summaryrefslogtreecommitdiffstats
path: root/js/src/jit/JitcodeMap.cpp
blob: 1c1e21c72e4579210fc799e70442737af8359844 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "jit/JitcodeMap.h"

#include "mozilla/ArrayUtils.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/Maybe.h"
#include "mozilla/ScopeExit.h"

#include "gc/Marking.h"
#include "jit/BaselineJIT.h"
#include "jit/InlineScriptTree.h"
#include "jit/JitRuntime.h"
#include "jit/JitSpewer.h"
#include "js/Vector.h"
#include "vm/BytecodeLocation.h"  // for BytecodeLocation
#include "vm/GeckoProfiler.h"

#include "vm/GeckoProfiler-inl.h"
#include "vm/JSScript-inl.h"

using mozilla::Maybe;

namespace js {
namespace jit {

static inline JitcodeRegionEntry RegionAtAddr(const IonEntry& entry, void* ptr,
                                              uint32_t* ptrOffset) {
  MOZ_ASSERT(entry.containsPointer(ptr));
  *ptrOffset = reinterpret_cast<uint8_t*>(ptr) -
               reinterpret_cast<uint8_t*>(entry.nativeStartAddr());

  uint32_t regionIdx = entry.regionTable()->findRegionEntry(*ptrOffset);
  MOZ_ASSERT(regionIdx < entry.regionTable()->numRegions());

  return entry.regionTable()->regionEntry(regionIdx);
}

void* IonEntry::canonicalNativeAddrFor(void* ptr) const {
  uint32_t ptrOffset;
  JitcodeRegionEntry region = RegionAtAddr(*this, ptr, &ptrOffset);
  return (void*)(((uint8_t*)nativeStartAddr()) + region.nativeOffset());
}

bool IonEntry::callStackAtAddr(void* ptr, BytecodeLocationVector& results,
                               uint32_t* depth) const {
  uint32_t ptrOffset;
  JitcodeRegionEntry region = RegionAtAddr(*this, ptr, &ptrOffset);
  *depth = region.scriptDepth();

  JitcodeRegionEntry::ScriptPcIterator locationIter = region.scriptPcIterator();
  MOZ_ASSERT(locationIter.hasMore());
  bool first = true;
  while (locationIter.hasMore()) {
    uint32_t scriptIdx, pcOffset;
    locationIter.readNext(&scriptIdx, &pcOffset);
    // For the first entry pushed (innermost frame), the pcOffset is obtained
    // from the delta-run encodings.
    if (first) {
      pcOffset = region.findPcOffset(ptrOffset, pcOffset);
      first = false;
    }
    JSScript* script = getScript(scriptIdx);
    jsbytecode* pc = script->offsetToPC(pcOffset);
    if (!results.append(BytecodeLocation(script, pc))) {
      return false;
    }
  }

  return true;
}

uint32_t IonEntry::callStackAtAddr(void* ptr, const char** results,
                                   uint32_t maxResults) const {
  MOZ_ASSERT(maxResults >= 1);

  uint32_t ptrOffset;
  JitcodeRegionEntry region = RegionAtAddr(*this, ptr, &ptrOffset);

  JitcodeRegionEntry::ScriptPcIterator locationIter = region.scriptPcIterator();
  MOZ_ASSERT(locationIter.hasMore());
  uint32_t count = 0;
  while (locationIter.hasMore()) {
    uint32_t scriptIdx, pcOffset;

    locationIter.readNext(&scriptIdx, &pcOffset);
    MOZ_ASSERT(getStr(scriptIdx));

    results[count++] = getStr(scriptIdx);
    if (count >= maxResults) {
      break;
    }
  }

  return count;
}

uint64_t IonEntry::lookupRealmID(void* ptr) const {
  uint32_t ptrOffset;
  JitcodeRegionEntry region = RegionAtAddr(*this, ptr, &ptrOffset);
  JitcodeRegionEntry::ScriptPcIterator locationIter = region.scriptPcIterator();
  MOZ_ASSERT(locationIter.hasMore());
  uint32_t scriptIdx, pcOffset;
  locationIter.readNext(&scriptIdx, &pcOffset);

  JSScript* script = getScript(scriptIdx);
  return script->realm()->creationOptions().profilerRealmID();
}

IonEntry::~IonEntry() {
  // The region table is stored at the tail of the compacted data,
  // which means the start of the region table is a pointer to
  // the _middle_ of the memory space allocated for it.
  //
  // When freeing it, obtain the payload start pointer first.
  MOZ_ASSERT(regionTable_);
  js_free((void*)(regionTable_->payloadStart()));
  regionTable_ = nullptr;
}

static IonEntry& IonEntryForIonIC(JSRuntime* rt, const IonICEntry* icEntry) {
  // The table must have an IonEntry for the IC's rejoin address.
  auto* table = rt->jitRuntime()->getJitcodeGlobalTable();
  auto* entry = table->lookup(icEntry->rejoinAddr());
  MOZ_ASSERT(entry);
  MOZ_RELEASE_ASSERT(entry->isIon());
  return entry->asIon();
}

void* IonICEntry::canonicalNativeAddrFor(void* ptr) const { return ptr; }

bool IonICEntry::callStackAtAddr(JSRuntime* rt, void* ptr,
                                 BytecodeLocationVector& results,
                                 uint32_t* depth) const {
  const IonEntry& entry = IonEntryForIonIC(rt, this);
  return entry.callStackAtAddr(rejoinAddr(), results, depth);
}

uint32_t IonICEntry::callStackAtAddr(JSRuntime* rt, void* ptr,
                                     const char** results,
                                     uint32_t maxResults) const {
  const IonEntry& entry = IonEntryForIonIC(rt, this);
  return entry.callStackAtAddr(rejoinAddr(), results, maxResults);
}

uint64_t IonICEntry::lookupRealmID(JSRuntime* rt, void* ptr) const {
  const IonEntry& entry = IonEntryForIonIC(rt, this);
  return entry.lookupRealmID(rejoinAddr());
}

void* BaselineEntry::canonicalNativeAddrFor(void* ptr) const {
  // TODO: We can't yet normalize Baseline addresses until we unify
  // BaselineScript's PCMappingEntries with JitcodeGlobalTable.
  return ptr;
}

bool BaselineEntry::callStackAtAddr(void* ptr, BytecodeLocationVector& results,
                                    uint32_t* depth) const {
  MOZ_ASSERT(containsPointer(ptr));
  MOZ_ASSERT(script_->hasBaselineScript());

  uint8_t* addr = reinterpret_cast<uint8_t*>(ptr);
  jsbytecode* pc =
      script_->baselineScript()->approximatePcForNativeAddress(script_, addr);
  if (!results.append(BytecodeLocation(script_, pc))) {
    return false;
  }

  *depth = 1;

  return true;
}

uint32_t BaselineEntry::callStackAtAddr(void* ptr, const char** results,
                                        uint32_t maxResults) const {
  MOZ_ASSERT(containsPointer(ptr));
  MOZ_ASSERT(maxResults >= 1);

  results[0] = str();
  return 1;
}

uint64_t BaselineEntry::lookupRealmID() const {
  return script_->realm()->creationOptions().profilerRealmID();
}

void* BaselineInterpreterEntry::canonicalNativeAddrFor(void* ptr) const {
  return ptr;
}

bool BaselineInterpreterEntry::callStackAtAddr(void* ptr,
                                               BytecodeLocationVector& results,
                                               uint32_t* depth) const {
  MOZ_CRASH("shouldn't be called for BaselineInterpreter entries");
}

uint32_t BaselineInterpreterEntry::callStackAtAddr(void* ptr,
                                                   const char** results,
                                                   uint32_t maxResults) const {
  MOZ_CRASH("shouldn't be called for BaselineInterpreter entries");
}

uint64_t BaselineInterpreterEntry::lookupRealmID() const {
  MOZ_CRASH("shouldn't be called for BaselineInterpreter entries");
}

const JitcodeGlobalEntry* JitcodeGlobalTable::lookupForSampler(
    void* ptr, JSRuntime* rt, uint64_t samplePosInBuffer) {
  JitcodeGlobalEntry* entry = lookupInternal(ptr);
  if (!entry) {
    return nullptr;
  }

  entry->setSamplePositionInBuffer(samplePosInBuffer);

  // IonIC entries must keep their corresponding Ion entries alive.
  if (entry->isIonIC()) {
    IonEntry& ionEntry = IonEntryForIonIC(rt, &entry->asIonIC());
    ionEntry.setSamplePositionInBuffer(samplePosInBuffer);
  }

  // JitcodeGlobalEntries are marked at the end of the mark phase. A read
  // barrier is not needed. Any JS frames sampled during the sweep phase of
  // the GC must be on stack, and on-stack frames must already be marked at
  // the beginning of the sweep phase. It's not possible to assert this here
  // as we may be off main thread when called from the gecko profiler.

  return entry;
}

JitcodeGlobalEntry* JitcodeGlobalTable::lookupInternal(void* ptr) {
  // Search for an entry containing the one-byte range starting at |ptr|.
  JitCodeRange range(ptr, static_cast<uint8_t*>(ptr) + 1);

  if (JitCodeRange** entry = tree_.maybeLookup(&range)) {
    MOZ_ASSERT((*entry)->containsPointer(ptr));
    return static_cast<JitcodeGlobalEntry*>(*entry);
  }

  return nullptr;
}

bool JitcodeGlobalTable::addEntry(UniqueJitcodeGlobalEntry entry) {
  MOZ_ASSERT(entry->isIon() || entry->isIonIC() || entry->isBaseline() ||
             entry->isBaselineInterpreter() || entry->isDummy());

  // Assert the new entry does not have a code range that's equal to (or
  // contained in) one of the existing entries, because that would confuse the
  // AVL tree.
  MOZ_ASSERT(!tree_.maybeLookup(entry.get()));

  // Suppress profiler sampling while data structures are being mutated.
  AutoSuppressProfilerSampling suppressSampling(TlsContext.get());

  if (!entries_.append(std::move(entry))) {
    return false;
  }
  if (!tree_.insert(entries_.back().get())) {
    entries_.popBack();
    return false;
  }

  return true;
}

void JitcodeGlobalTable::setAllEntriesAsExpired() {
  AutoSuppressProfilerSampling suppressSampling(TlsContext.get());
  for (EntryVector::Range r(entries_.all()); !r.empty(); r.popFront()) {
    auto& entry = r.front();
    entry->setAsExpired();
  }
}

bool JitcodeGlobalTable::markIteratively(GCMarker* marker) {
  // JitcodeGlobalTable must keep entries that are in the sampler buffer
  // alive. This conditionality is akin to holding the entries weakly.
  //
  // If this table were marked at the beginning of the mark phase, then
  // sampling would require a read barrier for sampling in between
  // incremental GC slices. However, invoking read barriers from the sampler
  // is wildly unsafe. The sampler may run at any time, including during GC
  // itself.
  //
  // Instead, JitcodeGlobalTable is marked at the beginning of the sweep
  // phase, along with weak references. The key assumption is the
  // following. At the beginning of the sweep phase, any JS frames that the
  // sampler may put in its buffer that are not already there at the
  // beginning of the mark phase must have already been marked, as either 1)
  // the frame was on-stack at the beginning of the sweep phase, or 2) the
  // frame was pushed between incremental sweep slices. Frames of case 1)
  // are already marked. Frames of case 2) must have been reachable to have
  // been newly pushed, and thus are already marked.
  //
  // The approach above obviates the need for read barriers. The assumption
  // above is checked in JitcodeGlobalTable::lookupForSampler.

  MOZ_ASSERT(!JS::RuntimeHeapIsMinorCollecting());

  AutoSuppressProfilerSampling suppressSampling(TlsContext.get());

  // If the profiler is off, rangeStart will be Nothing() and all entries are
  // considered to be expired.
  Maybe<uint64_t> rangeStart =
      marker->runtime()->profilerSampleBufferRangeStart();

  bool markedAny = false;
  for (EntryVector::Range r(entries_.all()); !r.empty(); r.popFront()) {
    auto& entry = r.front();

    // If an entry is not sampled, reset its buffer position to the invalid
    // position, and conditionally mark the rest of the entry if its
    // JitCode is not already marked. This conditional marking ensures
    // that so long as the JitCode *may* be sampled, we keep any
    // information that may be handed out to the sampler, like tracked
    // types used by optimizations and scripts used for pc to line number
    // mapping, alive as well.
    if (!rangeStart || !entry->isSampled(*rangeStart)) {
      entry->setAsExpired();
      if (!entry->isJitcodeMarkedFromAnyThread(marker->runtime())) {
        continue;
      }
    }

    // The table is runtime-wide. Not all zones may be participating in
    // the GC.
    if (!entry->zone()->isCollecting() || entry->zone()->isGCFinished()) {
      continue;
    }

    markedAny |= entry->trace(marker->tracer());
  }

  return markedAny;
}

void JitcodeGlobalTable::traceWeak(JSRuntime* rt, JSTracer* trc) {
  AutoSuppressProfilerSampling suppressSampling(rt->mainContextFromOwnThread());

  entries_.eraseIf([&](auto& entry) {
    if (!entry->zone()->isCollecting() || entry->zone()->isGCFinished()) {
      return false;
    }

    if (TraceManuallyBarrieredWeakEdge(
            trc, entry->jitcodePtr(),
            "JitcodeGlobalTable::JitcodeGlobalEntry::jitcode_")) {
      entry->traceWeak(trc);
      return false;
    }

    // We have to remove the entry.
#ifdef DEBUG
    Maybe<uint64_t> rangeStart = rt->profilerSampleBufferRangeStart();
    MOZ_ASSERT_IF(rangeStart, !entry->isSampled(*rangeStart));
#endif
    tree_.remove(entry.get());
    return true;
  });

  MOZ_ASSERT(tree_.empty() == entries_.empty());
}

bool JitcodeGlobalEntry::traceJitcode(JSTracer* trc) {
  if (!IsMarkedUnbarriered(trc->runtime(), jitcode_)) {
    TraceManuallyBarrieredEdge(trc, &jitcode_,
                               "jitcodglobaltable-baseentry-jitcode");
    return true;
  }
  return false;
}

bool JitcodeGlobalEntry::isJitcodeMarkedFromAnyThread(JSRuntime* rt) {
  return IsMarkedUnbarriered(rt, jitcode_);
}

bool BaselineEntry::trace(JSTracer* trc) {
  if (!IsMarkedUnbarriered(trc->runtime(), script_)) {
    TraceManuallyBarrieredEdge(trc, &script_,
                               "jitcodeglobaltable-baselineentry-script");
    return true;
  }
  return false;
}

void BaselineEntry::traceWeak(JSTracer* trc) {
  MOZ_ALWAYS_TRUE(
      TraceManuallyBarrieredWeakEdge(trc, &script_, "BaselineEntry::script_"));
}

bool IonEntry::trace(JSTracer* trc) {
  bool tracedAny = false;

  JSRuntime* rt = trc->runtime();
  for (auto& pair : scriptList_) {
    if (!IsMarkedUnbarriered(rt, pair.script)) {
      TraceManuallyBarrieredEdge(trc, &pair.script,
                                 "jitcodeglobaltable-ionentry-script");
      tracedAny = true;
    }
  }

  return tracedAny;
}

void IonEntry::traceWeak(JSTracer* trc) {
  for (auto& pair : scriptList_) {
    JSScript** scriptp = &pair.script;
    MOZ_ALWAYS_TRUE(
        TraceManuallyBarrieredWeakEdge(trc, scriptp, "IonEntry script"));
  }
}

bool IonICEntry::trace(JSTracer* trc) {
  IonEntry& entry = IonEntryForIonIC(trc->runtime(), this);
  return entry.trace(trc);
}

void IonICEntry::traceWeak(JSTracer* trc) {
  IonEntry& entry = IonEntryForIonIC(trc->runtime(), this);
  entry.traceWeak(trc);
}

[[nodiscard]] bool JitcodeGlobalEntry::callStackAtAddr(
    JSRuntime* rt, void* ptr, BytecodeLocationVector& results,
    uint32_t* depth) const {
  switch (kind()) {
    case Kind::Ion:
      return asIon().callStackAtAddr(ptr, results, depth);
    case Kind::IonIC:
      return asIonIC().callStackAtAddr(rt, ptr, results, depth);
    case Kind::Baseline:
      return asBaseline().callStackAtAddr(ptr, results, depth);
    case Kind::BaselineInterpreter:
      return asBaselineInterpreter().callStackAtAddr(ptr, results, depth);
    case Kind::Dummy:
      return asDummy().callStackAtAddr(rt, ptr, results, depth);
  }
  MOZ_CRASH("Invalid kind");
}

uint32_t JitcodeGlobalEntry::callStackAtAddr(JSRuntime* rt, void* ptr,
                                             const char** results,
                                             uint32_t maxResults) const {
  switch (kind()) {
    case Kind::Ion:
      return asIon().callStackAtAddr(ptr, results, maxResults);
    case Kind::IonIC:
      return asIonIC().callStackAtAddr(rt, ptr, results, maxResults);
    case Kind::Baseline:
      return asBaseline().callStackAtAddr(ptr, results, maxResults);
    case Kind::BaselineInterpreter:
      return asBaselineInterpreter().callStackAtAddr(ptr, results, maxResults);
    case Kind::Dummy:
      return asDummy().callStackAtAddr(rt, ptr, results, maxResults);
  }
  MOZ_CRASH("Invalid kind");
}

uint64_t JitcodeGlobalEntry::lookupRealmID(JSRuntime* rt, void* ptr) const {
  switch (kind()) {
    case Kind::Ion:
      return asIon().lookupRealmID(ptr);
    case Kind::IonIC:
      return asIonIC().lookupRealmID(rt, ptr);
    case Kind::Baseline:
      return asBaseline().lookupRealmID();
    case Kind::Dummy:
      return asDummy().lookupRealmID();
    case Kind::BaselineInterpreter:
      break;
  }
  MOZ_CRASH("Invalid kind");
}

bool JitcodeGlobalEntry::trace(JSTracer* trc) {
  bool tracedAny = traceJitcode(trc);
  switch (kind()) {
    case Kind::Ion:
      tracedAny |= asIon().trace(trc);
      break;
    case Kind::IonIC:
      tracedAny |= asIonIC().trace(trc);
      break;
    case Kind::Baseline:
      tracedAny |= asBaseline().trace(trc);
      break;
    case Kind::BaselineInterpreter:
    case Kind::Dummy:
      break;
  }
  return tracedAny;
}

void JitcodeGlobalEntry::traceWeak(JSTracer* trc) {
  switch (kind()) {
    case Kind::Ion:
      asIon().traceWeak(trc);
      break;
    case Kind::IonIC:
      asIonIC().traceWeak(trc);
      break;
    case Kind::Baseline:
      asBaseline().traceWeak(trc);
      break;
    case Kind::BaselineInterpreter:
    case Kind::Dummy:
      break;
  }
}

void* JitcodeGlobalEntry::canonicalNativeAddrFor(JSRuntime* rt,
                                                 void* ptr) const {
  switch (kind()) {
    case Kind::Ion:
      return asIon().canonicalNativeAddrFor(ptr);
    case Kind::IonIC:
      return asIonIC().canonicalNativeAddrFor(ptr);
    case Kind::Baseline:
      return asBaseline().canonicalNativeAddrFor(ptr);
    case Kind::Dummy:
      return asDummy().canonicalNativeAddrFor(rt, ptr);
    case Kind::BaselineInterpreter:
      break;
  }
  MOZ_CRASH("Invalid kind");
}

// static
void JitcodeGlobalEntry::DestroyPolicy::operator()(JitcodeGlobalEntry* entry) {
  switch (entry->kind()) {
    case JitcodeGlobalEntry::Kind::Ion:
      js_delete(&entry->asIon());
      break;
    case JitcodeGlobalEntry::Kind::IonIC:
      js_delete(&entry->asIonIC());
      break;
    case JitcodeGlobalEntry::Kind::Baseline:
      js_delete(&entry->asBaseline());
      break;
    case JitcodeGlobalEntry::Kind::BaselineInterpreter:
      js_delete(&entry->asBaselineInterpreter());
      break;
    case JitcodeGlobalEntry::Kind::Dummy:
      js_delete(&entry->asDummy());
      break;
  }
}

/* static */
void JitcodeRegionEntry::WriteHead(CompactBufferWriter& writer,
                                   uint32_t nativeOffset, uint8_t scriptDepth) {
  writer.writeUnsigned(nativeOffset);
  writer.writeByte(scriptDepth);
}

/* static */
void JitcodeRegionEntry::ReadHead(CompactBufferReader& reader,
                                  uint32_t* nativeOffset,
                                  uint8_t* scriptDepth) {
  *nativeOffset = reader.readUnsigned();
  *scriptDepth = reader.readByte();
}

/* static */
void JitcodeRegionEntry::WriteScriptPc(CompactBufferWriter& writer,
                                       uint32_t scriptIdx, uint32_t pcOffset) {
  writer.writeUnsigned(scriptIdx);
  writer.writeUnsigned(pcOffset);
}

/* static */
void JitcodeRegionEntry::ReadScriptPc(CompactBufferReader& reader,
                                      uint32_t* scriptIdx, uint32_t* pcOffset) {
  *scriptIdx = reader.readUnsigned();
  *pcOffset = reader.readUnsigned();
}

/* static */
void JitcodeRegionEntry::WriteDelta(CompactBufferWriter& writer,
                                    uint32_t nativeDelta, int32_t pcDelta) {
  if (pcDelta >= 0) {
    // 1 and 2-byte formats possible.

    //  NNNN-BBB0
    if (pcDelta <= ENC1_PC_DELTA_MAX && nativeDelta <= ENC1_NATIVE_DELTA_MAX) {
      uint8_t encVal = ENC1_MASK_VAL | (pcDelta << ENC1_PC_DELTA_SHIFT) |
                       (nativeDelta << ENC1_NATIVE_DELTA_SHIFT);
      writer.writeByte(encVal);
      return;
    }

    //  NNNN-NNNN BBBB-BB01
    if (pcDelta <= ENC2_PC_DELTA_MAX && nativeDelta <= ENC2_NATIVE_DELTA_MAX) {
      uint16_t encVal = ENC2_MASK_VAL | (pcDelta << ENC2_PC_DELTA_SHIFT) |
                        (nativeDelta << ENC2_NATIVE_DELTA_SHIFT);
      writer.writeByte(encVal & 0xff);
      writer.writeByte((encVal >> 8) & 0xff);
      return;
    }
  }

  //  NNNN-NNNN NNNB-BBBB BBBB-B011
  if (pcDelta >= ENC3_PC_DELTA_MIN && pcDelta <= ENC3_PC_DELTA_MAX &&
      nativeDelta <= ENC3_NATIVE_DELTA_MAX) {
    uint32_t encVal =
        ENC3_MASK_VAL |
        ((uint32_t(pcDelta) << ENC3_PC_DELTA_SHIFT) & ENC3_PC_DELTA_MASK) |
        (nativeDelta << ENC3_NATIVE_DELTA_SHIFT);
    writer.writeByte(encVal & 0xff);
    writer.writeByte((encVal >> 8) & 0xff);
    writer.writeByte((encVal >> 16) & 0xff);
    return;
  }

  //  NNNN-NNNN NNNN-NNNN BBBB-BBBB BBBB-B111
  if (pcDelta >= ENC4_PC_DELTA_MIN && pcDelta <= ENC4_PC_DELTA_MAX &&
      nativeDelta <= ENC4_NATIVE_DELTA_MAX) {
    uint32_t encVal =
        ENC4_MASK_VAL |
        ((uint32_t(pcDelta) << ENC4_PC_DELTA_SHIFT) & ENC4_PC_DELTA_MASK) |
        (nativeDelta << ENC4_NATIVE_DELTA_SHIFT);
    writer.writeByte(encVal & 0xff);
    writer.writeByte((encVal >> 8) & 0xff);
    writer.writeByte((encVal >> 16) & 0xff);
    writer.writeByte((encVal >> 24) & 0xff);
    return;
  }

  // Should never get here.
  MOZ_CRASH("pcDelta/nativeDelta values are too large to encode.");
}

/* static */
void JitcodeRegionEntry::ReadDelta(CompactBufferReader& reader,
                                   uint32_t* nativeDelta, int32_t* pcDelta) {
  // NB:
  // It's possible to get nativeDeltas with value 0 in two cases:
  //
  // 1. The last region's run.  This is because the region table's start
  // must be 4-byte aligned, and we must insert padding bytes to align the
  // payload section before emitting the table.
  //
  // 2. A zero-offset nativeDelta with a negative pcDelta.
  //
  // So if nativeDelta is zero, then pcDelta must be <= 0.

  //  NNNN-BBB0
  const uint32_t firstByte = reader.readByte();
  if ((firstByte & ENC1_MASK) == ENC1_MASK_VAL) {
    uint32_t encVal = firstByte;
    *nativeDelta = encVal >> ENC1_NATIVE_DELTA_SHIFT;
    *pcDelta = (encVal & ENC1_PC_DELTA_MASK) >> ENC1_PC_DELTA_SHIFT;
    MOZ_ASSERT_IF(*nativeDelta == 0, *pcDelta <= 0);
    return;
  }

  //  NNNN-NNNN BBBB-BB01
  const uint32_t secondByte = reader.readByte();
  if ((firstByte & ENC2_MASK) == ENC2_MASK_VAL) {
    uint32_t encVal = firstByte | secondByte << 8;
    *nativeDelta = encVal >> ENC2_NATIVE_DELTA_SHIFT;
    *pcDelta = (encVal & ENC2_PC_DELTA_MASK) >> ENC2_PC_DELTA_SHIFT;
    MOZ_ASSERT(*pcDelta != 0);
    MOZ_ASSERT_IF(*nativeDelta == 0, *pcDelta <= 0);
    return;
  }

  //  NNNN-NNNN NNNB-BBBB BBBB-B011
  const uint32_t thirdByte = reader.readByte();
  if ((firstByte & ENC3_MASK) == ENC3_MASK_VAL) {
    uint32_t encVal = firstByte | secondByte << 8 | thirdByte << 16;
    *nativeDelta = encVal >> ENC3_NATIVE_DELTA_SHIFT;

    uint32_t pcDeltaU = (encVal & ENC3_PC_DELTA_MASK) >> ENC3_PC_DELTA_SHIFT;
    // Fix sign if necessary.
    if (pcDeltaU > static_cast<uint32_t>(ENC3_PC_DELTA_MAX)) {
      pcDeltaU |= ~ENC3_PC_DELTA_MAX;
    }
    *pcDelta = pcDeltaU;
    MOZ_ASSERT(*pcDelta != 0);
    MOZ_ASSERT_IF(*nativeDelta == 0, *pcDelta <= 0);
    return;
  }

  //  NNNN-NNNN NNNN-NNNN BBBB-BBBB BBBB-B111
  MOZ_ASSERT((firstByte & ENC4_MASK) == ENC4_MASK_VAL);
  const uint32_t fourthByte = reader.readByte();
  uint32_t encVal =
      firstByte | secondByte << 8 | thirdByte << 16 | fourthByte << 24;
  *nativeDelta = encVal >> ENC4_NATIVE_DELTA_SHIFT;

  uint32_t pcDeltaU = (encVal & ENC4_PC_DELTA_MASK) >> ENC4_PC_DELTA_SHIFT;
  // fix sign if necessary
  if (pcDeltaU > static_cast<uint32_t>(ENC4_PC_DELTA_MAX)) {
    pcDeltaU |= ~ENC4_PC_DELTA_MAX;
  }
  *pcDelta = pcDeltaU;

  MOZ_ASSERT(*pcDelta != 0);
  MOZ_ASSERT_IF(*nativeDelta == 0, *pcDelta <= 0);
}

/* static */
uint32_t JitcodeRegionEntry::ExpectedRunLength(const NativeToBytecode* entry,
                                               const NativeToBytecode* end) {
  MOZ_ASSERT(entry < end);

  // We always use the first entry, so runLength starts at 1
  uint32_t runLength = 1;

  uint32_t curNativeOffset = entry->nativeOffset.offset();
  uint32_t curBytecodeOffset = entry->tree->script()->pcToOffset(entry->pc);

  for (auto nextEntry = entry + 1; nextEntry != end; nextEntry += 1) {
    // If the next run moves to a different inline site, stop the run.
    if (nextEntry->tree != entry->tree) {
      break;
    }

    uint32_t nextNativeOffset = nextEntry->nativeOffset.offset();
    uint32_t nextBytecodeOffset =
        nextEntry->tree->script()->pcToOffset(nextEntry->pc);
    MOZ_ASSERT(nextNativeOffset >= curNativeOffset);

    uint32_t nativeDelta = nextNativeOffset - curNativeOffset;
    int32_t bytecodeDelta =
        int32_t(nextBytecodeOffset) - int32_t(curBytecodeOffset);

    // If deltas are too large (very unlikely), stop the run.
    if (!IsDeltaEncodeable(nativeDelta, bytecodeDelta)) {
      break;
    }

    runLength++;

    // If the run has grown to its maximum length, stop the run.
    if (runLength == MAX_RUN_LENGTH) {
      break;
    }

    curNativeOffset = nextNativeOffset;
    curBytecodeOffset = nextBytecodeOffset;
  }

  return runLength;
}

struct JitcodeMapBufferWriteSpewer {
#ifdef JS_JITSPEW
  CompactBufferWriter* writer;
  uint32_t startPos;

  static const uint32_t DumpMaxBytes = 50;

  explicit JitcodeMapBufferWriteSpewer(CompactBufferWriter& w)
      : writer(&w), startPos(writer->length()) {}

  void spewAndAdvance(const char* name) {
    if (writer->oom()) {
      return;
    }

    uint32_t curPos = writer->length();
    const uint8_t* start = writer->buffer() + startPos;
    const uint8_t* end = writer->buffer() + curPos;
    const char* MAP = "0123456789ABCDEF";
    uint32_t bytes = end - start;

    char buffer[DumpMaxBytes * 3];
    for (uint32_t i = 0; i < bytes; i++) {
      buffer[i * 3] = MAP[(start[i] >> 4) & 0xf];
      buffer[i * 3 + 1] = MAP[(start[i] >> 0) & 0xf];
      buffer[i * 3 + 2] = ' ';
    }
    if (bytes >= DumpMaxBytes) {
      buffer[DumpMaxBytes * 3 - 1] = '\0';
    } else {
      buffer[bytes * 3 - 1] = '\0';
    }

    JitSpew(JitSpew_Profiling, "%s@%d[%d bytes] - %s", name, int(startPos),
            int(bytes), buffer);

    // Move to the end of the current buffer.
    startPos = writer->length();
  }
#else   // !JS_JITSPEW
  explicit JitcodeMapBufferWriteSpewer(CompactBufferWriter& w) {}
  void spewAndAdvance(const char* name) {}
#endif  // JS_JITSPEW
};

// Write a run, starting at the given NativeToBytecode entry, into the given
// buffer writer.
/* static */
bool JitcodeRegionEntry::WriteRun(CompactBufferWriter& writer,
                                  const IonEntry::ScriptList& scriptList,
                                  uint32_t runLength,
                                  const NativeToBytecode* entry) {
  MOZ_ASSERT(runLength > 0);
  MOZ_ASSERT(runLength <= MAX_RUN_LENGTH);

  // Calculate script depth.
  MOZ_ASSERT(entry->tree->depth() <= 0xff);
  uint8_t scriptDepth = entry->tree->depth();
  uint32_t regionNativeOffset = entry->nativeOffset.offset();

  JitcodeMapBufferWriteSpewer spewer(writer);

  // Write the head info.
  JitSpew(JitSpew_Profiling, "    Head Info: nativeOffset=%d scriptDepth=%d",
          int(regionNativeOffset), int(scriptDepth));
  WriteHead(writer, regionNativeOffset, scriptDepth);
  spewer.spewAndAdvance("      ");

  // Write each script/pc pair.
  {
    InlineScriptTree* curTree = entry->tree;
    jsbytecode* curPc = entry->pc;
    for (uint8_t i = 0; i < scriptDepth; i++) {
      // Find the index of the script within the list.
      // NB: scriptList is guaranteed to contain curTree->script()
      uint32_t scriptIdx = 0;
      for (; scriptIdx < scriptList.length(); scriptIdx++) {
        if (scriptList[scriptIdx].script == curTree->script()) {
          break;
        }
      }
      MOZ_ASSERT(scriptIdx < scriptList.length());

      uint32_t pcOffset = curTree->script()->pcToOffset(curPc);

      JitSpew(JitSpew_Profiling, "    Script/PC %d: scriptIdx=%d pcOffset=%d",
              int(i), int(scriptIdx), int(pcOffset));
      WriteScriptPc(writer, scriptIdx, pcOffset);
      spewer.spewAndAdvance("      ");

      MOZ_ASSERT_IF(i < scriptDepth - 1, curTree->hasCaller());
      curPc = curTree->callerPc();
      curTree = curTree->caller();
    }
  }

  // Start writing runs.
  uint32_t curNativeOffset = entry->nativeOffset.offset();
  uint32_t curBytecodeOffset = entry->tree->script()->pcToOffset(entry->pc);

  JitSpew(JitSpew_Profiling,
          "  Writing Delta Run from nativeOffset=%d bytecodeOffset=%d",
          int(curNativeOffset), int(curBytecodeOffset));

  // Skip first entry because it is implicit in the header.  Start at subsequent
  // entry.
  for (uint32_t i = 1; i < runLength; i++) {
    MOZ_ASSERT(entry[i].tree == entry->tree);

    uint32_t nextNativeOffset = entry[i].nativeOffset.offset();
    uint32_t nextBytecodeOffset =
        entry[i].tree->script()->pcToOffset(entry[i].pc);
    MOZ_ASSERT(nextNativeOffset >= curNativeOffset);

    uint32_t nativeDelta = nextNativeOffset - curNativeOffset;
    int32_t bytecodeDelta =
        int32_t(nextBytecodeOffset) - int32_t(curBytecodeOffset);
    MOZ_ASSERT(IsDeltaEncodeable(nativeDelta, bytecodeDelta));

    JitSpew(JitSpew_Profiling,
            "    RunEntry native: %d-%d [%d]  bytecode: %d-%d [%d]",
            int(curNativeOffset), int(nextNativeOffset), int(nativeDelta),
            int(curBytecodeOffset), int(nextBytecodeOffset),
            int(bytecodeDelta));
    WriteDelta(writer, nativeDelta, bytecodeDelta);

    // Spew the bytecode in these ranges.
    if (curBytecodeOffset < nextBytecodeOffset) {
      JitSpewStart(JitSpew_Profiling, "      OPS: ");
      uint32_t curBc = curBytecodeOffset;
      while (curBc < nextBytecodeOffset) {
        jsbytecode* pc = entry[i].tree->script()->offsetToPC(curBc);
#ifdef JS_JITSPEW
        JSOp op = JSOp(*pc);
        JitSpewCont(JitSpew_Profiling, "%s ", CodeName(op));
#endif
        curBc += GetBytecodeLength(pc);
      }
      JitSpewFin(JitSpew_Profiling);
    }
    spewer.spewAndAdvance("      ");

    curNativeOffset = nextNativeOffset;
    curBytecodeOffset = nextBytecodeOffset;
  }

  if (writer.oom()) {
    return false;
  }

  return true;
}

void JitcodeRegionEntry::unpack() {
  CompactBufferReader reader(data_, end_);
  ReadHead(reader, &nativeOffset_, &scriptDepth_);
  MOZ_ASSERT(scriptDepth_ > 0);

  scriptPcStack_ = reader.currentPosition();
  // Skip past script/pc stack
  for (unsigned i = 0; i < scriptDepth_; i++) {
    uint32_t scriptIdx, pcOffset;
    ReadScriptPc(reader, &scriptIdx, &pcOffset);
  }

  deltaRun_ = reader.currentPosition();
}

uint32_t JitcodeRegionEntry::findPcOffset(uint32_t queryNativeOffset,
                                          uint32_t startPcOffset) const {
  DeltaIterator iter = deltaIterator();
  uint32_t curNativeOffset = nativeOffset();
  uint32_t curPcOffset = startPcOffset;
  while (iter.hasMore()) {
    uint32_t nativeDelta;
    int32_t pcDelta;
    iter.readNext(&nativeDelta, &pcDelta);

    // The start address of the next delta-run entry is counted towards
    // the current delta-run entry, because return addresses should
    // associate with the bytecode op prior (the call) not the op after.
    if (queryNativeOffset <= curNativeOffset + nativeDelta) {
      break;
    }
    curNativeOffset += nativeDelta;
    curPcOffset += pcDelta;
  }
  return curPcOffset;
}

uint32_t JitcodeIonTable::findRegionEntry(uint32_t nativeOffset) const {
  static const uint32_t LINEAR_SEARCH_THRESHOLD = 8;
  uint32_t regions = numRegions();
  MOZ_ASSERT(regions > 0);

  // For small region lists, just search linearly.
  if (regions <= LINEAR_SEARCH_THRESHOLD) {
    JitcodeRegionEntry previousEntry = regionEntry(0);
    for (uint32_t i = 1; i < regions; i++) {
      JitcodeRegionEntry nextEntry = regionEntry(i);
      MOZ_ASSERT(nextEntry.nativeOffset() >= previousEntry.nativeOffset());

      // See note in binary-search code below about why we use '<=' here
      // instead of '<'.  Short explanation: regions are closed at their
      // ending addresses, and open at their starting addresses.
      if (nativeOffset <= nextEntry.nativeOffset()) {
        return i - 1;
      }

      previousEntry = nextEntry;
    }
    // If nothing found, assume it falls within last region.
    return regions - 1;
  }

  // For larger ones, binary search the region table.
  uint32_t idx = 0;
  uint32_t count = regions;
  while (count > 1) {
    uint32_t step = count / 2;
    uint32_t mid = idx + step;
    JitcodeRegionEntry midEntry = regionEntry(mid);

    // A region memory range is closed at its ending address, not starting
    // address.  This is because the return address for calls must associate
    // with the call's bytecode PC, not the PC of the bytecode operator after
    // the call.
    //
    // So a query is < an entry if the query nativeOffset is <= the start
    // address of the entry, and a query is >= an entry if the query
    // nativeOffset is > the start address of an entry.
    if (nativeOffset <= midEntry.nativeOffset()) {
      // Target entry is below midEntry.
      count = step;
    } else {  // if (nativeOffset > midEntry.nativeOffset())
      // Target entry is at midEntry or above.
      idx = mid;
      count -= step;
    }
  }
  return idx;
}

/* static */
bool JitcodeIonTable::WriteIonTable(CompactBufferWriter& writer,
                                    const IonEntry::ScriptList& scriptList,
                                    const NativeToBytecode* start,
                                    const NativeToBytecode* end,
                                    uint32_t* tableOffsetOut,
                                    uint32_t* numRegionsOut) {
  MOZ_ASSERT(tableOffsetOut != nullptr);
  MOZ_ASSERT(numRegionsOut != nullptr);
  MOZ_ASSERT(writer.length() == 0);
  MOZ_ASSERT(scriptList.length() > 0);

  JitSpew(JitSpew_Profiling,
          "Writing native to bytecode map for %s:%u:%u (%zu entries)",
          scriptList[0].script->filename(), scriptList[0].script->lineno(),
          scriptList[0].script->column(),
          mozilla::PointerRangeSize(start, end));

  JitSpew(JitSpew_Profiling, "  ScriptList of size %u",
          unsigned(scriptList.length()));
  for (uint32_t i = 0; i < scriptList.length(); i++) {
    JitSpew(JitSpew_Profiling, "  Script %u - %s:%u:%u", i,
            scriptList[i].script->filename(), scriptList[i].script->lineno(),
            scriptList[i].script->column());
  }

  // Write out runs first.  Keep a vector tracking the positive offsets from
  // payload start to the run.
  const NativeToBytecode* curEntry = start;
  js::Vector<uint32_t, 32, SystemAllocPolicy> runOffsets;

  while (curEntry != end) {
    // Calculate the length of the next run.
    uint32_t runLength = JitcodeRegionEntry::ExpectedRunLength(curEntry, end);
    MOZ_ASSERT(runLength > 0);
    MOZ_ASSERT(runLength <= uintptr_t(end - curEntry));
    JitSpew(JitSpew_Profiling, "  Run at entry %d, length %d, buffer offset %d",
            int(curEntry - start), int(runLength), int(writer.length()));

    // Store the offset of the run.
    if (!runOffsets.append(writer.length())) {
      return false;
    }

    // Encode the run.
    if (!JitcodeRegionEntry::WriteRun(writer, scriptList, runLength,
                                      curEntry)) {
      return false;
    }

    curEntry += runLength;
  }

  // Done encoding regions.  About to start table.  Ensure we are aligned to 4
  // bytes since table is composed of uint32_t values.
  uint32_t padding = sizeof(uint32_t) - (writer.length() % sizeof(uint32_t));
  if (padding == sizeof(uint32_t)) {
    padding = 0;
  }
  JitSpew(JitSpew_Profiling, "  Padding %d bytes after run @%d", int(padding),
          int(writer.length()));
  for (uint32_t i = 0; i < padding; i++) {
    writer.writeByte(0);
  }

  // Now at start of table.
  uint32_t tableOffset = writer.length();

  // The table being written at this point will be accessed directly via
  // uint32_t pointers, so all writes below use native endianness.

  // Write out numRegions
  JitSpew(JitSpew_Profiling, "  Writing numRuns=%d", int(runOffsets.length()));
  writer.writeNativeEndianUint32_t(runOffsets.length());

  // Write out region offset table.  The offsets in |runOffsets| are currently
  // forward offsets from the beginning of the buffer.  We convert them to
  // backwards offsets from the start of the table before writing them into
  // their table entries.
  for (uint32_t i = 0; i < runOffsets.length(); i++) {
    JitSpew(JitSpew_Profiling, "  Run %d offset=%d backOffset=%d @%d", int(i),
            int(runOffsets[i]), int(tableOffset - runOffsets[i]),
            int(writer.length()));
    writer.writeNativeEndianUint32_t(tableOffset - runOffsets[i]);
  }

  if (writer.oom()) {
    return false;
  }

  *tableOffsetOut = tableOffset;
  *numRegionsOut = runOffsets.length();
  return true;
}

}  // namespace jit
}  // namespace js

JS::ProfiledFrameHandle::ProfiledFrameHandle(JSRuntime* rt,
                                             js::jit::JitcodeGlobalEntry& entry,
                                             void* addr, const char* label,
                                             uint32_t depth)
    : rt_(rt),
      entry_(entry),
      addr_(addr),
      canonicalAddr_(nullptr),
      label_(label),
      depth_(depth) {
  if (!canonicalAddr_) {
    canonicalAddr_ = entry_.canonicalNativeAddrFor(rt_, addr_);
  }
}

JS_PUBLIC_API JS::ProfilingFrameIterator::FrameKind
JS::ProfiledFrameHandle::frameKind() const {
  if (entry_.isBaselineInterpreter()) {
    return JS::ProfilingFrameIterator::Frame_BaselineInterpreter;
  }
  if (entry_.isBaseline()) {
    return JS::ProfilingFrameIterator::Frame_Baseline;
  }
  return JS::ProfilingFrameIterator::Frame_Ion;
}

JS_PUBLIC_API uint64_t JS::ProfiledFrameHandle::realmID() const {
  return entry_.lookupRealmID(rt_, addr_);
}

JS_PUBLIC_API JS::ProfiledFrameRange JS::GetProfiledFrames(JSContext* cx,
                                                           void* addr) {
  JSRuntime* rt = cx->runtime();
  js::jit::JitcodeGlobalTable* table =
      rt->jitRuntime()->getJitcodeGlobalTable();
  js::jit::JitcodeGlobalEntry* entry = table->lookup(addr);

  ProfiledFrameRange result(rt, addr, entry);

  if (entry) {
    result.depth_ = entry->callStackAtAddr(rt, addr, result.labels_,
                                           MOZ_ARRAY_LENGTH(result.labels_));
  }
  return result;
}

JS::ProfiledFrameHandle JS::ProfiledFrameRange::Iter::operator*() const {
  // The iterator iterates in high depth to low depth order. index_ goes up,
  // and the depth we need to pass to ProfiledFrameHandle goes down.
  uint32_t depth = range_.depth_ - 1 - index_;
  return ProfiledFrameHandle(range_.rt_, *range_.entry_, range_.addr_,
                             range_.labels_[depth], depth);
}