summaryrefslogtreecommitdiffstats
path: root/js/src/jit/ReciprocalMulConstants.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
commit26a029d407be480d791972afb5975cf62c9360a6 (patch)
treef435a8308119effd964b339f76abb83a57c29483 /js/src/jit/ReciprocalMulConstants.cpp
parentInitial commit. (diff)
downloadfirefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz
firefox-26a029d407be480d791972afb5975cf62c9360a6.zip
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'js/src/jit/ReciprocalMulConstants.cpp')
-rw-r--r--js/src/jit/ReciprocalMulConstants.cpp94
1 files changed, 94 insertions, 0 deletions
diff --git a/js/src/jit/ReciprocalMulConstants.cpp b/js/src/jit/ReciprocalMulConstants.cpp
new file mode 100644
index 0000000000..956c2e62d9
--- /dev/null
+++ b/js/src/jit/ReciprocalMulConstants.cpp
@@ -0,0 +1,94 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
+ * vim: set ts=8 sts=2 et sw=2 tw=80:
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "jit/ReciprocalMulConstants.h"
+
+#include "mozilla/Assertions.h"
+
+using namespace js::jit;
+
+ReciprocalMulConstants ReciprocalMulConstants::computeDivisionConstants(
+ uint32_t d, int maxLog) {
+ MOZ_ASSERT(maxLog >= 2 && maxLog <= 32);
+ // In what follows, 0 < d < 2^maxLog and d is not a power of 2.
+ MOZ_ASSERT(d < (uint64_t(1) << maxLog) && (d & (d - 1)) != 0);
+
+ // Speeding up division by non power-of-2 constants is possible by
+ // calculating, during compilation, a value M such that high-order
+ // bits of M*n correspond to the result of the division of n by d.
+ // No value of M can serve this purpose for arbitrarily big values
+ // of n but, for optimizing integer division, we're just concerned
+ // with values of n whose absolute value is bounded (by fitting in
+ // an integer type, say). With this in mind, we'll find a constant
+ // M as above that works for -2^maxLog <= n < 2^maxLog; maxLog can
+ // then be 31 for signed division or 32 for unsigned division.
+ //
+ // The original presentation of this technique appears in Hacker's
+ // Delight, a book by Henry S. Warren, Jr.. A proof of correctness
+ // for our version follows; we'll denote maxLog by L in the proof,
+ // for conciseness.
+ //
+ // Formally, for |d| < 2^L, we'll compute two magic values M and s
+ // in the ranges 0 <= M < 2^(L+1) and 0 <= s <= L such that
+ // (M * n) >> (32 + s) = floor(n/d) if 0 <= n < 2^L
+ // (M * n) >> (32 + s) = ceil(n/d) - 1 if -2^L <= n < 0.
+ //
+ // Define p = 32 + s, M = ceil(2^p/d), and assume that s satisfies
+ // M - 2^p/d <= 2^(p-L)/d. (1)
+ // (Observe that p = CeilLog32(d) + L satisfies this, as the right
+ // side of (1) is at least one in this case). Then,
+ //
+ // a) If p <= CeilLog32(d) + L, then M < 2^(L+1) - 1.
+ // Proof: Indeed, M is monotone in p and, for p equal to the above
+ // value, the bounds 2^L > d >= 2^(p-L-1) + 1 readily imply that
+ // 2^p / d < 2^p/(d - 1) * (d - 1)/d
+ // <= 2^(L+1) * (1 - 1/d) < 2^(L+1) - 2.
+ // The claim follows by applying the ceiling function.
+ //
+ // b) For any 0 <= n < 2^L, floor(Mn/2^p) = floor(n/d).
+ // Proof: Put x = floor(Mn/2^p); it's the unique integer for which
+ // Mn/2^p - 1 < x <= Mn/2^p. (2)
+ // Using M >= 2^p/d on the LHS and (1) on the RHS, we get
+ // n/d - 1 < x <= n/d + n/(2^L d) < n/d + 1/d.
+ // Since x is an integer, it's not in the interval (n/d, (n+1)/d),
+ // and so n/d - 1 < x <= n/d, which implies x = floor(n/d).
+ //
+ // c) For any -2^L <= n < 0, floor(Mn/2^p) + 1 = ceil(n/d).
+ // Proof: The proof is similar. Equation (2) holds as above. Using
+ // M > 2^p/d (d isn't a power of 2) on the RHS and (1) on the LHS,
+ // n/d + n/(2^L d) - 1 < x < n/d.
+ // Using n >= -2^L and summing 1,
+ // n/d - 1/d < x + 1 < n/d + 1.
+ // Since x + 1 is an integer, this implies n/d <= x + 1 < n/d + 1.
+ // In other words, x + 1 = ceil(n/d).
+ //
+ // Condition (1) isn't necessary for the existence of M and s with
+ // the properties above. Hacker's Delight provides a slightly less
+ // restrictive condition when d >= 196611, at the cost of a 3-page
+ // proof of correctness, for the case L = 31.
+ //
+ // Note that, since d*M - 2^p = d - (2^p)%d, (1) can be written as
+ // 2^(p-L) >= d - (2^p)%d.
+ // In order to avoid overflow in the (2^p) % d calculation, we can
+ // compute it as (2^p-1) % d + 1, where 2^p-1 can then be computed
+ // without overflow as UINT64_MAX >> (64-p).
+
+ // We now compute the least p >= 32 with the property above...
+ int32_t p = 32;
+ while ((uint64_t(1) << (p - maxLog)) + (UINT64_MAX >> (64 - p)) % d + 1 < d) {
+ p++;
+ }
+
+ // ...and the corresponding M. For either the signed (L=31) or the
+ // unsigned (L=32) case, this value can be too large (cf. item a).
+ // Codegen can still multiply by M by multiplying by (M - 2^L) and
+ // adjusting the value afterwards, if this is the case.
+ ReciprocalMulConstants rmc;
+ rmc.multiplier = (UINT64_MAX >> (64 - p)) / d + 1;
+ rmc.shiftAmount = p - 32;
+
+ return rmc;
+}