1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
|
/*
* Copyright (C) 2010 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "Reverb.h"
#include "ReverbConvolverStage.h"
#include <math.h>
#include "ReverbConvolver.h"
#include "mozilla/FloatingPoint.h"
using namespace mozilla;
namespace WebCore {
// Empirical gain calibration tested across many impulse responses to ensure
// perceived volume is same as dry (unprocessed) signal
const float GainCalibration = 0.00125f;
const float GainCalibrationSampleRate = 44100;
// A minimum power value to when normalizing a silent (or very quiet) impulse
// response
const float MinPower = 0.000125f;
static float calculateNormalizationScale(const nsTArray<const float*>& response,
size_t aLength, float sampleRate) {
// Normalize by RMS power
size_t numberOfChannels = response.Length();
float power = 0;
for (size_t i = 0; i < numberOfChannels; ++i) {
float channelPower = AudioBufferSumOfSquares(response[i], aLength);
power += channelPower;
}
power = sqrt(power / (numberOfChannels * aLength));
// Protect against accidental overload
if (!std::isfinite(power) || std::isnan(power) || power < MinPower)
power = MinPower;
float scale = 1 / power;
scale *= GainCalibration; // calibrate to make perceived volume same as
// unprocessed
// Scale depends on sample-rate.
if (sampleRate) scale *= GainCalibrationSampleRate / sampleRate;
// True-stereo compensation
if (numberOfChannels == 4) scale *= 0.5f;
return scale;
}
Reverb::Reverb(const AudioChunk& impulseResponse, size_t maxFFTSize,
bool useBackgroundThreads, bool normalize, float sampleRate,
bool* aAllocationFailure) {
MOZ_ASSERT(aAllocationFailure);
size_t impulseResponseBufferLength = impulseResponse.mDuration;
float scale = impulseResponse.mVolume;
CopyableAutoTArray<const float*, 4> irChannels(
impulseResponse.ChannelData<float>());
AutoTArray<float, 1024> tempBuf;
if (normalize) {
scale = calculateNormalizationScale(irChannels, impulseResponseBufferLength,
sampleRate);
}
if (scale != 1.0f) {
bool rv = tempBuf.SetLength(
irChannels.Length() * impulseResponseBufferLength, mozilla::fallible);
*aAllocationFailure = !rv;
if (*aAllocationFailure) {
return;
}
for (uint32_t i = 0; i < irChannels.Length(); ++i) {
float* buf = &tempBuf[i * impulseResponseBufferLength];
AudioBufferCopyWithScale(irChannels[i], scale, buf,
impulseResponseBufferLength);
irChannels[i] = buf;
}
}
*aAllocationFailure = !initialize(irChannels, impulseResponseBufferLength,
maxFFTSize, useBackgroundThreads);
}
size_t Reverb::sizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const {
size_t amount = aMallocSizeOf(this);
amount += m_convolvers.ShallowSizeOfExcludingThis(aMallocSizeOf);
for (size_t i = 0; i < m_convolvers.Length(); i++) {
if (m_convolvers[i]) {
amount += m_convolvers[i]->sizeOfIncludingThis(aMallocSizeOf);
}
}
amount += m_tempBuffer.SizeOfExcludingThis(aMallocSizeOf, false);
return amount;
}
bool Reverb::initialize(const nsTArray<const float*>& impulseResponseBuffer,
size_t impulseResponseBufferLength, size_t maxFFTSize,
bool useBackgroundThreads) {
m_impulseResponseLength = impulseResponseBufferLength;
// The reverb can handle a mono impulse response and still do stereo
// processing
size_t numResponseChannels = impulseResponseBuffer.Length();
MOZ_ASSERT(numResponseChannels > 0);
// The number of convolvers required is at least the number of audio
// channels. Even if there is initially only one audio channel, another
// may be added later, and so a second convolver is created now while the
// impulse response is available.
size_t numConvolvers = std::max<size_t>(numResponseChannels, 2);
m_convolvers.SetCapacity(numConvolvers);
int convolverRenderPhase = 0;
for (size_t i = 0; i < numConvolvers; ++i) {
size_t channelIndex = i < numResponseChannels ? i : 0;
const float* channel = impulseResponseBuffer[channelIndex];
size_t length = impulseResponseBufferLength;
bool allocationFailure;
UniquePtr<ReverbConvolver> convolver(
new ReverbConvolver(channel, length, maxFFTSize, convolverRenderPhase,
useBackgroundThreads, &allocationFailure));
if (allocationFailure) {
return false;
}
m_convolvers.AppendElement(std::move(convolver));
convolverRenderPhase += WEBAUDIO_BLOCK_SIZE;
}
// For "True" stereo processing we allocate a temporary buffer to avoid
// repeatedly allocating it in the process() method. It can be bad to allocate
// memory in a real-time thread.
if (numResponseChannels == 4) {
m_tempBuffer.AllocateChannels(2);
WriteZeroesToAudioBlock(&m_tempBuffer, 0, WEBAUDIO_BLOCK_SIZE);
}
return true;
}
void Reverb::process(const AudioBlock* sourceBus, AudioBlock* destinationBus) {
// Do a fairly comprehensive sanity check.
// If these conditions are satisfied, all of the source and destination
// pointers will be valid for the various matrixing cases.
bool isSafeToProcess =
sourceBus && destinationBus && sourceBus->ChannelCount() > 0 &&
destinationBus->mChannelData.Length() > 0 &&
WEBAUDIO_BLOCK_SIZE <= MaxFrameSize &&
WEBAUDIO_BLOCK_SIZE <= size_t(sourceBus->GetDuration()) &&
WEBAUDIO_BLOCK_SIZE <= size_t(destinationBus->GetDuration());
MOZ_ASSERT(isSafeToProcess);
if (!isSafeToProcess) return;
// For now only handle mono or stereo output
MOZ_ASSERT(destinationBus->ChannelCount() <= 2);
float* destinationChannelL =
static_cast<float*>(const_cast<void*>(destinationBus->mChannelData[0]));
const float* sourceBusL =
static_cast<const float*>(sourceBus->mChannelData[0]);
// Handle input -> output matrixing...
size_t numInputChannels = sourceBus->ChannelCount();
size_t numOutputChannels = destinationBus->ChannelCount();
size_t numReverbChannels = m_convolvers.Length();
if (numInputChannels == 2 && numReverbChannels == 2 &&
numOutputChannels == 2) {
// 2 -> 2 -> 2
const float* sourceBusR =
static_cast<const float*>(sourceBus->mChannelData[1]);
float* destinationChannelR =
static_cast<float*>(const_cast<void*>(destinationBus->mChannelData[1]));
m_convolvers[0]->process(sourceBusL, destinationChannelL);
m_convolvers[1]->process(sourceBusR, destinationChannelR);
} else if (numInputChannels == 1 && numOutputChannels == 2 &&
numReverbChannels == 2) {
// 1 -> 2 -> 2
for (int i = 0; i < 2; ++i) {
float* destinationChannel = static_cast<float*>(
const_cast<void*>(destinationBus->mChannelData[i]));
m_convolvers[i]->process(sourceBusL, destinationChannel);
}
} else if (numInputChannels == 1 && numOutputChannels == 1) {
// 1 -> 1 -> 1 (Only one of the convolvers is used.)
m_convolvers[0]->process(sourceBusL, destinationChannelL);
} else if (numInputChannels == 2 && numReverbChannels == 4 &&
numOutputChannels == 2) {
// 2 -> 4 -> 2 ("True" stereo)
const float* sourceBusR =
static_cast<const float*>(sourceBus->mChannelData[1]);
float* destinationChannelR =
static_cast<float*>(const_cast<void*>(destinationBus->mChannelData[1]));
float* tempChannelL =
static_cast<float*>(const_cast<void*>(m_tempBuffer.mChannelData[0]));
float* tempChannelR =
static_cast<float*>(const_cast<void*>(m_tempBuffer.mChannelData[1]));
// Process left virtual source
m_convolvers[0]->process(sourceBusL, destinationChannelL);
m_convolvers[1]->process(sourceBusL, destinationChannelR);
// Process right virtual source
m_convolvers[2]->process(sourceBusR, tempChannelL);
m_convolvers[3]->process(sourceBusR, tempChannelR);
AudioBufferAddWithScale(tempChannelL, 1.0f, destinationChannelL,
sourceBus->GetDuration());
AudioBufferAddWithScale(tempChannelR, 1.0f, destinationChannelR,
sourceBus->GetDuration());
} else if (numInputChannels == 1 && numReverbChannels == 4 &&
numOutputChannels == 2) {
// 1 -> 4 -> 2 (Processing mono with "True" stereo impulse response)
// This is an inefficient use of a four-channel impulse response, but we
// should handle the case.
float* destinationChannelR =
static_cast<float*>(const_cast<void*>(destinationBus->mChannelData[1]));
float* tempChannelL =
static_cast<float*>(const_cast<void*>(m_tempBuffer.mChannelData[0]));
float* tempChannelR =
static_cast<float*>(const_cast<void*>(m_tempBuffer.mChannelData[1]));
// Process left virtual source
m_convolvers[0]->process(sourceBusL, destinationChannelL);
m_convolvers[1]->process(sourceBusL, destinationChannelR);
// Process right virtual source
m_convolvers[2]->process(sourceBusL, tempChannelL);
m_convolvers[3]->process(sourceBusL, tempChannelR);
AudioBufferAddWithScale(tempChannelL, 1.0f, destinationChannelL,
sourceBus->GetDuration());
AudioBufferAddWithScale(tempChannelR, 1.0f, destinationChannelR,
sourceBus->GetDuration());
} else {
MOZ_ASSERT_UNREACHABLE("Unexpected Reverb configuration");
destinationBus->SetNull(destinationBus->GetDuration());
}
}
} // namespace WebCore
|