp(cmd, "stop") == 0) { + int32_t value; + intptr_t stop_pc = sim_->get_pc() - 2 * SimInstruction::kInstrSize; + SimInstruction* stop_instr = reinterpret_cast<SimInstruction*>(stop_pc); + SimInstruction* msg_address = reinterpret_cast<SimInstruction*>( + stop_pc + SimInstruction::kInstrSize); + if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) { + // Remove the current stop. + if (sim_->isStopInstruction(stop_instr)) { + stop_instr->setInstructionBits(kNopInstr); + msg_address->setInstructionBits(kNopInstr); + } else { + printf("Not at debugger stop.\n"); + } + } else if (argc == 3) { + // Print information about all/the specified breakpoint(s). + if (strcmp(arg1, "info") == 0) { + if (strcmp(arg2, "all") == 0) { + printf("Stop information:\n"); + for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { + sim_->printStopInfo(i); + } + } else if (getValue(arg2, &value)) { + sim_->printStopInfo(value); + } else { + printf("Unrecognized argument.\n"); + } + } else if (strcmp(arg1, "enable") == 0) { + // Enable all/the specified breakpoint(s). + if (strcmp(arg2, "all") == 0) { + for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { + sim_->enableStop(i); + } + } else if (getValue(arg2, &value)) { + sim_->enableStop(value); + } else { + printf("Unrecognized argument.\n"); + } + } else if (strcmp(arg1, "disable") == 0) { + // Disable all/the specified breakpoint(s). + if (strcmp(arg2, "all") == 0) { + for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { + sim_->disableStop(i); + } + } else if (getValue(arg2, &value)) { + sim_->disableStop(value); + } else { + printf("Unrecognized argument.\n"); + } + } + } else { + printf("Wrong usage. Use help command for more information.\n"); + } + } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { + printf("cont\n"); + printf(" continue execution (alias 'c')\n"); + printf("skip\n"); + printf(" skip one instruction (set pc to next instruction)\n"); + printf("stepi\n"); + printf(" step one instruction (alias 'si')\n"); + printf("print <register>\n"); + printf(" print register content (alias 'p')\n"); + printf(" use register name 'all' to print all registers\n"); + printf(" add argument 'fp' to print register pair double values\n"); + printf("flags\n"); + printf(" print flags\n"); + printf("stack [<words>]\n"); + printf(" dump stack content, default dump 10 words)\n"); + printf("mem <address> [<words>]\n"); + printf(" dump memory content, default dump 10 words)\n"); + printf("disasm [<instructions>]\n"); + printf("disasm [<address/register>]\n"); + printf("disasm [[<address/register>] <instructions>]\n"); + printf(" disassemble code, default is 10 instructions\n"); + printf(" from pc (alias 'di')\n"); + printf("gdb\n"); + printf(" enter gdb\n"); + printf("break <address>\n"); + printf(" set a break point on the address\n"); + printf("del\n"); + printf(" delete the breakpoint\n"); + printf("stop feature:\n"); + printf(" Description:\n"); + printf(" Stops are debug instructions inserted by\n"); + printf(" the Assembler::stop() function.\n"); + printf(" When hitting a stop, the Simulator will\n"); + printf(" stop and and give control to the ArmDebugger.\n"); + printf(" The first %d stop codes are watched:\n", + Simulator::kNumOfWatchedStops); + printf(" - They can be enabled / disabled: the Simulator\n"); + printf(" will / won't stop when hitting them.\n"); + printf(" - The Simulator keeps track of how many times they \n"); + printf(" are met. (See the info command.) Going over a\n"); + printf(" disabled stop still increases its counter. \n"); + printf(" Commands:\n"); + printf(" stop info all/<code> : print infos about number <code>\n"); + printf(" or all stop(s).\n"); + printf(" stop enable/disable all/<code> : enables / disables\n"); + printf(" all or number <code> stop(s)\n"); + printf(" stop unstop\n"); + printf(" ignore the stop instruction at the current location\n"); + printf(" from now on\n"); + } else { + printf("Unknown command: %s\n", cmd); + } + } + } + + // Add all the breakpoints back to stop execution and enter the debugger + // shell when hit. + redoBreakpoints(); + +#undef COMMAND_SIZE +#undef ARG_SIZE + +#undef STR +#undef XSTR +} + +static bool AllOnOnePage(uintptr_t start, int size) { + intptr_t start_page = (start & ~CachePage::kPageMask); + intptr_t end_page = ((start + size) & ~CachePage::kPageMask); + return start_page == end_page; +} + +static CachePage* GetCachePageLocked(SimulatorProcess::ICacheMap& i_cache, + void* page) { + SimulatorProcess::ICacheMap::AddPtr p = i_cache.lookupForAdd(page); + if (p) { + return p->value(); + } + + AutoEnterOOMUnsafeRegion oomUnsafe; + CachePage* new_page = js_new<CachePage>(); + if (!new_page || !i_cache.add(p, page, new_page)) { + oomUnsafe.crash("Simulator CachePage"); + } + + return new_page; +} + +// Flush from start up to and not including start + size. +static void FlushOnePageLocked(SimulatorProcess::ICacheMap& i_cache, + intptr_t start, int size) { + MOZ_ASSERT(size <= CachePage::kPageSize); + MOZ_ASSERT(AllOnOnePage(start, size - 1)); + MOZ_ASSERT((start & CachePage::kLineMask) == 0); + MOZ_ASSERT((size & CachePage::kLineMask) == 0); + + void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask)); + int offset = (start & CachePage::kPageMask); + CachePage* cache_page = GetCachePageLocked(i_cache, page); + char* valid_bytemap = cache_page->validityByte(offset); + memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); +} + +static void FlushICacheLocked(SimulatorProcess::ICacheMap& i_cache, + void* start_addr, size_t size) { + intptr_t start = reinterpret_cast<intptr_t>(start_addr); + int intra_line = (start & CachePage::kLineMask); + start -= intra_line; + size += intra_line; + size = ((size - 1) | CachePage::kLineMask) + 1; + int offset = (start & CachePage::kPageMask); + while (!AllOnOnePage(start, size - 1)) { + int bytes_to_flush = CachePage::kPageSize - offset; + FlushOnePageLocked(i_cache, start, bytes_to_flush); + start += bytes_to_flush; + size -= bytes_to_flush; + MOZ_ASSERT((start & CachePage::kPageMask) == 0); + offset = 0; + } + if (size != 0) { + FlushOnePageLocked(i_cache, start, size); + } +} + +/* static */ +void SimulatorProcess::checkICacheLocked(SimInstruction* instr) { + intptr_t address = reinterpret_cast<intptr_t>(instr); + void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask)); + void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask)); + int offset = (address & CachePage::kPageMask); + CachePage* cache_page = GetCachePageLocked(icache(), page); + char* cache_valid_byte = cache_page->validityByte(offset); + bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); + char* cached_line = cache_page->cachedData(offset & ~CachePage::kLineMask); + + if (cache_hit) { + // Check that the data in memory matches the contents of the I-cache. + mozilla::DebugOnly<int> cmpret = + memcmp(reinterpret_cast<void*>(instr), cache_page->cachedData(offset), + SimInstruction::kInstrSize); + MOZ_ASSERT(cmpret == 0); + } else { + // Cache miss. Load memory into the cache. + memcpy(cached_line, line, CachePage::kLineLength); + *cache_valid_byte = CachePage::LINE_VALID; + } +} + +HashNumber SimulatorProcess::ICacheHasher::hash(const Lookup& l) { + return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(l)) >> 2; +} + +bool SimulatorProcess::ICacheHasher::match(const Key& k, const Lookup& l) { + MOZ_ASSERT((reinterpret_cast<intptr_t>(k) & CachePage::kPageMask) == 0); + MOZ_ASSERT((reinterpret_cast<intptr_t>(l) & CachePage::kPageMask) == 0); + return k == l; +} + +void Simulator::setLastDebuggerInput(char* input) { + js_free(lastDebuggerInput_); + lastDebuggerInput_ = input; +} + +/* static */ +void SimulatorProcess::FlushICache(void* start_addr, size_t size) { + JitSpewCont(JitSpew_CacheFlush, "[%p %zx]", start_addr, size); + if (!ICacheCheckingDisableCount) { + AutoLockSimulatorCache als; + js::jit::FlushICacheLocked(icache(), start_addr, size); + } +} + +Simulator::Simulator() { + // Set up simulator support first. Some of this information is needed to + // setup the architecture state. + + // Note, allocation and anything that depends on allocated memory is + // deferred until init(), in order to handle OOM properly. + + stack_ = nullptr; + stackLimit_ = 0; + pc_modified_ = false; + icount_ = 0L; + break_pc_ = nullptr; + break_instr_ = 0; + single_stepping_ = false; + single_step_callback_ = nullptr; + single_step_callback_arg_ = nullptr; + skipCalleeSavedRegsCheck = false; + + // Set up architecture state. + // All registers are initialized to zero to start with. + for (int i = 0; i < num_registers; i++) { + registers_[i] = 0; + } + + n_flag_ = false; + z_flag_ = false; + c_flag_ = false; + v_flag_ = false; + + for (int i = 0; i < num_d_registers * 2; i++) { + vfp_registers_[i] = 0; + } + + n_flag_FPSCR_ = false; + z_flag_FPSCR_ = false; + c_flag_FPSCR_ = false; + v_flag_FPSCR_ = false; + FPSCR_rounding_mode_ = SimRZ; + FPSCR_default_NaN_mode_ = true; + + inv_op_vfp_flag_ = false; + div_zero_vfp_flag_ = false; + overflow_vfp_flag_ = false; + underflow_vfp_flag_ = false; + inexact_vfp_flag_ = false; + + // The lr and pc are initialized to a known bad value that will cause an + // access violation if the simulator ever tries to execute it. + registers_[pc] = bad_lr; + registers_[lr] = bad_lr; + + lastDebuggerInput_ = nullptr; + + exclusiveMonitorHeld_ = false; + exclusiveMonitor_ = 0; +} + +bool Simulator::init() { + // Allocate 2MB for the stack. Note that we will only use 1MB, see below. + static const size_t stackSize = 2 * 1024 * 1024; + stack_ = js_pod_malloc<char>(stackSize); + if (!stack_) { + return false; + } + + // Leave a safety margin of 1MB to prevent overrunning the stack when + // pushing values (total stack size is 2MB). + stackLimit_ = reinterpret_cast<uintptr_t>(stack_) + 1024 * 1024; + + // The sp is initialized to point to the bottom (high address) of the + // allocated stack area. To be safe in potential stack underflows we leave + // some buffer below. + registers_[sp] = reinterpret_cast<int32_t>(stack_) + stackSize - 64; + + return true; +} + +// When the generated code calls a VM function (masm.callWithABI) we need to +// call that function instead of trying to execute it with the simulator +// (because it's x86 code instead of arm code). We do that by redirecting the VM +// call to a svc (Supervisor Call) instruction that is handled by the +// simulator. We write the original destination of the jump just at a known +// offset from the svc instruction so the simulator knows what to call. +class Redirection { + friend class SimulatorProcess; + + // sim's lock must already be held. + Redirection(void* nativeFunction, ABIFunctionType type) + : nativeFunction_(nativeFunction), + swiInstruction_(Assembler::AL | (0xf * (1 << 24)) | kCallRtRedirected), + type_(type), + next_(nullptr) { + next_ = SimulatorProcess::redirection(); + if (!SimulatorProcess::ICacheCheckingDisableCount) { + FlushICacheLocked(SimulatorProcess::icache(), addressOfSwiInstruction(), + SimInstruction::kInstrSize); + } + SimulatorProcess::setRedirection(this); + } + + public: + void* addressOfSwiInstruction() { return &swiInstruction_; } + void* nativeFunction() const { return nativeFunction_; } + ABIFunctionType type() const { return type_; } + + static Redirection* Get(void* nativeFunction, ABIFunctionType type) { + AutoLockSimulatorCache als; + + Redirection* current = SimulatorProcess::redirection(); + for (; current != nullptr; current = current->next_) { + if (current->nativeFunction_ == nativeFunction) { + MOZ_ASSERT(current->type() == type); + return current; + } + } + + // Note: we can't use js_new here because the constructor is private. + AutoEnterOOMUnsafeRegion oomUnsafe; + Redirection* redir = js_pod_malloc<Redirection>(1); + if (!redir) { + oomUnsafe.crash("Simulator redirection"); + } + new (redir) Redirection(nativeFunction, type); + return redir; + } + + static Redirection* FromSwiInstruction(SimInstruction* swiInstruction) { + uint8_t* addrOfSwi = reinterpret_cast<uint8_t*>(swiInstruction); + uint8_t* addrOfRedirection = + addrOfSwi - offsetof(Redirection, swiInstruction_); + return reinterpret_cast<Redirection*>(addrOfRedirection); + } + + private: + void* nativeFunction_; + uint32_t swiInstruction_; + ABIFunctionType type_; + Redirection* next_; +}; + +Simulator::~Simulator() { js_free(stack_); } + +SimulatorProcess::SimulatorProcess() + : cacheLock_(mutexid::SimulatorCacheLock), redirection_(nullptr) { + if (getenv("ARM_SIM_ICACHE_CHECKS")) { + ICacheCheckingDisableCount = 0; + } +} + +SimulatorProcess::~SimulatorProcess() { + Redirection* r = redirection_; + while (r) { + Redirection* next = r->next_; + js_delete(r); + r = next; + } +} + +/* static */ +void* Simulator::RedirectNativeFunction(void* nativeFunction, + ABIFunctionType type) { + Redirection* redirection = Redirection::Get(nativeFunction, type); + return redirection->addressOfSwiInstruction(); +} + +// Sets the register in the architecture state. It will also deal with updating +// Simulator internal state for special registers such as PC. +void Simulator::set_register(int reg, int32_t value) { + MOZ_ASSERT(reg >= 0 && reg < num_registers); + if (reg == pc) { + pc_modified_ = true; + } + registers_[reg] = value; +} + +// Get the register from the architecture state. This function does handle the +// special case of accessing the PC register. +int32_t Simulator::get_register(int reg) const { + MOZ_ASSERT(reg >= 0 && reg < num_registers); + // Work around GCC bug: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949 + if (reg >= num_registers) return 0; + return registers_[reg] + ((reg == pc) ? SimInstruction::kPCReadOffset : 0); +} + +double Simulator::get_double_from_register_pair(int reg) { + MOZ_ASSERT(reg >= 0 && reg < num_registers && (reg % 2) == 0); + + // Read the bits from the unsigned integer register_[] array into the double + // precision floating point value and return it. + double dm_val = 0.0; + char buffer[2 * sizeof(vfp_registers_[0])]; + memcpy(buffer, ®isters_[reg], 2 * sizeof(registers_[0])); + memcpy(&dm_val, buffer, 2 * sizeof(registers_[0])); + return dm_val; +} + +void Simulator::set_register_pair_from_double(int reg, double* value) { + MOZ_ASSERT(reg >= 0 && reg < num_registers && (reg % 2) == 0); + memcpy(registers_ + reg, value, sizeof(*value)); +} + +void Simulator::set_dw_register(int dreg, const int* dbl) { + MOZ_ASSERT(dreg >= 0 && dreg < num_d_registers); + registers_[dreg] = dbl[0]; + registers_[dreg + 1] = dbl[1]; +} + +void Simulator::get_d_register(int dreg, uint64_t* value) { + MOZ_ASSERT(dreg >= 0 && dreg < int(FloatRegisters::TotalPhys)); + memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value)); +} + +void Simulator::set_d_register(int dreg, const uint64_t* value) { + MOZ_ASSERT(dreg >= 0 && dreg < int(FloatRegisters::TotalPhys)); + memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value)); +} + +void Simulator::get_d_register(int dreg, uint32_t* value) { + MOZ_ASSERT(dreg >= 0 && dreg < int(FloatRegisters::TotalPhys)); + memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value) * 2); +} + +void Simulator::set_d_register(int dreg, const uint32_t* value) { + MOZ_ASSERT(dreg >= 0 && dreg < int(FloatRegisters::TotalPhys)); + memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value) * 2); +} + +void Simulator::get_q_register(int qreg, uint64_t* value) { + MOZ_ASSERT(qreg >= 0 && qreg < num_q_registers); + memcpy(value, vfp_registers_ + qreg * 4, sizeof(*value) * 2); +} + +void Simulator::set_q_register(int qreg, const uint64_t* value) { + MOZ_ASSERT(qreg >= 0 && qreg < num_q_registers); + memcpy(vfp_registers_ + qreg * 4, value, sizeof(*value) * 2); +} + +void Simulator::get_q_register(int qreg, uint32_t* value) { + MOZ_ASSERT(qreg >= 0 && qreg < num_q_registers); + memcpy(value, vfp_registers_ + qreg * 4, sizeof(*value) * 4); +} + +void Simulator::set_q_register(int qreg, const uint32_t* value) { + MOZ_ASSERT((qreg >= 0) && (qreg < num_q_registers)); + memcpy(vfp_registers_ + qreg * 4, value, sizeof(*value) * 4); +} + +void Simulator::set_pc(int32_t value) { + pc_modified_ = true; + registers_[pc] = value; +} + +bool Simulator::has_bad_pc() const { + return registers_[pc] == bad_lr || registers_[pc] == end_sim_pc; +} + +// Raw access to the PC register without the special adjustment when reading. +int32_t Simulator::get_pc() const { return registers_[pc]; } + +void Simulator::set_s_register(int sreg, unsigned int value) { + MOZ_ASSERT(sreg >= 0 && sreg < num_s_registers); + vfp_registers_[sreg] = value; +} + +unsigned Simulator::get_s_register(int sreg) const { + MOZ_ASSERT(sreg >= 0 && sreg < num_s_registers); + return vfp_registers_[sreg]; +} + +template <class InputType, int register_size> +void Simulator::setVFPRegister(int reg_index, const InputType& value) { + MOZ_ASSERT(reg_index >= 0); + MOZ_ASSERT_IF(register_size == 1, reg_index < num_s_registers); + MOZ_ASSERT_IF(register_size == 2, reg_index < int(FloatRegisters::TotalPhys)); + + char buffer[register_size * sizeof(vfp_registers_[0])]; + memcpy(buffer, &value, register_size * sizeof(vfp_registers_[0])); + memcpy(&vfp_registers_[reg_index * register_size], buffer, + register_size * sizeof(vfp_registers_[0])); +} + +template <class ReturnType, int register_size> +void Simulator::getFromVFPRegister(int reg_index, ReturnType* out) { + MOZ_ASSERT(reg_index >= 0); + MOZ_ASSERT_IF(register_size == 1, reg_index < num_s_registers); + MOZ_ASSERT_IF(register_size == 2, reg_index < int(FloatRegisters::TotalPhys)); + + char buffer[register_size * sizeof(vfp_registers_[0])]; + memcpy(buffer, &vfp_registers_[register_size * reg_index], + register_size * sizeof(vfp_registers_[0])); + memcpy(out, buffer, register_size * sizeof(vfp_registers_[0])); +} + +// These forced-instantiations are for jsapi-tests. Evidently, nothing +// requires these to be instantiated. +template void Simulator::getFromVFPRegister<double, 2>(int reg_index, + double* out); +template void Simulator::getFromVFPRegister<float, 1>(int reg_index, + float* out); +template void Simulator::setVFPRegister<double, 2>(int reg_index, + const double& value); +template void Simulator::setVFPRegister<float, 1>(int reg_index, + const float& value); + +void Simulator::getFpArgs(double* x, double* y, int32_t* z) { + if (UseHardFpABI()) { + get_double_from_d_register(0, x); + get_double_from_d_register(1, y); + *z = get_register(0); + } else { + *x = get_double_from_register_pair(0); + *y = get_double_from_register_pair(2); + *z = get_register(2); + } +} + +void Simulator::getFpFromStack(int32_t* stack, double* x) { + MOZ_ASSERT(stack && x); + char buffer[2 * sizeof(stack[0])]; + memcpy(buffer, stack, 2 * sizeof(stack[0])); + memcpy(x, buffer, 2 * sizeof(stack[0])); +} + +void Simulator::setCallResultDouble(double result) { + // The return value is either in r0/r1 or d0. + if (UseHardFpABI()) { + char buffer[2 * sizeof(vfp_registers_[0])]; + memcpy(buffer, &result, sizeof(buffer)); + // Copy result to d0. + memcpy(vfp_registers_, buffer, sizeof(buffer)); + } else { + char buffer[2 * sizeof(registers_[0])]; + memcpy(buffer, &result, sizeof(buffer)); + // Copy result to r0 and r1. + memcpy(registers_, buffer, sizeof(buffer)); + } +} + +void Simulator::setCallResultFloat(float result) { + if (UseHardFpABI()) { + char buffer[sizeof(registers_[0])]; + memcpy(buffer, &result, sizeof(buffer)); + // Copy result to s0. + memcpy(vfp_registers_, buffer, sizeof(buffer)); + } else { + char buffer[sizeof(registers_[0])]; + memcpy(buffer, &result, sizeof(buffer)); + // Copy result to r0. + memcpy(registers_, buffer, sizeof(buffer)); + } +} + +void Simulator::setCallResult(int64_t res) { + set_register(r0, static_cast<int32_t>(res)); + set_register(r1, static_cast<int32_t>(res >> 32)); +} + +void Simulator::exclusiveMonitorSet(uint64_t value) { + exclusiveMonitor_ = value; + exclusiveMonitorHeld_ = true; +} + +uint64_t Simulator::exclusiveMonitorGetAndClear(bool* held) { + *held = exclusiveMonitorHeld_; + exclusiveMonitorHeld_ = false; + return *held ? exclusiveMonitor_ : 0; +} + +void Simulator::exclusiveMonitorClear() { exclusiveMonitorHeld_ = false; } + +JS::ProfilingFrameIterator::RegisterState Simulator::registerState() { + wasm::RegisterState state; + state.pc = (void*)get_pc(); + state.fp = (void*)get_register(fp); + state.sp = (void*)get_register(sp); + state.lr = (void*)get_register(lr); + return state; +} + +uint64_t Simulator::readQ(int32_t addr, SimInstruction* instr, + UnalignedPolicy f) { + if (handleWasmSegFault(addr, 8)) { + return UINT64_MAX; + } + + if ((addr & 3) == 0 || (f == AllowUnaligned && !HasAlignmentFault())) { + uint64_t* ptr = reinterpret_cast<uint64_t*>(addr); + return *ptr; + } + + // See the comments below in readW. + if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + char* ptr = reinterpret_cast<char*>(addr); + uint64_t value; + memcpy(&value, ptr, sizeof(value)); + return value; + } + + printf("Unaligned read at 0x%08x, pc=%p\n", addr, instr); + MOZ_CRASH(); +} + +void Simulator::writeQ(int32_t addr, uint64_t value, SimInstruction* instr, + UnalignedPolicy f) { + if (handleWasmSegFault(addr, 8)) { + return; + } + + if ((addr & 3) == 0 || (f == AllowUnaligned && !HasAlignmentFault())) { + uint64_t* ptr = reinterpret_cast<uint64_t*>(addr); + *ptr = value; + return; + } + + // See the comments below in readW. + if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + char* ptr = reinterpret_cast<char*>(addr); + memcpy(ptr, &value, sizeof(value)); + return; + } + + printf("Unaligned write at 0x%08x, pc=%p\n", addr, instr); + MOZ_CRASH(); +} + +int Simulator::readW(int32_t addr, SimInstruction* instr, UnalignedPolicy f) { + if (handleWasmSegFault(addr, 4)) { + return -1; + } + + if ((addr & 3) == 0 || (f == AllowUnaligned && !HasAlignmentFault())) { + intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); + return *ptr; + } + + // In WebAssembly, we want unaligned accesses to either raise a signal or + // do the right thing. Making this simulator properly emulate the behavior + // of raising a signal is complex, so as a special-case, when in wasm code, + // we just do the right thing. + if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + char* ptr = reinterpret_cast<char*>(addr); + int value; + memcpy(&value, ptr, sizeof(value)); + return value; + } + + printf("Unaligned read at 0x%08x, pc=%p\n", addr, instr); + MOZ_CRASH(); +} + +void Simulator::writeW(int32_t addr, int value, SimInstruction* instr, + UnalignedPolicy f) { + if (handleWasmSegFault(addr, 4)) { + return; + } + + if ((addr & 3) == 0 || (f == AllowUnaligned && !HasAlignmentFault())) { + intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); + *ptr = value; + return; + } + + // See the comments above in readW. + if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + char* ptr = reinterpret_cast<char*>(addr); + memcpy(ptr, &value, sizeof(value)); + return; + } + + printf("Unaligned write at 0x%08x, pc=%p\n", addr, instr); + MOZ_CRASH(); +} + +// For the time being, define Relaxed operations in terms of SeqCst +// operations - we don't yet need Relaxed operations anywhere else in +// the system, and the distinction is not important to the simulation +// at the level where we're operating. + +template <typename T> +static T loadRelaxed(SharedMem<T*> addr) { + return AtomicOperations::loadSeqCst(addr); +} + +template <typename T> +static T compareExchangeRelaxed(SharedMem<T*> addr, T oldval, T newval) { + return AtomicOperations::compareExchangeSeqCst(addr, oldval, newval); +} + +int Simulator::readExW(int32_t addr, SimInstruction* instr) { + if (addr & 3) { + MOZ_CRASH("Unaligned exclusive read"); + } + + if (handleWasmSegFault(addr, 4)) { + return -1; + } + + SharedMem<int32_t*> ptr = + SharedMem<int32_t*>::shared(reinterpret_cast<int32_t*>(addr)); + int32_t value = loadRelaxed(ptr); + exclusiveMonitorSet(value); + return value; +} + +int32_t Simulator::writeExW(int32_t addr, int value, SimInstruction* instr) { + if (addr & 3) { + MOZ_CRASH("Unaligned exclusive write"); + } + + if (handleWasmSegFault(addr, 4)) { + return -1; + } + + SharedMem<int32_t*> ptr = + SharedMem<int32_t*>::shared(reinterpret_cast<int32_t*>(addr)); + bool held; + int32_t expected = int32_t(exclusiveMonitorGetAndClear(&held)); + if (!held) { + return 1; + } + int32_t old = compareExchangeRelaxed(ptr, expected, int32_t(value)); + return old != expected; +} + +uint16_t Simulator::readHU(int32_t addr, SimInstruction* instr) { + if (handleWasmSegFault(addr, 2)) { + return UINT16_MAX; + } + + // The regexp engine emits unaligned loads, so we don't check for them here + // like most of the other methods do. + if ((addr & 1) == 0 || !HasAlignmentFault()) { + uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); + return *ptr; + } + + // See comments above in readW. + if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + char* ptr = reinterpret_cast<char*>(addr); + uint16_t value; + memcpy(&value, ptr, sizeof(value)); + return value; + } + + printf("Unaligned unsigned halfword read at 0x%08x, pc=%p\n", addr, instr); + MOZ_CRASH(); + return 0; +} + +int16_t Simulator::readH(int32_t addr, SimInstruction* instr) { + if (handleWasmSegFault(addr, 2)) { + return -1; + } + + if ((addr & 1) == 0 || !HasAlignmentFault()) { + int16_t* ptr = reinterpret_cast<int16_t*>(addr); + return *ptr; + } + + // See comments above in readW. + if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + char* ptr = reinterpret_cast<char*>(addr); + int16_t value; + memcpy(&value, ptr, sizeof(value)); + return value; + } + + printf("Unaligned signed halfword read at 0x%08x\n", addr); + MOZ_CRASH(); + return 0; +} + +void Simulator::writeH(int32_t addr, uint16_t value, SimInstruction* instr) { + if (handleWasmSegFault(addr, 2)) { + return; + } + + if ((addr & 1) == 0 || !HasAlignmentFault()) { + uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); + *ptr = value; + return; + } + + // See the comments above in readW. + if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + char* ptr = reinterpret_cast<char*>(addr); + memcpy(ptr, &value, sizeof(value)); + return; + } + + printf("Unaligned unsigned halfword write at 0x%08x, pc=%p\n", addr, instr); + MOZ_CRASH(); +} + +void Simulator::writeH(int32_t addr, int16_t value, SimInstruction* instr) { + if (handleWasmSegFault(addr, 2)) { + return; + } + + if ((addr & 1) == 0 || !HasAlignmentFault()) { + int16_t* ptr = reinterpret_cast<int16_t*>(addr); + *ptr = value; + return; + } + + // See the comments above in readW. + if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + char* ptr = reinterpret_cast<char*>(addr); + memcpy(ptr, &value, sizeof(value)); + return; + } + + printf("Unaligned halfword write at 0x%08x, pc=%p\n", addr, instr); + MOZ_CRASH(); +} + +uint16_t Simulator::readExHU(int32_t addr, SimInstruction* instr) { + if (addr & 1) { + MOZ_CRASH("Unaligned exclusive read"); + } + + if (handleWasmSegFault(addr, 2)) { + return UINT16_MAX; + } + + SharedMem<uint16_t*> ptr = + SharedMem<uint16_t*>::shared(reinterpret_cast<uint16_t*>(addr)); + uint16_t value = loadRelaxed(ptr); + exclusiveMonitorSet(value); + return value; +} + +int32_t Simulator::writeExH(int32_t addr, uint16_t value, + SimInstruction* instr) { + if (addr & 1) { + MOZ_CRASH("Unaligned exclusive write"); + } + + if (handleWasmSegFault(addr, 2)) { + return -1; + } + + SharedMem<uint16_t*> ptr = + SharedMem<uint16_t*>::shared(reinterpret_cast<uint16_t*>(addr)); + bool held; + uint16_t expected = uint16_t(exclusiveMonitorGetAndClear(&held)); + if (!held) { + return 1; + } + uint16_t old = compareExchangeRelaxed(ptr, expected, value); + return old != expected; +} + +uint8_t Simulator::readBU(int32_t addr) { + if (handleWasmSegFault(addr, 1)) { + return UINT8_MAX; + } + + uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); + return *ptr; +} + +uint8_t Simulator::readExBU(int32_t addr) { + if (handleWasmSegFault(addr, 1)) { + return UINT8_MAX; + } + + SharedMem<uint8_t*> ptr = + SharedMem<uint8_t*>::shared(reinterpret_cast<uint8_t*>(addr)); + uint8_t value = loadRelaxed(ptr); + exclusiveMonitorSet(value); + return value; +} + +int32_t Simulator::writeExB(int32_t addr, uint8_t value) { + if (handleWasmSegFault(addr, 1)) { + return -1; + } + + SharedMem<uint8_t*> ptr = + SharedMem<uint8_t*>::shared(reinterpret_cast<uint8_t*>(addr)); + bool held; + uint8_t expected = uint8_t(exclusiveMonitorGetAndClear(&held)); + if (!held) { + return 1; + } + uint8_t old = compareExchangeRelaxed(ptr, expected, value); + return old != expected; +} + +int8_t Simulator::readB(int32_t addr) { + if (handleWasmSegFault(addr, 1)) { + return -1; + } + + int8_t* ptr = reinterpret_cast<int8_t*>(addr); + return *ptr; +} + +void Simulator::writeB(int32_t addr, uint8_t value) { + if (handleWasmSegFault(addr, 1)) { + return; + } + + uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); + *ptr = value; +} + +void Simulator::writeB(int32_t addr, int8_t value) { + if (handleWasmSegFault(addr, 1)) { + return; + } + + int8_t* ptr = reinterpret_cast<int8_t*>(addr); + *ptr = value; +} + +int32_t* Simulator::readDW(int32_t addr) { + if (handleWasmSegFault(addr, 8)) { + return nullptr; + } + + if ((addr & 3) == 0) { + int32_t* ptr = reinterpret_cast<int32_t*>(addr); + return ptr; + } + + printf("Unaligned read at 0x%08x\n", addr); + MOZ_CRASH(); +} + +void Simulator::writeDW(int32_t addr, int32_t value1, int32_t value2) { + if (handleWasmSegFault(addr, 8)) { + return; + } + + if ((addr & 3) == 0) { + int32_t* ptr = reinterpret_cast<int32_t*>(addr); + *ptr++ = value1; + *ptr = value2; + return; + } + + printf("Unaligned write at 0x%08x\n", addr); + MOZ_CRASH(); +} + +int32_t Simulator::readExDW(int32_t addr, int32_t* hibits) { + if (addr & 3) { + MOZ_CRASH("Unaligned exclusive read"); + } + + if (handleWasmSegFault(addr, 8)) { + return -1; + } + + SharedMem<uint64_t*> ptr = + SharedMem<uint64_t*>::shared(reinterpret_cast<uint64_t*>(addr)); + // The spec says that the low part of value shall be read from addr and + // the high part shall be read from addr+4. On a little-endian system + // where we read a 64-bit quadword the low part of the value will be in + // the low part of the quadword, and the high part of the value in the + // high part of the quadword. + uint64_t value = loadRelaxed(ptr); + exclusiveMonitorSet(value); + *hibits = int32_t(value >> 32); + return int32_t(value); +} + +int32_t Simulator::writeExDW(int32_t addr, int32_t value1, int32_t value2) { + if (addr & 3) { + MOZ_CRASH("Unaligned exclusive write"); + } + + if (handleWasmSegFault(addr, 8)) { + return -1; + } + + SharedMem<uint64_t*> ptr = + SharedMem<uint64_t*>::shared(reinterpret_cast<uint64_t*>(addr)); + // The spec says that value1 shall be stored at addr and value2 at + // addr+4. On a little-endian system that means constructing a 64-bit + // value where value1 is in the low half of a 64-bit quadword and value2 + // is in the high half of the quadword. + uint64_t value = (uint64_t(value2) << 32) | uint32_t(value1); + bool held; + uint64_t expected = exclusiveMonitorGetAndClear(&held); + if (!held) { + return 1; + } + uint64_t old = compareExchangeRelaxed(ptr, expected, value); + return old != expected; +} + +uintptr_t Simulator::stackLimit() const { return stackLimit_; } + +uintptr_t* Simulator::addressOfStackLimit() { return &stackLimit_; } + +bool Simulator::overRecursed(uintptr_t newsp) const { + if (newsp == 0) { + newsp = get_register(sp); + } + return newsp <= stackLimit(); +} + +bool Simulator::overRecursedWithExtra(uint32_t extra) const { + uintptr_t newsp = get_register(sp) - extra; + return newsp <= stackLimit(); +} + +// Checks if the current instruction should be executed based on its condition +// bits. +bool Simulator::conditionallyExecute(SimInstruction* instr) { + switch (instr->conditionField()) { + case Assembler::EQ: + return z_flag_; + case Assembler::NE: + return !z_flag_; + case Assembler::CS: + return c_flag_; + case Assembler::CC: + return !c_flag_; + case Assembler::MI: + return n_flag_; + case Assembler::PL: + return !n_flag_; + case Assembler::VS: + return v_flag_; + case Assembler::VC: + return !v_flag_; + case Assembler::HI: + return c_flag_ && !z_flag_; + case Assembler::LS: + return !c_flag_ || z_flag_; + case Assembler::GE: + return n_flag_ == v_flag_; + case Assembler::LT: + return n_flag_ != v_flag_; + case Assembler::GT: + return !z_flag_ && (n_flag_ == v_flag_); + case Assembler::LE: + return z_flag_ || (n_flag_ != v_flag_); + case Assembler::AL: + return true; + default: + MOZ_CRASH(); + } + return false; +} + +// Calculate and set the Negative and Zero flags. +void Simulator::setNZFlags(int32_t val) { + n_flag_ = (val < 0); + z_flag_ = (val == 0); +} + +// Set the Carry flag. +void Simulator::setCFlag(bool val) { c_flag_ = val; } + +// Set the oVerflow flag. +void Simulator::setVFlag(bool val) { v_flag_ = val; } + +// Calculate C flag value for additions. +bool Simulator::carryFrom(int32_t left, int32_t right, int32_t carry) { + uint32_t uleft = static_cast<uint32_t>(left); + uint32_t uright = static_cast<uint32_t>(right); + uint32_t urest = 0xffffffffU - uleft; + return (uright > urest) || + (carry && (((uright + 1) > urest) || (uright > (urest - 1)))); +} + +// Calculate C flag value for subtractions. +bool Simulator::borrowFrom(int32_t left, int32_t right) { + uint32_t uleft = static_cast<uint32_t>(left); + uint32_t uright = static_cast<uint32_t>(right); + return (uright > uleft); +} + +// Calculate V flag value for additions and subtractions. +bool Simulator::overflowFrom(int32_t alu_out, int32_t left, int32_t right, + bool addition) { + bool overflow; + if (addition) { + // Operands have the same sign. + overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0)) + // And operands and result have different sign. + && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); + } else { + // Operands have different signs. + overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0)) + // And first operand and result have different signs. + && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); + } + return overflow; +} + +// Support for VFP comparisons. +void Simulator::compute_FPSCR_Flags(double val1, double val2) { + if (std::isnan(val1) || std::isnan(val2)) { + n_flag_FPSCR_ = false; + z_flag_FPSCR_ = false; + c_flag_FPSCR_ = true; + v_flag_FPSCR_ = true; + // All non-NaN cases. + } else if (val1 == val2) { + n_flag_FPSCR_ = false; + z_flag_FPSCR_ = true; + c_flag_FPSCR_ = true; + v_flag_FPSCR_ = false; + } else if (val1 < val2) { + n_flag_FPSCR_ = true; + z_flag_FPSCR_ = false; + c_flag_FPSCR_ = false; + v_flag_FPSCR_ = false; + } else { + // Case when (val1 > val2). + n_flag_FPSCR_ = false; + z_flag_FPSCR_ = false; + c_flag_FPSCR_ = true; + v_flag_FPSCR_ = false; + } +} + +void Simulator::copy_FPSCR_to_APSR() { + n_flag_ = n_flag_FPSCR_; + z_flag_ = z_flag_FPSCR_; + c_flag_ = c_flag_FPSCR_; + v_flag_ = v_flag_FPSCR_; +} + +// Addressing Mode 1 - Data-processing operands: +// Get the value based on the shifter_operand with register. +int32_t Simulator::getShiftRm(SimInstruction* instr, bool* carry_out) { + ShiftType shift = instr->shifttypeValue(); + int shift_amount = instr->shiftAmountValue(); + int32_t result = get_register(instr->rmValue()); + if (instr->bit(4) == 0) { + // By immediate. + if (shift == ROR && shift_amount == 0) { + MOZ_CRASH("NYI"); + return result; + } + if ((shift == LSR || shift == ASR) && shift_amount == 0) { + shift_amount = 32; + } + switch (shift) { + case ASR: { + if (shift_amount == 0) { + if (result < 0) { + result = 0xffffffff; + *carry_out = true; + } else { + result = 0; + *carry_out = false; + } + } else { + result >>= (shift_amount - 1); + *carry_out = (result & 1) == 1; + result >>= 1; + } + break; + } + + case LSL: { + if (shift_amount == 0) { + *carry_out = c_flag_; + } else { + result <<= (shift_amount - 1); + *carry_out = (result < 0); + result <<= 1; + } + break; + } + + case LSR: { + if (shift_amount == 0) { + result = 0; + *carry_out = c_flag_; + } else { + uint32_t uresult = static_cast<uint32_t>(result); + uresult >>= (shift_amount - 1); + *carry_out = (uresult & 1) == 1; + uresult >>= 1; + result = static_cast<int32_t>(uresult); + } + break; + } + + case ROR: { + if (shift_amount == 0) { + *carry_out = c_flag_; + } else { + uint32_t left = static_cast<uint32_t>(result) >> shift_amount; + uint32_t right = static_cast<uint32_t>(result) << (32 - shift_amount); + result = right | left; + *carry_out = (static_cast<uint32_t>(result) >> 31) != 0; + } + break; + } + + default: + MOZ_CRASH(); + } + } else { + // By register. + int rs = instr->rsValue(); + shift_amount = get_register(rs) & 0xff; + switch (shift) { + case ASR: { + if (shift_amount == 0) { + *carry_out = c_flag_; + } else if (shift_amount < 32) { + result >>= (shift_amount - 1); + *carry_out = (result & 1) == 1; + result >>= 1; + } else { + MOZ_ASSERT(shift_amount >= 32); + if (result < 0) { + *carry_out = true; + result = 0xffffffff; + } else { + *carry_out = false; + result = 0; + } + } + break; + } + + case LSL: { + if (shift_amount == 0) { + *carry_out = c_flag_; + } else if (shift_amount < 32) { + result <<= (shift_amount - 1); + *carry_out = (result < 0); + result <<= 1; + } else if (shift_amount == 32) { + *carry_out = (result & 1) == 1; + result = 0; + } else { + MOZ_ASSERT(shift_amount > 32); + *carry_out = false; + result = 0; + } + break; + } + + case LSR: { + if (shift_amount == 0) { + *carry_out = c_flag_; + } else if (shift_amount < 32) { + uint32_t uresult = static_cast<uint32_t>(result); + uresult >>= (shift_amount - 1); + *carry_out = (uresult & 1) == 1; + uresult >>= 1; + result = static_cast<int32_t>(uresult); + } else if (shift_amount == 32) { + *carry_out = (result < 0); + result = 0; + } else { + *carry_out = false; + result = 0; + } + break; + } + + case ROR: { + if (shift_amount == 0) { + *carry_out = c_flag_; + } else { + uint32_t left = static_cast<uint32_t>(result) >> shift_amount; + uint32_t right = static_cast<uint32_t>(result) << (32 - shift_amount); + result = right | left; + *carry_out = (static_cast<uint32_t>(result) >> 31) != 0; + } + break; + } + + default: + MOZ_CRASH(); + } + } + return result; +} + +// Addressing Mode 1 - Data-processing operands: +// Get the value based on the shifter_operand with immediate. +int32_t Simulator::getImm(SimInstruction* instr, bool* carry_out) { + int rotate = instr->rotateValue() * 2; + int immed8 = instr->immed8Value(); + int imm = (immed8 >> rotate) | (immed8 << (32 - rotate)); + *carry_out = (rotate == 0) ? c_flag_ : (imm < 0); + return imm; +} + +int32_t Simulator::processPU(SimInstruction* instr, int num_regs, int reg_size, + intptr_t* start_address, intptr_t* end_address) { + int rn = instr->rnValue(); + int32_t rn_val = get_register(rn); + switch (instr->PUField()) { + case da_x: + MOZ_CRASH(); + break; + case ia_x: + *start_address = rn_val; + *end_address = rn_val + (num_regs * reg_size) - reg_size; + rn_val = rn_val + (num_regs * reg_size); + break; + case db_x: + *start_address = rn_val - (num_regs * reg_size); + *end_address = rn_val - reg_size; + rn_val = *start_address; + break; + case ib_x: + *start_address = rn_val + reg_size; + *end_address = rn_val + (num_regs * reg_size); + rn_val = *end_address; + break; + default: + MOZ_CRASH(); + } + return rn_val; +} + +// Addressing Mode 4 - Load and Store Multiple +void Simulator::handleRList(SimInstruction* instr, bool load) { + int rlist = instr->rlistValue(); + int num_regs = mozilla::CountPopulation32(rlist); + + intptr_t start_address = 0; + intptr_t end_address = 0; + int32_t rn_val = + processPU(instr, num_regs, sizeof(void*), &start_address, &end_address); + intptr_t* address = reinterpret_cast<intptr_t*>(start_address); + + // Catch null pointers a little earlier. + MOZ_ASSERT(start_address > 8191 || start_address < 0); + + int reg = 0; + while (rlist != 0) { + if ((rlist & 1) != 0) { + if (load) { + set_register(reg, *address); + } else { + *address = get_register(reg); + } + address += 1; + } + reg++; + rlist >>= 1; + } + MOZ_ASSERT(end_address == ((intptr_t)address) - 4); + if (instr->hasW()) { + set_register(instr->rnValue(), rn_val); + } +} + +// Addressing Mode 6 - Load and Store Multiple Coprocessor registers. +void Simulator::handleVList(SimInstruction* instr) { + VFPRegPrecision precision = + (instr->szValue() == 0) ? kSinglePrecision : kDoublePrecision; + int operand_size = (precision == kSinglePrecision) ? 4 : 8; + bool load = (instr->VLValue() == 0x1); + + int vd; + int num_regs; + vd = instr->VFPDRegValue(precision); + if (precision == kSinglePrecision) { + num_regs = instr->immed8Value(); + } else { + num_regs = instr->immed8Value() / 2; + } + + intptr_t start_address = 0; + intptr_t end_address = 0; + int32_t rn_val = + processPU(instr, num_regs, operand_size, &start_address, &end_address); + + intptr_t* address = reinterpret_cast<intptr_t*>(start_address); + for (int reg = vd; reg < vd + num_regs; reg++) { + if (precision == kSinglePrecision) { + if (load) { + set_s_register_from_sinteger( + reg, readW(reinterpret_cast<int32_t>(address), instr)); + } else { + writeW(reinterpret_cast<int32_t>(address), + get_sinteger_from_s_register(reg), instr); + } + address += 1; + } else { + if (load) { + int32_t data[] = {readW(reinterpret_cast<int32_t>(address), instr), + readW(reinterpret_cast<int32_t>(address + 1), instr)}; + double d; + memcpy(&d, data, 8); + set_d_register_from_double(reg, d); + } else { + int32_t data[2]; + double d; + get_double_from_d_register(reg, &d); + memcpy(data, &d, 8); + writeW(reinterpret_cast<int32_t>(address), data[0], instr); + writeW(reinterpret_cast<int32_t>(address + 1), data[1], instr); + } + address += 2; + } + } + MOZ_ASSERT(reinterpret_cast<intptr_t>(address) - operand_size == end_address); + if (instr->hasW()) { + set_register(instr->rnValue(), rn_val); + } +} + +// Note: With the code below we assume that all runtime calls return a 64 bits +// result. If they don't, the r1 result register contains a bogus value, which +// is fine because it is caller-saved. +typedef int64_t (*Prototype_General0)(); +typedef int64_t (*Prototype_General1)(int32_t arg0); +typedef int64_t (*Prototype_General2)(int32_t arg0, int32_t arg1); +typedef int64_t (*Prototype_General3)(int32_t arg0, int32_t arg1, int32_t arg2); +typedef int64_t (*Prototype_General4)(int32_t arg0, int32_t arg1, int32_t arg2, + int32_t arg3); +typedef int64_t (*Prototype_General5)(int32_t arg0, int32_t arg1, int32_t arg2, + int32_t arg3, int32_t arg4); +typedef int64_t (*Prototype_General6)(int32_t arg0, int32_t arg1, int32_t arg2, + int32_t arg3, int32_t arg4, int32_t arg5); +typedef int64_t (*Prototype_General7)(int32_t arg0, int32_t arg1, int32_t arg2, + int32_t arg3, int32_t arg4, int32_t arg5, + int32_t arg6); +typedef int64_t (*Prototype_General8)(int32_t arg0, int32_t arg1, int32_t arg2, + int32_t arg3, int32_t arg4, int32_t arg5, + int32_t arg6, int32_t arg7); +typedef int64_t (*Prototype_GeneralGeneralGeneralInt64)(int32_t arg0, + int32_t arg1, + int32_t arg2, + int64_t arg3); +typedef int64_t (*Prototype_GeneralGeneralInt64Int64)(int32_t arg0, + int32_t arg1, + int64_t arg2, + int64_t arg3); + +typedef double (*Prototype_Double_None)(); +typedef double (*Prototype_Double_Double)(double arg0); +typedef double (*Prototype_Double_Int)(int32_t arg0); +typedef double (*Prototype_Double_IntInt)(int32_t arg0, int32_t arg1); +typedef int32_t (*Prototype_Int_Double)(double arg0); +typedef int64_t (*Prototype_Int64_Double)(double arg0); +typedef int32_t (*Prototype_Int_DoubleIntInt)(double arg0, int32_t arg1, + int32_t arg2); +typedef int32_t (*Prototype_Int_IntDoubleIntInt)(int32_t arg0, double arg1, + int32_t arg2, int32_t arg3); + +typedef int32_t (*Prototype_Int_Float32)(float arg0); +typedef float (*Prototype_Float32_Float32)(float arg0); +typedef float (*Prototype_Float32_Float32Float32)(float arg0, float arg1); +typedef float (*Prototype_Float32_IntInt)(int arg0, int arg1); + +typedef double (*Prototype_Double_DoubleInt)(double arg0, int32_t arg1); +typedef double (*Prototype_Double_IntDouble)(int32_t arg0, double arg1); +typedef double (*Prototype_Double_DoubleDouble)(double arg0, double arg1); +typedef int32_t (*Prototype_Int_IntDouble)(int32_t arg0, double arg1); +typedef int32_t (*Prototype_Int_DoubleInt)(double arg0, int32_t arg1); + +typedef double (*Prototype_Double_DoubleDoubleDouble)(double arg0, double arg1, + double arg2); +typedef double (*Prototype_Double_DoubleDoubleDoubleDouble)(double arg0, + double arg1, + double arg2, + double arg3); + +typedef int32_t (*Prototype_Int32_General)(int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt32)(int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt32Int32)(int32_t, int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int32Int32)(int32_t, int32_t, + int32_t, int32_t, + int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int32Int32Int32)( + int32_t, int32_t, int32_t, int32_t, int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int32Int32General)( + int32_t, int32_t, int32_t, int32_t, int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int32Int32Int32Int32General)( + int32_t, int32_t, int32_t, int32_t, int32_t, int32_t, int32_t, int32_t); +typedef int32_t ( + *Prototype_Int32_GeneralInt32Float32Float32Int32Int32Int32General)( + int32_t, int32_t, float, float, int32_t, int32_t, int32_t, int32_t); +typedef int32_t ( + *Prototype_Int32_GeneralInt32Float32Float32Float32Float32Int32Int32Int32Int32General)( + int32_t, int32_t, float, float, float, float, int32_t, int32_t, int32_t, + int32_t, int32_t); +typedef int32_t ( + *Prototype_Int32_GeneralInt32Float32Float32Int32Float32Float32Int32Float32Int32Int32Int32Int32General)( + int32_t, int32_t, float, float, int32_t, float, float, int32_t, float, + int32_t, int32_t, int32_t, int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int32General)( + int32_t, int32_t, int32_t, int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int64)(int32_t, int32_t, + int32_t, int64_t); +typedef int32_t (*Prototype_Int32_GeneralInt32Int32General)(int32_t, int32_t, + int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt32Int64Int64)(int32_t, int32_t, + int64_t, int64_t); +typedef int32_t (*Prototype_Int32_GeneralInt32GeneralInt32)(int32_t, int32_t, + int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt32GeneralInt32Int32)( + int32_t, int32_t, int32_t, int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralGeneral)(int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralGeneralGeneral)(int32_t, int32_t, + int32_t); +typedef int32_t (*Prototype_Int32_GeneralGeneralInt32Int32)(int32_t, int32_t, + int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt64Int32Int32Int32)(int32_t, int64_t, + int32_t, int32_t, + int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt64Int32)(int32_t, int64_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt64Int32Int64)(int32_t, int64_t, + int32_t, int64_t); +typedef int32_t (*Prototype_Int32_GeneralInt64Int32Int64General)( + int32_t, int64_t, int32_t, int64_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt64Int64Int64)(int32_t, int64_t, + int64_t, int64_t); +typedef int32_t (*Prototype_Int32_GeneralInt64Int64General)(int32_t, int64_t, + int64_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt64Int64Int64General)( + int32_t, int64_t, int64_t, int64_t, int32_t); +typedef int32_t (*Prototype_General_GeneralInt32)(int32_t, int32_t); +typedef int32_t (*Prototype_General_GeneralInt32Int32)(int32_t, int32_t, + int32_t); +typedef int32_t (*Prototype_General_GeneralInt32General)(int32_t, int32_t, + int32_t); +typedef int32_t (*Prototype_General_GeneralInt32Int32GeneralInt32)( + int32_t, int32_t, int32_t, int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralGeneralInt32General)(int32_t, int32_t, + int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralGeneralInt32GeneralInt32Int32Int32)( + int32_t, int32_t, int32_t, int32_t, int32_t, int32_t, int32_t); +typedef int64_t (*Prototype_Int64_General)(int32_t); +typedef int64_t (*Prototype_Int64_GeneralInt64)(int32_t, int64_t); + +// Fill the volatile registers with scratch values. +// +// Some of the ABI calls assume that the float registers are not scratched, +// even though the ABI defines them as volatile - a performance +// optimization. These are all calls passing operands in integer registers, +// so for now the simulator does not scratch any float registers for these +// calls. Should try to narrow it further in future. +// +void Simulator::scratchVolatileRegisters(bool scratchFloat) { + int32_t scratch_value = 0xa5a5a5a5 ^ uint32_t(icount_); + set_register(r0, scratch_value); + set_register(r1, scratch_value); + set_register(r2, scratch_value); + set_register(r3, scratch_value); + set_register(r12, scratch_value); // Intra-Procedure-call scratch register. + set_register(r14, scratch_value); // Link register. + + if (scratchFloat) { + uint64_t scratch_value_d = + 0x5a5a5a5a5a5a5a5aLU ^ uint64_t(icount_) ^ (uint64_t(icount_) << 30); + for (uint32_t i = d0; i < d8; i++) { + set_d_register(i, &scratch_value_d); + } + for (uint32_t i = d16; i < FloatRegisters::TotalPhys; i++) { + set_d_register(i, &scratch_value_d); + } + } +} + +static int64_t MakeInt64(int32_t first, int32_t second) { + // Little-endian order. + return ((int64_t)second << 32) | (uint32_t)first; +} + +// Software interrupt instructions are used by the simulator to call into C++. +void Simulator::softwareInterrupt(SimInstruction* instr) { + int svc = instr->svcValue(); + switch (svc) { + case kCallRtRedirected: { + Redirection* redirection = Redirection::FromSwiInstruction(instr); + int32_t arg0 = get_register(r0); + int32_t arg1 = get_register(r1); + int32_t arg2 = get_register(r2); + int32_t arg3 = get_register(r3); + int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp)); + int32_t arg4 = stack_pointer[0]; + int32_t arg5 = stack_pointer[1]; + int32_t arg6 = stack_pointer[2]; + int32_t arg7 = stack_pointer[3]; + int32_t arg8 = stack_pointer[4]; + int32_t arg9 = stack_pointer[5]; + int32_t arg10 = stack_pointer[6]; + int32_t arg11 = stack_pointer[7]; + int32_t arg12 = stack_pointer[8]; + int32_t arg13 = stack_pointer[9]; + + int32_t saved_lr = get_register(lr); + intptr_t external = + reinterpret_cast<intptr_t>(redirection->nativeFunction()); + + bool stack_aligned = (get_register(sp) & (ABIStackAlignment - 1)) == 0; + if (!stack_aligned) { + fprintf(stderr, "Runtime call with unaligned stack!\n"); + MOZ_CRASH(); + } + + if (single_stepping_) { + single_step_callback_(single_step_callback_arg_, this, nullptr); + } + + switch (redirection->type()) { + case Args_General0: { + Prototype_General0 target = + reinterpret_cast<Prototype_General0>(external); + int64_t result = target(); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_General1: { + Prototype_General1 target = + reinterpret_cast<Prototype_General1>(external); + int64_t result = target(arg0); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_General2: { + Prototype_General2 target = + reinterpret_cast<Prototype_General2>(external); + int64_t result = target(arg0, arg1); + // The ARM backend makes calls to __aeabi_idivmod and + // __aeabi_uidivmod assuming that the float registers are + // non-volatile as a performance optimization, so the float + // registers must not be scratch when calling these. + bool scratchFloat = + target != __aeabi_idivmod && target != __aeabi_uidivmod; + scratchVolatileRegisters(/* scratchFloat = */ scratchFloat); + setCallResult(result); + break; + } + case Args_General3: { + Prototype_General3 target = + reinterpret_cast<Prototype_General3>(external); + int64_t result = target(arg0, arg1, arg2); + scratchVolatileRegisters(/* scratchFloat = true*/); + setCallResult(result); + break; + } + case Args_General4: { + Prototype_General4 target = + reinterpret_cast<Prototype_General4>(external); + int64_t result = target(arg0, arg1, arg2, arg3); + scratchVolatileRegisters(/* scratchFloat = true*/); + setCallResult(result); + break; + } + case Args_General5: { + Prototype_General5 target = + reinterpret_cast<Prototype_General5>(external); + int64_t result = target(arg0, arg1, arg2, arg3, arg4); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_General6: { + Prototype_General6 target = + reinterpret_cast<Prototype_General6>(external); + int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_General7: { + Prototype_General7 target = + reinterpret_cast<Prototype_General7>(external); + int32_t arg6 = stack_pointer[2]; + int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5, arg6); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_General8: { + Prototype_General8 target = + reinterpret_cast<Prototype_General8>(external); + int32_t arg6 = stack_pointer[2]; + int32_t arg7 = stack_pointer[3]; + int64_t result = + target(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int_GeneralGeneralGeneralInt64: { + Prototype_GeneralGeneralGeneralInt64 target = + reinterpret_cast<Prototype_GeneralGeneralGeneralInt64>(external); + // The int64 arg is not split across register and stack + int64_t result = target(arg0, arg1, arg2, MakeInt64(arg4, arg5)); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int_GeneralGeneralInt64Int64: { + Prototype_GeneralGeneralInt64Int64 target = + reinterpret_cast<Prototype_GeneralGeneralInt64Int64>(external); + int64_t result = + target(arg0, arg1, MakeInt64(arg2, arg3), MakeInt64(arg4, arg5)); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int64_Double: { + double dval0, dval1; + int32_t ival; + getFpArgs(&dval0, &dval1, &ival); + Prototype_Int64_Double target = + reinterpret_cast<Prototype_Int64_Double>(external); + int64_t result = target(dval0); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Double_None: { + Prototype_Double_None target = + reinterpret_cast<Prototype_Double_None>(external); + double dresult = target(); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResultDouble(dresult); + break; + } + case Args_Int_Double: { + double dval0, dval1; + int32_t ival; + getFpArgs(&dval0, &dval1, &ival); + Prototype_Int_Double target = + reinterpret_cast<Prototype_Int_Double>(external); + int32_t res = target(dval0); + scratchVolatileRegisters(/* scratchFloat = true */); + set_register(r0, res); + break; + } + case Args_Int_Float32: { + float fval0; + if (UseHardFpABI()) { + get_float_from_s_register(0, &fval0); + } else { + fval0 = mozilla::BitwiseCast<float>(arg0); + } + auto target = reinterpret_cast<Prototype_Int_Float32>(external); + int32_t res = target(fval0); + scratchVolatileRegisters(/* scratchFloat = true */); + set_register(r0, res); + break; + } + case Args_Double_Double: { + double dval0, dval1; + int32_t ival; + getFpArgs(&dval0, &dval1, &ival); + Prototype_Double_Double target = + reinterpret_cast<Prototype_Double_Double>(external); + double dresult = target(dval0); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResultDouble(dresult); + break; + } + case Args_Float32_Float32: { + float fval0; + if (UseHardFpABI()) { + get_float_from_s_register(0, &fval0); + } else { + fval0 = mozilla::BitwiseCast<float>(arg0); + } + Prototype_Float32_Float32 target = + reinterpret_cast<Prototype_Float32_Float32>(external); + float fresult = target(fval0); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResultFloat(fresult); + break; + } + case Args_Float32_Float32Float32: { + float fval0, fval1; + if (UseHardFpABI()) { + get_float_from_s_register(0, &fval0); + get_float_from_s_register(1, &fval1); + } else { + fval0 = mozilla::BitwiseCast<float>(arg0); + fval1 = mozilla::BitwiseCast<float>(arg1); + } + Prototype_Float32_Float32Float32 target = + reinterpret_cast<Prototype_Float32_Float32Float32>(external); + float fresult = target(fval0, fval1); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResultFloat(fresult); + break; + } + case Args_Float32_IntInt: { + Prototype_Float32_IntInt target = + reinterpret_cast<Prototype_Float32_IntInt>(external); + float fresult = target(arg0, arg1); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResultFloat(fresult); + break; + } + case Args_Double_Int: { + Prototype_Double_Int target = + reinterpret_cast<Prototype_Double_Int>(external); + double dresult = target(arg0); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResultDouble(dresult); + break; + } + case Args_Double_IntInt: { + Prototype_Double_IntInt target = + reinterpret_cast<Prototype_Double_IntInt>(external); + double dresult = target(arg0, arg1); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResultDouble(dresult); + break; + } + case Args_Double_DoubleInt: { + double dval0, dval1; + int32_t ival; + getFpArgs(&dval0, &dval1, &ival); + Prototype_Double_DoubleInt target = + reinterpret_cast<Prototype_Double_DoubleInt>(external); + double dresult = target(dval0, ival); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResultDouble(dresult); + break; + } + case Args_Double_DoubleDouble: { + double dval0, dval1; + int32_t ival; + getFpArgs(&dval0, &dval1, &ival); + Prototype_Double_DoubleDouble target = + reinterpret_cast<Prototype_Double_DoubleDouble>(external); + double dresult = target(dval0, dval1); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResultDouble(dresult); + break; + } + case Args_Double_IntDouble: { + int32_t ival = get_register(0); + double dval0; + if (UseHardFpABI()) { + get_double_from_d_register(0, &dval0); + } else { + dval0 = get_double_from_register_pair(2); + } + Prototype_Double_IntDouble target = + reinterpret_cast<Prototype_Double_IntDouble>(external); + double dresult = target(ival, dval0); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResultDouble(dresult); + break; + } + case Args_Int_IntDouble: { + int32_t ival = get_register(0); + double dval0; + if (UseHardFpABI()) { + get_double_from_d_register(0, &dval0); + } else { + dval0 = get_double_from_register_pair(2); + } + Prototype_Int_IntDouble target = + reinterpret_cast<Prototype_Int_IntDouble>(external); + int32_t result = target(ival, dval0); + scratchVolatileRegisters(/* scratchFloat = true */); + set_register(r0, result); + break; + } + case Args_Int_DoubleInt: { + double dval; + int32_t result; + Prototype_Int_DoubleInt target = + reinterpret_cast<Prototype_Int_DoubleInt>(external); + if (UseHardFpABI()) { + get_double_from_d_register(0, &dval); + result = target(dval, arg0); + } else { + dval = get_double_from_register_pair(0); + result = target(dval, arg2); + } + scratchVolatileRegisters(/* scratchFloat = true */); + set_register(r0, result); + break; + } + case Args_Int_DoubleIntInt: { + double dval; + int32_t result; + Prototype_Int_DoubleIntInt target = + reinterpret_cast<Prototype_Int_DoubleIntInt>(external); + if (UseHardFpABI()) { + get_double_from_d_register(0, &dval); + result = target(dval, arg0, arg1); + } else { + dval = get_double_from_register_pair(0); + result = target(dval, arg2, arg3); + } + scratchVolatileRegisters(/* scratchFloat = true */); + set_register(r0, result); + break; + } + case Args_Int_IntDoubleIntInt: { + double dval; + int32_t result; + Prototype_Int_IntDoubleIntInt target = + reinterpret_cast<Prototype_Int_IntDoubleIntInt>(external); + if (UseHardFpABI()) { + get_double_from_d_register(0, &dval); + result = target(arg0, dval, arg1, arg2); + } else { + dval = get_double_from_register_pair(2); + result = target(arg0, dval, arg4, arg5); + } + scratchVolatileRegisters(/* scratchFloat = true */); + set_register(r0, result); + break; + } + case Args_Double_DoubleDoubleDouble: { + double dval0, dval1, dval2; + int32_t ival; + getFpArgs(&dval0, &dval1, &ival); + // the last argument is on stack + getFpFromStack(stack_pointer, &dval2); + Prototype_Double_DoubleDoubleDouble target = + reinterpret_cast<Prototype_Double_DoubleDoubleDouble>(external); + double dresult = target(dval0, dval1, dval2); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResultDouble(dresult); + break; + } + case Args_Double_DoubleDoubleDoubleDouble: { + double dval0, dval1, dval2, dval3; + int32_t ival; + getFpArgs(&dval0, &dval1, &ival); + // the two last arguments are on stack + getFpFromStack(stack_pointer, &dval2); + getFpFromStack(stack_pointer + 2, &dval3); + Prototype_Double_DoubleDoubleDoubleDouble target = + reinterpret_cast<Prototype_Double_DoubleDoubleDoubleDouble>( + external); + double dresult = target(dval0, dval1, dval2, dval3); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResultDouble(dresult); + break; + } + + case Args_Int32_General: { + Prototype_Int32_General target = + reinterpret_cast<Prototype_Int32_General>(external); + int64_t result = target(arg0); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt32: { + Prototype_Int32_GeneralInt32 target = + reinterpret_cast<Prototype_Int32_GeneralInt32>(external); + int64_t result = target(arg0, arg1); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt32Int32: { + Prototype_Int32_GeneralInt32Int32 target = + reinterpret_cast<Prototype_Int32_GeneralInt32Int32>(external); + int64_t result = target(arg0, arg1, arg2); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt32Int32Int32Int32: { + Prototype_Int32_GeneralInt32Int32Int32Int32 target = + reinterpret_cast<Prototype_Int32_GeneralInt32Int32Int32Int32>( + external); + int64_t result = target(arg0, arg1, arg2, arg3, arg4); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt32Int32Int32Int32Int32: { + Prototype_Int32_GeneralInt32Int32Int32Int32Int32 target = + reinterpret_cast< + Prototype_Int32_GeneralInt32Int32Int32Int32Int32>(external); + int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt32Int32Int32Int32General: { + Prototype_Int32_GeneralInt32Int32Int32Int32General target = + reinterpret_cast< + Prototype_Int32_GeneralInt32Int32Int32Int32General>(external); + int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt32Int32Int32Int32Int32Int32General: { + Prototype_Int32_GeneralInt32Int32Int32Int32Int32Int32General target = + reinterpret_cast< + Prototype_Int32_GeneralInt32Int32Int32Int32Int32Int32General>( + external); + int64_t result = + target(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt32Float32Float32Int32Int32Int32General: { + float fval0, fval1; + if (UseHardFpABI()) { + get_float_from_s_register(2, &fval0); + get_float_from_s_register(3, &fval1); + } else { + fval0 = mozilla::BitwiseCast<float>(arg2); + fval1 = mozilla::BitwiseCast<float>(arg3); + } + Prototype_Int32_GeneralInt32Float32Float32Int32Int32Int32General + target = reinterpret_cast< + Prototype_Int32_GeneralInt32Float32Float32Int32Int32Int32General>( + external); + int64_t result = + target(arg0, arg1, fval0, fval1, arg4, arg5, arg6, arg7); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt32Float32Float32Float32Float32Int32Int32Int32Int32General: { + float fval0, fval1, fval2, fval3; + if (UseHardFpABI()) { + get_float_from_s_register(2, &fval0); + get_float_from_s_register(3, &fval1); + get_float_from_s_register(4, &fval2); + get_float_from_s_register(5, &fval3); + } else { + fval0 = mozilla::BitwiseCast<float>(arg2); + fval1 = mozilla::BitwiseCast<float>(arg3); + fval2 = mozilla::BitwiseCast<float>(arg4); + fval3 = mozilla::BitwiseCast<float>(arg5); + } + Prototype_Int32_GeneralInt32Float32Float32Float32Float32Int32Int32Int32Int32General + target = reinterpret_cast< + Prototype_Int32_GeneralInt32Float32Float32Float32Float32Int32Int32Int32Int32General>( + external); + int64_t result = target(arg0, arg1, fval0, fval1, fval2, fval3, arg6, + arg7, arg8, arg9, arg10); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt32Float32Float32Int32Float32Float32Int32Float32Int32Int32Int32Int32General: { + float fval0, fval1, fval2, fval3, fval4; + if (UseHardFpABI()) { + get_float_from_s_register(2, &fval0); + get_float_from_s_register(3, &fval1); + get_float_from_s_register(5, &fval2); + get_float_from_s_register(6, &fval3); + get_float_from_s_register(8, &fval4); + } else { + fval0 = mozilla::BitwiseCast<float>(arg2); + fval1 = mozilla::BitwiseCast<float>(arg3); + fval2 = mozilla::BitwiseCast<float>(arg5); + fval3 = mozilla::BitwiseCast<float>(arg6); + fval4 = mozilla::BitwiseCast<float>(arg8); + } + Prototype_Int32_GeneralInt32Float32Float32Int32Float32Float32Int32Float32Int32Int32Int32Int32General + target = reinterpret_cast< + Prototype_Int32_GeneralInt32Float32Float32Int32Float32Float32Int32Float32Int32Int32Int32Int32General>( + external); + int64_t result = + target(arg0, arg1, fval0, fval1, arg4, fval2, fval3, arg7, fval4, + arg9, arg10, arg11, arg12, arg13); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt32Int32Int32General: { + Prototype_Int32_GeneralInt32Int32Int32General target = + reinterpret_cast<Prototype_Int32_GeneralInt32Int32Int32General>( + external); + int64_t result = target(arg0, arg1, arg2, arg3, arg4); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt32Int32Int64: { + Prototype_Int32_GeneralInt32Int32Int64 target = + reinterpret_cast<Prototype_Int32_GeneralInt32Int32Int64>( + external); + int64_t result = target(arg0, arg1, arg2, MakeInt64(arg3, arg4)); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt32Int32General: { + Prototype_Int32_GeneralInt32Int32General target = + reinterpret_cast<Prototype_Int32_GeneralInt32Int32General>( + external); + int64_t result = target(arg0, arg1, arg2, arg3); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt32Int64Int64: { + Prototype_Int32_GeneralInt32Int64Int64 target = + reinterpret_cast<Prototype_Int32_GeneralInt32Int64Int64>( + external); + int64_t result = + target(arg0, arg1, MakeInt64(arg2, arg3), MakeInt64(arg4, arg5)); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt32GeneralInt32: { + Prototype_Int32_GeneralInt32GeneralInt32 target = + reinterpret_cast<Prototype_Int32_GeneralInt32GeneralInt32>( + external); + int64_t result = target(arg0, arg1, arg2, arg3); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt32GeneralInt32Int32: { + Prototype_Int32_GeneralInt32GeneralInt32Int32 target = + reinterpret_cast<Prototype_Int32_GeneralInt32GeneralInt32Int32>( + external); + int64_t result = target(arg0, arg1, arg2, arg3, arg4); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralGeneral: { + Prototype_Int32_GeneralGeneral target = + reinterpret_cast<Prototype_Int32_GeneralGeneral>(external); + int64_t result = target(arg0, arg1); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralGeneralGeneral: { + Prototype_Int32_GeneralGeneralGeneral target = + reinterpret_cast<Prototype_Int32_GeneralGeneralGeneral>(external); + int64_t result = target(arg0, arg1, arg2); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralGeneralInt32Int32: { + Prototype_Int32_GeneralGeneralInt32Int32 target = + reinterpret_cast<Prototype_Int32_GeneralGeneralInt32Int32>( + external); + int64_t result = target(arg0, arg1, arg2, arg3); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt64Int32Int32Int32: { + Prototype_Int32_GeneralInt64Int32Int32Int32 target = + reinterpret_cast<Prototype_Int32_GeneralInt64Int32Int32Int32>( + external); + int64_t result = + target(arg0, MakeInt64(arg2, arg3), arg4, arg5, arg6); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt64Int32: { + Prototype_Int32_GeneralInt64Int32 target = + reinterpret_cast<Prototype_Int32_GeneralInt64Int32>(external); + int64_t result = target(arg0, MakeInt64(arg2, arg3), arg4); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt64Int32Int64: { + Prototype_Int32_GeneralInt64Int32Int64 target = + reinterpret_cast<Prototype_Int32_GeneralInt64Int32Int64>( + external); + int64_t result = + target(arg0, MakeInt64(arg2, arg3), arg4, MakeInt64(arg6, arg7)); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt64Int32Int64General: { + Prototype_Int32_GeneralInt64Int32Int64General target = + reinterpret_cast<Prototype_Int32_GeneralInt64Int32Int64General>( + external); + int64_t result = target(arg0, MakeInt64(arg2, arg3), arg4, + MakeInt64(arg6, arg7), arg8); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt64Int64Int64: { + Prototype_Int32_GeneralInt64Int64Int64 target = + reinterpret_cast<Prototype_Int32_GeneralInt64Int64Int64>( + external); + int64_t result = target(arg0, MakeInt64(arg2, arg3), + MakeInt64(arg4, arg5), MakeInt64(arg6, arg7)); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt64Int64General: { + Prototype_Int32_GeneralInt64Int64General target = + reinterpret_cast<Prototype_Int32_GeneralInt64Int64General>( + external); + int64_t result = + target(arg0, MakeInt64(arg2, arg3), MakeInt64(arg4, arg5), arg6); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt64Int64Int64General: { + Prototype_Int32_GeneralInt64Int64Int64General target = + reinterpret_cast<Prototype_Int32_GeneralInt64Int64Int64General>( + external); + int64_t result = + target(arg0, MakeInt64(arg2, arg3), MakeInt64(arg4, arg5), + MakeInt64(arg6, arg7), arg8); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_General_GeneralInt32: { + Prototype_General_GeneralInt32 target = + reinterpret_cast<Prototype_General_GeneralInt32>(external); + int64_t result = target(arg0, arg1); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_General_GeneralInt32Int32: { + Prototype_General_GeneralInt32Int32 target = + reinterpret_cast<Prototype_General_GeneralInt32Int32>(external); + int64_t result = target(arg0, arg1, arg2); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_General_GeneralInt32General: { + Prototype_General_GeneralInt32General target = + reinterpret_cast<Prototype_General_GeneralInt32General>(external); + int64_t result = target(arg0, arg1, arg2); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case js::jit::Args_General_GeneralInt32Int32GeneralInt32: { + Prototype_General_GeneralInt32Int32GeneralInt32 target = + reinterpret_cast<Prototype_General_GeneralInt32Int32GeneralInt32>( + external); + int64_t result = target(arg0, arg1, arg2, arg3, arg4); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case js::jit::Args_Int32_GeneralGeneralInt32General: { + Prototype_Int32_GeneralGeneralInt32General target = + reinterpret_cast<Prototype_Int32_GeneralGeneralInt32General>( + external); + int64_t result = target(arg0, arg1, arg2, arg3); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case js::jit::Args_Int32_GeneralGeneralInt32GeneralInt32Int32Int32: { + Prototype_Int32_GeneralGeneralInt32GeneralInt32Int32Int32 target = + reinterpret_cast< + Prototype_Int32_GeneralGeneralInt32GeneralInt32Int32Int32>( + external); + int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5, arg6); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int64_General: { + Prototype_Int64_General target = + reinterpret_cast<Prototype_Int64_General>(external); + int64_t result = target(arg0); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int64_GeneralInt64: { + Prototype_Int64_GeneralInt64 target = + reinterpret_cast<Prototype_Int64_GeneralInt64>(external); + int64_t result = target(arg0, MakeInt64(arg2, arg3)); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + + default: + MOZ_CRASH("call"); + } + + if (single_stepping_) { + single_step_callback_(single_step_callback_arg_, this, nullptr); + } + + set_register(lr, saved_lr); + set_pc(get_register(lr)); + break; + } + case kBreakpoint: { + ArmDebugger dbg(this); + dbg.debug(); + break; + } + default: { // Stop uses all codes greater than 1 << 23. + if (svc >= (1 << 23)) { + uint32_t code = svc & kStopCodeMask; + if (isWatchedStop(code)) { + increaseStopCounter(code); + } + + // Stop if it is enabled, otherwise go on jumping over the stop and + // the message address. + if (isEnabledStop(code)) { + ArmDebugger dbg(this); + dbg.stop(instr); + } else { + set_pc(get_pc() + 2 * SimInstruction::kInstrSize); + } + } else { + // This is not a valid svc code. + MOZ_CRASH(); + break; + } + } + } +} + +void Simulator::canonicalizeNaN(double* value) { + if (!wasm::CodeExists && !wasm::LookupCodeSegment(get_pc_as<void*>()) && + FPSCR_default_NaN_mode_) { + *value = JS::CanonicalizeNaN(*value); + } +} + +void Simulator::canonicalizeNaN(float* value) { + if (!wasm::CodeExists && !wasm::LookupCodeSegment(get_pc_as<void*>()) && + FPSCR_default_NaN_mode_) { + *value = JS::CanonicalizeNaN(*value); + } +} + +// Stop helper functions. +bool Simulator::isStopInstruction(SimInstruction* instr) { + return (instr->bits(27, 24) == 0xF) && (instr->svcValue() >= kStopCode); +} + +bool Simulator::isWatchedStop(uint32_t code) { + MOZ_ASSERT(code <= kMaxStopCode); + return code < kNumOfWatchedStops; +} + +bool Simulator::isEnabledStop(uint32_t code) { + MOZ_ASSERT(code <= kMaxStopCode); + // Unwatched stops are always enabled. + return !isWatchedStop(code) || + !(watched_stops_[code].count & kStopDisabledBit); +} + +void Simulator::enableStop(uint32_t code) { + MOZ_ASSERT(isWatchedStop(code)); + if (!isEnabledStop(code)) { + watched_stops_[code].count &= ~kStopDisabledBit; + } +} + +void Simulator::disableStop(uint32_t code) { + MOZ_ASSERT(isWatchedStop(code)); + if (isEnabledStop(code)) { + watched_stops_[code].count |= kStopDisabledBit; + } +} + +void Simulator::increaseStopCounter(uint32_t code) { + MOZ_ASSERT(code <= kMaxStopCode); + MOZ_ASSERT(isWatchedStop(code)); + if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) { + printf( + "Stop counter for code %i has overflowed.\n" + "Enabling this code and reseting the counter to 0.\n", + code); + watched_stops_[code].count = 0; + enableStop(code); + } else { + watched_stops_[code].count++; + } +} + +// Print a stop status. +void Simulator::printStopInfo(uint32_t code) { + MOZ_ASSERT(code <= kMaxStopCode); + if (!isWatchedStop(code)) { + printf("Stop not watched."); + } else { + const char* state = isEnabledStop(code) ? "Enabled" : "Disabled"; + int32_t count = watched_stops_[code].count & ~kStopDisabledBit; + // Don't print the state of unused breakpoints. + if (count != 0) { + if (watched_stops_[code].desc) { + printf("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code, + state, count, watched_stops_[code].desc); + } else { + printf("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state, + count); + } + } + } +} + +// Instruction types 0 and 1 are both rolled into one function because they only +// differ in the handling of the shifter_operand. +void Simulator::decodeType01(SimInstruction* instr) { + int type = instr->typeValue(); + if (type == 0 && instr->isSpecialType0()) { + // Multiply instruction or extra loads and stores. + if (instr->bits(7, 4) == 9) { + if (instr->bit(24) == 0) { + // Raw field decoding here. Multiply instructions have their Rd + // in funny places. + int rn = instr->rnValue(); + int rm = instr->rmValue(); + int rs = instr->rsValue(); + int32_t rs_val = get_register(rs); + int32_t rm_val = get_register(rm); + if (instr->bit(23) == 0) { + if (instr->bit(21) == 0) { + // The MUL instruction description (A 4.1.33) refers to + // Rd as being the destination for the operation, but it + // confusingly uses the Rn field to encode it. + int rd = rn; // Remap the rn field to the Rd register. + int32_t alu_out = rm_val * rs_val; + set_register(rd, alu_out); + if (instr->hasS()) { + setNZFlags(alu_out); + } + } else { + int rd = instr->rdValue(); + int32_t acc_value = get_register(rd); + if (instr->bit(22) == 0) { + // The MLA instruction description (A 4.1.28) refers + // to the order of registers as "Rd, Rm, Rs, + // Rn". But confusingly it uses the Rn field to + // encode the Rd register and the Rd field to encode + // the Rn register. + int32_t mul_out = rm_val * rs_val; + int32_t result = acc_value + mul_out; + set_register(rn, result); + } else { + int32_t mul_out = rm_val * rs_val; + int32_t result = acc_value - mul_out; + set_register(rn, result); + } + } + } else { + // The signed/long multiply instructions use the terms RdHi + // and RdLo when referring to the target registers. They are + // mapped to the Rn and Rd fields as follows: + // RdLo == Rd + // RdHi == Rn (This is confusingly stored in variable rd here + // because the mul instruction from above uses the + // Rn field to encode the Rd register. Good luck figuring + // this out without reading the ARM instruction manual + // at a very detailed level.) + int rd_hi = rn; // Remap the rn field to the RdHi register. + int rd_lo = instr->rdValue(); + int32_t hi_res = 0; + int32_t lo_res = 0; + if (instr->bit(22) == 1) { + int64_t left_op = static_cast<int32_t>(rm_val); + int64_t right_op = static_cast<int32_t>(rs_val); + uint64_t result = left_op * right_op; + hi_res = static_cast<int32_t>(result >> 32); + lo_res = static_cast<int32_t>(result & 0xffffffff); + } else { + // Unsigned multiply. + uint64_t left_op = static_cast<uint32_t>(rm_val); + uint64_t right_op = static_cast<uint32_t>(rs_val); + uint64_t result = left_op * right_op; + hi_res = static_cast<int32_t>(result >> 32); + lo_res = static_cast<int32_t>(result & 0xffffffff); + } + set_register(rd_lo, lo_res); + set_register(rd_hi, hi_res); + if (instr->hasS()) { + MOZ_CRASH(); + } + } + } else { + if (instr->bits(excl::ExclusiveOpHi, excl::ExclusiveOpLo) == + excl::ExclusiveOpcode) { + // Load-exclusive / store-exclusive. + if (instr->bit(excl::ExclusiveLoad)) { + int rn = instr->rnValue(); + int rt = instr->rtValue(); + int32_t address = get_register(rn); + switch (instr->bits(excl::ExclusiveSizeHi, excl::ExclusiveSizeLo)) { + case excl::ExclusiveWord: + set_register(rt, readExW(address, instr)); + break; + case excl::ExclusiveDouble: { + MOZ_ASSERT((rt % 2) == 0); + int32_t hibits; + int32_t lobits = readExDW(address, &hibits); + set_register(rt, lobits); + set_register(rt + 1, hibits); + break; + } + case excl::ExclusiveByte: + set_register(rt, readExBU(address)); + break; + case excl::ExclusiveHalf: + set_register(rt, readExHU(address, instr)); + break; + } + } else { + int rn = instr->rnValue(); + int rd = instr->rdValue(); + int rt = instr->bits(3, 0); + int32_t address = get_register(rn); + int32_t value = get_register(rt); + int32_t result = 0; + switch (instr->bits(excl::ExclusiveSizeHi, excl::ExclusiveSizeLo)) { + case excl::ExclusiveWord: + result = writeExW(address, value, instr); + break; + case excl::ExclusiveDouble: { + MOZ_ASSERT((rt % 2) == 0); + int32_t value2 = get_register(rt + 1); + result = writeExDW(address, value, value2); + break; + } + case excl::ExclusiveByte: + result = writeExB(address, (uint8_t)value); + break; + case excl::ExclusiveHalf: + result = writeExH(address, (uint16_t)value, instr); + break; + } + set_register(rd, result); + } + } else { + MOZ_CRASH(); // Not used atm + } + } + } else { + // Extra load/store instructions. + int rd = instr->rdValue(); + int rn = instr->rnValue(); + int32_t rn_val = get_register(rn); + int32_t addr = 0; + if (instr->bit(22) == 0) { + int rm = instr->rmValue(); + int32_t rm_val = get_register(rm); + switch (instr->PUField()) { + case da_x: + MOZ_ASSERT(!instr->hasW()); + addr = rn_val; + rn_val -= rm_val; + set_register(rn, rn_val); + break; + case ia_x: + MOZ_ASSERT(!instr->hasW()); + addr = rn_val; + rn_val += rm_val; + set_register(rn, rn_val); + break; + case db_x: + rn_val -= rm_val; + addr = rn_val; + if (instr->hasW()) { + set_register(rn, rn_val); + } + break; + case ib_x: + rn_val += rm_val; + addr = rn_val; + if (instr->hasW()) { + set_register(rn, rn_val); + } + break; + default: + // The PU field is a 2-bit field. + MOZ_CRASH(); + break; + } + } else { + int32_t imm_val = (instr->immedHValue() << 4) | instr->immedLValue(); + switch (instr->PUField()) { + case da_x: + MOZ_ASSERT(!instr->hasW()); + addr = rn_val; + rn_val -= imm_val; + set_register(rn, rn_val); + break; + case ia_x: + MOZ_ASSERT(!instr->hasW()); + addr = rn_val; + rn_val += imm_val; + set_register(rn, rn_val); + break; + case db_x: + rn_val -= imm_val; + addr = rn_val; + if (instr->hasW()) { + set_register(rn, rn_val); + } + break; + case ib_x: + rn_val += imm_val; + addr = rn_val; + if (instr->hasW()) { + set_register(rn, rn_val); + } + break; + default: + // The PU field is a 2-bit field. + MOZ_CRASH(); + break; + } + } + if ((instr->bits(7, 4) & 0xd) == 0xd && instr->bit(20) == 0) { + MOZ_ASSERT((rd % 2) == 0); + if (instr->hasH()) { + // The strd instruction. + int32_t value1 = get_register(rd); + int32_t value2 = get_register(rd + 1); + writeDW(addr, value1, value2); + } else { + // The ldrd instruction. + int* rn_data = readDW(addr); + if (rn_data) { + set_dw_register(rd, rn_data); + } + } + } else if (instr->hasH()) { + if (instr->hasSign()) { + if (instr->hasL()) { + int16_t val = readH(addr, instr); + set_register(rd, val); + } else { + int16_t val = get_register(rd); + writeH(addr, val, instr); + } + } else { + if (instr->hasL()) { + uint16_t val = readHU(addr, instr); + set_register(rd, val); + } else { + uint16_t val = get_register(rd); + writeH(addr, val, instr); + } + } + } else { + // Signed byte loads. + MOZ_ASSERT(instr->hasSign()); + MOZ_ASSERT(instr->hasL()); + int8_t val = readB(addr); + set_register(rd, val); + } + return; + } + } else if ((type == 0) && instr->isMiscType0()) { + if (instr->bits(7, 4) == 0) { + if (instr->bit(21) == 0) { + // mrs + int rd = instr->rdValue(); + uint32_t flags; + if (instr->bit(22) == 0) { + // CPSR. Note: The Q flag is not yet implemented! + flags = (n_flag_ << 31) | (z_flag_ << 30) | (c_flag_ << 29) | + (v_flag_ << 28); + } else { + // SPSR + MOZ_CRASH(); + } + set_register(rd, flags); + } else { + // msr + if (instr->bits(27, 23) == 2) { + // Register operand. For now we only emit mask 0b1100. + int rm = instr->rmValue(); + mozilla::DebugOnly<uint32_t> mask = instr->bits(19, 16); + MOZ_ASSERT(mask == (3 << 2)); + + uint32_t flags = get_register(rm); + n_flag_ = (flags >> 31) & 1; + z_flag_ = (flags >> 30) & 1; + c_flag_ = (flags >> 29) & 1; + v_flag_ = (flags >> 28) & 1; + } else { + MOZ_CRASH(); + } + } + } else if (instr->bits(22, 21) == 1) { + int rm = instr->rmValue(); + switch (instr->bits(7, 4)) { + case 1: // BX + set_pc(get_register(rm)); + break; + case 3: { // BLX + uint32_t old_pc = get_pc(); + set_pc(get_register(rm)); + set_register(lr, old_pc + SimInstruction::kInstrSize); + break; + } + case 7: { // BKPT + fprintf(stderr, "Simulator hit BKPT.\n"); + if (getenv("ARM_SIM_DEBUGGER")) { + ArmDebugger dbg(this); + dbg.debug(); + } else { + fprintf(stderr, + "Use ARM_SIM_DEBUGGER=1 to enter the builtin debugger.\n"); + MOZ_CRASH("ARM simulator breakpoint"); + } + break; + } + default: + MOZ_CRASH(); + } + } else if (instr->bits(22, 21) == 3) { + int rm = instr->rmValue(); + int rd = instr->rdValue(); + switch (instr->bits(7, 4)) { + case 1: { // CLZ + uint32_t bits = get_register(rm); + int leading_zeros = 0; + if (bits == 0) { + leading_zeros = 32; + } else { + leading_zeros = mozilla::CountLeadingZeroes32(bits); + } + set_register(rd, leading_zeros); + break; + } + default: + MOZ_CRASH(); + break; + } + } else { + printf("%08x\n", instr->instructionBits()); + MOZ_CRASH(); + } + } else if ((type == 1) && instr->isNopType1()) { + // NOP. + } else if ((type == 1) && instr->isCsdbType1()) { + // Speculation barrier. (No-op for the simulator) + } else { + int rd = instr->rdValue(); + int rn = instr->rnValue(); + int32_t rn_val = get_register(rn); + int32_t shifter_operand = 0; + bool shifter_carry_out = 0; + if (type == 0) { + shifter_operand = getShiftRm(instr, &shifter_carry_out); + } else { + MOZ_ASSERT(instr->typeValue() == 1); + shifter_operand = getImm(instr, &shifter_carry_out); + } + int32_t alu_out; + switch (instr->opcodeField()) { + case OpAnd: + alu_out = rn_val & shifter_operand; + set_register(rd, alu_out); + if (instr->hasS()) { + setNZFlags(alu_out); + setCFlag(shifter_carry_out); + } + break; + case OpEor: + alu_out = rn_val ^ shifter_operand; + set_register(rd, alu_out); + if (instr->hasS()) { + setNZFlags(alu_out); + setCFlag(shifter_carry_out); + } + break; + case OpSub: + alu_out = rn_val - shifter_operand; + set_register(rd, alu_out); + if (instr->hasS()) { + setNZFlags(alu_out); + setCFlag(!borrowFrom(rn_val, shifter_operand)); + setVFlag(overflowFrom(alu_out, rn_val, shifter_operand, false)); + } + break; + case OpRsb: + alu_out = shifter_operand - rn_val; + set_register(rd, alu_out); + if (instr->hasS()) { + setNZFlags(alu_out); + setCFlag(!borrowFrom(shifter_operand, rn_val)); + setVFlag(overflowFrom(alu_out, shifter_operand, rn_val, false)); + } + break; + case OpAdd: + alu_out = rn_val + shifter_operand; + set_register(rd, alu_out); + if (instr->hasS()) { + setNZFlags(alu_out); + setCFlag(carryFrom(rn_val, shifter_operand)); + setVFlag(overflowFrom(alu_out, rn_val, shifter_operand, true)); + } + break; + case OpAdc: + alu_out = rn_val + shifter_operand + getCarry(); + set_register(rd, alu_out); + if (instr->hasS()) { + setNZFlags(alu_out); + setCFlag(carryFrom(rn_val, shifter_operand, getCarry())); + setVFlag(overflowFrom(alu_out, rn_val, shifter_operand, true)); + } + break; + case OpSbc: + alu_out = rn_val - shifter_operand - (getCarry() == 0 ? 1 : 0); + set_register(rd, alu_out); + if (instr->hasS()) { + MOZ_CRASH(); + } + break; + case OpRsc: + alu_out = shifter_operand - rn_val - (getCarry() == 0 ? 1 : 0); + set_register(rd, alu_out); + if (instr->hasS()) { + MOZ_CRASH(); + } + break; + case OpTst: + if (instr->hasS()) { + alu_out = rn_val & shifter_operand; + setNZFlags(alu_out); + setCFlag(shifter_carry_out); + } else { + alu_out = instr->immedMovwMovtValue(); + set_register(rd, alu_out); + } + break; + case OpTeq: + if (instr->hasS()) { + alu_out = rn_val ^ shifter_operand; + setNZFlags(alu_out); + setCFlag(shifter_carry_out); + } else { + // Other instructions matching this pattern are handled in the + // miscellaneous instructions part above. + MOZ_CRASH(); + } + break; + case OpCmp: + if (instr->hasS()) { + alu_out = rn_val - shifter_operand; + setNZFlags(alu_out); + setCFlag(!borrowFrom(rn_val, shifter_operand)); + setVFlag(overflowFrom(alu_out, rn_val, shifter_operand, false)); + } else { + alu_out = + (get_register(rd) & 0xffff) | (instr->immedMovwMovtValue() << 16); + set_register(rd, alu_out); + } + break; + case OpCmn: + if (instr->hasS()) { + alu_out = rn_val + shifter_operand; + setNZFlags(alu_out); + setCFlag(carryFrom(rn_val, shifter_operand)); + setVFlag(overflowFrom(alu_out, rn_val, shifter_operand, true)); + } else { + // Other instructions matching this pattern are handled in the + // miscellaneous instructions part above. + MOZ_CRASH(); + } + break; + case OpOrr: + alu_out = rn_val | shifter_operand; + set_register(rd, alu_out); + if (instr->hasS()) { + setNZFlags(alu_out); + setCFlag(shifter_carry_out); + } + break; + case OpMov: + alu_out = shifter_operand; + set_register(rd, alu_out); + if (instr->hasS()) { + setNZFlags(alu_out); + setCFlag(shifter_carry_out); + } + break; + case OpBic: + alu_out = rn_val & ~shifter_operand; + set_register(rd, alu_out); + if (instr->hasS()) { + setNZFlags(alu_out); + setCFlag(shifter_carry_out); + } + break; + case OpMvn: + alu_out = ~shifter_operand; + set_register(rd, alu_out); + if (instr->hasS()) { + setNZFlags(alu_out); + setCFlag(shifter_carry_out); + } + break; + default: + MOZ_CRASH(); + break; + } + } +} + +void Simulator::decodeType2(SimInstruction* instr) { + int rd = instr->rdValue(); + int rn = instr->rnValue(); + int32_t rn_val = get_register(rn); + int32_t im_val = instr->offset12Value(); + int32_t addr = 0; + switch (instr->PUField()) { + case da_x: + MOZ_ASSERT(!instr->hasW()); + addr = rn_val; + rn_val -= im_val; + set_register(rn, rn_val); + break; + case ia_x: + MOZ_ASSERT(!instr->hasW()); + addr = rn_val; + rn_val += im_val; + set_register(rn, rn_val); + break; + case db_x: + rn_val -= im_val; + addr = rn_val; + if (instr->hasW()) { + set_register(rn, rn_val); + } + break; + case ib_x: + rn_val += im_val; + addr = rn_val; + if (instr->hasW()) { + set_register(rn, rn_val); + } + break; + default: + MOZ_CRASH(); + break; + } + if (instr->hasB()) { + if (instr->hasL()) { + uint8_t val = readBU(addr); + set_register(rd, val); + } else { + uint8_t val = get_register(rd); + writeB(addr, val); + } + } else { + if (instr->hasL()) { + set_register(rd, readW(addr, instr, AllowUnaligned)); + } else { + writeW(addr, get_register(rd), instr, AllowUnaligned); + } + } +} + +static uint32_t rotateBytes(uint32_t val, int32_t rotate) { + switch (rotate) { + default: + return val; + case 1: + return (val >> 8) | (val << 24); + case 2: + return (val >> 16) | (val << 16); + case 3: + return (val >> 24) | (val << 8); + } +} + +void Simulator::decodeType3(SimInstruction* instr) { + if (MOZ_UNLIKELY(instr->isUDF())) { + uint8_t* newPC; + if (wasm::HandleIllegalInstruction(registerState(), &newPC)) { + set_pc((int32_t)newPC); + return; + } + MOZ_CRASH("illegal instruction encountered"); + } + + int rd = instr->rdValue(); + int rn = instr->rnValue(); + int32_t rn_val = get_register(rn); + bool shifter_carry_out = 0; + int32_t shifter_operand = getShiftRm(instr, &shifter_carry_out); + int32_t addr = 0; + switch (instr->PUField()) { + case da_x: + MOZ_ASSERT(!instr->hasW()); + MOZ_CRASH(); + break; + case ia_x: { + if (instr->bit(4) == 0) { + // Memop. + } else { + if (instr->bit(5) == 0) { + switch (instr->bits(22, 21)) { + case 0: + if (instr->bit(20) == 0) { + if (instr->bit(6) == 0) { + // Pkhbt. + uint32_t rn_val = get_register(rn); + uint32_t rm_val = get_register(instr->rmValue()); + int32_t shift = instr->bits(11, 7); + rm_val <<= shift; + set_register(rd, (rn_val & 0xFFFF) | (rm_val & 0xFFFF0000U)); + } else { + // Pkhtb. + uint32_t rn_val = get_register(rn); + int32_t rm_val = get_register(instr->rmValue()); + int32_t shift = instr->bits(11, 7); + if (shift == 0) { + shift = 32; + } + rm_val >>= shift; + set_register(rd, (rn_val & 0xFFFF0000U) | (rm_val & 0xFFFF)); + } + } else { + MOZ_CRASH(); + } + break; + case 1: + MOZ_CRASH(); + break; + case 2: + MOZ_CRASH(); + break; + case 3: { + // Usat. + int32_t sat_pos = instr->bits(20, 16); + int32_t sat_val = (1 << sat_pos) - 1; + int32_t shift = instr->bits(11, 7); + int32_t shift_type = instr->bit(6); + int32_t rm_val = get_register(instr->rmValue()); + if (shift_type == 0) { // LSL + rm_val <<= shift; + } else { // ASR + rm_val >>= shift; + } + + // If saturation occurs, the Q flag should be set in the + // CPSR. There is no Q flag yet, and no instruction (MRS) + // to read the CPSR directly. + if (rm_val > sat_val) { + rm_val = sat_val; + } else if (rm_val < 0) { + rm_val = 0; + } + set_register(rd, rm_val); + break; + } + } + } else { + switch (instr->bits(22, 21)) { + case 0: + MOZ_CRASH(); + break; + case 1: + if (instr->bits(7, 4) == 7 && instr->bits(19, 16) == 15) { + uint32_t rm_val = rotateBytes(get_register(instr->rmValue()), + instr->bits(11, 10)); + if (instr->bit(20)) { + // Sxth. + set_register(rd, (int32_t)(int16_t)(rm_val & 0xFFFF)); + } else { + // Sxtb. + set_register(rd, (int32_t)(int8_t)(rm_val & 0xFF)); + } + } else if (instr->bits(20, 16) == 0b1'1111 && + instr->bits(11, 4) == 0b1111'0011) { + // Rev + uint32_t rm_val = get_register(instr->rmValue()); + + static_assert(MOZ_LITTLE_ENDIAN()); + set_register(rd, + mozilla::NativeEndian::swapToBigEndian(rm_val)); + } else if (instr->bits(20, 16) == 0b1'1111 && + instr->bits(11, 4) == 0b1111'1011) { + // Rev16 + uint32_t rm_val = get_register(instr->rmValue()); + + static_assert(MOZ_LITTLE_ENDIAN()); + uint32_t hi = mozilla::NativeEndian::swapToBigEndian( + uint16_t(rm_val >> 16)); + uint32_t lo = + mozilla::NativeEndian::swapToBigEndian(uint16_t(rm_val)); + set_register(rd, (hi << 16) | lo); + } else { + MOZ_CRASH(); + } + break; + case 2: + if ((instr->bit(20) == 0) && (instr->bits(9, 6) == 1)) { + if (instr->bits(19, 16) == 0xF) { + // Uxtb16. + uint32_t rm_val = rotateBytes(get_register(instr->rmValue()), + instr->bits(11, 10)); + set_register(rd, (rm_val & 0xFF) | (rm_val & 0xFF0000)); + } else { + MOZ_CRASH(); + } + } else { + MOZ_CRASH(); + } + break; + case 3: + if ((instr->bit(20) == 0) && (instr->bits(9, 6) == 1)) { + if (instr->bits(19, 16) == 0xF) { + // Uxtb. + uint32_t rm_val = rotateBytes(get_register(instr->rmValue()), + instr->bits(11, 10)); + set_register(rd, (rm_val & 0xFF)); + } else { + // Uxtab. + uint32_t rn_val = get_register(rn); + uint32_t rm_val = rotateBytes(get_register(instr->rmValue()), + instr->bits(11, 10)); + set_register(rd, rn_val + (rm_val & 0xFF)); + } + } else if ((instr->bit(20) == 1) && (instr->bits(9, 6) == 1)) { + if (instr->bits(19, 16) == 0xF) { + // Uxth. + uint32_t rm_val = rotateBytes(get_register(instr->rmValue()), + instr->bits(11, 10)); + set_register(rd, (rm_val & 0xFFFF)); + } else { + // Uxtah. + uint32_t rn_val = get_register(rn); + uint32_t rm_val = rotateBytes(get_register(instr->rmValue()), + instr->bits(11, 10)); + set_register(rd, rn_val + (rm_val & 0xFFFF)); + } + } else if (instr->bits(20, 16) == 0b1'1111 && + instr->bits(11, 4) == 0b1111'1011) { + // Revsh + uint32_t rm_val = get_register(instr->rmValue()); + + static_assert(MOZ_LITTLE_ENDIAN()); + set_register( + rd, int32_t(int16_t(mozilla::NativeEndian::swapToBigEndian( + uint16_t(rm_val))))); + } else { + MOZ_CRASH(); + } + break; + } + } + return; + } + break; + } + case db_x: { // sudiv + if (instr->bit(22) == 0x0 && instr->bit(20) == 0x1 && + instr->bits(15, 12) == 0x0f && instr->bits(7, 4) == 0x1) { + if (!instr->hasW()) { + // sdiv (in V8 notation matching ARM ISA format) rn = rm/rs. + int rm = instr->rmValue(); + int32_t rm_val = get_register(rm); + int rs = instr->rsValue(); + int32_t rs_val = get_register(rs); + int32_t ret_val = 0; + MOZ_ASSERT(rs_val != 0); + if ((rm_val == INT32_MIN) && (rs_val == -1)) { + ret_val = INT32_MIN; + } else { + ret_val = rm_val / rs_val; + } + set_register(rn, ret_val); + return; + } else { + // udiv (in V8 notation matching ARM ISA format) rn = rm/rs. + int rm = instr->rmValue(); + uint32_t rm_val = get_register(rm); + int rs = instr->rsValue(); + uint32_t rs_val = get_register(rs); + uint32_t ret_val = 0; + MOZ_ASSERT(rs_val != 0); + ret_val = rm_val / rs_val; + set_register(rn, ret_val); + return; + } + } + + addr = rn_val - shifter_operand; + if (instr->hasW()) { + set_register(rn, addr); + } + break; + } + case ib_x: { + if (instr->hasW() && (instr->bits(6, 4) == 0x5)) { + uint32_t widthminus1 = static_cast<uint32_t>(instr->bits(20, 16)); + uint32_t lsbit = static_cast<uint32_t>(instr->bits(11, 7)); + uint32_t msbit = widthminus1 + lsbit; + if (msbit <= 31) { + if (instr->bit(22)) { + // ubfx - unsigned bitfield extract. + uint32_t rm_val = + static_cast<uint32_t>(get_register(instr->rmValue())); + uint32_t extr_val = rm_val << (31 - msbit); + extr_val = extr_val >> (31 - widthminus1); + set_register(instr->rdValue(), extr_val); + } else { + // sbfx - signed bitfield extract. + int32_t rm_val = get_register(instr->rmValue()); + int32_t extr_val = rm_val << (31 - msbit); + extr_val = extr_val >> (31 - widthminus1); + set_register(instr->rdValue(), extr_val); + } + } else { + MOZ_CRASH(); + } + return; + } else if (!instr->hasW() && (instr->bits(6, 4) == 0x1)) { + uint32_t lsbit = static_cast<uint32_t>(instr->bits(11, 7)); + uint32_t msbit = static_cast<uint32_t>(instr->bits(20, 16)); + if (msbit >= lsbit) { + // bfc or bfi - bitfield clear/insert. + uint32_t rd_val = + static_cast<uint32_t>(get_register(instr->rdValue())); + uint32_t bitcount = msbit - lsbit + 1; + uint32_t mask = (1 << bitcount) - 1; + rd_val &= ~(mask << lsbit); + if (instr->rmValue() != 15) { + // bfi - bitfield insert. + uint32_t rm_val = + static_cast<uint32_t>(get_register(instr->rmValue())); + rm_val &= mask; + rd_val |= rm_val << lsbit; + } + set_register(instr->rdValue(), rd_val); + } else { + MOZ_CRASH(); + } + return; + } else { + addr = rn_val + shifter_operand; + if (instr->hasW()) { + set_register(rn, addr); + } + } + break; + } + default: + MOZ_CRASH(); + break; + } + if (instr->hasB()) { + if (instr->hasL()) { + uint8_t byte = readB(addr); + set_register(rd, byte); + } else { + uint8_t byte = get_register(rd); + writeB(addr, byte); + } + } else { + if (instr->hasL()) { + set_register(rd, readW(addr, instr, AllowUnaligned)); + } else { + writeW(addr, get_register(rd), instr, AllowUnaligned); + } + } +} + +void Simulator::decodeType4(SimInstruction* instr) { + // Only allowed to be set in privileged mode. + MOZ_ASSERT(instr->bit(22) == 0); + bool load = instr->hasL(); + handleRList(instr, load); +} + +void Simulator::decodeType5(SimInstruction* instr) { + int off = instr->sImmed24Value() << 2; + intptr_t pc_address = get_pc(); + if (instr->hasLink()) { + set_register(lr, pc_address + SimInstruction::kInstrSize); + } + int pc_reg = get_register(pc); + set_pc(pc_reg + off); +} + +void Simulator::decodeType6(SimInstruction* instr) { + decodeType6CoprocessorIns(instr); +} + +void Simulator::decodeType7(SimInstruction* instr) { + if (instr->bit(24) == 1) { + softwareInterrupt(instr); + } else if (instr->bit(4) == 1 && instr->bits(11, 9) != 5) { + decodeType7CoprocessorIns(instr); + } else { + decodeTypeVFP(instr); + } +} + +void Simulator::decodeType7CoprocessorIns(SimInstruction* instr) { + if (instr->bit(20) == 0) { + // MCR, MCR2 + if (instr->coprocessorValue() == 15) { + int opc1 = instr->bits(23, 21); + int opc2 = instr->bits(7, 5); + int CRn = instr->bits(19, 16); + int CRm = instr->bits(3, 0); + if (opc1 == 0 && opc2 == 4 && CRn == 7 && CRm == 10) { + // ARMv6 DSB instruction. We do not use DSB. + MOZ_CRASH("DSB not implemented"); + } else if (opc1 == 0 && opc2 == 5 && CRn == 7 && CRm == 10) { + // ARMv6 DMB instruction. + AtomicOperations::fenceSeqCst(); + } else if (opc1 == 0 && opc2 == 4 && CRn == 7 && CRm == 5) { + // ARMv6 ISB instruction. We do not use ISB. + MOZ_CRASH("ISB not implemented"); + } else { + MOZ_CRASH(); + } + } else { + MOZ_CRASH(); + } + } else { + // MRC, MRC2 + MOZ_CRASH(); + } +} + +void Simulator::decodeTypeVFP(SimInstruction* instr) { + MOZ_ASSERT(instr->typeValue() == 7 && instr->bit(24) == 0); + MOZ_ASSERT(instr->bits(11, 9) == 0x5); + + // Obtain double precision register codes. + VFPRegPrecision precision = + (instr->szValue() == 1) ? kDoublePrecision : kSinglePrecision; + int vm = instr->VFPMRegValue(precision); + int vd = instr->VFPDRegValue(precision); + int vn = instr->VFPNRegValue(precision); + + if (instr->bit(4) == 0) { + if (instr->opc1Value() == 0x7) { + // Other data processing instructions. + if ((instr->opc2Value() == 0x0) && (instr->opc3Value() == 0x1)) { + // vmov register to register. + if (instr->szValue() == 0x1) { + int m = instr->VFPMRegValue(kDoublePrecision); + int d = instr->VFPDRegValue(kDoublePrecision); + double temp; + get_double_from_d_register(m, &temp); + set_d_register_from_double(d, temp); + } else { + int m = instr->VFPMRegValue(kSinglePrecision); + int d = instr->VFPDRegValue(kSinglePrecision); + float temp; + get_float_from_s_register(m, &temp); + set_s_register_from_float(d, temp); + } + } else if ((instr->opc2Value() == 0x0) && (instr->opc3Value() == 0x3)) { + // vabs + if (instr->szValue() == 0x1) { + union { + double f64; + uint64_t u64; + } u; + get_double_from_d_register(vm, &u.f64); + u.u64 &= 0x7fffffffffffffffu; + double dd_value = u.f64; + canonicalizeNaN(&dd_value); + set_d_register_from_double(vd, dd_value); + } else { + union { + float f32; + uint32_t u32; + } u; + get_float_from_s_register(vm, &u.f32); + u.u32 &= 0x7fffffffu; + float fd_value = u.f32; + canonicalizeNaN(&fd_value); + set_s_register_from_float(vd, fd_value); + } + } else if ((instr->opc2Value() == 0x1) && (instr->opc3Value() == 0x1)) { + // vneg + if (instr->szValue() == 0x1) { + double dm_value; + get_double_from_d_register(vm, &dm_value); + double dd_value = -dm_value; + canonicalizeNaN(&dd_value); + set_d_register_from_double(vd, dd_value); + } else { + float fm_value; + get_float_from_s_register(vm, &fm_value); + float fd_value = -fm_value; + canonicalizeNaN(&fd_value); + set_s_register_from_float(vd, fd_value); + } + } else if ((instr->opc2Value() == 0x7) && (instr->opc3Value() == 0x3)) { + decodeVCVTBetweenDoubleAndSingle(instr); + } else if ((instr->opc2Value() == 0x8) && (instr->opc3Value() & 0x1)) { + decodeVCVTBetweenFloatingPointAndInteger(instr); + } else if ((instr->opc2Value() == 0xA) && (instr->opc3Value() == 0x3) && + (instr->bit(8) == 1)) { + // vcvt.f64.s32 Dd, Dd, #<fbits>. + int fraction_bits = 32 - ((instr->bits(3, 0) << 1) | instr->bit(5)); + int fixed_value = get_sinteger_from_s_register(vd * 2); + double divide = 1 << fraction_bits; + set_d_register_from_double(vd, fixed_value / divide); + } else if (((instr->opc2Value() >> 1) == 0x6) && + (instr->opc3Value() & 0x1)) { + decodeVCVTBetweenFloatingPointAndInteger(instr); + } else if (((instr->opc2Value() == 0x4) || (instr->opc2Value() == 0x5)) && + (instr->opc3Value() & 0x1)) { + decodeVCMP(instr); + } else if (((instr->opc2Value() == 0x1)) && (instr->opc3Value() == 0x3)) { + // vsqrt + if (instr->szValue() == 0x1) { + double dm_value; + get_double_from_d_register(vm, &dm_value); + double dd_value = std::sqrt(dm_value); + canonicalizeNaN(&dd_value); + set_d_register_from_double(vd, dd_value); + } else { + float fm_value; + get_float_from_s_register(vm, &fm_value); + float fd_value = std::sqrt(fm_value); + canonicalizeNaN(&fd_value); + set_s_register_from_float(vd, fd_value); + } + } else if (instr->opc3Value() == 0x0) { + // vmov immediate. + if (instr->szValue() == 0x1) { + set_d_register_from_double(vd, instr->doubleImmedVmov()); + } else { + // vmov.f32 immediate. + set_s_register_from_float(vd, instr->float32ImmedVmov()); + } + } else { + decodeVCVTBetweenFloatingPointAndIntegerFrac(instr); + } + } else if (instr->opc1Value() == 0x3) { + if (instr->szValue() != 0x1) { + if (instr->opc3Value() & 0x1) { + // vsub + float fn_value; + get_float_from_s_register(vn, &fn_value); + float fm_value; + get_float_from_s_register(vm, &fm_value); + float fd_value = fn_value - fm_value; + canonicalizeNaN(&fd_value); + set_s_register_from_float(vd, fd_value); + } else { + // vadd + float fn_value; + get_float_from_s_register(vn, &fn_value); + float fm_value; + get_float_from_s_register(vm, &fm_value); + float fd_value = fn_value + fm_value; + canonicalizeNaN(&fd_value); + set_s_register_from_float(vd, fd_value); + } + } else { + if (instr->opc3Value() & 0x1) { + // vsub + double dn_value; + get_double_from_d_register(vn, &dn_value); + double dm_value; + get_double_from_d_register(vm, &dm_value); + double dd_value = dn_value - dm_value; + canonicalizeNaN(&dd_value); + set_d_register_from_double(vd, dd_value); + } else { + // vadd + double dn_value; + get_double_from_d_register(vn, &dn_value); + double dm_value; + get_double_from_d_register(vm, &dm_value); + double dd_value = dn_value + dm_value; + canonicalizeNaN(&dd_value); + set_d_register_from_double(vd, dd_value); + } + } + } else if ((instr->opc1Value() == 0x2) && !(instr->opc3Value() & 0x1)) { + // vmul + if (instr->szValue() != 0x1) { + float fn_value; + get_float_from_s_register(vn, &fn_value); + float fm_value; + get_float_from_s_register(vm, &fm_value); + float fd_value = fn_value * fm_value; + canonicalizeNaN(&fd_value); + set_s_register_from_float(vd, fd_value); + } else { + double dn_value; + get_double_from_d_register(vn, &dn_value); + double dm_value; + get_double_from_d_register(vm, &dm_value); + double dd_value = dn_value * dm_value; + canonicalizeNaN(&dd_value); + set_d_register_from_double(vd, dd_value); + } + } else if ((instr->opc1Value() == 0x0)) { + // vmla, vmls + const bool is_vmls = (instr->opc3Value() & 0x1); + + if (instr->szValue() != 0x1) { + MOZ_CRASH("Not used by V8."); + } + + double dd_val; + get_double_from_d_register(vd, &dd_val); + double dn_val; + get_double_from_d_register(vn, &dn_val); + double dm_val; + get_double_from_d_register(vm, &dm_val); + + // Note: we do the mul and add/sub in separate steps to avoid + // getting a result with too high precision. + set_d_register_from_double(vd, dn_val * dm_val); + double temp; + get_double_from_d_register(vd, &temp); + if (is_vmls) { + temp = dd_val - temp; + } else { + temp = dd_val + temp; + } + canonicalizeNaN(&temp); + set_d_register_from_double(vd, temp); + } else if ((instr->opc1Value() == 0x4) && !(instr->opc3Value() & 0x1)) { + // vdiv + if (instr->szValue() != 0x1) { + float fn_value; + get_float_from_s_register(vn, &fn_value); + float fm_value; + get_float_from_s_register(vm, &fm_value); + float fd_value = fn_value / fm_value; + div_zero_vfp_flag_ = (fm_value == 0); + canonicalizeNaN(&fd_value); + set_s_register_from_float(vd, fd_value); + } else { + double dn_value; + get_double_from_d_register(vn, &dn_value); + double dm_value; + get_double_from_d_register(vm, &dm_value); + double dd_value = dn_value / dm_value; + div_zero_vfp_flag_ = (dm_value == 0); + canonicalizeNaN(&dd_value); + set_d_register_from_double(vd, dd_value); + } + } else { + MOZ_CRASH(); + } + } else { + if (instr->VCValue() == 0x0 && instr->VAValue() == 0x0) { + decodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr); + } else if ((instr->VLValue() == 0x0) && (instr->VCValue() == 0x1) && + (instr->bit(23) == 0x0)) { + // vmov (ARM core register to scalar). + int vd = instr->bits(19, 16) | (instr->bit(7) << 4); + double dd_value; + get_double_from_d_register(vd, &dd_value); + int32_t data[2]; + memcpy(data, &dd_value, 8); + data[instr->bit(21)] = get_register(instr->rtValue()); + memcpy(&dd_value, data, 8); + set_d_register_from_double(vd, dd_value); + } else if ((instr->VLValue() == 0x1) && (instr->VCValue() == 0x1) && + (instr->bit(23) == 0x0)) { + // vmov (scalar to ARM core register). + int vn = instr->bits(19, 16) | (instr->bit(7) << 4); + double dn_value; + get_double_from_d_register(vn, &dn_value); + int32_t data[2]; + memcpy(data, &dn_value, 8); + set_register(instr->rtValue(), data[instr->bit(21)]); + } else if ((instr->VLValue() == 0x1) && (instr->VCValue() == 0x0) && + (instr->VAValue() == 0x7) && (instr->bits(19, 16) == 0x1)) { + // vmrs + uint32_t rt = instr->rtValue(); + if (rt == 0xF) { + copy_FPSCR_to_APSR(); + } else { + // Emulate FPSCR from the Simulator flags. + uint32_t fpscr = (n_flag_FPSCR_ << 31) | (z_flag_FPSCR_ << 30) | + (c_flag_FPSCR_ << 29) | (v_flag_FPSCR_ << 28) | + (FPSCR_default_NaN_mode_ << 25) | + (inexact_vfp_flag_ << 4) | (underflow_vfp_flag_ << 3) | + (overflow_vfp_flag_ << 2) | (div_zero_vfp_flag_ << 1) | + (inv_op_vfp_flag_ << 0) | (FPSCR_rounding_mode_); + set_register(rt, fpscr); + } + } else if ((instr->VLValue() == 0x0) && (instr->VCValue() == 0x0) && + (instr->VAValue() == 0x7) && (instr->bits(19, 16) == 0x1)) { + // vmsr + uint32_t rt = instr->rtValue(); + if (rt == pc) { + MOZ_CRASH(); + } else { + uint32_t rt_value = get_register(rt); + n_flag_FPSCR_ = (rt_value >> 31) & 1; + z_flag_FPSCR_ = (rt_value >> 30) & 1; + c_flag_FPSCR_ = (rt_value >> 29) & 1; + v_flag_FPSCR_ = (rt_value >> 28) & 1; + FPSCR_default_NaN_mode_ = (rt_value >> 25) & 1; + inexact_vfp_flag_ = (rt_value >> 4) & 1; + underflow_vfp_flag_ = (rt_value >> 3) & 1; + overflow_vfp_flag_ = (rt_value >> 2) & 1; + div_zero_vfp_flag_ = (rt_value >> 1) & 1; + inv_op_vfp_flag_ = (rt_value >> 0) & 1; + FPSCR_rounding_mode_ = + static_cast<VFPRoundingMode>((rt_value)&kVFPRoundingModeMask); + } + } else { + MOZ_CRASH(); + } + } +} + +void Simulator::decodeVMOVBetweenCoreAndSinglePrecisionRegisters( + SimInstruction* instr) { + MOZ_ASSERT(instr->bit(4) == 1 && instr->VCValue() == 0x0 && + instr->VAValue() == 0x0); + + int t = instr->rtValue(); + int n = instr->VFPNRegValue(kSinglePrecision); + bool to_arm_register = (instr->VLValue() == 0x1); + if (to_arm_register) { + int32_t int_value = get_sinteger_from_s_register(n); + set_register(t, int_value); + } else { + int32_t rs_val = get_register(t); + set_s_register_from_sinteger(n, rs_val); + } +} + +void Simulator::decodeVCMP(SimInstruction* instr) { + MOZ_ASSERT((instr->bit(4) == 0) && (instr->opc1Value() == 0x7)); + MOZ_ASSERT(((instr->opc2Value() == 0x4) || (instr->opc2Value() == 0x5)) && + (instr->opc3Value() & 0x1)); + // Comparison. + + VFPRegPrecision precision = kSinglePrecision; + if (instr->szValue() == 1) { + precision = kDoublePrecision; + } + + int d = instr->VFPDRegValue(precision); + int m = 0; + if (instr->opc2Value() == 0x4) { + m = instr->VFPMRegValue(precision); + } + + if (precision == kDoublePrecision) { + double dd_value; + get_double_from_d_register(d, &dd_value); + double dm_value = 0.0; + if (instr->opc2Value() == 0x4) { + get_double_from_d_register(m, &dm_value); + } + + // Raise exceptions for quiet NaNs if necessary. + if (instr->bit(7) == 1) { + if (std::isnan(dd_value)) { + inv_op_vfp_flag_ = true; + } + } + compute_FPSCR_Flags(dd_value, dm_value); + } else { + float fd_value; + get_float_from_s_register(d, &fd_value); + float fm_value = 0.0; + if (instr->opc2Value() == 0x4) { + get_float_from_s_register(m, &fm_value); + } + + // Raise exceptions for quiet NaNs if necessary. + if (instr->bit(7) == 1) { + if (std::isnan(fd_value)) { + inv_op_vfp_flag_ = true; + } + } + compute_FPSCR_Flags(fd_value, fm_value); + } +} + +void Simulator::decodeVCVTBetweenDoubleAndSingle(SimInstruction* instr) { + MOZ_ASSERT(instr->bit(4) == 0 && instr->opc1Value() == 0x7); + MOZ_ASSERT(instr->opc2Value() == 0x7 && instr->opc3Value() == 0x3); + + VFPRegPrecision dst_precision = kDoublePrecision; + VFPRegPrecision src_precision = kSinglePrecision; + if (instr->szValue() == 1) { + dst_precision = kSinglePrecision; + src_precision = kDoublePrecision; + } + + int dst = instr->VFPDRegValue(dst_precision); + int src = instr->VFPMRegValue(src_precision); + + if (dst_precision == kSinglePrecision) { + double val; + get_double_from_d_register(src, &val); + set_s_register_from_float(dst, static_cast<float>(val)); + } else { + float val; + get_float_from_s_register(src, &val); + set_d_register_from_double(dst, static_cast<double>(val)); + } +} + +static bool get_inv_op_vfp_flag(VFPRoundingMode mode, double val, + bool unsigned_) { + MOZ_ASSERT(mode == SimRN || mode == SimRM || mode == SimRZ); + double max_uint = static_cast<double>(0xffffffffu); + double max_int = static_cast<double>(INT32_MAX); + double min_int = static_cast<double>(INT32_MIN); + + // Check for NaN. + if (val != val) { + return true; + } + + // Check for overflow. This code works because 32bit integers can be exactly + // represented by ieee-754 64bit floating-point values. + switch (mode) { + case SimRN: + return unsigned_ ? (val >= (max_uint + 0.5)) || (val < -0.5) + : (val >= (max_int + 0.5)) || (val < (min_int - 0.5)); + case SimRM: + return unsigned_ ? (val >= (max_uint + 1.0)) || (val < 0) + : (val >= (max_int + 1.0)) || (val < min_int); + case SimRZ: + return unsigned_ ? (val >= (max_uint + 1.0)) || (val <= -1) + : (val >= (max_int + 1.0)) || (val <= (min_int - 1.0)); + default: + MOZ_CRASH(); + return true; + } +} + +// We call this function only if we had a vfp invalid exception. +// It returns the correct saturated value. +static int VFPConversionSaturate(double val, bool unsigned_res) { + if (val != val) { // NaN. + return 0; + } + if (unsigned_res) { + return (val < 0) ? 0 : 0xffffffffu; + } + return (val < 0) ? INT32_MIN : INT32_MAX; +} + +void Simulator::decodeVCVTBetweenFloatingPointAndInteger( + SimInstruction* instr) { + MOZ_ASSERT((instr->bit(4) == 0) && (instr->opc1Value() == 0x7) && + (instr->bits(27, 23) == 0x1D)); + MOZ_ASSERT( + ((instr->opc2Value() == 0x8) && (instr->opc3Value() & 0x1)) || + (((instr->opc2Value() >> 1) == 0x6) && (instr->opc3Value() & 0x1))); + + // Conversion between floating-point and integer. + bool to_integer = (instr->bit(18) == 1); + + VFPRegPrecision src_precision = + (instr->szValue() == 1) ? kDoublePrecision : kSinglePrecision; + + if (to_integer) { + // We are playing with code close to the C++ standard's limits below, + // hence the very simple code and heavy checks. + // + // Note: C++ defines default type casting from floating point to integer + // as (close to) rounding toward zero ("fractional part discarded"). + + int dst = instr->VFPDRegValue(kSinglePrecision); + int src = instr->VFPMRegValue(src_precision); + + // Bit 7 in vcvt instructions indicates if we should use the FPSCR + // rounding mode or the default Round to Zero mode. + VFPRoundingMode mode = (instr->bit(7) != 1) ? FPSCR_rounding_mode_ : SimRZ; + MOZ_ASSERT(mode == SimRM || mode == SimRZ || mode == SimRN); + + bool unsigned_integer = (instr->bit(16) == 0); + bool double_precision = (src_precision == kDoublePrecision); + + double val; + if (double_precision) { + get_double_from_d_register(src, &val); + } else { + float fval; + get_float_from_s_register(src, &fval); + val = double(fval); + } + + int temp = unsigned_integer ? static_cast<uint32_t>(val) + : static_cast<int32_t>(val); + + inv_op_vfp_flag_ = get_inv_op_vfp_flag(mode, val, unsigned_integer); + + double abs_diff = unsigned_integer + ? std::fabs(val - static_cast<uint32_t>(temp)) + : std::fabs(val - temp); + + inexact_vfp_flag_ = (abs_diff != 0); + + if (inv_op_vfp_flag_) { + temp = VFPConversionSaturate(val, unsigned_integer); + } else { + switch (mode) { + case SimRN: { + int val_sign = (val > 0) ? 1 : -1; + if (abs_diff > 0.5) { + temp += val_sign; + } else if (abs_diff == 0.5) { + // Round to even if exactly halfway. + temp = ((temp % 2) == 0) ? temp : temp + val_sign; + } + break; + } + + case SimRM: + temp = temp > val ? temp - 1 : temp; + break; + + case SimRZ: + // Nothing to do. + break; + + default: + MOZ_CRASH(); + } + } + + // Update the destination register. + set_s_register_from_sinteger(dst, temp); + } else { + bool unsigned_integer = (instr->bit(7) == 0); + int dst = instr->VFPDRegValue(src_precision); + int src = instr->VFPMRegValue(kSinglePrecision); + + int val = get_sinteger_from_s_register(src); + + if (src_precision == kDoublePrecision) { + if (unsigned_integer) { + set_d_register_from_double( + dst, static_cast<double>(static_cast<uint32_t>(val))); + } else { + set_d_register_from_double(dst, static_cast<double>(val)); + } + } else { + if (unsigned_integer) { + set_s_register_from_float( + dst, static_cast<float>(static_cast<uint32_t>(val))); + } else { + set_s_register_from_float(dst, static_cast<float>(val)); + } + } + } +} + +// A VFPv3 specific instruction. +void Simulator::decodeVCVTBetweenFloatingPointAndIntegerFrac( + SimInstruction* instr) { + MOZ_ASSERT(instr->bits(27, 24) == 0xE && instr->opc1Value() == 0x7 && + instr->bit(19) == 1 && instr->bit(17) == 1 && + instr->bits(11, 9) == 0x5 && instr->bit(6) == 1 && + instr->bit(4) == 0); + + int size = (instr->bit(7) == 1) ? 32 : 16; + + int fraction_bits = size - ((instr->bits(3, 0) << 1) | instr->bit(5)); + double mult = 1 << fraction_bits; + + MOZ_ASSERT(size == 32); // Only handling size == 32 for now. + + // Conversion between floating-point and integer. + bool to_fixed = (instr->bit(18) == 1); + + VFPRegPrecision precision = + (instr->szValue() == 1) ? kDoublePrecision : kSinglePrecision; + + if (to_fixed) { + // We are playing with code close to the C++ standard's limits below, + // hence the very simple code and heavy checks. + // + // Note: C++ defines default type casting from floating point to integer + // as (close to) rounding toward zero ("fractional part discarded"). + + int dst = instr->VFPDRegValue(precision); + + bool unsigned_integer = (instr->bit(16) == 1); + bool double_precision = (precision == kDoublePrecision); + + double val; + if (double_precision) { + get_double_from_d_register(dst, &val); + } else { + float fval; + get_float_from_s_register(dst, &fval); + val = double(fval); + } + + // Scale value by specified number of fraction bits. + val *= mult; + + // Rounding down towards zero. No need to account for the rounding error + // as this instruction always rounds down towards zero. See SimRZ below. + int temp = unsigned_integer ? static_cast<uint32_t>(val) + : static_cast<int32_t>(val); + + inv_op_vfp_flag_ = get_inv_op_vfp_flag(SimRZ, val, unsigned_integer); + + double abs_diff = unsigned_integer + ? std::fabs(val - static_cast<uint32_t>(temp)) + : std::fabs(val - temp); + + inexact_vfp_flag_ = (abs_diff != 0); + + if (inv_op_vfp_flag_) { + temp = VFPConversionSaturate(val, unsigned_integer); + } + + // Update the destination register. + if (double_precision) { + uint32_t dbl[2]; + dbl[0] = temp; + dbl[1] = 0; + set_d_register(dst, dbl); + } else { + set_s_register_from_sinteger(dst, temp); + } + } else { + MOZ_CRASH(); // Not implemented, fixed to float. + } +} + +void Simulator::decodeType6CoprocessorIns(SimInstruction* instr) { + MOZ_ASSERT(instr->typeValue() == 6); + + if (instr->coprocessorValue() == 0xA) { + switch (instr->opcodeValue()) { + case 0x8: + case 0xA: + case 0xC: + case 0xE: { // Load and store single precision float to memory. + int rn = instr->rnValue(); + int vd = instr->VFPDRegValue(kSinglePrecision); + int offset = instr->immed8Value(); + if (!instr->hasU()) { + offset = -offset; + } + + int32_t address = get_register(rn) + 4 * offset; + if (instr->hasL()) { + // Load double from memory: vldr. + set_s_register_from_sinteger(vd, readW(address, instr)); + } else { + // Store double to memory: vstr. + writeW(address, get_sinteger_from_s_register(vd), instr); + } + break; + } + case 0x4: + case 0x5: + case 0x6: + case 0x7: + case 0x9: + case 0xB: + // Load/store multiple single from memory: vldm/vstm. + handleVList(instr); + break; + default: + MOZ_CRASH(); + } + } else if (instr->coprocessorValue() == 0xB) { + switch (instr->opcodeValue()) { + case 0x2: + // Load and store double to two GP registers + if (instr->bits(7, 6) != 0 || instr->bit(4) != 1) { + MOZ_CRASH(); // Not used atm. + } else { + int rt = instr->rtValue(); + int rn = instr->rnValue(); + int vm = instr->VFPMRegValue(kDoublePrecision); + if (instr->hasL()) { + int32_t data[2]; + double d; + get_double_from_d_register(vm, &d); + memcpy(data, &d, 8); + set_register(rt, data[0]); + set_register(rn, data[1]); + } else { + int32_t data[] = {get_register(rt), get_register(rn)}; + double d; + memcpy(&d, data, 8); + set_d_register_from_double(vm, d); + } + } + break; + case 0x8: + case 0xA: + case 0xC: + case 0xE: { // Load and store double to memory. + int rn = instr->rnValue(); + int vd = instr->VFPDRegValue(kDoublePrecision); + int offset = instr->immed8Value(); + if (!instr->hasU()) { + offset = -offset; + } + int32_t address = get_register(rn) + 4 * offset; + if (instr->hasL()) { + // Load double from memory: vldr. + uint64_t data = readQ(address, instr); + double val; + memcpy(&val, &data, 8); + set_d_register_from_double(vd, val); + } else { + // Store double to memory: vstr. + uint64_t data; + double val; + get_double_from_d_register(vd, &val); + memcpy(&data, &val, 8); + writeQ(address, data, instr); + } + break; + } + case 0x4: + case 0x5: + case 0x6: + case 0x7: + case 0x9: + case 0xB: + // Load/store multiple double from memory: vldm/vstm. + handleVList(instr); + break; + default: + MOZ_CRASH(); + } + } else { + MOZ_CRASH(); + } +} + +void Simulator::decodeSpecialCondition(SimInstruction* instr) { + switch (instr->specialValue()) { + case 5: + if (instr->bits(18, 16) == 0 && instr->bits(11, 6) == 0x28 && + instr->bit(4) == 1) { + // vmovl signed + if ((instr->vdValue() & 1) != 0) { + MOZ_CRASH("Undefined behavior"); + } + int Vd = (instr->bit(22) << 3) | (instr->vdValue() >> 1); + int Vm = (instr->bit(5) << 4) | instr->vmValue(); + int imm3 = instr->bits(21, 19); + if (imm3 != 1 && imm3 != 2 && imm3 != 4) { + MOZ_CRASH(); + } + int esize = 8 * imm3; + int elements = 64 / esize; + int8_t from[8]; + get_d_register(Vm, reinterpret_cast<uint64_t*>(from)); + int16_t to[8]; + int e = 0; + while (e < elements) { + to[e] = from[e]; + e++; + } + set_q_register(Vd, reinterpret_cast<uint64_t*>(to)); + } else { + MOZ_CRASH(); + } + break; + case 7: + if (instr->bits(18, 16) == 0 && instr->bits(11, 6) == 0x28 && + instr->bit(4) == 1) { + // vmovl unsigned. + if ((instr->vdValue() & 1) != 0) { + MOZ_CRASH("Undefined behavior"); + } + int Vd = (instr->bit(22) << 3) | (instr->vdValue() >> 1); + int Vm = (instr->bit(5) << 4) | instr->vmValue(); + int imm3 = instr->bits(21, 19); + if (imm3 != 1 && imm3 != 2 && imm3 != 4) { + MOZ_CRASH(); + } + int esize = 8 * imm3; + int elements = 64 / esize; + uint8_t from[8]; + get_d_register(Vm, reinterpret_cast<uint64_t*>(from)); + uint16_t to[8]; + int e = 0; + while (e < elements) { + to[e] = from[e]; + e++; + } + set_q_register(Vd, reinterpret_cast<uint64_t*>(to)); + } else { + MOZ_CRASH(); + } + break; + case 8: + if (instr->bits(21, 20) == 0) { + // vst1 + int Vd = (instr->bit(22) << 4) | instr->vdValue(); + int Rn = instr->vnValue(); + int type = instr->bits(11, 8); + int Rm = instr->vmValue(); + int32_t address = get_register(Rn); + int regs = 0; + switch (type) { + case nlt_1: + regs = 1; + break; + case nlt_2: + regs = 2; + break; + case nlt_3: + regs = 3; + break; + case nlt_4: + regs = 4; + break; + default: + MOZ_CRASH(); + break; + } + int r = 0; + while (r < regs) { + uint32_t data[2]; + get_d_register(Vd + r, data); + // TODO: We should AllowUnaligned here only if the alignment attribute + // of the instruction calls for default alignment. + // + // Use writeQ to get handling of traps right. (The spec says to + // perform two individual word writes, but let's not worry about + // that.) + writeQ(address, (uint64_t(data[1]) << 32) | uint64_t(data[0]), instr, + AllowUnaligned); + address += 8; + r++; + } + if (Rm != 15) { + if (Rm == 13) { + set_register(Rn, address); + } else { + set_register(Rn, get_register(Rn) + get_register(Rm)); + } + } + } else if (instr->bits(21, 20) == 2) { + // vld1 + int Vd = (instr->bit(22) << 4) | instr->vdValue(); + int Rn = instr->vnValue(); + int type = instr->bits(11, 8); + int Rm = instr->vmValue(); + int32_t address = get_register(Rn); + int regs = 0; + switch (type) { + case nlt_1: + regs = 1; + break; + case nlt_2: + regs = 2; + break; + case nlt_3: + regs = 3; + break; + case nlt_4: + regs = 4; + break; + default: + MOZ_CRASH(); + break; + } + int r = 0; + while (r < regs) { + uint32_t data[2]; + // TODO: We should AllowUnaligned here only if the alignment attribute + // of the instruction calls for default alignment. + // + // Use readQ to get handling of traps right. (The spec says to + // perform two individual word reads, but let's not worry about that.) + uint64_t tmp = readQ(address, instr, AllowUnaligned); + data[0] = tmp; + data[1] = tmp >> 32; + set_d_register(Vd + r, data); + address += 8; + r++; + } + if (Rm != 15) { + if (Rm == 13) { + set_register(Rn, address); + } else { + set_register(Rn, get_register(Rn) + get_register(Rm)); + } + } + } else { + MOZ_CRASH(); + } + break; + case 9: + if (instr->bits(9, 8) == 0) { + int Vd = (instr->bit(22) << 4) | instr->vdValue(); + int Rn = instr->vnValue(); + int size = instr->bits(11, 10); + int Rm = instr->vmValue(); + int index = instr->bits(7, 5); + int align = instr->bit(4); + int32_t address = get_register(Rn); + if (size != 2 || align) { + MOZ_CRASH("NYI"); + } + int a = instr->bits(5, 4); + if (a != 0 && a != 3) { + MOZ_CRASH("Unspecified"); + } + if (index > 1) { + Vd++; + index -= 2; + } + uint32_t data[2]; + get_d_register(Vd, data); + switch (instr->bits(21, 20)) { + case 0: + // vst1 single element from one lane + writeW(address, data[index], instr, AllowUnaligned); + break; + case 2: + // vld1 single element to one lane + data[index] = readW(address, instr, AllowUnaligned); + set_d_register(Vd, data); + break; + default: + MOZ_CRASH("NYI"); + } + address += 4; + if (Rm != 15) { + if (Rm == 13) { + set_register(Rn, address); + } else { + set_register(Rn, get_register(Rn) + get_register(Rm)); + } + } + } else { + MOZ_CRASH(); + } + break; + case 0xA: + if (instr->bits(31, 20) == 0xf57) { + switch (instr->bits(7, 4)) { + case 1: // CLREX + exclusiveMonitorClear(); + break; + case 5: // DMB + AtomicOperations::fenceSeqCst(); + break; + case 4: // DSB + // We do not use DSB. + MOZ_CRASH("DSB unimplemented"); + case 6: // ISB + // We do not use ISB. + MOZ_CRASH("ISB unimplemented"); + default: + MOZ_CRASH(); + } + } else { + MOZ_CRASH(); + } + break; + case 0xB: + if (instr->bits(22, 20) == 5 && instr->bits(15, 12) == 0xf) { + // pld: ignore instruction. + } else { + MOZ_CRASH(); + } + break; + case 0x1C: + case 0x1D: + if (instr->bit(4) == 1 && instr->bits(11, 9) != 5) { + // MCR, MCR2, MRC, MRC2 with cond == 15 + decodeType7CoprocessorIns(instr); + } else { + MOZ_CRASH(); + } + break; + default: + MOZ_CRASH(); + } +} + +// Executes the current instruction. +void Simulator::instructionDecode(SimInstruction* instr) { + if (!SimulatorProcess::ICacheCheckingDisableCount) { + AutoLockSimulatorCache als; + SimulatorProcess::checkICacheLocked(instr); + } + + pc_modified_ = false; + + static const uint32_t kSpecialCondition = 15 << 28; + if (instr->conditionField() == kSpecialCondition) { + decodeSpecialCondition(instr); + } else if (conditionallyExecute(instr)) { + switch (instr->typeValue()) { + case 0: + case 1: + decodeType01(instr); + break; + case 2: + decodeType2(instr); + break; + case 3: + decodeType3(instr); + break; + case 4: + decodeType4(instr); + break; + case 5: + decodeType5(instr); + break; + case 6: + decodeType6(instr); + break; + case 7: + decodeType7(instr); + break; + default: + MOZ_CRASH(); + break; + } + // If the instruction is a non taken conditional stop, we need to skip + // the inlined message address. + } else if (instr->isStop()) { + set_pc(get_pc() + 2 * SimInstruction::kInstrSize); + } + if (!pc_modified_) { + set_register(pc, + reinterpret_cast<int32_t>(instr) + SimInstruction::kInstrSize); + } +} + +void Simulator::enable_single_stepping(SingleStepCallback cb, void* arg) { + single_stepping_ = true; + single_step_callback_ = cb; + single_step_callback_arg_ = arg; + single_step_callback_(single_step_callback_arg_, this, (void*)get_pc()); +} + +void Simulator::disable_single_stepping() { + if (!single_stepping_) { + return; + } + single_step_callback_(single_step_callback_arg_, this, (void*)get_pc()); + single_stepping_ = false; + single_step_callback_ = nullptr; + single_step_callback_arg_ = nullptr; +} + +template <bool EnableStopSimAt> +void Simulator::execute() { + if (single_stepping_) { + single_step_callback_(single_step_callback_arg_, this, nullptr); + } + + // Get the PC to simulate. Cannot use the accessor here as we need the raw + // PC value and not the one used as input to arithmetic instructions. + int program_counter = get_pc(); + + while (program_counter != end_sim_pc) { + if (EnableStopSimAt && (icount_ == Simulator::StopSimAt)) { + fprintf(stderr, "\nStopped simulation at icount %lld\n", icount_); + ArmDebugger dbg(this); + dbg.debug(); + } else { + if (single_stepping_) { + single_step_callback_(single_step_callback_arg_, this, + (void*)program_counter); + } + SimInstruction* instr = + reinterpret_cast<SimInstruction*>(program_counter); + instructionDecode(instr); + icount_++; + } + program_counter = get_pc(); + } + + if (single_stepping_) { + single_step_callback_(single_step_callback_arg_, this, nullptr); + } +} + +void Simulator::callInternal(uint8_t* entry) { + // Prepare to execute the code at entry. + set_register(pc, reinterpret_cast<int32_t>(entry)); + + // Put down marker for end of simulation. The simulator will stop simulation + // when the PC reaches this value. By saving the "end simulation" value into + // the LR the simulation stops when returning to this call point. + set_register(lr, end_sim_pc); + + // Remember the values of callee-saved registers. The code below assumes + // that r9 is not used as sb (static base) in simulator code and therefore + // is regarded as a callee-saved register. + int32_t r4_val = get_register(r4); + int32_t r5_val = get_register(r5); + int32_t r6_val = get_register(r6); + int32_t r7_val = get_register(r7); + int32_t r8_val = get_register(r8); + int32_t r9_val = get_register(r9); + int32_t r10_val = get_register(r10); + int32_t r11_val = get_register(r11); + + // Remember d8 to d15 which are callee-saved. + uint64_t d8_val; + get_d_register(d8, &d8_val); + uint64_t d9_val; + get_d_register(d9, &d9_val); + uint64_t d10_val; + get_d_register(d10, &d10_val); + uint64_t d11_val; + get_d_register(d11, &d11_val); + uint64_t d12_val; + get_d_register(d12, &d12_val); + uint64_t d13_val; + get_d_register(d13, &d13_val); + uint64_t d14_val; + get_d_register(d14, &d14_val); + uint64_t d15_val; + get_d_register(d15, &d15_val); + + // Set up the callee-saved registers with a known value. To be able to check + // that they are preserved properly across JS execution. + int32_t callee_saved_value = uint32_t(icount_); + uint64_t callee_saved_value_d = uint64_t(icount_); + + if (!skipCalleeSavedRegsCheck) { + set_register(r4, callee_saved_value); + set_register(r5, callee_saved_value); + set_register(r6, callee_saved_value); + set_register(r7, callee_saved_value); + set_register(r8, callee_saved_value); + set_register(r9, callee_saved_value); + set_register(r10, callee_saved_value); + set_register(r11, callee_saved_value); + + set_d_register(d8, &callee_saved_value_d); + set_d_register(d9, &callee_saved_value_d); + set_d_register(d10, &callee_saved_value_d); + set_d_register(d11, &callee_saved_value_d); + set_d_register(d12, &callee_saved_value_d); + set_d_register(d13, &callee_saved_value_d); + set_d_register(d14, &callee_saved_value_d); + set_d_register(d15, &callee_saved_value_d); + } + // Start the simulation. + if (Simulator::StopSimAt != -1L) { + execute<true>(); + } else { + execute<false>(); + } + + if (!skipCalleeSavedRegsCheck) { + // Check that the callee-saved registers have been preserved. + MOZ_ASSERT(callee_saved_value == get_register(r4)); + MOZ_ASSERT(callee_saved_value == get_register(r5)); + MOZ_ASSERT(callee_saved_value == get_register(r6)); + MOZ_ASSERT(callee_saved_value == get_register(r7)); + MOZ_ASSERT(callee_saved_value == get_register(r8)); + MOZ_ASSERT(callee_saved_value == get_register(r9)); + MOZ_ASSERT(callee_saved_value == get_register(r10)); + MOZ_ASSERT(callee_saved_value == get_register(r11)); + + uint64_t value; + get_d_register(d8, &value); + MOZ_ASSERT(callee_saved_value_d == value); + get_d_register(d9, &value); + MOZ_ASSERT(callee_saved_value_d == value); + get_d_register(d10, &value); + MOZ_ASSERT(callee_saved_value_d == value); + get_d_register(d11, &value); + MOZ_ASSERT(callee_saved_value_d == value); + get_d_register(d12, &value); + MOZ_ASSERT(callee_saved_value_d == value); + get_d_register(d13, &value); + MOZ_ASSERT(callee_saved_value_d == value); + get_d_register(d14, &value); + MOZ_ASSERT(callee_saved_value_d == value); + get_d_register(d15, &value); + MOZ_ASSERT(callee_saved_value_d == value); + + // Restore callee-saved registers with the original value. + set_register(r4, r4_val); + set_register(r5, r5_val); + set_register(r6, r6_val); + set_register(r7, r7_val); + set_register(r8, r8_val); + set_register(r9, r9_val); + set_register(r10, r10_val); + set_register(r11, r11_val); + + set_d_register(d8, &d8_val); + set_d_register(d9, &d9_val); + set_d_register(d10, &d10_val); + set_d_register(d11, &d11_val); + set_d_register(d12, &d12_val); + set_d_register(d13, &d13_val); + set_d_register(d14, &d14_val); + set_d_register(d15, &d15_val); + } +} + +int32_t Simulator::call(uint8_t* entry, int argument_count, ...) { + va_list parameters; + va_start(parameters, argument_count); + + // First four arguments passed in registers. + if (argument_count >= 1) { + set_register(r0, va_arg(parameters, int32_t)); + } + if (argument_count >= 2) { + set_register(r1, va_arg(parameters, int32_t)); + } + if (argument_count >= 3) { + set_register(r2, va_arg(parameters, int32_t)); + } + if (argument_count >= 4) { + set_register(r3, va_arg(parameters, int32_t)); + } + + // Remaining arguments passed on stack. + int original_stack = get_register(sp); + int entry_stack = original_stack; + if (argument_count >= 4) { + entry_stack -= (argument_count - 4) * sizeof(int32_t); + } + + entry_stack &= ~ABIStackAlignment; + + // Store remaining arguments on stack, from low to high memory. + intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack); + for (int i = 4; i < argument_count; i++) { + stack_argument[i - 4] = va_arg(parameters, int32_t); + } + va_end(parameters); + set_register(sp, entry_stack); + + callInternal(entry); + + // Pop stack passed arguments. + MOZ_ASSERT(entry_stack == get_register(sp)); + set_register(sp, original_stack); + + int32_t result = get_register(r0); + return result; +} + +Simulator* Simulator::Current() { + JSContext* cx = TlsContext.get(); + MOZ_ASSERT(CurrentThreadCanAccessRuntime(cx->runtime())); + return cx->simulator(); +} + +} // namespace jit +} // namespace js + +js::jit::Simulator* JSContext::simulator() const { return simulator_; } diff --git a/js/src/jit/arm/Simulator-arm.h b/js/src/jit/arm/Simulator-arm.h new file mode 100644 index 0000000000..fba0f8ce5e --- /dev/null +++ b/js/src/jit/arm/Simulator-arm.h @@ -0,0 +1,632 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +// Copyright 2012 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following +// disclaimer in the documentation and/or other materials provided +// with the distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived +// from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef jit_arm_Simulator_arm_h +#define jit_arm_Simulator_arm_h + +#ifdef JS_SIMULATOR_ARM + +# include "mozilla/Atomics.h" + +# include "jit/arm/Architecture-arm.h" +# include "jit/arm/disasm/Disasm-arm.h" +# include "jit/IonTypes.h" +# include "js/AllocPolicy.h" +# include "js/ProfilingFrameIterator.h" +# include "threading/Thread.h" +# include "vm/MutexIDs.h" +# include "wasm/WasmSignalHandlers.h" + +namespace js { +namespace jit { + +class JitActivation; +class Simulator; +class Redirection; +class CachePage; +class AutoLockSimulator; + +// When the SingleStepCallback is called, the simulator is about to execute +// sim->get_pc() and the current machine state represents the completed +// execution of the previous pc. +typedef void (*SingleStepCallback)(void* arg, Simulator* sim, void* pc); + +// VFP rounding modes. See ARM DDI 0406B Page A2-29. +enum VFPRoundingMode { + SimRN = 0 << 22, // Round to Nearest. + SimRP = 1 << 22, // Round towards Plus Infinity. + SimRM = 2 << 22, // Round towards Minus Infinity. + SimRZ = 3 << 22, // Round towards zero. + + // Aliases. + kRoundToNearest = SimRN, + kRoundToPlusInf = SimRP, + kRoundToMinusInf = SimRM, + kRoundToZero = SimRZ +}; + +const uint32_t kVFPRoundingModeMask = 3 << 22; + +typedef int32_t Instr; +class SimInstruction; + +// Per thread simulator state. +class Simulator { + public: + friend class ArmDebugger; + enum Register { + no_reg = -1, + r0 = 0, + r1, + r2, + r3, + r4, + r5, + r6, + r7, + r8, + r9, + r10, + r11, + r12, + r13, + r14, + r15, + num_registers, + fp = 11, + ip = 12, + sp = 13, + lr = 14, + pc = 15, + s0 = 0, + s1, + s2, + s3, + s4, + s5, + s6, + s7, + s8, + s9, + s10, + s11, + s12, + s13, + s14, + s15, + s16, + s17, + s18, + s19, + s20, + s21, + s22, + s23, + s24, + s25, + s26, + s27, + s28, + s29, + s30, + s31, + num_s_registers = 32, + d0 = 0, + d1, + d2, + d3, + d4, + d5, + d6, + d7, + d8, + d9, + d10, + d11, + d12, + d13, + d14, + d15, + d16, + d17, + d18, + d19, + d20, + d21, + d22, + d23, + d24, + d25, + d26, + d27, + d28, + d29, + d30, + d31, + num_d_registers = 32, + q0 = 0, + q1, + q2, + q3, + q4, + q5, + q6, + q7, + q8, + q9, + q10, + q11, + q12, + q13, + q14, + q15, + num_q_registers = 16 + }; + + // Returns nullptr on OOM. + static Simulator* Create(); + + static void Destroy(Simulator* simulator); + + // Constructor/destructor are for internal use only; use the static methods + // above. + Simulator(); + ~Simulator(); + + // The currently executing Simulator instance. Potentially there can be one + // for each native thread. + static Simulator* Current(); + + static uintptr_t StackLimit() { return Simulator::Current()->stackLimit(); } + + // Disassemble some instructions starting at instr and print them + // on stdout. Useful for working within GDB after a MOZ_CRASH(), + // among other things. + // + // Typical use within a crashed instruction decoding method is simply: + // + // call Simulator::disassemble(instr, 1) + // + // or use one of the more convenient inline methods below. + static void disassemble(SimInstruction* instr, size_t n); + + // Disassemble one instruction. + // "call disasm(instr)" + void disasm(SimInstruction* instr); + + // Disassemble n instructions starting at instr. + // "call disasm(instr, 3)" + void disasm(SimInstruction* instr, size_t n); + + // Skip backwards m instructions before starting, then disassemble n + // instructions. + // "call disasm(instr, 3, 7)" + void disasm(SimInstruction* instr, size_t m, size_t n); + + uintptr_t* addressOfStackLimit(); + + // Accessors for register state. Reading the pc value adheres to the ARM + // architecture specification and is off by a 8 from the currently executing + // instruction. + void set_register(int reg, int32_t value); + int32_t get_register(int reg) const; + double get_double_from_register_pair(int reg); + void set_register_pair_from_double(int reg, double* value); + void set_dw_register(int dreg, const int* dbl); + + // Support for VFP. + void get_d_register(int dreg, uint64_t* value); + void set_d_register(int dreg, const uint64_t* value); + void get_d_register(int dreg, uint32_t* value); + void set_d_register(int dreg, const uint32_t* value); + void get_q_register(int qreg, uint64_t* value); + void set_q_register(int qreg, const uint64_t* value); + void get_q_register(int qreg, uint32_t* value); + void set_q_register(int qreg, const uint32_t* value); + void set_s_register(int reg, unsigned int value); + unsigned int get_s_register(int reg) const; + + void set_d_register_from_double(int dreg, const double& dbl) { + setVFPRegister<double, 2>(dreg, dbl); + } + void get_double_from_d_register(int dreg, double* out) { + getFromVFPRegister<double, 2>(dreg, out); + } + void set_s_register_from_float(int sreg, const float flt) { + setVFPRegister<float, 1>(sreg, flt); + } + void get_float_from_s_register(int sreg, float* out) { + getFromVFPRegister<float, 1>(sreg, out); + } + void set_s_register_from_sinteger(int sreg, const int sint) { + setVFPRegister<int, 1>(sreg, sint); + } + int get_sinteger_from_s_register(int sreg) { + int ret; + getFromVFPRegister<int, 1>(sreg, &ret); + return ret; + } + + // Special case of set_register and get_register to access the raw PC value. + void set_pc(int32_t value); + int32_t get_pc() const; + + template <typename T> + T get_pc_as() const { + return reinterpret_cast<T>(get_pc()); + } + + void enable_single_stepping(SingleStepCallback cb, void* arg); + void disable_single_stepping(); + + uintptr_t stackLimit() const; + bool overRecursed(uintptr_t newsp = 0) const; + bool overRecursedWithExtra(uint32_t extra) const; + + // Executes ARM instructions until the PC reaches end_sim_pc. + template <bool EnableStopSimAt> + void execute(); + + // Sets up the simulator state and grabs the result on return. + int32_t call(uint8_t* entry, int argument_count, ...); + + // Debugger input. + void setLastDebuggerInput(char* input); + char* lastDebuggerInput() { return lastDebuggerInput_; } + + // Returns true if pc register contains one of the 'special_values' defined + // below (bad_lr, end_sim_pc). + bool has_bad_pc() const; + + private: + enum special_values { + // Known bad pc value to ensure that the simulator does not execute + // without being properly setup. + bad_lr = -1, + // A pc value used to signal the simulator to stop execution. Generally + // the lr is set to this value on transition from native C code to + // simulated execution, so that the simulator can "return" to the native + // C code. + end_sim_pc = -2 + }; + + // ForbidUnaligned means "always fault on unaligned access". + // + // AllowUnaligned means "allow the unaligned access if other conditions are + // met". The "other conditions" vary with the instruction: For all + // instructions the base condition is !HasAlignmentFault(), ie, the chip is + // configured to allow unaligned accesses. For instructions like VLD1 + // there is an additional constraint that the alignment attribute in the + // instruction must be set to "default alignment". + + enum UnalignedPolicy { ForbidUnaligned, AllowUnaligned }; + + bool init(); + + // Checks if the current instruction should be executed based on its + // condition bits. + inline bool conditionallyExecute(SimInstruction* instr); + + // Helper functions to set the conditional flags in the architecture state. + void setNZFlags(int32_t val); + void setCFlag(bool val); + void setVFlag(bool val); + bool carryFrom(int32_t left, int32_t right, int32_t carry = 0); + bool borrowFrom(int32_t left, int32_t right); + bool overflowFrom(int32_t alu_out, int32_t left, int32_t right, + bool addition); + + inline int getCarry() { return c_flag_ ? 1 : 0; }; + + // Support for VFP. + void compute_FPSCR_Flags(double val1, double val2); + void copy_FPSCR_to_APSR(); + inline void canonicalizeNaN(double* value); + inline void canonicalizeNaN(float* value); + + // Helper functions to decode common "addressing" modes + int32_t getShiftRm(SimInstruction* instr, bool* carry_out); + int32_t getImm(SimInstruction* instr, bool* carry_out); + int32_t processPU(SimInstruction* instr, int num_regs, int operand_size, + intptr_t* start_address, intptr_t* end_address); + void handleRList(SimInstruction* instr, bool load); + void handleVList(SimInstruction* inst); + void softwareInterrupt(SimInstruction* instr); + + // Stop helper functions. + inline bool isStopInstruction(SimInstruction* instr); + inline bool isWatchedStop(uint32_t bkpt_code); + inline bool isEnabledStop(uint32_t bkpt_code); + inline void enableStop(uint32_t bkpt_code); + inline void disableStop(uint32_t bkpt_code); + inline void increaseStopCounter(uint32_t bkpt_code); + void printStopInfo(uint32_t code); + + // Handle a wasm interrupt triggered by an async signal handler. + JS::ProfilingFrameIterator::RegisterState registerState(); + + // Handle any wasm faults, returning true if the fault was handled. + // This method is rather hot so inline the normal (no-wasm) case. + bool MOZ_ALWAYS_INLINE handleWasmSegFault(int32_t addr, unsigned numBytes) { + if (MOZ_LIKELY(!wasm::CodeExists)) { + return false; + } + + uint8_t* newPC; + if (!wasm::MemoryAccessTraps(registerState(), (uint8_t*)addr, numBytes, + &newPC)) { + return false; + } + + set_pc(int32_t(newPC)); + return true; + } + + // Read and write memory. + inline uint8_t readBU(int32_t addr); + inline int8_t readB(int32_t addr); + inline void writeB(int32_t addr, uint8_t value); + inline void writeB(int32_t addr, int8_t value); + + inline uint8_t readExBU(int32_t addr); + inline int32_t writeExB(int32_t addr, uint8_t value); + + inline uint16_t readHU(int32_t addr, SimInstruction* instr); + inline int16_t readH(int32_t addr, SimInstruction* instr); + // Note: Overloaded on the sign of the value. + inline void writeH(int32_t addr, uint16_t value, SimInstruction* instr); + inline void writeH(int32_t addr, int16_t value, SimInstruction* instr); + + inline uint16_t readExHU(int32_t addr, SimInstruction* instr); + inline int32_t writeExH(int32_t addr, uint16_t value, SimInstruction* instr); + + inline int readW(int32_t addr, SimInstruction* instr, + UnalignedPolicy f = ForbidUnaligned); + inline void writeW(int32_t addr, int value, SimInstruction* instr, + UnalignedPolicy f = ForbidUnaligned); + + inline uint64_t readQ(int32_t addr, SimInstruction* instr, + UnalignedPolicy f = ForbidUnaligned); + inline void writeQ(int32_t addr, uint64_t value, SimInstruction* instr, + UnalignedPolicy f = ForbidUnaligned); + + inline int readExW(int32_t addr, SimInstruction* instr); + inline int writeExW(int32_t addr, int value, SimInstruction* instr); + + int32_t* readDW(int32_t addr); + void writeDW(int32_t addr, int32_t value1, int32_t value2); + + int32_t readExDW(int32_t addr, int32_t* hibits); + int32_t writeExDW(int32_t addr, int32_t value1, int32_t value2); + + // Executing is handled based on the instruction type. + // Both type 0 and type 1 rolled into one. + void decodeType01(SimInstruction* instr); + void decodeType2(SimInstruction* instr); + void decodeType3(SimInstruction* instr); + void decodeType4(SimInstruction* instr); + void decodeType5(SimInstruction* instr); + void decodeType6(SimInstruction* instr); + void decodeType7(SimInstruction* instr); + + // Support for VFP. + void decodeTypeVFP(SimInstruction* instr); + void decodeType6CoprocessorIns(SimInstruction* instr); + void decodeSpecialCondition(SimInstruction* instr); + + void decodeVMOVBetweenCoreAndSinglePrecisionRegisters(SimInstruction* instr); + void decodeVCMP(SimInstruction* instr); + void decodeVCVTBetweenDoubleAndSingle(SimInstruction* instr); + void decodeVCVTBetweenFloatingPointAndInteger(SimInstruction* instr); + void decodeVCVTBetweenFloatingPointAndIntegerFrac(SimInstruction* instr); + + // Support for some system functions. + void decodeType7CoprocessorIns(SimInstruction* instr); + + // Executes one instruction. + void instructionDecode(SimInstruction* instr); + + public: + static int64_t StopSimAt; + + // For testing the MoveResolver code, a MoveResolver is set up, and + // the VFP registers are loaded with pre-determined values, + // then the sequence of code is simulated. In order to test this with the + // simulator, the callee-saved registers can't be trashed. This flag + // disables that feature. + bool skipCalleeSavedRegsCheck; + + // Runtime call support. + static void* RedirectNativeFunction(void* nativeFunction, + ABIFunctionType type); + + private: + // Handle arguments and return value for runtime FP functions. + void getFpArgs(double* x, double* y, int32_t* z); + void getFpFromStack(int32_t* stack, double* x1); + void setCallResultDouble(double result); + void setCallResultFloat(float result); + void setCallResult(int64_t res); + void scratchVolatileRegisters(bool scratchFloat = true); + + template <class ReturnType, int register_size> + void getFromVFPRegister(int reg_index, ReturnType* out); + + template <class InputType, int register_size> + void setVFPRegister(int reg_index, const InputType& value); + + void callInternal(uint8_t* entry); + + // Architecture state. + // Saturating instructions require a Q flag to indicate saturation. + // There is currently no way to read the CPSR directly, and thus read the Q + // flag, so this is left unimplemented. + int32_t registers_[16]; + bool n_flag_; + bool z_flag_; + bool c_flag_; + bool v_flag_; + + // VFP architecture state. + uint32_t vfp_registers_[num_d_registers * 2]; + bool n_flag_FPSCR_; + bool z_flag_FPSCR_; + bool c_flag_FPSCR_; + bool v_flag_FPSCR_; + + // VFP rounding mode. See ARM DDI 0406B Page A2-29. + VFPRoundingMode FPSCR_rounding_mode_; + bool FPSCR_default_NaN_mode_; + + // VFP FP exception flags architecture state. + bool inv_op_vfp_flag_; + bool div_zero_vfp_flag_; + bool overflow_vfp_flag_; + bool underflow_vfp_flag_; + bool inexact_vfp_flag_; + + // Simulator support. + char* stack_; + uintptr_t stackLimit_; + bool pc_modified_; + int64_t icount_; + + // Debugger input. + char* lastDebuggerInput_; + + // Registered breakpoints. + SimInstruction* break_pc_; + Instr break_instr_; + + // Single-stepping support + bool single_stepping_; + SingleStepCallback single_step_callback_; + void* single_step_callback_arg_; + + // A stop is watched if its code is less than kNumOfWatchedStops. + // Only watched stops support enabling/disabling and the counter feature. + static const uint32_t kNumOfWatchedStops = 256; + + // Breakpoint is disabled if bit 31 is set. + static const uint32_t kStopDisabledBit = 1 << 31; + + // A stop is enabled, meaning the simulator will stop when meeting the + // instruction, if bit 31 of watched_stops_[code].count is unset. + // The value watched_stops_[code].count & ~(1 << 31) indicates how many times + // the breakpoint was hit or gone through. + struct StopCountAndDesc { + uint32_t count; + char* desc; + }; + StopCountAndDesc watched_stops_[kNumOfWatchedStops]; + + public: + int64_t icount() { return icount_; } + + private: + // Exclusive access monitor + void exclusiveMonitorSet(uint64_t value); + uint64_t exclusiveMonitorGetAndClear(bool* held); + void exclusiveMonitorClear(); + + bool exclusiveMonitorHeld_; + uint64_t exclusiveMonitor_; +}; + +// Process wide simulator state. +class SimulatorProcess { + friend class Redirection; + friend class AutoLockSimulatorCache; + + private: + // ICache checking. + struct ICacheHasher { + typedef void* Key; + typedef void* Lookup; + static HashNumber hash(const Lookup& l); + static bool match(const Key& k, const Lookup& l); + }; + + public: + typedef HashMap<void*, CachePage*, ICacheHasher, SystemAllocPolicy> ICacheMap; + + static mozilla::Atomic<size_t, mozilla::ReleaseAcquire> + ICacheCheckingDisableCount; + static void FlushICache(void* start, size_t size); + + static void checkICacheLocked(SimInstruction* instr); + + static bool initialize() { + singleton_ = js_new<SimulatorProcess>(); + return singleton_; + } + static void destroy() { + js_delete(singleton_); + singleton_ = nullptr; + } + + SimulatorProcess(); + ~SimulatorProcess(); + + private: + static SimulatorProcess* singleton_; + + // This lock creates a critical section around 'redirection_' and + // 'icache_', which are referenced both by the execution engine + // and by the off-thread compiler (see Redirection::Get in the cpp file). + Mutex cacheLock_ MOZ_UNANNOTATED; + + Redirection* redirection_; + ICacheMap icache_; + + public: + static ICacheMap& icache() { + // Technically we need the lock to access the innards of the + // icache, not to take its address, but the latter condition + // serves as a useful complement to the former. + singleton_->cacheLock_.assertOwnedByCurrentThread(); + return singleton_->icache_; + } + + static Redirection* redirection() { + singleton_->cacheLock_.assertOwnedByCurrentThread(); + return singleton_->redirection_; + } + + static void setRedirection(js::jit::Redirection* redirection) { + singleton_->cacheLock_.assertOwnedByCurrentThread(); + singleton_->redirection_ = redirection; + } +}; + +} // namespace jit +} // namespace js + +#endif /* JS_SIMULATOR_ARM */ + +#endif /* jit_arm_Simulator_arm_h */ diff --git a/js/src/jit/arm/Trampoline-arm.cpp b/js/src/jit/arm/Trampoline-arm.cpp new file mode 100644 index 0000000000..551f243bd3 --- /dev/null +++ b/js/src/jit/arm/Trampoline-arm.cpp @@ -0,0 +1,831 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "jit/arm/SharedICHelpers-arm.h" +#include "jit/Bailouts.h" +#include "jit/BaselineFrame.h" +#include "jit/CalleeToken.h" +#include "jit/JitFrames.h" +#include "jit/JitRuntime.h" +#include "jit/JitSpewer.h" +#include "jit/PerfSpewer.h" +#include "jit/VMFunctions.h" +#include "vm/JitActivation.h" // js::jit::JitActivation +#include "vm/JSContext.h" +#include "vm/Realm.h" + +#include "jit/MacroAssembler-inl.h" + +using namespace js; +using namespace js::jit; + +static const FloatRegisterSet NonVolatileFloatRegs = FloatRegisterSet( + (1ULL << FloatRegisters::d8) | (1ULL << FloatRegisters::d9) | + (1ULL << FloatRegisters::d10) | (1ULL << FloatRegisters::d11) | + (1ULL << FloatRegisters::d12) | (1ULL << FloatRegisters::d13) | + (1ULL << FloatRegisters::d14) | (1ULL << FloatRegisters::d15)); + +static void GenerateReturn(MacroAssembler& masm, int returnCode) { + // Restore non-volatile floating point registers. + masm.transferMultipleByRuns(NonVolatileFloatRegs, IsLoad, StackPointer, IA); + + // Get rid of padding word. + masm.addPtr(Imm32(sizeof(void*)), sp); + + // Set up return value + masm.ma_mov(Imm32(returnCode), r0); + + // Pop and return + masm.startDataTransferM(IsLoad, sp, IA, WriteBack); + masm.transferReg(r4); + masm.transferReg(r5); + masm.transferReg(r6); + masm.transferReg(r7); + masm.transferReg(r8); + masm.transferReg(r9); + masm.transferReg(r10); + masm.transferReg(r11); + // r12 isn't saved, so it shouldn't be restored. + masm.transferReg(pc); + masm.finishDataTransfer(); + masm.flushBuffer(); +} + +struct EnterJITStack { + double d8; + double d9; + double d10; + double d11; + double d12; + double d13; + double d14; + double d15; + + // Padding. + void* padding; + + // Non-volatile registers. + void* r4; + void* r5; + void* r6; + void* r7; + void* r8; + void* r9; + void* r10; + void* r11; + // The abi does not expect r12 (ip) to be preserved + void* lr; + + // Arguments. + // code == r0 + // argc == r1 + // argv == r2 + // frame == r3 + CalleeToken token; + JSObject* scopeChain; + size_t numStackValues; + Value* vp; +}; + +/* + * This method generates a trampoline for a c++ function with the following + * signature: + * void enter(void* code, int argc, Value* argv, InterpreterFrame* fp, + * CalleeToken calleeToken, JSObject* scopeChain, Value* vp) + * ...using standard EABI calling convention + */ +void JitRuntime::generateEnterJIT(JSContext* cx, MacroAssembler& masm) { + AutoCreatedBy acb(masm, "JitRuntime::generateEnterJIT"); + + enterJITOffset_ = startTrampolineCode(masm); + + const Address slot_token(sp, offsetof(EnterJITStack, token)); + const Address slot_vp(sp, offsetof(EnterJITStack, vp)); + + static_assert(OsrFrameReg == r3); + + Assembler* aasm = &masm; + + // Save non-volatile registers. These must be saved by the trampoline, + // rather than the JIT'd code, because they are scanned by the conservative + // scanner. + masm.startDataTransferM(IsStore, sp, DB, WriteBack); + masm.transferReg(r4); // [sp,0] + masm.transferReg(r5); // [sp,4] + masm.transferReg(r6); // [sp,8] + masm.transferReg(r7); // [sp,12] + masm.transferReg(r8); // [sp,16] + masm.transferReg(r9); // [sp,20] + masm.transferReg(r10); // [sp,24] + masm.transferReg(r11); // [sp,28] + // The abi does not expect r12 (ip) to be preserved + masm.transferReg(lr); // [sp,32] + // The 5th argument is located at [sp, 36] + masm.finishDataTransfer(); + + // Add padding word. + masm.subPtr(Imm32(sizeof(void*)), sp); + + // Push the float registers. + masm.transferMultipleByRuns(NonVolatileFloatRegs, IsStore, sp, DB); + + // Load calleeToken into r9. + masm.loadPtr(slot_token, r9); + + // Save stack pointer. + masm.movePtr(sp, r11); + + // Load the number of actual arguments into r10. + masm.loadPtr(slot_vp, r10); + masm.unboxInt32(Address(r10, 0), r10); + + { + Label noNewTarget; + masm.branchTest32(Assembler::Zero, r9, + Imm32(CalleeToken_FunctionConstructing), &noNewTarget); + + masm.add32(Imm32(1), r1); + + masm.bind(&noNewTarget); + } + + // Guarantee stack alignment of Jit frames. + // + // This code moves the stack pointer to the location where it should be when + // we enter the Jit frame. It moves the stack pointer such that we have + // enough space reserved for pushing the arguments, and the JitFrameLayout. + // The stack pointer is also aligned on the alignment expected by the Jit + // frames. + // + // At the end the register r4, is a pointer to the stack where the first + // argument is expected by the Jit frame. + // + aasm->as_sub(r4, sp, O2RegImmShift(r1, LSL, 3)); // r4 = sp - argc*8 + aasm->as_bic(r4, r4, Imm8(JitStackAlignment - 1)); + // r4 is now the aligned on the bottom of the list of arguments. + static_assert( + sizeof(JitFrameLayout) % JitStackAlignment == 0, + "No need to consider the JitFrameLayout for aligning the stack"); + // sp' = ~(JitStackAlignment - 1) & (sp - argc * sizeof(Value)) + masm.movePtr(r4, sp); + + // Get a copy of the number of args to use as a decrement counter, also set + // the zero condition code. + aasm->as_mov(r5, O2Reg(r1), SetCC); + + // Loop over arguments, copying them from an unknown buffer onto the Ion + // stack so they can be accessed from JIT'ed code. + { + Label header, footer; + // If there aren't any arguments, don't do anything. + aasm->as_b(&footer, Assembler::Zero); + // Get the top of the loop. + masm.bind(&header); + aasm->as_sub(r5, r5, Imm8(1), SetCC); + // We could be more awesome, and unroll this, using a loadm + // (particularly since the offset is effectively 0) but that seems more + // error prone, and complex. + // BIG FAT WARNING: this loads both r6 and r7. + aasm->as_extdtr(IsLoad, 64, true, PostIndex, r6, + EDtrAddr(r2, EDtrOffImm(8))); + aasm->as_extdtr(IsStore, 64, true, PostIndex, r6, + EDtrAddr(r4, EDtrOffImm(8))); + aasm->as_b(&header, Assembler::NonZero); + masm.bind(&footer); + } + + // Push the callee token. + masm.push(r9); + + // Push the frame descriptor. + masm.pushFrameDescriptorForJitCall(FrameType::CppToJSJit, r10, r10); + + Label returnLabel; + { + // Handle Interpreter -> Baseline OSR. + AllocatableGeneralRegisterSet regs(GeneralRegisterSet::All()); + MOZ_ASSERT(!regs.has(r11)); + regs.take(OsrFrameReg); + regs.take(r0); // jitcode + MOZ_ASSERT(!regs.has(ReturnReg), "ReturnReg matches r0"); + + const Address slot_numStackValues(r11, + offsetof(EnterJITStack, numStackValues)); + + Label notOsr; + masm.branchTestPtr(Assembler::Zero, OsrFrameReg, OsrFrameReg, ¬Osr); + + Register scratch = regs.takeAny(); + + Register numStackValues = regs.takeAny(); + masm.load32(slot_numStackValues, numStackValues); + + // Write return address. On ARM, CodeLabel is only used for tableswitch, + // so we can't use it here to get the return address. Instead, we use pc + // + a fixed offset to a jump to returnLabel. The pc register holds pc + + // 8, so we add the size of 2 instructions to skip the instructions + // emitted by push and jump(&skipJump). + { + AutoForbidPoolsAndNops afp(&masm, 5); + Label skipJump; + masm.mov(pc, scratch); + masm.addPtr(Imm32(2 * sizeof(uint32_t)), scratch); + masm.push(scratch); + masm.jump(&skipJump); + masm.jump(&returnLabel); + masm.bind(&skipJump); + } + + // Frame prologue. + masm.push(FramePointer); + masm.mov(sp, FramePointer); + + // Reserve frame. + masm.subPtr(Imm32(BaselineFrame::Size()), sp); + + Register framePtrScratch = regs.takeAny(); + masm.touchFrameValues(numStackValues, scratch, framePtrScratch); + masm.mov(sp, framePtrScratch); + + // Reserve space for locals and stack values. + masm.ma_lsl(Imm32(3), numStackValues, scratch); + masm.ma_sub(sp, scratch, sp); + + // Enter exit frame. + masm.pushFrameDescriptor(FrameType::BaselineJS); + masm.push(Imm32(0)); // Fake return address. + masm.push(FramePointer); + // No GC things to mark on the stack, push a bare token. + masm.loadJSContext(scratch); + masm.enterFakeExitFrame(scratch, scratch, ExitFrameType::Bare); + + masm.push(r0); // jitcode + + using Fn = bool (*)(BaselineFrame * frame, InterpreterFrame * interpFrame, + uint32_t numStackValues); + masm.setupUnalignedABICall(scratch); + masm.passABIArg(framePtrScratch); // BaselineFrame + masm.passABIArg(OsrFrameReg); // InterpreterFrame + masm.passABIArg(numStackValues); + masm.callWithABI<Fn, jit::InitBaselineFrameForOsr>( + MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckHasExitFrame); + + Register jitcode = regs.takeAny(); + masm.pop(jitcode); + + MOZ_ASSERT(jitcode != ReturnReg); + + Label error; + masm.addPtr(Imm32(ExitFrameLayout::SizeWithFooter()), sp); + masm.branchIfFalseBool(ReturnReg, &error); + + // If OSR-ing, then emit instrumentation for setting lastProfilerFrame + // if profiler instrumentation is enabled. + { + Label skipProfilingInstrumentation; + AbsoluteAddress addressOfEnabled( + cx->runtime()->geckoProfiler().addressOfEnabled()); + masm.branch32(Assembler::Equal, addressOfEnabled, Imm32(0), + &skipProfilingInstrumentation); + masm.profilerEnterFrame(FramePointer, scratch); + masm.bind(&skipProfilingInstrumentation); + } + + masm.jump(jitcode); + + // OOM: frame epilogue, load error value, discard return address and return. + masm.bind(&error); + masm.mov(FramePointer, sp); + masm.pop(FramePointer); + masm.addPtr(Imm32(sizeof(uintptr_t)), sp); // Return address. + masm.moveValue(MagicValue(JS_ION_ERROR), JSReturnOperand); + masm.jump(&returnLabel); + + masm.bind(¬Osr); + // Load the scope chain in R1. + MOZ_ASSERT(R1.scratchReg() != r0); + masm.loadPtr(Address(r11, offsetof(EnterJITStack, scopeChain)), + R1.scratchReg()); + } + + // The callee will push the return address and frame pointer on the stack, + // thus we check that the stack would be aligned once the call is complete. + masm.assertStackAlignment(JitStackAlignment, 2 * sizeof(uintptr_t)); + + // Call the function. + masm.callJitNoProfiler(r0); + + // Interpreter -> Baseline OSR will return here. + masm.bind(&returnLabel); + + // Discard arguments and padding. Set sp to the address of the EnterJITStack + // on the stack. + masm.mov(r11, sp); + + // Store the returned value into the slot_vp + masm.loadPtr(slot_vp, r5); + masm.storeValue(JSReturnOperand, Address(r5, 0)); + + // Restore non-volatile registers and return. + GenerateReturn(masm, true); +} + +// static +mozilla::Maybe<::JS::ProfilingFrameIterator::RegisterState> +JitRuntime::getCppEntryRegisters(JitFrameLayout* frameStackAddress) { + // Not supported, or not implemented yet. + // TODO: Implement along with the corresponding stack-walker changes, in + // coordination with the Gecko Profiler, see bug 1635987 and follow-ups. + return mozilla::Nothing{}; +} + +void JitRuntime::generateInvalidator(MacroAssembler& masm, Label* bailoutTail) { + // See large comment in x86's JitRuntime::generateInvalidator. + + AutoCreatedBy acb(masm, "JitRuntime::generateInvalidator"); + + invalidatorOffset_ = startTrampolineCode(masm); + + // At this point, one of two things has happened: + // 1) Execution has just returned from C code, which left the stack aligned + // 2) Execution has just returned from Ion code, which left the stack + // unaligned. The old return address should not matter, but we still want the + // stack to be aligned, and there is no good reason to automatically align it + // with a call to setupUnalignedABICall. + masm.as_bic(sp, sp, Imm8(7)); + masm.startDataTransferM(IsStore, sp, DB, WriteBack); + // We don't have to push everything, but this is likely easier. + // Setting regs_. + for (uint32_t i = 0; i < Registers::Total; i++) { + masm.transferReg(Register::FromCode(i)); + } + masm.finishDataTransfer(); + + // Since our datastructures for stack inspection are compile-time fixed, + // if there are only 16 double registers, then we need to reserve + // space on the stack for the missing 16. + if (FloatRegisters::ActualTotalPhys() != FloatRegisters::TotalPhys) { + ScratchRegisterScope scratch(masm); + int missingRegs = + FloatRegisters::TotalPhys - FloatRegisters::ActualTotalPhys(); + masm.ma_sub(Imm32(missingRegs * sizeof(double)), sp, scratch); + } + + masm.startFloatTransferM(IsStore, sp, DB, WriteBack); + for (uint32_t i = 0; i < FloatRegisters::ActualTotalPhys(); i++) { + masm.transferFloatReg(FloatRegister(i, FloatRegister::Double)); + } + masm.finishFloatTransfer(); + + masm.ma_mov(sp, r0); + // Reserve 8 bytes for the outparam to ensure alignment for + // setupAlignedABICall. + masm.reserveStack(sizeof(void*) * 2); + masm.mov(sp, r1); + using Fn = + bool (*)(InvalidationBailoutStack * sp, BaselineBailoutInfo * *info); + masm.setupAlignedABICall(); + masm.passABIArg(r0); + masm.passABIArg(r1); + masm.callWithABI<Fn, InvalidationBailout>( + MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckOther); + + masm.pop(r2); // Get bailoutInfo outparam. + + // Pop the machine state and the dead frame. + masm.moveToStackPtr(FramePointer); + + // Jump to shared bailout tail. The BailoutInfo pointer has to be in r2. + masm.jump(bailoutTail); +} + +void JitRuntime::generateArgumentsRectifier(MacroAssembler& masm, + ArgumentsRectifierKind kind) { + AutoCreatedBy acb(masm, "JitRuntime::generateArgumentsRectifier"); + + switch (kind) { + case ArgumentsRectifierKind::Normal: + argumentsRectifierOffset_ = startTrampolineCode(masm); + break; + case ArgumentsRectifierKind::TrialInlining: + trialInliningArgumentsRectifierOffset_ = startTrampolineCode(masm); + break; + } + masm.pushReturnAddress(); + + // Frame prologue. + // + // NOTE: if this changes, fix the Baseline bailout code too! + // See BaselineStackBuilder::calculatePrevFramePtr and + // BaselineStackBuilder::buildRectifierFrame (in BaselineBailouts.cpp). + masm.push(FramePointer); + masm.mov(StackPointer, FramePointer); + + static_assert(JitStackAlignment == sizeof(Value)); + + // Copy number of actual arguments into r0 and r8. + masm.loadNumActualArgs(FramePointer, r0); + masm.mov(r0, r8); + + // Load the number of |undefined|s to push into r6. + masm.loadPtr( + Address(FramePointer, RectifierFrameLayout::offsetOfCalleeToken()), r1); + { + ScratchRegisterScope scratch(masm); + masm.ma_and(Imm32(CalleeTokenMask), r1, r6, scratch); + } + masm.loadFunctionArgCount(r6, r6); + + masm.ma_sub(r6, r8, r2); + + // Get the topmost argument. + { + ScratchRegisterScope scratch(masm); + masm.ma_alu(sp, lsl(r8, 3), r3, OpAdd); // r3 <- sp + nargs * 8 + masm.ma_add(r3, Imm32(sizeof(RectifierFrameLayout)), r3, scratch); + } + + { + Label notConstructing; + + masm.branchTest32(Assembler::Zero, r1, + Imm32(CalleeToken_FunctionConstructing), + ¬Constructing); + + // Add sizeof(Value) to overcome |this| + masm.as_extdtr(IsLoad, 64, true, Offset, r4, EDtrAddr(r3, EDtrOffImm(8))); + masm.as_extdtr(IsStore, 64, true, PreIndex, r4, + EDtrAddr(sp, EDtrOffImm(-8))); + + masm.bind(¬Constructing); + } + + // Push undefined. + masm.moveValue(UndefinedValue(), ValueOperand(r5, r4)); + { + Label undefLoopTop; + masm.bind(&undefLoopTop); + masm.as_extdtr(IsStore, 64, true, PreIndex, r4, + EDtrAddr(sp, EDtrOffImm(-8))); + masm.as_sub(r2, r2, Imm8(1), SetCC); + + masm.ma_b(&undefLoopTop, Assembler::NonZero); + } + + // Push arguments, |nargs| + 1 times (to include |this|). + { + Label copyLoopTop; + masm.bind(©LoopTop); + masm.as_extdtr(IsLoad, 64, true, PostIndex, r4, + EDtrAddr(r3, EDtrOffImm(-8))); + masm.as_extdtr(IsStore, 64, true, PreIndex, r4, + EDtrAddr(sp, EDtrOffImm(-8))); + + masm.as_sub(r8, r8, Imm8(1), SetCC); + masm.ma_b(©LoopTop, Assembler::NotSigned); + } + + // Construct JitFrameLayout. + masm.ma_push(r1); // callee token + masm.pushFrameDescriptorForJitCall(FrameType::Rectifier, r0, r0); + + // Call the target function. + masm.andPtr(Imm32(CalleeTokenMask), r1); + switch (kind) { + case ArgumentsRectifierKind::Normal: + masm.loadJitCodeRaw(r1, r3); + argumentsRectifierReturnOffset_ = masm.callJitNoProfiler(r3); + break; + case ArgumentsRectifierKind::TrialInlining: + Label noBaselineScript, done; + masm.loadBaselineJitCodeRaw(r1, r3, &noBaselineScript); + masm.callJitNoProfiler(r3); + masm.jump(&done); + + // See BaselineCacheIRCompiler::emitCallInlinedFunction. + masm.bind(&noBaselineScript); + masm.loadJitCodeRaw(r1, r3); + masm.callJitNoProfiler(r3); + masm.bind(&done); + break; + } + + masm.mov(FramePointer, StackPointer); + masm.pop(FramePointer); + masm.ret(); +} + +static void PushBailoutFrame(MacroAssembler& masm, Register spArg) { +#ifdef ENABLE_WASM_SIMD +# error "Needs more careful logic if SIMD is enabled" +#endif + + // STEP 1a: Save our register sets to the stack so Bailout() can read + // everything. + // sp % 8 == 0 + + masm.startDataTransferM(IsStore, sp, DB, WriteBack); + // We don't have to push everything, but this is likely easier. + // Setting regs_. + for (uint32_t i = 0; i < Registers::Total; i++) { + masm.transferReg(Register::FromCode(i)); + } + masm.finishDataTransfer(); + + ScratchRegisterScope scratch(masm); + + // Since our datastructures for stack inspection are compile-time fixed, + // if there are only 16 double registers, then we need to reserve + // space on the stack for the missing 16. + if (FloatRegisters::ActualTotalPhys() != FloatRegisters::TotalPhys) { + int missingRegs = + FloatRegisters::TotalPhys - FloatRegisters::ActualTotalPhys(); + masm.ma_sub(Imm32(missingRegs * sizeof(double)), sp, scratch); + } + masm.startFloatTransferM(IsStore, sp, DB, WriteBack); + for (uint32_t i = 0; i < FloatRegisters::ActualTotalPhys(); i++) { + masm.transferFloatReg(FloatRegister(i, FloatRegister::Double)); + } + masm.finishFloatTransfer(); + + // The current stack pointer is the first argument to jit::Bailout. + masm.ma_mov(sp, spArg); +} + +static void GenerateBailoutThunk(MacroAssembler& masm, Label* bailoutTail) { + PushBailoutFrame(masm, r0); + + // Make space for Bailout's bailoutInfo outparam. + masm.reserveStack(sizeof(void*)); + masm.mov(sp, r1); + using Fn = bool (*)(BailoutStack * sp, BaselineBailoutInfo * *info); + masm.setupAlignedABICall(); + + masm.passABIArg(r0); + masm.passABIArg(r1); + + masm.callWithABI<Fn, Bailout>(MoveOp::GENERAL, + CheckUnsafeCallWithABI::DontCheckOther); + masm.pop(r2); // Get the bailoutInfo outparam. + + // Remove both the bailout frame and the topmost Ion frame's stack. + masm.moveToStackPtr(FramePointer); + + // Jump to shared bailout tail. The BailoutInfo pointer has to be in r2. + masm.jump(bailoutTail); +} + +void JitRuntime::generateBailoutHandler(MacroAssembler& masm, + Label* bailoutTail) { + AutoCreatedBy acb(masm, "JitRuntime::generateBailoutHandler"); + + bailoutHandlerOffset_ = startTrampolineCode(masm); + + GenerateBailoutThunk(masm, bailoutTail); +} + +bool JitRuntime::generateVMWrapper(JSContext* cx, MacroAssembler& masm, + const VMFunctionData& f, DynFn nativeFun, + uint32_t* wrapperOffset) { + AutoCreatedBy acb(masm, "JitRuntime::generateVMWrapper"); + + *wrapperOffset = startTrampolineCode(masm); + + AllocatableGeneralRegisterSet regs(Register::Codes::WrapperMask); + + static_assert( + (Register::Codes::VolatileMask & ~Register::Codes::WrapperMask) == 0, + "Wrapper register set must be a superset of Volatile register set."); + + // The context is the first argument; r0 is the first argument register. + Register cxreg = r0; + regs.take(cxreg); + + // Stack is: + // ... frame ... + // +8 [args] + argPadding + // +0 ExitFrame + // + // If it isn't a tail call, then the return address needs to be saved. + // Push the frame pointer to finish the exit frame, then link it up. + if (f.expectTailCall == NonTailCall) { + masm.pushReturnAddress(); + } + masm.Push(FramePointer); + masm.moveStackPtrTo(FramePointer); + masm.loadJSContext(cxreg); + masm.enterExitFrame(cxreg, regs.getAny(), &f); + + // Save the base of the argument set stored on the stack. + Register argsBase = InvalidReg; + if (f.explicitArgs) { + argsBase = r5; + regs.take(argsBase); + ScratchRegisterScope scratch(masm); + masm.ma_add(sp, Imm32(ExitFrameLayout::SizeWithFooter()), argsBase, + scratch); + } + + // Reserve space for the outparameter. + Register outReg = InvalidReg; + switch (f.outParam) { + case Type_Value: + outReg = r4; + regs.take(outReg); + masm.reserveStack(sizeof(Value)); + masm.ma_mov(sp, outReg); + break; + + case Type_Handle: + outReg = r4; + regs.take(outReg); + masm.PushEmptyRooted(f.outParamRootType); + masm.ma_mov(sp, outReg); + break; + + case Type_Int32: + case Type_Pointer: + case Type_Bool: + outReg = r4; + regs.take(outReg); + masm.reserveStack(sizeof(int32_t)); + masm.ma_mov(sp, outReg); + break; + + case Type_Double: + outReg = r4; + regs.take(outReg); + masm.reserveStack(sizeof(double)); + masm.ma_mov(sp, outReg); + break; + + default: + MOZ_ASSERT(f.outParam == Type_Void); + break; + } + + masm.setupUnalignedABICall(regs.getAny()); + masm.passABIArg(cxreg); + + size_t argDisp = 0; + + // Copy any arguments. + for (uint32_t explicitArg = 0; explicitArg < f.explicitArgs; explicitArg++) { + switch (f.argProperties(explicitArg)) { + case VMFunctionData::WordByValue: + masm.passABIArg(MoveOperand(argsBase, argDisp), MoveOp::GENERAL); + argDisp += sizeof(void*); + break; + case VMFunctionData::DoubleByValue: + // Values should be passed by reference, not by value, so we assert + // that the argument is a double-precision float. + MOZ_ASSERT(f.argPassedInFloatReg(explicitArg)); + masm.passABIArg(MoveOperand(argsBase, argDisp), MoveOp::DOUBLE); + argDisp += sizeof(double); + break; + case VMFunctionData::WordByRef: + masm.passABIArg( + MoveOperand(argsBase, argDisp, MoveOperand::Kind::EffectiveAddress), + MoveOp::GENERAL); + argDisp += sizeof(void*); + break; + case VMFunctionData::DoubleByRef: + masm.passABIArg( + MoveOperand(argsBase, argDisp, MoveOperand::Kind::EffectiveAddress), + MoveOp::GENERAL); + argDisp += 2 * sizeof(void*); + break; + } + } + + // Copy the implicit outparam, if any. + if (outReg != InvalidReg) { + masm.passABIArg(outReg); + } + + masm.callWithABI(nativeFun, MoveOp::GENERAL, + CheckUnsafeCallWithABI::DontCheckHasExitFrame); + + // Test for failure. + switch (f.failType()) { + case Type_Cell: + masm.branchTestPtr(Assembler::Zero, r0, r0, masm.failureLabel()); + break; + case Type_Bool: + masm.branchIfFalseBool(r0, masm.failureLabel()); + break; + case Type_Void: + break; + default: + MOZ_CRASH("unknown failure kind"); + } + + // Load the outparam and free any allocated stack. + switch (f.outParam) { + case Type_Handle: + masm.popRooted(f.outParamRootType, ReturnReg, JSReturnOperand); + break; + + case Type_Value: + masm.loadValue(Address(sp, 0), JSReturnOperand); + masm.freeStack(sizeof(Value)); + break; + + case Type_Int32: + case Type_Pointer: + masm.load32(Address(sp, 0), ReturnReg); + masm.freeStack(sizeof(int32_t)); + break; + + case Type_Bool: + masm.load8ZeroExtend(Address(sp, 0), ReturnReg); + masm.freeStack(sizeof(int32_t)); + break; + + case Type_Double: + masm.loadDouble(Address(sp, 0), ReturnDoubleReg); + masm.freeStack(sizeof(double)); + break; + + default: + MOZ_ASSERT(f.outParam == Type_Void); + break; + } + + // Until C++ code is instrumented against Spectre, prevent speculative + // execution from returning any private data. + if (f.returnsData() && JitOptions.spectreJitToCxxCalls) { + masm.speculationBarrier(); + } + + // Pop ExitFooterFrame and the frame pointer. + masm.leaveExitFrame(0); + masm.pop(FramePointer); + + // Return. Subtract sizeof(void*) for the frame pointer. + masm.retn(Imm32(sizeof(ExitFrameLayout) - sizeof(void*) + + f.explicitStackSlots() * sizeof(void*) + + f.extraValuesToPop * sizeof(Value))); + + return true; +} + +uint32_t JitRuntime::generatePreBarrier(JSContext* cx, MacroAssembler& masm, + MIRType type) { + AutoCreatedBy acb(masm, "JitRuntime::generatePreBarrier"); + + uint32_t offset = startTrampolineCode(masm); + + masm.pushReturnAddress(); + + static_assert(PreBarrierReg == r1); + Register temp1 = r2; + Register temp2 = r3; + Register temp3 = r4; + masm.push(temp1); + masm.push(temp2); + masm.push(temp3); + + Label noBarrier; + masm.emitPreBarrierFastPath(cx->runtime(), type, temp1, temp2, temp3, + &noBarrier); + + // Call into C++ to mark this GC thing. + masm.pop(temp3); + masm.pop(temp2); + masm.pop(temp1); + + LiveRegisterSet save; + save.set() = + RegisterSet(GeneralRegisterSet(Registers::VolatileMask), + FloatRegisterSet(FloatRegisters::VolatileDoubleMask)); + masm.PushRegsInMask(save); + + masm.movePtr(ImmPtr(cx->runtime()), r0); + + masm.setupUnalignedABICall(r2); + masm.passABIArg(r0); + masm.passABIArg(r1); + masm.callWithABI(JitPreWriteBarrier(type)); + masm.PopRegsInMask(save); + masm.ret(); + + masm.bind(&noBarrier); + masm.pop(temp3); + masm.pop(temp2); + masm.pop(temp1); + masm.ret(); + + return offset; +} + +void JitRuntime::generateBailoutTailStub(MacroAssembler& masm, + Label* bailoutTail) { + AutoCreatedBy acb(masm, "JitRuntime::generateBailoutTailStub"); + + masm.bind(bailoutTail); + masm.generateBailoutTail(r1, r2); +} diff --git a/js/src/jit/arm/disasm/Constants-arm.cpp b/js/src/jit/arm/disasm/Constants-arm.cpp new file mode 100644 index 0000000000..408e2df686 --- /dev/null +++ b/js/src/jit/arm/disasm/Constants-arm.cpp @@ -0,0 +1,117 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + */ +// Copyright 2009 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include "jit/arm/disasm/Constants-arm.h" + +#ifdef JS_DISASM_ARM + +namespace js { +namespace jit { +namespace disasm { + +double Instruction::DoubleImmedVmov() const { + // Reconstruct a double from the immediate encoded in the vmov instruction. + // + // instruction: [xxxxxxxx,xxxxabcd,xxxxxxxx,xxxxefgh] + // double: [aBbbbbbb,bbcdefgh,00000000,00000000, + // 00000000,00000000,00000000,00000000] + // + // where B = ~b. Only the high 16 bits are affected. + uint64_t high16; + high16 = (Bits(17, 16) << 4) | Bits(3, 0); // xxxxxxxx,xxcdefgh. + high16 |= (0xff * Bit(18)) << 6; // xxbbbbbb,bbxxxxxx. + high16 |= (Bit(18) ^ 1) << 14; // xBxxxxxx,xxxxxxxx. + high16 |= Bit(19) << 15; // axxxxxxx,xxxxxxxx. + + uint64_t imm = high16 << 48; + double d; + memcpy(&d, &imm, 8); + return d; +} + +// These register names are defined in a way to match the native disassembler +// formatting. See for example the command "objdump -d <binary file>". +const char* Registers::names_[kNumRegisters] = { + "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", + "r8", "r9", "r10", "fp", "ip", "sp", "lr", "pc", +}; + +// List of alias names which can be used when referring to ARM registers. +const Registers::RegisterAlias Registers::aliases_[] = { + {10, "sl"}, {11, "r11"}, {12, "r12"}, {13, "r13"}, + {14, "r14"}, {15, "r15"}, {kNoRegister, NULL}}; + +const char* Registers::Name(int reg) { + const char* result; + if ((0 <= reg) && (reg < kNumRegisters)) { + result = names_[reg]; + } else { + result = "noreg"; + } + return result; +} + +// Support for VFP registers s0 to s31 (d0 to d15) and d16-d31. +// Note that "sN:sM" is the same as "dN/2" up to d15. +// These register names are defined in a way to match the native disassembler +// formatting. See for example the command "objdump -d <binary file>". +const char* VFPRegisters::names_[kNumVFPRegisters] = { + "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "s8", "s9", "s10", + "s11", "s12", "s13", "s14", "s15", "s16", "s17", "s18", "s19", "s20", "s21", + "s22", "s23", "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31", "d0", + "d1", "d2", "d3", "d4", "d5", "d6", "d7", "d8", "d9", "d10", "d11", + "d12", "d13", "d14", "d15", "d16", "d17", "d18", "d19", "d20", "d21", "d22", + "d23", "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31"}; + +const char* VFPRegisters::Name(int reg, bool is_double) { + MOZ_ASSERT((0 <= reg) && (reg < kNumVFPRegisters)); + return names_[reg + (is_double ? kNumVFPSingleRegisters : 0)]; +} + +int VFPRegisters::Number(const char* name, bool* is_double) { + for (int i = 0; i < kNumVFPRegisters; i++) { + if (strcmp(names_[i], name) == 0) { + if (i < kNumVFPSingleRegisters) { + *is_double = false; + return i; + } else { + *is_double = true; + return i - kNumVFPSingleRegisters; + } + } + } + + // No register with the requested name found. + return kNoRegister; +} + +int Registers::Number(const char* name) { + // Look through the canonical names. + for (int i = 0; i < kNumRegisters; i++) { + if (strcmp(names_[i], name) == 0) { + return i; + } + } + + // Look through the alias names. + int i = 0; + while (aliases_[i].reg != kNoRegister) { + if (strcmp(aliases_[i].name, name) == 0) { + return aliases_[i].reg; + } + i++; + } + + // No register with the requested name found. + return kNoRegister; +} + +} // namespace disasm +} // namespace jit +} // namespace js + +#endif // JS_DISASM_ARM diff --git a/js/src/jit/arm/disasm/Constants-arm.h b/js/src/jit/arm/disasm/Constants-arm.h new file mode 100644 index 0000000000..0128062b3f --- /dev/null +++ b/js/src/jit/arm/disasm/Constants-arm.h @@ -0,0 +1,684 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + */ +// Copyright 2011 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef jit_arm_disasm_Constants_arm_h +#define jit_arm_disasm_Constants_arm_h + +#ifdef JS_DISASM_ARM + +# include "mozilla/Assertions.h" +# include "mozilla/Types.h" + +# include <string.h> + +namespace js { +namespace jit { +namespace disasm { + +// Constant pool marker. +// Use UDF, the permanently undefined instruction. +const int kConstantPoolMarkerMask = 0xfff000f0; +const int kConstantPoolMarker = 0xe7f000f0; +const int kConstantPoolLengthMaxMask = 0xffff; + +inline int EncodeConstantPoolLength(int length) { + MOZ_ASSERT((length & kConstantPoolLengthMaxMask) == length); + return ((length & 0xfff0) << 4) | (length & 0xf); +} + +inline int DecodeConstantPoolLength(int instr) { + MOZ_ASSERT((instr & kConstantPoolMarkerMask) == kConstantPoolMarker); + return ((instr >> 4) & 0xfff0) | (instr & 0xf); +} + +// Used in code age prologue - ldr(pc, MemOperand(pc, -4)) +const int kCodeAgeJumpInstruction = 0xe51ff004; + +// Number of registers in normal ARM mode. +const int kNumRegisters = 16; + +// VFP support. +const int kNumVFPSingleRegisters = 32; +const int kNumVFPDoubleRegisters = 32; +const int kNumVFPRegisters = kNumVFPSingleRegisters + kNumVFPDoubleRegisters; + +// PC is register 15. +const int kPCRegister = 15; +const int kNoRegister = -1; + +// ----------------------------------------------------------------------------- +// Conditions. + +// Defines constants and accessor classes to assemble, disassemble and +// simulate ARM instructions. +// +// Section references in the code refer to the "ARM Architecture Reference +// Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf) +// +// Constants for specific fields are defined in their respective named enums. +// General constants are in an anonymous enum in class Instr. + +// Values for the condition field as defined in section A3.2 +enum Condition { + kNoCondition = -1, + + eq = 0 << 28, // Z set Equal. + ne = 1 << 28, // Z clear Not equal. + cs = 2 << 28, // C set Unsigned higher or same. + cc = 3 << 28, // C clear Unsigned lower. + mi = 4 << 28, // N set Negative. + pl = 5 << 28, // N clear Positive or zero. + vs = 6 << 28, // V set Overflow. + vc = 7 << 28, // V clear No overflow. + hi = 8 << 28, // C set, Z clear Unsigned higher. + ls = 9 << 28, // C clear or Z set Unsigned lower or same. + ge = 10 << 28, // N == V Greater or equal. + lt = 11 << 28, // N != V Less than. + gt = 12 << 28, // Z clear, N == V Greater than. + le = 13 << 28, // Z set or N != V Less then or equal + al = 14 << 28, // Always. + + kSpecialCondition = 15 << 28, // Special condition (refer to section A3.2.1). + kNumberOfConditions = 16, + + // Aliases. + hs = cs, // C set Unsigned higher or same. + lo = cc // C clear Unsigned lower. +}; + +inline Condition NegateCondition(Condition cond) { + MOZ_ASSERT(cond != al); + return static_cast<Condition>(cond ^ ne); +} + +// Commute a condition such that {a cond b == b cond' a}. +inline Condition CommuteCondition(Condition cond) { + switch (cond) { + case lo: + return hi; + case hi: + return lo; + case hs: + return ls; + case ls: + return hs; + case lt: + return gt; + case gt: + return lt; + case ge: + return le; + case le: + return ge; + default: + return cond; + } +} + +// ----------------------------------------------------------------------------- +// Instructions encoding. + +// Instr is merely used by the Assembler to distinguish 32bit integers +// representing instructions from usual 32 bit values. +// Instruction objects are pointers to 32bit values, and provide methods to +// access the various ISA fields. +typedef int32_t Instr; + +// Opcodes for Data-processing instructions (instructions with a type 0 and 1) +// as defined in section A3.4 +enum Opcode { + AND = 0 << 21, // Logical AND. + EOR = 1 << 21, // Logical Exclusive OR. + SUB = 2 << 21, // Subtract. + RSB = 3 << 21, // Reverse Subtract. + ADD = 4 << 21, // Add. + ADC = 5 << 21, // Add with Carry. + SBC = 6 << 21, // Subtract with Carry. + RSC = 7 << 21, // Reverse Subtract with Carry. + TST = 8 << 21, // Test. + TEQ = 9 << 21, // Test Equivalence. + CMP = 10 << 21, // Compare. + CMN = 11 << 21, // Compare Negated. + ORR = 12 << 21, // Logical (inclusive) OR. + MOV = 13 << 21, // Move. + BIC = 14 << 21, // Bit Clear. + MVN = 15 << 21 // Move Not. +}; + +// The bits for bit 7-4 for some type 0 miscellaneous instructions. +enum MiscInstructionsBits74 { + // With bits 22-21 01. + BX = 1 << 4, + BXJ = 2 << 4, + BLX = 3 << 4, + BKPT = 7 << 4, + + // With bits 22-21 11. + CLZ = 1 << 4 +}; + +// Load and store exclusive instructions. + +// Bit positions. +enum { + ExclusiveOpHi = 24, // Hi bit of opcode field + ExclusiveOpLo = 23, // Lo bit of opcode field + ExclusiveSizeHi = 22, // Hi bit of operand size field + ExclusiveSizeLo = 21, // Lo bit of operand size field + ExclusiveLoad = 20 // Bit indicating load +}; + +// Opcode bits for exclusive instructions. +enum { ExclusiveOpcode = 3 }; + +// Operand size, Bits(ExclusiveSizeHi,ExclusiveSizeLo). +enum { + ExclusiveWord = 0, + ExclusiveDouble = 1, + ExclusiveByte = 2, + ExclusiveHalf = 3 +}; + +// Instruction encoding bits and masks. +enum { + H = 1 << 5, // Halfword (or byte). + S6 = 1 << 6, // Signed (or unsigned). + L = 1 << 20, // Load (or store). + S = 1 << 20, // Set condition code (or leave unchanged). + W = 1 << 21, // Writeback base register (or leave unchanged). + A = 1 << 21, // Accumulate in multiply instruction (or not). + B = 1 << 22, // Unsigned byte (or word). + N = 1 << 22, // Long (or short). + U = 1 << 23, // Positive (or negative) offset/index. + P = 1 << 24, // Offset/pre-indexed addressing (or post-indexed addressing). + I = 1 << 25, // Immediate shifter operand (or not). + B0 = 1 << 0, + B4 = 1 << 4, + B5 = 1 << 5, + B6 = 1 << 6, + B7 = 1 << 7, + B8 = 1 << 8, + B9 = 1 << 9, + B12 = 1 << 12, + B16 = 1 << 16, + B17 = 1 << 17, + B18 = 1 << 18, + B19 = 1 << 19, + B20 = 1 << 20, + B21 = 1 << 21, + B22 = 1 << 22, + B23 = 1 << 23, + B24 = 1 << 24, + B25 = 1 << 25, + B26 = 1 << 26, + B27 = 1 << 27, + B28 = 1 << 28, + + // Instruction bit masks. + kCondMask = 15 << 28, + kALUMask = 0x6f << 21, + kRdMask = 15 << 12, // In str instruction. + kCoprocessorMask = 15 << 8, + kOpCodeMask = 15 << 21, // In data-processing instructions. + kImm24Mask = (1 << 24) - 1, + kImm16Mask = (1 << 16) - 1, + kImm8Mask = (1 << 8) - 1, + kOff12Mask = (1 << 12) - 1, + kOff8Mask = (1 << 8) - 1 +}; + +// ----------------------------------------------------------------------------- +// Addressing modes and instruction variants. + +// Condition code updating mode. +enum SBit { + SetCC = 1 << 20, // Set condition code. + LeaveCC = 0 << 20 // Leave condition code unchanged. +}; + +// Status register selection. +enum SRegister { CPSR = 0 << 22, SPSR = 1 << 22 }; + +// Shifter types for Data-processing operands as defined in section A5.1.2. +enum ShiftOp { + LSL = 0 << 5, // Logical shift left. + LSR = 1 << 5, // Logical shift right. + ASR = 2 << 5, // Arithmetic shift right. + ROR = 3 << 5, // Rotate right. + + // RRX is encoded as ROR with shift_imm == 0. + // Use a special code to make the distinction. The RRX ShiftOp is only used + // as an argument, and will never actually be encoded. The Assembler will + // detect it and emit the correct ROR shift operand with shift_imm == 0. + RRX = -1, + kNumberOfShifts = 4 +}; + +// Status register fields. +enum SRegisterField { + CPSR_c = CPSR | 1 << 16, + CPSR_x = CPSR | 1 << 17, + CPSR_s = CPSR | 1 << 18, + CPSR_f = CPSR | 1 << 19, + SPSR_c = SPSR | 1 << 16, + SPSR_x = SPSR | 1 << 17, + SPSR_s = SPSR | 1 << 18, + SPSR_f = SPSR | 1 << 19 +}; + +// Status register field mask (or'ed SRegisterField enum values). +typedef uint32_t SRegisterFieldMask; + +// Memory operand addressing mode. +enum AddrMode { + // Bit encoding P U W. + Offset = (8 | 4 | 0) << 21, // Offset (without writeback to base). + PreIndex = (8 | 4 | 1) << 21, // Pre-indexed addressing with writeback. + PostIndex = (0 | 4 | 0) << 21, // Post-indexed addressing with writeback. + NegOffset = + (8 | 0 | 0) << 21, // Negative offset (without writeback to base). + NegPreIndex = (8 | 0 | 1) << 21, // Negative pre-indexed with writeback. + NegPostIndex = (0 | 0 | 0) << 21 // Negative post-indexed with writeback. +}; + +// Load/store multiple addressing mode. +enum BlockAddrMode { + // Bit encoding P U W . + da = (0 | 0 | 0) << 21, // Decrement after. + ia = (0 | 4 | 0) << 21, // Increment after. + db = (8 | 0 | 0) << 21, // Decrement before. + ib = (8 | 4 | 0) << 21, // Increment before. + da_w = (0 | 0 | 1) << 21, // Decrement after with writeback to base. + ia_w = (0 | 4 | 1) << 21, // Increment after with writeback to base. + db_w = (8 | 0 | 1) << 21, // Decrement before with writeback to base. + ib_w = (8 | 4 | 1) << 21, // Increment before with writeback to base. + + // Alias modes for comparison when writeback does not matter. + da_x = (0 | 0 | 0) << 21, // Decrement after. + ia_x = (0 | 4 | 0) << 21, // Increment after. + db_x = (8 | 0 | 0) << 21, // Decrement before. + ib_x = (8 | 4 | 0) << 21, // Increment before. + + kBlockAddrModeMask = (8 | 4 | 1) << 21 +}; + +// Coprocessor load/store operand size. +enum LFlag { + Long = 1 << 22, // Long load/store coprocessor. + Short = 0 << 22 // Short load/store coprocessor. +}; + +// NEON data type +enum NeonDataType { + NeonS8 = 0x1, // U = 0, imm3 = 0b001 + NeonS16 = 0x2, // U = 0, imm3 = 0b010 + NeonS32 = 0x4, // U = 0, imm3 = 0b100 + NeonU8 = 1 << 24 | 0x1, // U = 1, imm3 = 0b001 + NeonU16 = 1 << 24 | 0x2, // U = 1, imm3 = 0b010 + NeonU32 = 1 << 24 | 0x4, // U = 1, imm3 = 0b100 + NeonDataTypeSizeMask = 0x7, + NeonDataTypeUMask = 1 << 24 +}; + +enum NeonListType { nlt_1 = 0x7, nlt_2 = 0xA, nlt_3 = 0x6, nlt_4 = 0x2 }; + +enum NeonSize { Neon8 = 0x0, Neon16 = 0x1, Neon32 = 0x2, Neon64 = 0x3 }; + +// ----------------------------------------------------------------------------- +// Supervisor Call (svc) specific support. + +// Special Software Interrupt codes when used in the presence of the ARM +// simulator. +// svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for +// standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature. +enum SoftwareInterruptCodes { + // transition to C code + kCallRtRedirected = 0x10, + // break point + kBreakpoint = 0x20, + // stop + kStopCode = 1 << 23 +}; +const uint32_t kStopCodeMask = kStopCode - 1; +const uint32_t kMaxStopCode = kStopCode - 1; +const int32_t kDefaultStopCode = -1; + +// Type of VFP register. Determines register encoding. +enum VFPRegPrecision { kSinglePrecision = 0, kDoublePrecision = 1 }; + +// VFP FPSCR constants. +enum VFPConversionMode { kFPSCRRounding = 0, kDefaultRoundToZero = 1 }; + +// This mask does not include the "inexact" or "input denormal" cumulative +// exceptions flags, because we usually don't want to check for it. +const uint32_t kVFPExceptionMask = 0xf; +const uint32_t kVFPInvalidOpExceptionBit = 1 << 0; +const uint32_t kVFPOverflowExceptionBit = 1 << 2; +const uint32_t kVFPUnderflowExceptionBit = 1 << 3; +const uint32_t kVFPInexactExceptionBit = 1 << 4; +const uint32_t kVFPFlushToZeroMask = 1 << 24; +const uint32_t kVFPDefaultNaNModeControlBit = 1 << 25; + +const uint32_t kVFPNConditionFlagBit = 1 << 31; +const uint32_t kVFPZConditionFlagBit = 1 << 30; +const uint32_t kVFPCConditionFlagBit = 1 << 29; +const uint32_t kVFPVConditionFlagBit = 1 << 28; + +// VFP rounding modes. See ARM DDI 0406B Page A2-29. +enum VFPRoundingMode { + RN = 0 << 22, // Round to Nearest. + RP = 1 << 22, // Round towards Plus Infinity. + RM = 2 << 22, // Round towards Minus Infinity. + RZ = 3 << 22, // Round towards zero. + + // Aliases. + kRoundToNearest = RN, + kRoundToPlusInf = RP, + kRoundToMinusInf = RM, + kRoundToZero = RZ +}; + +const uint32_t kVFPRoundingModeMask = 3 << 22; + +enum CheckForInexactConversion { + kCheckForInexactConversion, + kDontCheckForInexactConversion +}; + +// ----------------------------------------------------------------------------- +// Hints. + +// Branch hints are not used on the ARM. They are defined so that they can +// appear in shared function signatures, but will be ignored in ARM +// implementations. +enum Hint { no_hint }; + +// Hints are not used on the arm. Negating is trivial. +inline Hint NegateHint(Hint ignored) { return no_hint; } + +// ----------------------------------------------------------------------------- +// Instruction abstraction. + +// The class Instruction enables access to individual fields defined in the ARM +// architecture instruction set encoding as described in figure A3-1. +// Note that the Assembler uses typedef int32_t Instr. +// +// Example: Test whether the instruction at ptr does set the condition code +// bits. +// +// bool InstructionSetsConditionCodes(byte* ptr) { +// Instruction* instr = Instruction::At(ptr); +// int type = instr->TypeValue(); +// return ((type == 0) || (type == 1)) && instr->HasS(); +// } +// +class Instruction { + public: + enum { kInstrSize = 4, kInstrSizeLog2 = 2, kPCReadOffset = 8 }; + + // Helper macro to define static accessors. + // We use the cast to char* trick to bypass the strict anti-aliasing rules. +# define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name) \ + static inline return_type Name(Instr instr) { \ + char* temp = reinterpret_cast<char*>(&instr); \ + return reinterpret_cast<Instruction*>(temp)->Name(); \ + } + +# define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name) + + // Get the raw instruction bits. + inline Instr InstructionBits() const { + return *reinterpret_cast<const Instr*>(this); + } + + // Set the raw instruction bits to value. + inline void SetInstructionBits(Instr value) { + *reinterpret_cast<Instr*>(this) = value; + } + + // Read one particular bit out of the instruction bits. + inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; } + + // Read a bit field's value out of the instruction bits. + inline int Bits(int hi, int lo) const { + return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1); + } + + // Read a bit field out of the instruction bits. + inline int BitField(int hi, int lo) const { + return InstructionBits() & (((2 << (hi - lo)) - 1) << lo); + } + + // Static support. + + // Read one particular bit out of the instruction bits. + static inline int Bit(Instr instr, int nr) { return (instr >> nr) & 1; } + + // Read the value of a bit field out of the instruction bits. + static inline int Bits(Instr instr, int hi, int lo) { + return (instr >> lo) & ((2 << (hi - lo)) - 1); + } + + // Read a bit field out of the instruction bits. + static inline int BitField(Instr instr, int hi, int lo) { + return instr & (((2 << (hi - lo)) - 1) << lo); + } + + // Accessors for the different named fields used in the ARM encoding. + // The naming of these accessor corresponds to figure A3-1. + // + // Two kind of accessors are declared: + // - <Name>Field() will return the raw field, i.e. the field's bits at their + // original place in the instruction encoding. + // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as + // 0xC0810002 ConditionField(instr) will return 0xC0000000. + // - <Name>Value() will return the field value, shifted back to bit 0. + // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as + // 0xC0810002 ConditionField(instr) will return 0xC. + + // Generally applicable fields + inline Condition ConditionValue() const { + return static_cast<Condition>(Bits(31, 28)); + } + inline Condition ConditionField() const { + return static_cast<Condition>(BitField(31, 28)); + } + DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionValue); + DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField); + + inline int TypeValue() const { return Bits(27, 25); } + inline int SpecialValue() const { return Bits(27, 23); } + + inline int RnValue() const { return Bits(19, 16); } + DECLARE_STATIC_ACCESSOR(RnValue); + inline int RdValue() const { return Bits(15, 12); } + DECLARE_STATIC_ACCESSOR(RdValue); + + inline int CoprocessorValue() const { return Bits(11, 8); } + // Support for VFP. + // Vn(19-16) | Vd(15-12) | Vm(3-0) + inline int VnValue() const { return Bits(19, 16); } + inline int VmValue() const { return Bits(3, 0); } + inline int VdValue() const { return Bits(15, 12); } + inline int NValue() const { return Bit(7); } + inline int MValue() const { return Bit(5); } + inline int DValue() const { return Bit(22); } + inline int RtValue() const { return Bits(15, 12); } + inline int PValue() const { return Bit(24); } + inline int UValue() const { return Bit(23); } + inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); } + inline int Opc2Value() const { return Bits(19, 16); } + inline int Opc3Value() const { return Bits(7, 6); } + inline int SzValue() const { return Bit(8); } + inline int VLValue() const { return Bit(20); } + inline int VCValue() const { return Bit(8); } + inline int VAValue() const { return Bits(23, 21); } + inline int VBValue() const { return Bits(6, 5); } + inline int VFPNRegValue(VFPRegPrecision pre) { + return VFPGlueRegValue(pre, 16, 7); + } + inline int VFPMRegValue(VFPRegPrecision pre) { + return VFPGlueRegValue(pre, 0, 5); + } + inline int VFPDRegValue(VFPRegPrecision pre) { + return VFPGlueRegValue(pre, 12, 22); + } + + // Fields used in Data processing instructions + inline int OpcodeValue() const { return static_cast<Opcode>(Bits(24, 21)); } + inline Opcode OpcodeField() const { + return static_cast<Opcode>(BitField(24, 21)); + } + inline int SValue() const { return Bit(20); } + // with register + inline int RmValue() const { return Bits(3, 0); } + DECLARE_STATIC_ACCESSOR(RmValue); + inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); } + inline ShiftOp ShiftField() const { + return static_cast<ShiftOp>(BitField(6, 5)); + } + inline int RegShiftValue() const { return Bit(4); } + inline int RsValue() const { return Bits(11, 8); } + inline int ShiftAmountValue() const { return Bits(11, 7); } + // with immediate + inline int RotateValue() const { return Bits(11, 8); } + DECLARE_STATIC_ACCESSOR(RotateValue); + inline int Immed8Value() const { return Bits(7, 0); } + DECLARE_STATIC_ACCESSOR(Immed8Value); + inline int Immed4Value() const { return Bits(19, 16); } + inline int ImmedMovwMovtValue() const { + return Immed4Value() << 12 | Offset12Value(); + } + DECLARE_STATIC_ACCESSOR(ImmedMovwMovtValue); + + // Fields used in Load/Store instructions + inline int PUValue() const { return Bits(24, 23); } + inline int PUField() const { return BitField(24, 23); } + inline int BValue() const { return Bit(22); } + inline int WValue() const { return Bit(21); } + inline int LValue() const { return Bit(20); } + // with register uses same fields as Data processing instructions above + // with immediate + inline int Offset12Value() const { return Bits(11, 0); } + // multiple + inline int RlistValue() const { return Bits(15, 0); } + // extra loads and stores + inline int SignValue() const { return Bit(6); } + inline int HValue() const { return Bit(5); } + inline int ImmedHValue() const { return Bits(11, 8); } + inline int ImmedLValue() const { return Bits(3, 0); } + + // Fields used in Branch instructions + inline int LinkValue() const { return Bit(24); } + inline int SImmed24Value() const { return ((InstructionBits() << 8) >> 8); } + + // Fields used in Software interrupt instructions + inline SoftwareInterruptCodes SvcValue() const { + return static_cast<SoftwareInterruptCodes>(Bits(23, 0)); + } + + // Test for special encodings of type 0 instructions (extra loads and stores, + // as well as multiplications). + inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); } + + // Test for miscellaneous instructions encodings of type 0 instructions. + inline bool IsMiscType0() const { + return (Bit(24) == 1) && (Bit(23) == 0) && (Bit(20) == 0) && + ((Bit(7) == 0)); + } + + // Test for a nop instruction, which falls under type 1. + inline bool IsNopType1() const { return Bits(24, 0) == 0x0120F000; } + + // Test for a nop instruction, which falls under type 1. + inline bool IsCsdbType1() const { return Bits(24, 0) == 0x0120F014; } + + // Test for a stop instruction. + inline bool IsStop() const { + return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode); + } + + // Special accessors that test for existence of a value. + inline bool HasS() const { return SValue() == 1; } + inline bool HasB() const { return BValue() == 1; } + inline bool HasW() const { return WValue() == 1; } + inline bool HasL() const { return LValue() == 1; } + inline bool HasU() const { return UValue() == 1; } + inline bool HasSign() const { return SignValue() == 1; } + inline bool HasH() const { return HValue() == 1; } + inline bool HasLink() const { return LinkValue() == 1; } + + // Decoding the double immediate in the vmov instruction. + double DoubleImmedVmov() const; + + // Instructions are read of out a code stream. The only way to get a + // reference to an instruction is to convert a pointer. There is no way + // to allocate or create instances of class Instruction. + // Use the At(pc) function to create references to Instruction. + static Instruction* At(uint8_t* pc) { + return reinterpret_cast<Instruction*>(pc); + } + + private: + // Join split register codes, depending on single or double precision. + // four_bit is the position of the least-significant bit of the four + // bit specifier. one_bit is the position of the additional single bit + // specifier. + inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) { + if (pre == kSinglePrecision) { + return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit); + } + return (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit); + } + + // We need to prevent the creation of instances of class Instruction. + Instruction() = delete; + Instruction(const Instruction&) = delete; + void operator=(const Instruction&) = delete; +}; + +// Helper functions for converting between register numbers and names. +class Registers { + public: + // Return the name of the register. + static const char* Name(int reg); + + // Lookup the register number for the name provided. + static int Number(const char* name); + + struct RegisterAlias { + int reg; + const char* name; + }; + + private: + static const char* names_[kNumRegisters]; + static const RegisterAlias aliases_[]; +}; + +// Helper functions for converting between VFP register numbers and names. +class VFPRegisters { + public: + // Return the name of the register. + static const char* Name(int reg, bool is_double); + + // Lookup the register number for the name provided. + // Set flag pointed by is_double to true if register + // is double-precision. + static int Number(const char* name, bool* is_double); + + private: + static const char* names_[kNumVFPRegisters]; +}; + +} // namespace disasm +} // namespace jit +} // namespace js + +#endif // JS_DISASM_ARM + +#endif // jit_arm_disasm_Constants_arm_h diff --git a/js/src/jit/arm/disasm/Disasm-arm.cpp b/js/src/jit/arm/disasm/Disasm-arm.cpp new file mode 100644 index 0000000000..97f39e1331 --- /dev/null +++ b/js/src/jit/arm/disasm/Disasm-arm.cpp @@ -0,0 +1,2031 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + */ +// Copyright 2011 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +// A Disassembler object is used to disassemble a block of code instruction by +// instruction. The default implementation of the NameConverter object can be +// overriden to modify register names or to do symbol lookup on addresses. +// +// The example below will disassemble a block of code and print it to stdout. +// +// disasm::NameConverter converter; +// disasm::Disassembler d(converter); +// for (uint8_t* pc = begin; pc < end;) { +// disasm::EmbeddedVector<char, disasm::ReasonableBufferSize> buffer; +// uint8_t* prev_pc = pc; +// pc += d.InstructionDecode(buffer, pc); +// printf("%p %08x %s\n", +// prev_pc, *reinterpret_cast<int32_t*>(prev_pc), buffer); +// } +// +// The Disassembler class also has a convenience method to disassemble a block +// of code into a FILE*, meaning that the above functionality could also be +// achieved by just calling Disassembler::Disassemble(stdout, begin, end); + +#include "jit/arm/disasm/Disasm-arm.h" + +#ifdef JS_DISASM_ARM + +# include <stdarg.h> +# include <stdio.h> +# include <string.h> + +# include "jit/arm/disasm/Constants-arm.h" + +namespace js { +namespace jit { +namespace disasm { + +// Helper function for printing to a Vector. +static int MOZ_FORMAT_PRINTF(2, 3) + SNPrintF(V8Vector<char> str, const char* format, ...) { + va_list args; + va_start(args, format); + int result = vsnprintf(str.start(), str.length(), format, args); + va_end(args); + return result; +} + +//------------------------------------------------------------------------------ + +// Decoder decodes and disassembles instructions into an output buffer. +// It uses the converter to convert register names and call destinations into +// more informative description. +class Decoder { + public: + Decoder(const disasm::NameConverter& converter, V8Vector<char> out_buffer) + : converter_(converter), out_buffer_(out_buffer), out_buffer_pos_(0) { + out_buffer_[out_buffer_pos_] = '\0'; + } + + ~Decoder() {} + + // Writes one disassembled instruction into 'buffer' (0-terminated). + // Returns the length of the disassembled machine instruction in bytes. + int InstructionDecode(uint8_t* instruction); + + static bool IsConstantPoolAt(uint8_t* instr_ptr); + static int ConstantPoolSizeAt(uint8_t* instr_ptr); + + private: + // Bottleneck functions to print into the out_buffer. + void PrintChar(const char ch); + void Print(const char* str); + + // Printing of common values. + void PrintRegister(int reg); + void PrintSRegister(int reg); + void PrintDRegister(int reg); + int FormatVFPRegister(Instruction* instr, const char* format); + void PrintMovwMovt(Instruction* instr); + int FormatVFPinstruction(Instruction* instr, const char* format); + void PrintCondition(Instruction* instr); + void PrintShiftRm(Instruction* instr); + void PrintShiftImm(Instruction* instr); + void PrintShiftSat(Instruction* instr); + void PrintPU(Instruction* instr); + void PrintSoftwareInterrupt(SoftwareInterruptCodes svc); + + // Handle formatting of instructions and their options. + int FormatRegister(Instruction* instr, const char* option); + void FormatNeonList(int Vd, int type); + void FormatNeonMemory(int Rn, int align, int Rm); + int FormatOption(Instruction* instr, const char* option); + void Format(Instruction* instr, const char* format); + void Unknown(Instruction* instr); + + // Each of these functions decodes one particular instruction type, a 3-bit + // field in the instruction encoding. + // Types 0 and 1 are combined as they are largely the same except for the way + // they interpret the shifter operand. + void DecodeType01(Instruction* instr); + void DecodeType2(Instruction* instr); + void DecodeType3(Instruction* instr); + void DecodeType4(Instruction* instr); + void DecodeType5(Instruction* instr); + void DecodeType6(Instruction* instr); + // Type 7 includes special Debugger instructions. + int DecodeType7(Instruction* instr); + // For VFP support. + void DecodeTypeVFP(Instruction* instr); + void DecodeType6CoprocessorIns(Instruction* instr); + + void DecodeSpecialCondition(Instruction* instr); + + void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr); + void DecodeVCMP(Instruction* instr); + void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr); + void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr); + + const disasm::NameConverter& converter_; + V8Vector<char> out_buffer_; + int out_buffer_pos_; + + // Disallow copy and assign. + Decoder(const Decoder&) = delete; + void operator=(const Decoder&) = delete; +}; + +// Support for assertions in the Decoder formatting functions. +# define STRING_STARTS_WITH(string, compare_string) \ + (strncmp(string, compare_string, strlen(compare_string)) == 0) + +// Append the ch to the output buffer. +void Decoder::PrintChar(const char ch) { out_buffer_[out_buffer_pos_++] = ch; } + +// Append the str to the output buffer. +void Decoder::Print(const char* str) { + char cur = *str++; + while (cur != '\0' && (out_buffer_pos_ < int(out_buffer_.length() - 1))) { + PrintChar(cur); + cur = *str++; + } + out_buffer_[out_buffer_pos_] = 0; +} + +// These condition names are defined in a way to match the native disassembler +// formatting. See for example the command "objdump -d <binary file>". +static const char* const cond_names[kNumberOfConditions] = { + "eq", "ne", "cs", "cc", "mi", "pl", "vs", "vc", + "hi", "ls", "ge", "lt", "gt", "le", "", "invalid", +}; + +// Print the condition guarding the instruction. +void Decoder::PrintCondition(Instruction* instr) { + Print(cond_names[instr->ConditionValue()]); +} + +// Print the register name according to the active name converter. +void Decoder::PrintRegister(int reg) { + Print(converter_.NameOfCPURegister(reg)); +} + +// Print the VFP S register name according to the active name converter. +void Decoder::PrintSRegister(int reg) { Print(VFPRegisters::Name(reg, false)); } + +// Print the VFP D register name according to the active name converter. +void Decoder::PrintDRegister(int reg) { Print(VFPRegisters::Name(reg, true)); } + +// These shift names are defined in a way to match the native disassembler +// formatting. See for example the command "objdump -d <binary file>". +static const char* const shift_names[kNumberOfShifts] = {"lsl", "lsr", "asr", + "ror"}; + +// Print the register shift operands for the instruction. Generally used for +// data processing instructions. +void Decoder::PrintShiftRm(Instruction* instr) { + ShiftOp shift = instr->ShiftField(); + int shift_index = instr->ShiftValue(); + int shift_amount = instr->ShiftAmountValue(); + int rm = instr->RmValue(); + + PrintRegister(rm); + + if ((instr->RegShiftValue() == 0) && (shift == LSL) && (shift_amount == 0)) { + // Special case for using rm only. + return; + } + if (instr->RegShiftValue() == 0) { + // by immediate + if ((shift == ROR) && (shift_amount == 0)) { + Print(", RRX"); + return; + } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) { + shift_amount = 32; + } + out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, ", %s #%d", + shift_names[shift_index], shift_amount); + } else { + // by register + int rs = instr->RsValue(); + out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, ", %s ", + shift_names[shift_index]); + PrintRegister(rs); + } +} + +static inline uint32_t RotateRight32(uint32_t value, uint32_t shift) { + if (shift == 0) return value; + return (value >> shift) | (value << (32 - shift)); +} + +// Print the immediate operand for the instruction. Generally used for data +// processing instructions. +void Decoder::PrintShiftImm(Instruction* instr) { + int rotate = instr->RotateValue() * 2; + int immed8 = instr->Immed8Value(); + int imm = RotateRight32(immed8, rotate); + out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "#%d", imm); +} + +// Print the optional shift and immediate used by saturating instructions. +void Decoder::PrintShiftSat(Instruction* instr) { + int shift = instr->Bits(11, 7); + if (shift > 0) { + out_buffer_pos_ += + SNPrintF(out_buffer_ + out_buffer_pos_, ", %s #%d", + shift_names[instr->Bit(6) * 2], instr->Bits(11, 7)); + } +} + +// Print PU formatting to reduce complexity of FormatOption. +void Decoder::PrintPU(Instruction* instr) { + switch (instr->PUField()) { + case da_x: { + Print("da"); + break; + } + case ia_x: { + Print("ia"); + break; + } + case db_x: { + Print("db"); + break; + } + case ib_x: { + Print("ib"); + break; + } + default: { + MOZ_CRASH(); + break; + } + } +} + +// Print SoftwareInterrupt codes. Factoring this out reduces the complexity of +// the FormatOption method. +void Decoder::PrintSoftwareInterrupt(SoftwareInterruptCodes svc) { + switch (svc) { + case kCallRtRedirected: + Print("call rt redirected"); + return; + case kBreakpoint: + Print("breakpoint"); + return; + default: + if (svc >= kStopCode) { + out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d - 0x%x", + svc & kStopCodeMask, svc & kStopCodeMask); + } else { + out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", svc); + } + return; + } +} + +// Handle all register based formatting in this function to reduce the +// complexity of FormatOption. +int Decoder::FormatRegister(Instruction* instr, const char* format) { + MOZ_ASSERT(format[0] == 'r'); + if (format[1] == 'n') { // 'rn: Rn register + int reg = instr->RnValue(); + PrintRegister(reg); + return 2; + } else if (format[1] == 'd') { // 'rd: Rd register + int reg = instr->RdValue(); + PrintRegister(reg); + return 2; + } else if (format[1] == 's') { // 'rs: Rs register + int reg = instr->RsValue(); + PrintRegister(reg); + return 2; + } else if (format[1] == 'm') { // 'rm: Rm register + int reg = instr->RmValue(); + PrintRegister(reg); + return 2; + } else if (format[1] == 't') { // 'rt: Rt register + int reg = instr->RtValue(); + PrintRegister(reg); + return 2; + } else if (format[1] == 'l') { + // 'rlist: register list for load and store multiple instructions + MOZ_ASSERT(STRING_STARTS_WITH(format, "rlist")); + int rlist = instr->RlistValue(); + int reg = 0; + Print("{"); + // Print register list in ascending order, by scanning the bit mask. + while (rlist != 0) { + if ((rlist & 1) != 0) { + PrintRegister(reg); + if ((rlist >> 1) != 0) { + Print(", "); + } + } + reg++; + rlist >>= 1; + } + Print("}"); + return 5; + } + MOZ_CRASH(); + return -1; +} + +// Handle all VFP register based formatting in this function to reduce the +// complexity of FormatOption. +int Decoder::FormatVFPRegister(Instruction* instr, const char* format) { + MOZ_ASSERT((format[0] == 'S') || (format[0] == 'D')); + + VFPRegPrecision precision = + format[0] == 'D' ? kDoublePrecision : kSinglePrecision; + + int retval = 2; + int reg = -1; + if (format[1] == 'n') { + reg = instr->VFPNRegValue(precision); + } else if (format[1] == 'm') { + reg = instr->VFPMRegValue(precision); + } else if (format[1] == 'd') { + if ((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0) && + (instr->Bits(11, 9) == 0x5) && (instr->Bit(4) == 0x1)) { + // vmov.32 has Vd in a different place. + reg = instr->Bits(19, 16) | (instr->Bit(7) << 4); + } else { + reg = instr->VFPDRegValue(precision); + } + + if (format[2] == '+') { + int immed8 = instr->Immed8Value(); + if (format[0] == 'S') reg += immed8 - 1; + if (format[0] == 'D') reg += (immed8 / 2 - 1); + } + if (format[2] == '+') retval = 3; + } else { + MOZ_CRASH(); + } + + if (precision == kSinglePrecision) { + PrintSRegister(reg); + } else { + PrintDRegister(reg); + } + + return retval; +} + +int Decoder::FormatVFPinstruction(Instruction* instr, const char* format) { + Print(format); + return 0; +} + +void Decoder::FormatNeonList(int Vd, int type) { + if (type == nlt_1) { + out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "{d%d}", Vd); + } else if (type == nlt_2) { + out_buffer_pos_ += + SNPrintF(out_buffer_ + out_buffer_pos_, "{d%d, d%d}", Vd, Vd + 1); + } else if (type == nlt_3) { + out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, + "{d%d, d%d, d%d}", Vd, Vd + 1, Vd + 2); + } else if (type == nlt_4) { + out_buffer_pos_ += + SNPrintF(out_buffer_ + out_buffer_pos_, "{d%d, d%d, d%d, d%d}", Vd, + Vd + 1, Vd + 2, Vd + 3); + } +} + +void Decoder::FormatNeonMemory(int Rn, int align, int Rm) { + out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "[r%d", Rn); + if (align != 0) { + out_buffer_pos_ += + SNPrintF(out_buffer_ + out_buffer_pos_, ":%d", (1 << align) << 6); + } + if (Rm == 15) { + Print("]"); + } else if (Rm == 13) { + Print("]!"); + } else { + out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "], r%d", Rm); + } +} + +// Print the movw or movt instruction. +void Decoder::PrintMovwMovt(Instruction* instr) { + int imm = instr->ImmedMovwMovtValue(); + int rd = instr->RdValue(); + PrintRegister(rd); + out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, ", #%d", imm); +} + +// FormatOption takes a formatting string and interprets it based on +// the current instructions. The format string points to the first +// character of the option string (the option escape has already been +// consumed by the caller.) FormatOption returns the number of +// characters that were consumed from the formatting string. +int Decoder::FormatOption(Instruction* instr, const char* format) { + switch (format[0]) { + case 'a': { // 'a: accumulate multiplies + if (instr->Bit(21) == 0) { + Print("ul"); + } else { + Print("la"); + } + return 1; + } + case 'b': { // 'b: byte loads or stores + if (instr->HasB()) { + Print("b"); + } + return 1; + } + case 'c': { // 'cond: conditional execution + MOZ_ASSERT(STRING_STARTS_WITH(format, "cond")); + PrintCondition(instr); + return 4; + } + case 'd': { // 'd: vmov double immediate. + double d = instr->DoubleImmedVmov(); + out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "#%g", d); + return 1; + } + case 'f': { // 'f: bitfield instructions - v7 and above. + uint32_t lsbit = instr->Bits(11, 7); + uint32_t width = instr->Bits(20, 16) + 1; + if (instr->Bit(21) == 0) { + // BFC/BFI: + // Bits 20-16 represent most-significant bit. Covert to width. + width -= lsbit; + MOZ_ASSERT(width > 0); + } + MOZ_ASSERT((width + lsbit) <= 32); + out_buffer_pos_ += + SNPrintF(out_buffer_ + out_buffer_pos_, "#%d, #%d", lsbit, width); + return 1; + } + case 'h': { // 'h: halfword operation for extra loads and stores + if (instr->HasH()) { + Print("h"); + } else { + Print("b"); + } + return 1; + } + case 'i': { // 'i: immediate value from adjacent bits. + // Expects tokens in the form imm%02d@%02d, i.e. imm05@07, imm10@16 + int width = (format[3] - '0') * 10 + (format[4] - '0'); + int lsb = (format[6] - '0') * 10 + (format[7] - '0'); + + MOZ_ASSERT((width >= 1) && (width <= 32)); + MOZ_ASSERT((lsb >= 0) && (lsb <= 31)); + MOZ_ASSERT((width + lsb) <= 32); + + out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", + instr->Bits(width + lsb - 1, lsb)); + return 8; + } + case 'l': { // 'l: branch and link + if (instr->HasLink()) { + Print("l"); + } + return 1; + } + case 'm': { + if (format[1] == 'w') { + // 'mw: movt/movw instructions. + PrintMovwMovt(instr); + return 2; + } + if (format[1] == 'e') { // 'memop: load/store instructions. + MOZ_ASSERT(STRING_STARTS_WITH(format, "memop")); + if (instr->HasL()) { + Print("ldr"); + } else { + if ((instr->Bits(27, 25) == 0) && (instr->Bit(20) == 0) && + (instr->Bits(7, 6) == 3) && (instr->Bit(4) == 1)) { + if (instr->Bit(5) == 1) { + Print("strd"); + } else { + Print("ldrd"); + } + return 5; + } + Print("str"); + } + return 5; + } + // 'msg: for simulator break instructions + MOZ_ASSERT(STRING_STARTS_WITH(format, "msg")); + uint8_t* str = + reinterpret_cast<uint8_t*>(instr->InstructionBits() & 0x0fffffff); + out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%s", + converter_.NameInCode(str)); + return 3; + } + case 'o': { + if ((format[3] == '1') && (format[4] == '2')) { + // 'off12: 12-bit offset for load and store instructions + MOZ_ASSERT(STRING_STARTS_WITH(format, "off12")); + out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", + instr->Offset12Value()); + return 5; + } else if (format[3] == '0') { + // 'off0to3and8to19 16-bit immediate encoded in bits 19-8 and 3-0. + MOZ_ASSERT(STRING_STARTS_WITH(format, "off0to3and8to19")); + out_buffer_pos_ += + SNPrintF(out_buffer_ + out_buffer_pos_, "%d", + (instr->Bits(19, 8) << 4) + instr->Bits(3, 0)); + return 15; + } + // 'off8: 8-bit offset for extra load and store instructions + MOZ_ASSERT(STRING_STARTS_WITH(format, "off8")); + int offs8 = (instr->ImmedHValue() << 4) | instr->ImmedLValue(); + out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", offs8); + return 4; + } + case 'p': { // 'pu: P and U bits for load and store instructions + MOZ_ASSERT(STRING_STARTS_WITH(format, "pu")); + PrintPU(instr); + return 2; + } + case 'r': { + return FormatRegister(instr, format); + } + case 's': { + if (format[1] == 'h') { // 'shift_op or 'shift_rm or 'shift_sat. + if (format[6] == 'o') { // 'shift_op + MOZ_ASSERT(STRING_STARTS_WITH(format, "shift_op")); + if (instr->TypeValue() == 0) { + PrintShiftRm(instr); + } else { + MOZ_ASSERT(instr->TypeValue() == 1); + PrintShiftImm(instr); + } + return 8; + } else if (format[6] == 's') { // 'shift_sat. + MOZ_ASSERT(STRING_STARTS_WITH(format, "shift_sat")); + PrintShiftSat(instr); + return 9; + } else { // 'shift_rm + MOZ_ASSERT(STRING_STARTS_WITH(format, "shift_rm")); + PrintShiftRm(instr); + return 8; + } + } else if (format[1] == 'v') { // 'svc + MOZ_ASSERT(STRING_STARTS_WITH(format, "svc")); + PrintSoftwareInterrupt(instr->SvcValue()); + return 3; + } else if (format[1] == 'i') { // 'sign: signed extra loads and stores + MOZ_ASSERT(STRING_STARTS_WITH(format, "sign")); + if (instr->HasSign()) { + Print("s"); + } + return 4; + } + // 's: S field of data processing instructions + if (instr->HasS()) { + Print("s"); + } + return 1; + } + case 't': { // 'target: target of branch instructions + MOZ_ASSERT(STRING_STARTS_WITH(format, "target")); + int off = (instr->SImmed24Value() << 2) + 8; + out_buffer_pos_ += SNPrintF( + out_buffer_ + out_buffer_pos_, "%+d -> %s", off, + converter_.NameOfAddress(reinterpret_cast<uint8_t*>(instr) + off)); + return 6; + } + case 'u': { // 'u: signed or unsigned multiplies + // The manual gets the meaning of bit 22 backwards in the multiply + // instruction overview on page A3.16.2. The instructions that + // exist in u and s variants are the following: + // smull A4.1.87 + // umull A4.1.129 + // umlal A4.1.128 + // smlal A4.1.76 + // For these 0 means u and 1 means s. As can be seen on their individual + // pages. The other 18 mul instructions have the bit set or unset in + // arbitrary ways that are unrelated to the signedness of the instruction. + // None of these 18 instructions exist in both a 'u' and an 's' variant. + + if (instr->Bit(22) == 0) { + Print("u"); + } else { + Print("s"); + } + return 1; + } + case 'v': { + return FormatVFPinstruction(instr, format); + } + case 'S': + case 'D': { + return FormatVFPRegister(instr, format); + } + case 'w': { // 'w: W field of load and store instructions + if (instr->HasW()) { + Print("!"); + } + return 1; + } + default: { + MOZ_CRASH(); + break; + } + } + MOZ_CRASH(); + return -1; +} + +// Format takes a formatting string for a whole instruction and prints it into +// the output buffer. All escaped options are handed to FormatOption to be +// parsed further. +void Decoder::Format(Instruction* instr, const char* format) { + char cur = *format++; + while ((cur != 0) && (out_buffer_pos_ < (out_buffer_.length() - 1))) { + if (cur == '\'') { // Single quote is used as the formatting escape. + format += FormatOption(instr, format); + } else { + out_buffer_[out_buffer_pos_++] = cur; + } + cur = *format++; + } + out_buffer_[out_buffer_pos_] = '\0'; +} + +// The disassembler may end up decoding data inlined in the code. We do not want +// it to crash if the data does not ressemble any known instruction. +# define VERIFY(condition) \ + if (!(condition)) { \ + Unknown(instr); \ + return; \ + } + +// For currently unimplemented decodings the disassembler calls Unknown(instr) +// which will just print "unknown" of the instruction bits. +void Decoder::Unknown(Instruction* instr) { Format(instr, "unknown"); } + +void Decoder::DecodeType01(Instruction* instr) { + int type = instr->TypeValue(); + if ((type == 0) && instr->IsSpecialType0()) { + // multiply instruction or extra loads and stores + if (instr->Bits(7, 4) == 9) { + if (instr->Bit(24) == 0) { + // multiply instructions + if (instr->Bit(23) == 0) { + if (instr->Bit(21) == 0) { + // The MUL instruction description (A 4.1.33) refers to Rd as being + // the destination for the operation, but it confusingly uses the + // Rn field to encode it. + Format(instr, "mul'cond's 'rn, 'rm, 'rs"); + } else { + if (instr->Bit(22) == 0) { + // The MLA instruction description (A 4.1.28) refers to the order + // of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the + // Rn field to encode the Rd register and the Rd field to encode + // the Rn register. + Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd"); + } else { + // The MLS instruction description (A 4.1.29) refers to the order + // of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the + // Rn field to encode the Rd register and the Rd field to encode + // the Rn register. + Format(instr, "mls'cond's 'rn, 'rm, 'rs, 'rd"); + } + } + } else { + // The signed/long multiply instructions use the terms RdHi and RdLo + // when referring to the target registers. They are mapped to the Rn + // and Rd fields as follows: + // RdLo == Rd field + // RdHi == Rn field + // The order of registers is: <RdLo>, <RdHi>, <Rm>, <Rs> + Format(instr, "'um'al'cond's 'rd, 'rn, 'rm, 'rs"); + } + } else { + if (instr->Bits(ExclusiveOpHi, ExclusiveOpLo) == ExclusiveOpcode) { + if (instr->Bit(ExclusiveLoad) == 1) { + switch (instr->Bits(ExclusiveSizeHi, ExclusiveSizeLo)) { + case ExclusiveWord: + Format(instr, "ldrex'cond 'rt, ['rn]"); + break; + case ExclusiveDouble: + Format(instr, "ldrexd'cond 'rt, ['rn]"); + break; + case ExclusiveByte: + Format(instr, "ldrexb'cond 'rt, ['rn]"); + break; + case ExclusiveHalf: + Format(instr, "ldrexh'cond 'rt, ['rn]"); + break; + } + } else { + // The documentation names the low four bits of the + // store-exclusive instructions "Rt" but canonically + // for disassembly they are really "Rm". + switch (instr->Bits(ExclusiveSizeHi, ExclusiveSizeLo)) { + case ExclusiveWord: + Format(instr, "strex'cond 'rd, 'rm, ['rn]"); + break; + case ExclusiveDouble: + Format(instr, "strexd'cond 'rd, 'rm, ['rn]"); + break; + case ExclusiveByte: + Format(instr, "strexb'cond 'rd, 'rm, ['rn]"); + break; + case ExclusiveHalf: + Format(instr, "strexh'cond 'rd, 'rm, ['rn]"); + break; + } + } + } else { + Unknown(instr); + } + } + } else if ((instr->Bit(20) == 0) && ((instr->Bits(7, 4) & 0xd) == 0xd)) { + // ldrd, strd + switch (instr->PUField()) { + case da_x: { + if (instr->Bit(22) == 0) { + Format(instr, "'memop'cond's 'rd, ['rn], -'rm"); + } else { + Format(instr, "'memop'cond's 'rd, ['rn], #-'off8"); + } + break; + } + case ia_x: { + if (instr->Bit(22) == 0) { + Format(instr, "'memop'cond's 'rd, ['rn], +'rm"); + } else { + Format(instr, "'memop'cond's 'rd, ['rn], #+'off8"); + } + break; + } + case db_x: { + if (instr->Bit(22) == 0) { + Format(instr, "'memop'cond's 'rd, ['rn, -'rm]'w"); + } else { + Format(instr, "'memop'cond's 'rd, ['rn, #-'off8]'w"); + } + break; + } + case ib_x: { + if (instr->Bit(22) == 0) { + Format(instr, "'memop'cond's 'rd, ['rn, +'rm]'w"); + } else { + Format(instr, "'memop'cond's 'rd, ['rn, #+'off8]'w"); + } + break; + } + default: { + // The PU field is a 2-bit field. + MOZ_CRASH(); + break; + } + } + } else { + // extra load/store instructions + switch (instr->PUField()) { + case da_x: { + if (instr->Bit(22) == 0) { + Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm"); + } else { + Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8"); + } + break; + } + case ia_x: { + if (instr->Bit(22) == 0) { + Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm"); + } else { + Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8"); + } + break; + } + case db_x: { + if (instr->Bit(22) == 0) { + Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w"); + } else { + Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w"); + } + break; + } + case ib_x: { + if (instr->Bit(22) == 0) { + Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w"); + } else { + Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w"); + } + break; + } + default: { + // The PU field is a 2-bit field. + MOZ_CRASH(); + break; + } + } + return; + } + } else if ((type == 0) && instr->IsMiscType0()) { + if (instr->Bits(22, 21) == 1) { + switch (instr->BitField(7, 4)) { + case BX: + Format(instr, "bx'cond 'rm"); + break; + case BLX: + Format(instr, "blx'cond 'rm"); + break; + case BKPT: + Format(instr, "bkpt 'off0to3and8to19"); + break; + default: + Unknown(instr); // not used by V8 + break; + } + } else if (instr->Bits(22, 21) == 3) { + switch (instr->BitField(7, 4)) { + case CLZ: + Format(instr, "clz'cond 'rd, 'rm"); + break; + default: + Unknown(instr); // not used by V8 + break; + } + } else { + Unknown(instr); // not used by V8 + } + } else if ((type == 1) && instr->IsNopType1()) { + Format(instr, "nop'cond"); + } else if ((type == 1) && instr->IsCsdbType1()) { + Format(instr, "csdb'cond"); + } else { + switch (instr->OpcodeField()) { + case AND: { + Format(instr, "and'cond's 'rd, 'rn, 'shift_op"); + break; + } + case EOR: { + Format(instr, "eor'cond's 'rd, 'rn, 'shift_op"); + break; + } + case SUB: { + Format(instr, "sub'cond's 'rd, 'rn, 'shift_op"); + break; + } + case RSB: { + Format(instr, "rsb'cond's 'rd, 'rn, 'shift_op"); + break; + } + case ADD: { + Format(instr, "add'cond's 'rd, 'rn, 'shift_op"); + break; + } + case ADC: { + Format(instr, "adc'cond's 'rd, 'rn, 'shift_op"); + break; + } + case SBC: { + Format(instr, "sbc'cond's 'rd, 'rn, 'shift_op"); + break; + } + case RSC: { + Format(instr, "rsc'cond's 'rd, 'rn, 'shift_op"); + break; + } + case TST: { + if (instr->HasS()) { + Format(instr, "tst'cond 'rn, 'shift_op"); + } else { + Format(instr, "movw'cond 'mw"); + } + break; + } + case TEQ: { + if (instr->HasS()) { + Format(instr, "teq'cond 'rn, 'shift_op"); + } else { + // Other instructions matching this pattern are handled in the + // miscellaneous instructions part above. + MOZ_CRASH(); + } + break; + } + case CMP: { + if (instr->HasS()) { + Format(instr, "cmp'cond 'rn, 'shift_op"); + } else { + Format(instr, "movt'cond 'mw"); + } + break; + } + case CMN: { + if (instr->HasS()) { + Format(instr, "cmn'cond 'rn, 'shift_op"); + } else { + // Other instructions matching this pattern are handled in the + // miscellaneous instructions part above. + MOZ_CRASH(); + } + break; + } + case ORR: { + Format(instr, "orr'cond's 'rd, 'rn, 'shift_op"); + break; + } + case MOV: { + Format(instr, "mov'cond's 'rd, 'shift_op"); + break; + } + case BIC: { + Format(instr, "bic'cond's 'rd, 'rn, 'shift_op"); + break; + } + case MVN: { + Format(instr, "mvn'cond's 'rd, 'shift_op"); + break; + } + default: { + // The Opcode field is a 4-bit field. + MOZ_CRASH(); + break; + } + } + } +} + +void Decoder::DecodeType2(Instruction* instr) { + switch (instr->PUField()) { + case da_x: { + if (instr->HasW()) { + Unknown(instr); // not used in V8 + return; + } + Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12"); + break; + } + case ia_x: { + if (instr->HasW()) { + Unknown(instr); // not used in V8 + return; + } + Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12"); + break; + } + case db_x: { + Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w"); + break; + } + case ib_x: { + Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w"); + break; + } + default: { + // The PU field is a 2-bit field. + MOZ_CRASH(); + break; + } + } +} + +void Decoder::DecodeType3(Instruction* instr) { + switch (instr->PUField()) { + case da_x: { + VERIFY(!instr->HasW()); + Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm"); + break; + } + case ia_x: { + if (instr->Bit(4) == 0) { + Format(instr, "'memop'cond'b 'rd, ['rn], +'shift_rm"); + } else { + if (instr->Bit(5) == 0) { + switch (instr->Bits(22, 21)) { + case 0: + if (instr->Bit(20) == 0) { + if (instr->Bit(6) == 0) { + Format(instr, "pkhbt'cond 'rd, 'rn, 'rm, lsl #'imm05@07"); + } else { + if (instr->Bits(11, 7) == 0) { + Format(instr, "pkhtb'cond 'rd, 'rn, 'rm, asr #32"); + } else { + Format(instr, "pkhtb'cond 'rd, 'rn, 'rm, asr #'imm05@07"); + } + } + } else { + MOZ_CRASH(); + } + break; + case 1: + MOZ_CRASH(); + break; + case 2: + MOZ_CRASH(); + break; + case 3: + Format(instr, "usat 'rd, #'imm05@16, 'rm'shift_sat"); + break; + } + } else { + switch (instr->Bits(22, 21)) { + case 0: + MOZ_CRASH(); + break; + case 1: + if (instr->Bits(9, 6) == 1) { + if (instr->Bit(20) == 0) { + if (instr->Bits(19, 16) == 0xF) { + switch (instr->Bits(11, 10)) { + case 0: + Format(instr, "sxtb'cond 'rd, 'rm"); + break; + case 1: + Format(instr, "sxtb'cond 'rd, 'rm, ror #8"); + break; + case 2: + Format(instr, "sxtb'cond 'rd, 'rm, ror #16"); + break; + case 3: + Format(instr, "sxtb'cond 'rd, 'rm, ror #24"); + break; + } + } else { + switch (instr->Bits(11, 10)) { + case 0: + Format(instr, "sxtab'cond 'rd, 'rn, 'rm"); + break; + case 1: + Format(instr, "sxtab'cond 'rd, 'rn, 'rm, ror #8"); + break; + case 2: + Format(instr, "sxtab'cond 'rd, 'rn, 'rm, ror #16"); + break; + case 3: + Format(instr, "sxtab'cond 'rd, 'rn, 'rm, ror #24"); + break; + } + } + } else { + if (instr->Bits(19, 16) == 0xF) { + switch (instr->Bits(11, 10)) { + case 0: + Format(instr, "sxth'cond 'rd, 'rm"); + break; + case 1: + Format(instr, "sxth'cond 'rd, 'rm, ror #8"); + break; + case 2: + Format(instr, "sxth'cond 'rd, 'rm, ror #16"); + break; + case 3: + Format(instr, "sxth'cond 'rd, 'rm, ror #24"); + break; + } + } else { + switch (instr->Bits(11, 10)) { + case 0: + Format(instr, "sxtah'cond 'rd, 'rn, 'rm"); + break; + case 1: + Format(instr, "sxtah'cond 'rd, 'rn, 'rm, ror #8"); + break; + case 2: + Format(instr, "sxtah'cond 'rd, 'rn, 'rm, ror #16"); + break; + case 3: + Format(instr, "sxtah'cond 'rd, 'rn, 'rm, ror #24"); + break; + } + } + } + } else { + MOZ_CRASH(); + } + break; + case 2: + if ((instr->Bit(20) == 0) && (instr->Bits(9, 6) == 1)) { + if (instr->Bits(19, 16) == 0xF) { + switch (instr->Bits(11, 10)) { + case 0: + Format(instr, "uxtb16'cond 'rd, 'rm"); + break; + case 1: + Format(instr, "uxtb16'cond 'rd, 'rm, ror #8"); + break; + case 2: + Format(instr, "uxtb16'cond 'rd, 'rm, ror #16"); + break; + case 3: + Format(instr, "uxtb16'cond 'rd, 'rm, ror #24"); + break; + } + } else { + MOZ_CRASH(); + } + } else { + MOZ_CRASH(); + } + break; + case 3: + if ((instr->Bits(9, 6) == 1)) { + if ((instr->Bit(20) == 0)) { + if (instr->Bits(19, 16) == 0xF) { + switch (instr->Bits(11, 10)) { + case 0: + Format(instr, "uxtb'cond 'rd, 'rm"); + break; + case 1: + Format(instr, "uxtb'cond 'rd, 'rm, ror #8"); + break; + case 2: + Format(instr, "uxtb'cond 'rd, 'rm, ror #16"); + break; + case 3: + Format(instr, "uxtb'cond 'rd, 'rm, ror #24"); + break; + } + } else { + switch (instr->Bits(11, 10)) { + case 0: + Format(instr, "uxtab'cond 'rd, 'rn, 'rm"); + break; + case 1: + Format(instr, "uxtab'cond 'rd, 'rn, 'rm, ror #8"); + break; + case 2: + Format(instr, "uxtab'cond 'rd, 'rn, 'rm, ror #16"); + break; + case 3: + Format(instr, "uxtab'cond 'rd, 'rn, 'rm, ror #24"); + break; + } + } + } else { + if (instr->Bits(19, 16) == 0xF) { + switch (instr->Bits(11, 10)) { + case 0: + Format(instr, "uxth'cond 'rd, 'rm"); + break; + case 1: + Format(instr, "uxth'cond 'rd, 'rm, ror #8"); + break; + case 2: + Format(instr, "uxth'cond 'rd, 'rm, ror #16"); + break; + case 3: + Format(instr, "uxth'cond 'rd, 'rm, ror #24"); + break; + } + } else { + switch (instr->Bits(11, 10)) { + case 0: + Format(instr, "uxtah'cond 'rd, 'rn, 'rm"); + break; + case 1: + Format(instr, "uxtah'cond 'rd, 'rn, 'rm, ror #8"); + break; + case 2: + Format(instr, "uxtah'cond 'rd, 'rn, 'rm, ror #16"); + break; + case 3: + Format(instr, "uxtah'cond 'rd, 'rn, 'rm, ror #24"); + break; + } + } + } + } else { + MOZ_CRASH(); + } + break; + } + } + } + break; + } + case db_x: { + if (instr->Bits(22, 20) == 0x5) { + if (instr->Bits(7, 4) == 0x1) { + if (instr->Bits(15, 12) == 0xF) { + Format(instr, "smmul'cond 'rn, 'rm, 'rs"); + } else { + // SMMLA (in V8 notation matching ARM ISA format) + Format(instr, "smmla'cond 'rn, 'rm, 'rs, 'rd"); + } + break; + } + } + bool FLAG_enable_sudiv = true; // Flag doesn't exist in our engine. + if (FLAG_enable_sudiv) { + if (instr->Bits(5, 4) == 0x1) { + if ((instr->Bit(22) == 0x0) && (instr->Bit(20) == 0x1)) { + if (instr->Bit(21) == 0x1) { + // UDIV (in V8 notation matching ARM ISA format) rn = rm/rs + Format(instr, "udiv'cond'b 'rn, 'rm, 'rs"); + } else { + // SDIV (in V8 notation matching ARM ISA format) rn = rm/rs + Format(instr, "sdiv'cond'b 'rn, 'rm, 'rs"); + } + break; + } + } + } + Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w"); + break; + } + case ib_x: { + if (instr->HasW() && (instr->Bits(6, 4) == 0x5)) { + uint32_t widthminus1 = static_cast<uint32_t>(instr->Bits(20, 16)); + uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7)); + uint32_t msbit = widthminus1 + lsbit; + if (msbit <= 31) { + if (instr->Bit(22)) { + Format(instr, "ubfx'cond 'rd, 'rm, 'f"); + } else { + Format(instr, "sbfx'cond 'rd, 'rm, 'f"); + } + } else { + MOZ_CRASH(); + } + } else if (!instr->HasW() && (instr->Bits(6, 4) == 0x1)) { + uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7)); + uint32_t msbit = static_cast<uint32_t>(instr->Bits(20, 16)); + if (msbit >= lsbit) { + if (instr->RmValue() == 15) { + Format(instr, "bfc'cond 'rd, 'f"); + } else { + Format(instr, "bfi'cond 'rd, 'rm, 'f"); + } + } else { + MOZ_CRASH(); + } + } else { + Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w"); + } + break; + } + default: { + // The PU field is a 2-bit field. + MOZ_CRASH(); + break; + } + } +} + +void Decoder::DecodeType4(Instruction* instr) { + if (instr->Bit(22) != 0) { + // Privileged mode currently not supported. + Unknown(instr); + } else { + if (instr->HasL()) { + Format(instr, "ldm'cond'pu 'rn'w, 'rlist"); + } else { + Format(instr, "stm'cond'pu 'rn'w, 'rlist"); + } + } +} + +void Decoder::DecodeType5(Instruction* instr) { + Format(instr, "b'l'cond 'target"); +} + +void Decoder::DecodeType6(Instruction* instr) { + DecodeType6CoprocessorIns(instr); +} + +int Decoder::DecodeType7(Instruction* instr) { + if (instr->Bit(24) == 1) { + if (instr->SvcValue() >= kStopCode) { + Format(instr, "stop'cond 'svc"); + // Also print the stop message. Its address is encoded + // in the following 4 bytes. + out_buffer_pos_ += SNPrintF( + out_buffer_ + out_buffer_pos_, "\n %p %08x stop message: %s", + reinterpret_cast<void*>(instr + Instruction::kInstrSize), + *reinterpret_cast<uint32_t*>(instr + Instruction::kInstrSize), + *reinterpret_cast<char**>(instr + Instruction::kInstrSize)); + // We have decoded 2 * Instruction::kInstrSize bytes. + return 2 * Instruction::kInstrSize; + } else { + Format(instr, "svc'cond 'svc"); + } + } else { + DecodeTypeVFP(instr); + } + return Instruction::kInstrSize; +} + +// void Decoder::DecodeTypeVFP(Instruction* instr) +// vmov: Sn = Rt +// vmov: Rt = Sn +// vcvt: Dd = Sm +// vcvt: Sd = Dm +// vcvt.f64.s32 Dd, Dd, #<fbits> +// Dd = vabs(Dm) +// Sd = vabs(Sm) +// Dd = vneg(Dm) +// Sd = vneg(Sm) +// Dd = vadd(Dn, Dm) +// Sd = vadd(Sn, Sm) +// Dd = vsub(Dn, Dm) +// Sd = vsub(Sn, Sm) +// Dd = vmul(Dn, Dm) +// Sd = vmul(Sn, Sm) +// Dd = vmla(Dn, Dm) +// Sd = vmla(Sn, Sm) +// Dd = vmls(Dn, Dm) +// Sd = vmls(Sn, Sm) +// Dd = vdiv(Dn, Dm) +// Sd = vdiv(Sn, Sm) +// vcmp(Dd, Dm) +// vcmp(Sd, Sm) +// Dd = vsqrt(Dm) +// Sd = vsqrt(Sm) +// vmrs +// vmsr +void Decoder::DecodeTypeVFP(Instruction* instr) { + VERIFY((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0)); + VERIFY(instr->Bits(11, 9) == 0x5); + + if (instr->Bit(4) == 0) { + if (instr->Opc1Value() == 0x7) { + // Other data processing instructions + if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x1)) { + // vmov register to register. + if (instr->SzValue() == 0x1) { + Format(instr, "vmov'cond.f64 'Dd, 'Dm"); + } else { + Format(instr, "vmov'cond.f32 'Sd, 'Sm"); + } + } else if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x3)) { + // vabs + if (instr->SzValue() == 0x1) { + Format(instr, "vabs'cond.f64 'Dd, 'Dm"); + } else { + Format(instr, "vabs'cond.f32 'Sd, 'Sm"); + } + } else if ((instr->Opc2Value() == 0x1) && (instr->Opc3Value() == 0x1)) { + // vneg + if (instr->SzValue() == 0x1) { + Format(instr, "vneg'cond.f64 'Dd, 'Dm"); + } else { + Format(instr, "vneg'cond.f32 'Sd, 'Sm"); + } + } else if ((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)) { + DecodeVCVTBetweenDoubleAndSingle(instr); + } else if ((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) { + DecodeVCVTBetweenFloatingPointAndInteger(instr); + } else if ((instr->Opc2Value() == 0xA) && (instr->Opc3Value() == 0x3) && + (instr->Bit(8) == 1)) { + // vcvt.f64.s32 Dd, Dd, #<fbits> + int fraction_bits = 32 - ((instr->Bits(3, 0) << 1) | instr->Bit(5)); + Format(instr, "vcvt'cond.f64.s32 'Dd, 'Dd"); + out_buffer_pos_ += + SNPrintF(out_buffer_ + out_buffer_pos_, ", #%d", fraction_bits); + } else if (((instr->Opc2Value() >> 1) == 0x6) && + (instr->Opc3Value() & 0x1)) { + DecodeVCVTBetweenFloatingPointAndInteger(instr); + } else if (((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) && + (instr->Opc3Value() & 0x1)) { + DecodeVCMP(instr); + } else if (((instr->Opc2Value() == 0x1)) && (instr->Opc3Value() == 0x3)) { + if (instr->SzValue() == 0x1) { + Format(instr, "vsqrt'cond.f64 'Dd, 'Dm"); + } else { + Format(instr, "vsqrt'cond.f32 'Sd, 'Sm"); + } + } else if (instr->Opc3Value() == 0x0) { + if (instr->SzValue() == 0x1) { + Format(instr, "vmov'cond.f64 'Dd, 'd"); + } else { + Unknown(instr); // Not used by V8. + } + } else if (((instr->Opc2Value() == 0x6)) && instr->Opc3Value() == 0x3) { + // vrintz - round towards zero (truncate) + if (instr->SzValue() == 0x1) { + Format(instr, "vrintz'cond.f64.f64 'Dd, 'Dm"); + } else { + Format(instr, "vrintz'cond.f32.f32 'Sd, 'Sm"); + } + } else { + Unknown(instr); // Not used by V8. + } + } else if (instr->Opc1Value() == 0x3) { + if (instr->SzValue() == 0x1) { + if (instr->Opc3Value() & 0x1) { + Format(instr, "vsub'cond.f64 'Dd, 'Dn, 'Dm"); + } else { + Format(instr, "vadd'cond.f64 'Dd, 'Dn, 'Dm"); + } + } else { + if (instr->Opc3Value() & 0x1) { + Format(instr, "vsub'cond.f32 'Sd, 'Sn, 'Sm"); + } else { + Format(instr, "vadd'cond.f32 'Sd, 'Sn, 'Sm"); + } + } + } else if ((instr->Opc1Value() == 0x2) && !(instr->Opc3Value() & 0x1)) { + if (instr->SzValue() == 0x1) { + Format(instr, "vmul'cond.f64 'Dd, 'Dn, 'Dm"); + } else { + Format(instr, "vmul'cond.f32 'Sd, 'Sn, 'Sm"); + } + } else if ((instr->Opc1Value() == 0x0) && !(instr->Opc3Value() & 0x1)) { + if (instr->SzValue() == 0x1) { + Format(instr, "vmla'cond.f64 'Dd, 'Dn, 'Dm"); + } else { + Format(instr, "vmla'cond.f32 'Sd, 'Sn, 'Sm"); + } + } else if ((instr->Opc1Value() == 0x0) && (instr->Opc3Value() & 0x1)) { + if (instr->SzValue() == 0x1) { + Format(instr, "vmls'cond.f64 'Dd, 'Dn, 'Dm"); + } else { + Format(instr, "vmls'cond.f32 'Sd, 'Sn, 'Sm"); + } + } else if ((instr->Opc1Value() == 0x4) && !(instr->Opc3Value() & 0x1)) { + if (instr->SzValue() == 0x1) { + Format(instr, "vdiv'cond.f64 'Dd, 'Dn, 'Dm"); + } else { + Format(instr, "vdiv'cond.f32 'Sd, 'Sn, 'Sm"); + } + } else { + Unknown(instr); // Not used by V8. + } + } else { + if ((instr->VCValue() == 0x0) && (instr->VAValue() == 0x0)) { + DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr); + } else if ((instr->VLValue() == 0x0) && (instr->VCValue() == 0x1) && + (instr->Bit(23) == 0x0)) { + if (instr->Bit(21) == 0x0) { + Format(instr, "vmov'cond.32 'Dd[0], 'rt"); + } else { + Format(instr, "vmov'cond.32 'Dd[1], 'rt"); + } + } else if ((instr->VLValue() == 0x1) && (instr->VCValue() == 0x1) && + (instr->Bit(23) == 0x0)) { + if (instr->Bit(21) == 0x0) { + Format(instr, "vmov'cond.32 'rt, 'Dd[0]"); + } else { + Format(instr, "vmov'cond.32 'rt, 'Dd[1]"); + } + } else if ((instr->VCValue() == 0x0) && (instr->VAValue() == 0x7) && + (instr->Bits(19, 16) == 0x1)) { + if (instr->VLValue() == 0) { + if (instr->Bits(15, 12) == 0xF) { + Format(instr, "vmsr'cond FPSCR, APSR"); + } else { + Format(instr, "vmsr'cond FPSCR, 'rt"); + } + } else { + if (instr->Bits(15, 12) == 0xF) { + Format(instr, "vmrs'cond APSR, FPSCR"); + } else { + Format(instr, "vmrs'cond 'rt, FPSCR"); + } + } + } + } +} + +void Decoder::DecodeVMOVBetweenCoreAndSinglePrecisionRegisters( + Instruction* instr) { + VERIFY((instr->Bit(4) == 1) && (instr->VCValue() == 0x0) && + (instr->VAValue() == 0x0)); + + bool to_arm_register = (instr->VLValue() == 0x1); + + if (to_arm_register) { + Format(instr, "vmov'cond 'rt, 'Sn"); + } else { + Format(instr, "vmov'cond 'Sn, 'rt"); + } +} + +void Decoder::DecodeVCMP(Instruction* instr) { + VERIFY((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7)); + VERIFY(((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) && + (instr->Opc3Value() & 0x1)); + + // Comparison. + bool dp_operation = (instr->SzValue() == 1); + bool raise_exception_for_qnan = (instr->Bit(7) == 0x1); + + if (dp_operation && !raise_exception_for_qnan) { + if (instr->Opc2Value() == 0x4) { + Format(instr, "vcmp'cond.f64 'Dd, 'Dm"); + } else if (instr->Opc2Value() == 0x5) { + Format(instr, "vcmp'cond.f64 'Dd, #0.0"); + } else { + Unknown(instr); // invalid + } + } else if (!raise_exception_for_qnan) { + if (instr->Opc2Value() == 0x4) { + Format(instr, "vcmp'cond.f32 'Sd, 'Sm"); + } else if (instr->Opc2Value() == 0x5) { + Format(instr, "vcmp'cond.f32 'Sd, #0.0"); + } else { + Unknown(instr); // invalid + } + } else { + Unknown(instr); // Not used by V8. + } +} + +void Decoder::DecodeVCVTBetweenDoubleAndSingle(Instruction* instr) { + VERIFY((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7)); + VERIFY((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)); + + bool double_to_single = (instr->SzValue() == 1); + + if (double_to_single) { + Format(instr, "vcvt'cond.f32.f64 'Sd, 'Dm"); + } else { + Format(instr, "vcvt'cond.f64.f32 'Dd, 'Sm"); + } +} + +void Decoder::DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr) { + VERIFY((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7)); + VERIFY(((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) || + (((instr->Opc2Value() >> 1) == 0x6) && (instr->Opc3Value() & 0x1))); + + bool to_integer = (instr->Bit(18) == 1); + bool dp_operation = (instr->SzValue() == 1); + if (to_integer) { + bool unsigned_integer = (instr->Bit(16) == 0); + + if (dp_operation) { + if (unsigned_integer) { + Format(instr, "vcvt'cond.u32.f64 'Sd, 'Dm"); + } else { + Format(instr, "vcvt'cond.s32.f64 'Sd, 'Dm"); + } + } else { + if (unsigned_integer) { + Format(instr, "vcvt'cond.u32.f32 'Sd, 'Sm"); + } else { + Format(instr, "vcvt'cond.s32.f32 'Sd, 'Sm"); + } + } + } else { + bool unsigned_integer = (instr->Bit(7) == 0); + + if (dp_operation) { + if (unsigned_integer) { + Format(instr, "vcvt'cond.f64.u32 'Dd, 'Sm"); + } else { + Format(instr, "vcvt'cond.f64.s32 'Dd, 'Sm"); + } + } else { + if (unsigned_integer) { + Format(instr, "vcvt'cond.f32.u32 'Sd, 'Sm"); + } else { + Format(instr, "vcvt'cond.f32.s32 'Sd, 'Sm"); + } + } + } +} + +// Decode Type 6 coprocessor instructions. +// Dm = vmov(Rt, Rt2) +// <Rt, Rt2> = vmov(Dm) +// Ddst = MEM(Rbase + 4*offset). +// MEM(Rbase + 4*offset) = Dsrc. +void Decoder::DecodeType6CoprocessorIns(Instruction* instr) { + VERIFY(instr->TypeValue() == 6); + + if (instr->CoprocessorValue() == 0xA) { + switch (instr->OpcodeValue()) { + case 0x8: + case 0xA: + if (instr->HasL()) { + Format(instr, "vldr'cond 'Sd, ['rn - 4*'imm08@00]"); + } else { + Format(instr, "vstr'cond 'Sd, ['rn - 4*'imm08@00]"); + } + break; + case 0xC: + case 0xE: + if (instr->HasL()) { + Format(instr, "vldr'cond 'Sd, ['rn + 4*'imm08@00]"); + } else { + Format(instr, "vstr'cond 'Sd, ['rn + 4*'imm08@00]"); + } + break; + case 0x4: + case 0x5: + case 0x6: + case 0x7: + case 0x9: + case 0xB: { + bool to_vfp_register = (instr->VLValue() == 0x1); + if (to_vfp_register) { + Format(instr, "vldm'cond'pu 'rn'w, {'Sd-'Sd+}"); + } else { + Format(instr, "vstm'cond'pu 'rn'w, {'Sd-'Sd+}"); + } + break; + } + default: + Unknown(instr); // Not used by V8. + } + } else if (instr->CoprocessorValue() == 0xB) { + switch (instr->OpcodeValue()) { + case 0x2: + // Load and store double to two GP registers + if (instr->Bits(7, 6) != 0 || instr->Bit(4) != 1) { + Unknown(instr); // Not used by V8. + } else if (instr->HasL()) { + Format(instr, "vmov'cond 'rt, 'rn, 'Dm"); + } else { + Format(instr, "vmov'cond 'Dm, 'rt, 'rn"); + } + break; + case 0x8: + case 0xA: + if (instr->HasL()) { + Format(instr, "vldr'cond 'Dd, ['rn - 4*'imm08@00]"); + } else { + Format(instr, "vstr'cond 'Dd, ['rn - 4*'imm08@00]"); + } + break; + case 0xC: + case 0xE: + if (instr->HasL()) { + Format(instr, "vldr'cond 'Dd, ['rn + 4*'imm08@00]"); + } else { + Format(instr, "vstr'cond 'Dd, ['rn + 4*'imm08@00]"); + } + break; + case 0x4: + case 0x5: + case 0x6: + case 0x7: + case 0x9: + case 0xB: { + bool to_vfp_register = (instr->VLValue() == 0x1); + if (to_vfp_register) { + Format(instr, "vldm'cond'pu 'rn'w, {'Dd-'Dd+}"); + } else { + Format(instr, "vstm'cond'pu 'rn'w, {'Dd-'Dd+}"); + } + break; + } + default: + Unknown(instr); // Not used by V8. + } + } else { + Unknown(instr); // Not used by V8. + } +} + +void Decoder::DecodeSpecialCondition(Instruction* instr) { + switch (instr->SpecialValue()) { + case 5: + if ((instr->Bits(18, 16) == 0) && (instr->Bits(11, 6) == 0x28) && + (instr->Bit(4) == 1)) { + // vmovl signed + if ((instr->VdValue() & 1) != 0) Unknown(instr); + int Vd = (instr->Bit(22) << 3) | (instr->VdValue() >> 1); + int Vm = (instr->Bit(5) << 4) | instr->VmValue(); + int imm3 = instr->Bits(21, 19); + out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, + "vmovl.s%d q%d, d%d", imm3 * 8, Vd, Vm); + } else { + Unknown(instr); + } + break; + case 7: + if ((instr->Bits(18, 16) == 0) && (instr->Bits(11, 6) == 0x28) && + (instr->Bit(4) == 1)) { + // vmovl unsigned + if ((instr->VdValue() & 1) != 0) Unknown(instr); + int Vd = (instr->Bit(22) << 3) | (instr->VdValue() >> 1); + int Vm = (instr->Bit(5) << 4) | instr->VmValue(); + int imm3 = instr->Bits(21, 19); + out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, + "vmovl.u%d q%d, d%d", imm3 * 8, Vd, Vm); + } else { + Unknown(instr); + } + break; + case 8: + if (instr->Bits(21, 20) == 0) { + // vst1 + int Vd = (instr->Bit(22) << 4) | instr->VdValue(); + int Rn = instr->VnValue(); + int type = instr->Bits(11, 8); + int size = instr->Bits(7, 6); + int align = instr->Bits(5, 4); + int Rm = instr->VmValue(); + out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "vst1.%d ", + (1 << size) << 3); + FormatNeonList(Vd, type); + Print(", "); + FormatNeonMemory(Rn, align, Rm); + } else if (instr->Bits(21, 20) == 2) { + // vld1 + int Vd = (instr->Bit(22) << 4) | instr->VdValue(); + int Rn = instr->VnValue(); + int type = instr->Bits(11, 8); + int size = instr->Bits(7, 6); + int align = instr->Bits(5, 4); + int Rm = instr->VmValue(); + out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "vld1.%d ", + (1 << size) << 3); + FormatNeonList(Vd, type); + Print(", "); + FormatNeonMemory(Rn, align, Rm); + } else { + Unknown(instr); + } + break; + case 9: + if (instr->Bits(21, 20) == 0 && instr->Bits(9, 8) == 0) { + // vst1 + int Vd = (instr->Bit(22) << 4) | instr->VdValue(); + int Rn = instr->VnValue(); + int size = instr->Bits(11, 10); + int index = instr->Bits(7, 5); + int align = instr->Bit(4); + int Rm = instr->VmValue(); + out_buffer_pos_ += + SNPrintF(out_buffer_ + out_buffer_pos_, "vst1.%d {d%d[%d]}, ", + (1 << size) << 3, Vd, index); + FormatNeonMemory(Rn, align, Rm); + } else if (instr->Bits(21, 20) == 2 && instr->Bits(9, 8) == 0) { + // vld1 + int Vd = (instr->Bit(22) << 4) | instr->VdValue(); + int Rn = instr->VnValue(); + int size = instr->Bits(11, 10); + int index = instr->Bits(7, 5); + int align = instr->Bit(4); + int Rm = instr->VmValue(); + out_buffer_pos_ += + SNPrintF(out_buffer_ + out_buffer_pos_, "vld1.%d {d%d[%d]}, ", + (1 << size) << 3, Vd, index); + FormatNeonMemory(Rn, align, Rm); + } else { + Unknown(instr); + } + break; + case 0xA: + if (instr->Bits(22, 20) == 7) { + const char* option = "?"; + switch (instr->Bits(3, 0)) { + case 2: + option = "oshst"; + break; + case 3: + option = "osh"; + break; + case 6: + option = "nshst"; + break; + case 7: + option = "nsh"; + break; + case 10: + option = "ishst"; + break; + case 11: + option = "ish"; + break; + case 14: + option = "st"; + break; + case 15: + option = "sy"; + break; + } + switch (instr->Bits(7, 4)) { + case 1: + Print("clrex"); + break; + case 4: + out_buffer_pos_ += + SNPrintF(out_buffer_ + out_buffer_pos_, "dsb %s", option); + break; + case 5: + out_buffer_pos_ += + SNPrintF(out_buffer_ + out_buffer_pos_, "dmb %s", option); + break; + default: + Unknown(instr); + } + break; + } + [[fallthrough]]; + case 0xB: + if ((instr->Bits(22, 20) == 5) && (instr->Bits(15, 12) == 0xf)) { + int Rn = instr->Bits(19, 16); + int offset = instr->Bits(11, 0); + if (offset == 0) { + out_buffer_pos_ += + SNPrintF(out_buffer_ + out_buffer_pos_, "pld [r%d]", Rn); + } else if (instr->Bit(23) == 0) { + out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, + "pld [r%d, #-%d]", Rn, offset); + } else { + out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, + "pld [r%d, #+%d]", Rn, offset); + } + } else { + Unknown(instr); + } + break; + case 0x1D: + if (instr->Opc1Value() == 0x7 && instr->Bits(19, 18) == 0x2 && + instr->Bits(11, 9) == 0x5 && instr->Bits(7, 6) == 0x1 && + instr->Bit(4) == 0x0) { + // VRINTA, VRINTN, VRINTP, VRINTM (floating-point) + bool dp_operation = (instr->SzValue() == 1); + int rounding_mode = instr->Bits(17, 16); + switch (rounding_mode) { + case 0x0: + if (dp_operation) { + Format(instr, "vrinta.f64.f64 'Dd, 'Dm"); + } else { + Unknown(instr); + } + break; + case 0x1: + if (dp_operation) { + Format(instr, "vrintn.f64.f64 'Dd, 'Dm"); + } else { + Unknown(instr); + } + break; + case 0x2: + if (dp_operation) { + Format(instr, "vrintp.f64.f64 'Dd, 'Dm"); + } else { + Unknown(instr); + } + break; + case 0x3: + if (dp_operation) { + Format(instr, "vrintm.f64.f64 'Dd, 'Dm"); + } else { + Unknown(instr); + } + break; + default: + MOZ_CRASH(); // Case analysis is exhaustive. + break; + } + } else { + Unknown(instr); + } + break; + default: + Unknown(instr); + break; + } +} + +# undef VERIFIY + +bool Decoder::IsConstantPoolAt(uint8_t* instr_ptr) { + int instruction_bits = *(reinterpret_cast<int*>(instr_ptr)); + return (instruction_bits & kConstantPoolMarkerMask) == kConstantPoolMarker; +} + +int Decoder::ConstantPoolSizeAt(uint8_t* instr_ptr) { + if (IsConstantPoolAt(instr_ptr)) { + int instruction_bits = *(reinterpret_cast<int*>(instr_ptr)); + return DecodeConstantPoolLength(instruction_bits); + } else { + return -1; + } +} + +// Disassemble the instruction at *instr_ptr into the output buffer. +int Decoder::InstructionDecode(uint8_t* instr_ptr) { + Instruction* instr = Instruction::At(instr_ptr); + // Print raw instruction bytes. + out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%08x ", + instr->InstructionBits()); + if (instr->ConditionField() == kSpecialCondition) { + DecodeSpecialCondition(instr); + return Instruction::kInstrSize; + } + int instruction_bits = *(reinterpret_cast<int*>(instr_ptr)); + if ((instruction_bits & kConstantPoolMarkerMask) == kConstantPoolMarker) { + out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, + "constant pool begin (length %d)", + DecodeConstantPoolLength(instruction_bits)); + return Instruction::kInstrSize; + } else if (instruction_bits == kCodeAgeJumpInstruction) { + // The code age prologue has a constant immediatly following the jump + // instruction. + Instruction* target = Instruction::At(instr_ptr + Instruction::kInstrSize); + DecodeType2(instr); + SNPrintF(out_buffer_ + out_buffer_pos_, " (0x%08x)", + target->InstructionBits()); + return 2 * Instruction::kInstrSize; + } + switch (instr->TypeValue()) { + case 0: + case 1: { + DecodeType01(instr); + break; + } + case 2: { + DecodeType2(instr); + break; + } + case 3: { + DecodeType3(instr); + break; + } + case 4: { + DecodeType4(instr); + break; + } + case 5: { + DecodeType5(instr); + break; + } + case 6: { + DecodeType6(instr); + break; + } + case 7: { + return DecodeType7(instr); + } + default: { + // The type field is 3-bits in the ARM encoding. + MOZ_CRASH(); + break; + } + } + return Instruction::kInstrSize; +} + +} // namespace disasm + +# undef STRING_STARTS_WITH +# undef VERIFY + +//------------------------------------------------------------------------------ + +namespace disasm { + +const char* NameConverter::NameOfAddress(uint8_t* addr) const { + SNPrintF(tmp_buffer_, "%p", addr); + return tmp_buffer_.start(); +} + +const char* NameConverter::NameOfConstant(uint8_t* addr) const { + return NameOfAddress(addr); +} + +const char* NameConverter::NameOfCPURegister(int reg) const { + return disasm::Registers::Name(reg); +} + +const char* NameConverter::NameOfByteCPURegister(int reg) const { + MOZ_CRASH(); // ARM does not have the concept of a byte register + return "nobytereg"; +} + +const char* NameConverter::NameOfXMMRegister(int reg) const { + MOZ_CRASH(); // ARM does not have any XMM registers + return "noxmmreg"; +} + +const char* NameConverter::NameInCode(uint8_t* addr) const { + // The default name converter is called for unknown code. So we will not try + // to access any memory. + return ""; +} + +//------------------------------------------------------------------------------ + +Disassembler::Disassembler(const NameConverter& converter) + : converter_(converter) {} + +Disassembler::~Disassembler() {} + +int Disassembler::InstructionDecode(V8Vector<char> buffer, + uint8_t* instruction) { + Decoder d(converter_, buffer); + return d.InstructionDecode(instruction); +} + +int Disassembler::ConstantPoolSizeAt(uint8_t* instruction) { + return Decoder::ConstantPoolSizeAt(instruction); +} + +void Disassembler::Disassemble(FILE* f, uint8_t* begin, uint8_t* end) { + NameConverter converter; + Disassembler d(converter); + for (uint8_t* pc = begin; pc < end;) { + EmbeddedVector<char, ReasonableBufferSize> buffer; + buffer[0] = '\0'; + uint8_t* prev_pc = pc; + pc += d.InstructionDecode(buffer, pc); + fprintf(f, "%p %08x %s\n", prev_pc, + *reinterpret_cast<int32_t*>(prev_pc), buffer.start()); + } +} + +} // namespace disasm +} // namespace jit +} // namespace js + +#endif // JS_DISASM_ARM diff --git a/js/src/jit/arm/disasm/Disasm-arm.h b/js/src/jit/arm/disasm/Disasm-arm.h new file mode 100644 index 0000000000..8a0dd97c32 --- /dev/null +++ b/js/src/jit/arm/disasm/Disasm-arm.h @@ -0,0 +1,141 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + */ +// Copyright 2007-2008 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef jit_arm_disasm_Disasm_arm_h +#define jit_arm_disasm_Disasm_arm_h + +#ifdef JS_DISASM_ARM + +# include "mozilla/Assertions.h" +# include "mozilla/Types.h" + +# include <stdio.h> + +namespace js { +namespace jit { +namespace disasm { + +typedef unsigned char byte; + +// A reasonable (ie, safe) buffer size for the disassembly of a single +// instruction. +const int ReasonableBufferSize = 256; + +// Vector as used by the original code to allow for minimal modification. +// Functions exactly like a character array with helper methods. +template <typename T> +class V8Vector { + public: + V8Vector() : start_(nullptr), length_(0) {} + V8Vector(T* data, int length) : start_(data), length_(length) { + MOZ_ASSERT(length == 0 || (length > 0 && data != nullptr)); + } + + // Returns the length of the vector. + int length() const { return length_; } + + // Returns the pointer to the start of the data in the vector. + T* start() const { return start_; } + + // Access individual vector elements - checks bounds in debug mode. + T& operator[](int index) const { + MOZ_ASSERT(0 <= index && index < length_); + return start_[index]; + } + + V8Vector<T> operator+(int offset) const { + MOZ_ASSERT(offset < length_); + return V8Vector<T>(start_ + offset, length_ - offset); + } + + private: + T* start_; + int length_; +}; + +template <typename T, int kSize> +class EmbeddedVector : public V8Vector<T> { + public: + EmbeddedVector() : V8Vector<T>(buffer_, kSize) {} + + explicit EmbeddedVector(T initial_value) : V8Vector<T>(buffer_, kSize) { + for (int i = 0; i < kSize; ++i) { + buffer_[i] = initial_value; + } + } + + // When copying, make underlying Vector to reference our buffer. + EmbeddedVector(const EmbeddedVector& rhs) : V8Vector<T>(rhs) { + MemCopy(buffer_, rhs.buffer_, sizeof(T) * kSize); + this->set_start(buffer_); + } + + EmbeddedVector& operator=(const EmbeddedVector& rhs) { + if (this == &rhs) return *this; + V8Vector<T>::operator=(rhs); + MemCopy(buffer_, rhs.buffer_, sizeof(T) * kSize); + this->set_start(buffer_); + return *this; + } + + private: + T buffer_[kSize]; +}; + +// Interface and default implementation for converting addresses and +// register-numbers to text. The default implementation is machine +// specific. +class NameConverter { + public: + virtual ~NameConverter() {} + virtual const char* NameOfCPURegister(int reg) const; + virtual const char* NameOfByteCPURegister(int reg) const; + virtual const char* NameOfXMMRegister(int reg) const; + virtual const char* NameOfAddress(byte* addr) const; + virtual const char* NameOfConstant(byte* addr) const; + virtual const char* NameInCode(byte* addr) const; + + protected: + EmbeddedVector<char, 128> tmp_buffer_; +}; + +// A generic Disassembler interface +class Disassembler { + public: + // Caller deallocates converter. + explicit Disassembler(const NameConverter& converter); + + virtual ~Disassembler(); + + // Writes one disassembled instruction into 'buffer' (0-terminated). + // Returns the length of the disassembled machine instruction in bytes. + int InstructionDecode(V8Vector<char> buffer, uint8_t* instruction); + + // Returns -1 if instruction does not mark the beginning of a constant pool, + // or the number of entries in the constant pool beginning here. + int ConstantPoolSizeAt(byte* instruction); + + // Write disassembly into specified file 'f' using specified NameConverter + // (see constructor). + static void Disassemble(FILE* f, uint8_t* begin, uint8_t* end); + + private: + const NameConverter& converter_; + + // Disallow implicit constructors. + Disassembler() = delete; + Disassembler(const Disassembler&) = delete; + void operator=(const Disassembler&) = delete; +}; + +} // namespace disasm +} // namespace jit +} // namespace js + +#endif // JS_DISASM_ARM + +#endif // jit_arm_disasm_Disasm_arm_h diff --git a/js/src/jit/arm/gen-double-encoder-table.py b/js/src/jit/arm/gen-double-encoder-table.py new file mode 100644 index 0000000000..fd622da82e --- /dev/null +++ b/js/src/jit/arm/gen-double-encoder-table.py @@ -0,0 +1,35 @@ +#!/usr/bin/env python +# This Source Code Form is subject to the terms of the Mozilla Public +# License, v. 2.0. If a copy of the MPL was not distributed with this +# file, You can obtain one at http://mozilla.org/MPL/2.0/. +"""Generate tables of immediately-encodable VFP doubles. + +DOES NOT get automatically run during the build process. If you need to +modify this file (which is unlikely), you must re-run this script: + +python gen-double-encode-table.py > $(topsrcdir)/path/to/DoubleEntryTable.tbl +""" + +import operator + + +def rep(bit, count): + return reduce(operator.ior, [bit << c for c in range(count)]) + + +def encodeDouble(value): + """Generate an ARM ARM 'VFP modified immediate constant' with format: + aBbbbbbb bbcdefgh 000... + + We will return the top 32 bits of the double; the rest are 0.""" + assert (0 <= value) and (value <= 255) + a = value >> 7 + b = (value >> 6) & 1 + B = int(b == 0) + cdefgh = value & 0x3F + return (a << 31) | (B << 30) | (rep(b, 8) << 22) | cdefgh << 16 + + +print("/* THIS FILE IS AUTOMATICALLY GENERATED BY gen-double-encode-table.py. */") +for i in range(256): + print(" { 0x%08x, { %d, %d, 0 } }," % (encodeDouble(i), i & 0xF, i >> 4)) diff --git a/js/src/jit/arm/llvm-compiler-rt/arm/aeabi_idivmod.S b/js/src/jit/arm/llvm-compiler-rt/arm/aeabi_idivmod.S new file mode 100644 index 0000000000..0237f2221d --- /dev/null +++ b/js/src/jit/arm/llvm-compiler-rt/arm/aeabi_idivmod.S @@ -0,0 +1,27 @@ +//===-- aeabi_idivmod.S - EABI idivmod implementation ---------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is dual licensed under the MIT and the University of Illinois Open +// Source Licenses. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#include "../assembly.h" + +// struct { int quot, int rem} __aeabi_idivmod(int numerator, int denominator) { +// int rem, quot; +// quot = __divmodsi4(numerator, denominator, &rem); +// return {quot, rem}; +// } + + .syntax unified + .align 2 +DEFINE_COMPILERRT_FUNCTION(__aeabi_idivmod) + push { lr } + sub sp, sp, #4 + mov r2, sp + bl SYMBOL_NAME(__divmodsi4) + ldr r1, [sp] + add sp, sp, #4 + pop { pc } diff --git a/js/src/jit/arm/llvm-compiler-rt/arm/aeabi_uidivmod.S b/js/src/jit/arm/llvm-compiler-rt/arm/aeabi_uidivmod.S new file mode 100644 index 0000000000..f7e1d2ebed --- /dev/null +++ b/js/src/jit/arm/llvm-compiler-rt/arm/aeabi_uidivmod.S @@ -0,0 +1,28 @@ +//===-- aeabi_uidivmod.S - EABI uidivmod implementation -------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is dual licensed under the MIT and the University of Illinois Open +// Source Licenses. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#include "../assembly.h" + +// struct { unsigned quot, unsigned rem} +// __aeabi_uidivmod(unsigned numerator, unsigned denominator) { +// unsigned rem, quot; +// quot = __udivmodsi4(numerator, denominator, &rem); +// return {quot, rem}; +// } + + .syntax unified + .align 2 +DEFINE_COMPILERRT_FUNCTION(__aeabi_uidivmod) + push { lr } + sub sp, sp, #4 + mov r2, sp + bl SYMBOL_NAME(__udivmodsi4) + ldr r1, [sp] + add sp, sp, #4 + pop { pc } diff --git a/js/src/jit/arm/llvm-compiler-rt/assembly.h b/js/src/jit/arm/llvm-compiler-rt/assembly.h new file mode 100644 index 0000000000..802d1e2870 --- /dev/null +++ b/js/src/jit/arm/llvm-compiler-rt/assembly.h @@ -0,0 +1,67 @@ +/* ===-- assembly.h - compiler-rt assembler support macros -----------------=== + * + * The LLVM Compiler Infrastructure + * + * This file is dual licensed under the MIT and the University of Illinois Open + * Source Licenses. See LICENSE.TXT for details. + * + * ===----------------------------------------------------------------------=== + * + * This file defines macros for use in compiler-rt assembler source. + * This file is not part of the interface of this library. + * + * ===----------------------------------------------------------------------=== + */ + +#ifndef COMPILERRT_ASSEMBLY_H +#define COMPILERRT_ASSEMBLY_H + +#if defined(__POWERPC__) || defined(__powerpc__) || defined(__ppc__) +# define SEPARATOR @ +#else +# define SEPARATOR ; +#endif + +#if defined(__APPLE__) +# define HIDDEN_DIRECTIVE .private_extern +# define LOCAL_LABEL(name) L_##name +#else +# define HIDDEN_DIRECTIVE .hidden +# define LOCAL_LABEL(name) .L_##name +#endif + +#define GLUE2(a, b) a##b +#define GLUE(a, b) GLUE2(a, b) +#define SYMBOL_NAME(name) GLUE(__USER_LABEL_PREFIX__, name) + +#ifdef VISIBILITY_HIDDEN +# define DECLARE_SYMBOL_VISIBILITY(name) \ + HIDDEN_DIRECTIVE SYMBOL_NAME(name) SEPARATOR +#else +# define DECLARE_SYMBOL_VISIBILITY(name) +#endif + +#define DEFINE_COMPILERRT_FUNCTION(name) \ + .globl SYMBOL_NAME(name) \ + SEPARATOR DECLARE_SYMBOL_VISIBILITY(name) SYMBOL_NAME(name) : + +#define DEFINE_COMPILERRT_PRIVATE_FUNCTION(name) \ + .globl SYMBOL_NAME(name) \ + SEPARATOR HIDDEN_DIRECTIVE SYMBOL_NAME(name) \ + SEPARATOR SYMBOL_NAME(name) : + +#define DEFINE_COMPILERRT_PRIVATE_FUNCTION_UNMANGLED(name) \ + .globl name SEPARATOR HIDDEN_DIRECTIVE name SEPARATOR name: + +#define DEFINE_COMPILERRT_FUNCTION_ALIAS(name, target) \ + .globl SYMBOL_NAME(name) SEPARATOR.set SYMBOL_NAME(name), \ + SYMBOL_NAME(target) SEPARATOR + +#if defined(__ARM_EABI__) +# define DEFINE_AEABI_FUNCTION_ALIAS(aeabi_name, name) \ + DEFINE_COMPILERRT_FUNCTION_ALIAS(aeabi_name, name) +#else +# define DEFINE_AEABI_FUNCTION_ALIAS(aeabi_name, name) +#endif + +#endif /* COMPILERRT_ASSEMBLY_H */ |