1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <set>
#include <stdio.h>
#include "ds/AvlTree.h"
#include "jsapi-tests/tests.h"
using namespace js;
////////////////////////////////////////////////////////////////////////
// //
// AvlTree testing interface. //
// //
////////////////////////////////////////////////////////////////////////
// The "standard" AVL interface, `class AvlTree` at the end of
// js/src/ds/AvlTree.h, is too restrictive to allow proper testing of the AVL
// tree internals. In particular it disallows insertion of duplicate values
// and removal of non-present values, and lacks various secondary functions
// such as for counting the number of nodes.
//
// So, for testing, we wrap an alternative interface `AvlTreeTestIF` around
// the core implementation.
template <class T, class C>
class AvlTreeTestIF : public AvlTreeImpl<T, C> {
// Shorthands for names in the implementation (parent) class.
using Impl = AvlTreeImpl<T, C>;
using ImplTag = typename AvlTreeImpl<T, C>::Tag;
using ImplNode = typename AvlTreeImpl<T, C>::Node;
using ImplResult = typename AvlTreeImpl<T, C>::Result;
using ImplNodeAndResult = typename AvlTreeImpl<T, C>::NodeAndResult;
public:
explicit AvlTreeTestIF(LifoAlloc* alloc = nullptr) : Impl(alloc) {}
// Insert `v` if it isn't already there, else leave the tree unchanged.
// Returns true iff an insertion happened.
bool testInsert(const T& v) {
ImplNode* new_root = Impl::insert_worker(v);
if (!new_root) {
// OOM
MOZ_CRASH();
}
if (uintptr_t(new_root) == uintptr_t(1)) {
// Already present
return false;
}
Impl::root_ = new_root;
return true;
}
// Remove `v` if it is present. Returns true iff a removal happened.
bool testRemove(const T& v) {
ImplNodeAndResult pair = Impl::delete_worker(Impl::root_, v);
ImplNode* new_root = pair.first;
ImplResult res = pair.second;
if (res == ImplResult::Error) {
// `v` isn't in the tree.
return false;
} else {
Impl::root_ = new_root;
return true;
}
}
// Count number of elements
size_t testSize_worker(ImplNode* n) const {
if (n) {
return 1 + testSize_worker(n->left) + testSize_worker(n->right);
}
return 0;
}
size_t testSize() const { return testSize_worker(Impl::root_); }
size_t testDepth_worker(ImplNode* n) const {
if (n) {
size_t depthL = testDepth_worker(n->left);
size_t depthR = testDepth_worker(n->right);
return 1 + (depthL > depthR ? depthL : depthR);
}
return 0;
}
size_t testDepth() const { return testDepth_worker(Impl::root_); }
bool testContains(const T& v) const {
ImplNode* node = Impl::find_worker(v);
return node != nullptr;
}
ImplNode* testGetRoot() const { return Impl::root_; }
ImplNode* testGetFreeList() const { return Impl::freeList_; }
bool testFreeListLooksValid(size_t maxElems) {
size_t numElems = 0;
ImplNode* node = Impl::freeList_;
while (node) {
numElems++;
if (numElems > maxElems) {
return false;
}
if (node->tag != ImplTag::Free || node->right != nullptr) {
return false;
}
node = node->left;
}
return true;
}
// For debugging only
private:
void testShow_worker(int depth, const ImplNode* node) const {
if (node) {
testShow_worker(depth + 1, node->right);
for (int i = 0; i < depth; i++) {
printf(" ");
}
char* str = node->item.show();
printf("%s\n", str);
free(str);
testShow_worker(depth + 1, node->left);
}
}
public:
// For debugging only
void testShow() const { testShow_worker(0, Impl::root_); }
// AvlTree::Iter is also public; it's just pass-through from AvlTreeImpl.
};
////////////////////////////////////////////////////////////////////////
// //
// AvlTree test cases. //
// //
////////////////////////////////////////////////////////////////////////
class CmpInt {
int x_;
public:
explicit CmpInt(int x) : x_(x) {}
~CmpInt() {}
static int compare(const CmpInt& me, const CmpInt& other) {
if (me.x_ < other.x_) return -1;
if (me.x_ > other.x_) return 1;
return 0;
}
int get() const { return x_; }
char* show() const {
const size_t length = 16;
char* str = (char*)calloc(length, 1);
snprintf(str, length, "%d", x_);
return str;
}
};
bool TreeIsPlausible(const AvlTreeTestIF<CmpInt, CmpInt>& tree,
const std::set<int>& should_be_in_tree, int UNIV_MIN,
int UNIV_MAX) {
// Same cardinality
size_t n_in_set = should_be_in_tree.size();
size_t n_in_tree = tree.testSize();
if (n_in_set != n_in_tree) {
return false;
}
// Tree is not wildly out of balance. Depth should not exceed 1.44 *
// log2(size).
size_t tree_depth = tree.testDepth();
size_t log2_size = 0;
{
size_t n = n_in_tree;
while (n > 0) {
n = n >> 1;
log2_size += 1;
}
}
// Actually a tighter limit than stated above. For these test cases, the
// tree is either perfectly balanced or within one level of being so (hence
// the +1).
if (tree_depth > log2_size + 1) {
return false;
}
// Check that everything that should be in the tree is in it, and vice
// versa.
for (int i = UNIV_MIN; i < UNIV_MAX; i++) {
bool should_be_in = should_be_in_tree.find(i) != should_be_in_tree.end();
// Look it up with a null comparator (so `contains` compares
// directly)
bool is_in = tree.testContains(CmpInt(i));
if (is_in != should_be_in) {
return false;
}
}
return true;
}
template <typename T>
bool SetContains(std::set<T> s, const T& v) {
return s.find(v) != s.end();
}
BEGIN_TEST(testAvlTree_main) {
static const int UNIV_MIN = 5000;
static const int UNIV_MAX = 5999;
static const int UNIV_SIZE = UNIV_MAX - UNIV_MIN + 1;
LifoAlloc alloc(4096);
AvlTreeTestIF<CmpInt, CmpInt> tree(&alloc);
std::set<int> should_be_in_tree;
// Add numbers to the tree, checking as we go.
for (int i = UNIV_MIN; i < UNIV_MAX; i++) {
// Idiotic but simple
if (i % 3 != 0) {
continue;
}
bool was_added = tree.testInsert(CmpInt(i));
should_be_in_tree.insert(i);
CHECK(was_added);
CHECK(TreeIsPlausible(tree, should_be_in_tree, UNIV_MIN, UNIV_MAX));
}
// Then remove the middle half of the tree, also checking.
for (int i = UNIV_MIN + UNIV_SIZE / 4; i < UNIV_MIN + 3 * (UNIV_SIZE / 4);
i++) {
// Note that here, we're asking to delete a bunch of numbers that aren't
// in the tree. It should remain valid throughout.
bool was_removed = tree.testRemove(CmpInt(i));
bool should_have_been_removed = SetContains(should_be_in_tree, i);
CHECK(was_removed == should_have_been_removed);
should_be_in_tree.erase(i);
CHECK(TreeIsPlausible(tree, should_be_in_tree, UNIV_MIN, UNIV_MAX));
}
// Now add some numbers which are already in the tree.
for (int i = UNIV_MIN; i < UNIV_MIN + UNIV_SIZE / 4; i++) {
if (i % 3 != 0) {
continue;
}
bool was_added = tree.testInsert(CmpInt(i));
bool should_have_been_added = !SetContains(should_be_in_tree, i);
CHECK(was_added == should_have_been_added);
should_be_in_tree.insert(i);
CHECK(TreeIsPlausible(tree, should_be_in_tree, UNIV_MIN, UNIV_MAX));
}
// Then remove all numbers from the tree, in reverse order.
for (int ir = UNIV_MIN; ir < UNIV_MAX; ir++) {
int i = UNIV_MIN + (UNIV_MAX - ir);
bool was_removed = tree.testRemove(CmpInt(i));
bool should_have_been_removed = SetContains(should_be_in_tree, i);
CHECK(was_removed == should_have_been_removed);
should_be_in_tree.erase(i);
CHECK(TreeIsPlausible(tree, should_be_in_tree, UNIV_MIN, UNIV_MAX));
}
// Now the tree should be empty.
CHECK(should_be_in_tree.empty());
CHECK(tree.testSize() == 0);
// Now delete some more stuff. Tree should still be empty :-)
for (int i = UNIV_MIN + 10; i < UNIV_MIN + 100; i++) {
CHECK(should_be_in_tree.empty());
CHECK(tree.testSize() == 0);
bool was_removed = tree.testRemove(CmpInt(i));
CHECK(!was_removed);
CHECK(TreeIsPlausible(tree, should_be_in_tree, UNIV_MIN, UNIV_MAX));
}
// The tree root should be NULL.
CHECK(tree.testGetRoot() == nullptr);
CHECK(tree.testGetFreeList() != nullptr);
// Check the freelist to the extent we can: it's non-circular, and the
// elements look plausible. If it's not shorter than the specified length
// then it must have a cycle, since the tests above won't have resulted in
// more than 400 free nodes at the end.
CHECK(tree.testFreeListLooksValid(400 /*arbitrary*/));
// Test iteration, first in a tree with 9 nodes. This tests the general
// case.
{
CHECK(tree.testSize() == 0);
for (int i = 10; i < 100; i += 10) {
bool was_inserted = tree.testInsert(CmpInt(i));
CHECK(was_inserted);
}
// Test iteration across the whole tree.
AvlTreeTestIF<CmpInt, CmpInt>::Iter iter(&tree);
// `expect` produces (independently) the next expected number. `remaining`
// counts the number items of items remaining.
int expect = 10;
int remaining = 9;
while (iter.hasMore()) {
CmpInt ci = iter.next();
CHECK(ci.get() == expect);
expect += 10;
remaining--;
}
CHECK(remaining == 0);
// Test iteration from a specified start point.
for (int i = 10; i < 100; i += 10) {
for (int j = i - 1; j <= i + 1; j++) {
// Set up `expect` and `remaining`.
remaining = (100 - i) / 10;
switch (j % 10) {
case 0:
expect = j;
break;
case 1:
expect = j + 9;
remaining--;
break;
case 9:
expect = j + 1;
break;
default:
MOZ_CRASH();
}
AvlTreeTestIF<CmpInt, CmpInt>::Iter iter(&tree, CmpInt(j));
while (iter.hasMore()) {
CmpInt ci = iter.next();
CHECK(ci.get() == expect);
expect += 10;
remaining--;
}
CHECK(remaining == 0);
}
}
}
// Now with a completely empty tree.
{
AvlTreeTestIF<CmpInt, CmpInt> emptyTree(&alloc);
CHECK(emptyTree.testSize() == 0);
// Full tree iteration gets us nothing.
AvlTreeTestIF<CmpInt, CmpInt>::Iter iter1(&emptyTree);
CHECK(!iter1.hasMore());
// Starting iteration with any number gets us nothing.
AvlTreeTestIF<CmpInt, CmpInt>::Iter iter2(&emptyTree, CmpInt(42));
CHECK(!iter2.hasMore());
}
// Finally with a one-element tree.
{
AvlTreeTestIF<CmpInt, CmpInt> unitTree(&alloc);
bool was_inserted = unitTree.testInsert(CmpInt(1337));
CHECK(was_inserted);
CHECK(unitTree.testSize() == 1);
// Try full tree iteration.
AvlTreeTestIF<CmpInt, CmpInt>::Iter iter3(&unitTree);
CHECK(iter3.hasMore());
CmpInt ci = iter3.next();
CHECK(ci.get() == 1337);
CHECK(!iter3.hasMore());
for (int i = 1336; i <= 1338; i++) {
int remaining = i < 1338 ? 1 : 0;
int expect = i < 1338 ? 1337 : 99999 /*we'll never use this*/;
AvlTreeTestIF<CmpInt, CmpInt>::Iter iter4(&unitTree, CmpInt(i));
while (iter4.hasMore()) {
CmpInt ci = iter4.next();
CHECK(ci.get() == expect);
remaining--;
// expect doesn't change, we only expect it (or nothing)
}
CHECK(remaining == 0);
}
}
return true;
}
END_TEST(testAvlTree_main)
|