diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-19 00:47:55 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-19 00:47:55 +0000 |
commit | 26a029d407be480d791972afb5975cf62c9360a6 (patch) | |
tree | f435a8308119effd964b339f76abb83a57c29483 /js/public/Value.h | |
parent | Initial commit. (diff) | |
download | firefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz firefox-26a029d407be480d791972afb5975cf62c9360a6.zip |
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | js/public/Value.h | 1553 |
1 files changed, 1553 insertions, 0 deletions
diff --git a/js/public/Value.h b/js/public/Value.h new file mode 100644 index 0000000000..59f71da4f1 --- /dev/null +++ b/js/public/Value.h @@ -0,0 +1,1553 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +/* JS::Value implementation. */ + +#ifndef js_Value_h +#define js_Value_h + +#include "mozilla/Attributes.h" +#include "mozilla/Casting.h" +#include "mozilla/FloatingPoint.h" +#include "mozilla/Likely.h" +#include "mozilla/Maybe.h" + +#include <limits> /* for std::numeric_limits */ +#include <type_traits> + +#include "jstypes.h" + +#include "js/HeapAPI.h" +#include "js/RootingAPI.h" +#include "js/TypeDecls.h" + +namespace JS { +class JS_PUBLIC_API Value; +} + +// [SMDOC] JS::Value Boxing Formats +// +// JS::Value is a 64-bit value, on all architectures. It is conceptually a +// discriminated union of all the types of values that can be represented in SM: +// - Object Pointers +// - 64 bit IEEE 754 floats +// - 32-bit integer values +// - and quite a few more (see JSValueType) +// +// The ECMAScript standard specifies that ECMAScript numbers are IEEE 64-bit +// floating-point values. A JS::Value can represent any JavaScript number +// value directly, without referring to additional storage, or represent an +// object, string, or other ECMAScript value, and remember which type it is. +// +// This may seem surprising: how can a 64-bit type hold all the 64-bit IEEE +// values, and still distinguish them from objects, strings, and so on, +// which have 64-bit addresses ? +// +// This is possible for two reasons: +// +// - First, ECMAScript implementations aren't required to distinguish all +// the values the IEEE 64-bit format can represent. +// +// The IEEE 754 format for floating point numbers specifies that every +// floating-point value whose 11-bit exponent field is all ones, and whose +// 52-bit fraction field is non-zero, has the value NaN. EMCAScript requires +// only one NaN value. This means we can use one IEEE NaN to represent +// ECMAScript's NaN, and use all the other 2^52-2 NaN bitstrings to +// represent the other ECMAScript values. +// +// - Second, on the 64 bit architectures we suppport, only the +// lower 48 bits of an address are currently significant. The upper sixteen +// bits are required to be the sign-extension of bit 48. Furthermore, user +// code always runs in "positive addresses": those in which bit 48 is zero. So +// we only actually need 47 bits to store all possible object or string +// addresses, even on 64-bit platforms. +// +// Our memory initialization system ensures that all pointers we will store in +// objects use only 47 bits. See js::gc::MapAlignedPagesRandom. +// +// The introduction of 5-level page tables, supporting 57-bit virtual +// addresses, is a potential complication. For now, large addresses are +// opt-in, and we simply don't use them. +// +// With a 52-bit fraction field, and 47 bits needed for the 'payload', we +// have up to five bits left to store a 'tag' value, to indicate which +// branch of our discriminated union is live. (In practice, one of those +// bits is used up to simplify NaN representation; see micro-optimization 5 +// below.) +// +// Thus, we define JS::Value representations in terms of the IEEE 64-bit +// floating-point format: +// +// - Any bitstring that IEEE calls a number or an infinity represents that +// ECMAScript number. +// +// - Any bitstring that IEEE calls a NaN represents either an ECMAScript NaN +// or a non-number ECMAScript value, as determined by a tag field stored +// towards the most significant end of the fraction field (exactly where +// depends on the address size). If the tag field indicates that this +// JS::Value is an object, the fraction field's least significant end +// holds the address of a JSObject; if a string, the address of a +// JSString; and so on. +// +// To enforce this invariant, anywhere that may provide a numerical value +// which may have a non-canonical NaN value (NaN, but not the one we've chosen +// for ECMAScript) we must convert that to the canonical NaN. See +// JS::CanonicalizeNaN. +// +// We have two boxing modes defined: NUNBOX32 and PUNBOX64.The first is +// "NaN unboxed boxing" (or Nunboxing), as non-Number payload are stored +// unaltered in the lower bits. The second is "Packed NaN boxing" (or +// punboxing), which is 'logically like nunboxing, but with all the unused bits +// sucked out' [1], as we rely on unused bits of the payload to pack the +// payload in the lower bits using Nunboxing. +// +// - In NUNBOX32 the tag is stored in the least-significant bits of the high +// word of the NaN. Since it's used on 32-bit systems, this has the nice +// property that boxed values are simply stored in the low-word of the 8-byte +// NaN. +// +// - In PUNBOX64, since we need to store more pointer bits (47, see above), the +// tag is stored in the 5 most significant bits of the fraction adjacent to +// the exponent. +// +// Tag values are carefully ordered to support a set of micro-optimizations. In +// particular: +// +// 1. Object is the highest tag, to simplify isPrimitive checks. (See +// ValueUpperExclPrimitiveTag) +// 2. Numbers (Double and Int32) are the lowest tags, to simplify isNumber +// checks. (See ValueUpperInclNumberTag) +// 3. Non-GC tags are ordered before GC-tags, to simplify isGCThing checks. (See +// ValueLowerInclGCThingTag) +// 4. The tags for Object and Null differ by a single flipped bit, to simplify +// toObjectOrNull. (See ValueObjectOrNullBit) +// 5. In PUNBOX64, the most significant bit of every non-Double tag is always +// set. This is to simplify isDouble checks. Note that the highest bitstring +// that corresponds to a non-NaN double is -Infinity: +// 0xfff0_0000_0000_0000 +// But the canonical hardware NaN (produced by, for example, 0/0) is: +// 0x?ff8_0000_0000_0000 +// on all platforms with JIT support*. (The most significant bit is the sign +// bit; it is 1 on x86, but 0 on ARM.) The most significant bit of the +// fraction field is set, which corresponds to the most significant of the 5 +// tag bits. Because we only use tags that have the high bit set, any Value +// represented by a bitstring less than or equal to 0xfff8_..._0000 is a +// Double. (If we wanted to use all five bits, we could define 0x10 as +// JSVAL_TYPE_NAN, and mask off the most significant bit of the tag for +// IsDouble checks. This is not yet necessary, because we still have room +// left to allocate new tags.) +// +// * But see JS_NONCANONICAL_HARDWARE_NAN below. +// +// [1]: +// https://wingolog.org/archives/2011/05/18/value-representation-in-javascript-implementations#969f63bbe4eb912778c9da85feb0f5763e7a7862 + +/* JS::Value can store a full int32_t. */ +#define JSVAL_INT_BITS 32 +#define JSVAL_INT_MIN ((int32_t)0x80000000) +#define JSVAL_INT_MAX ((int32_t)0x7fffffff) + +#if defined(JS_NUNBOX32) +# define JSVAL_TAG_SHIFT 32 +#elif defined(JS_PUNBOX64) +# define JSVAL_TAG_SHIFT 47 +#endif + +// Use enums so that printing a JS::Value in the debugger shows nice +// symbolic type tags. + +enum JSValueType : uint8_t { + JSVAL_TYPE_DOUBLE = 0x00, + JSVAL_TYPE_INT32 = 0x01, + JSVAL_TYPE_BOOLEAN = 0x02, + JSVAL_TYPE_UNDEFINED = 0x03, + JSVAL_TYPE_NULL = 0x04, + JSVAL_TYPE_MAGIC = 0x05, + JSVAL_TYPE_STRING = 0x06, + JSVAL_TYPE_SYMBOL = 0x07, + JSVAL_TYPE_PRIVATE_GCTHING = 0x08, + JSVAL_TYPE_BIGINT = 0x09, +#ifdef ENABLE_RECORD_TUPLE + JSVAL_TYPE_EXTENDED_PRIMITIVE = 0x0b, +#endif + JSVAL_TYPE_OBJECT = 0x0c, + + // This type never appears in a Value; it's only an out-of-band value. + JSVAL_TYPE_UNKNOWN = 0x20 +}; + +namespace JS { +enum class ValueType : uint8_t { + Double = JSVAL_TYPE_DOUBLE, + Int32 = JSVAL_TYPE_INT32, + Boolean = JSVAL_TYPE_BOOLEAN, + Undefined = JSVAL_TYPE_UNDEFINED, + Null = JSVAL_TYPE_NULL, + Magic = JSVAL_TYPE_MAGIC, + String = JSVAL_TYPE_STRING, + Symbol = JSVAL_TYPE_SYMBOL, + PrivateGCThing = JSVAL_TYPE_PRIVATE_GCTHING, + BigInt = JSVAL_TYPE_BIGINT, +#ifdef ENABLE_RECORD_TUPLE + ExtendedPrimitive = JSVAL_TYPE_EXTENDED_PRIMITIVE, +#endif + Object = JSVAL_TYPE_OBJECT, +}; +} // namespace JS + +static_assert(sizeof(JSValueType) == 1, + "compiler typed enum support is apparently buggy"); + +#if defined(JS_NUNBOX32) + +enum JSValueTag : uint32_t { + JSVAL_TAG_CLEAR = 0xFFFFFF80, + JSVAL_TAG_INT32 = JSVAL_TAG_CLEAR | JSVAL_TYPE_INT32, + JSVAL_TAG_UNDEFINED = JSVAL_TAG_CLEAR | JSVAL_TYPE_UNDEFINED, + JSVAL_TAG_NULL = JSVAL_TAG_CLEAR | JSVAL_TYPE_NULL, + JSVAL_TAG_BOOLEAN = JSVAL_TAG_CLEAR | JSVAL_TYPE_BOOLEAN, + JSVAL_TAG_MAGIC = JSVAL_TAG_CLEAR | JSVAL_TYPE_MAGIC, + JSVAL_TAG_STRING = JSVAL_TAG_CLEAR | JSVAL_TYPE_STRING, + JSVAL_TAG_SYMBOL = JSVAL_TAG_CLEAR | JSVAL_TYPE_SYMBOL, + JSVAL_TAG_PRIVATE_GCTHING = JSVAL_TAG_CLEAR | JSVAL_TYPE_PRIVATE_GCTHING, + JSVAL_TAG_BIGINT = JSVAL_TAG_CLEAR | JSVAL_TYPE_BIGINT, +# ifdef ENABLE_RECORD_TUPLE + JSVAL_TAG_EXTENDED_PRIMITIVE = + JSVAL_TAG_CLEAR | JSVAL_TYPE_EXTENDED_PRIMITIVE, +# endif + JSVAL_TAG_OBJECT = JSVAL_TAG_CLEAR | JSVAL_TYPE_OBJECT +}; + +static_assert(sizeof(JSValueTag) == sizeof(uint32_t), + "compiler typed enum support is apparently buggy"); + +#elif defined(JS_PUNBOX64) + +enum JSValueTag : uint32_t { + JSVAL_TAG_MAX_DOUBLE = 0x1FFF0, + JSVAL_TAG_INT32 = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_INT32, + JSVAL_TAG_UNDEFINED = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_UNDEFINED, + JSVAL_TAG_NULL = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_NULL, + JSVAL_TAG_BOOLEAN = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_BOOLEAN, + JSVAL_TAG_MAGIC = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_MAGIC, + JSVAL_TAG_STRING = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_STRING, + JSVAL_TAG_SYMBOL = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_SYMBOL, + JSVAL_TAG_PRIVATE_GCTHING = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_PRIVATE_GCTHING, + JSVAL_TAG_BIGINT = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_BIGINT, +# ifdef ENABLE_RECORD_TUPLE + JSVAL_TAG_EXTENDED_PRIMITIVE = + JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_EXTENDED_PRIMITIVE, +# endif + JSVAL_TAG_OBJECT = JSVAL_TAG_MAX_DOUBLE | JSVAL_TYPE_OBJECT +}; + +static_assert(sizeof(JSValueTag) == sizeof(uint32_t), + "compiler typed enum support is apparently buggy"); + +enum JSValueShiftedTag : uint64_t { + // See Bug 584653 for why we include 0xFFFFFFFF. + JSVAL_SHIFTED_TAG_MAX_DOUBLE = + ((uint64_t(JSVAL_TAG_MAX_DOUBLE) << JSVAL_TAG_SHIFT) | 0xFFFFFFFF), + JSVAL_SHIFTED_TAG_INT32 = (uint64_t(JSVAL_TAG_INT32) << JSVAL_TAG_SHIFT), + JSVAL_SHIFTED_TAG_UNDEFINED = + (uint64_t(JSVAL_TAG_UNDEFINED) << JSVAL_TAG_SHIFT), + JSVAL_SHIFTED_TAG_NULL = (uint64_t(JSVAL_TAG_NULL) << JSVAL_TAG_SHIFT), + JSVAL_SHIFTED_TAG_BOOLEAN = (uint64_t(JSVAL_TAG_BOOLEAN) << JSVAL_TAG_SHIFT), + JSVAL_SHIFTED_TAG_MAGIC = (uint64_t(JSVAL_TAG_MAGIC) << JSVAL_TAG_SHIFT), + JSVAL_SHIFTED_TAG_STRING = (uint64_t(JSVAL_TAG_STRING) << JSVAL_TAG_SHIFT), + JSVAL_SHIFTED_TAG_SYMBOL = (uint64_t(JSVAL_TAG_SYMBOL) << JSVAL_TAG_SHIFT), + JSVAL_SHIFTED_TAG_PRIVATE_GCTHING = + (uint64_t(JSVAL_TAG_PRIVATE_GCTHING) << JSVAL_TAG_SHIFT), + JSVAL_SHIFTED_TAG_BIGINT = (uint64_t(JSVAL_TAG_BIGINT) << JSVAL_TAG_SHIFT), +# ifdef ENABLE_RECORD_TUPLE + JSVAL_SHIFTED_TAG_EXTENDED_PRIMITIVE = + (uint64_t(JSVAL_TYPE_EXTENDED_PRIMITIVE) << JSVAL_TAG_SHIFT), +# endif + JSVAL_SHIFTED_TAG_OBJECT = (uint64_t(JSVAL_TAG_OBJECT) << JSVAL_TAG_SHIFT) +}; + +static_assert(sizeof(JSValueShiftedTag) == sizeof(uint64_t), + "compiler typed enum support is apparently buggy"); + +#endif + +namespace JS { +namespace detail { + +#if defined(JS_NUNBOX32) + +constexpr JSValueTag ValueTypeToTag(JSValueType type) { + return static_cast<JSValueTag>(JSVAL_TAG_CLEAR | + std::underlying_type_t<JSValueType>(type)); +} + +constexpr bool ValueIsDouble(uint64_t bits) { + return uint32_t(bits >> JSVAL_TAG_SHIFT) <= uint32_t(JSVAL_TAG_CLEAR); +} + +constexpr JSValueTag ValueUpperExclPrimitiveTag = JSVAL_TAG_OBJECT; +constexpr JSValueTag ValueUpperInclNumberTag = JSVAL_TAG_INT32; +constexpr JSValueTag ValueLowerInclGCThingTag = JSVAL_TAG_STRING; + +#elif defined(JS_PUNBOX64) + +constexpr JSValueTag ValueTypeToTag(JSValueType type) { + return static_cast<JSValueTag>(JSVAL_TAG_MAX_DOUBLE | + std::underlying_type_t<JSValueType>(type)); +} + +constexpr bool ValueIsDouble(uint64_t bits) { + return bits <= JSVAL_SHIFTED_TAG_MAX_DOUBLE; +} + +constexpr uint64_t ValueTagMask = 0xFFFF'8000'0000'0000; + +// This should only be used in toGCThing. See the 'Spectre mitigations' comment. +constexpr uint64_t ValueGCThingPayloadMask = 0x0000'7FFF'FFFF'FFFF; + +// Mask used to combine an unbox operation with getting the chunk base. +constexpr uint64_t ValueGCThingPayloadChunkMask = + ValueGCThingPayloadMask & ~js::gc::ChunkMask; + +constexpr uint64_t ValueTypeToShiftedTag(JSValueType type) { + return static_cast<uint64_t>(ValueTypeToTag(type)) << JSVAL_TAG_SHIFT; +} +# define JSVAL_TYPE_TO_SHIFTED_TAG(type) \ + (JS::detail::ValueTypeToShiftedTag(type)) + +constexpr JSValueTag ValueUpperExclPrimitiveTag = JSVAL_TAG_OBJECT; +constexpr JSValueTag ValueUpperInclNumberTag = JSVAL_TAG_INT32; +constexpr JSValueTag ValueLowerInclGCThingTag = JSVAL_TAG_STRING; + +constexpr uint64_t ValueUpperExclShiftedPrimitiveTag = JSVAL_SHIFTED_TAG_OBJECT; +constexpr uint64_t ValueUpperExclShiftedNumberTag = JSVAL_SHIFTED_TAG_BOOLEAN; +constexpr uint64_t ValueLowerInclShiftedGCThingTag = JSVAL_SHIFTED_TAG_STRING; + +// JSVAL_TYPE_OBJECT and JSVAL_TYPE_NULL differ by one bit. We can use this to +// implement toObjectOrNull more efficiently. +constexpr uint64_t ValueObjectOrNullBit = 0x8ULL << JSVAL_TAG_SHIFT; +static_assert( + (JSVAL_SHIFTED_TAG_NULL ^ JSVAL_SHIFTED_TAG_OBJECT) == ValueObjectOrNullBit, + "ValueObjectOrNullBit must be consistent with object and null tags"); + +constexpr uint64_t IsValidUserModePointer(uint64_t bits) { + // All 64-bit platforms that we support actually have a 48-bit address space + // for user-mode pointers, with the top 16 bits all set to zero. + return (bits & 0xFFFF'0000'0000'0000) == 0; +} + +#endif /* JS_PUNBOX64 */ + +} // namespace detail +} // namespace JS + +#define JSVAL_TYPE_TO_TAG(type) (JS::detail::ValueTypeToTag(type)) + +enum JSWhyMagic { + /** a hole in a native object's elements */ + JS_ELEMENTS_HOLE, + + /** there is not a pending iterator value */ + JS_NO_ITER_VALUE, + + /** exception value thrown when closing a generator */ + JS_GENERATOR_CLOSING, + + /** used in debug builds to catch tracing errors */ + JS_ARG_POISON, + + /** an empty subnode in the AST serializer */ + JS_SERIALIZE_NO_NODE, + + /** magic value passed to natives to indicate construction */ + JS_IS_CONSTRUCTING, + + /** see class js::HashableValue */ + JS_HASH_KEY_EMPTY, + + /** error while running Ion code */ + JS_ION_ERROR, + + /** missing recover instruction result */ + JS_ION_BAILOUT, + + /** optimized out slot */ + JS_OPTIMIZED_OUT, + + /** uninitialized lexical bindings that produce ReferenceError on touch. */ + JS_UNINITIALIZED_LEXICAL, + + /** arguments object can't be created because environment is dead. */ + JS_MISSING_ARGUMENTS, + + /** for local use */ + JS_GENERIC_MAGIC, + + /** + * When an error object is created without the error cause argument, we set + * the error's cause slot to this magic value. + */ + JS_ERROR_WITHOUT_CAUSE, + + JS_WHY_MAGIC_COUNT +}; + +namespace js { +class JS_PUBLIC_API GenericPrinter; +class JSONPrinter; + +static inline JS::Value PoisonedObjectValue(uintptr_t poison); +#ifdef ENABLE_RECORD_TUPLE +// Re-defined in vm/RecordTupleBoxShared.h. We cannot include that +// file because it circularly includes this one. +bool IsExtendedPrimitive(const JSObject& obj); +namespace gc { +bool MaybeForwardedIsExtendedPrimitive(const JSObject& obj); +} // namespace gc +#endif +} // namespace js + +namespace JS { + +namespace detail { + +// IEEE-754 bit pattern for double-precision positive infinity. +constexpr int InfinitySignBit = 0; +constexpr uint64_t InfinityBits = + mozilla::InfinityBits<double, detail::InfinitySignBit>::value; + +// This is a quiet NaN on IEEE-754[2008] compatible platforms, including X86, +// ARM, SPARC, RISC-V and modern MIPS. +// +// Note: The default sign bit for a hardware synthesized NaN differs between X86 +// and ARM. Both values are considered compatible values on both +// platforms. +constexpr int CanonicalizedNaNSignBit = 0; +constexpr uint64_t CanonicalizedNaNSignificand = 0x8000000000000; + +#if defined(__sparc__) +// Some architectures (not to name names) generate NaNs with bit patterns that +// are incompatible with JS::Value's bit pattern restrictions. Instead we must +// canonicalize all hardware values before storing in JS::Value. +# define JS_NONCANONICAL_HARDWARE_NAN +#endif + +#if defined(__mips__) && !defined(__mips_nan_2008) +// These builds may run on hardware that has differing polarity of the signaling +// NaN bit. While the kernel may handle the trap for us, it is a performance +// issue so instead we compute the NaN to use on startup. The runtime value must +// still meet `ValueIsDouble` requirements which are checked on startup. + +// In particular, we expect one of the following values on MIPS: +// - 0x7FF7FFFFFFFFFFFF Legacy +// - 0x7FF8000000000000 IEEE-754[2008] +# define JS_RUNTIME_CANONICAL_NAN +#endif + +#if defined(JS_RUNTIME_CANONICAL_NAN) +extern uint64_t CanonicalizedNaNBits; +#else +constexpr uint64_t CanonicalizedNaNBits = + mozilla::SpecificNaNBits<double, detail::CanonicalizedNaNSignBit, + detail::CanonicalizedNaNSignificand>::value; +#endif +} // namespace detail + +// Return a quiet NaN that is compatible with JS::Value restrictions. +static MOZ_ALWAYS_INLINE double GenericNaN() { +#if !defined(JS_RUNTIME_CANONICAL_NAN) + static_assert(detail::ValueIsDouble(detail::CanonicalizedNaNBits), + "Canonical NaN must be compatible with JS::Value"); +#endif + + return mozilla::BitwiseCast<double>(detail::CanonicalizedNaNBits); +} + +// Return the infinity the engine uses +static MOZ_ALWAYS_INLINE double Infinity() { + return mozilla::BitwiseCast<double>(detail::InfinityBits); +} + +// Convert an arbitrary double to one compatible with JS::Value representation +// by replacing any NaN value with a canonical one. +static MOZ_ALWAYS_INLINE double CanonicalizeNaN(double d) { + if (MOZ_UNLIKELY(std::isnan(d))) { + return GenericNaN(); + } + return d; +} + +/** + * [SMDOC] JS::Value type + * + * JS::Value is the interface for a single JavaScript Engine value. A few + * general notes on JS::Value: + * + * - JS::Value has setX() and isX() members for X in + * + * { Int32, Double, String, Symbol, BigInt, Boolean, Undefined, Null, + * Object, Magic } + * + * JS::Value also contains toX() for each of the non-singleton types. + * + * - Magic is a singleton type whose payload contains either a JSWhyMagic + * "reason" for the magic value or a uint32_t value. By providing JSWhyMagic + * values when creating and checking for magic values, it is possible to + * assert, at runtime, that only magic values with the expected reason flow + * through a particular value. For example, if cx->exception has a magic + * value, the reason must be JS_GENERATOR_CLOSING. + * + * - The JS::Value operations are preferred. The JSVAL_* operations remain for + * compatibility; they may be removed at some point. These operations mostly + * provide similar functionality. But there are a few key differences. One + * is that JS::Value gives null a separate type. + * Also, to help prevent mistakenly boxing a nullable JSObject* as an object, + * Value::setObject takes a JSObject&. (Conversely, Value::toObject returns a + * JSObject&.) A convenience member Value::setObjectOrNull is provided. + * + * - Note that JS::Value is 8 bytes on 32 and 64-bit architectures. Thus, on + * 32-bit user code should avoid copying jsval/JS::Value as much as possible, + * preferring to pass by const Value&. + * + * Spectre mitigations + * =================== + * To mitigate Spectre attacks, we do the following: + * + * - On 64-bit platforms, when unboxing a Value, we XOR the bits with the + * expected type tag (instead of masking the payload bits). This guarantees + * that toString, toObject, toSymbol will return an invalid pointer (because + * some high bits will be set) when called on a Value with a different type + * tag. + * + * - On 32-bit platforms,when unboxing an object/string/symbol Value, we use a + * conditional move (not speculated) to zero the payload register if the type + * doesn't match. + */ +class alignas(8) Value { + private: + uint64_t asBits_; + + public: + constexpr Value() : asBits_(bitsFromTagAndPayload(JSVAL_TAG_UNDEFINED, 0)) {} + + private: + explicit constexpr Value(uint64_t asBits) : asBits_(asBits) {} + + static uint64_t bitsFromDouble(double d) { +#if defined(JS_NONCANONICAL_HARDWARE_NAN) + d = CanonicalizeNaN(d); +#endif + return mozilla::BitwiseCast<uint64_t>(d); + } + + static_assert(sizeof(JSValueType) == 1, + "type bits must fit in a single byte"); + static_assert(sizeof(JSValueTag) == 4, + "32-bit Value's tag_ must have size 4 to complement the " + "payload union's size 4"); + static_assert(sizeof(JSWhyMagic) <= 4, + "32-bit Value's JSWhyMagic payload field must not inflate " + "the payload beyond 4 bytes"); + + public: +#if defined(JS_NUNBOX32) + using PayloadType = uint32_t; +#elif defined(JS_PUNBOX64) + using PayloadType = uint64_t; +#endif + + static constexpr uint64_t bitsFromTagAndPayload(JSValueTag tag, + PayloadType payload) { + return (uint64_t(tag) << JSVAL_TAG_SHIFT) | payload; + } + + static constexpr Value fromTagAndPayload(JSValueTag tag, + PayloadType payload) { + return fromRawBits(bitsFromTagAndPayload(tag, payload)); + } + + static constexpr Value fromRawBits(uint64_t asBits) { return Value(asBits); } + + static constexpr Value fromInt32(int32_t i) { + return fromTagAndPayload(JSVAL_TAG_INT32, uint32_t(i)); + } + + static Value fromDouble(double d) { return fromRawBits(bitsFromDouble(d)); } + + /** + * Returns false if creating a NumberValue containing the given type would + * be lossy, true otherwise. + */ + template <typename T> + static bool isNumberRepresentable(const T t) { + return T(double(t)) == t; + } + + /*** Mutators ***/ + + void setNull() { + asBits_ = bitsFromTagAndPayload(JSVAL_TAG_NULL, 0); + MOZ_ASSERT(isNull()); + } + + void setUndefined() { + asBits_ = bitsFromTagAndPayload(JSVAL_TAG_UNDEFINED, 0); + MOZ_ASSERT(isUndefined()); + } + + void setInt32(int32_t i) { + asBits_ = bitsFromTagAndPayload(JSVAL_TAG_INT32, uint32_t(i)); + MOZ_ASSERT(toInt32() == i); + } + + void setDouble(double d) { + asBits_ = bitsFromDouble(d); + MOZ_ASSERT(isDouble()); + } + + void setString(JSString* str) { + MOZ_ASSERT(js::gc::IsCellPointerValid(str)); + asBits_ = bitsFromTagAndPayload(JSVAL_TAG_STRING, PayloadType(str)); + MOZ_ASSERT(toString() == str); + } + + void setSymbol(JS::Symbol* sym) { + MOZ_ASSERT(js::gc::IsCellPointerValid(sym)); + asBits_ = bitsFromTagAndPayload(JSVAL_TAG_SYMBOL, PayloadType(sym)); + MOZ_ASSERT(toSymbol() == sym); + } + + void setBigInt(JS::BigInt* bi) { + MOZ_ASSERT(js::gc::IsCellPointerValid(bi)); + asBits_ = bitsFromTagAndPayload(JSVAL_TAG_BIGINT, PayloadType(bi)); + MOZ_ASSERT(toBigInt() == bi); + } + + void setObject(JSObject& obj) { + MOZ_ASSERT(js::gc::IsCellPointerValid(&obj)); +#ifdef ENABLE_RECORD_TUPLE + MOZ_ASSERT(!js::gc::MaybeForwardedIsExtendedPrimitive(obj)); +#endif + setObjectNoCheck(&obj); + MOZ_ASSERT(&toObject() == &obj); + } + +#ifdef ENABLE_RECORD_TUPLE + void setExtendedPrimitive(JSObject& obj) { + MOZ_ASSERT(js::gc::IsCellPointerValid(&obj)); + MOZ_ASSERT(js::gc::MaybeForwardedIsExtendedPrimitive(obj)); + asBits_ = + bitsFromTagAndPayload(JSVAL_TAG_EXTENDED_PRIMITIVE, PayloadType(&obj)); + MOZ_ASSERT(&toExtendedPrimitive() == &obj); + } +#endif + + private: + void setObjectNoCheck(JSObject* obj) { + asBits_ = bitsFromTagAndPayload(JSVAL_TAG_OBJECT, PayloadType(obj)); + } + + friend inline Value js::PoisonedObjectValue(uintptr_t poison); + + public: + void setBoolean(bool b) { + asBits_ = bitsFromTagAndPayload(JSVAL_TAG_BOOLEAN, uint32_t(b)); + MOZ_ASSERT(toBoolean() == b); + } + + void setMagic(JSWhyMagic why) { + asBits_ = bitsFromTagAndPayload(JSVAL_TAG_MAGIC, uint32_t(why)); + MOZ_ASSERT(whyMagic() == why); + } + + void setMagicUint32(uint32_t payload) { + MOZ_ASSERT(payload >= JS_WHY_MAGIC_COUNT, + "This should only be used for non-standard magic values"); + asBits_ = bitsFromTagAndPayload(JSVAL_TAG_MAGIC, payload); + MOZ_ASSERT(magicUint32() == payload); + } + + void setNumber(float f) { + int32_t i; + if (mozilla::NumberIsInt32(f, &i)) { + setInt32(i); + return; + } + + setDouble(double(f)); + } + + void setNumber(double d) { + int32_t i; + if (mozilla::NumberIsInt32(d, &i)) { + setInt32(i); + return; + } + + setDouble(d); + } + + template <typename T> + void setNumber(const T t) { + static_assert(std::is_integral<T>::value, "must be integral type"); + MOZ_ASSERT(isNumberRepresentable(t), "value creation would be lossy"); + + if constexpr (std::numeric_limits<T>::is_signed) { + if constexpr (sizeof(t) <= sizeof(int32_t)) { + setInt32(int32_t(t)); + } else { + if (JSVAL_INT_MIN <= t && t <= JSVAL_INT_MAX) { + setInt32(int32_t(t)); + } else { + setDouble(double(t)); + } + } + } else { + if constexpr (sizeof(t) <= sizeof(uint16_t)) { + setInt32(int32_t(t)); + } else { + if (t <= JSVAL_INT_MAX) { + setInt32(int32_t(t)); + } else { + setDouble(double(t)); + } + } + } + } + + void setObjectOrNull(JSObject* arg) { + if (arg) { + setObject(*arg); + } else { + setNull(); + } + } + + void swap(Value& rhs) { + uint64_t tmp = rhs.asBits_; + rhs.asBits_ = asBits_; + asBits_ = tmp; + } + + private: + JSValueTag toTag() const { return JSValueTag(asBits_ >> JSVAL_TAG_SHIFT); } + + template <typename T, JSValueTag Tag> + T* unboxGCPointer() const { + MOZ_ASSERT((asBits_ & js::gc::CellAlignMask) == 0, + "GC pointer is not aligned. Is this memory corruption?"); +#if defined(JS_NUNBOX32) + uintptr_t payload = uint32_t(asBits_); + return reinterpret_cast<T*>(payload); +#elif defined(JS_PUNBOX64) + // Note: the 'Spectre mitigations' comment at the top of this class + // explains why we use XOR here. + constexpr uint64_t shiftedTag = uint64_t(Tag) << JSVAL_TAG_SHIFT; + return reinterpret_cast<T*>(uintptr_t(asBits_ ^ shiftedTag)); +#endif + } + + public: + /*** JIT-only interfaces to interact with and create raw Values ***/ +#if defined(JS_NUNBOX32) + PayloadType toNunboxPayload() const { return uint32_t(asBits_); } + + JSValueTag toNunboxTag() const { return toTag(); } +#elif defined(JS_PUNBOX64) + const void* bitsAsPunboxPointer() const { + return reinterpret_cast<void*>(asBits_); + } +#endif + + /*** Value type queries ***/ + + /* + * N.B. GCC, in some but not all cases, chooses to emit signed comparison + * of JSValueTag even though its underlying type has been forced to be + * uint32_t. Thus, all comparisons should explicitly cast operands to + * uint32_t. + */ + + bool isUndefined() const { +#if defined(JS_NUNBOX32) + return toTag() == JSVAL_TAG_UNDEFINED; +#elif defined(JS_PUNBOX64) + return asBits_ == JSVAL_SHIFTED_TAG_UNDEFINED; +#endif + } + + bool isNull() const { +#if defined(JS_NUNBOX32) + return toTag() == JSVAL_TAG_NULL; +#elif defined(JS_PUNBOX64) + return asBits_ == JSVAL_SHIFTED_TAG_NULL; +#endif + } + + bool isNullOrUndefined() const { return isNull() || isUndefined(); } + + bool isInt32() const { return toTag() == JSVAL_TAG_INT32; } + + bool isInt32(int32_t i32) const { + return asBits_ == bitsFromTagAndPayload(JSVAL_TAG_INT32, uint32_t(i32)); + } + + bool isDouble() const { return detail::ValueIsDouble(asBits_); } + + bool isNumber() const { +#if defined(JS_NUNBOX32) + MOZ_ASSERT(toTag() != JSVAL_TAG_CLEAR); + return uint32_t(toTag()) <= uint32_t(detail::ValueUpperInclNumberTag); +#elif defined(JS_PUNBOX64) + return asBits_ < detail::ValueUpperExclShiftedNumberTag; +#endif + } + + bool isString() const { return toTag() == JSVAL_TAG_STRING; } + + bool isSymbol() const { return toTag() == JSVAL_TAG_SYMBOL; } + + bool isBigInt() const { return toTag() == JSVAL_TAG_BIGINT; } + + bool isObject() const { +#if defined(JS_NUNBOX32) + return toTag() == JSVAL_TAG_OBJECT; +#elif defined(JS_PUNBOX64) + MOZ_ASSERT((asBits_ >> JSVAL_TAG_SHIFT) <= JSVAL_TAG_OBJECT); + return asBits_ >= JSVAL_SHIFTED_TAG_OBJECT; +#endif + } + +#ifdef ENABLE_RECORD_TUPLE + bool isExtendedPrimitive() const { + return toTag() == JSVAL_TAG_EXTENDED_PRIMITIVE; + } +#endif + + bool hasObjectPayload() const { + return isObject() || IF_RECORD_TUPLE(isExtendedPrimitive(), false); + } + + bool isPrimitive() const { +#if defined(JS_NUNBOX32) + return uint32_t(toTag()) < uint32_t(detail::ValueUpperExclPrimitiveTag); +#elif defined(JS_PUNBOX64) + return asBits_ < detail::ValueUpperExclShiftedPrimitiveTag; +#endif + } + + bool isObjectOrNull() const { return isObject() || isNull(); } + + bool isNumeric() const { return isNumber() || isBigInt(); } + + bool isGCThing() const { +#if defined(JS_NUNBOX32) + /* gcc sometimes generates signed < without explicit casts. */ + return uint32_t(toTag()) >= uint32_t(detail::ValueLowerInclGCThingTag); +#elif defined(JS_PUNBOX64) + return asBits_ >= detail::ValueLowerInclShiftedGCThingTag; +#endif + } + + bool isBoolean() const { return toTag() == JSVAL_TAG_BOOLEAN; } + + bool isTrue() const { + return asBits_ == bitsFromTagAndPayload(JSVAL_TAG_BOOLEAN, uint32_t(true)); + } + + bool isFalse() const { + return asBits_ == bitsFromTagAndPayload(JSVAL_TAG_BOOLEAN, uint32_t(false)); + } + + bool isMagic() const { return toTag() == JSVAL_TAG_MAGIC; } + + bool isMagic(JSWhyMagic why) const { + if (!isMagic()) { + return false; + } + MOZ_RELEASE_ASSERT(whyMagic() == why); + return true; + } + + // Like isMagic, but without the release assertion. + bool isMagicNoReleaseCheck(JSWhyMagic why) const { + if (!isMagic()) { + return false; + } + MOZ_ASSERT(whyMagic() == why); + return true; + } + + JS::TraceKind traceKind() const { + MOZ_ASSERT(isGCThing()); + static_assert((JSVAL_TAG_STRING & 0x03) == size_t(JS::TraceKind::String), + "Value type tags must correspond with JS::TraceKinds."); + static_assert((JSVAL_TAG_SYMBOL & 0x03) == size_t(JS::TraceKind::Symbol), + "Value type tags must correspond with JS::TraceKinds."); + static_assert((JSVAL_TAG_OBJECT & 0x03) == size_t(JS::TraceKind::Object), + "Value type tags must correspond with JS::TraceKinds."); + static_assert((JSVAL_TAG_BIGINT & 0x03) == size_t(JS::TraceKind::BigInt), + "Value type tags must correspond with JS::TraceKinds."); + if (MOZ_UNLIKELY(isPrivateGCThing())) { + return JS::GCThingTraceKind(toGCThing()); + } +#ifdef ENABLE_RECORD_TUPLE + if (isExtendedPrimitive()) { + return JS::TraceKind::Object; + } +#endif + return JS::TraceKind(toTag() & 0x03); + } + + JSWhyMagic whyMagic() const { + MOZ_ASSERT(magicUint32() < JS_WHY_MAGIC_COUNT); + return static_cast<JSWhyMagic>(magicUint32()); + } + + uint32_t magicUint32() const { + MOZ_ASSERT(isMagic()); + return uint32_t(asBits_); + } + + /*** Comparison ***/ + + bool operator==(const Value& rhs) const { return asBits_ == rhs.asBits_; } + + bool operator!=(const Value& rhs) const { return asBits_ != rhs.asBits_; } + + friend inline bool SameType(const Value& lhs, const Value& rhs); + + /*** Extract the value's typed payload ***/ + + int32_t toInt32() const { + MOZ_ASSERT(isInt32()); + return int32_t(asBits_); + } + + double toDouble() const { + MOZ_ASSERT(isDouble()); + return mozilla::BitwiseCast<double>(asBits_); + } + + double toNumber() const { + MOZ_ASSERT(isNumber()); + return isDouble() ? toDouble() : double(toInt32()); + } + + JSString* toString() const { + MOZ_ASSERT(isString()); + return unboxGCPointer<JSString, JSVAL_TAG_STRING>(); + } + + JS::Symbol* toSymbol() const { + MOZ_ASSERT(isSymbol()); + return unboxGCPointer<JS::Symbol, JSVAL_TAG_SYMBOL>(); + } + + JS::BigInt* toBigInt() const { + MOZ_ASSERT(isBigInt()); + return unboxGCPointer<JS::BigInt, JSVAL_TAG_BIGINT>(); + } + + JSObject& toObject() const { + MOZ_ASSERT(isObject()); +#if defined(JS_PUNBOX64) + MOZ_ASSERT((asBits_ & detail::ValueGCThingPayloadMask) != 0); +#endif + return *unboxGCPointer<JSObject, JSVAL_TAG_OBJECT>(); + } + + JSObject* toObjectOrNull() const { + MOZ_ASSERT(isObjectOrNull()); +#if defined(JS_NUNBOX32) + return reinterpret_cast<JSObject*>(uintptr_t(asBits_)); +#elif defined(JS_PUNBOX64) + // Note: the 'Spectre mitigations' comment at the top of this class + // explains why we use XOR here and in other to* methods. + uint64_t ptrBits = + (asBits_ ^ JSVAL_SHIFTED_TAG_OBJECT) & ~detail::ValueObjectOrNullBit; + MOZ_ASSERT((ptrBits & 0x7) == 0); + return reinterpret_cast<JSObject*>(ptrBits); +#endif + } + +#ifdef ENABLE_RECORD_TUPLE + JSObject& toExtendedPrimitive() const { + MOZ_ASSERT(isExtendedPrimitive()); +# if defined(JS_PUNBOX64) + MOZ_ASSERT((asBits_ & detail::ValueGCThingPayloadMask) != 0); +# endif + return *unboxGCPointer<JSObject, JSVAL_TAG_EXTENDED_PRIMITIVE>(); + } +#endif + + JSObject& getObjectPayload() const { +#ifdef ENABLE_RECORD_TUPLE + return isExtendedPrimitive() ? toExtendedPrimitive() : toObject(); +#else + return toObject(); +#endif + } + + js::gc::Cell* toGCThing() const { + MOZ_ASSERT(isGCThing()); +#if defined(JS_NUNBOX32) + return reinterpret_cast<js::gc::Cell*>(uintptr_t(asBits_)); +#elif defined(JS_PUNBOX64) + uint64_t ptrBits = asBits_ & detail::ValueGCThingPayloadMask; + MOZ_ASSERT((ptrBits & 0x7) == 0); + return reinterpret_cast<js::gc::Cell*>(ptrBits); +#endif + } + + GCCellPtr toGCCellPtr() const { return GCCellPtr(toGCThing(), traceKind()); } + + bool toBoolean() const { + MOZ_ASSERT(isBoolean()); +#if defined(JS_NUNBOX32) + return bool(toNunboxPayload()); +#elif defined(JS_PUNBOX64) + return bool(asBits_ & 0x1); +#endif + } + + constexpr uint64_t asRawBits() const { return asBits_; } + + JSValueType extractNonDoubleType() const { + uint32_t type = toTag() & 0xF; + MOZ_ASSERT(type > JSVAL_TYPE_DOUBLE); + return JSValueType(type); + } + + JS::ValueType type() const { + if (isDouble()) { + return JS::ValueType::Double; + } + + JSValueType type = extractNonDoubleType(); + MOZ_ASSERT(type <= JSVAL_TYPE_OBJECT); + return JS::ValueType(type); + } + + /* + * Private API + * + * Private setters/getters allow the caller to read/write arbitrary + * word-size pointers or uint32s. After storing to a value with + * setPrivateX, it is the caller's responsibility to only read using + * toPrivateX. Private values are given a type which ensures they + * aren't marked by the GC. + */ + + void setPrivate(void* ptr) { +#if defined(JS_PUNBOX64) + MOZ_ASSERT(detail::IsValidUserModePointer(uintptr_t(ptr))); +#endif + asBits_ = uintptr_t(ptr); + MOZ_ASSERT(isDouble()); + } + + void* toPrivate() const { + MOZ_ASSERT(isDouble()); +#if defined(JS_PUNBOX64) + MOZ_ASSERT(detail::IsValidUserModePointer(asBits_)); +#endif + return reinterpret_cast<void*>(uintptr_t(asBits_)); + } + + void* toPrivateUnchecked() const { + return reinterpret_cast<void*>(uintptr_t(asBits_)); + } + + void setPrivateUint32(uint32_t ui) { + MOZ_ASSERT(uint32_t(int32_t(ui)) == ui); + setInt32(int32_t(ui)); + } + + uint32_t toPrivateUint32() const { return uint32_t(toInt32()); } + + /* + * Private GC Thing API + * + * Non-JSObject, JSString, and JS::Symbol cells may be put into the 64-bit + * payload as private GC things. Such Values are considered isGCThing(), and + * as such, automatically marked. Their traceKind() is gotten via their + * cells. + */ + + void setPrivateGCThing(js::gc::Cell* cell) { + MOZ_ASSERT(JS::GCThingTraceKind(cell) != JS::TraceKind::String, + "Private GC thing Values must not be strings. Make a " + "StringValue instead."); + MOZ_ASSERT(JS::GCThingTraceKind(cell) != JS::TraceKind::Symbol, + "Private GC thing Values must not be symbols. Make a " + "SymbolValue instead."); + MOZ_ASSERT(JS::GCThingTraceKind(cell) != JS::TraceKind::BigInt, + "Private GC thing Values must not be BigInts. Make a " + "BigIntValue instead."); + MOZ_ASSERT(JS::GCThingTraceKind(cell) != JS::TraceKind::Object, + "Private GC thing Values must not be objects. Make an " + "ObjectValue instead."); + + MOZ_ASSERT(js::gc::IsCellPointerValid(cell)); +#if defined(JS_PUNBOX64) + // VisualStudio cannot contain parenthesized C++ style cast and shift + // inside decltype in template parameter: + // AssertionConditionType<decltype((uintptr_t(x) >> 1))> + // It throws syntax error. + MOZ_ASSERT((((uintptr_t)cell) >> JSVAL_TAG_SHIFT) == 0); +#endif + asBits_ = + bitsFromTagAndPayload(JSVAL_TAG_PRIVATE_GCTHING, PayloadType(cell)); + } + + bool isPrivateGCThing() const { return toTag() == JSVAL_TAG_PRIVATE_GCTHING; } + +#if defined(DEBUG) || defined(JS_JITSPEW) + void dump() const; + void dump(js::GenericPrinter& out) const; + void dump(js::JSONPrinter& json) const; + + void dumpFields(js::JSONPrinter& json) const; + void dumpStringContent(js::GenericPrinter& out) const; +#endif +} JS_HAZ_GC_POINTER MOZ_NON_PARAM; + +static_assert(sizeof(Value) == 8, + "Value size must leave three tag bits, be a binary power, and " + "is ubiquitously depended upon everywhere"); + +static MOZ_ALWAYS_INLINE void ExposeValueToActiveJS(const Value& v) { +#ifdef DEBUG + Value tmp = v; + MOZ_ASSERT(!js::gc::EdgeNeedsSweepUnbarrieredSlow(&tmp)); +#endif + if (v.isGCThing()) { + js::gc::ExposeGCThingToActiveJS(v.toGCCellPtr()); + } +} + +/************************************************************************/ + +static inline MOZ_MAY_CALL_AFTER_MUST_RETURN Value NullValue() { + Value v; + v.setNull(); + return v; +} + +static constexpr Value UndefinedValue() { return Value(); } + +static constexpr Value Int32Value(int32_t i32) { return Value::fromInt32(i32); } + +static inline Value DoubleValue(double dbl) { + Value v; + v.setDouble(dbl); + return v; +} + +static inline Value CanonicalizedDoubleValue(double d) { + return Value::fromDouble(CanonicalizeNaN(d)); +} + +static inline Value NaNValue() { + return Value::fromRawBits(detail::CanonicalizedNaNBits); +} + +static inline Value InfinityValue() { + return Value::fromRawBits(detail::InfinityBits); +} + +static inline Value Float32Value(float f) { + Value v; + v.setDouble(f); + return v; +} + +static inline Value StringValue(JSString* str) { + Value v; + v.setString(str); + return v; +} + +static inline Value SymbolValue(JS::Symbol* sym) { + Value v; + v.setSymbol(sym); + return v; +} + +static inline Value BigIntValue(JS::BigInt* bi) { + Value v; + v.setBigInt(bi); + return v; +} + +static inline Value BooleanValue(bool boo) { + Value v; + v.setBoolean(boo); + return v; +} + +static inline Value TrueValue() { + Value v; + v.setBoolean(true); + return v; +} + +static inline Value FalseValue() { + Value v; + v.setBoolean(false); + return v; +} + +static inline Value ObjectValue(JSObject& obj) { + Value v; + v.setObject(obj); + return v; +} + +#ifdef ENABLE_RECORD_TUPLE +static inline Value ExtendedPrimitiveValue(JSObject& obj) { + Value v; + v.setExtendedPrimitive(obj); + return v; +} +#endif + +static inline Value MagicValue(JSWhyMagic why) { + Value v; + v.setMagic(why); + return v; +} + +static inline Value MagicValueUint32(uint32_t payload) { + Value v; + v.setMagicUint32(payload); + return v; +} + +static constexpr Value NumberValue(uint32_t i) { + return i <= JSVAL_INT_MAX ? Int32Value(int32_t(i)) + : Value::fromDouble(double(i)); +} + +template <typename T> +static inline Value NumberValue(const T t) { + Value v; + v.setNumber(t); + return v; +} + +static inline Value ObjectOrNullValue(JSObject* obj) { + Value v; + v.setObjectOrNull(obj); + return v; +} + +static inline Value PrivateValue(void* ptr) { + Value v; + v.setPrivate(ptr); + return v; +} + +static inline Value PrivateValue(uintptr_t ptr) { + return PrivateValue(reinterpret_cast<void*>(ptr)); +} + +static inline Value PrivateUint32Value(uint32_t ui) { + Value v; + v.setPrivateUint32(ui); + return v; +} + +static inline Value PrivateGCThingValue(js::gc::Cell* cell) { + Value v; + v.setPrivateGCThing(cell); + return v; +} + +inline bool SameType(const Value& lhs, const Value& rhs) { +#if defined(JS_NUNBOX32) + JSValueTag ltag = lhs.toTag(), rtag = rhs.toTag(); + return ltag == rtag || (ltag < JSVAL_TAG_CLEAR && rtag < JSVAL_TAG_CLEAR); +#elif defined(JS_PUNBOX64) + return (lhs.isDouble() && rhs.isDouble()) || + (((lhs.asBits_ ^ rhs.asBits_) & 0xFFFF800000000000ULL) == 0); +#endif +} + +} // namespace JS + +/************************************************************************/ + +namespace JS { +JS_PUBLIC_API void HeapValuePostWriteBarrier(Value* valuep, const Value& prev, + const Value& next); +JS_PUBLIC_API void HeapValueWriteBarriers(Value* valuep, const Value& prev, + const Value& next); + +template <> +struct GCPolicy<JS::Value> { + static void trace(JSTracer* trc, Value* v, const char* name) { + // This should only be called as part of root marking since that's the only + // time we should trace unbarriered GC thing pointers. This will assert if + // called at other times. + TraceRoot(trc, v, name); + } + static bool isTenured(const Value& thing) { + return !thing.isGCThing() || !IsInsideNursery(thing.toGCThing()); + } + static bool isValid(const Value& value) { + return !value.isGCThing() || js::gc::IsCellPointerValid(value.toGCThing()); + } +}; + +} // namespace JS + +namespace js { + +template <> +struct BarrierMethods<JS::Value> { + static gc::Cell* asGCThingOrNull(const JS::Value& v) { + return v.isGCThing() ? v.toGCThing() : nullptr; + } + static void postWriteBarrier(JS::Value* v, const JS::Value& prev, + const JS::Value& next) { + JS::HeapValuePostWriteBarrier(v, prev, next); + } + static void exposeToJS(const JS::Value& v) { JS::ExposeValueToActiveJS(v); } + static void readBarrier(const JS::Value& v) { + if (v.isGCThing()) { + js::gc::IncrementalReadBarrier(v.toGCCellPtr()); + } + } +}; + +template <class Wrapper> +class MutableValueOperations; + +/** + * A class designed for CRTP use in implementing the non-mutating parts of the + * Value interface in Value-like classes. Wrapper must be a class inheriting + * ValueOperations<Wrapper> with a visible get() method returning a const + * reference to the Value abstracted by Wrapper. + */ +template <class Wrapper> +class WrappedPtrOperations<JS::Value, Wrapper> { + const JS::Value& value() const { + return static_cast<const Wrapper*>(this)->get(); + } + + public: + bool isUndefined() const { return value().isUndefined(); } + bool isNull() const { return value().isNull(); } + bool isBoolean() const { return value().isBoolean(); } + bool isTrue() const { return value().isTrue(); } + bool isFalse() const { return value().isFalse(); } + bool isNumber() const { return value().isNumber(); } + bool isInt32() const { return value().isInt32(); } + bool isInt32(int32_t i32) const { return value().isInt32(i32); } + bool isDouble() const { return value().isDouble(); } + bool isString() const { return value().isString(); } + bool isSymbol() const { return value().isSymbol(); } + bool isBigInt() const { return value().isBigInt(); } + bool isObject() const { return value().isObject(); } +#ifdef ENABLE_RECORD_TUPLE + bool isExtendedPrimitive() const { return value().isExtendedPrimitive(); } +#endif + bool hasObjectPayload() const { return value().hasObjectPayload(); } + bool isMagic() const { return value().isMagic(); } + bool isMagic(JSWhyMagic why) const { return value().isMagic(why); } + bool isGCThing() const { return value().isGCThing(); } + bool isPrivateGCThing() const { return value().isPrivateGCThing(); } + bool isPrimitive() const { return value().isPrimitive(); } + + bool isNullOrUndefined() const { return value().isNullOrUndefined(); } + bool isObjectOrNull() const { return value().isObjectOrNull(); } + bool isNumeric() const { return value().isNumeric(); } + + bool toBoolean() const { return value().toBoolean(); } + double toNumber() const { return value().toNumber(); } + int32_t toInt32() const { return value().toInt32(); } + double toDouble() const { return value().toDouble(); } + JSString* toString() const { return value().toString(); } + JS::Symbol* toSymbol() const { return value().toSymbol(); } + JS::BigInt* toBigInt() const { return value().toBigInt(); } + JSObject& toObject() const { return value().toObject(); } + JSObject* toObjectOrNull() const { return value().toObjectOrNull(); } +#ifdef ENABLE_RECORD_TUPLE + JSObject& toExtendedPrimitive() const { + return value().toExtendedPrimitive(); + } +#endif + JSObject& getObjectPayload() const { return value().getObjectPayload(); } + JS::GCCellPtr toGCCellPtr() const { return value().toGCCellPtr(); } + gc::Cell* toGCThing() const { return value().toGCThing(); } + JS::TraceKind traceKind() const { return value().traceKind(); } + void* toPrivate() const { return value().toPrivate(); } + uint32_t toPrivateUint32() const { return value().toPrivateUint32(); } + + uint64_t asRawBits() const { return value().asRawBits(); } + JSValueType extractNonDoubleType() const { + return value().extractNonDoubleType(); + } + JS::ValueType type() const { return value().type(); } + + JSWhyMagic whyMagic() const { return value().whyMagic(); } + uint32_t magicUint32() const { return value().magicUint32(); } +}; + +/** + * A class designed for CRTP use in implementing all the mutating parts of the + * Value interface in Value-like classes. Wrapper must be a class inheriting + * MutableWrappedPtrOperations<Wrapper> with visible get() methods returning + * const and non-const references to the Value abstracted by Wrapper. + */ +template <class Wrapper> +class MutableWrappedPtrOperations<JS::Value, Wrapper> + : public WrappedPtrOperations<JS::Value, Wrapper> { + protected: + void set(const JS::Value& v) { + // Call Wrapper::set to trigger any barriers. + static_cast<Wrapper*>(this)->set(v); + } + + public: + void setNull() { set(JS::NullValue()); } + void setUndefined() { set(JS::UndefinedValue()); } + void setInt32(int32_t i) { set(JS::Int32Value(i)); } + void setDouble(double d) { set(JS::DoubleValue(d)); } + void setNaN() { set(JS::NaNValue()); } + void setInfinity() { set(JS::InfinityValue()); } + void setBoolean(bool b) { set(JS::BooleanValue(b)); } + void setMagic(JSWhyMagic why) { set(JS::MagicValue(why)); } + template <typename T> + void setNumber(T t) { + set(JS::NumberValue(t)); + } + void setString(JSString* str) { set(JS::StringValue(str)); } + void setSymbol(JS::Symbol* sym) { set(JS::SymbolValue(sym)); } + void setBigInt(JS::BigInt* bi) { set(JS::BigIntValue(bi)); } + void setObject(JSObject& obj) { set(JS::ObjectValue(obj)); } + void setObjectOrNull(JSObject* arg) { set(JS::ObjectOrNullValue(arg)); } +#ifdef ENABLE_RECORD_TUPLE + void setExtendedPrimitive(JSObject& obj) { + return set(JS::ExtendedPrimitiveValue(obj)); + } +#endif + void setPrivate(void* ptr) { set(JS::PrivateValue(ptr)); } + void setPrivateUint32(uint32_t ui) { set(JS::PrivateUint32Value(ui)); } + void setPrivateGCThing(js::gc::Cell* cell) { + set(JS::PrivateGCThingValue(cell)); + } +}; + +/* + * Augment the generic Heap<T> interface when T = Value with + * type-querying, value-extracting, and mutating operations. + */ +template <typename Wrapper> +class HeapOperations<JS::Value, Wrapper> + : public MutableWrappedPtrOperations<JS::Value, Wrapper> {}; + +MOZ_HAVE_NORETURN MOZ_COLD MOZ_NEVER_INLINE void ReportBadValueTypeAndCrash( + const JS::Value& val); + +// If the Value is a GC pointer type, call |f| with the pointer cast to that +// type and return the result wrapped in a Maybe, otherwise return None(). +template <typename F> +auto MapGCThingTyped(const JS::Value& val, F&& f) { + switch (val.type()) { + case JS::ValueType::String: { + JSString* str = val.toString(); + MOZ_ASSERT(gc::IsCellPointerValid(str)); + return mozilla::Some(f(str)); + } +#ifdef ENABLE_RECORD_TUPLE + case JS::ValueType::ExtendedPrimitive: +#endif + case JS::ValueType::Object: { + JSObject* obj = &val.getObjectPayload(); + MOZ_ASSERT(gc::IsCellPointerValid(obj)); + return mozilla::Some(f(obj)); + } + case JS::ValueType::Symbol: { + JS::Symbol* sym = val.toSymbol(); + MOZ_ASSERT(gc::IsCellPointerValid(sym)); + return mozilla::Some(f(sym)); + } + case JS::ValueType::BigInt: { + JS::BigInt* bi = val.toBigInt(); + MOZ_ASSERT(gc::IsCellPointerValid(bi)); + return mozilla::Some(f(bi)); + } + case JS::ValueType::PrivateGCThing: { + MOZ_ASSERT(gc::IsCellPointerValid(val.toGCThing())); + return mozilla::Some(MapGCThingTyped(val.toGCCellPtr(), std::move(f))); + } + case JS::ValueType::Double: + case JS::ValueType::Int32: + case JS::ValueType::Boolean: + case JS::ValueType::Undefined: + case JS::ValueType::Null: + case JS::ValueType::Magic: { + MOZ_ASSERT(!val.isGCThing()); + using ReturnType = decltype(f(static_cast<JSObject*>(nullptr))); + return mozilla::Maybe<ReturnType>(); + } + } + + ReportBadValueTypeAndCrash(val); +} + +// If the Value is a GC pointer type, call |f| with the pointer cast to that +// type. Return whether this happened. +template <typename F> +bool ApplyGCThingTyped(const JS::Value& val, F&& f) { + return MapGCThingTyped(val, + [&f](auto t) { + f(t); + return true; + }) + .isSome(); +} + +static inline JS::Value PoisonedObjectValue(uintptr_t poison) { + JS::Value v; + v.setObjectNoCheck(reinterpret_cast<JSObject*>(poison)); + return v; +} + +} // namespace js + +#ifdef DEBUG +namespace JS { + +MOZ_ALWAYS_INLINE void AssertValueIsNotGray(const Value& value) { + if (value.isGCThing()) { + AssertCellIsNotGray(value.toGCThing()); + } +} + +MOZ_ALWAYS_INLINE void AssertValueIsNotGray(const Heap<Value>& value) { + AssertValueIsNotGray(value.unbarrieredGet()); +} + +} // namespace JS +#endif + +/************************************************************************/ + +namespace JS { + +extern JS_PUBLIC_DATA const HandleValue NullHandleValue; +extern JS_PUBLIC_DATA const HandleValue UndefinedHandleValue; +extern JS_PUBLIC_DATA const HandleValue TrueHandleValue; +extern JS_PUBLIC_DATA const HandleValue FalseHandleValue; +extern JS_PUBLIC_DATA const Handle<mozilla::Maybe<Value>> NothingHandleValue; + +} // namespace JS + +#endif /* js_Value_h */ |