/*! Defines a high-level intermediate representation for regular expressions. */ use std::char; use std::cmp; use std::error; use std::fmt; use std::result; use std::u8; use crate::ast::Span; use crate::hir::interval::{Interval, IntervalSet, IntervalSetIter}; use crate::unicode; pub use crate::hir::visitor::{visit, Visitor}; pub use crate::unicode::CaseFoldError; mod interval; pub mod literal; pub mod print; pub mod translate; mod visitor; /// An error that can occur while translating an `Ast` to a `Hir`. #[derive(Clone, Debug, Eq, PartialEq)] pub struct Error { /// The kind of error. kind: ErrorKind, /// The original pattern that the translator's Ast was parsed from. Every /// span in an error is a valid range into this string. pattern: String, /// The span of this error, derived from the Ast given to the translator. span: Span, } impl Error { /// Return the type of this error. pub fn kind(&self) -> &ErrorKind { &self.kind } /// The original pattern string in which this error occurred. /// /// Every span reported by this error is reported in terms of this string. pub fn pattern(&self) -> &str { &self.pattern } /// Return the span at which this error occurred. pub fn span(&self) -> &Span { &self.span } } /// The type of an error that occurred while building an `Hir`. #[derive(Clone, Debug, Eq, PartialEq)] pub enum ErrorKind { /// This error occurs when a Unicode feature is used when Unicode /// support is disabled. For example `(?-u:\pL)` would trigger this error. UnicodeNotAllowed, /// This error occurs when translating a pattern that could match a byte /// sequence that isn't UTF-8 and `allow_invalid_utf8` was disabled. InvalidUtf8, /// This occurs when an unrecognized Unicode property name could not /// be found. UnicodePropertyNotFound, /// This occurs when an unrecognized Unicode property value could not /// be found. UnicodePropertyValueNotFound, /// This occurs when a Unicode-aware Perl character class (`\w`, `\s` or /// `\d`) could not be found. This can occur when the `unicode-perl` /// crate feature is not enabled. UnicodePerlClassNotFound, /// This occurs when the Unicode simple case mapping tables are not /// available, and the regular expression required Unicode aware case /// insensitivity. UnicodeCaseUnavailable, /// This occurs when the translator attempts to construct a character class /// that is empty. /// /// Note that this restriction in the translator may be removed in the /// future. EmptyClassNotAllowed, /// Hints that destructuring should not be exhaustive. /// /// This enum may grow additional variants, so this makes sure clients /// don't count on exhaustive matching. (Otherwise, adding a new variant /// could break existing code.) #[doc(hidden)] __Nonexhaustive, } impl ErrorKind { // TODO: Remove this method entirely on the next breaking semver release. #[allow(deprecated)] fn description(&self) -> &str { use self::ErrorKind::*; match *self { UnicodeNotAllowed => "Unicode not allowed here", InvalidUtf8 => "pattern can match invalid UTF-8", UnicodePropertyNotFound => "Unicode property not found", UnicodePropertyValueNotFound => "Unicode property value not found", UnicodePerlClassNotFound => { "Unicode-aware Perl class not found \ (make sure the unicode-perl feature is enabled)" } UnicodeCaseUnavailable => { "Unicode-aware case insensitivity matching is not available \ (make sure the unicode-case feature is enabled)" } EmptyClassNotAllowed => "empty character classes are not allowed", __Nonexhaustive => unreachable!(), } } } impl error::Error for Error { // TODO: Remove this method entirely on the next breaking semver release. #[allow(deprecated)] fn description(&self) -> &str { self.kind.description() } } impl fmt::Display for Error { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { crate::error::Formatter::from(self).fmt(f) } } impl fmt::Display for ErrorKind { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { // TODO: Remove this on the next breaking semver release. #[allow(deprecated)] f.write_str(self.description()) } } /// A high-level intermediate representation (HIR) for a regular expression. /// /// The HIR of a regular expression represents an intermediate step between its /// abstract syntax (a structured description of the concrete syntax) and /// compiled byte codes. The purpose of HIR is to make regular expressions /// easier to analyze. In particular, the AST is much more complex than the /// HIR. For example, while an AST supports arbitrarily nested character /// classes, the HIR will flatten all nested classes into a single set. The HIR /// will also "compile away" every flag present in the concrete syntax. For /// example, users of HIR expressions never need to worry about case folding; /// it is handled automatically by the translator (e.g., by translating `(?i)A` /// to `[aA]`). /// /// If the HIR was produced by a translator that disallows invalid UTF-8, then /// the HIR is guaranteed to match UTF-8 exclusively. /// /// This type defines its own destructor that uses constant stack space and /// heap space proportional to the size of the HIR. /// /// The specific type of an HIR expression can be accessed via its `kind` /// or `into_kind` methods. This extra level of indirection exists for two /// reasons: /// /// 1. Construction of an HIR expression *must* use the constructor methods /// on this `Hir` type instead of building the `HirKind` values directly. /// This permits construction to enforce invariants like "concatenations /// always consist of two or more sub-expressions." /// 2. Every HIR expression contains attributes that are defined inductively, /// and can be computed cheaply during the construction process. For /// example, one such attribute is whether the expression must match at the /// beginning of the text. /// /// Also, an `Hir`'s `fmt::Display` implementation prints an HIR as a regular /// expression pattern string, and uses constant stack space and heap space /// proportional to the size of the `Hir`. #[derive(Clone, Debug, Eq, PartialEq)] pub struct Hir { /// The underlying HIR kind. kind: HirKind, /// Analysis info about this HIR, computed during construction. info: HirInfo, } /// The kind of an arbitrary `Hir` expression. #[derive(Clone, Debug, Eq, PartialEq)] pub enum HirKind { /// The empty regular expression, which matches everything, including the /// empty string. Empty, /// A single literal character that matches exactly this character. Literal(Literal), /// A single character class that matches any of the characters in the /// class. A class can either consist of Unicode scalar values as /// characters, or it can use bytes. Class(Class), /// An anchor assertion. An anchor assertion match always has zero length. Anchor(Anchor), /// A word boundary assertion, which may or may not be Unicode aware. A /// word boundary assertion match always has zero length. WordBoundary(WordBoundary), /// A repetition operation applied to a child expression. Repetition(Repetition), /// A possibly capturing group, which contains a child expression. Group(Group), /// A concatenation of expressions. A concatenation always has at least two /// child expressions. /// /// A concatenation matches only if each of its child expression matches /// one after the other. Concat(Vec), /// An alternation of expressions. An alternation always has at least two /// child expressions. /// /// An alternation matches only if at least one of its child expression /// matches. If multiple expressions match, then the leftmost is preferred. Alternation(Vec), } impl Hir { /// Returns a reference to the underlying HIR kind. pub fn kind(&self) -> &HirKind { &self.kind } /// Consumes ownership of this HIR expression and returns its underlying /// `HirKind`. pub fn into_kind(mut self) -> HirKind { use std::mem; mem::replace(&mut self.kind, HirKind::Empty) } /// Returns an empty HIR expression. /// /// An empty HIR expression always matches, including the empty string. pub fn empty() -> Hir { let mut info = HirInfo::new(); info.set_always_utf8(true); info.set_all_assertions(true); info.set_anchored_start(false); info.set_anchored_end(false); info.set_line_anchored_start(false); info.set_line_anchored_end(false); info.set_any_anchored_start(false); info.set_any_anchored_end(false); info.set_match_empty(true); info.set_literal(false); info.set_alternation_literal(false); Hir { kind: HirKind::Empty, info } } /// Creates a literal HIR expression. /// /// If the given literal has a `Byte` variant with an ASCII byte, then this /// method panics. This enforces the invariant that `Byte` variants are /// only used to express matching of invalid UTF-8. pub fn literal(lit: Literal) -> Hir { if let Literal::Byte(b) = lit { assert!(b > 0x7F); } let mut info = HirInfo::new(); info.set_always_utf8(lit.is_unicode()); info.set_all_assertions(false); info.set_anchored_start(false); info.set_anchored_end(false); info.set_line_anchored_start(false); info.set_line_anchored_end(false); info.set_any_anchored_start(false); info.set_any_anchored_end(false); info.set_match_empty(false); info.set_literal(true); info.set_alternation_literal(true); Hir { kind: HirKind::Literal(lit), info } } /// Creates a class HIR expression. pub fn class(class: Class) -> Hir { let mut info = HirInfo::new(); info.set_always_utf8(class.is_always_utf8()); info.set_all_assertions(false); info.set_anchored_start(false); info.set_anchored_end(false); info.set_line_anchored_start(false); info.set_line_anchored_end(false); info.set_any_anchored_start(false); info.set_any_anchored_end(false); info.set_match_empty(false); info.set_literal(false); info.set_alternation_literal(false); Hir { kind: HirKind::Class(class), info } } /// Creates an anchor assertion HIR expression. pub fn anchor(anchor: Anchor) -> Hir { let mut info = HirInfo::new(); info.set_always_utf8(true); info.set_all_assertions(true); info.set_anchored_start(false); info.set_anchored_end(false); info.set_line_anchored_start(false); info.set_line_anchored_end(false); info.set_any_anchored_start(false); info.set_any_anchored_end(false); info.set_match_empty(true); info.set_literal(false); info.set_alternation_literal(false); if let Anchor::StartText = anchor { info.set_anchored_start(true); info.set_line_anchored_start(true); info.set_any_anchored_start(true); } if let Anchor::EndText = anchor { info.set_anchored_end(true); info.set_line_anchored_end(true); info.set_any_anchored_end(true); } if let Anchor::StartLine = anchor { info.set_line_anchored_start(true); } if let Anchor::EndLine = anchor { info.set_line_anchored_end(true); } Hir { kind: HirKind::Anchor(anchor), info } } /// Creates a word boundary assertion HIR expression. pub fn word_boundary(word_boundary: WordBoundary) -> Hir { let mut info = HirInfo::new(); info.set_always_utf8(true); info.set_all_assertions(true); info.set_anchored_start(false); info.set_anchored_end(false); info.set_line_anchored_start(false); info.set_line_anchored_end(false); info.set_any_anchored_start(false); info.set_any_anchored_end(false); info.set_literal(false); info.set_alternation_literal(false); // A negated word boundary matches '', so that's fine. But \b does not // match \b, so why do we say it can match the empty string? Well, // because, if you search for \b against 'a', it will report [0, 0) and // [1, 1) as matches, and both of those matches correspond to the empty // string. Thus, only *certain* empty strings match \b, which similarly // applies to \B. info.set_match_empty(true); // Negated ASCII word boundaries can match invalid UTF-8. if let WordBoundary::AsciiNegate = word_boundary { info.set_always_utf8(false); } Hir { kind: HirKind::WordBoundary(word_boundary), info } } /// Creates a repetition HIR expression. pub fn repetition(rep: Repetition) -> Hir { let mut info = HirInfo::new(); info.set_always_utf8(rep.hir.is_always_utf8()); info.set_all_assertions(rep.hir.is_all_assertions()); // If this operator can match the empty string, then it can never // be anchored. info.set_anchored_start( !rep.is_match_empty() && rep.hir.is_anchored_start(), ); info.set_anchored_end( !rep.is_match_empty() && rep.hir.is_anchored_end(), ); info.set_line_anchored_start( !rep.is_match_empty() && rep.hir.is_anchored_start(), ); info.set_line_anchored_end( !rep.is_match_empty() && rep.hir.is_anchored_end(), ); info.set_any_anchored_start(rep.hir.is_any_anchored_start()); info.set_any_anchored_end(rep.hir.is_any_anchored_end()); info.set_match_empty(rep.is_match_empty() || rep.hir.is_match_empty()); info.set_literal(false); info.set_alternation_literal(false); Hir { kind: HirKind::Repetition(rep), info } } /// Creates a group HIR expression. pub fn group(group: Group) -> Hir { let mut info = HirInfo::new(); info.set_always_utf8(group.hir.is_always_utf8()); info.set_all_assertions(group.hir.is_all_assertions()); info.set_anchored_start(group.hir.is_anchored_start()); info.set_anchored_end(group.hir.is_anchored_end()); info.set_line_anchored_start(group.hir.is_line_anchored_start()); info.set_line_anchored_end(group.hir.is_line_anchored_end()); info.set_any_anchored_start(group.hir.is_any_anchored_start()); info.set_any_anchored_end(group.hir.is_any_anchored_end()); info.set_match_empty(group.hir.is_match_empty()); info.set_literal(false); info.set_alternation_literal(false); Hir { kind: HirKind::Group(group), info } } /// Returns the concatenation of the given expressions. /// /// This flattens the concatenation as appropriate. pub fn concat(mut exprs: Vec) -> Hir { match exprs.len() { 0 => Hir::empty(), 1 => exprs.pop().unwrap(), _ => { let mut info = HirInfo::new(); info.set_always_utf8(true); info.set_all_assertions(true); info.set_any_anchored_start(false); info.set_any_anchored_end(false); info.set_match_empty(true); info.set_literal(true); info.set_alternation_literal(true); // Some attributes require analyzing all sub-expressions. for e in &exprs { let x = info.is_always_utf8() && e.is_always_utf8(); info.set_always_utf8(x); let x = info.is_all_assertions() && e.is_all_assertions(); info.set_all_assertions(x); let x = info.is_any_anchored_start() || e.is_any_anchored_start(); info.set_any_anchored_start(x); let x = info.is_any_anchored_end() || e.is_any_anchored_end(); info.set_any_anchored_end(x); let x = info.is_match_empty() && e.is_match_empty(); info.set_match_empty(x); let x = info.is_literal() && e.is_literal(); info.set_literal(x); let x = info.is_alternation_literal() && e.is_alternation_literal(); info.set_alternation_literal(x); } // Anchored attributes require something slightly more // sophisticated. Normally, WLOG, to determine whether an // expression is anchored to the start, we'd only need to check // the first expression of a concatenation. However, // expressions like `$\b^` are still anchored to the start, // but the first expression in the concatenation *isn't* // anchored to the start. So the "first" expression to look at // is actually one that is either not an assertion or is // specifically the StartText assertion. info.set_anchored_start( exprs .iter() .take_while(|e| { e.is_anchored_start() || e.is_all_assertions() }) .any(|e| e.is_anchored_start()), ); // Similarly for the end anchor, but in reverse. info.set_anchored_end( exprs .iter() .rev() .take_while(|e| { e.is_anchored_end() || e.is_all_assertions() }) .any(|e| e.is_anchored_end()), ); // Repeat the process for line anchors. info.set_line_anchored_start( exprs .iter() .take_while(|e| { e.is_line_anchored_start() || e.is_all_assertions() }) .any(|e| e.is_line_anchored_start()), ); info.set_line_anchored_end( exprs .iter() .rev() .take_while(|e| { e.is_line_anchored_end() || e.is_all_assertions() }) .any(|e| e.is_line_anchored_end()), ); Hir { kind: HirKind::Concat(exprs), info } } } } /// Returns the alternation of the given expressions. /// /// This flattens the alternation as appropriate. pub fn alternation(mut exprs: Vec) -> Hir { match exprs.len() { 0 => Hir::empty(), 1 => exprs.pop().unwrap(), _ => { let mut info = HirInfo::new(); info.set_always_utf8(true); info.set_all_assertions(true); info.set_anchored_start(true); info.set_anchored_end(true); info.set_line_anchored_start(true); info.set_line_anchored_end(true); info.set_any_anchored_start(false); info.set_any_anchored_end(false); info.set_match_empty(false); info.set_literal(false); info.set_alternation_literal(true); // Some attributes require analyzing all sub-expressions. for e in &exprs { let x = info.is_always_utf8() && e.is_always_utf8(); info.set_always_utf8(x); let x = info.is_all_assertions() && e.is_all_assertions(); info.set_all_assertions(x); let x = info.is_anchored_start() && e.is_anchored_start(); info.set_anchored_start(x); let x = info.is_anchored_end() && e.is_anchored_end(); info.set_anchored_end(x); let x = info.is_line_anchored_start() && e.is_line_anchored_start(); info.set_line_anchored_start(x); let x = info.is_line_anchored_end() && e.is_line_anchored_end(); info.set_line_anchored_end(x); let x = info.is_any_anchored_start() || e.is_any_anchored_start(); info.set_any_anchored_start(x); let x = info.is_any_anchored_end() || e.is_any_anchored_end(); info.set_any_anchored_end(x); let x = info.is_match_empty() || e.is_match_empty(); info.set_match_empty(x); let x = info.is_alternation_literal() && e.is_literal(); info.set_alternation_literal(x); } Hir { kind: HirKind::Alternation(exprs), info } } } } /// Build an HIR expression for `.`. /// /// A `.` expression matches any character except for `\n`. To build an /// expression that matches any character, including `\n`, use the `any` /// method. /// /// If `bytes` is `true`, then this assumes characters are limited to a /// single byte. pub fn dot(bytes: bool) -> Hir { if bytes { let mut cls = ClassBytes::empty(); cls.push(ClassBytesRange::new(b'\0', b'\x09')); cls.push(ClassBytesRange::new(b'\x0B', b'\xFF')); Hir::class(Class::Bytes(cls)) } else { let mut cls = ClassUnicode::empty(); cls.push(ClassUnicodeRange::new('\0', '\x09')); cls.push(ClassUnicodeRange::new('\x0B', '\u{10FFFF}')); Hir::class(Class::Unicode(cls)) } } /// Build an HIR expression for `(?s).`. /// /// A `(?s).` expression matches any character, including `\n`. To build an /// expression that matches any character except for `\n`, then use the /// `dot` method. /// /// If `bytes` is `true`, then this assumes characters are limited to a /// single byte. pub fn any(bytes: bool) -> Hir { if bytes { let mut cls = ClassBytes::empty(); cls.push(ClassBytesRange::new(b'\0', b'\xFF')); Hir::class(Class::Bytes(cls)) } else { let mut cls = ClassUnicode::empty(); cls.push(ClassUnicodeRange::new('\0', '\u{10FFFF}')); Hir::class(Class::Unicode(cls)) } } /// Return true if and only if this HIR will always match valid UTF-8. /// /// When this returns false, then it is possible for this HIR expression /// to match invalid UTF-8. pub fn is_always_utf8(&self) -> bool { self.info.is_always_utf8() } /// Returns true if and only if this entire HIR expression is made up of /// zero-width assertions. /// /// This includes expressions like `^$\b\A\z` and even `((\b)+())*^`, but /// not `^a`. pub fn is_all_assertions(&self) -> bool { self.info.is_all_assertions() } /// Return true if and only if this HIR is required to match from the /// beginning of text. This includes expressions like `^foo`, `^(foo|bar)`, /// `^foo|^bar` but not `^foo|bar`. pub fn is_anchored_start(&self) -> bool { self.info.is_anchored_start() } /// Return true if and only if this HIR is required to match at the end /// of text. This includes expressions like `foo$`, `(foo|bar)$`, /// `foo$|bar$` but not `foo$|bar`. pub fn is_anchored_end(&self) -> bool { self.info.is_anchored_end() } /// Return true if and only if this HIR is required to match from the /// beginning of text or the beginning of a line. This includes expressions /// like `^foo`, `(?m)^foo`, `^(foo|bar)`, `^(foo|bar)`, `(?m)^foo|^bar` /// but not `^foo|bar` or `(?m)^foo|bar`. /// /// Note that if `is_anchored_start` is `true`, then /// `is_line_anchored_start` will also be `true`. The reverse implication /// is not true. For example, `(?m)^foo` is line anchored, but not /// `is_anchored_start`. pub fn is_line_anchored_start(&self) -> bool { self.info.is_line_anchored_start() } /// Return true if and only if this HIR is required to match at the /// end of text or the end of a line. This includes expressions like /// `foo$`, `(?m)foo$`, `(foo|bar)$`, `(?m)(foo|bar)$`, `foo$|bar$`, /// `(?m)(foo|bar)$`, but not `foo$|bar` or `(?m)foo$|bar`. /// /// Note that if `is_anchored_end` is `true`, then /// `is_line_anchored_end` will also be `true`. The reverse implication /// is not true. For example, `(?m)foo$` is line anchored, but not /// `is_anchored_end`. pub fn is_line_anchored_end(&self) -> bool { self.info.is_line_anchored_end() } /// Return true if and only if this HIR contains any sub-expression that /// is required to match at the beginning of text. Specifically, this /// returns true if the `^` symbol (when multiline mode is disabled) or the /// `\A` escape appear anywhere in the regex. pub fn is_any_anchored_start(&self) -> bool { self.info.is_any_anchored_start() } /// Return true if and only if this HIR contains any sub-expression that is /// required to match at the end of text. Specifically, this returns true /// if the `$` symbol (when multiline mode is disabled) or the `\z` escape /// appear anywhere in the regex. pub fn is_any_anchored_end(&self) -> bool { self.info.is_any_anchored_end() } /// Return true if and only if the empty string is part of the language /// matched by this regular expression. /// /// This includes `a*`, `a?b*`, `a{0}`, `()`, `()+`, `^$`, `a|b?`, `\b` /// and `\B`, but not `a` or `a+`. pub fn is_match_empty(&self) -> bool { self.info.is_match_empty() } /// Return true if and only if this HIR is a simple literal. This is only /// true when this HIR expression is either itself a `Literal` or a /// concatenation of only `Literal`s. /// /// For example, `f` and `foo` are literals, but `f+`, `(foo)`, `foo()`, /// `` are not (even though that contain sub-expressions that are literals). pub fn is_literal(&self) -> bool { self.info.is_literal() } /// Return true if and only if this HIR is either a simple literal or an /// alternation of simple literals. This is only /// true when this HIR expression is either itself a `Literal` or a /// concatenation of only `Literal`s or an alternation of only `Literal`s. /// /// For example, `f`, `foo`, `a|b|c`, and `foo|bar|baz` are alternation /// literals, but `f+`, `(foo)`, `foo()`, `` /// are not (even though that contain sub-expressions that are literals). pub fn is_alternation_literal(&self) -> bool { self.info.is_alternation_literal() } } impl HirKind { /// Return true if and only if this HIR is the empty regular expression. /// /// Note that this is not defined inductively. That is, it only tests if /// this kind is the `Empty` variant. To get the inductive definition, /// use the `is_match_empty` method on [`Hir`](struct.Hir.html). pub fn is_empty(&self) -> bool { match *self { HirKind::Empty => true, _ => false, } } /// Returns true if and only if this kind has any (including possibly /// empty) subexpressions. pub fn has_subexprs(&self) -> bool { match *self { HirKind::Empty | HirKind::Literal(_) | HirKind::Class(_) | HirKind::Anchor(_) | HirKind::WordBoundary(_) => false, HirKind::Group(_) | HirKind::Repetition(_) | HirKind::Concat(_) | HirKind::Alternation(_) => true, } } } /// Print a display representation of this Hir. /// /// The result of this is a valid regular expression pattern string. /// /// This implementation uses constant stack space and heap space proportional /// to the size of the `Hir`. impl fmt::Display for Hir { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { use crate::hir::print::Printer; Printer::new().print(self, f) } } /// The high-level intermediate representation of a literal. /// /// A literal corresponds to a single character, where a character is either /// defined by a Unicode scalar value or an arbitrary byte. Unicode characters /// are preferred whenever possible. In particular, a `Byte` variant is only /// ever produced when it could match invalid UTF-8. #[derive(Clone, Debug, Eq, PartialEq)] pub enum Literal { /// A single character represented by a Unicode scalar value. Unicode(char), /// A single character represented by an arbitrary byte. Byte(u8), } impl Literal { /// Returns true if and only if this literal corresponds to a Unicode /// scalar value. pub fn is_unicode(&self) -> bool { match *self { Literal::Unicode(_) => true, Literal::Byte(b) if b <= 0x7F => true, Literal::Byte(_) => false, } } } /// The high-level intermediate representation of a character class. /// /// A character class corresponds to a set of characters. A character is either /// defined by a Unicode scalar value or a byte. Unicode characters are used /// by default, while bytes are used when Unicode mode (via the `u` flag) is /// disabled. /// /// A character class, regardless of its character type, is represented by a /// sequence of non-overlapping non-adjacent ranges of characters. /// /// Note that unlike [`Literal`](enum.Literal.html), a `Bytes` variant may /// be produced even when it exclusively matches valid UTF-8. This is because /// a `Bytes` variant represents an intention by the author of the regular /// expression to disable Unicode mode, which in turn impacts the semantics of /// case insensitive matching. For example, `(?i)k` and `(?i-u)k` will not /// match the same set of strings. #[derive(Clone, Debug, Eq, PartialEq)] pub enum Class { /// A set of characters represented by Unicode scalar values. Unicode(ClassUnicode), /// A set of characters represented by arbitrary bytes (one byte per /// character). Bytes(ClassBytes), } impl Class { /// Apply Unicode simple case folding to this character class, in place. /// The character class will be expanded to include all simple case folded /// character variants. /// /// If this is a byte oriented character class, then this will be limited /// to the ASCII ranges `A-Z` and `a-z`. pub fn case_fold_simple(&mut self) { match *self { Class::Unicode(ref mut x) => x.case_fold_simple(), Class::Bytes(ref mut x) => x.case_fold_simple(), } } /// Negate this character class in place. /// /// After completion, this character class will contain precisely the /// characters that weren't previously in the class. pub fn negate(&mut self) { match *self { Class::Unicode(ref mut x) => x.negate(), Class::Bytes(ref mut x) => x.negate(), } } /// Returns true if and only if this character class will only ever match /// valid UTF-8. /// /// A character class can match invalid UTF-8 only when the following /// conditions are met: /// /// 1. The translator was configured to permit generating an expression /// that can match invalid UTF-8. (By default, this is disabled.) /// 2. Unicode mode (via the `u` flag) was disabled either in the concrete /// syntax or in the parser builder. By default, Unicode mode is /// enabled. pub fn is_always_utf8(&self) -> bool { match *self { Class::Unicode(_) => true, Class::Bytes(ref x) => x.is_all_ascii(), } } } /// A set of characters represented by Unicode scalar values. #[derive(Clone, Debug, Eq, PartialEq)] pub struct ClassUnicode { set: IntervalSet, } impl ClassUnicode { /// Create a new class from a sequence of ranges. /// /// The given ranges do not need to be in any specific order, and ranges /// may overlap. pub fn new(ranges: I) -> ClassUnicode where I: IntoIterator, { ClassUnicode { set: IntervalSet::new(ranges) } } /// Create a new class with no ranges. pub fn empty() -> ClassUnicode { ClassUnicode::new(vec![]) } /// Add a new range to this set. pub fn push(&mut self, range: ClassUnicodeRange) { self.set.push(range); } /// Return an iterator over all ranges in this class. /// /// The iterator yields ranges in ascending order. pub fn iter(&self) -> ClassUnicodeIter<'_> { ClassUnicodeIter(self.set.iter()) } /// Return the underlying ranges as a slice. pub fn ranges(&self) -> &[ClassUnicodeRange] { self.set.intervals() } /// Expand this character class such that it contains all case folded /// characters, according to Unicode's "simple" mapping. For example, if /// this class consists of the range `a-z`, then applying case folding will /// result in the class containing both the ranges `a-z` and `A-Z`. /// /// # Panics /// /// This routine panics when the case mapping data necessary for this /// routine to complete is unavailable. This occurs when the `unicode-case` /// feature is not enabled. /// /// Callers should prefer using `try_case_fold_simple` instead, which will /// return an error instead of panicking. pub fn case_fold_simple(&mut self) { self.set .case_fold_simple() .expect("unicode-case feature must be enabled"); } /// Expand this character class such that it contains all case folded /// characters, according to Unicode's "simple" mapping. For example, if /// this class consists of the range `a-z`, then applying case folding will /// result in the class containing both the ranges `a-z` and `A-Z`. /// /// # Error /// /// This routine returns an error when the case mapping data necessary /// for this routine to complete is unavailable. This occurs when the /// `unicode-case` feature is not enabled. pub fn try_case_fold_simple( &mut self, ) -> result::Result<(), CaseFoldError> { self.set.case_fold_simple() } /// Negate this character class. /// /// For all `c` where `c` is a Unicode scalar value, if `c` was in this /// set, then it will not be in this set after negation. pub fn negate(&mut self) { self.set.negate(); } /// Union this character class with the given character class, in place. pub fn union(&mut self, other: &ClassUnicode) { self.set.union(&other.set); } /// Intersect this character class with the given character class, in /// place. pub fn intersect(&mut self, other: &ClassUnicode) { self.set.intersect(&other.set); } /// Subtract the given character class from this character class, in place. pub fn difference(&mut self, other: &ClassUnicode) { self.set.difference(&other.set); } /// Compute the symmetric difference of the given character classes, in /// place. /// /// This computes the symmetric difference of two character classes. This /// removes all elements in this class that are also in the given class, /// but all adds all elements from the given class that aren't in this /// class. That is, the class will contain all elements in either class, /// but will not contain any elements that are in both classes. pub fn symmetric_difference(&mut self, other: &ClassUnicode) { self.set.symmetric_difference(&other.set); } /// Returns true if and only if this character class will either match /// nothing or only ASCII bytes. Stated differently, this returns false /// if and only if this class contains a non-ASCII codepoint. pub fn is_all_ascii(&self) -> bool { self.set.intervals().last().map_or(true, |r| r.end <= '\x7F') } } /// An iterator over all ranges in a Unicode character class. /// /// The lifetime `'a` refers to the lifetime of the underlying class. #[derive(Debug)] pub struct ClassUnicodeIter<'a>(IntervalSetIter<'a, ClassUnicodeRange>); impl<'a> Iterator for ClassUnicodeIter<'a> { type Item = &'a ClassUnicodeRange; fn next(&mut self) -> Option<&'a ClassUnicodeRange> { self.0.next() } } /// A single range of characters represented by Unicode scalar values. /// /// The range is closed. That is, the start and end of the range are included /// in the range. #[derive(Clone, Copy, Default, Eq, PartialEq, PartialOrd, Ord)] pub struct ClassUnicodeRange { start: char, end: char, } impl fmt::Debug for ClassUnicodeRange { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let start = if !self.start.is_whitespace() && !self.start.is_control() { self.start.to_string() } else { format!("0x{:X}", self.start as u32) }; let end = if !self.end.is_whitespace() && !self.end.is_control() { self.end.to_string() } else { format!("0x{:X}", self.end as u32) }; f.debug_struct("ClassUnicodeRange") .field("start", &start) .field("end", &end) .finish() } } impl Interval for ClassUnicodeRange { type Bound = char; #[inline] fn lower(&self) -> char { self.start } #[inline] fn upper(&self) -> char { self.end } #[inline] fn set_lower(&mut self, bound: char) { self.start = bound; } #[inline] fn set_upper(&mut self, bound: char) { self.end = bound; } /// Apply simple case folding to this Unicode scalar value range. /// /// Additional ranges are appended to the given vector. Canonical ordering /// is *not* maintained in the given vector. fn case_fold_simple( &self, ranges: &mut Vec, ) -> Result<(), unicode::CaseFoldError> { if !unicode::contains_simple_case_mapping(self.start, self.end)? { return Ok(()); } let start = self.start as u32; let end = (self.end as u32).saturating_add(1); let mut next_simple_cp = None; for cp in (start..end).filter_map(char::from_u32) { if next_simple_cp.map_or(false, |next| cp < next) { continue; } let it = match unicode::simple_fold(cp)? { Ok(it) => it, Err(next) => { next_simple_cp = next; continue; } }; for cp_folded in it { ranges.push(ClassUnicodeRange::new(cp_folded, cp_folded)); } } Ok(()) } } impl ClassUnicodeRange { /// Create a new Unicode scalar value range for a character class. /// /// The returned range is always in a canonical form. That is, the range /// returned always satisfies the invariant that `start <= end`. pub fn new(start: char, end: char) -> ClassUnicodeRange { ClassUnicodeRange::create(start, end) } /// Return the start of this range. /// /// The start of a range is always less than or equal to the end of the /// range. pub fn start(&self) -> char { self.start } /// Return the end of this range. /// /// The end of a range is always greater than or equal to the start of the /// range. pub fn end(&self) -> char { self.end } } /// A set of characters represented by arbitrary bytes (where one byte /// corresponds to one character). #[derive(Clone, Debug, Eq, PartialEq)] pub struct ClassBytes { set: IntervalSet, } impl ClassBytes { /// Create a new class from a sequence of ranges. /// /// The given ranges do not need to be in any specific order, and ranges /// may overlap. pub fn new(ranges: I) -> ClassBytes where I: IntoIterator, { ClassBytes { set: IntervalSet::new(ranges) } } /// Create a new class with no ranges. pub fn empty() -> ClassBytes { ClassBytes::new(vec![]) } /// Add a new range to this set. pub fn push(&mut self, range: ClassBytesRange) { self.set.push(range); } /// Return an iterator over all ranges in this class. /// /// The iterator yields ranges in ascending order. pub fn iter(&self) -> ClassBytesIter<'_> { ClassBytesIter(self.set.iter()) } /// Return the underlying ranges as a slice. pub fn ranges(&self) -> &[ClassBytesRange] { self.set.intervals() } /// Expand this character class such that it contains all case folded /// characters. For example, if this class consists of the range `a-z`, /// then applying case folding will result in the class containing both the /// ranges `a-z` and `A-Z`. /// /// Note that this only applies ASCII case folding, which is limited to the /// characters `a-z` and `A-Z`. pub fn case_fold_simple(&mut self) { self.set.case_fold_simple().expect("ASCII case folding never fails"); } /// Negate this byte class. /// /// For all `b` where `b` is a any byte, if `b` was in this set, then it /// will not be in this set after negation. pub fn negate(&mut self) { self.set.negate(); } /// Union this byte class with the given byte class, in place. pub fn union(&mut self, other: &ClassBytes) { self.set.union(&other.set); } /// Intersect this byte class with the given byte class, in place. pub fn intersect(&mut self, other: &ClassBytes) { self.set.intersect(&other.set); } /// Subtract the given byte class from this byte class, in place. pub fn difference(&mut self, other: &ClassBytes) { self.set.difference(&other.set); } /// Compute the symmetric difference of the given byte classes, in place. /// /// This computes the symmetric difference of two byte classes. This /// removes all elements in this class that are also in the given class, /// but all adds all elements from the given class that aren't in this /// class. That is, the class will contain all elements in either class, /// but will not contain any elements that are in both classes. pub fn symmetric_difference(&mut self, other: &ClassBytes) { self.set.symmetric_difference(&other.set); } /// Returns true if and only if this character class will either match /// nothing or only ASCII bytes. Stated differently, this returns false /// if and only if this class contains a non-ASCII byte. pub fn is_all_ascii(&self) -> bool { self.set.intervals().last().map_or(true, |r| r.end <= 0x7F) } } /// An iterator over all ranges in a byte character class. /// /// The lifetime `'a` refers to the lifetime of the underlying class. #[derive(Debug)] pub struct ClassBytesIter<'a>(IntervalSetIter<'a, ClassBytesRange>); impl<'a> Iterator for ClassBytesIter<'a> { type Item = &'a ClassBytesRange; fn next(&mut self) -> Option<&'a ClassBytesRange> { self.0.next() } } /// A single range of characters represented by arbitrary bytes. /// /// The range is closed. That is, the start and end of the range are included /// in the range. #[derive(Clone, Copy, Default, Eq, PartialEq, PartialOrd, Ord)] pub struct ClassBytesRange { start: u8, end: u8, } impl Interval for ClassBytesRange { type Bound = u8; #[inline] fn lower(&self) -> u8 { self.start } #[inline] fn upper(&self) -> u8 { self.end } #[inline] fn set_lower(&mut self, bound: u8) { self.start = bound; } #[inline] fn set_upper(&mut self, bound: u8) { self.end = bound; } /// Apply simple case folding to this byte range. Only ASCII case mappings /// (for a-z) are applied. /// /// Additional ranges are appended to the given vector. Canonical ordering /// is *not* maintained in the given vector. fn case_fold_simple( &self, ranges: &mut Vec, ) -> Result<(), unicode::CaseFoldError> { if !ClassBytesRange::new(b'a', b'z').is_intersection_empty(self) { let lower = cmp::max(self.start, b'a'); let upper = cmp::min(self.end, b'z'); ranges.push(ClassBytesRange::new(lower - 32, upper - 32)); } if !ClassBytesRange::new(b'A', b'Z').is_intersection_empty(self) { let lower = cmp::max(self.start, b'A'); let upper = cmp::min(self.end, b'Z'); ranges.push(ClassBytesRange::new(lower + 32, upper + 32)); } Ok(()) } } impl ClassBytesRange { /// Create a new byte range for a character class. /// /// The returned range is always in a canonical form. That is, the range /// returned always satisfies the invariant that `start <= end`. pub fn new(start: u8, end: u8) -> ClassBytesRange { ClassBytesRange::create(start, end) } /// Return the start of this range. /// /// The start of a range is always less than or equal to the end of the /// range. pub fn start(&self) -> u8 { self.start } /// Return the end of this range. /// /// The end of a range is always greater than or equal to the start of the /// range. pub fn end(&self) -> u8 { self.end } } impl fmt::Debug for ClassBytesRange { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let mut debug = f.debug_struct("ClassBytesRange"); if self.start <= 0x7F { debug.field("start", &(self.start as char)); } else { debug.field("start", &self.start); } if self.end <= 0x7F { debug.field("end", &(self.end as char)); } else { debug.field("end", &self.end); } debug.finish() } } /// The high-level intermediate representation for an anchor assertion. /// /// A matching anchor assertion is always zero-length. #[derive(Clone, Debug, Eq, PartialEq)] pub enum Anchor { /// Match the beginning of a line or the beginning of text. Specifically, /// this matches at the starting position of the input, or at the position /// immediately following a `\n` character. StartLine, /// Match the end of a line or the end of text. Specifically, /// this matches at the end position of the input, or at the position /// immediately preceding a `\n` character. EndLine, /// Match the beginning of text. Specifically, this matches at the starting /// position of the input. StartText, /// Match the end of text. Specifically, this matches at the ending /// position of the input. EndText, } /// The high-level intermediate representation for a word-boundary assertion. /// /// A matching word boundary assertion is always zero-length. #[derive(Clone, Debug, Eq, PartialEq)] pub enum WordBoundary { /// Match a Unicode-aware word boundary. That is, this matches a position /// where the left adjacent character and right adjacent character /// correspond to a word and non-word or a non-word and word character. Unicode, /// Match a Unicode-aware negation of a word boundary. UnicodeNegate, /// Match an ASCII-only word boundary. That is, this matches a position /// where the left adjacent character and right adjacent character /// correspond to a word and non-word or a non-word and word character. Ascii, /// Match an ASCII-only negation of a word boundary. AsciiNegate, } impl WordBoundary { /// Returns true if and only if this word boundary assertion is negated. pub fn is_negated(&self) -> bool { match *self { WordBoundary::Unicode | WordBoundary::Ascii => false, WordBoundary::UnicodeNegate | WordBoundary::AsciiNegate => true, } } } /// The high-level intermediate representation for a group. /// /// This represents one of three possible group types: /// /// 1. A non-capturing group (e.g., `(?:expr)`). /// 2. A capturing group (e.g., `(expr)`). /// 3. A named capturing group (e.g., `(?Pexpr)`). #[derive(Clone, Debug, Eq, PartialEq)] pub struct Group { /// The kind of this group. If it is a capturing group, then the kind /// contains the capture group index (and the name, if it is a named /// group). pub kind: GroupKind, /// The expression inside the capturing group, which may be empty. pub hir: Box, } /// The kind of group. #[derive(Clone, Debug, Eq, PartialEq)] pub enum GroupKind { /// A normal unnamed capturing group. /// /// The value is the capture index of the group. CaptureIndex(u32), /// A named capturing group. CaptureName { /// The name of the group. name: String, /// The capture index of the group. index: u32, }, /// A non-capturing group. NonCapturing, } /// The high-level intermediate representation of a repetition operator. /// /// A repetition operator permits the repetition of an arbitrary /// sub-expression. #[derive(Clone, Debug, Eq, PartialEq)] pub struct Repetition { /// The kind of this repetition operator. pub kind: RepetitionKind, /// Whether this repetition operator is greedy or not. A greedy operator /// will match as much as it can. A non-greedy operator will match as /// little as it can. /// /// Typically, operators are greedy by default and are only non-greedy when /// a `?` suffix is used, e.g., `(expr)*` is greedy while `(expr)*?` is /// not. However, this can be inverted via the `U` "ungreedy" flag. pub greedy: bool, /// The expression being repeated. pub hir: Box, } impl Repetition { /// Returns true if and only if this repetition operator makes it possible /// to match the empty string. /// /// Note that this is not defined inductively. For example, while `a*` /// will report `true`, `()+` will not, even though `()` matches the empty /// string and one or more occurrences of something that matches the empty /// string will always match the empty string. In order to get the /// inductive definition, see the corresponding method on /// [`Hir`](struct.Hir.html). pub fn is_match_empty(&self) -> bool { match self.kind { RepetitionKind::ZeroOrOne => true, RepetitionKind::ZeroOrMore => true, RepetitionKind::OneOrMore => false, RepetitionKind::Range(RepetitionRange::Exactly(m)) => m == 0, RepetitionKind::Range(RepetitionRange::AtLeast(m)) => m == 0, RepetitionKind::Range(RepetitionRange::Bounded(m, _)) => m == 0, } } } /// The kind of a repetition operator. #[derive(Clone, Debug, Eq, PartialEq)] pub enum RepetitionKind { /// Matches a sub-expression zero or one times. ZeroOrOne, /// Matches a sub-expression zero or more times. ZeroOrMore, /// Matches a sub-expression one or more times. OneOrMore, /// Matches a sub-expression within a bounded range of times. Range(RepetitionRange), } /// The kind of a counted repetition operator. #[derive(Clone, Debug, Eq, PartialEq)] pub enum RepetitionRange { /// Matches a sub-expression exactly this many times. Exactly(u32), /// Matches a sub-expression at least this many times. AtLeast(u32), /// Matches a sub-expression at least `m` times and at most `n` times. Bounded(u32, u32), } /// A custom `Drop` impl is used for `HirKind` such that it uses constant stack /// space but heap space proportional to the depth of the total `Hir`. impl Drop for Hir { fn drop(&mut self) { use std::mem; match *self.kind() { HirKind::Empty | HirKind::Literal(_) | HirKind::Class(_) | HirKind::Anchor(_) | HirKind::WordBoundary(_) => return, HirKind::Group(ref x) if !x.hir.kind.has_subexprs() => return, HirKind::Repetition(ref x) if !x.hir.kind.has_subexprs() => return, HirKind::Concat(ref x) if x.is_empty() => return, HirKind::Alternation(ref x) if x.is_empty() => return, _ => {} } let mut stack = vec![mem::replace(self, Hir::empty())]; while let Some(mut expr) = stack.pop() { match expr.kind { HirKind::Empty | HirKind::Literal(_) | HirKind::Class(_) | HirKind::Anchor(_) | HirKind::WordBoundary(_) => {} HirKind::Group(ref mut x) => { stack.push(mem::replace(&mut x.hir, Hir::empty())); } HirKind::Repetition(ref mut x) => { stack.push(mem::replace(&mut x.hir, Hir::empty())); } HirKind::Concat(ref mut x) => { stack.extend(x.drain(..)); } HirKind::Alternation(ref mut x) => { stack.extend(x.drain(..)); } } } } } /// A type that documents various attributes of an HIR expression. /// /// These attributes are typically defined inductively on the HIR. #[derive(Clone, Debug, Eq, PartialEq)] struct HirInfo { /// Represent yes/no questions by a bitfield to conserve space, since /// this is included in every HIR expression. /// /// If more attributes need to be added, it is OK to increase the size of /// this as appropriate. bools: u16, } // A simple macro for defining bitfield accessors/mutators. macro_rules! define_bool { ($bit:expr, $is_fn_name:ident, $set_fn_name:ident) => { fn $is_fn_name(&self) -> bool { self.bools & (0b1 << $bit) > 0 } fn $set_fn_name(&mut self, yes: bool) { if yes { self.bools |= 1 << $bit; } else { self.bools &= !(1 << $bit); } } }; } impl HirInfo { fn new() -> HirInfo { HirInfo { bools: 0 } } define_bool!(0, is_always_utf8, set_always_utf8); define_bool!(1, is_all_assertions, set_all_assertions); define_bool!(2, is_anchored_start, set_anchored_start); define_bool!(3, is_anchored_end, set_anchored_end); define_bool!(4, is_line_anchored_start, set_line_anchored_start); define_bool!(5, is_line_anchored_end, set_line_anchored_end); define_bool!(6, is_any_anchored_start, set_any_anchored_start); define_bool!(7, is_any_anchored_end, set_any_anchored_end); define_bool!(8, is_match_empty, set_match_empty); define_bool!(9, is_literal, set_literal); define_bool!(10, is_alternation_literal, set_alternation_literal); } #[cfg(test)] mod tests { use super::*; fn uclass(ranges: &[(char, char)]) -> ClassUnicode { let ranges: Vec = ranges .iter() .map(|&(s, e)| ClassUnicodeRange::new(s, e)) .collect(); ClassUnicode::new(ranges) } fn bclass(ranges: &[(u8, u8)]) -> ClassBytes { let ranges: Vec = ranges.iter().map(|&(s, e)| ClassBytesRange::new(s, e)).collect(); ClassBytes::new(ranges) } fn uranges(cls: &ClassUnicode) -> Vec<(char, char)> { cls.iter().map(|x| (x.start(), x.end())).collect() } #[cfg(feature = "unicode-case")] fn ucasefold(cls: &ClassUnicode) -> ClassUnicode { let mut cls_ = cls.clone(); cls_.case_fold_simple(); cls_ } fn uunion(cls1: &ClassUnicode, cls2: &ClassUnicode) -> ClassUnicode { let mut cls_ = cls1.clone(); cls_.union(cls2); cls_ } fn uintersect(cls1: &ClassUnicode, cls2: &ClassUnicode) -> ClassUnicode { let mut cls_ = cls1.clone(); cls_.intersect(cls2); cls_ } fn udifference(cls1: &ClassUnicode, cls2: &ClassUnicode) -> ClassUnicode { let mut cls_ = cls1.clone(); cls_.difference(cls2); cls_ } fn usymdifference( cls1: &ClassUnicode, cls2: &ClassUnicode, ) -> ClassUnicode { let mut cls_ = cls1.clone(); cls_.symmetric_difference(cls2); cls_ } fn unegate(cls: &ClassUnicode) -> ClassUnicode { let mut cls_ = cls.clone(); cls_.negate(); cls_ } fn branges(cls: &ClassBytes) -> Vec<(u8, u8)> { cls.iter().map(|x| (x.start(), x.end())).collect() } fn bcasefold(cls: &ClassBytes) -> ClassBytes { let mut cls_ = cls.clone(); cls_.case_fold_simple(); cls_ } fn bunion(cls1: &ClassBytes, cls2: &ClassBytes) -> ClassBytes { let mut cls_ = cls1.clone(); cls_.union(cls2); cls_ } fn bintersect(cls1: &ClassBytes, cls2: &ClassBytes) -> ClassBytes { let mut cls_ = cls1.clone(); cls_.intersect(cls2); cls_ } fn bdifference(cls1: &ClassBytes, cls2: &ClassBytes) -> ClassBytes { let mut cls_ = cls1.clone(); cls_.difference(cls2); cls_ } fn bsymdifference(cls1: &ClassBytes, cls2: &ClassBytes) -> ClassBytes { let mut cls_ = cls1.clone(); cls_.symmetric_difference(cls2); cls_ } fn bnegate(cls: &ClassBytes) -> ClassBytes { let mut cls_ = cls.clone(); cls_.negate(); cls_ } #[test] fn class_range_canonical_unicode() { let range = ClassUnicodeRange::new('\u{00FF}', '\0'); assert_eq!('\0', range.start()); assert_eq!('\u{00FF}', range.end()); } #[test] fn class_range_canonical_bytes() { let range = ClassBytesRange::new(b'\xFF', b'\0'); assert_eq!(b'\0', range.start()); assert_eq!(b'\xFF', range.end()); } #[test] fn class_canonicalize_unicode() { let cls = uclass(&[('a', 'c'), ('x', 'z')]); let expected = vec![('a', 'c'), ('x', 'z')]; assert_eq!(expected, uranges(&cls)); let cls = uclass(&[('x', 'z'), ('a', 'c')]); let expected = vec![('a', 'c'), ('x', 'z')]; assert_eq!(expected, uranges(&cls)); let cls = uclass(&[('x', 'z'), ('w', 'y')]); let expected = vec![('w', 'z')]; assert_eq!(expected, uranges(&cls)); let cls = uclass(&[ ('c', 'f'), ('a', 'g'), ('d', 'j'), ('a', 'c'), ('m', 'p'), ('l', 's'), ]); let expected = vec![('a', 'j'), ('l', 's')]; assert_eq!(expected, uranges(&cls)); let cls = uclass(&[('x', 'z'), ('u', 'w')]); let expected = vec![('u', 'z')]; assert_eq!(expected, uranges(&cls)); let cls = uclass(&[('\x00', '\u{10FFFF}'), ('\x00', '\u{10FFFF}')]); let expected = vec![('\x00', '\u{10FFFF}')]; assert_eq!(expected, uranges(&cls)); let cls = uclass(&[('a', 'a'), ('b', 'b')]); let expected = vec![('a', 'b')]; assert_eq!(expected, uranges(&cls)); } #[test] fn class_canonicalize_bytes() { let cls = bclass(&[(b'a', b'c'), (b'x', b'z')]); let expected = vec![(b'a', b'c'), (b'x', b'z')]; assert_eq!(expected, branges(&cls)); let cls = bclass(&[(b'x', b'z'), (b'a', b'c')]); let expected = vec![(b'a', b'c'), (b'x', b'z')]; assert_eq!(expected, branges(&cls)); let cls = bclass(&[(b'x', b'z'), (b'w', b'y')]); let expected = vec![(b'w', b'z')]; assert_eq!(expected, branges(&cls)); let cls = bclass(&[ (b'c', b'f'), (b'a', b'g'), (b'd', b'j'), (b'a', b'c'), (b'm', b'p'), (b'l', b's'), ]); let expected = vec![(b'a', b'j'), (b'l', b's')]; assert_eq!(expected, branges(&cls)); let cls = bclass(&[(b'x', b'z'), (b'u', b'w')]); let expected = vec![(b'u', b'z')]; assert_eq!(expected, branges(&cls)); let cls = bclass(&[(b'\x00', b'\xFF'), (b'\x00', b'\xFF')]); let expected = vec![(b'\x00', b'\xFF')]; assert_eq!(expected, branges(&cls)); let cls = bclass(&[(b'a', b'a'), (b'b', b'b')]); let expected = vec![(b'a', b'b')]; assert_eq!(expected, branges(&cls)); } #[test] #[cfg(feature = "unicode-case")] fn class_case_fold_unicode() { let cls = uclass(&[ ('C', 'F'), ('A', 'G'), ('D', 'J'), ('A', 'C'), ('M', 'P'), ('L', 'S'), ('c', 'f'), ]); let expected = uclass(&[ ('A', 'J'), ('L', 'S'), ('a', 'j'), ('l', 's'), ('\u{17F}', '\u{17F}'), ]); assert_eq!(expected, ucasefold(&cls)); let cls = uclass(&[('A', 'Z')]); let expected = uclass(&[ ('A', 'Z'), ('a', 'z'), ('\u{17F}', '\u{17F}'), ('\u{212A}', '\u{212A}'), ]); assert_eq!(expected, ucasefold(&cls)); let cls = uclass(&[('a', 'z')]); let expected = uclass(&[ ('A', 'Z'), ('a', 'z'), ('\u{17F}', '\u{17F}'), ('\u{212A}', '\u{212A}'), ]); assert_eq!(expected, ucasefold(&cls)); let cls = uclass(&[('A', 'A'), ('_', '_')]); let expected = uclass(&[('A', 'A'), ('_', '_'), ('a', 'a')]); assert_eq!(expected, ucasefold(&cls)); let cls = uclass(&[('A', 'A'), ('=', '=')]); let expected = uclass(&[('=', '='), ('A', 'A'), ('a', 'a')]); assert_eq!(expected, ucasefold(&cls)); let cls = uclass(&[('\x00', '\x10')]); assert_eq!(cls, ucasefold(&cls)); let cls = uclass(&[('k', 'k')]); let expected = uclass(&[('K', 'K'), ('k', 'k'), ('\u{212A}', '\u{212A}')]); assert_eq!(expected, ucasefold(&cls)); let cls = uclass(&[('@', '@')]); assert_eq!(cls, ucasefold(&cls)); } #[test] #[cfg(not(feature = "unicode-case"))] fn class_case_fold_unicode_disabled() { let mut cls = uclass(&[ ('C', 'F'), ('A', 'G'), ('D', 'J'), ('A', 'C'), ('M', 'P'), ('L', 'S'), ('c', 'f'), ]); assert!(cls.try_case_fold_simple().is_err()); } #[test] #[should_panic] #[cfg(not(feature = "unicode-case"))] fn class_case_fold_unicode_disabled_panics() { let mut cls = uclass(&[ ('C', 'F'), ('A', 'G'), ('D', 'J'), ('A', 'C'), ('M', 'P'), ('L', 'S'), ('c', 'f'), ]); cls.case_fold_simple(); } #[test] fn class_case_fold_bytes() { let cls = bclass(&[ (b'C', b'F'), (b'A', b'G'), (b'D', b'J'), (b'A', b'C'), (b'M', b'P'), (b'L', b'S'), (b'c', b'f'), ]); let expected = bclass(&[(b'A', b'J'), (b'L', b'S'), (b'a', b'j'), (b'l', b's')]); assert_eq!(expected, bcasefold(&cls)); let cls = bclass(&[(b'A', b'Z')]); let expected = bclass(&[(b'A', b'Z'), (b'a', b'z')]); assert_eq!(expected, bcasefold(&cls)); let cls = bclass(&[(b'a', b'z')]); let expected = bclass(&[(b'A', b'Z'), (b'a', b'z')]); assert_eq!(expected, bcasefold(&cls)); let cls = bclass(&[(b'A', b'A'), (b'_', b'_')]); let expected = bclass(&[(b'A', b'A'), (b'_', b'_'), (b'a', b'a')]); assert_eq!(expected, bcasefold(&cls)); let cls = bclass(&[(b'A', b'A'), (b'=', b'=')]); let expected = bclass(&[(b'=', b'='), (b'A', b'A'), (b'a', b'a')]); assert_eq!(expected, bcasefold(&cls)); let cls = bclass(&[(b'\x00', b'\x10')]); assert_eq!(cls, bcasefold(&cls)); let cls = bclass(&[(b'k', b'k')]); let expected = bclass(&[(b'K', b'K'), (b'k', b'k')]); assert_eq!(expected, bcasefold(&cls)); let cls = bclass(&[(b'@', b'@')]); assert_eq!(cls, bcasefold(&cls)); } #[test] fn class_negate_unicode() { let cls = uclass(&[('a', 'a')]); let expected = uclass(&[('\x00', '\x60'), ('\x62', '\u{10FFFF}')]); assert_eq!(expected, unegate(&cls)); let cls = uclass(&[('a', 'a'), ('b', 'b')]); let expected = uclass(&[('\x00', '\x60'), ('\x63', '\u{10FFFF}')]); assert_eq!(expected, unegate(&cls)); let cls = uclass(&[('a', 'c'), ('x', 'z')]); let expected = uclass(&[ ('\x00', '\x60'), ('\x64', '\x77'), ('\x7B', '\u{10FFFF}'), ]); assert_eq!(expected, unegate(&cls)); let cls = uclass(&[('\x00', 'a')]); let expected = uclass(&[('\x62', '\u{10FFFF}')]); assert_eq!(expected, unegate(&cls)); let cls = uclass(&[('a', '\u{10FFFF}')]); let expected = uclass(&[('\x00', '\x60')]); assert_eq!(expected, unegate(&cls)); let cls = uclass(&[('\x00', '\u{10FFFF}')]); let expected = uclass(&[]); assert_eq!(expected, unegate(&cls)); let cls = uclass(&[]); let expected = uclass(&[('\x00', '\u{10FFFF}')]); assert_eq!(expected, unegate(&cls)); let cls = uclass(&[('\x00', '\u{10FFFD}'), ('\u{10FFFF}', '\u{10FFFF}')]); let expected = uclass(&[('\u{10FFFE}', '\u{10FFFE}')]); assert_eq!(expected, unegate(&cls)); let cls = uclass(&[('\x00', '\u{D7FF}')]); let expected = uclass(&[('\u{E000}', '\u{10FFFF}')]); assert_eq!(expected, unegate(&cls)); let cls = uclass(&[('\x00', '\u{D7FE}')]); let expected = uclass(&[('\u{D7FF}', '\u{10FFFF}')]); assert_eq!(expected, unegate(&cls)); let cls = uclass(&[('\u{E000}', '\u{10FFFF}')]); let expected = uclass(&[('\x00', '\u{D7FF}')]); assert_eq!(expected, unegate(&cls)); let cls = uclass(&[('\u{E001}', '\u{10FFFF}')]); let expected = uclass(&[('\x00', '\u{E000}')]); assert_eq!(expected, unegate(&cls)); } #[test] fn class_negate_bytes() { let cls = bclass(&[(b'a', b'a')]); let expected = bclass(&[(b'\x00', b'\x60'), (b'\x62', b'\xFF')]); assert_eq!(expected, bnegate(&cls)); let cls = bclass(&[(b'a', b'a'), (b'b', b'b')]); let expected = bclass(&[(b'\x00', b'\x60'), (b'\x63', b'\xFF')]); assert_eq!(expected, bnegate(&cls)); let cls = bclass(&[(b'a', b'c'), (b'x', b'z')]); let expected = bclass(&[ (b'\x00', b'\x60'), (b'\x64', b'\x77'), (b'\x7B', b'\xFF'), ]); assert_eq!(expected, bnegate(&cls)); let cls = bclass(&[(b'\x00', b'a')]); let expected = bclass(&[(b'\x62', b'\xFF')]); assert_eq!(expected, bnegate(&cls)); let cls = bclass(&[(b'a', b'\xFF')]); let expected = bclass(&[(b'\x00', b'\x60')]); assert_eq!(expected, bnegate(&cls)); let cls = bclass(&[(b'\x00', b'\xFF')]); let expected = bclass(&[]); assert_eq!(expected, bnegate(&cls)); let cls = bclass(&[]); let expected = bclass(&[(b'\x00', b'\xFF')]); assert_eq!(expected, bnegate(&cls)); let cls = bclass(&[(b'\x00', b'\xFD'), (b'\xFF', b'\xFF')]); let expected = bclass(&[(b'\xFE', b'\xFE')]); assert_eq!(expected, bnegate(&cls)); } #[test] fn class_union_unicode() { let cls1 = uclass(&[('a', 'g'), ('m', 't'), ('A', 'C')]); let cls2 = uclass(&[('a', 'z')]); let expected = uclass(&[('a', 'z'), ('A', 'C')]); assert_eq!(expected, uunion(&cls1, &cls2)); } #[test] fn class_union_bytes() { let cls1 = bclass(&[(b'a', b'g'), (b'm', b't'), (b'A', b'C')]); let cls2 = bclass(&[(b'a', b'z')]); let expected = bclass(&[(b'a', b'z'), (b'A', b'C')]); assert_eq!(expected, bunion(&cls1, &cls2)); } #[test] fn class_intersect_unicode() { let cls1 = uclass(&[]); let cls2 = uclass(&[('a', 'a')]); let expected = uclass(&[]); assert_eq!(expected, uintersect(&cls1, &cls2)); let cls1 = uclass(&[('a', 'a')]); let cls2 = uclass(&[('a', 'a')]); let expected = uclass(&[('a', 'a')]); assert_eq!(expected, uintersect(&cls1, &cls2)); let cls1 = uclass(&[('a', 'a')]); let cls2 = uclass(&[('b', 'b')]); let expected = uclass(&[]); assert_eq!(expected, uintersect(&cls1, &cls2)); let cls1 = uclass(&[('a', 'a')]); let cls2 = uclass(&[('a', 'c')]); let expected = uclass(&[('a', 'a')]); assert_eq!(expected, uintersect(&cls1, &cls2)); let cls1 = uclass(&[('a', 'b')]); let cls2 = uclass(&[('a', 'c')]); let expected = uclass(&[('a', 'b')]); assert_eq!(expected, uintersect(&cls1, &cls2)); let cls1 = uclass(&[('a', 'b')]); let cls2 = uclass(&[('b', 'c')]); let expected = uclass(&[('b', 'b')]); assert_eq!(expected, uintersect(&cls1, &cls2)); let cls1 = uclass(&[('a', 'b')]); let cls2 = uclass(&[('c', 'd')]); let expected = uclass(&[]); assert_eq!(expected, uintersect(&cls1, &cls2)); let cls1 = uclass(&[('b', 'c')]); let cls2 = uclass(&[('a', 'd')]); let expected = uclass(&[('b', 'c')]); assert_eq!(expected, uintersect(&cls1, &cls2)); let cls1 = uclass(&[('a', 'b'), ('d', 'e'), ('g', 'h')]); let cls2 = uclass(&[('a', 'h')]); let expected = uclass(&[('a', 'b'), ('d', 'e'), ('g', 'h')]); assert_eq!(expected, uintersect(&cls1, &cls2)); let cls1 = uclass(&[('a', 'b'), ('d', 'e'), ('g', 'h')]); let cls2 = uclass(&[('a', 'b'), ('d', 'e'), ('g', 'h')]); let expected = uclass(&[('a', 'b'), ('d', 'e'), ('g', 'h')]); assert_eq!(expected, uintersect(&cls1, &cls2)); let cls1 = uclass(&[('a', 'b'), ('g', 'h')]); let cls2 = uclass(&[('d', 'e'), ('k', 'l')]); let expected = uclass(&[]); assert_eq!(expected, uintersect(&cls1, &cls2)); let cls1 = uclass(&[('a', 'b'), ('d', 'e'), ('g', 'h')]); let cls2 = uclass(&[('h', 'h')]); let expected = uclass(&[('h', 'h')]); assert_eq!(expected, uintersect(&cls1, &cls2)); let cls1 = uclass(&[('a', 'b'), ('e', 'f'), ('i', 'j')]); let cls2 = uclass(&[('c', 'd'), ('g', 'h'), ('k', 'l')]); let expected = uclass(&[]); assert_eq!(expected, uintersect(&cls1, &cls2)); let cls1 = uclass(&[('a', 'b'), ('c', 'd'), ('e', 'f')]); let cls2 = uclass(&[('b', 'c'), ('d', 'e'), ('f', 'g')]); let expected = uclass(&[('b', 'f')]); assert_eq!(expected, uintersect(&cls1, &cls2)); } #[test] fn class_intersect_bytes() { let cls1 = bclass(&[]); let cls2 = bclass(&[(b'a', b'a')]); let expected = bclass(&[]); assert_eq!(expected, bintersect(&cls1, &cls2)); let cls1 = bclass(&[(b'a', b'a')]); let cls2 = bclass(&[(b'a', b'a')]); let expected = bclass(&[(b'a', b'a')]); assert_eq!(expected, bintersect(&cls1, &cls2)); let cls1 = bclass(&[(b'a', b'a')]); let cls2 = bclass(&[(b'b', b'b')]); let expected = bclass(&[]); assert_eq!(expected, bintersect(&cls1, &cls2)); let cls1 = bclass(&[(b'a', b'a')]); let cls2 = bclass(&[(b'a', b'c')]); let expected = bclass(&[(b'a', b'a')]); assert_eq!(expected, bintersect(&cls1, &cls2)); let cls1 = bclass(&[(b'a', b'b')]); let cls2 = bclass(&[(b'a', b'c')]); let expected = bclass(&[(b'a', b'b')]); assert_eq!(expected, bintersect(&cls1, &cls2)); let cls1 = bclass(&[(b'a', b'b')]); let cls2 = bclass(&[(b'b', b'c')]); let expected = bclass(&[(b'b', b'b')]); assert_eq!(expected, bintersect(&cls1, &cls2)); let cls1 = bclass(&[(b'a', b'b')]); let cls2 = bclass(&[(b'c', b'd')]); let expected = bclass(&[]); assert_eq!(expected, bintersect(&cls1, &cls2)); let cls1 = bclass(&[(b'b', b'c')]); let cls2 = bclass(&[(b'a', b'd')]); let expected = bclass(&[(b'b', b'c')]); assert_eq!(expected, bintersect(&cls1, &cls2)); let cls1 = bclass(&[(b'a', b'b'), (b'd', b'e'), (b'g', b'h')]); let cls2 = bclass(&[(b'a', b'h')]); let expected = bclass(&[(b'a', b'b'), (b'd', b'e'), (b'g', b'h')]); assert_eq!(expected, bintersect(&cls1, &cls2)); let cls1 = bclass(&[(b'a', b'b'), (b'd', b'e'), (b'g', b'h')]); let cls2 = bclass(&[(b'a', b'b'), (b'd', b'e'), (b'g', b'h')]); let expected = bclass(&[(b'a', b'b'), (b'd', b'e'), (b'g', b'h')]); assert_eq!(expected, bintersect(&cls1, &cls2)); let cls1 = bclass(&[(b'a', b'b'), (b'g', b'h')]); let cls2 = bclass(&[(b'd', b'e'), (b'k', b'l')]); let expected = bclass(&[]); assert_eq!(expected, bintersect(&cls1, &cls2)); let cls1 = bclass(&[(b'a', b'b'), (b'd', b'e'), (b'g', b'h')]); let cls2 = bclass(&[(b'h', b'h')]); let expected = bclass(&[(b'h', b'h')]); assert_eq!(expected, bintersect(&cls1, &cls2)); let cls1 = bclass(&[(b'a', b'b'), (b'e', b'f'), (b'i', b'j')]); let cls2 = bclass(&[(b'c', b'd'), (b'g', b'h'), (b'k', b'l')]); let expected = bclass(&[]); assert_eq!(expected, bintersect(&cls1, &cls2)); let cls1 = bclass(&[(b'a', b'b'), (b'c', b'd'), (b'e', b'f')]); let cls2 = bclass(&[(b'b', b'c'), (b'd', b'e'), (b'f', b'g')]); let expected = bclass(&[(b'b', b'f')]); assert_eq!(expected, bintersect(&cls1, &cls2)); } #[test] fn class_difference_unicode() { let cls1 = uclass(&[('a', 'a')]); let cls2 = uclass(&[('a', 'a')]); let expected = uclass(&[]); assert_eq!(expected, udifference(&cls1, &cls2)); let cls1 = uclass(&[('a', 'a')]); let cls2 = uclass(&[]); let expected = uclass(&[('a', 'a')]); assert_eq!(expected, udifference(&cls1, &cls2)); let cls1 = uclass(&[]); let cls2 = uclass(&[('a', 'a')]); let expected = uclass(&[]); assert_eq!(expected, udifference(&cls1, &cls2)); let cls1 = uclass(&[('a', 'z')]); let cls2 = uclass(&[('a', 'a')]); let expected = uclass(&[('b', 'z')]); assert_eq!(expected, udifference(&cls1, &cls2)); let cls1 = uclass(&[('a', 'z')]); let cls2 = uclass(&[('z', 'z')]); let expected = uclass(&[('a', 'y')]); assert_eq!(expected, udifference(&cls1, &cls2)); let cls1 = uclass(&[('a', 'z')]); let cls2 = uclass(&[('m', 'm')]); let expected = uclass(&[('a', 'l'), ('n', 'z')]); assert_eq!(expected, udifference(&cls1, &cls2)); let cls1 = uclass(&[('a', 'c'), ('g', 'i'), ('r', 't')]); let cls2 = uclass(&[('a', 'z')]); let expected = uclass(&[]); assert_eq!(expected, udifference(&cls1, &cls2)); let cls1 = uclass(&[('a', 'c'), ('g', 'i'), ('r', 't')]); let cls2 = uclass(&[('d', 'v')]); let expected = uclass(&[('a', 'c')]); assert_eq!(expected, udifference(&cls1, &cls2)); let cls1 = uclass(&[('a', 'c'), ('g', 'i'), ('r', 't')]); let cls2 = uclass(&[('b', 'g'), ('s', 'u')]); let expected = uclass(&[('a', 'a'), ('h', 'i'), ('r', 'r')]); assert_eq!(expected, udifference(&cls1, &cls2)); let cls1 = uclass(&[('a', 'c'), ('g', 'i'), ('r', 't')]); let cls2 = uclass(&[('b', 'd'), ('e', 'g'), ('s', 'u')]); let expected = uclass(&[('a', 'a'), ('h', 'i'), ('r', 'r')]); assert_eq!(expected, udifference(&cls1, &cls2)); let cls1 = uclass(&[('x', 'z')]); let cls2 = uclass(&[('a', 'c'), ('e', 'g'), ('s', 'u')]); let expected = uclass(&[('x', 'z')]); assert_eq!(expected, udifference(&cls1, &cls2)); let cls1 = uclass(&[('a', 'z')]); let cls2 = uclass(&[('a', 'c'), ('e', 'g'), ('s', 'u')]); let expected = uclass(&[('d', 'd'), ('h', 'r'), ('v', 'z')]); assert_eq!(expected, udifference(&cls1, &cls2)); } #[test] fn class_difference_bytes() { let cls1 = bclass(&[(b'a', b'a')]); let cls2 = bclass(&[(b'a', b'a')]); let expected = bclass(&[]); assert_eq!(expected, bdifference(&cls1, &cls2)); let cls1 = bclass(&[(b'a', b'a')]); let cls2 = bclass(&[]); let expected = bclass(&[(b'a', b'a')]); assert_eq!(expected, bdifference(&cls1, &cls2)); let cls1 = bclass(&[]); let cls2 = bclass(&[(b'a', b'a')]); let expected = bclass(&[]); assert_eq!(expected, bdifference(&cls1, &cls2)); let cls1 = bclass(&[(b'a', b'z')]); let cls2 = bclass(&[(b'a', b'a')]); let expected = bclass(&[(b'b', b'z')]); assert_eq!(expected, bdifference(&cls1, &cls2)); let cls1 = bclass(&[(b'a', b'z')]); let cls2 = bclass(&[(b'z', b'z')]); let expected = bclass(&[(b'a', b'y')]); assert_eq!(expected, bdifference(&cls1, &cls2)); let cls1 = bclass(&[(b'a', b'z')]); let cls2 = bclass(&[(b'm', b'm')]); let expected = bclass(&[(b'a', b'l'), (b'n', b'z')]); assert_eq!(expected, bdifference(&cls1, &cls2)); let cls1 = bclass(&[(b'a', b'c'), (b'g', b'i'), (b'r', b't')]); let cls2 = bclass(&[(b'a', b'z')]); let expected = bclass(&[]); assert_eq!(expected, bdifference(&cls1, &cls2)); let cls1 = bclass(&[(b'a', b'c'), (b'g', b'i'), (b'r', b't')]); let cls2 = bclass(&[(b'd', b'v')]); let expected = bclass(&[(b'a', b'c')]); assert_eq!(expected, bdifference(&cls1, &cls2)); let cls1 = bclass(&[(b'a', b'c'), (b'g', b'i'), (b'r', b't')]); let cls2 = bclass(&[(b'b', b'g'), (b's', b'u')]); let expected = bclass(&[(b'a', b'a'), (b'h', b'i'), (b'r', b'r')]); assert_eq!(expected, bdifference(&cls1, &cls2)); let cls1 = bclass(&[(b'a', b'c'), (b'g', b'i'), (b'r', b't')]); let cls2 = bclass(&[(b'b', b'd'), (b'e', b'g'), (b's', b'u')]); let expected = bclass(&[(b'a', b'a'), (b'h', b'i'), (b'r', b'r')]); assert_eq!(expected, bdifference(&cls1, &cls2)); let cls1 = bclass(&[(b'x', b'z')]); let cls2 = bclass(&[(b'a', b'c'), (b'e', b'g'), (b's', b'u')]); let expected = bclass(&[(b'x', b'z')]); assert_eq!(expected, bdifference(&cls1, &cls2)); let cls1 = bclass(&[(b'a', b'z')]); let cls2 = bclass(&[(b'a', b'c'), (b'e', b'g'), (b's', b'u')]); let expected = bclass(&[(b'd', b'd'), (b'h', b'r'), (b'v', b'z')]); assert_eq!(expected, bdifference(&cls1, &cls2)); } #[test] fn class_symmetric_difference_unicode() { let cls1 = uclass(&[('a', 'm')]); let cls2 = uclass(&[('g', 't')]); let expected = uclass(&[('a', 'f'), ('n', 't')]); assert_eq!(expected, usymdifference(&cls1, &cls2)); } #[test] fn class_symmetric_difference_bytes() { let cls1 = bclass(&[(b'a', b'm')]); let cls2 = bclass(&[(b'g', b't')]); let expected = bclass(&[(b'a', b'f'), (b'n', b't')]); assert_eq!(expected, bsymdifference(&cls1, &cls2)); } #[test] #[should_panic] fn hir_byte_literal_non_ascii() { Hir::literal(Literal::Byte(b'a')); } // We use a thread with an explicit stack size to test that our destructor // for Hir can handle arbitrarily sized expressions in constant stack // space. In case we run on a platform without threads (WASM?), we limit // this test to Windows/Unix. #[test] #[cfg(any(unix, windows))] fn no_stack_overflow_on_drop() { use std::thread; let run = || { let mut expr = Hir::empty(); for _ in 0..100 { expr = Hir::group(Group { kind: GroupKind::NonCapturing, hir: Box::new(expr), }); expr = Hir::repetition(Repetition { kind: RepetitionKind::ZeroOrOne, greedy: true, hir: Box::new(expr), }); expr = Hir { kind: HirKind::Concat(vec![expr]), info: HirInfo::new(), }; expr = Hir { kind: HirKind::Alternation(vec![expr]), info: HirInfo::new(), }; } assert!(!expr.kind.is_empty()); }; // We run our test on a thread with a small stack size so we can // force the issue more easily. thread::Builder::new() .stack_size(1 << 10) .spawn(run) .unwrap() .join() .unwrap(); } }