summaryrefslogtreecommitdiffstats
path: root/js/public/UbiNode.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
commit26a029d407be480d791972afb5975cf62c9360a6 (patch)
treef435a8308119effd964b339f76abb83a57c29483 /js/public/UbiNode.h
parentInitial commit. (diff)
downloadfirefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz
firefox-26a029d407be480d791972afb5975cf62c9360a6.zip
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--js/public/UbiNode.h1213
1 files changed, 1213 insertions, 0 deletions
diff --git a/js/public/UbiNode.h b/js/public/UbiNode.h
new file mode 100644
index 0000000000..15edea070e
--- /dev/null
+++ b/js/public/UbiNode.h
@@ -0,0 +1,1213 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
+ * vim: set ts=8 sts=2 et sw=2 tw=80:
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#ifndef js_UbiNode_h
+#define js_UbiNode_h
+
+#include "mozilla/Alignment.h"
+#include "mozilla/Assertions.h"
+#include "mozilla/Attributes.h"
+#include "mozilla/HashFunctions.h"
+#include "mozilla/Maybe.h"
+#include "mozilla/MemoryReporting.h"
+#include "mozilla/RangedPtr.h"
+#include "mozilla/Variant.h"
+#include "mozilla/Vector.h"
+
+#include <utility>
+
+#include "jspubtd.h"
+
+#include "js/AllocPolicy.h"
+#include "js/ColumnNumber.h" // JS::TaggedColumnNumberOneOrigin
+#include "js/HashTable.h"
+#include "js/RootingAPI.h"
+#include "js/TypeDecls.h"
+#include "js/UniquePtr.h"
+#include "js/Value.h"
+
+// [SMDOC] ubi::Node (Heap Analysis framework)
+//
+// JS::ubi::Node is a pointer-like type designed for internal use by heap
+// analysis tools. A ubi::Node can refer to:
+//
+// - a JS value, like a string, object, or symbol;
+// - an internal SpiderMonkey structure, like a shape or a scope chain object
+// - an instance of some embedding-provided type: in Firefox, an XPCOM
+// object, or an internal DOM node class instance
+//
+// A ubi::Node instance provides metadata about its referent, and can
+// enumerate its referent's outgoing edges, so you can implement heap analysis
+// algorithms that walk the graph - finding paths between objects, or
+// computing heap dominator trees, say - using ubi::Node, while remaining
+// ignorant of the details of the types you're operating on.
+//
+// Of course, when it comes to presenting the results in a developer-facing
+// tool, you'll need to stop being ignorant of those details, because you have
+// to discuss the ubi::Nodes' referents with the developer. Here, ubi::Node
+// can hand you dynamically checked, properly typed pointers to the original
+// objects via the as<T> method, or generate descriptions of the referent
+// itself.
+//
+// ubi::Node instances are lightweight (two-word) value types. Instances:
+// - compare equal if and only if they refer to the same object;
+// - have hash values that respect their equality relation; and
+// - have serializations that are only equal if the ubi::Nodes are equal.
+//
+// A ubi::Node is only valid for as long as its referent is alive; if its
+// referent goes away, the ubi::Node becomes a dangling pointer. A ubi::Node
+// that refers to a GC-managed object is not automatically a GC root; if the
+// GC frees or relocates its referent, the ubi::Node becomes invalid. A
+// ubi::Node that refers to a reference-counted object does not bump the
+// reference count.
+//
+// ubi::Node values require no supporting data structures, making them
+// feasible for use in memory-constrained devices --- ideally, the memory
+// requirements of the algorithm which uses them will be the limiting factor,
+// not the demands of ubi::Node itself.
+//
+// One can construct a ubi::Node value given a pointer to a type that ubi::Node
+// supports. In the other direction, one can convert a ubi::Node back to a
+// pointer; these downcasts are checked dynamically. In particular, one can
+// convert a 'JSContext*' to a ubi::Node, yielding a node with an outgoing edge
+// for every root registered with the runtime; starting from this, one can walk
+// the entire heap. (Of course, one could also start traversal at any other kind
+// of type to which one has a pointer.)
+//
+//
+// Extending ubi::Node To Handle Your Embedding's Types
+//
+// To add support for a new ubi::Node referent type R, you must define a
+// specialization of the ubi::Concrete template, ubi::Concrete<R>, which
+// inherits from ubi::Base. ubi::Node itself uses the specialization for
+// compile-time information (i.e. the checked conversions between R * and
+// ubi::Node), and the inheritance for run-time dispatching.
+//
+//
+// ubi::Node Exposes Implementation Details
+//
+// In many cases, a JavaScript developer's view of their data differs
+// substantially from its actual implementation. For example, while the
+// ECMAScript specification describes objects as maps from property names to
+// sets of attributes (like ECMAScript's [[Value]]), in practice many objects
+// have only a pointer to a shape, shared with other similar objects, and
+// indexed slots that contain the [[Value]] attributes. As another example, a
+// string produced by concatenating two other strings may sometimes be
+// represented by a "rope", a structure that points to the two original
+// strings.
+//
+// We intend to use ubi::Node to write tools that report memory usage, so it's
+// important that ubi::Node accurately portray how much memory nodes consume.
+// Thus, for example, when data that apparently belongs to multiple nodes is
+// in fact shared in a common structure, ubi::Node's graph uses a separate
+// node for that shared structure, and presents edges to it from the data's
+// apparent owners. For example, ubi::Node exposes SpiderMonkey objects'
+// shapes and base shapes, and exposes rope string and substring structure,
+// because these optimizations become visible when a tool reports how much
+// memory a structure consumes.
+//
+// However, fine granularity is not a goal. When a particular object is the
+// exclusive owner of a separate block of memory, ubi::Node may present the
+// object and its block as a single node, and add their sizes together when
+// reporting the node's size, as there is no meaningful loss of data in this
+// case. Thus, for example, a ubi::Node referring to a JavaScript object, when
+// asked for the object's size in bytes, includes the object's slot and
+// element arrays' sizes in the total. There is no separate ubi::Node value
+// representing the slot and element arrays, since they are owned exclusively
+// by the object.
+//
+//
+// Presenting Analysis Results To JavaScript Developers
+//
+// If an analysis provides its results in terms of ubi::Node values, a user
+// interface presenting those results will generally need to clean them up
+// before they can be understood by JavaScript developers. For example,
+// JavaScript developers should not need to understand shapes, only JavaScript
+// objects. Similarly, they should not need to understand the distinction
+// between DOM nodes and the JavaScript shadow objects that represent them.
+//
+//
+// Rooting Restrictions
+//
+// At present there is no way to root ubi::Node instances, so instances can't be
+// live across any operation that might GC. Analyses using ubi::Node must either
+// run to completion and convert their results to some other rootable type, or
+// save their intermediate state in some rooted structure if they must GC before
+// they complete. (For algorithms like path-finding and dominator tree
+// computation, we implement the algorithm avoiding any operation that could
+// cause a GC --- and use AutoCheckCannotGC to verify this.)
+//
+// If this restriction prevents us from implementing interesting tools, we may
+// teach the GC how to root ubi::Nodes, fix up hash tables that use them as
+// keys, etc.
+//
+//
+// Hostile Graph Structure
+//
+// Analyses consuming ubi::Node graphs must be robust when presented with graphs
+// that are deliberately constructed to exploit their weaknesses. When operating
+// on live graphs, web content has control over the object graph, and less
+// direct control over shape and string structure, and analyses should be
+// prepared to handle extreme cases gracefully. For example, if an analysis were
+// to use the C++ stack in a depth-first traversal, carefully constructed
+// content could cause the analysis to overflow the stack.
+//
+// When ubi::Nodes refer to nodes deserialized from a heap snapshot, analyses
+// must be even more careful: since snapshots often come from potentially
+// compromised e10s content processes, even properties normally guaranteed by
+// the platform (the proper linking of DOM nodes, for example) might be
+// corrupted. While it is the deserializer's responsibility to check the basic
+// structure of the snapshot file, the analyses should be prepared for ubi::Node
+// graphs constructed from snapshots to be even more bizarre.
+
+namespace js {
+class BaseScript;
+} // namespace js
+
+namespace JS {
+
+class JS_PUBLIC_API AutoCheckCannotGC;
+
+using ZoneSet =
+ js::HashSet<Zone*, js::DefaultHasher<Zone*>, js::SystemAllocPolicy>;
+
+using CompartmentSet =
+ js::HashSet<Compartment*, js::DefaultHasher<Compartment*>,
+ js::SystemAllocPolicy>;
+
+namespace ubi {
+
+class Edge;
+class EdgeRange;
+class StackFrame;
+
+using mozilla::Maybe;
+using mozilla::RangedPtr;
+using mozilla::Variant;
+
+template <typename T>
+using Vector = mozilla::Vector<T, 0, js::SystemAllocPolicy>;
+
+/*** ubi::StackFrame **********************************************************/
+
+// Concrete JS::ubi::StackFrame instances backed by a live SavedFrame object
+// store their strings as JSAtom*, while deserialized stack frames from offline
+// heap snapshots store their strings as const char16_t*. In order to provide
+// zero-cost accessors to these strings in a single interface that works with
+// both cases, we use this variant type.
+class JS_PUBLIC_API AtomOrTwoByteChars
+ : public Variant<JSAtom*, const char16_t*> {
+ using Base = Variant<JSAtom*, const char16_t*>;
+
+ public:
+ template <typename T>
+ MOZ_IMPLICIT AtomOrTwoByteChars(T&& rhs) : Base(std::forward<T>(rhs)) {}
+
+ template <typename T>
+ AtomOrTwoByteChars& operator=(T&& rhs) {
+ MOZ_ASSERT(this != &rhs, "self-move disallowed");
+ this->~AtomOrTwoByteChars();
+ new (this) AtomOrTwoByteChars(std::forward<T>(rhs));
+ return *this;
+ }
+
+ // Return the length of the given AtomOrTwoByteChars string.
+ size_t length();
+
+ // Copy the given AtomOrTwoByteChars string into the destination buffer,
+ // inflating if necessary. Does NOT null terminate. Returns the number of
+ // characters written to destination.
+ size_t copyToBuffer(RangedPtr<char16_t> destination, size_t length);
+};
+
+// The base class implemented by each ConcreteStackFrame<T> type. Subclasses
+// must not add data members to this class.
+class BaseStackFrame {
+ friend class StackFrame;
+
+ BaseStackFrame(const StackFrame&) = delete;
+ BaseStackFrame& operator=(const StackFrame&) = delete;
+
+ protected:
+ void* ptr;
+ explicit BaseStackFrame(void* ptr) : ptr(ptr) {}
+
+ public:
+ // This is a value type that should not have a virtual destructor. Don't add
+ // destructors in subclasses!
+
+ // Get a unique identifier for this StackFrame. The identifier is not valid
+ // across garbage collections.
+ virtual uint64_t identifier() const { return uint64_t(uintptr_t(ptr)); }
+
+ // Get this frame's parent frame.
+ virtual StackFrame parent() const = 0;
+
+ // Get this frame's line number (1-origin).
+ virtual uint32_t line() const = 0;
+
+ // Get this frame's column number in UTF-16 code units.
+ virtual JS::TaggedColumnNumberOneOrigin column() const = 0;
+
+ // Get this frame's source name. Never null.
+ virtual AtomOrTwoByteChars source() const = 0;
+
+ // Get a unique per-process ID for this frame's source. Defaults to zero.
+ virtual uint32_t sourceId() const = 0;
+
+ // Return this frame's function name if named, otherwise the inferred
+ // display name. Can be null.
+ virtual AtomOrTwoByteChars functionDisplayName() const = 0;
+
+ // Returns true if this frame's function is system JavaScript running with
+ // trusted principals, false otherwise.
+ virtual bool isSystem() const = 0;
+
+ // Return true if this frame's function is a self-hosted JavaScript builtin,
+ // false otherwise.
+ virtual bool isSelfHosted(JSContext* cx) const = 0;
+
+ // Construct a SavedFrame stack for the stack starting with this frame and
+ // containing all of its parents. The SavedFrame objects will be placed into
+ // cx's current compartment.
+ //
+ // Note that the process of
+ //
+ // SavedFrame
+ // |
+ // V
+ // JS::ubi::StackFrame
+ // |
+ // V
+ // offline heap snapshot
+ // |
+ // V
+ // JS::ubi::StackFrame
+ // |
+ // V
+ // SavedFrame
+ //
+ // is lossy because we cannot serialize and deserialize the SavedFrame's
+ // principals in the offline heap snapshot, so JS::ubi::StackFrame
+ // simplifies the principals check into the boolean isSystem() state. This
+ // is fine because we only expose JS::ubi::Stack to devtools and chrome
+ // code, and not to the web platform.
+ [[nodiscard]] virtual bool constructSavedFrameStack(
+ JSContext* cx, MutableHandleObject outSavedFrameStack) const = 0;
+
+ // Trace the concrete implementation of JS::ubi::StackFrame.
+ virtual void trace(JSTracer* trc) = 0;
+};
+
+// A traits template with a specialization for each backing type that implements
+// the ubi::BaseStackFrame interface. Each specialization must be the a subclass
+// of ubi::BaseStackFrame.
+template <typename T>
+class ConcreteStackFrame;
+
+// A JS::ubi::StackFrame represents a frame in a recorded stack. It can be
+// backed either by a live SavedFrame object or by a structure deserialized from
+// an offline heap snapshot.
+//
+// It is a value type that may be memcpy'd hither and thither without worrying
+// about constructors or destructors, similar to POD types.
+//
+// Its lifetime is the same as the lifetime of the graph that is being analyzed
+// by the JS::ubi::Node that the JS::ubi::StackFrame came from. That is, if the
+// graph being analyzed is the live heap graph, the JS::ubi::StackFrame is only
+// valid within the scope of an AutoCheckCannotGC; if the graph being analyzed
+// is an offline heap snapshot, the JS::ubi::StackFrame is valid as long as the
+// offline heap snapshot is alive.
+class StackFrame {
+ // Storage in which we allocate BaseStackFrame subclasses.
+ mozilla::AlignedStorage2<BaseStackFrame> storage;
+
+ BaseStackFrame* base() { return storage.addr(); }
+ const BaseStackFrame* base() const { return storage.addr(); }
+
+ template <typename T>
+ void construct(T* ptr) {
+ static_assert(std::is_base_of_v<BaseStackFrame, ConcreteStackFrame<T>>,
+ "ConcreteStackFrame<T> must inherit from BaseStackFrame");
+ static_assert(
+ sizeof(ConcreteStackFrame<T>) == sizeof(*base()),
+ "ubi::ConcreteStackFrame<T> specializations must be the same size as "
+ "ubi::BaseStackFrame");
+ ConcreteStackFrame<T>::construct(base(), ptr);
+ }
+ struct ConstructFunctor;
+
+ public:
+ StackFrame() { construct<void>(nullptr); }
+
+ template <typename T>
+ MOZ_IMPLICIT StackFrame(T* ptr) {
+ construct(ptr);
+ }
+
+ template <typename T>
+ StackFrame& operator=(T* ptr) {
+ construct(ptr);
+ return *this;
+ }
+
+ // Constructors accepting SpiderMonkey's generic-pointer-ish types.
+
+ template <typename T>
+ explicit StackFrame(const JS::Handle<T*>& handle) {
+ construct(handle.get());
+ }
+
+ template <typename T>
+ StackFrame& operator=(const JS::Handle<T*>& handle) {
+ construct(handle.get());
+ return *this;
+ }
+
+ template <typename T>
+ explicit StackFrame(const JS::Rooted<T*>& root) {
+ construct(root.get());
+ }
+
+ template <typename T>
+ StackFrame& operator=(const JS::Rooted<T*>& root) {
+ construct(root.get());
+ return *this;
+ }
+
+ // Because StackFrame is just a vtable pointer and an instance pointer, we
+ // can memcpy everything around instead of making concrete classes define
+ // virtual constructors. See the comment above Node's copy constructor for
+ // more details; that comment applies here as well.
+ StackFrame(const StackFrame& rhs) {
+ memcpy(storage.u.mBytes, rhs.storage.u.mBytes, sizeof(storage.u));
+ }
+
+ StackFrame& operator=(const StackFrame& rhs) {
+ memcpy(storage.u.mBytes, rhs.storage.u.mBytes, sizeof(storage.u));
+ return *this;
+ }
+
+ bool operator==(const StackFrame& rhs) const {
+ return base()->ptr == rhs.base()->ptr;
+ }
+ bool operator!=(const StackFrame& rhs) const { return !(*this == rhs); }
+
+ explicit operator bool() const { return base()->ptr != nullptr; }
+
+ // Copy this StackFrame's source name into the given |destination|
+ // buffer. Copy no more than |length| characters. The result is *not* null
+ // terminated. Returns how many characters were written into the buffer.
+ size_t source(RangedPtr<char16_t> destination, size_t length) const;
+
+ // Copy this StackFrame's function display name into the given |destination|
+ // buffer. Copy no more than |length| characters. The result is *not* null
+ // terminated. Returns how many characters were written into the buffer.
+ size_t functionDisplayName(RangedPtr<char16_t> destination,
+ size_t length) const;
+
+ // Get the size of the respective strings. 0 is returned for null strings.
+ size_t sourceLength();
+ size_t functionDisplayNameLength();
+
+ // Methods that forward to virtual calls through BaseStackFrame.
+
+ void trace(JSTracer* trc) { base()->trace(trc); }
+ uint64_t identifier() const {
+ auto id = base()->identifier();
+ MOZ_ASSERT(JS::Value::isNumberRepresentable(id));
+ return id;
+ }
+ uint32_t line() const { return base()->line(); }
+ JS::TaggedColumnNumberOneOrigin column() const { return base()->column(); }
+ AtomOrTwoByteChars source() const { return base()->source(); }
+ uint32_t sourceId() const { return base()->sourceId(); }
+ AtomOrTwoByteChars functionDisplayName() const {
+ return base()->functionDisplayName();
+ }
+ StackFrame parent() const { return base()->parent(); }
+ bool isSystem() const { return base()->isSystem(); }
+ bool isSelfHosted(JSContext* cx) const { return base()->isSelfHosted(cx); }
+ [[nodiscard]] bool constructSavedFrameStack(
+ JSContext* cx, MutableHandleObject outSavedFrameStack) const {
+ return base()->constructSavedFrameStack(cx, outSavedFrameStack);
+ }
+
+ struct HashPolicy {
+ using Lookup = JS::ubi::StackFrame;
+
+ static js::HashNumber hash(const Lookup& lookup) {
+ return mozilla::HashGeneric(lookup.identifier());
+ }
+
+ static bool match(const StackFrame& key, const Lookup& lookup) {
+ return key == lookup;
+ }
+
+ static void rekey(StackFrame& k, const StackFrame& newKey) { k = newKey; }
+ };
+};
+
+// The ubi::StackFrame null pointer. Any attempt to operate on a null
+// ubi::StackFrame crashes.
+template <>
+class ConcreteStackFrame<void> : public BaseStackFrame {
+ explicit ConcreteStackFrame(void* ptr) : BaseStackFrame(ptr) {}
+
+ public:
+ static void construct(void* storage, void*) {
+ new (storage) ConcreteStackFrame(nullptr);
+ }
+
+ uint64_t identifier() const override { return 0; }
+ void trace(JSTracer* trc) override {}
+ [[nodiscard]] bool constructSavedFrameStack(
+ JSContext* cx, MutableHandleObject out) const override {
+ out.set(nullptr);
+ return true;
+ }
+
+ uint32_t line() const override { MOZ_CRASH("null JS::ubi::StackFrame"); }
+ JS::TaggedColumnNumberOneOrigin column() const override {
+ MOZ_CRASH("null JS::ubi::StackFrame");
+ }
+ AtomOrTwoByteChars source() const override {
+ MOZ_CRASH("null JS::ubi::StackFrame");
+ }
+ uint32_t sourceId() const override { MOZ_CRASH("null JS::ubi::StackFrame"); }
+ AtomOrTwoByteChars functionDisplayName() const override {
+ MOZ_CRASH("null JS::ubi::StackFrame");
+ }
+ StackFrame parent() const override { MOZ_CRASH("null JS::ubi::StackFrame"); }
+ bool isSystem() const override { MOZ_CRASH("null JS::ubi::StackFrame"); }
+ bool isSelfHosted(JSContext* cx) const override {
+ MOZ_CRASH("null JS::ubi::StackFrame");
+ }
+};
+
+[[nodiscard]] JS_PUBLIC_API bool ConstructSavedFrameStackSlow(
+ JSContext* cx, JS::ubi::StackFrame& frame,
+ MutableHandleObject outSavedFrameStack);
+
+/*** ubi::Node
+ * ************************************************************************************/
+
+// A concrete node specialization can claim its referent is a member of a
+// particular "coarse type" which is less specific than the actual
+// implementation type but generally more palatable for web developers. For
+// example, JitCode can be considered to have a coarse type of "Script". This is
+// used by some analyses for putting nodes into different buckets. The default,
+// if a concrete specialization does not provide its own mapping to a CoarseType
+// variant, is "Other".
+//
+// NB: the values associated with a particular enum variant must not change or
+// be reused for new variants. Doing so will cause inspecting ubi::Nodes backed
+// by an offline heap snapshot from an older SpiderMonkey/Firefox version to
+// break. Consider this enum append only.
+enum class CoarseType : uint32_t {
+ Other = 0,
+ Object = 1,
+ Script = 2,
+ String = 3,
+ DOMNode = 4,
+
+ FIRST = Other,
+ LAST = DOMNode
+};
+
+/**
+ * Convert a CoarseType enum into a string. The string is statically allocated.
+ */
+JS_PUBLIC_API const char* CoarseTypeToString(CoarseType type);
+
+inline uint32_t CoarseTypeToUint32(CoarseType type) {
+ return static_cast<uint32_t>(type);
+}
+
+inline bool Uint32IsValidCoarseType(uint32_t n) {
+ auto first = static_cast<uint32_t>(CoarseType::FIRST);
+ auto last = static_cast<uint32_t>(CoarseType::LAST);
+ MOZ_ASSERT(first < last);
+ return first <= n && n <= last;
+}
+
+inline CoarseType Uint32ToCoarseType(uint32_t n) {
+ MOZ_ASSERT(Uint32IsValidCoarseType(n));
+ return static_cast<CoarseType>(n);
+}
+
+// The base class implemented by each ubi::Node referent type. Subclasses must
+// not add data members to this class.
+class JS_PUBLIC_API Base {
+ friend class Node;
+
+ // For performance's sake, we'd prefer to avoid a virtual destructor; and
+ // an empty constructor seems consistent with the 'lightweight value type'
+ // visible behavior we're trying to achieve. But if the destructor isn't
+ // virtual, and a subclass overrides it, the subclass's destructor will be
+ // ignored. Is there a way to make the compiler catch that error?
+
+ protected:
+ // Space for the actual pointer. Concrete subclasses should define a
+ // properly typed 'get' member function to access this.
+ void* ptr;
+
+ explicit Base(void* ptr) : ptr(ptr) {}
+
+ public:
+ bool operator==(const Base& rhs) const {
+ // Some compilers will indeed place objects of different types at
+ // the same address, so technically, we should include the vtable
+ // in this comparison. But it seems unlikely to cause problems in
+ // practice.
+ return ptr == rhs.ptr;
+ }
+ bool operator!=(const Base& rhs) const { return !(*this == rhs); }
+
+ // An identifier for this node, guaranteed to be stable and unique for as
+ // long as this ubi::Node's referent is alive and at the same address.
+ //
+ // This is probably suitable for use in serializations, as it is an integral
+ // type. It may also help save memory when constructing HashSets of
+ // ubi::Nodes: since a uint64_t will always be smaller-or-equal-to the size
+ // of a ubi::Node, a HashSet<ubi::Node::Id> may use less space per element
+ // than a HashSet<ubi::Node>.
+ //
+ // (Note that 'unique' only means 'up to equality on ubi::Node'; see the
+ // caveats about multiple objects allocated at the same address for
+ // 'ubi::Node::operator=='.)
+ using Id = uint64_t;
+ virtual Id identifier() const { return Id(uintptr_t(ptr)); }
+
+ // Returns true if this node is pointing to something on the live heap, as
+ // opposed to something from a deserialized core dump. Returns false,
+ // otherwise.
+ virtual bool isLive() const { return true; };
+
+ // Return the coarse-grained type-of-thing that this node represents.
+ virtual CoarseType coarseType() const { return CoarseType::Other; }
+
+ // Return a human-readable name for the referent's type. The result should
+ // be statically allocated. (You can use u"strings" for this.)
+ //
+ // This must always return Concrete<T>::concreteTypeName; we use that
+ // pointer as a tag for this particular referent type.
+ virtual const char16_t* typeName() const = 0;
+
+ // Return the size of this node, in bytes. Include any structures that this
+ // node owns exclusively that are not exposed as their own ubi::Nodes.
+ // |mallocSizeOf| should be a malloc block sizing function; see
+ // |mfbt/MemoryReporting.h|.
+ //
+ // Because we can use |JS::ubi::Node|s backed by a snapshot that was taken
+ // on a 64-bit platform when we are currently on a 32-bit platform, we
+ // cannot rely on |size_t| for node sizes. Instead, |Size| is uint64_t on
+ // all platforms.
+ using Size = uint64_t;
+ virtual Size size(mozilla::MallocSizeOf mallocSizeof) const { return 1; }
+
+ // Return an EdgeRange that initially contains all the referent's outgoing
+ // edges. The caller takes ownership of the EdgeRange.
+ //
+ // If wantNames is true, compute names for edges. Doing so can be expensive
+ // in time and memory.
+ virtual js::UniquePtr<EdgeRange> edges(JSContext* cx,
+ bool wantNames) const = 0;
+
+ // Return the Zone to which this node's referent belongs, or nullptr if the
+ // referent is not of a type allocated in SpiderMonkey Zones.
+ virtual JS::Zone* zone() const { return nullptr; }
+
+ // Return the compartment for this node. Some ubi::Node referents are not
+ // associated with Compartments, such as JSStrings (which are associated
+ // with Zones). When the referent is not associated with a compartment,
+ // nullptr is returned.
+ virtual JS::Compartment* compartment() const { return nullptr; }
+
+ // Return the realm for this node. Some ubi::Node referents are not
+ // associated with Realms, such as JSStrings (which are associated
+ // with Zones) or cross-compartment wrappers (which are associated with
+ // compartments). When the referent is not associated with a realm,
+ // nullptr is returned.
+ virtual JS::Realm* realm() const { return nullptr; }
+
+ // Return whether this node's referent's allocation stack was captured.
+ virtual bool hasAllocationStack() const { return false; }
+
+ // Get the stack recorded at the time this node's referent was
+ // allocated. This must only be called when hasAllocationStack() is true.
+ virtual StackFrame allocationStack() const {
+ MOZ_CRASH(
+ "Concrete classes that have an allocation stack must override both "
+ "hasAllocationStack and allocationStack.");
+ }
+
+ // In some cases, Concrete<T> can return a more descriptive
+ // referent type name than simply `T`. This method returns an
+ // identifier as specific as is efficiently available.
+ // The string returned is borrowed from the ubi::Node's referent.
+ // If nothing more specific than typeName() is available, return nullptr.
+ virtual const char16_t* descriptiveTypeName() const { return nullptr; }
+
+ // Methods for JSObject Referents
+ //
+ // These methods are only semantically valid if the referent is either a
+ // JSObject in the live heap, or represents a previously existing JSObject
+ // from some deserialized heap snapshot.
+
+ // Return the object's [[Class]]'s name.
+ virtual const char* jsObjectClassName() const { return nullptr; }
+
+ // Methods for CoarseType::Script referents
+
+ // Return the script's source's filename if available. If unavailable,
+ // return nullptr.
+ virtual const char* scriptFilename() const { return nullptr; }
+
+ private:
+ Base(const Base& rhs) = delete;
+ Base& operator=(const Base& rhs) = delete;
+};
+
+// A traits template with a specialization for each referent type that
+// ubi::Node supports. The specialization must be the concrete subclass of Base
+// that represents a pointer to the referent type. It must include these
+// members:
+//
+// // The specific char16_t array returned by Concrete<T>::typeName().
+// static const char16_t concreteTypeName[];
+//
+// // Construct an instance of this concrete class in |storage| referring
+// // to |referent|. Implementations typically use a placement 'new'.
+// //
+// // In some cases, |referent| will contain dynamic type information that
+// // identifies it a some more specific subclass of |Referent|. For
+// // example, when |Referent| is |JSObject|, then |referent->getClass()|
+// // could tell us that it's actually a JSFunction. Similarly, if
+// // |Referent| is |nsISupports|, we would like a ubi::Node that knows its
+// // final implementation type.
+// //
+// // So we delegate the actual construction to this specialization, which
+// // knows Referent's details.
+// static void construct(void* storage, Referent* referent);
+template <typename Referent>
+class Concrete;
+
+// A container for a Base instance; all members simply forward to the contained
+// instance. This container allows us to pass ubi::Node instances by value.
+class Node {
+ // Storage in which we allocate Base subclasses.
+ mozilla::AlignedStorage2<Base> storage;
+ Base* base() { return storage.addr(); }
+ const Base* base() const { return storage.addr(); }
+
+ template <typename T>
+ void construct(T* ptr) {
+ static_assert(
+ sizeof(Concrete<T>) == sizeof(*base()),
+ "ubi::Base specializations must be the same size as ubi::Base");
+ static_assert(std::is_base_of_v<Base, Concrete<T>>,
+ "ubi::Concrete<T> must inherit from ubi::Base");
+ Concrete<T>::construct(base(), ptr);
+ }
+ struct ConstructFunctor;
+
+ public:
+ Node() { construct<void>(nullptr); }
+
+ template <typename T>
+ MOZ_IMPLICIT Node(T* ptr) {
+ construct(ptr);
+ }
+ template <typename T>
+ Node& operator=(T* ptr) {
+ construct(ptr);
+ return *this;
+ }
+
+ // We can construct and assign from rooted forms of pointers.
+ template <typename T>
+ MOZ_IMPLICIT Node(const Rooted<T*>& root) {
+ construct(root.get());
+ }
+ template <typename T>
+ Node& operator=(const Rooted<T*>& root) {
+ construct(root.get());
+ return *this;
+ }
+
+ // Constructors accepting SpiderMonkey's other generic-pointer-ish types.
+ // Note that we *do* want an implicit constructor here: JS::Value and
+ // JS::ubi::Node are both essentially tagged references to other sorts of
+ // objects, so letting conversions happen automatically is appropriate.
+ MOZ_IMPLICIT Node(JS::HandleValue value);
+ explicit Node(JS::GCCellPtr thing);
+
+ // copy construction and copy assignment just use memcpy, since we know
+ // instances contain nothing but a vtable pointer and a data pointer.
+ //
+ // To be completely correct, concrete classes could provide a virtual
+ // 'construct' member function, which we could invoke on rhs to construct an
+ // instance in our storage. But this is good enough; there's no need to jump
+ // through vtables for copying and assignment that are just going to move
+ // two words around. The compiler knows how to optimize memcpy.
+ Node(const Node& rhs) {
+ memcpy(storage.u.mBytes, rhs.storage.u.mBytes, sizeof(storage.u));
+ }
+
+ Node& operator=(const Node& rhs) {
+ memcpy(storage.u.mBytes, rhs.storage.u.mBytes, sizeof(storage.u));
+ return *this;
+ }
+
+ bool operator==(const Node& rhs) const { return *base() == *rhs.base(); }
+ bool operator!=(const Node& rhs) const { return *base() != *rhs.base(); }
+
+ explicit operator bool() const { return base()->ptr != nullptr; }
+
+ bool isLive() const { return base()->isLive(); }
+
+ // Get the canonical type name for the given type T.
+ template <typename T>
+ static const char16_t* canonicalTypeName() {
+ return Concrete<T>::concreteTypeName;
+ }
+
+ template <typename T>
+ bool is() const {
+ return base()->typeName() == canonicalTypeName<T>();
+ }
+
+ template <typename T>
+ T* as() const {
+ MOZ_ASSERT(isLive());
+ MOZ_ASSERT(this->is<T>());
+ return static_cast<T*>(base()->ptr);
+ }
+
+ template <typename T>
+ T* asOrNull() const {
+ MOZ_ASSERT(isLive());
+ return this->is<T>() ? static_cast<T*>(base()->ptr) : nullptr;
+ }
+
+ // If this node refers to something that can be represented as a JavaScript
+ // value that is safe to expose to JavaScript code, return that value.
+ // Otherwise return UndefinedValue(). JSStrings, JS::Symbols, and some (but
+ // not all!) JSObjects can be exposed.
+ JS::Value exposeToJS() const;
+
+ CoarseType coarseType() const { return base()->coarseType(); }
+ const char16_t* typeName() const { return base()->typeName(); }
+ JS::Zone* zone() const { return base()->zone(); }
+ JS::Compartment* compartment() const { return base()->compartment(); }
+ JS::Realm* realm() const { return base()->realm(); }
+ const char* jsObjectClassName() const { return base()->jsObjectClassName(); }
+ const char16_t* descriptiveTypeName() const {
+ return base()->descriptiveTypeName();
+ }
+
+ const char* scriptFilename() const { return base()->scriptFilename(); }
+
+ using Size = Base::Size;
+ Size size(mozilla::MallocSizeOf mallocSizeof) const {
+ auto size = base()->size(mallocSizeof);
+ MOZ_ASSERT(
+ size > 0,
+ "C++ does not have zero-sized types! Choose 1 if you just need a "
+ "conservative default.");
+ return size;
+ }
+
+ js::UniquePtr<EdgeRange> edges(JSContext* cx, bool wantNames = true) const {
+ return base()->edges(cx, wantNames);
+ }
+
+ bool hasAllocationStack() const { return base()->hasAllocationStack(); }
+ StackFrame allocationStack() const { return base()->allocationStack(); }
+
+ using Id = Base::Id;
+ Id identifier() const {
+ auto id = base()->identifier();
+ MOZ_ASSERT(JS::Value::isNumberRepresentable(id));
+ return id;
+ }
+
+ // A hash policy for ubi::Nodes.
+ // This simply uses the stock PointerHasher on the ubi::Node's pointer.
+ // We specialize DefaultHasher below to make this the default.
+ class HashPolicy {
+ typedef js::PointerHasher<void*> PtrHash;
+
+ public:
+ typedef Node Lookup;
+
+ static js::HashNumber hash(const Lookup& l) {
+ return PtrHash::hash(l.base()->ptr);
+ }
+ static bool match(const Node& k, const Lookup& l) { return k == l; }
+ static void rekey(Node& k, const Node& newKey) { k = newKey; }
+ };
+};
+
+using NodeSet =
+ js::HashSet<Node, js::DefaultHasher<Node>, js::SystemAllocPolicy>;
+using NodeSetPtr = mozilla::UniquePtr<NodeSet, JS::DeletePolicy<NodeSet>>;
+
+/*** Edge and EdgeRange *******************************************************/
+
+using EdgeName = UniqueTwoByteChars;
+
+// An outgoing edge to a referent node.
+class Edge {
+ public:
+ Edge() = default;
+
+ // Construct an initialized Edge, taking ownership of |name|.
+ Edge(char16_t* name, const Node& referent) : name(name), referent(referent) {}
+
+ // Move construction and assignment.
+ Edge(Edge&& rhs) : name(std::move(rhs.name)), referent(rhs.referent) {}
+
+ Edge& operator=(Edge&& rhs) {
+ MOZ_ASSERT(&rhs != this);
+ this->~Edge();
+ new (this) Edge(std::move(rhs));
+ return *this;
+ }
+
+ Edge(const Edge&) = delete;
+ Edge& operator=(const Edge&) = delete;
+
+ // This edge's name. This may be nullptr, if Node::edges was called with
+ // false as the wantNames parameter.
+ //
+ // The storage is owned by this Edge, and will be freed when this Edge is
+ // destructed. You may take ownership of the name by `std::move`ing it
+ // out of the edge; it is just a UniquePtr.
+ //
+ // (In real life we'll want a better representation for names, to avoid
+ // creating tons of strings when the names follow a pattern; and we'll need
+ // to think about lifetimes carefully to ensure traversal stays cheap.)
+ EdgeName name = nullptr;
+
+ // This edge's referent.
+ Node referent;
+};
+
+// EdgeRange is an abstract base class for iterating over a node's outgoing
+// edges. (This is modeled after js::HashTable<K,V>::Range.)
+//
+// Concrete instances of this class need not be as lightweight as Node itself,
+// since they're usually only instantiated while iterating over a particular
+// object's edges. For example, a dumb implementation for JS Cells might use
+// JS::TraceChildren to to get the outgoing edges, and then store them in an
+// array internal to the EdgeRange.
+class EdgeRange {
+ protected:
+ // The current front edge of this range, or nullptr if this range is empty.
+ Edge* front_;
+
+ EdgeRange() : front_(nullptr) {}
+
+ public:
+ virtual ~EdgeRange() = default;
+
+ // True if there are no more edges in this range.
+ bool empty() const { return !front_; }
+
+ // The front edge of this range. This is owned by the EdgeRange, and is
+ // only guaranteed to live until the next call to popFront, or until
+ // the EdgeRange is destructed.
+ const Edge& front() const { return *front_; }
+ Edge& front() { return *front_; }
+
+ // Remove the front edge from this range. This should only be called if
+ // !empty().
+ virtual void popFront() = 0;
+
+ private:
+ EdgeRange(const EdgeRange&) = delete;
+ EdgeRange& operator=(const EdgeRange&) = delete;
+};
+
+typedef mozilla::Vector<Edge, 8, js::SystemAllocPolicy> EdgeVector;
+
+// An EdgeRange concrete class that holds a pre-existing vector of
+// Edges. A PreComputedEdgeRange does not take ownership of its
+// EdgeVector; it is up to the PreComputedEdgeRange's consumer to manage
+// that lifetime.
+class PreComputedEdgeRange : public EdgeRange {
+ EdgeVector& edges;
+ size_t i;
+
+ void settle() { front_ = i < edges.length() ? &edges[i] : nullptr; }
+
+ public:
+ explicit PreComputedEdgeRange(EdgeVector& edges) : edges(edges), i(0) {
+ settle();
+ }
+
+ void popFront() override {
+ MOZ_ASSERT(!empty());
+ i++;
+ settle();
+ }
+};
+
+/*** RootList *****************************************************************/
+
+// RootList is a class that can be pointed to by a |ubi::Node|, creating a
+// fictional root-of-roots which has edges to every GC root in the JS
+// runtime. Having a single root |ubi::Node| is useful for algorithms written
+// with the assumption that there aren't multiple roots (such as computing
+// dominator trees) and you want a single point of entry. It also ensures that
+// the roots themselves get visited by |ubi::BreadthFirst| (they would otherwise
+// only be used as starting points).
+//
+// RootList::init itself causes a minor collection, but once the list of roots
+// has been created, GC must not occur, as the referent ubi::Nodes are not
+// stable across GC. It returns a [[nodiscard]] AutoCheckCannotGC token in order
+// to enforce this. The token's lifetime must extend at least as long as the
+// RootList itself. Note that the RootList does not itself contain a nogc field,
+// which means that it is possible to store it somewhere that it can escape
+// the init()'s nogc scope. Don't do that. (Or you could call some function
+// and pass in the RootList and GC, but that would be caught.)
+//
+// Example usage:
+//
+// {
+// JS::ubi::RootList rootList(cx);
+// auto [ok, nogc] = rootList.init();
+// if (!ok()) {
+// return false;
+// }
+//
+// JS::ubi::Node root(&rootList);
+//
+// ...
+// }
+class MOZ_STACK_CLASS JS_PUBLIC_API RootList {
+ public:
+ JSContext* cx;
+ EdgeVector edges;
+ bool wantNames;
+ bool inited;
+
+ explicit RootList(JSContext* cx, bool wantNames = false);
+
+ // Find all GC roots.
+ [[nodiscard]] std::pair<bool, JS::AutoCheckCannotGC> init();
+ // Find only GC roots in the provided set of |JS::Compartment|s. Note: it's
+ // important to take a CompartmentSet and not a RealmSet: objects in
+ // same-compartment realms can reference each other directly, without going
+ // through CCWs, so if we used a RealmSet here we would miss edges.
+ [[nodiscard]] std::pair<bool, JS::AutoCheckCannotGC> init(
+ CompartmentSet& debuggees);
+ // Find only GC roots in the given Debugger object's set of debuggee
+ // compartments.
+ [[nodiscard]] std::pair<bool, JS::AutoCheckCannotGC> init(
+ HandleObject debuggees);
+
+ // Returns true if the RootList has been initialized successfully, false
+ // otherwise.
+ bool initialized() { return inited; }
+
+ // Explicitly add the given Node as a root in this RootList. If wantNames is
+ // true, you must pass an edgeName. The RootList does not take ownership of
+ // edgeName.
+ [[nodiscard]] bool addRoot(Node node, const char16_t* edgeName = nullptr);
+};
+
+/*** Concrete classes for ubi::Node referent types ****************************/
+
+template <>
+class JS_PUBLIC_API Concrete<RootList> : public Base {
+ protected:
+ explicit Concrete(RootList* ptr) : Base(ptr) {}
+ RootList& get() const { return *static_cast<RootList*>(ptr); }
+
+ public:
+ static void construct(void* storage, RootList* ptr) {
+ new (storage) Concrete(ptr);
+ }
+
+ js::UniquePtr<EdgeRange> edges(JSContext* cx, bool wantNames) const override;
+
+ const char16_t* typeName() const override { return concreteTypeName; }
+ static const char16_t concreteTypeName[];
+};
+
+// A reusable ubi::Concrete specialization base class for types supported by
+// JS::TraceChildren.
+template <typename Referent>
+class JS_PUBLIC_API TracerConcrete : public Base {
+ JS::Zone* zone() const override;
+
+ public:
+ js::UniquePtr<EdgeRange> edges(JSContext* cx, bool wantNames) const override;
+
+ protected:
+ explicit TracerConcrete(Referent* ptr) : Base(ptr) {}
+ Referent& get() const { return *static_cast<Referent*>(ptr); }
+};
+
+// For JS::TraceChildren-based types that have 'realm' and 'compartment'
+// methods.
+template <typename Referent>
+class JS_PUBLIC_API TracerConcreteWithRealm : public TracerConcrete<Referent> {
+ typedef TracerConcrete<Referent> TracerBase;
+ JS::Compartment* compartment() const override;
+ JS::Realm* realm() const override;
+
+ protected:
+ explicit TracerConcreteWithRealm(Referent* ptr) : TracerBase(ptr) {}
+};
+
+// Define specializations for some commonly-used public JSAPI types.
+// These can use the generic templates above.
+template <>
+class JS_PUBLIC_API Concrete<JS::Symbol> : TracerConcrete<JS::Symbol> {
+ protected:
+ explicit Concrete(JS::Symbol* ptr) : TracerConcrete(ptr) {}
+
+ public:
+ static void construct(void* storage, JS::Symbol* ptr) {
+ new (storage) Concrete(ptr);
+ }
+
+ Size size(mozilla::MallocSizeOf mallocSizeOf) const override;
+
+ const char16_t* typeName() const override { return concreteTypeName; }
+ static const char16_t concreteTypeName[];
+};
+
+template <>
+class JS_PUBLIC_API Concrete<JS::BigInt> : TracerConcrete<JS::BigInt> {
+ protected:
+ explicit Concrete(JS::BigInt* ptr) : TracerConcrete(ptr) {}
+
+ public:
+ static void construct(void* storage, JS::BigInt* ptr) {
+ new (storage) Concrete(ptr);
+ }
+
+ Size size(mozilla::MallocSizeOf mallocSizeOf) const override;
+
+ const char16_t* typeName() const override { return concreteTypeName; }
+ static const char16_t concreteTypeName[];
+};
+
+template <>
+class JS_PUBLIC_API Concrete<js::BaseScript>
+ : TracerConcreteWithRealm<js::BaseScript> {
+ protected:
+ explicit Concrete(js::BaseScript* ptr)
+ : TracerConcreteWithRealm<js::BaseScript>(ptr) {}
+
+ public:
+ static void construct(void* storage, js::BaseScript* ptr) {
+ new (storage) Concrete(ptr);
+ }
+
+ CoarseType coarseType() const final { return CoarseType::Script; }
+ Size size(mozilla::MallocSizeOf mallocSizeOf) const override;
+ const char* scriptFilename() const final;
+
+ const char16_t* typeName() const override { return concreteTypeName; }
+ static const char16_t concreteTypeName[];
+};
+
+// The JSObject specialization.
+template <>
+class JS_PUBLIC_API Concrete<JSObject> : public TracerConcrete<JSObject> {
+ protected:
+ explicit Concrete(JSObject* ptr) : TracerConcrete<JSObject>(ptr) {}
+
+ public:
+ static void construct(void* storage, JSObject* ptr);
+
+ JS::Compartment* compartment() const override;
+ JS::Realm* realm() const override;
+
+ const char* jsObjectClassName() const override;
+ Size size(mozilla::MallocSizeOf mallocSizeOf) const override;
+
+ bool hasAllocationStack() const override;
+ StackFrame allocationStack() const override;
+
+ CoarseType coarseType() const final { return CoarseType::Object; }
+
+ const char16_t* typeName() const override { return concreteTypeName; }
+ static const char16_t concreteTypeName[];
+};
+
+// For JSString, we extend the generic template with a 'size' implementation.
+template <>
+class JS_PUBLIC_API Concrete<JSString> : TracerConcrete<JSString> {
+ protected:
+ explicit Concrete(JSString* ptr) : TracerConcrete<JSString>(ptr) {}
+
+ public:
+ static void construct(void* storage, JSString* ptr) {
+ new (storage) Concrete(ptr);
+ }
+
+ Size size(mozilla::MallocSizeOf mallocSizeOf) const override;
+
+ CoarseType coarseType() const final { return CoarseType::String; }
+
+ const char16_t* typeName() const override { return concreteTypeName; }
+ static const char16_t concreteTypeName[];
+};
+
+// The ubi::Node null pointer. Any attempt to operate on a null ubi::Node
+// asserts.
+template <>
+class JS_PUBLIC_API Concrete<void> : public Base {
+ const char16_t* typeName() const override;
+ Size size(mozilla::MallocSizeOf mallocSizeOf) const override;
+ js::UniquePtr<EdgeRange> edges(JSContext* cx, bool wantNames) const override;
+ JS::Zone* zone() const override;
+ JS::Compartment* compartment() const override;
+ JS::Realm* realm() const override;
+ CoarseType coarseType() const final;
+
+ explicit Concrete(void* ptr) : Base(ptr) {}
+
+ public:
+ static void construct(void* storage, void* ptr) {
+ new (storage) Concrete(ptr);
+ }
+};
+
+// The |callback| callback is much like the |Concrete<T>::construct| method: a
+// call to |callback| should construct an instance of the most appropriate
+// JS::ubi::Base subclass for |obj| in |storage|. The callback may assume that
+// |obj->getClass()->isDOMClass()|, and that |storage| refers to the
+// sizeof(JS::ubi::Base) bytes of space that all ubi::Base implementations
+// should require.
+
+// Set |cx|'s runtime hook for constructing ubi::Nodes for DOM classes to
+// |callback|.
+void SetConstructUbiNodeForDOMObjectCallback(JSContext* cx,
+ void (*callback)(void*,
+ JSObject*));
+
+} // namespace ubi
+} // namespace JS
+
+namespace mozilla {
+
+// Make ubi::Node::HashPolicy the default hash policy for ubi::Node.
+template <>
+struct DefaultHasher<JS::ubi::Node> : JS::ubi::Node::HashPolicy {};
+template <>
+struct DefaultHasher<JS::ubi::StackFrame> : JS::ubi::StackFrame::HashPolicy {};
+
+} // namespace mozilla
+
+#endif // js_UbiNode_h