1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2021 the V8 project authors. All rights reserved.
#ifndef jit_riscv64_Assembler_riscv64_h
#define jit_riscv64_Assembler_riscv64_h
#include "mozilla/Assertions.h"
#include "mozilla/Sprintf.h"
#include <stdint.h>
#include "jit/CompactBuffer.h"
#include "jit/JitCode.h"
#include "jit/JitSpewer.h"
#include "jit/Registers.h"
#include "jit/RegisterSets.h"
#include "jit/riscv64/Architecture-riscv64.h"
#include "jit/riscv64/constant/Constant-riscv64.h"
#include "jit/riscv64/extension/base-assembler-riscv.h"
#include "jit/riscv64/extension/base-riscv-i.h"
#include "jit/riscv64/extension/extension-riscv-a.h"
#include "jit/riscv64/extension/extension-riscv-c.h"
#include "jit/riscv64/extension/extension-riscv-d.h"
#include "jit/riscv64/extension/extension-riscv-f.h"
#include "jit/riscv64/extension/extension-riscv-m.h"
#include "jit/riscv64/extension/extension-riscv-v.h"
#include "jit/riscv64/extension/extension-riscv-zicsr.h"
#include "jit/riscv64/extension/extension-riscv-zifencei.h"
#include "jit/riscv64/Register-riscv64.h"
#include "jit/shared/Assembler-shared.h"
#include "jit/shared/Disassembler-shared.h"
#include "jit/shared/IonAssemblerBufferWithConstantPools.h"
#include "js/HashTable.h"
#include "wasm/WasmTypeDecls.h"
namespace js {
namespace jit {
struct ScratchFloat32Scope : public AutoFloatRegisterScope {
explicit ScratchFloat32Scope(MacroAssembler& masm)
: AutoFloatRegisterScope(masm, ScratchFloat32Reg) {}
};
struct ScratchDoubleScope : public AutoFloatRegisterScope {
explicit ScratchDoubleScope(MacroAssembler& masm)
: AutoFloatRegisterScope(masm, ScratchDoubleReg) {}
};
struct ScratchRegisterScope : public AutoRegisterScope {
explicit ScratchRegisterScope(MacroAssembler& masm)
: AutoRegisterScope(masm, ScratchRegister) {}
};
class MacroAssembler;
inline Imm32 Imm64::secondHalf() const { return hi(); }
inline Imm32 Imm64::firstHalf() const { return low(); }
static constexpr uint32_t ABIStackAlignment = 8;
static constexpr uint32_t CodeAlignment = 16;
static constexpr uint32_t JitStackAlignment = 8;
static constexpr uint32_t JitStackValueAlignment =
JitStackAlignment / sizeof(Value);
static const uint32_t WasmStackAlignment = 16;
static const uint32_t WasmTrapInstructionLength = 2 * sizeof(uint32_t);
// See comments in wasm::GenerateFunctionPrologue. The difference between these
// is the size of the largest callable prologue on the platform.
static constexpr uint32_t WasmCheckedCallEntryOffset = 0u;
static constexpr uint32_t WasmCheckedTailEntryOffset = 20u;
static const Scale ScalePointer = TimesEight;
class Assembler;
static constexpr int32_t SliceSize = 1024;
typedef js::jit::AssemblerBufferWithConstantPools<
SliceSize, 4, Instruction, Assembler, NumShortBranchRangeTypes>
Buffer;
class Assembler : public AssemblerShared,
public AssemblerRISCVI,
public AssemblerRISCVA,
public AssemblerRISCVF,
public AssemblerRISCVD,
public AssemblerRISCVM,
public AssemblerRISCVC,
public AssemblerRISCVZicsr,
public AssemblerRISCVZifencei {
GeneralRegisterSet scratch_register_list_;
static constexpr int kInvalidSlotPos = -1;
#ifdef JS_JITSPEW
Sprinter* printer;
#endif
bool enoughLabelCache_ = true;
protected:
using LabelOffset = int32_t;
using LabelCahe =
HashMap<LabelOffset, BufferOffset, js::DefaultHasher<LabelOffset>,
js::SystemAllocPolicy>;
LabelCahe label_cache_;
void NoEnoughLabelCache() { enoughLabelCache_ = false; }
CompactBufferWriter jumpRelocations_;
CompactBufferWriter dataRelocations_;
Buffer m_buffer;
bool isFinished = false;
Instruction* editSrc(BufferOffset bo) { return m_buffer.getInst(bo); }
struct RelativePatch {
// the offset within the code buffer where the value is loaded that
// we want to fix-up
BufferOffset offset;
void* target;
RelocationKind kind;
RelativePatch(BufferOffset offset, void* target, RelocationKind kind)
: offset(offset), target(target), kind(kind) {}
};
js::Vector<RelativePatch, 8, SystemAllocPolicy> jumps_;
void addPendingJump(BufferOffset src, ImmPtr target, RelocationKind kind) {
enoughMemory_ &= jumps_.append(RelativePatch(src, target.value, kind));
if (kind == RelocationKind::JITCODE) {
jumpRelocations_.writeUnsigned(src.getOffset());
}
}
void addLongJump(BufferOffset src, BufferOffset dst) {
CodeLabel cl;
cl.patchAt()->bind(src.getOffset());
cl.target()->bind(dst.getOffset());
cl.setLinkMode(CodeLabel::JumpImmediate);
addCodeLabel(std::move(cl));
}
public:
static bool FLAG_riscv_debug;
Assembler()
: scratch_register_list_((1 << t5.code()) | (1 << t4.code()) |
(1 << t6.code())),
#ifdef JS_JITSPEW
printer(nullptr),
#endif
m_buffer(/*guardSize*/ 2, /*headerSize*/ 2, /*instBufferAlign*/ 8,
/*poolMaxOffset*/ GetPoolMaxOffset(), /*pcBias*/ 8,
/*alignFillInst*/ kNopByte, /*nopFillInst*/ kNopByte),
isFinished(false) {
}
static uint32_t NopFill;
static uint32_t AsmPoolMaxOffset;
static uint32_t GetPoolMaxOffset();
bool reserve(size_t size);
bool oom() const;
void setPrinter(Sprinter* sp) {
#ifdef JS_JITSPEW
printer = sp;
#endif
}
void finish() {
MOZ_ASSERT(!isFinished);
isFinished = true;
}
void enterNoPool(size_t maxInst) { m_buffer.enterNoPool(maxInst); }
void leaveNoPool() { m_buffer.leaveNoPool(); }
bool swapBuffer(wasm::Bytes& bytes);
// Size of the instruction stream, in bytes.
size_t size() const;
// Size of the data table, in bytes.
size_t bytesNeeded() const;
// Size of the jump relocation table, in bytes.
size_t jumpRelocationTableBytes() const;
size_t dataRelocationTableBytes() const;
void copyJumpRelocationTable(uint8_t* dest);
void copyDataRelocationTable(uint8_t* dest);
// Copy the assembly code to the given buffer, and perform any pending
// relocations relying on the target address.
void executableCopy(uint8_t* buffer);
// API for speaking with the IonAssemblerBufferWithConstantPools generate an
// initial placeholder instruction that we want to later fix up.
static void InsertIndexIntoTag(uint8_t* load, uint32_t index);
static void PatchConstantPoolLoad(void* loadAddr, void* constPoolAddr);
// We're not tracking short-range branches for ARM for now.
static void PatchShortRangeBranchToVeneer(Buffer*, unsigned rangeIdx,
BufferOffset deadline,
BufferOffset veneer);
struct PoolHeader {
uint32_t data;
struct Header {
// The size should take into account the pool header.
// The size is in units of Instruction (4bytes), not byte.
union {
struct {
uint32_t size : 15;
// "Natural" guards are part of the normal instruction stream,
// while "non-natural" guards are inserted for the sole purpose
// of skipping around a pool.
uint32_t isNatural : 1;
uint32_t ONES : 16;
};
uint32_t data;
};
Header(int size_, bool isNatural_)
: size(size_), isNatural(isNatural_), ONES(0xffff) {}
Header(uint32_t data) : data(data) {
static_assert(sizeof(Header) == sizeof(uint32_t));
MOZ_ASSERT(ONES == 0xffff);
}
uint32_t raw() const {
static_assert(sizeof(Header) == sizeof(uint32_t));
return data;
}
};
PoolHeader(int size_, bool isNatural_)
: data(Header(size_, isNatural_).raw()) {}
uint32_t size() const {
Header tmp(data);
return tmp.size;
}
uint32_t isNatural() const {
Header tmp(data);
return tmp.isNatural;
}
};
static void WritePoolHeader(uint8_t* start, Pool* p, bool isNatural);
static void WritePoolGuard(BufferOffset branch, Instruction* inst,
BufferOffset dest);
void processCodeLabels(uint8_t* rawCode);
BufferOffset nextOffset() { return m_buffer.nextOffset(); }
// Get the buffer offset of the next inserted instruction. This may flush
// constant pools.
BufferOffset nextInstrOffset(int numInstr = 1) {
return m_buffer.nextInstrOffset(numInstr);
}
void comment(const char* msg) { spew("; %s", msg); }
#ifdef JS_JITSPEW
inline void spew(const char* fmt, ...) MOZ_FORMAT_PRINTF(2, 3) {
if (MOZ_UNLIKELY(printer || JitSpewEnabled(JitSpew_Codegen))) {
va_list va;
va_start(va, fmt);
spew(fmt, va);
va_end(va);
}
}
#else
MOZ_ALWAYS_INLINE void spew(const char* fmt, ...) MOZ_FORMAT_PRINTF(2, 3) {}
#endif
#ifdef JS_JITSPEW
MOZ_COLD void spew(const char* fmt, va_list va) MOZ_FORMAT_PRINTF(2, 0) {
// Buffer to hold the formatted string. Note that this may contain
// '%' characters, so do not pass it directly to printf functions.
char buf[200];
int i = VsprintfLiteral(buf, fmt, va);
if (i > -1) {
if (printer) {
printer->printf("%s\n", buf);
}
js::jit::JitSpew(js::jit::JitSpew_Codegen, "%s", buf);
}
}
#endif
enum Condition {
Overflow = overflow,
Below = Uless,
BelowOrEqual = Uless_equal,
Above = Ugreater,
AboveOrEqual = Ugreater_equal,
Equal = equal,
NotEqual = not_equal,
GreaterThan = greater,
GreaterThanOrEqual = greater_equal,
LessThan = less,
LessThanOrEqual = less_equal,
Always = cc_always,
CarrySet,
CarryClear,
Signed,
NotSigned,
Zero,
NonZero,
};
enum DoubleCondition {
// These conditions will only evaluate to true if the comparison is ordered
// - i.e. neither operand is NaN.
DoubleOrdered,
DoubleEqual,
DoubleNotEqual,
DoubleGreaterThan,
DoubleGreaterThanOrEqual,
DoubleLessThan,
DoubleLessThanOrEqual,
// If either operand is NaN, these conditions always evaluate to true.
DoubleUnordered,
DoubleEqualOrUnordered,
DoubleNotEqualOrUnordered,
DoubleGreaterThanOrUnordered,
DoubleGreaterThanOrEqualOrUnordered,
DoubleLessThanOrUnordered,
DoubleLessThanOrEqualOrUnordered,
FIRST_UNORDERED = DoubleUnordered,
LAST_UNORDERED = DoubleLessThanOrEqualOrUnordered
};
Register getStackPointer() const { return StackPointer; }
void flushBuffer() {}
static int disassembleInstr(Instr instr, bool enable_spew = false);
int target_at(BufferOffset pos, bool is_internal);
static int target_at(Instruction* instruction, BufferOffset pos,
bool is_internal, Instruction* instruction2 = nullptr);
uint32_t next_link(Label* label, bool is_internal);
static uintptr_t target_address_at(Instruction* pos);
static void set_target_value_at(Instruction* pc, uint64_t target);
void target_at_put(BufferOffset pos, BufferOffset target_pos,
bool trampoline = false);
virtual int32_t branch_offset_helper(Label* L, OffsetSize bits);
int32_t branch_long_offset(Label* L);
// Determines if Label is bound and near enough so that branch instruction
// can be used to reach it, instead of jump instruction.
bool is_near(Label* L);
bool is_near(Label* L, OffsetSize bits);
bool is_near_branch(Label* L);
void nopAlign(int m) {
MOZ_ASSERT(m >= 4 && (m & (m - 1)) == 0);
while ((currentOffset() & (m - 1)) != 0) {
nop();
}
}
virtual void emit(Instr x) {
MOZ_ASSERT(hasCreator());
m_buffer.putInt(x);
#ifdef DEBUG
if (!oom()) {
DEBUG_PRINTF(
"0x%lx(%lx):",
(uint64_t)editSrc(BufferOffset(currentOffset() - sizeof(Instr))),
currentOffset() - sizeof(Instr));
disassembleInstr(x, JitSpewEnabled(JitSpew_Codegen));
}
#endif
}
virtual void emit(ShortInstr x) { MOZ_CRASH(); }
virtual void emit(uint64_t x) { MOZ_CRASH(); }
virtual void emit(uint32_t x) {
DEBUG_PRINTF(
"0x%lx(%lx): uint32_t: %d\n",
(uint64_t)editSrc(BufferOffset(currentOffset() - sizeof(Instr))),
currentOffset() - sizeof(Instr), x);
m_buffer.putInt(x);
}
void instr_at_put(BufferOffset offset, Instr instr) {
DEBUG_PRINTF("\t[instr_at_put\n");
DEBUG_PRINTF("\t%p %d \n\t", editSrc(offset), offset.getOffset());
disassembleInstr(editSrc(offset)->InstructionBits());
DEBUG_PRINTF("\t");
*reinterpret_cast<Instr*>(editSrc(offset)) = instr;
disassembleInstr(editSrc(offset)->InstructionBits());
DEBUG_PRINTF("\t]\n");
}
static Condition InvertCondition(Condition);
static DoubleCondition InvertCondition(DoubleCondition);
static uint64_t ExtractLoad64Value(Instruction* inst0);
static void UpdateLoad64Value(Instruction* inst0, uint64_t value);
static void PatchDataWithValueCheck(CodeLocationLabel label, ImmPtr newValue,
ImmPtr expectedValue);
static void PatchDataWithValueCheck(CodeLocationLabel label,
PatchedImmPtr newValue,
PatchedImmPtr expectedValue);
static void PatchWrite_Imm32(CodeLocationLabel label, Imm32 imm);
static void PatchWrite_NearCall(CodeLocationLabel start,
CodeLocationLabel toCall) {
Instruction* inst = (Instruction*)start.raw();
uint8_t* dest = toCall.raw();
// Overwrite whatever instruction used to be here with a call.
// Always use long jump for two reasons:
// - Jump has to be the same size because of PatchWrite_NearCallSize.
// - Return address has to be at the end of replaced block.
// Short jump wouldn't be more efficient.
// WriteLoad64Instructions will emit 6 instrs to load a addr.
Assembler::WriteLoad64Instructions(inst, ScratchRegister, (uint64_t)dest);
Instr jalr_ = JALR | (ra.code() << kRdShift) | (0x0 << kFunct3Shift) |
(ScratchRegister.code() << kRs1Shift) | (0x0 << kImm12Shift);
*reinterpret_cast<Instr*>(inst + 6 * kInstrSize) = jalr_;
}
static void WriteLoad64Instructions(Instruction* inst0, Register reg,
uint64_t value);
static uint32_t PatchWrite_NearCallSize() { return 7 * sizeof(uint32_t); }
static void TraceJumpRelocations(JSTracer* trc, JitCode* code,
CompactBufferReader& reader);
static void TraceDataRelocations(JSTracer* trc, JitCode* code,
CompactBufferReader& reader);
static void ToggleToJmp(CodeLocationLabel inst_);
static void ToggleToCmp(CodeLocationLabel inst_);
static void ToggleCall(CodeLocationLabel inst_, bool enable);
static void Bind(uint8_t* rawCode, const CodeLabel& label);
// label operations
void bind(Label* label, BufferOffset boff = BufferOffset());
void bind(CodeLabel* label) { label->target()->bind(currentOffset()); }
uint32_t currentOffset() { return nextOffset().getOffset(); }
void retarget(Label* label, Label* target);
static uint32_t NopSize() { return 4; }
static uintptr_t GetPointer(uint8_t* instPtr) {
Instruction* inst = (Instruction*)instPtr;
return Assembler::ExtractLoad64Value(inst);
}
static bool HasRoundInstruction(RoundingMode) { return false; }
void verifyHeapAccessDisassembly(uint32_t begin, uint32_t end,
const Disassembler::HeapAccess& heapAccess) {
MOZ_CRASH();
}
void setUnlimitedBuffer() { m_buffer.setUnlimited(); }
GeneralRegisterSet* GetScratchRegisterList() {
return &scratch_register_list_;
}
void EmitConstPoolWithJumpIfNeeded(size_t margin = 0) {}
// As opposed to x86/x64 version, the data relocation has to be executed
// before to recover the pointer, and not after.
void writeDataRelocation(ImmGCPtr ptr) {
// Raw GC pointer relocations and Value relocations both end up in
// TraceOneDataRelocation.
if (ptr.value) {
if (gc::IsInsideNursery(ptr.value)) {
embedsNurseryPointers_ = true;
}
dataRelocations_.writeUnsigned(nextOffset().getOffset());
}
}
bool appendRawCode(const uint8_t* code, size_t numBytes);
void assertNoGCThings() const {
#ifdef DEBUG
MOZ_ASSERT(dataRelocations_.length() == 0);
for (auto& j : jumps_) {
MOZ_ASSERT(j.kind == RelocationKind::HARDCODED);
}
#endif
}
// Assembler Pseudo Instructions (Tables 25.2, 25.3, RISC-V Unprivileged ISA)
void break_(uint32_t code, bool break_as_stop = false);
void nop();
void RV_li(Register rd, intptr_t imm);
static int RV_li_count(int64_t imm, bool is_get_temp_reg = false);
void GeneralLi(Register rd, int64_t imm);
static int GeneralLiCount(intptr_t imm, bool is_get_temp_reg = false);
void RecursiveLiImpl(Register rd, intptr_t imm);
void RecursiveLi(Register rd, intptr_t imm);
static int RecursiveLiCount(intptr_t imm);
static int RecursiveLiImplCount(intptr_t imm);
// Returns the number of instructions required to load the immediate
static int li_estimate(intptr_t imm, bool is_get_temp_reg = false);
// Loads an immediate, always using 8 instructions, regardless of the value,
// so that it can be modified later.
void li_constant(Register rd, intptr_t imm);
void li_ptr(Register rd, intptr_t imm);
};
class ABIArgGenerator {
public:
ABIArgGenerator()
: intRegIndex_(0), floatRegIndex_(0), stackOffset_(0), current_() {}
ABIArg next(MIRType);
ABIArg& current() { return current_; }
uint32_t stackBytesConsumedSoFar() const { return stackOffset_; }
void increaseStackOffset(uint32_t bytes) { stackOffset_ += bytes; }
protected:
unsigned intRegIndex_;
unsigned floatRegIndex_;
uint32_t stackOffset_;
ABIArg current_;
};
class BlockTrampolinePoolScope {
public:
explicit BlockTrampolinePoolScope(Assembler* assem, int margin)
: assem_(assem) {
assem_->enterNoPool(margin);
}
~BlockTrampolinePoolScope() { assem_->leaveNoPool(); }
private:
Assembler* assem_;
BlockTrampolinePoolScope() = delete;
BlockTrampolinePoolScope(const BlockTrampolinePoolScope&) = delete;
BlockTrampolinePoolScope& operator=(const BlockTrampolinePoolScope&) = delete;
};
class UseScratchRegisterScope {
public:
explicit UseScratchRegisterScope(Assembler* assembler);
~UseScratchRegisterScope();
Register Acquire();
bool hasAvailable() const;
void Include(const GeneralRegisterSet& list) {
*available_ = GeneralRegisterSet::Intersect(*available_, list);
}
void Exclude(const GeneralRegisterSet& list) {
*available_ = GeneralRegisterSet::Subtract(*available_, list);
}
private:
GeneralRegisterSet* available_;
GeneralRegisterSet old_available_;
};
// Class Operand represents a shifter operand in data processing instructions.
class Operand {
public:
enum Tag { REG, FREG, MEM, IMM };
Operand(FloatRegister freg) : tag(FREG), rm_(freg.code()) {}
explicit Operand(Register base, Imm32 off)
: tag(MEM), rm_(base.code()), offset_(off.value) {}
explicit Operand(Register base, int32_t off)
: tag(MEM), rm_(base.code()), offset_(off) {}
explicit Operand(const Address& addr)
: tag(MEM), rm_(addr.base.code()), offset_(addr.offset) {}
explicit Operand(intptr_t immediate) : tag(IMM), rm_() { value_ = immediate; }
// Register.
Operand(const Register rm) : tag(REG), rm_(rm.code()) {}
// Return true if this is a register operand.
bool is_reg() const { return tag == REG; }
bool is_freg() const { return tag == FREG; }
bool is_mem() const { return tag == MEM; }
bool is_imm() const { return tag == IMM; }
inline intptr_t immediate() const {
MOZ_ASSERT(is_imm());
return value_;
}
bool IsImmediate() const { return !is_reg(); }
Register rm() const { return Register::FromCode(rm_); }
int32_t offset() const {
MOZ_ASSERT(is_mem());
return offset_;
}
FloatRegister toFReg() const {
MOZ_ASSERT(tag == FREG);
return FloatRegister::FromCode(rm_);
}
Register toReg() const {
MOZ_ASSERT(tag == REG);
return Register::FromCode(rm_);
}
Address toAddress() const {
MOZ_ASSERT(tag == MEM);
return Address(Register::FromCode(rm_), offset());
}
private:
Tag tag;
uint32_t rm_;
int32_t offset_;
intptr_t value_; // valid if rm_ == no_reg
friend class Assembler;
friend class MacroAssembler;
};
static const uint32_t NumIntArgRegs = 8;
static const uint32_t NumFloatArgRegs = 8;
static inline bool GetIntArgReg(uint32_t usedIntArgs, Register* out) {
if (usedIntArgs < NumIntArgRegs) {
*out = Register::FromCode(a0.code() + usedIntArgs);
return true;
}
return false;
}
static inline bool GetFloatArgReg(uint32_t usedFloatArgs, FloatRegister* out) {
if (usedFloatArgs < NumFloatArgRegs) {
*out = FloatRegister::FromCode(fa0.code() + usedFloatArgs);
return true;
}
return false;
}
// Get a register in which we plan to put a quantity that will be used as an
// integer argument. This differs from GetIntArgReg in that if we have no more
// actual argument registers to use we will fall back on using whatever
// CallTempReg* don't overlap the argument registers, and only fail once those
// run out too.
static inline bool GetTempRegForIntArg(uint32_t usedIntArgs,
uint32_t usedFloatArgs, Register* out) {
// NOTE: We can't properly determine which regs are used if there are
// float arguments. If this is needed, we will have to guess.
MOZ_ASSERT(usedFloatArgs == 0);
if (GetIntArgReg(usedIntArgs, out)) {
return true;
}
// Unfortunately, we have to assume things about the point at which
// GetIntArgReg returns false, because we need to know how many registers it
// can allocate.
usedIntArgs -= NumIntArgRegs;
if (usedIntArgs >= NumCallTempNonArgRegs) {
return false;
}
*out = CallTempNonArgRegs[usedIntArgs];
return true;
}
} // namespace jit
} // namespace js
#endif /* jit_riscv64_Assembler_riscv64_h */
|