summaryrefslogtreecommitdiffstats
path: root/gfx/2d/BlurSSE2.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
commit26a029d407be480d791972afb5975cf62c9360a6 (patch)
treef435a8308119effd964b339f76abb83a57c29483 /gfx/2d/BlurSSE2.cpp
parentInitial commit. (diff)
downloadfirefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz
firefox-26a029d407be480d791972afb5975cf62c9360a6.zip
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'gfx/2d/BlurSSE2.cpp')
-rw-r--r--gfx/2d/BlurSSE2.cpp345
1 files changed, 345 insertions, 0 deletions
diff --git a/gfx/2d/BlurSSE2.cpp b/gfx/2d/BlurSSE2.cpp
new file mode 100644
index 0000000000..69a30367ba
--- /dev/null
+++ b/gfx/2d/BlurSSE2.cpp
@@ -0,0 +1,345 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
+/* vim: set ts=8 sts=2 et sw=2 tw=80: */
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "Blur.h"
+
+#include "SSEHelpers.h"
+
+#include <string.h>
+
+namespace mozilla::gfx {
+
+MOZ_ALWAYS_INLINE
+__m128i Divide(__m128i aValues, __m128i aDivisor) {
+ const __m128i mask = _mm_setr_epi32(0x0, 0xffffffff, 0x0, 0xffffffff);
+ static const union {
+ int64_t i64[2];
+ __m128i m;
+ } roundingAddition = {{int64_t(1) << 31, int64_t(1) << 31}};
+
+ __m128i multiplied31 = _mm_mul_epu32(aValues, aDivisor);
+ __m128i multiplied42 = _mm_mul_epu32(_mm_srli_epi64(aValues, 32), aDivisor);
+
+ // Add 1 << 31 before shifting or masking the lower 32 bits away, so that the
+ // result is rounded.
+ __m128i p_3_1 =
+ _mm_srli_epi64(_mm_add_epi64(multiplied31, roundingAddition.m), 32);
+ __m128i p4_2_ =
+ _mm_and_si128(_mm_add_epi64(multiplied42, roundingAddition.m), mask);
+ __m128i p4321 = _mm_or_si128(p_3_1, p4_2_);
+ return p4321;
+}
+
+MOZ_ALWAYS_INLINE
+__m128i BlurFourPixels(const __m128i& aTopLeft, const __m128i& aTopRight,
+ const __m128i& aBottomRight, const __m128i& aBottomLeft,
+ const __m128i& aDivisor) {
+ __m128i values = _mm_add_epi32(
+ _mm_sub_epi32(_mm_sub_epi32(aBottomRight, aTopRight), aBottomLeft),
+ aTopLeft);
+ return Divide(values, aDivisor);
+}
+
+MOZ_ALWAYS_INLINE
+void LoadIntegralRowFromRow(uint32_t* aDest, const uint8_t* aSource,
+ int32_t aSourceWidth, int32_t aLeftInflation,
+ int32_t aRightInflation) {
+ int32_t currentRowSum = 0;
+
+ for (int x = 0; x < aLeftInflation; x++) {
+ currentRowSum += aSource[0];
+ aDest[x] = currentRowSum;
+ }
+ for (int x = aLeftInflation; x < (aSourceWidth + aLeftInflation); x++) {
+ currentRowSum += aSource[(x - aLeftInflation)];
+ aDest[x] = currentRowSum;
+ }
+ for (int x = (aSourceWidth + aLeftInflation);
+ x < (aSourceWidth + aLeftInflation + aRightInflation); x++) {
+ currentRowSum += aSource[aSourceWidth - 1];
+ aDest[x] = currentRowSum;
+ }
+}
+
+// This function calculates an integral of four pixels stored in the 4
+// 32-bit integers on aPixels. i.e. for { 30, 50, 80, 100 } this returns
+// { 30, 80, 160, 260 }. This seems to be the fastest way to do this after
+// much testing.
+MOZ_ALWAYS_INLINE
+__m128i AccumulatePixelSums(__m128i aPixels) {
+ __m128i sumPixels = aPixels;
+ __m128i currentPixels = _mm_slli_si128(aPixels, 4);
+ sumPixels = _mm_add_epi32(sumPixels, currentPixels);
+ currentPixels = _mm_unpacklo_epi64(_mm_setzero_si128(), sumPixels);
+
+ return _mm_add_epi32(sumPixels, currentPixels);
+}
+
+MOZ_ALWAYS_INLINE void GenerateIntegralImage_SSE2(
+ int32_t aLeftInflation, int32_t aRightInflation, int32_t aTopInflation,
+ int32_t aBottomInflation, uint32_t* aIntegralImage,
+ size_t aIntegralImageStride, uint8_t* aSource, int32_t aSourceStride,
+ const IntSize& aSize) {
+ MOZ_ASSERT(!(aLeftInflation & 3));
+
+ uint32_t stride32bit = aIntegralImageStride / 4;
+
+ IntSize integralImageSize(aSize.width + aLeftInflation + aRightInflation,
+ aSize.height + aTopInflation + aBottomInflation);
+
+ LoadIntegralRowFromRow(aIntegralImage, aSource, aSize.width, aLeftInflation,
+ aRightInflation);
+
+ for (int y = 1; y < aTopInflation + 1; y++) {
+ uint32_t* intRow = aIntegralImage + (y * stride32bit);
+ uint32_t* intPrevRow = aIntegralImage + (y - 1) * stride32bit;
+ uint32_t* intFirstRow = aIntegralImage;
+
+ for (int x = 0; x < integralImageSize.width; x += 4) {
+ __m128i firstRow = _mm_load_si128((__m128i*)(intFirstRow + x));
+ __m128i previousRow = _mm_load_si128((__m128i*)(intPrevRow + x));
+ _mm_store_si128((__m128i*)(intRow + x),
+ _mm_add_epi32(firstRow, previousRow));
+ }
+ }
+
+ for (int y = aTopInflation + 1; y < (aSize.height + aTopInflation); y++) {
+ __m128i currentRowSum = _mm_setzero_si128();
+ uint32_t* intRow = aIntegralImage + (y * stride32bit);
+ uint32_t* intPrevRow = aIntegralImage + (y - 1) * stride32bit;
+ uint8_t* sourceRow = aSource + aSourceStride * (y - aTopInflation);
+
+ uint32_t pixel = sourceRow[0];
+ for (int x = 0; x < aLeftInflation; x += 4) {
+ __m128i sumPixels = AccumulatePixelSums(
+ _mm_shuffle_epi32(_mm_set1_epi32(pixel), _MM_SHUFFLE(0, 0, 0, 0)));
+
+ sumPixels = _mm_add_epi32(sumPixels, currentRowSum);
+
+ currentRowSum = _mm_shuffle_epi32(sumPixels, _MM_SHUFFLE(3, 3, 3, 3));
+
+ _mm_store_si128(
+ (__m128i*)(intRow + x),
+ _mm_add_epi32(sumPixels, _mm_load_si128((__m128i*)(intPrevRow + x))));
+ }
+ for (int x = aLeftInflation; x < (aSize.width + aLeftInflation); x += 4) {
+ uint32_t pixels = *(uint32_t*)(sourceRow + (x - aLeftInflation));
+
+ // It's important to shuffle here. When we exit this loop currentRowSum
+ // has to be set to sumPixels, so that the following loop can get the
+ // correct pixel for the currentRowSum. The highest order pixel in
+ // currentRowSum could've originated from accumulation in the stride.
+ currentRowSum = _mm_shuffle_epi32(currentRowSum, _MM_SHUFFLE(3, 3, 3, 3));
+
+ __m128i sumPixels = AccumulatePixelSums(_mm_unpacklo_epi16(
+ _mm_unpacklo_epi8(_mm_set1_epi32(pixels), _mm_setzero_si128()),
+ _mm_setzero_si128()));
+ sumPixels = _mm_add_epi32(sumPixels, currentRowSum);
+
+ currentRowSum = sumPixels;
+
+ _mm_store_si128(
+ (__m128i*)(intRow + x),
+ _mm_add_epi32(sumPixels, _mm_load_si128((__m128i*)(intPrevRow + x))));
+ }
+
+ pixel = sourceRow[aSize.width - 1];
+ int x = (aSize.width + aLeftInflation);
+ if ((aSize.width & 3)) {
+ // Deal with unaligned portion. Get the correct pixel from currentRowSum,
+ // see explanation above.
+ uint32_t intCurrentRowSum =
+ ((uint32_t*)&currentRowSum)[(aSize.width % 4) - 1];
+ for (; x < integralImageSize.width; x++) {
+ // We could be unaligned here!
+ if (!(x & 3)) {
+ // aligned!
+ currentRowSum = _mm_set1_epi32(intCurrentRowSum);
+ break;
+ }
+ intCurrentRowSum += pixel;
+ intRow[x] = intPrevRow[x] + intCurrentRowSum;
+ }
+ } else {
+ currentRowSum = _mm_shuffle_epi32(currentRowSum, _MM_SHUFFLE(3, 3, 3, 3));
+ }
+ for (; x < integralImageSize.width; x += 4) {
+ __m128i sumPixels = AccumulatePixelSums(_mm_set1_epi32(pixel));
+
+ sumPixels = _mm_add_epi32(sumPixels, currentRowSum);
+
+ currentRowSum = _mm_shuffle_epi32(sumPixels, _MM_SHUFFLE(3, 3, 3, 3));
+
+ _mm_store_si128(
+ (__m128i*)(intRow + x),
+ _mm_add_epi32(sumPixels, _mm_load_si128((__m128i*)(intPrevRow + x))));
+ }
+ }
+
+ if (aBottomInflation) {
+ // Store the last valid row of our source image in the last row of
+ // our integral image. This will be overwritten with the correct values
+ // in the upcoming loop.
+ LoadIntegralRowFromRow(
+ aIntegralImage + (integralImageSize.height - 1) * stride32bit,
+ aSource + (aSize.height - 1) * aSourceStride, aSize.width,
+ aLeftInflation, aRightInflation);
+
+ for (int y = aSize.height + aTopInflation; y < integralImageSize.height;
+ y++) {
+ __m128i* intRow = (__m128i*)(aIntegralImage + (y * stride32bit));
+ __m128i* intPrevRow = (__m128i*)(aIntegralImage + (y - 1) * stride32bit);
+ __m128i* intLastRow =
+ (__m128i*)(aIntegralImage +
+ (integralImageSize.height - 1) * stride32bit);
+
+ for (int x = 0; x < integralImageSize.width; x += 4) {
+ _mm_store_si128(intRow + (x / 4),
+ _mm_add_epi32(_mm_load_si128(intLastRow + (x / 4)),
+ _mm_load_si128(intPrevRow + (x / 4))));
+ }
+ }
+ }
+}
+
+/**
+ * Attempt to do an in-place box blur using an integral image.
+ */
+void AlphaBoxBlur::BoxBlur_SSE2(uint8_t* aData, int32_t aLeftLobe,
+ int32_t aRightLobe, int32_t aTopLobe,
+ int32_t aBottomLobe, uint32_t* aIntegralImage,
+ size_t aIntegralImageStride) const {
+ IntSize size = GetSize();
+
+ MOZ_ASSERT(size.height > 0);
+
+ // Our 'left' or 'top' lobe will include the current pixel. i.e. when
+ // looking at an integral image the value of a pixel at 'x,y' is calculated
+ // using the value of the integral image values above/below that.
+ aLeftLobe++;
+ aTopLobe++;
+ int32_t boxSize = (aLeftLobe + aRightLobe) * (aTopLobe + aBottomLobe);
+
+ MOZ_ASSERT(boxSize > 0);
+
+ if (boxSize == 1) {
+ return;
+ }
+
+ uint32_t reciprocal = uint32_t((uint64_t(1) << 32) / boxSize);
+
+ uint32_t stride32bit = aIntegralImageStride / 4;
+ int32_t leftInflation = RoundUpToMultipleOf4(aLeftLobe).value();
+
+ GenerateIntegralImage_SSE2(leftInflation, aRightLobe, aTopLobe, aBottomLobe,
+ aIntegralImage, aIntegralImageStride, aData,
+ mStride, size);
+
+ __m128i divisor = _mm_set1_epi32(reciprocal);
+
+ // This points to the start of the rectangle within the IntegralImage that
+ // overlaps the surface being blurred.
+ uint32_t* innerIntegral =
+ aIntegralImage + (aTopLobe * stride32bit) + leftInflation;
+
+ IntRect skipRect = mSkipRect;
+ int32_t stride = mStride;
+ uint8_t* data = aData;
+ for (int32_t y = 0; y < size.height; y++) {
+ // Not using ContainsY(y) because we do not skip y == skipRect.Y()
+ // although that may not be done on purpose
+ bool inSkipRectY = y > skipRect.Y() && y < skipRect.YMost();
+
+ uint32_t* topLeftBase =
+ innerIntegral + ((y - aTopLobe) * ptrdiff_t(stride32bit) - aLeftLobe);
+ uint32_t* topRightBase =
+ innerIntegral + ((y - aTopLobe) * ptrdiff_t(stride32bit) + aRightLobe);
+ uint32_t* bottomRightBase =
+ innerIntegral +
+ ((y + aBottomLobe) * ptrdiff_t(stride32bit) + aRightLobe);
+ uint32_t* bottomLeftBase =
+ innerIntegral +
+ ((y + aBottomLobe) * ptrdiff_t(stride32bit) - aLeftLobe);
+
+ int32_t x = 0;
+ // Process 16 pixels at a time for as long as possible.
+ for (; x <= size.width - 16; x += 16) {
+ // Not using ContainsX(x) because we do not skip x == skipRect.X()
+ // although that may not be done on purpose
+ if (inSkipRectY && x > skipRect.X() && x < skipRect.XMost()) {
+ x = skipRect.XMost() - 16;
+ // Trigger early jump on coming loop iterations, this will be reset
+ // next line anyway.
+ inSkipRectY = false;
+ continue;
+ }
+
+ __m128i topLeft;
+ __m128i topRight;
+ __m128i bottomRight;
+ __m128i bottomLeft;
+
+ topLeft = loadUnaligned128((__m128i*)(topLeftBase + x));
+ topRight = loadUnaligned128((__m128i*)(topRightBase + x));
+ bottomRight = loadUnaligned128((__m128i*)(bottomRightBase + x));
+ bottomLeft = loadUnaligned128((__m128i*)(bottomLeftBase + x));
+ __m128i result1 =
+ BlurFourPixels(topLeft, topRight, bottomRight, bottomLeft, divisor);
+
+ topLeft = loadUnaligned128((__m128i*)(topLeftBase + x + 4));
+ topRight = loadUnaligned128((__m128i*)(topRightBase + x + 4));
+ bottomRight = loadUnaligned128((__m128i*)(bottomRightBase + x + 4));
+ bottomLeft = loadUnaligned128((__m128i*)(bottomLeftBase + x + 4));
+ __m128i result2 =
+ BlurFourPixels(topLeft, topRight, bottomRight, bottomLeft, divisor);
+
+ topLeft = loadUnaligned128((__m128i*)(topLeftBase + x + 8));
+ topRight = loadUnaligned128((__m128i*)(topRightBase + x + 8));
+ bottomRight = loadUnaligned128((__m128i*)(bottomRightBase + x + 8));
+ bottomLeft = loadUnaligned128((__m128i*)(bottomLeftBase + x + 8));
+ __m128i result3 =
+ BlurFourPixels(topLeft, topRight, bottomRight, bottomLeft, divisor);
+
+ topLeft = loadUnaligned128((__m128i*)(topLeftBase + x + 12));
+ topRight = loadUnaligned128((__m128i*)(topRightBase + x + 12));
+ bottomRight = loadUnaligned128((__m128i*)(bottomRightBase + x + 12));
+ bottomLeft = loadUnaligned128((__m128i*)(bottomLeftBase + x + 12));
+ __m128i result4 =
+ BlurFourPixels(topLeft, topRight, bottomRight, bottomLeft, divisor);
+
+ __m128i final = _mm_packus_epi16(_mm_packs_epi32(result1, result2),
+ _mm_packs_epi32(result3, result4));
+
+ _mm_storeu_si128((__m128i*)(data + stride * y + x), final);
+ }
+
+ // Process the remaining pixels 4 bytes at a time.
+ for (; x < size.width; x += 4) {
+ // Not using Containsx(x) because we do not skip x == skipRect.X()
+ // although that may not be done on purpose
+ if (inSkipRectY && x > skipRect.X() && x < skipRect.XMost()) {
+ x = skipRect.XMost() - 4;
+ // Trigger early jump on coming loop iterations, this will be reset
+ // next line anyway.
+ inSkipRectY = false;
+ continue;
+ }
+ __m128i topLeft = loadUnaligned128((__m128i*)(topLeftBase + x));
+ __m128i topRight = loadUnaligned128((__m128i*)(topRightBase + x));
+ __m128i bottomRight = loadUnaligned128((__m128i*)(bottomRightBase + x));
+ __m128i bottomLeft = loadUnaligned128((__m128i*)(bottomLeftBase + x));
+
+ __m128i result =
+ BlurFourPixels(topLeft, topRight, bottomRight, bottomLeft, divisor);
+ __m128i final = _mm_packus_epi16(
+ _mm_packs_epi32(result, _mm_setzero_si128()), _mm_setzero_si128());
+
+ *(uint32_t*)(data + stride * y + x) = _mm_cvtsi128_si32(final);
+ }
+ }
+}
+
+} // namespace mozilla::gfx