diff options
Diffstat (limited to 'dom/smil/SMILKeySpline.cpp')
-rw-r--r-- | dom/smil/SMILKeySpline.cpp | 127 |
1 files changed, 127 insertions, 0 deletions
diff --git a/dom/smil/SMILKeySpline.cpp b/dom/smil/SMILKeySpline.cpp new file mode 100644 index 0000000000..dd508e1bcb --- /dev/null +++ b/dom/smil/SMILKeySpline.cpp @@ -0,0 +1,127 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=8 sts=2 et sw=2 tw=80: */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "SMILKeySpline.h" +#include <stdint.h> +#include <math.h> + +namespace mozilla { + +#define NEWTON_ITERATIONS 4 +#define NEWTON_MIN_SLOPE 0.02 +#define SUBDIVISION_PRECISION 0.0000001 +#define SUBDIVISION_MAX_ITERATIONS 10 + +const double SMILKeySpline::kSampleStepSize = + 1.0 / double(kSplineTableSize - 1); + +void SMILKeySpline::Init(double aX1, double aY1, double aX2, double aY2) { + mX1 = aX1; + mY1 = aY1; + mX2 = aX2; + mY2 = aY2; + + if (mX1 != mY1 || mX2 != mY2) CalcSampleValues(); +} + +double SMILKeySpline::GetSplineValue(double aX) const { + if (mX1 == mY1 && mX2 == mY2) return aX; + + return CalcBezier(GetTForX(aX), mY1, mY2); +} + +void SMILKeySpline::GetSplineDerivativeValues(double aX, double& aDX, + double& aDY) const { + double t = GetTForX(aX); + aDX = GetSlope(t, mX1, mX2); + aDY = GetSlope(t, mY1, mY2); +} + +void SMILKeySpline::CalcSampleValues() { + for (uint32_t i = 0; i < kSplineTableSize; ++i) { + mSampleValues[i] = CalcBezier(double(i) * kSampleStepSize, mX1, mX2); + } +} + +/*static*/ +double SMILKeySpline::CalcBezier(double aT, double aA1, double aA2) { + // use Horner's scheme to evaluate the Bezier polynomial + return ((A(aA1, aA2) * aT + B(aA1, aA2)) * aT + C(aA1)) * aT; +} + +/*static*/ +double SMILKeySpline::GetSlope(double aT, double aA1, double aA2) { + return 3.0 * A(aA1, aA2) * aT * aT + 2.0 * B(aA1, aA2) * aT + C(aA1); +} + +double SMILKeySpline::GetTForX(double aX) const { + // Early return when aX == 1.0 to avoid floating-point inaccuracies. + if (aX == 1.0) { + return 1.0; + } + // Find interval where t lies + double intervalStart = 0.0; + const double* currentSample = &mSampleValues[1]; + const double* const lastSample = &mSampleValues[kSplineTableSize - 1]; + for (; currentSample != lastSample && *currentSample <= aX; ++currentSample) { + intervalStart += kSampleStepSize; + } + --currentSample; // t now lies between *currentSample and *currentSample+1 + + // Interpolate to provide an initial guess for t + double dist = (aX - *currentSample) / (*(currentSample + 1) - *currentSample); + double guessForT = intervalStart + dist * kSampleStepSize; + + // Check the slope to see what strategy to use. If the slope is too small + // Newton-Raphson iteration won't converge on a root so we use bisection + // instead. + double initialSlope = GetSlope(guessForT, mX1, mX2); + if (initialSlope >= NEWTON_MIN_SLOPE) { + return NewtonRaphsonIterate(aX, guessForT); + } + if (initialSlope == 0.0) { + return guessForT; + } + return BinarySubdivide(aX, intervalStart, intervalStart + kSampleStepSize); +} + +double SMILKeySpline::NewtonRaphsonIterate(double aX, double aGuessT) const { + // Refine guess with Newton-Raphson iteration + for (uint32_t i = 0; i < NEWTON_ITERATIONS; ++i) { + // We're trying to find where f(t) = aX, + // so we're actually looking for a root for: CalcBezier(t) - aX + double currentX = CalcBezier(aGuessT, mX1, mX2) - aX; + double currentSlope = GetSlope(aGuessT, mX1, mX2); + + if (currentSlope == 0.0) return aGuessT; + + aGuessT -= currentX / currentSlope; + } + + return aGuessT; +} + +double SMILKeySpline::BinarySubdivide(double aX, double aA, double aB) const { + double currentX; + double currentT; + uint32_t i = 0; + + do { + currentT = aA + (aB - aA) / 2.0; + currentX = CalcBezier(currentT, mX1, mX2) - aX; + + if (currentX > 0.0) { + aB = currentT; + } else { + aA = currentT; + } + } while (fabs(currentX) > SUBDIVISION_PRECISION && + ++i < SUBDIVISION_MAX_ITERATIONS); + + return currentT; +} + +} // namespace mozilla |