diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-19 00:47:55 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-19 00:47:55 +0000 |
commit | 26a029d407be480d791972afb5975cf62c9360a6 (patch) | |
tree | f435a8308119effd964b339f76abb83a57c29483 /js/src/jit/x86-shared/BaseAssembler-x86-shared.h | |
parent | Initial commit. (diff) | |
download | firefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz firefox-26a029d407be480d791972afb5975cf62c9360a6.zip |
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'js/src/jit/x86-shared/BaseAssembler-x86-shared.h')
-rw-r--r-- | js/src/jit/x86-shared/BaseAssembler-x86-shared.h | 6475 |
1 files changed, 6475 insertions, 0 deletions
diff --git a/js/src/jit/x86-shared/BaseAssembler-x86-shared.h b/js/src/jit/x86-shared/BaseAssembler-x86-shared.h new file mode 100644 index 0000000000..68fc93e9bd --- /dev/null +++ b/js/src/jit/x86-shared/BaseAssembler-x86-shared.h @@ -0,0 +1,6475 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * + * ***** BEGIN LICENSE BLOCK ***** + * Copyright (C) 2008 Apple Inc. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY + * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR + * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY + * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + * ***** END LICENSE BLOCK ***** */ + +#ifndef jit_x86_shared_BaseAssembler_x86_shared_h +#define jit_x86_shared_BaseAssembler_x86_shared_h + +#include "mozilla/IntegerPrintfMacros.h" + +#include "jit/x86-shared/AssemblerBuffer-x86-shared.h" +#include "jit/x86-shared/Encoding-x86-shared.h" +#include "jit/x86-shared/Patching-x86-shared.h" +#include "wasm/WasmTypeDecls.h" + +namespace js { +namespace jit { + +namespace X86Encoding { + +class BaseAssembler; + +class BaseAssembler : public GenericAssembler { + public: + BaseAssembler() : useVEX_(true) {} + + void disableVEX() { useVEX_ = false; } + + size_t size() const { return m_formatter.size(); } + const unsigned char* buffer() const { return m_formatter.buffer(); } + unsigned char* data() { return m_formatter.data(); } + bool oom() const { return m_formatter.oom(); } + bool reserve(size_t size) { return m_formatter.reserve(size); } + bool swapBuffer(wasm::Bytes& other) { return m_formatter.swapBuffer(other); } + + void nop() { + spew("nop"); + m_formatter.oneByteOp(OP_NOP); + } + + void comment(const char* msg) { spew("; %s", msg); } + + static void patchFiveByteNopToCall(uint8_t* callsite, uint8_t* target) { + // Note: the offset is relative to the address of the instruction after + // the call which is five bytes. + uint8_t* inst = callsite - sizeof(int32_t) - 1; + // The nop can be already patched as call, overriding the call. + // See also nop_five. + MOZ_ASSERT(inst[0] == OP_NOP_0F || inst[0] == OP_CALL_rel32); + MOZ_ASSERT_IF(inst[0] == OP_NOP_0F, + inst[1] == OP_NOP_1F || inst[2] == OP_NOP_44 || + inst[3] == OP_NOP_00 || inst[4] == OP_NOP_00); + inst[0] = OP_CALL_rel32; + SetRel32(callsite, target); + } + + static void patchCallToFiveByteNop(uint8_t* callsite) { + // See also patchFiveByteNopToCall and nop_five. + uint8_t* inst = callsite - sizeof(int32_t) - 1; + // The call can be already patched as nop. + if (inst[0] == OP_NOP_0F) { + MOZ_ASSERT(inst[1] == OP_NOP_1F || inst[2] == OP_NOP_44 || + inst[3] == OP_NOP_00 || inst[4] == OP_NOP_00); + return; + } + MOZ_ASSERT(inst[0] == OP_CALL_rel32); + inst[0] = OP_NOP_0F; + inst[1] = OP_NOP_1F; + inst[2] = OP_NOP_44; + inst[3] = OP_NOP_00; + inst[4] = OP_NOP_00; + } + + /* + * The nop multibytes sequences are directly taken from the Intel's + * architecture software developer manual. + * They are defined for sequences of sizes from 1 to 9 included. + */ + void nop_one() { m_formatter.oneByteOp(OP_NOP); } + + void nop_two() { + m_formatter.oneByteOp(OP_NOP_66); + m_formatter.oneByteOp(OP_NOP); + } + + void nop_three() { + m_formatter.oneByteOp(OP_NOP_0F); + m_formatter.oneByteOp(OP_NOP_1F); + m_formatter.oneByteOp(OP_NOP_00); + } + + void nop_four() { + m_formatter.oneByteOp(OP_NOP_0F); + m_formatter.oneByteOp(OP_NOP_1F); + m_formatter.oneByteOp(OP_NOP_40); + m_formatter.oneByteOp(OP_NOP_00); + } + + void nop_five() { + m_formatter.oneByteOp(OP_NOP_0F); + m_formatter.oneByteOp(OP_NOP_1F); + m_formatter.oneByteOp(OP_NOP_44); + m_formatter.oneByteOp(OP_NOP_00); + m_formatter.oneByteOp(OP_NOP_00); + } + + void nop_six() { + m_formatter.oneByteOp(OP_NOP_66); + nop_five(); + } + + void nop_seven() { + m_formatter.oneByteOp(OP_NOP_0F); + m_formatter.oneByteOp(OP_NOP_1F); + m_formatter.oneByteOp(OP_NOP_80); + for (int i = 0; i < 4; ++i) { + m_formatter.oneByteOp(OP_NOP_00); + } + } + + void nop_eight() { + m_formatter.oneByteOp(OP_NOP_0F); + m_formatter.oneByteOp(OP_NOP_1F); + m_formatter.oneByteOp(OP_NOP_84); + for (int i = 0; i < 5; ++i) { + m_formatter.oneByteOp(OP_NOP_00); + } + } + + void nop_nine() { + m_formatter.oneByteOp(OP_NOP_66); + nop_eight(); + } + + void insert_nop(int size) { + switch (size) { + case 1: + nop_one(); + break; + case 2: + nop_two(); + break; + case 3: + nop_three(); + break; + case 4: + nop_four(); + break; + case 5: + nop_five(); + break; + case 6: + nop_six(); + break; + case 7: + nop_seven(); + break; + case 8: + nop_eight(); + break; + case 9: + nop_nine(); + break; + case 10: + nop_three(); + nop_seven(); + break; + case 11: + nop_four(); + nop_seven(); + break; + case 12: + nop_six(); + nop_six(); + break; + case 13: + nop_six(); + nop_seven(); + break; + case 14: + nop_seven(); + nop_seven(); + break; + case 15: + nop_one(); + nop_seven(); + nop_seven(); + break; + default: + MOZ_CRASH("Unhandled alignment"); + } + } + + // Stack operations: + + void push_r(RegisterID reg) { + spew("push %s", GPRegName(reg)); + m_formatter.oneByteOp(OP_PUSH_EAX, reg); + } + + void pop_r(RegisterID reg) { + spew("pop %s", GPRegName(reg)); + m_formatter.oneByteOp(OP_POP_EAX, reg); + } + + void push_i(int32_t imm) { + spew("push $%s0x%x", PRETTYHEX(imm)); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_PUSH_Ib); + m_formatter.immediate8s(imm); + } else { + m_formatter.oneByteOp(OP_PUSH_Iz); + m_formatter.immediate32(imm); + } + } + + void push_i32(int32_t imm) { + spew("push $%s0x%04x", PRETTYHEX(imm)); + m_formatter.oneByteOp(OP_PUSH_Iz); + m_formatter.immediate32(imm); + } + + void push_m(int32_t offset, RegisterID base) { + spew("push " MEM_ob, ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_GROUP5_Ev, offset, base, GROUP5_OP_PUSH); + } + void push_m(int32_t offset, RegisterID base, RegisterID index, int scale) { + spew("push " MEM_obs, ADDR_obs(offset, base, index, scale)); + m_formatter.oneByteOp(OP_GROUP5_Ev, offset, base, index, scale, + GROUP5_OP_PUSH); + } + + void pop_m(int32_t offset, RegisterID base) { + spew("pop " MEM_ob, ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_GROUP1A_Ev, offset, base, GROUP1A_OP_POP); + } + + void push_flags() { + spew("pushf"); + m_formatter.oneByteOp(OP_PUSHFLAGS); + } + + void pop_flags() { + spew("popf"); + m_formatter.oneByteOp(OP_POPFLAGS); + } + + // Arithmetic operations: + + void addl_rr(RegisterID src, RegisterID dst) { + spew("addl %s, %s", GPReg32Name(src), GPReg32Name(dst)); + m_formatter.oneByteOp(OP_ADD_GvEv, src, dst); + } + + void addw_rr(RegisterID src, RegisterID dst) { + spew("addw %s, %s", GPReg16Name(src), GPReg16Name(dst)); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_ADD_GvEv, src, dst); + } + + void addl_mr(int32_t offset, RegisterID base, RegisterID dst) { + spew("addl " MEM_ob ", %s", ADDR_ob(offset, base), GPReg32Name(dst)); + m_formatter.oneByteOp(OP_ADD_GvEv, offset, base, dst); + } + + void addl_rm(RegisterID src, int32_t offset, RegisterID base) { + spew("addl %s, " MEM_ob, GPReg32Name(src), ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_ADD_EvGv, offset, base, src); + } + + void addl_rm(RegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + spew("addl %s, " MEM_obs, GPReg32Name(src), + ADDR_obs(offset, base, index, scale)); + m_formatter.oneByteOp(OP_ADD_EvGv, offset, base, index, scale, src); + } + + void addl_ir(int32_t imm, RegisterID dst) { + spew("addl $%d, %s", imm, GPReg32Name(dst)); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, dst, GROUP1_OP_ADD); + m_formatter.immediate8s(imm); + } else { + if (dst == rax) { + m_formatter.oneByteOp(OP_ADD_EAXIv); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, dst, GROUP1_OP_ADD); + } + m_formatter.immediate32(imm); + } + } + + void addw_ir(int32_t imm, RegisterID dst) { + spew("addw $%d, %s", int16_t(imm), GPReg16Name(dst)); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_GROUP1_EvIz, dst, GROUP1_OP_ADD); + m_formatter.immediate16(imm); + } + + void addl_i32r(int32_t imm, RegisterID dst) { + // 32-bit immediate always, for patching. + spew("addl $0x%04x, %s", uint32_t(imm), GPReg32Name(dst)); + if (dst == rax) { + m_formatter.oneByteOp(OP_ADD_EAXIv); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, dst, GROUP1_OP_ADD); + } + m_formatter.immediate32(imm); + } + + void addl_im(int32_t imm, int32_t offset, RegisterID base) { + spew("addl $%d, " MEM_ob, imm, ADDR_ob(offset, base)); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, offset, base, GROUP1_OP_ADD); + m_formatter.immediate8s(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, offset, base, GROUP1_OP_ADD); + m_formatter.immediate32(imm); + } + } + + void addl_im(int32_t imm, int32_t offset, RegisterID base, RegisterID index, + int scale) { + spew("addl $%d, " MEM_obs, imm, ADDR_obs(offset, base, index, scale)); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, offset, base, index, scale, + GROUP1_OP_ADD); + m_formatter.immediate8s(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, offset, base, index, scale, + GROUP1_OP_ADD); + m_formatter.immediate32(imm); + } + } + + void addl_im(int32_t imm, const void* addr) { + spew("addl $%d, %p", imm, addr); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, addr, GROUP1_OP_ADD); + m_formatter.immediate8s(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, addr, GROUP1_OP_ADD); + m_formatter.immediate32(imm); + } + } + void addw_im(int32_t imm, const void* addr) { + spew("addw $%d, %p", int16_t(imm), addr); + m_formatter.prefix(PRE_OPERAND_SIZE); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, addr, GROUP1_OP_ADD); + m_formatter.immediate8s(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, addr, GROUP1_OP_ADD); + m_formatter.immediate16(imm); + } + } + + void addw_im(int32_t imm, int32_t offset, RegisterID base) { + spew("addw $%d, " MEM_ob, int16_t(imm), ADDR_ob(offset, base)); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_GROUP1_EvIz, offset, base, GROUP1_OP_ADD); + m_formatter.immediate16(imm); + } + + void addw_im(int32_t imm, int32_t offset, RegisterID base, RegisterID index, + int scale) { + spew("addw $%d, " MEM_obs, int16_t(imm), + ADDR_obs(offset, base, index, scale)); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_GROUP1_EvIz, offset, base, index, scale, + GROUP1_OP_ADD); + m_formatter.immediate16(imm); + } + + void addw_rm(RegisterID src, int32_t offset, RegisterID base) { + spew("addw %s, " MEM_ob, GPReg16Name(src), ADDR_ob(offset, base)); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_ADD_EvGv, offset, base, src); + } + + void addw_rm(RegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + spew("addw %s, " MEM_obs, GPReg16Name(src), + ADDR_obs(offset, base, index, scale)); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_ADD_EvGv, offset, base, index, scale, src); + } + + void addb_im(int32_t imm, int32_t offset, RegisterID base) { + spew("addb $%d, " MEM_ob, int8_t(imm), ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_GROUP1_EbIb, offset, base, GROUP1_OP_ADD); + m_formatter.immediate8(imm); + } + + void addb_im(int32_t imm, int32_t offset, RegisterID base, RegisterID index, + int scale) { + spew("addb $%d, " MEM_obs, int8_t(imm), + ADDR_obs(offset, base, index, scale)); + m_formatter.oneByteOp(OP_GROUP1_EbIb, offset, base, index, scale, + GROUP1_OP_ADD); + m_formatter.immediate8(imm); + } + + void addb_rm(RegisterID src, int32_t offset, RegisterID base) { + spew("addb %s, " MEM_ob, GPReg8Name(src), ADDR_ob(offset, base)); + m_formatter.oneByteOp8(OP_ADD_EbGb, offset, base, src); + } + + void addb_rm(RegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + spew("addb %s, " MEM_obs, GPReg8Name(src), + ADDR_obs(offset, base, index, scale)); + m_formatter.oneByteOp8(OP_ADD_EbGb, offset, base, index, scale, src); + } + + void subb_im(int32_t imm, int32_t offset, RegisterID base) { + spew("subb $%d, " MEM_ob, int8_t(imm), ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_GROUP1_EbIb, offset, base, GROUP1_OP_SUB); + m_formatter.immediate8(imm); + } + + void subb_im(int32_t imm, int32_t offset, RegisterID base, RegisterID index, + int scale) { + spew("subb $%d, " MEM_obs, int8_t(imm), + ADDR_obs(offset, base, index, scale)); + m_formatter.oneByteOp(OP_GROUP1_EbIb, offset, base, index, scale, + GROUP1_OP_SUB); + m_formatter.immediate8(imm); + } + + void subb_rm(RegisterID src, int32_t offset, RegisterID base) { + spew("subb %s, " MEM_ob, GPReg8Name(src), ADDR_ob(offset, base)); + m_formatter.oneByteOp8(OP_SUB_EbGb, offset, base, src); + } + + void subb_rm(RegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + spew("subb %s, " MEM_obs, GPReg8Name(src), + ADDR_obs(offset, base, index, scale)); + m_formatter.oneByteOp8(OP_SUB_EbGb, offset, base, index, scale, src); + } + + void andb_im(int32_t imm, int32_t offset, RegisterID base) { + spew("andb $%d, " MEM_ob, int8_t(imm), ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_GROUP1_EbIb, offset, base, GROUP1_OP_AND); + m_formatter.immediate8(imm); + } + + void andb_im(int32_t imm, int32_t offset, RegisterID base, RegisterID index, + int scale) { + spew("andb $%d, " MEM_obs, int8_t(imm), + ADDR_obs(offset, base, index, scale)); + m_formatter.oneByteOp(OP_GROUP1_EbIb, offset, base, index, scale, + GROUP1_OP_AND); + m_formatter.immediate8(imm); + } + + void andb_rm(RegisterID src, int32_t offset, RegisterID base) { + spew("andb %s, " MEM_ob, GPReg8Name(src), ADDR_ob(offset, base)); + m_formatter.oneByteOp8(OP_AND_EbGb, offset, base, src); + } + + void andb_rm(RegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + spew("andb %s, " MEM_obs, GPReg8Name(src), + ADDR_obs(offset, base, index, scale)); + m_formatter.oneByteOp8(OP_AND_EbGb, offset, base, index, scale, src); + } + + void orb_im(int32_t imm, int32_t offset, RegisterID base) { + spew("orb $%d, " MEM_ob, int8_t(imm), ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_GROUP1_EbIb, offset, base, GROUP1_OP_OR); + m_formatter.immediate8(imm); + } + + void orb_im(int32_t imm, int32_t offset, RegisterID base, RegisterID index, + int scale) { + spew("orb $%d, " MEM_obs, int8_t(imm), + ADDR_obs(offset, base, index, scale)); + m_formatter.oneByteOp(OP_GROUP1_EbIb, offset, base, index, scale, + GROUP1_OP_OR); + m_formatter.immediate8(imm); + } + + void orb_rm(RegisterID src, int32_t offset, RegisterID base) { + spew("orb %s, " MEM_ob, GPReg8Name(src), ADDR_ob(offset, base)); + m_formatter.oneByteOp8(OP_OR_EbGb, offset, base, src); + } + + void orb_rm(RegisterID src, int32_t offset, RegisterID base, RegisterID index, + int scale) { + spew("orb %s, " MEM_obs, GPReg8Name(src), + ADDR_obs(offset, base, index, scale)); + m_formatter.oneByteOp8(OP_OR_EbGb, offset, base, index, scale, src); + } + + void xorb_im(int32_t imm, int32_t offset, RegisterID base) { + spew("xorb $%d, " MEM_ob, int8_t(imm), ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_GROUP1_EbIb, offset, base, GROUP1_OP_XOR); + m_formatter.immediate8(imm); + } + + void xorb_im(int32_t imm, int32_t offset, RegisterID base, RegisterID index, + int scale) { + spew("xorb $%d, " MEM_obs, int8_t(imm), + ADDR_obs(offset, base, index, scale)); + m_formatter.oneByteOp(OP_GROUP1_EbIb, offset, base, index, scale, + GROUP1_OP_XOR); + m_formatter.immediate8(imm); + } + + void xorb_rm(RegisterID src, int32_t offset, RegisterID base) { + spew("xorb %s, " MEM_ob, GPReg8Name(src), ADDR_ob(offset, base)); + m_formatter.oneByteOp8(OP_XOR_EbGb, offset, base, src); + } + + void xorb_rm(RegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + spew("xorb %s, " MEM_obs, GPReg8Name(src), + ADDR_obs(offset, base, index, scale)); + m_formatter.oneByteOp8(OP_XOR_EbGb, offset, base, index, scale, src); + } + + void lock_xaddb_rm(RegisterID srcdest, int32_t offset, RegisterID base) { + spew("lock xaddb %s, " MEM_ob, GPReg8Name(srcdest), ADDR_ob(offset, base)); + m_formatter.oneByteOp(PRE_LOCK); + m_formatter.twoByteOp8(OP2_XADD_EbGb, offset, base, srcdest); + } + + void lock_xaddb_rm(RegisterID srcdest, int32_t offset, RegisterID base, + RegisterID index, int scale) { + spew("lock xaddb %s, " MEM_obs, GPReg8Name(srcdest), + ADDR_obs(offset, base, index, scale)); + m_formatter.oneByteOp(PRE_LOCK); + m_formatter.twoByteOp8(OP2_XADD_EbGb, offset, base, index, scale, srcdest); + } + + void lock_xaddl_rm(RegisterID srcdest, int32_t offset, RegisterID base) { + spew("lock xaddl %s, " MEM_ob, GPReg32Name(srcdest), ADDR_ob(offset, base)); + m_formatter.oneByteOp(PRE_LOCK); + m_formatter.twoByteOp(OP2_XADD_EvGv, offset, base, srcdest); + } + + void lock_xaddl_rm(RegisterID srcdest, int32_t offset, RegisterID base, + RegisterID index, int scale) { + spew("lock xaddl %s, " MEM_obs, GPReg32Name(srcdest), + ADDR_obs(offset, base, index, scale)); + m_formatter.oneByteOp(PRE_LOCK); + m_formatter.twoByteOp(OP2_XADD_EvGv, offset, base, index, scale, srcdest); + } + + void vpmaddubsw_rr(XMMRegisterID src1, XMMRegisterID src0, + XMMRegisterID dst) { + threeByteOpSimd("vpmaddubsw", VEX_PD, OP3_PMADDUBSW_VdqWdq, ESCAPE_38, src1, + src0, dst); + } + void vpmaddubsw_mr(const void* address, XMMRegisterID src0, + XMMRegisterID dst) { + threeByteOpSimd("vpmaddubsw", VEX_PD, OP3_PMADDUBSW_VdqWdq, ESCAPE_38, + address, src0, dst); + } + + void vpaddb_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpaddb", VEX_PD, OP2_PADDB_VdqWdq, src1, src0, dst); + } + void vpaddb_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpaddb", VEX_PD, OP2_PADDB_VdqWdq, offset, base, src0, dst); + } + void vpaddb_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpaddb", VEX_PD, OP2_PADDB_VdqWdq, address, src0, dst); + } + + void vpaddsb_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpaddsb", VEX_PD, OP2_PADDSB_VdqWdq, src1, src0, dst); + } + void vpaddsb_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpaddsb", VEX_PD, OP2_PADDSB_VdqWdq, offset, base, src0, + dst); + } + void vpaddsb_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpaddsb", VEX_PD, OP2_PADDSB_VdqWdq, address, src0, dst); + } + + void vpaddusb_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpaddusb", VEX_PD, OP2_PADDUSB_VdqWdq, src1, src0, dst); + } + void vpaddusb_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpaddusb", VEX_PD, OP2_PADDUSB_VdqWdq, offset, base, src0, + dst); + } + void vpaddusb_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpaddusb", VEX_PD, OP2_PADDUSB_VdqWdq, address, src0, dst); + } + + void vpaddw_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpaddw", VEX_PD, OP2_PADDW_VdqWdq, src1, src0, dst); + } + void vpaddw_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpaddw", VEX_PD, OP2_PADDW_VdqWdq, offset, base, src0, dst); + } + void vpaddw_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpaddw", VEX_PD, OP2_PADDW_VdqWdq, address, src0, dst); + } + + void vpaddsw_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpaddsw", VEX_PD, OP2_PADDSW_VdqWdq, src1, src0, dst); + } + void vpaddsw_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpaddsw", VEX_PD, OP2_PADDSW_VdqWdq, offset, base, src0, + dst); + } + void vpaddsw_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpaddsw", VEX_PD, OP2_PADDSW_VdqWdq, address, src0, dst); + } + + void vpaddusw_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpaddusw", VEX_PD, OP2_PADDUSW_VdqWdq, src1, src0, dst); + } + void vpaddusw_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpaddusw", VEX_PD, OP2_PADDUSW_VdqWdq, offset, base, src0, + dst); + } + void vpaddusw_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpaddusw", VEX_PD, OP2_PADDUSW_VdqWdq, address, src0, dst); + } + + void vpaddd_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpaddd", VEX_PD, OP2_PADDD_VdqWdq, src1, src0, dst); + } + void vpaddd_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpaddd", VEX_PD, OP2_PADDD_VdqWdq, offset, base, src0, dst); + } + void vpaddd_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpaddd", VEX_PD, OP2_PADDD_VdqWdq, address, src0, dst); + } + + void vpaddq_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpaddq", VEX_PD, OP2_PADDQ_VdqWdq, address, src0, dst); + } + + void vpsubb_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpsubb", VEX_PD, OP2_PSUBB_VdqWdq, src1, src0, dst); + } + void vpsubb_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpsubb", VEX_PD, OP2_PSUBB_VdqWdq, offset, base, src0, dst); + } + void vpsubb_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpsubb", VEX_PD, OP2_PSUBB_VdqWdq, address, src0, dst); + } + + void vpsubsb_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpsubsb", VEX_PD, OP2_PSUBSB_VdqWdq, src1, src0, dst); + } + void vpsubsb_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpsubsb", VEX_PD, OP2_PSUBSB_VdqWdq, offset, base, src0, + dst); + } + void vpsubsb_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpsubsb", VEX_PD, OP2_PSUBSB_VdqWdq, address, src0, dst); + } + + void vpsubusb_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpsubusb", VEX_PD, OP2_PSUBUSB_VdqWdq, src1, src0, dst); + } + void vpsubusb_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpsubusb", VEX_PD, OP2_PSUBUSB_VdqWdq, offset, base, src0, + dst); + } + void vpsubusb_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpsubusb", VEX_PD, OP2_PSUBUSB_VdqWdq, address, src0, dst); + } + + void vpsubw_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpsubw", VEX_PD, OP2_PSUBW_VdqWdq, src1, src0, dst); + } + void vpsubw_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpsubw", VEX_PD, OP2_PSUBW_VdqWdq, offset, base, src0, dst); + } + void vpsubw_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpsubw", VEX_PD, OP2_PSUBW_VdqWdq, address, src0, dst); + } + + void vpsubsw_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpsubsw", VEX_PD, OP2_PSUBSW_VdqWdq, src1, src0, dst); + } + void vpsubsw_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpsubsw", VEX_PD, OP2_PSUBSW_VdqWdq, offset, base, src0, + dst); + } + void vpsubsw_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpsubsw", VEX_PD, OP2_PSUBSW_VdqWdq, address, src0, dst); + } + + void vpsubusw_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpsubusw", VEX_PD, OP2_PSUBUSW_VdqWdq, src1, src0, dst); + } + void vpsubusw_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpsubusw", VEX_PD, OP2_PSUBUSW_VdqWdq, offset, base, src0, + dst); + } + void vpsubusw_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpsubusw", VEX_PD, OP2_PSUBUSW_VdqWdq, address, src0, dst); + } + + void vpsubd_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpsubd", VEX_PD, OP2_PSUBD_VdqWdq, src1, src0, dst); + } + void vpsubd_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpsubd", VEX_PD, OP2_PSUBD_VdqWdq, offset, base, src0, dst); + } + void vpsubd_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpsubd", VEX_PD, OP2_PSUBD_VdqWdq, address, src0, dst); + } + + void vpsubq_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpsubq", VEX_PD, OP2_PSUBQ_VdqWdq, address, src0, dst); + } + + void vpmuldq_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + threeByteOpSimd("vpmuldq", VEX_PD, OP3_PMULDQ_VdqWdq, ESCAPE_38, src1, src0, + dst); + } + + void vpmuludq_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpmuludq", VEX_PD, OP2_PMULUDQ_VdqWdq, src1, src0, dst); + } + void vpmuludq_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpmuludq", VEX_PD, OP2_PMULUDQ_VdqWdq, offset, base, src0, + dst); + } + void vpmuludq_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpmuludq", VEX_PD, OP2_PMULUDQ_VdqWdq, address, src0, dst); + } + + void vpmaddwd_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpmaddwd", VEX_PD, OP2_PMADDWD_VdqWdq, src1, src0, dst); + } + void vpmaddwd_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpmaddwd", VEX_PD, OP2_PMADDWD_VdqWdq, address, src0, dst); + } + + void vpmullw_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpmullw", VEX_PD, OP2_PMULLW_VdqWdq, src1, src0, dst); + } + void vpmulhw_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpmulhw", VEX_PD, OP2_PMULHW_VdqWdq, src1, src0, dst); + } + void vpmulhuw_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpmulhuw", VEX_PD, OP2_PMULHUW_VdqWdq, src1, src0, dst); + } + void vpmullw_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpmullw", VEX_PD, OP2_PMULLW_VdqWdq, offset, base, src0, + dst); + } + void vpmulhw_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpmulhw", VEX_PD, OP2_PMULHW_VdqWdq, offset, base, src0, + dst); + } + void vpmulhuw_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpmulhuw", VEX_PD, OP2_PMULHUW_VdqWdq, offset, base, src0, + dst); + } + void vpmullw_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpmullw", VEX_PD, OP2_PMULLW_VdqWdq, address, src0, dst); + } + + void vpmulld_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + threeByteOpSimd("vpmulld", VEX_PD, OP3_PMULLD_VdqWdq, ESCAPE_38, src1, src0, + dst); + } + void vpmulld_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + threeByteOpSimd("vpmulld", VEX_PD, OP3_PMULLD_VdqWdq, ESCAPE_38, offset, + base, src0, dst); + } + void vpmulld_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + threeByteOpSimd("vpmulld", VEX_PD, OP3_PMULLD_VdqWdq, ESCAPE_38, address, + src0, dst); + } + void vpmulhrsw_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + threeByteOpSimd("vpmulhrsw", VEX_PD, OP3_PMULHRSW_VdqWdq, ESCAPE_38, src1, + src0, dst); + } + void vpmulhrsw_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + threeByteOpSimd("vpmulhrsw", VEX_PD, OP3_PMULHRSW_VdqWdq, ESCAPE_38, offset, + base, src0, dst); + } + + void vaddps_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vaddps", VEX_PS, OP2_ADDPS_VpsWps, src1, src0, dst); + } + void vaddps_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vaddps", VEX_PS, OP2_ADDPS_VpsWps, offset, base, src0, dst); + } + void vaddps_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vaddps", VEX_PS, OP2_ADDPS_VpsWps, address, src0, dst); + } + + void vsubps_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vsubps", VEX_PS, OP2_SUBPS_VpsWps, src1, src0, dst); + } + void vsubps_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vsubps", VEX_PS, OP2_SUBPS_VpsWps, offset, base, src0, dst); + } + void vsubps_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vsubps", VEX_PS, OP2_SUBPS_VpsWps, address, src0, dst); + } + + void vmulps_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vmulps", VEX_PS, OP2_MULPS_VpsWps, src1, src0, dst); + } + void vmulps_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vmulps", VEX_PS, OP2_MULPS_VpsWps, offset, base, src0, dst); + } + void vmulps_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vmulps", VEX_PS, OP2_MULPS_VpsWps, address, src0, dst); + } + + void vdivps_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vdivps", VEX_PS, OP2_DIVPS_VpsWps, src1, src0, dst); + } + void vdivps_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vdivps", VEX_PS, OP2_DIVPS_VpsWps, offset, base, src0, dst); + } + void vdivps_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vdivps", VEX_PS, OP2_DIVPS_VpsWps, address, src0, dst); + } + + void vmaxps_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vmaxps", VEX_PS, OP2_MAXPS_VpsWps, src1, src0, dst); + } + void vmaxps_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vmaxps", VEX_PS, OP2_MAXPS_VpsWps, offset, base, src0, dst); + } + void vmaxps_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vmaxps", VEX_PS, OP2_MAXPS_VpsWps, address, src0, dst); + } + + void vmaxpd_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vmaxpd", VEX_PD, OP2_MAXPD_VpdWpd, src1, src0, dst); + } + + void vminps_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vminps", VEX_PS, OP2_MINPS_VpsWps, src1, src0, dst); + } + void vminps_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vminps", VEX_PS, OP2_MINPS_VpsWps, offset, base, src0, dst); + } + void vminps_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vminps", VEX_PS, OP2_MINPS_VpsWps, address, src0, dst); + } + + void vminpd_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vminpd", VEX_PD, OP2_MINPD_VpdWpd, src1, src0, dst); + } + void vminpd_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vminpd", VEX_PD, OP2_MINPD_VpdWpd, address, src0, dst); + } + + void vaddpd_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vaddpd", VEX_PD, OP2_ADDPD_VpdWpd, src1, src0, dst); + } + void vaddpd_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vaddpd", VEX_PD, OP2_ADDPD_VpdWpd, address, src0, dst); + } + + void vsubpd_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vsubpd", VEX_PD, OP2_SUBPD_VpdWpd, src1, src0, dst); + } + void vsubpd_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vsubpd", VEX_PD, OP2_SUBPD_VpdWpd, address, src0, dst); + } + + void vmulpd_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vmulpd", VEX_PD, OP2_MULPD_VpdWpd, src1, src0, dst); + } + void vmulpd_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vmulpd", VEX_PD, OP2_MULPD_VpdWpd, address, src0, dst); + } + + void vdivpd_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vdivpd", VEX_PD, OP2_DIVPD_VpdWpd, src1, src0, dst); + } + void vdivpd_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vdivpd", VEX_PD, OP2_DIVPD_VpdWpd, address, src0, dst); + } + + void andl_rr(RegisterID src, RegisterID dst) { + spew("andl %s, %s", GPReg32Name(src), GPReg32Name(dst)); + m_formatter.oneByteOp(OP_AND_GvEv, src, dst); + } + + void andw_rr(RegisterID src, RegisterID dst) { + spew("andw %s, %s", GPReg16Name(src), GPReg16Name(dst)); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_AND_GvEv, src, dst); + } + + void andl_mr(int32_t offset, RegisterID base, RegisterID dst) { + spew("andl " MEM_ob ", %s", ADDR_ob(offset, base), GPReg32Name(dst)); + m_formatter.oneByteOp(OP_AND_GvEv, offset, base, dst); + } + + void andl_mr(int32_t offset, RegisterID base, RegisterID index, int scale, + RegisterID dst) { + spew("andl " MEM_obs ", %s", ADDR_obs(offset, base, index, scale), + GPReg32Name(dst)); + m_formatter.oneByteOp(OP_AND_GvEv, offset, base, index, scale, dst); + } + + void andl_rm(RegisterID src, int32_t offset, RegisterID base) { + spew("andl %s, " MEM_ob, GPReg32Name(src), ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_AND_EvGv, offset, base, src); + } + + void andw_rm(RegisterID src, int32_t offset, RegisterID base) { + spew("andw %s, " MEM_ob, GPReg16Name(src), ADDR_ob(offset, base)); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_AND_EvGv, offset, base, src); + } + + void andl_rm(RegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + spew("andl %s, " MEM_obs, GPReg32Name(src), + ADDR_obs(offset, base, index, scale)); + m_formatter.oneByteOp(OP_AND_EvGv, offset, base, index, scale, src); + } + + void andw_rm(RegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + spew("andw %s, " MEM_obs, GPReg16Name(src), + ADDR_obs(offset, base, index, scale)); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_AND_EvGv, offset, base, index, scale, src); + } + + void andl_ir(int32_t imm, RegisterID dst) { + spew("andl $0x%x, %s", uint32_t(imm), GPReg32Name(dst)); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, dst, GROUP1_OP_AND); + m_formatter.immediate8s(imm); + } else { + if (dst == rax) { + m_formatter.oneByteOp(OP_AND_EAXIv); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, dst, GROUP1_OP_AND); + } + m_formatter.immediate32(imm); + } + } + + void andw_ir(int32_t imm, RegisterID dst) { + spew("andw $0x%x, %s", uint16_t(imm), GPReg16Name(dst)); + m_formatter.prefix(PRE_OPERAND_SIZE); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, dst, GROUP1_OP_AND); + m_formatter.immediate8s(imm); + } else { + if (dst == rax) { + m_formatter.oneByteOp(OP_AND_EAXIv); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, dst, GROUP1_OP_AND); + } + m_formatter.immediate16(imm); + } + } + + void andl_im(int32_t imm, int32_t offset, RegisterID base) { + spew("andl $0x%x, " MEM_ob, uint32_t(imm), ADDR_ob(offset, base)); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, offset, base, GROUP1_OP_AND); + m_formatter.immediate8s(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, offset, base, GROUP1_OP_AND); + m_formatter.immediate32(imm); + } + } + + void andw_im(int32_t imm, int32_t offset, RegisterID base) { + spew("andw $0x%x, " MEM_ob, uint16_t(imm), ADDR_ob(offset, base)); + m_formatter.prefix(PRE_OPERAND_SIZE); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, offset, base, GROUP1_OP_AND); + m_formatter.immediate8s(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, offset, base, GROUP1_OP_AND); + m_formatter.immediate16(imm); + } + } + + void andl_im(int32_t imm, int32_t offset, RegisterID base, RegisterID index, + int scale) { + spew("andl $%d, " MEM_obs, imm, ADDR_obs(offset, base, index, scale)); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, offset, base, index, scale, + GROUP1_OP_AND); + m_formatter.immediate8s(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, offset, base, index, scale, + GROUP1_OP_AND); + m_formatter.immediate32(imm); + } + } + + void andw_im(int32_t imm, int32_t offset, RegisterID base, RegisterID index, + int scale) { + spew("andw $%d, " MEM_obs, int16_t(imm), + ADDR_obs(offset, base, index, scale)); + m_formatter.prefix(PRE_OPERAND_SIZE); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, offset, base, index, scale, + GROUP1_OP_AND); + m_formatter.immediate8s(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, offset, base, index, scale, + GROUP1_OP_AND); + m_formatter.immediate16(imm); + } + } + + void fld_m(int32_t offset, RegisterID base) { + spew("fld " MEM_ob, ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_FPU6, offset, base, FPU6_OP_FLD); + } + void fld32_m(int32_t offset, RegisterID base) { + spew("fld " MEM_ob, ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_FPU6_F32, offset, base, FPU6_OP_FLD); + } + void faddp() { + spew("addp "); + m_formatter.oneByteOp(OP_FPU6_ADDP); + m_formatter.oneByteOp(OP_ADDP_ST0_ST1); + } + void fisttp_m(int32_t offset, RegisterID base) { + spew("fisttp " MEM_ob, ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_FPU6, offset, base, FPU6_OP_FISTTP); + } + void fistp_m(int32_t offset, RegisterID base) { + spew("fistp " MEM_ob, ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_FILD, offset, base, FPU6_OP_FISTP); + } + void fstp_m(int32_t offset, RegisterID base) { + spew("fstp " MEM_ob, ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_FPU6, offset, base, FPU6_OP_FSTP); + } + void fstp32_m(int32_t offset, RegisterID base) { + spew("fstp32 " MEM_ob, ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_FPU6_F32, offset, base, FPU6_OP_FSTP); + } + void fnstcw_m(int32_t offset, RegisterID base) { + spew("fnstcw " MEM_ob, ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_FPU6_F32, offset, base, FPU6_OP_FISTP); + } + void fldcw_m(int32_t offset, RegisterID base) { + spew("fldcw " MEM_ob, ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_FPU6_F32, offset, base, FPU6_OP_FLDCW); + } + void fnstsw_m(int32_t offset, RegisterID base) { + spew("fnstsw " MEM_ob, ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_FPU6, offset, base, FPU6_OP_FISTP); + } + + void negl_r(RegisterID dst) { + spew("negl %s", GPReg32Name(dst)); + m_formatter.oneByteOp(OP_GROUP3_Ev, dst, GROUP3_OP_NEG); + } + + void negl_m(int32_t offset, RegisterID base) { + spew("negl " MEM_ob, ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_GROUP3_Ev, offset, base, GROUP3_OP_NEG); + } + + void notl_r(RegisterID dst) { + spew("notl %s", GPReg32Name(dst)); + m_formatter.oneByteOp(OP_GROUP3_Ev, dst, GROUP3_OP_NOT); + } + + void notl_m(int32_t offset, RegisterID base) { + spew("notl " MEM_ob, ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_GROUP3_Ev, offset, base, GROUP3_OP_NOT); + } + + void orl_rr(RegisterID src, RegisterID dst) { + spew("orl %s, %s", GPReg32Name(src), GPReg32Name(dst)); + m_formatter.oneByteOp(OP_OR_GvEv, src, dst); + } + + void orw_rr(RegisterID src, RegisterID dst) { + spew("orw %s, %s", GPReg16Name(src), GPReg16Name(dst)); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_OR_GvEv, src, dst); + } + + void orl_mr(int32_t offset, RegisterID base, RegisterID dst) { + spew("orl " MEM_ob ", %s", ADDR_ob(offset, base), GPReg32Name(dst)); + m_formatter.oneByteOp(OP_OR_GvEv, offset, base, dst); + } + + void orl_rm(RegisterID src, int32_t offset, RegisterID base) { + spew("orl %s, " MEM_ob, GPReg32Name(src), ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_OR_EvGv, offset, base, src); + } + + void orw_rm(RegisterID src, int32_t offset, RegisterID base) { + spew("orw %s, " MEM_ob, GPReg16Name(src), ADDR_ob(offset, base)); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_OR_EvGv, offset, base, src); + } + + void orl_rm(RegisterID src, int32_t offset, RegisterID base, RegisterID index, + int scale) { + spew("orl %s, " MEM_obs, GPReg32Name(src), + ADDR_obs(offset, base, index, scale)); + m_formatter.oneByteOp(OP_OR_EvGv, offset, base, index, scale, src); + } + + void orw_rm(RegisterID src, int32_t offset, RegisterID base, RegisterID index, + int scale) { + spew("orw %s, " MEM_obs, GPReg16Name(src), + ADDR_obs(offset, base, index, scale)); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_OR_EvGv, offset, base, index, scale, src); + } + + void orl_ir(int32_t imm, RegisterID dst) { + spew("orl $0x%x, %s", uint32_t(imm), GPReg32Name(dst)); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, dst, GROUP1_OP_OR); + m_formatter.immediate8s(imm); + } else { + if (dst == rax) { + m_formatter.oneByteOp(OP_OR_EAXIv); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, dst, GROUP1_OP_OR); + } + m_formatter.immediate32(imm); + } + } + + void orw_ir(int32_t imm, RegisterID dst) { + spew("orw $0x%x, %s", uint16_t(imm), GPReg16Name(dst)); + m_formatter.prefix(PRE_OPERAND_SIZE); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, dst, GROUP1_OP_OR); + m_formatter.immediate8s(imm); + } else { + if (dst == rax) { + m_formatter.oneByteOp(OP_OR_EAXIv); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, dst, GROUP1_OP_OR); + } + m_formatter.immediate16(imm); + } + } + + void orl_im(int32_t imm, int32_t offset, RegisterID base) { + spew("orl $0x%x, " MEM_ob, uint32_t(imm), ADDR_ob(offset, base)); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, offset, base, GROUP1_OP_OR); + m_formatter.immediate8s(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, offset, base, GROUP1_OP_OR); + m_formatter.immediate32(imm); + } + } + + void orw_im(int32_t imm, int32_t offset, RegisterID base) { + spew("orw $0x%x, " MEM_ob, uint16_t(imm), ADDR_ob(offset, base)); + m_formatter.prefix(PRE_OPERAND_SIZE); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, offset, base, GROUP1_OP_OR); + m_formatter.immediate8s(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, offset, base, GROUP1_OP_OR); + m_formatter.immediate16(imm); + } + } + + void orl_im(int32_t imm, int32_t offset, RegisterID base, RegisterID index, + int scale) { + spew("orl $%d, " MEM_obs, imm, ADDR_obs(offset, base, index, scale)); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, offset, base, index, scale, + GROUP1_OP_OR); + m_formatter.immediate8s(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, offset, base, index, scale, + GROUP1_OP_OR); + m_formatter.immediate32(imm); + } + } + + void orw_im(int32_t imm, int32_t offset, RegisterID base, RegisterID index, + int scale) { + spew("orw $%d, " MEM_obs, int16_t(imm), + ADDR_obs(offset, base, index, scale)); + m_formatter.prefix(PRE_OPERAND_SIZE); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, offset, base, index, scale, + GROUP1_OP_OR); + m_formatter.immediate8s(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, offset, base, index, scale, + GROUP1_OP_OR); + m_formatter.immediate16(imm); + } + } + + void sbbl_rr(RegisterID src, RegisterID dst) { + spew("sbbl %s, %s", GPReg32Name(src), GPReg32Name(dst)); + m_formatter.oneByteOp(OP_SBB_GvEv, src, dst); + } + + void subl_rr(RegisterID src, RegisterID dst) { + spew("subl %s, %s", GPReg32Name(src), GPReg32Name(dst)); + m_formatter.oneByteOp(OP_SUB_GvEv, src, dst); + } + + void subw_rr(RegisterID src, RegisterID dst) { + spew("subw %s, %s", GPReg16Name(src), GPReg16Name(dst)); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_SUB_GvEv, src, dst); + } + + void subl_mr(int32_t offset, RegisterID base, RegisterID dst) { + spew("subl " MEM_ob ", %s", ADDR_ob(offset, base), GPReg32Name(dst)); + m_formatter.oneByteOp(OP_SUB_GvEv, offset, base, dst); + } + + void subl_rm(RegisterID src, int32_t offset, RegisterID base) { + spew("subl %s, " MEM_ob, GPReg32Name(src), ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_SUB_EvGv, offset, base, src); + } + + void subw_rm(RegisterID src, int32_t offset, RegisterID base) { + spew("subw %s, " MEM_ob, GPReg16Name(src), ADDR_ob(offset, base)); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_SUB_EvGv, offset, base, src); + } + + void subl_rm(RegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + spew("subl %s, " MEM_obs, GPReg32Name(src), + ADDR_obs(offset, base, index, scale)); + m_formatter.oneByteOp(OP_SUB_EvGv, offset, base, index, scale, src); + } + + void subw_rm(RegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + spew("subw %s, " MEM_obs, GPReg16Name(src), + ADDR_obs(offset, base, index, scale)); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_SUB_EvGv, offset, base, index, scale, src); + } + + void subl_ir(int32_t imm, RegisterID dst) { + spew("subl $%d, %s", imm, GPReg32Name(dst)); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, dst, GROUP1_OP_SUB); + m_formatter.immediate8s(imm); + } else { + if (dst == rax) { + m_formatter.oneByteOp(OP_SUB_EAXIv); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, dst, GROUP1_OP_SUB); + } + m_formatter.immediate32(imm); + } + } + + void subw_ir(int32_t imm, RegisterID dst) { + spew("subw $%d, %s", int16_t(imm), GPReg16Name(dst)); + m_formatter.prefix(PRE_OPERAND_SIZE); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, dst, GROUP1_OP_SUB); + m_formatter.immediate8s(imm); + } else { + if (dst == rax) { + m_formatter.oneByteOp(OP_SUB_EAXIv); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, dst, GROUP1_OP_SUB); + } + m_formatter.immediate16(imm); + } + } + + void subl_im(int32_t imm, int32_t offset, RegisterID base) { + spew("subl $%d, " MEM_ob, imm, ADDR_ob(offset, base)); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, offset, base, GROUP1_OP_SUB); + m_formatter.immediate8s(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, offset, base, GROUP1_OP_SUB); + m_formatter.immediate32(imm); + } + } + + void subw_im(int32_t imm, int32_t offset, RegisterID base) { + spew("subw $%d, " MEM_ob, int16_t(imm), ADDR_ob(offset, base)); + m_formatter.prefix(PRE_OPERAND_SIZE); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, offset, base, GROUP1_OP_SUB); + m_formatter.immediate8s(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, offset, base, GROUP1_OP_SUB); + m_formatter.immediate16(imm); + } + } + + void subl_im(int32_t imm, int32_t offset, RegisterID base, RegisterID index, + int scale) { + spew("subl $%d, " MEM_obs, imm, ADDR_obs(offset, base, index, scale)); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, offset, base, index, scale, + GROUP1_OP_SUB); + m_formatter.immediate8s(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, offset, base, index, scale, + GROUP1_OP_SUB); + m_formatter.immediate32(imm); + } + } + + void subw_im(int32_t imm, int32_t offset, RegisterID base, RegisterID index, + int scale) { + spew("subw $%d, " MEM_obs, int16_t(imm), + ADDR_obs(offset, base, index, scale)); + m_formatter.prefix(PRE_OPERAND_SIZE); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, offset, base, index, scale, + GROUP1_OP_SUB); + m_formatter.immediate8s(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, offset, base, index, scale, + GROUP1_OP_SUB); + m_formatter.immediate16(imm); + } + } + + void xorl_rr(RegisterID src, RegisterID dst) { + spew("xorl %s, %s", GPReg32Name(src), GPReg32Name(dst)); + m_formatter.oneByteOp(OP_XOR_GvEv, src, dst); + } + + void xorw_rr(RegisterID src, RegisterID dst) { + spew("xorw %s, %s", GPReg16Name(src), GPReg16Name(dst)); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_XOR_GvEv, src, dst); + } + + void xorl_mr(int32_t offset, RegisterID base, RegisterID dst) { + spew("xorl " MEM_ob ", %s", ADDR_ob(offset, base), GPReg32Name(dst)); + m_formatter.oneByteOp(OP_XOR_GvEv, offset, base, dst); + } + + void xorl_rm(RegisterID src, int32_t offset, RegisterID base) { + spew("xorl %s, " MEM_ob, GPReg32Name(src), ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_XOR_EvGv, offset, base, src); + } + + void xorw_rm(RegisterID src, int32_t offset, RegisterID base) { + spew("xorw %s, " MEM_ob, GPReg16Name(src), ADDR_ob(offset, base)); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_XOR_EvGv, offset, base, src); + } + + void xorl_rm(RegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + spew("xorl %s, " MEM_obs, GPReg32Name(src), + ADDR_obs(offset, base, index, scale)); + m_formatter.oneByteOp(OP_XOR_EvGv, offset, base, index, scale, src); + } + + void xorw_rm(RegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + spew("xorw %s, " MEM_obs, GPReg16Name(src), + ADDR_obs(offset, base, index, scale)); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_XOR_EvGv, offset, base, index, scale, src); + } + + void xorl_im(int32_t imm, int32_t offset, RegisterID base) { + spew("xorl $0x%x, " MEM_ob, uint32_t(imm), ADDR_ob(offset, base)); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, offset, base, GROUP1_OP_XOR); + m_formatter.immediate8s(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, offset, base, GROUP1_OP_XOR); + m_formatter.immediate32(imm); + } + } + + void xorw_im(int32_t imm, int32_t offset, RegisterID base) { + spew("xorw $0x%x, " MEM_ob, uint16_t(imm), ADDR_ob(offset, base)); + m_formatter.prefix(PRE_OPERAND_SIZE); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, offset, base, GROUP1_OP_XOR); + m_formatter.immediate8s(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, offset, base, GROUP1_OP_XOR); + m_formatter.immediate16(imm); + } + } + + void xorl_im(int32_t imm, int32_t offset, RegisterID base, RegisterID index, + int scale) { + spew("xorl $%d, " MEM_obs, imm, ADDR_obs(offset, base, index, scale)); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, offset, base, index, scale, + GROUP1_OP_XOR); + m_formatter.immediate8s(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, offset, base, index, scale, + GROUP1_OP_XOR); + m_formatter.immediate32(imm); + } + } + + void xorw_im(int32_t imm, int32_t offset, RegisterID base, RegisterID index, + int scale) { + spew("xorw $%d, " MEM_obs, int16_t(imm), + ADDR_obs(offset, base, index, scale)); + m_formatter.prefix(PRE_OPERAND_SIZE); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, offset, base, index, scale, + GROUP1_OP_XOR); + m_formatter.immediate8s(imm); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, offset, base, index, scale, + GROUP1_OP_XOR); + m_formatter.immediate16(imm); + } + } + + void xorl_ir(int32_t imm, RegisterID dst) { + spew("xorl $%d, %s", imm, GPReg32Name(dst)); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, dst, GROUP1_OP_XOR); + m_formatter.immediate8s(imm); + } else { + if (dst == rax) { + m_formatter.oneByteOp(OP_XOR_EAXIv); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, dst, GROUP1_OP_XOR); + } + m_formatter.immediate32(imm); + } + } + + void xorw_ir(int32_t imm, RegisterID dst) { + spew("xorw $%d, %s", int16_t(imm), GPReg16Name(dst)); + m_formatter.prefix(PRE_OPERAND_SIZE); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, dst, GROUP1_OP_XOR); + m_formatter.immediate8s(imm); + } else { + if (dst == rax) { + m_formatter.oneByteOp(OP_XOR_EAXIv); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, dst, GROUP1_OP_XOR); + } + m_formatter.immediate16(imm); + } + } + + void bswapl_r(RegisterID dst) { + spew("bswap %s", GPReg32Name(dst)); + m_formatter.twoByteOp(OP2_BSWAP, dst); + } + + void sarl_ir(int32_t imm, RegisterID dst) { + MOZ_ASSERT(imm < 32); + spew("sarl $%d, %s", imm, GPReg32Name(dst)); + if (imm == 1) { + m_formatter.oneByteOp(OP_GROUP2_Ev1, dst, GROUP2_OP_SAR); + } else { + m_formatter.oneByteOp(OP_GROUP2_EvIb, dst, GROUP2_OP_SAR); + m_formatter.immediate8u(imm); + } + } + + void sarl_CLr(RegisterID dst) { + spew("sarl %%cl, %s", GPReg32Name(dst)); + m_formatter.oneByteOp(OP_GROUP2_EvCL, dst, GROUP2_OP_SAR); + } + + void shrl_ir(int32_t imm, RegisterID dst) { + MOZ_ASSERT(imm < 32); + spew("shrl $%d, %s", imm, GPReg32Name(dst)); + if (imm == 1) { + m_formatter.oneByteOp(OP_GROUP2_Ev1, dst, GROUP2_OP_SHR); + } else { + m_formatter.oneByteOp(OP_GROUP2_EvIb, dst, GROUP2_OP_SHR); + m_formatter.immediate8u(imm); + } + } + + void shrl_CLr(RegisterID dst) { + spew("shrl %%cl, %s", GPReg32Name(dst)); + m_formatter.oneByteOp(OP_GROUP2_EvCL, dst, GROUP2_OP_SHR); + } + + void shrdl_CLr(RegisterID src, RegisterID dst) { + spew("shrdl %%cl, %s, %s", GPReg32Name(src), GPReg32Name(dst)); + m_formatter.twoByteOp(OP2_SHRD_GvEv, dst, src); + } + + void shldl_CLr(RegisterID src, RegisterID dst) { + spew("shldl %%cl, %s, %s", GPReg32Name(src), GPReg32Name(dst)); + m_formatter.twoByteOp(OP2_SHLD_GvEv, dst, src); + } + + void shll_ir(int32_t imm, RegisterID dst) { + MOZ_ASSERT(imm < 32); + spew("shll $%d, %s", imm, GPReg32Name(dst)); + if (imm == 1) { + m_formatter.oneByteOp(OP_GROUP2_Ev1, dst, GROUP2_OP_SHL); + } else { + m_formatter.oneByteOp(OP_GROUP2_EvIb, dst, GROUP2_OP_SHL); + m_formatter.immediate8u(imm); + } + } + + void shll_CLr(RegisterID dst) { + spew("shll %%cl, %s", GPReg32Name(dst)); + m_formatter.oneByteOp(OP_GROUP2_EvCL, dst, GROUP2_OP_SHL); + } + + void roll_ir(int32_t imm, RegisterID dst) { + MOZ_ASSERT(imm < 32); + spew("roll $%d, %s", imm, GPReg32Name(dst)); + if (imm == 1) { + m_formatter.oneByteOp(OP_GROUP2_Ev1, dst, GROUP2_OP_ROL); + } else { + m_formatter.oneByteOp(OP_GROUP2_EvIb, dst, GROUP2_OP_ROL); + m_formatter.immediate8u(imm); + } + } + void rolw_ir(int32_t imm, RegisterID dst) { + MOZ_ASSERT(imm < 32); + spew("roll $%d, %s", imm, GPReg16Name(dst)); + m_formatter.prefix(PRE_OPERAND_SIZE); + if (imm == 1) { + m_formatter.oneByteOp(OP_GROUP2_Ev1, dst, GROUP2_OP_ROL); + } else { + m_formatter.oneByteOp(OP_GROUP2_EvIb, dst, GROUP2_OP_ROL); + m_formatter.immediate8u(imm); + } + } + void roll_CLr(RegisterID dst) { + spew("roll %%cl, %s", GPReg32Name(dst)); + m_formatter.oneByteOp(OP_GROUP2_EvCL, dst, GROUP2_OP_ROL); + } + + void rorl_ir(int32_t imm, RegisterID dst) { + MOZ_ASSERT(imm < 32); + spew("rorl $%d, %s", imm, GPReg32Name(dst)); + if (imm == 1) { + m_formatter.oneByteOp(OP_GROUP2_Ev1, dst, GROUP2_OP_ROR); + } else { + m_formatter.oneByteOp(OP_GROUP2_EvIb, dst, GROUP2_OP_ROR); + m_formatter.immediate8u(imm); + } + } + void rorl_CLr(RegisterID dst) { + spew("rorl %%cl, %s", GPReg32Name(dst)); + m_formatter.oneByteOp(OP_GROUP2_EvCL, dst, GROUP2_OP_ROR); + } + + void bsrl_rr(RegisterID src, RegisterID dst) { + spew("bsrl %s, %s", GPReg32Name(src), GPReg32Name(dst)); + m_formatter.twoByteOp(OP2_BSR_GvEv, src, dst); + } + + void bsfl_rr(RegisterID src, RegisterID dst) { + spew("bsfl %s, %s", GPReg32Name(src), GPReg32Name(dst)); + m_formatter.twoByteOp(OP2_BSF_GvEv, src, dst); + } + + void lzcntl_rr(RegisterID src, RegisterID dst) { + spew("lzcntl %s, %s", GPReg32Name(src), GPReg32Name(dst)); + m_formatter.legacySSEPrefix(VEX_SS); + m_formatter.twoByteOp(OP2_LZCNT_GvEv, src, dst); + } + + void tzcntl_rr(RegisterID src, RegisterID dst) { + spew("tzcntl %s, %s", GPReg32Name(src), GPReg32Name(dst)); + m_formatter.legacySSEPrefix(VEX_SS); + m_formatter.twoByteOp(OP2_TZCNT_GvEv, src, dst); + } + + void popcntl_rr(RegisterID src, RegisterID dst) { + spew("popcntl %s, %s", GPReg32Name(src), GPReg32Name(dst)); + m_formatter.legacySSEPrefix(VEX_SS); + m_formatter.twoByteOp(OP2_POPCNT_GvEv, src, dst); + } + + void imull_rr(RegisterID src, RegisterID dst) { + spew("imull %s, %s", GPReg32Name(src), GPReg32Name(dst)); + m_formatter.twoByteOp(OP2_IMUL_GvEv, src, dst); + } + + void imull_r(RegisterID multiplier) { + spew("imull %s", GPReg32Name(multiplier)); + m_formatter.oneByteOp(OP_GROUP3_Ev, multiplier, GROUP3_OP_IMUL); + } + + void imull_mr(int32_t offset, RegisterID base, RegisterID dst) { + spew("imull " MEM_ob ", %s", ADDR_ob(offset, base), GPReg32Name(dst)); + m_formatter.twoByteOp(OP2_IMUL_GvEv, offset, base, dst); + } + + void imull_ir(int32_t value, RegisterID src, RegisterID dst) { + spew("imull $%d, %s, %s", value, GPReg32Name(src), GPReg32Name(dst)); + if (CAN_SIGN_EXTEND_8_32(value)) { + m_formatter.oneByteOp(OP_IMUL_GvEvIb, src, dst); + m_formatter.immediate8s(value); + } else { + m_formatter.oneByteOp(OP_IMUL_GvEvIz, src, dst); + m_formatter.immediate32(value); + } + } + + void mull_r(RegisterID multiplier) { + spew("mull %s", GPReg32Name(multiplier)); + m_formatter.oneByteOp(OP_GROUP3_Ev, multiplier, GROUP3_OP_MUL); + } + + void idivl_r(RegisterID divisor) { + spew("idivl %s", GPReg32Name(divisor)); + m_formatter.oneByteOp(OP_GROUP3_Ev, divisor, GROUP3_OP_IDIV); + } + + void divl_r(RegisterID divisor) { + spew("div %s", GPReg32Name(divisor)); + m_formatter.oneByteOp(OP_GROUP3_Ev, divisor, GROUP3_OP_DIV); + } + + void prefix_lock() { + spew("lock"); + m_formatter.oneByteOp(PRE_LOCK); + } + + void prefix_16_for_32() { + spew("[16-bit operands next]"); + m_formatter.prefix(PRE_OPERAND_SIZE); + } + + void incl_m32(int32_t offset, RegisterID base) { + spew("incl " MEM_ob, ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_GROUP5_Ev, offset, base, GROUP5_OP_INC); + } + + void decl_m32(int32_t offset, RegisterID base) { + spew("decl " MEM_ob, ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_GROUP5_Ev, offset, base, GROUP5_OP_DEC); + } + + // Note that CMPXCHG performs comparison against REG = %al/%ax/%eax/%rax. + // If %REG == [%base+offset], then %src -> [%base+offset]. + // Otherwise, [%base+offset] -> %REG. + // For the 8-bit operations src must also be an 8-bit register. + + void cmpxchgb(RegisterID src, int32_t offset, RegisterID base) { + spew("cmpxchgb %s, " MEM_ob, GPReg8Name(src), ADDR_ob(offset, base)); + m_formatter.twoByteOp8(OP2_CMPXCHG_GvEb, offset, base, src); + } + void cmpxchgb(RegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + spew("cmpxchgb %s, " MEM_obs, GPReg8Name(src), + ADDR_obs(offset, base, index, scale)); + m_formatter.twoByteOp8(OP2_CMPXCHG_GvEb, offset, base, index, scale, src); + } + void cmpxchgw(RegisterID src, int32_t offset, RegisterID base) { + spew("cmpxchgw %s, " MEM_ob, GPReg16Name(src), ADDR_ob(offset, base)); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.twoByteOp(OP2_CMPXCHG_GvEw, offset, base, src); + } + void cmpxchgw(RegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + spew("cmpxchgw %s, " MEM_obs, GPReg16Name(src), + ADDR_obs(offset, base, index, scale)); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.twoByteOp(OP2_CMPXCHG_GvEw, offset, base, index, scale, src); + } + void cmpxchgl(RegisterID src, int32_t offset, RegisterID base) { + spew("cmpxchgl %s, " MEM_ob, GPReg32Name(src), ADDR_ob(offset, base)); + m_formatter.twoByteOp(OP2_CMPXCHG_GvEw, offset, base, src); + } + void cmpxchgl(RegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + spew("cmpxchgl %s, " MEM_obs, GPReg32Name(src), + ADDR_obs(offset, base, index, scale)); + m_formatter.twoByteOp(OP2_CMPXCHG_GvEw, offset, base, index, scale, src); + } + + void cmpxchg8b(RegisterID srcHi, RegisterID srcLo, RegisterID newHi, + RegisterID newLo, int32_t offset, RegisterID base) { + MOZ_ASSERT(srcHi == edx.code() && srcLo == eax.code()); + MOZ_ASSERT(newHi == ecx.code() && newLo == ebx.code()); + spew("cmpxchg8b %s, " MEM_ob, "edx:eax", ADDR_ob(offset, base)); + m_formatter.twoByteOp(OP2_CMPXCHGNB, offset, base, 1); + } + void cmpxchg8b(RegisterID srcHi, RegisterID srcLo, RegisterID newHi, + RegisterID newLo, int32_t offset, RegisterID base, + RegisterID index, int scale) { + MOZ_ASSERT(srcHi == edx.code() && srcLo == eax.code()); + MOZ_ASSERT(newHi == ecx.code() && newLo == ebx.code()); + spew("cmpxchg8b %s, " MEM_obs, "edx:eax", + ADDR_obs(offset, base, index, scale)); + m_formatter.twoByteOp(OP2_CMPXCHGNB, offset, base, index, scale, 1); + } + + // Comparisons: + + void cmpl_rr(RegisterID rhs, RegisterID lhs) { + spew("cmpl %s, %s", GPReg32Name(rhs), GPReg32Name(lhs)); + m_formatter.oneByteOp(OP_CMP_GvEv, rhs, lhs); + } + + void cmpl_rm(RegisterID rhs, int32_t offset, RegisterID base) { + spew("cmpl %s, " MEM_ob, GPReg32Name(rhs), ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_CMP_EvGv, offset, base, rhs); + } + + void cmpl_rm(RegisterID rhs, int32_t offset, RegisterID base, + RegisterID index, int scale) { + spew("cmpl %s, " MEM_obs, GPReg32Name(rhs), + ADDR_obs(offset, base, index, scale)); + m_formatter.oneByteOp(OP_CMP_EvGv, offset, base, index, scale, rhs); + } + + void cmpl_mr(int32_t offset, RegisterID base, RegisterID lhs) { + spew("cmpl " MEM_ob ", %s", ADDR_ob(offset, base), GPReg32Name(lhs)); + m_formatter.oneByteOp(OP_CMP_GvEv, offset, base, lhs); + } + + void cmpl_mr(const void* address, RegisterID lhs) { + spew("cmpl %p, %s", address, GPReg32Name(lhs)); + m_formatter.oneByteOp(OP_CMP_GvEv, address, lhs); + } + + void cmpl_ir(int32_t rhs, RegisterID lhs) { + if (rhs == 0) { + testl_rr(lhs, lhs); + return; + } + + spew("cmpl $0x%x, %s", uint32_t(rhs), GPReg32Name(lhs)); + if (CAN_SIGN_EXTEND_8_32(rhs)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, lhs, GROUP1_OP_CMP); + m_formatter.immediate8s(rhs); + } else { + if (lhs == rax) { + m_formatter.oneByteOp(OP_CMP_EAXIv); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, lhs, GROUP1_OP_CMP); + } + m_formatter.immediate32(rhs); + } + } + + void cmpl_i32r(int32_t rhs, RegisterID lhs) { + spew("cmpl $0x%04x, %s", uint32_t(rhs), GPReg32Name(lhs)); + if (lhs == rax) { + m_formatter.oneByteOp(OP_CMP_EAXIv); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, lhs, GROUP1_OP_CMP); + } + m_formatter.immediate32(rhs); + } + + void cmpl_im(int32_t rhs, int32_t offset, RegisterID base) { + spew("cmpl $0x%x, " MEM_ob, uint32_t(rhs), ADDR_ob(offset, base)); + if (CAN_SIGN_EXTEND_8_32(rhs)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, offset, base, GROUP1_OP_CMP); + m_formatter.immediate8s(rhs); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, offset, base, GROUP1_OP_CMP); + m_formatter.immediate32(rhs); + } + } + + void cmpb_rr(RegisterID rhs, RegisterID lhs) { + spew("cmpb %s, %s", GPReg8Name(rhs), GPReg8Name(lhs)); + m_formatter.oneByteOp(OP_CMP_GbEb, rhs, lhs); + } + + void cmpb_rm(RegisterID rhs, int32_t offset, RegisterID base) { + spew("cmpb %s, " MEM_ob, GPReg8Name(rhs), ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_CMP_EbGb, offset, base, rhs); + } + + void cmpb_rm(RegisterID rhs, int32_t offset, RegisterID base, + RegisterID index, int scale) { + spew("cmpb %s, " MEM_obs, GPReg8Name(rhs), + ADDR_obs(offset, base, index, scale)); + m_formatter.oneByteOp(OP_CMP_EbGb, offset, base, index, scale, rhs); + } + + void cmpb_rm(RegisterID rhs, const void* addr) { + spew("cmpb %s, %p", GPReg8Name(rhs), addr); + m_formatter.oneByteOp(OP_CMP_EbGb, addr, rhs); + } + + void cmpb_ir(int32_t rhs, RegisterID lhs) { + if (rhs == 0) { + testb_rr(lhs, lhs); + return; + } + + spew("cmpb $0x%x, %s", uint32_t(rhs), GPReg8Name(lhs)); + if (lhs == rax) { + m_formatter.oneByteOp(OP_CMP_EAXIb); + } else { + m_formatter.oneByteOp(OP_GROUP1_EbIb, lhs, GROUP1_OP_CMP); + } + m_formatter.immediate8(rhs); + } + + void cmpb_im(int32_t rhs, int32_t offset, RegisterID base) { + spew("cmpb $0x%x, " MEM_ob, uint32_t(rhs), ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_GROUP1_EbIb, offset, base, GROUP1_OP_CMP); + m_formatter.immediate8(rhs); + } + + void cmpb_im(int32_t rhs, int32_t offset, RegisterID base, RegisterID index, + int scale) { + spew("cmpb $0x%x, " MEM_obs, uint32_t(rhs), + ADDR_obs(offset, base, index, scale)); + m_formatter.oneByteOp(OP_GROUP1_EbIb, offset, base, index, scale, + GROUP1_OP_CMP); + m_formatter.immediate8(rhs); + } + + void cmpb_im(int32_t rhs, const void* addr) { + spew("cmpb $0x%x, %p", uint32_t(rhs), addr); + m_formatter.oneByteOp(OP_GROUP1_EbIb, addr, GROUP1_OP_CMP); + m_formatter.immediate8(rhs); + } + + void cmpl_im(int32_t rhs, int32_t offset, RegisterID base, RegisterID index, + int scale) { + spew("cmpl $0x%x, " MEM_obs, uint32_t(rhs), + ADDR_obs(offset, base, index, scale)); + if (CAN_SIGN_EXTEND_8_32(rhs)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, offset, base, index, scale, + GROUP1_OP_CMP); + m_formatter.immediate8s(rhs); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, offset, base, index, scale, + GROUP1_OP_CMP); + m_formatter.immediate32(rhs); + } + } + + [[nodiscard]] JmpSrc cmpl_im_disp32(int32_t rhs, int32_t offset, + RegisterID base) { + spew("cmpl $0x%x, " MEM_o32b, uint32_t(rhs), ADDR_o32b(offset, base)); + JmpSrc r; + if (CAN_SIGN_EXTEND_8_32(rhs)) { + m_formatter.oneByteOp_disp32(OP_GROUP1_EvIb, offset, base, GROUP1_OP_CMP); + r = JmpSrc(m_formatter.size()); + m_formatter.immediate8s(rhs); + } else { + m_formatter.oneByteOp_disp32(OP_GROUP1_EvIz, offset, base, GROUP1_OP_CMP); + r = JmpSrc(m_formatter.size()); + m_formatter.immediate32(rhs); + } + return r; + } + + [[nodiscard]] JmpSrc cmpl_im_disp32(int32_t rhs, const void* addr) { + spew("cmpl $0x%x, %p", uint32_t(rhs), addr); + JmpSrc r; + if (CAN_SIGN_EXTEND_8_32(rhs)) { + m_formatter.oneByteOp_disp32(OP_GROUP1_EvIb, addr, GROUP1_OP_CMP); + r = JmpSrc(m_formatter.size()); + m_formatter.immediate8s(rhs); + } else { + m_formatter.oneByteOp_disp32(OP_GROUP1_EvIz, addr, GROUP1_OP_CMP); + r = JmpSrc(m_formatter.size()); + m_formatter.immediate32(rhs); + } + return r; + } + + void cmpl_i32m(int32_t rhs, int32_t offset, RegisterID base) { + spew("cmpl $0x%04x, " MEM_ob, uint32_t(rhs), ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_GROUP1_EvIz, offset, base, GROUP1_OP_CMP); + m_formatter.immediate32(rhs); + } + + void cmpl_i32m(int32_t rhs, const void* addr) { + spew("cmpl $0x%04x, %p", uint32_t(rhs), addr); + m_formatter.oneByteOp(OP_GROUP1_EvIz, addr, GROUP1_OP_CMP); + m_formatter.immediate32(rhs); + } + + void cmpl_rm(RegisterID rhs, const void* addr) { + spew("cmpl %s, %p", GPReg32Name(rhs), addr); + m_formatter.oneByteOp(OP_CMP_EvGv, addr, rhs); + } + + void cmpl_rm_disp32(RegisterID rhs, const void* addr) { + spew("cmpl %s, %p", GPReg32Name(rhs), addr); + m_formatter.oneByteOp_disp32(OP_CMP_EvGv, addr, rhs); + } + + void cmpl_im(int32_t rhs, const void* addr) { + spew("cmpl $0x%x, %p", uint32_t(rhs), addr); + if (CAN_SIGN_EXTEND_8_32(rhs)) { + m_formatter.oneByteOp(OP_GROUP1_EvIb, addr, GROUP1_OP_CMP); + m_formatter.immediate8s(rhs); + } else { + m_formatter.oneByteOp(OP_GROUP1_EvIz, addr, GROUP1_OP_CMP); + m_formatter.immediate32(rhs); + } + } + + void cmpw_rr(RegisterID rhs, RegisterID lhs) { + spew("cmpw %s, %s", GPReg16Name(rhs), GPReg16Name(lhs)); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_CMP_GvEv, rhs, lhs); + } + + void cmpw_rm(RegisterID rhs, int32_t offset, RegisterID base, + RegisterID index, int scale) { + spew("cmpw %s, " MEM_obs, GPReg16Name(rhs), + ADDR_obs(offset, base, index, scale)); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_CMP_EvGv, offset, base, index, scale, rhs); + } + + void cmpw_ir(int32_t rhs, RegisterID lhs) { + if (rhs == 0) { + testw_rr(lhs, lhs); + return; + } + + spew("cmpw $0x%x, %s", uint32_t(rhs), GPReg16Name(lhs)); + if (CAN_SIGN_EXTEND_8_32(rhs)) { + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_GROUP1_EvIb, lhs, GROUP1_OP_CMP); + m_formatter.immediate8s(rhs); + } else { + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_GROUP1_EvIz, lhs, GROUP1_OP_CMP); + m_formatter.immediate16(rhs); + } + } + + void cmpw_im(int32_t rhs, int32_t offset, RegisterID base) { + spew("cmpw $0x%x, " MEM_ob, uint32_t(rhs), ADDR_ob(offset, base)); + if (CAN_SIGN_EXTEND_8_32(rhs)) { + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_GROUP1_EvIb, offset, base, GROUP1_OP_CMP); + m_formatter.immediate8s(rhs); + } else { + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_GROUP1_EvIz, offset, base, GROUP1_OP_CMP); + m_formatter.immediate16(rhs); + } + } + + void cmpw_im(int32_t imm, int32_t offset, RegisterID base, RegisterID index, + int scale) { + spew("cmpw $%d, " MEM_obs, imm, ADDR_obs(offset, base, index, scale)); + if (CAN_SIGN_EXTEND_8_32(imm)) { + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_GROUP1_EvIb, offset, base, index, scale, + GROUP1_OP_CMP); + m_formatter.immediate8s(imm); + } else { + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_GROUP1_EvIz, offset, base, index, scale, + GROUP1_OP_CMP); + m_formatter.immediate16(imm); + } + } + + void cmpw_im(int32_t rhs, const void* addr) { + spew("cmpw $0x%x, %p", uint32_t(rhs), addr); + if (CAN_SIGN_EXTEND_8_32(rhs)) { + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_GROUP1_EvIb, addr, GROUP1_OP_CMP); + m_formatter.immediate8s(rhs); + } else { + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_GROUP1_EvIz, addr, GROUP1_OP_CMP); + m_formatter.immediate16(rhs); + } + } + + void testl_rr(RegisterID rhs, RegisterID lhs) { + spew("testl %s, %s", GPReg32Name(rhs), GPReg32Name(lhs)); + m_formatter.oneByteOp(OP_TEST_EvGv, lhs, rhs); + } + + void testb_rr(RegisterID rhs, RegisterID lhs) { + spew("testb %s, %s", GPReg8Name(rhs), GPReg8Name(lhs)); + m_formatter.oneByteOp(OP_TEST_EbGb, lhs, rhs); + } + + void testl_ir(int32_t rhs, RegisterID lhs) { + // If the mask fits in an 8-bit immediate, we can use testb with an + // 8-bit subreg. + if (CAN_ZERO_EXTEND_8_32(rhs) && HasSubregL(lhs)) { + testb_ir(rhs, lhs); + return; + } + // If the mask is a subset of 0xff00, we can use testb with an h reg, if + // one happens to be available. + if (CAN_ZERO_EXTEND_8H_32(rhs) && HasSubregH(lhs)) { + testb_ir_norex(rhs >> 8, GetSubregH(lhs)); + return; + } + spew("testl $0x%x, %s", uint32_t(rhs), GPReg32Name(lhs)); + if (lhs == rax) { + m_formatter.oneByteOp(OP_TEST_EAXIv); + } else { + m_formatter.oneByteOp(OP_GROUP3_EvIz, lhs, GROUP3_OP_TEST); + } + m_formatter.immediate32(rhs); + } + + void testl_i32m(int32_t rhs, int32_t offset, RegisterID base) { + spew("testl $0x%x, " MEM_ob, uint32_t(rhs), ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_GROUP3_EvIz, offset, base, GROUP3_OP_TEST); + m_formatter.immediate32(rhs); + } + + void testl_i32m(int32_t rhs, const void* addr) { + spew("testl $0x%x, %p", uint32_t(rhs), addr); + m_formatter.oneByteOp(OP_GROUP3_EvIz, addr, GROUP3_OP_TEST); + m_formatter.immediate32(rhs); + } + + void testb_im(int32_t rhs, int32_t offset, RegisterID base) { + spew("testb $0x%x, " MEM_ob, uint32_t(rhs), ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_GROUP3_EbIb, offset, base, GROUP3_OP_TEST); + m_formatter.immediate8(rhs); + } + + void testb_im(int32_t rhs, int32_t offset, RegisterID base, RegisterID index, + int scale) { + spew("testb $0x%x, " MEM_obs, uint32_t(rhs), + ADDR_obs(offset, base, index, scale)); + m_formatter.oneByteOp(OP_GROUP3_EbIb, offset, base, index, scale, + GROUP3_OP_TEST); + m_formatter.immediate8(rhs); + } + + void testl_i32m(int32_t rhs, int32_t offset, RegisterID base, + RegisterID index, int scale) { + spew("testl $0x%4x, " MEM_obs, uint32_t(rhs), + ADDR_obs(offset, base, index, scale)); + m_formatter.oneByteOp(OP_GROUP3_EvIz, offset, base, index, scale, + GROUP3_OP_TEST); + m_formatter.immediate32(rhs); + } + + void testw_rr(RegisterID rhs, RegisterID lhs) { + spew("testw %s, %s", GPReg16Name(rhs), GPReg16Name(lhs)); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_TEST_EvGv, lhs, rhs); + } + + void testb_ir(int32_t rhs, RegisterID lhs) { + spew("testb $0x%x, %s", uint32_t(rhs), GPReg8Name(lhs)); + if (lhs == rax) { + m_formatter.oneByteOp8(OP_TEST_EAXIb); + } else { + m_formatter.oneByteOp8(OP_GROUP3_EbIb, lhs, GROUP3_OP_TEST); + } + m_formatter.immediate8(rhs); + } + + // Like testb_ir, but never emits a REX prefix. This may be used to + // reference ah..bh. + void testb_ir_norex(int32_t rhs, HRegisterID lhs) { + spew("testb $0x%x, %s", uint32_t(rhs), HRegName8(lhs)); + m_formatter.oneByteOp8_norex(OP_GROUP3_EbIb, lhs, GROUP3_OP_TEST); + m_formatter.immediate8(rhs); + } + + void setCC_r(Condition cond, RegisterID lhs) { + spew("set%s %s", CCName(cond), GPReg8Name(lhs)); + m_formatter.twoByteOp8(setccOpcode(cond), lhs, (GroupOpcodeID)0); + } + + void sete_r(RegisterID dst) { setCC_r(ConditionE, dst); } + + void setz_r(RegisterID dst) { sete_r(dst); } + + void setne_r(RegisterID dst) { setCC_r(ConditionNE, dst); } + + void setnz_r(RegisterID dst) { setne_r(dst); } + + // Various move ops: + + void cdq() { + spew("cdq "); + m_formatter.oneByteOp(OP_CDQ); + } + + void xchgb_rm(RegisterID src, int32_t offset, RegisterID base) { + spew("xchgb %s, " MEM_ob, GPReg8Name(src), ADDR_ob(offset, base)); + m_formatter.oneByteOp8(OP_XCHG_GbEb, offset, base, src); + } + void xchgb_rm(RegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + spew("xchgb %s, " MEM_obs, GPReg8Name(src), + ADDR_obs(offset, base, index, scale)); + m_formatter.oneByteOp8(OP_XCHG_GbEb, offset, base, index, scale, src); + } + + void xchgw_rm(RegisterID src, int32_t offset, RegisterID base) { + spew("xchgw %s, " MEM_ob, GPReg16Name(src), ADDR_ob(offset, base)); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_XCHG_GvEv, offset, base, src); + } + void xchgw_rm(RegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + spew("xchgw %s, " MEM_obs, GPReg16Name(src), + ADDR_obs(offset, base, index, scale)); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_XCHG_GvEv, offset, base, index, scale, src); + } + + void xchgl_rr(RegisterID src, RegisterID dst) { + spew("xchgl %s, %s", GPReg32Name(src), GPReg32Name(dst)); + m_formatter.oneByteOp(OP_XCHG_GvEv, src, dst); + } + void xchgl_rm(RegisterID src, int32_t offset, RegisterID base) { + spew("xchgl %s, " MEM_ob, GPReg32Name(src), ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_XCHG_GvEv, offset, base, src); + } + void xchgl_rm(RegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + spew("xchgl %s, " MEM_obs, GPReg32Name(src), + ADDR_obs(offset, base, index, scale)); + m_formatter.oneByteOp(OP_XCHG_GvEv, offset, base, index, scale, src); + } + + void cmovCCl_rr(Condition cond, RegisterID src, RegisterID dst) { + spew("cmov%s %s, %s", CCName(cond), GPReg32Name(src), GPReg32Name(dst)); + m_formatter.twoByteOp(cmovccOpcode(cond), src, dst); + } + void cmovCCl_mr(Condition cond, int32_t offset, RegisterID base, + RegisterID dst) { + spew("cmov%s " MEM_ob ", %s", CCName(cond), ADDR_ob(offset, base), + GPReg32Name(dst)); + m_formatter.twoByteOp(cmovccOpcode(cond), offset, base, dst); + } + void cmovCCl_mr(Condition cond, int32_t offset, RegisterID base, + RegisterID index, int scale, RegisterID dst) { + spew("cmov%s " MEM_obs ", %s", CCName(cond), + ADDR_obs(offset, base, index, scale), GPReg32Name(dst)); + m_formatter.twoByteOp(cmovccOpcode(cond), offset, base, index, scale, dst); + } + + void movl_rr(RegisterID src, RegisterID dst) { + spew("movl %s, %s", GPReg32Name(src), GPReg32Name(dst)); + m_formatter.oneByteOp(OP_MOV_GvEv, src, dst); + } + + void movw_rm(RegisterID src, int32_t offset, RegisterID base) { + spew("movw %s, " MEM_ob, GPReg16Name(src), ADDR_ob(offset, base)); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_MOV_EvGv, offset, base, src); + } + + void movw_rm_disp32(RegisterID src, int32_t offset, RegisterID base) { + spew("movw %s, " MEM_o32b, GPReg16Name(src), ADDR_o32b(offset, base)); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp_disp32(OP_MOV_EvGv, offset, base, src); + } + + void movw_rm(RegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + spew("movw %s, " MEM_obs, GPReg16Name(src), + ADDR_obs(offset, base, index, scale)); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_MOV_EvGv, offset, base, index, scale, src); + } + + void movw_rm(RegisterID src, const void* addr) { + spew("movw %s, %p", GPReg16Name(src), addr); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp_disp32(OP_MOV_EvGv, addr, src); + } + + void movl_rm(RegisterID src, int32_t offset, RegisterID base) { + spew("movl %s, " MEM_ob, GPReg32Name(src), ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_MOV_EvGv, offset, base, src); + } + + void movl_rm_disp32(RegisterID src, int32_t offset, RegisterID base) { + spew("movl %s, " MEM_o32b, GPReg32Name(src), ADDR_o32b(offset, base)); + m_formatter.oneByteOp_disp32(OP_MOV_EvGv, offset, base, src); + } + + void movl_rm(RegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + spew("movl %s, " MEM_obs, GPReg32Name(src), + ADDR_obs(offset, base, index, scale)); + m_formatter.oneByteOp(OP_MOV_EvGv, offset, base, index, scale, src); + } + + void movl_mEAX(const void* addr) { +#ifdef JS_CODEGEN_X64 + if (IsAddressImmediate(addr)) { + movl_mr(addr, rax); + return; + } +#endif + +#ifdef JS_CODEGEN_X64 + spew("movabs %p, %%eax", addr); +#else + spew("movl %p, %%eax", addr); +#endif + m_formatter.oneByteOp(OP_MOV_EAXOv); +#ifdef JS_CODEGEN_X64 + m_formatter.immediate64(reinterpret_cast<int64_t>(addr)); +#else + m_formatter.immediate32(reinterpret_cast<int32_t>(addr)); +#endif + } + + void movl_mr(int32_t offset, RegisterID base, RegisterID dst) { + spew("movl " MEM_ob ", %s", ADDR_ob(offset, base), GPReg32Name(dst)); + m_formatter.oneByteOp(OP_MOV_GvEv, offset, base, dst); + } + + void movl_mr_disp32(int32_t offset, RegisterID base, RegisterID dst) { + spew("movl " MEM_o32b ", %s", ADDR_o32b(offset, base), + GPReg32Name(dst)); + m_formatter.oneByteOp_disp32(OP_MOV_GvEv, offset, base, dst); + } + + void movl_mr(const void* base, RegisterID index, int scale, RegisterID dst) { + int32_t disp = AddressImmediate(base); + + spew("movl " MEM_os ", %s", ADDR_os(disp, index, scale), + GPReg32Name(dst)); + m_formatter.oneByteOp_disp32(OP_MOV_GvEv, disp, index, scale, dst); + } + + void movl_mr(int32_t offset, RegisterID base, RegisterID index, int scale, + RegisterID dst) { + spew("movl " MEM_obs ", %s", ADDR_obs(offset, base, index, scale), + GPReg32Name(dst)); + m_formatter.oneByteOp(OP_MOV_GvEv, offset, base, index, scale, dst); + } + + void movl_mr(const void* addr, RegisterID dst) { + if (dst == rax +#ifdef JS_CODEGEN_X64 + && !IsAddressImmediate(addr) +#endif + ) { + movl_mEAX(addr); + return; + } + + spew("movl %p, %s", addr, GPReg32Name(dst)); + m_formatter.oneByteOp(OP_MOV_GvEv, addr, dst); + } + + void movl_i32r(int32_t imm, RegisterID dst) { + spew("movl $0x%x, %s", uint32_t(imm), GPReg32Name(dst)); + m_formatter.oneByteOp(OP_MOV_EAXIv, dst); + m_formatter.immediate32(imm); + } + + void movb_ir(int32_t imm, RegisterID reg) { + spew("movb $0x%x, %s", uint32_t(imm), GPReg8Name(reg)); + m_formatter.oneByteOp8(OP_MOV_EbIb, reg); + m_formatter.immediate8(imm); + } + + void movb_im(int32_t imm, int32_t offset, RegisterID base) { + spew("movb $0x%x, " MEM_ob, uint32_t(imm), ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_GROUP11_EvIb, offset, base, GROUP11_MOV); + m_formatter.immediate8(imm); + } + + void movb_im(int32_t imm, int32_t offset, RegisterID base, RegisterID index, + int scale) { + spew("movb $0x%x, " MEM_obs, uint32_t(imm), + ADDR_obs(offset, base, index, scale)); + m_formatter.oneByteOp(OP_GROUP11_EvIb, offset, base, index, scale, + GROUP11_MOV); + m_formatter.immediate8(imm); + } + + void movb_im(int32_t imm, const void* addr) { + spew("movb $%d, %p", imm, addr); + m_formatter.oneByteOp_disp32(OP_GROUP11_EvIb, addr, GROUP11_MOV); + m_formatter.immediate8(imm); + } + + void movw_im(int32_t imm, int32_t offset, RegisterID base) { + spew("movw $0x%x, " MEM_ob, uint32_t(imm), ADDR_ob(offset, base)); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_GROUP11_EvIz, offset, base, GROUP11_MOV); + m_formatter.immediate16(imm); + } + + void movw_im(int32_t imm, const void* addr) { + spew("movw $%d, %p", imm, addr); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp_disp32(OP_GROUP11_EvIz, addr, GROUP11_MOV); + m_formatter.immediate16(imm); + } + + void movl_i32m(int32_t imm, int32_t offset, RegisterID base) { + spew("movl $0x%x, " MEM_ob, uint32_t(imm), ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_GROUP11_EvIz, offset, base, GROUP11_MOV); + m_formatter.immediate32(imm); + } + + void movw_im(int32_t imm, int32_t offset, RegisterID base, RegisterID index, + int scale) { + spew("movw $0x%x, " MEM_obs, uint32_t(imm), + ADDR_obs(offset, base, index, scale)); + m_formatter.prefix(PRE_OPERAND_SIZE); + m_formatter.oneByteOp(OP_GROUP11_EvIz, offset, base, index, scale, + GROUP11_MOV); + m_formatter.immediate16(imm); + } + + void movl_i32m(int32_t imm, int32_t offset, RegisterID base, RegisterID index, + int scale) { + spew("movl $0x%x, " MEM_obs, uint32_t(imm), + ADDR_obs(offset, base, index, scale)); + m_formatter.oneByteOp(OP_GROUP11_EvIz, offset, base, index, scale, + GROUP11_MOV); + m_formatter.immediate32(imm); + } + + void movl_EAXm(const void* addr) { +#ifdef JS_CODEGEN_X64 + if (IsAddressImmediate(addr)) { + movl_rm(rax, addr); + return; + } +#endif + + spew("movl %%eax, %p", addr); + m_formatter.oneByteOp(OP_MOV_OvEAX); +#ifdef JS_CODEGEN_X64 + m_formatter.immediate64(reinterpret_cast<int64_t>(addr)); +#else + m_formatter.immediate32(reinterpret_cast<int32_t>(addr)); +#endif + } + + void vmovq_rm(XMMRegisterID src, int32_t offset, RegisterID base) { + // vmovq_rm can be encoded either as a true vmovq or as a vmovd with a + // REX prefix modifying it to be 64-bit. We choose the vmovq encoding + // because it's smaller (when it doesn't need a REX prefix for other + // reasons) and because it works on 32-bit x86 too. + twoByteOpSimd("vmovq", VEX_PD, OP2_MOVQ_WdVd, offset, base, invalid_xmm, + src); + } + + void vmovq_rm_disp32(XMMRegisterID src, int32_t offset, RegisterID base) { + twoByteOpSimd_disp32("vmovq", VEX_PD, OP2_MOVQ_WdVd, offset, base, + invalid_xmm, src); + } + + void vmovq_rm(XMMRegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + twoByteOpSimd("vmovq", VEX_PD, OP2_MOVQ_WdVd, offset, base, index, scale, + invalid_xmm, src); + } + + void vmovq_rm(XMMRegisterID src, const void* addr) { + twoByteOpSimd("vmovq", VEX_PD, OP2_MOVQ_WdVd, addr, invalid_xmm, src); + } + + void vmovq_mr(int32_t offset, RegisterID base, XMMRegisterID dst) { + // vmovq_mr can be encoded either as a true vmovq or as a vmovd with a + // REX prefix modifying it to be 64-bit. We choose the vmovq encoding + // because it's smaller (when it doesn't need a REX prefix for other + // reasons) and because it works on 32-bit x86 too. + twoByteOpSimd("vmovq", VEX_SS, OP2_MOVQ_VdWd, offset, base, invalid_xmm, + dst); + } + + void vmovq_mr_disp32(int32_t offset, RegisterID base, XMMRegisterID dst) { + twoByteOpSimd_disp32("vmovq", VEX_SS, OP2_MOVQ_VdWd, offset, base, + invalid_xmm, dst); + } + + void vmovq_mr(int32_t offset, RegisterID base, RegisterID index, + int32_t scale, XMMRegisterID dst) { + twoByteOpSimd("vmovq", VEX_SS, OP2_MOVQ_VdWd, offset, base, index, scale, + invalid_xmm, dst); + } + + void vmovq_mr(const void* addr, XMMRegisterID dst) { + twoByteOpSimd("vmovq", VEX_SS, OP2_MOVQ_VdWd, addr, invalid_xmm, dst); + } + + void movl_rm(RegisterID src, const void* addr) { + if (src == rax +#ifdef JS_CODEGEN_X64 + && !IsAddressImmediate(addr) +#endif + ) { + movl_EAXm(addr); + return; + } + + spew("movl %s, %p", GPReg32Name(src), addr); + m_formatter.oneByteOp(OP_MOV_EvGv, addr, src); + } + + void movl_i32m(int32_t imm, const void* addr) { + spew("movl $%d, %p", imm, addr); + m_formatter.oneByteOp(OP_GROUP11_EvIz, addr, GROUP11_MOV); + m_formatter.immediate32(imm); + } + + void movb_rm(RegisterID src, int32_t offset, RegisterID base) { + spew("movb %s, " MEM_ob, GPReg8Name(src), ADDR_ob(offset, base)); + m_formatter.oneByteOp8(OP_MOV_EbGv, offset, base, src); + } + + void movb_rm_disp32(RegisterID src, int32_t offset, RegisterID base) { + spew("movb %s, " MEM_o32b, GPReg8Name(src), ADDR_o32b(offset, base)); + m_formatter.oneByteOp8_disp32(OP_MOV_EbGv, offset, base, src); + } + + void movb_rm(RegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + spew("movb %s, " MEM_obs, GPReg8Name(src), + ADDR_obs(offset, base, index, scale)); + m_formatter.oneByteOp8(OP_MOV_EbGv, offset, base, index, scale, src); + } + + void movb_rm(RegisterID src, const void* addr) { + spew("movb %s, %p", GPReg8Name(src), addr); + m_formatter.oneByteOp8(OP_MOV_EbGv, addr, src); + } + + void movb_mr(int32_t offset, RegisterID base, RegisterID dst) { + spew("movb " MEM_ob ", %s", ADDR_ob(offset, base), GPReg8Name(dst)); + m_formatter.oneByteOp(OP_MOV_GvEb, offset, base, dst); + } + + void movb_mr(int32_t offset, RegisterID base, RegisterID index, int scale, + RegisterID dst) { + spew("movb " MEM_obs ", %s", ADDR_obs(offset, base, index, scale), + GPReg8Name(dst)); + m_formatter.oneByteOp(OP_MOV_GvEb, offset, base, index, scale, dst); + } + + void movzbl_mr(int32_t offset, RegisterID base, RegisterID dst) { + spew("movzbl " MEM_ob ", %s", ADDR_ob(offset, base), GPReg32Name(dst)); + m_formatter.twoByteOp(OP2_MOVZX_GvEb, offset, base, dst); + } + + void movzbl_mr_disp32(int32_t offset, RegisterID base, RegisterID dst) { + spew("movzbl " MEM_o32b ", %s", ADDR_o32b(offset, base), + GPReg32Name(dst)); + m_formatter.twoByteOp_disp32(OP2_MOVZX_GvEb, offset, base, dst); + } + + void movzbl_mr(int32_t offset, RegisterID base, RegisterID index, int scale, + RegisterID dst) { + spew("movzbl " MEM_obs ", %s", ADDR_obs(offset, base, index, scale), + GPReg32Name(dst)); + m_formatter.twoByteOp(OP2_MOVZX_GvEb, offset, base, index, scale, dst); + } + + void movzbl_mr(const void* addr, RegisterID dst) { + spew("movzbl %p, %s", addr, GPReg32Name(dst)); + m_formatter.twoByteOp(OP2_MOVZX_GvEb, addr, dst); + } + + void movsbl_rr(RegisterID src, RegisterID dst) { + spew("movsbl %s, %s", GPReg8Name(src), GPReg32Name(dst)); + m_formatter.twoByteOp8_movx(OP2_MOVSX_GvEb, src, dst); + } + + void movsbl_mr(int32_t offset, RegisterID base, RegisterID dst) { + spew("movsbl " MEM_ob ", %s", ADDR_ob(offset, base), GPReg32Name(dst)); + m_formatter.twoByteOp(OP2_MOVSX_GvEb, offset, base, dst); + } + + void movsbl_mr_disp32(int32_t offset, RegisterID base, RegisterID dst) { + spew("movsbl " MEM_o32b ", %s", ADDR_o32b(offset, base), + GPReg32Name(dst)); + m_formatter.twoByteOp_disp32(OP2_MOVSX_GvEb, offset, base, dst); + } + + void movsbl_mr(int32_t offset, RegisterID base, RegisterID index, int scale, + RegisterID dst) { + spew("movsbl " MEM_obs ", %s", ADDR_obs(offset, base, index, scale), + GPReg32Name(dst)); + m_formatter.twoByteOp(OP2_MOVSX_GvEb, offset, base, index, scale, dst); + } + + void movsbl_mr(const void* addr, RegisterID dst) { + spew("movsbl %p, %s", addr, GPReg32Name(dst)); + m_formatter.twoByteOp(OP2_MOVSX_GvEb, addr, dst); + } + + void movzwl_rr(RegisterID src, RegisterID dst) { + spew("movzwl %s, %s", GPReg16Name(src), GPReg32Name(dst)); + m_formatter.twoByteOp(OP2_MOVZX_GvEw, src, dst); + } + + void movzwl_mr(int32_t offset, RegisterID base, RegisterID dst) { + spew("movzwl " MEM_ob ", %s", ADDR_ob(offset, base), GPReg32Name(dst)); + m_formatter.twoByteOp(OP2_MOVZX_GvEw, offset, base, dst); + } + + void movzwl_mr_disp32(int32_t offset, RegisterID base, RegisterID dst) { + spew("movzwl " MEM_o32b ", %s", ADDR_o32b(offset, base), + GPReg32Name(dst)); + m_formatter.twoByteOp_disp32(OP2_MOVZX_GvEw, offset, base, dst); + } + + void movzwl_mr(int32_t offset, RegisterID base, RegisterID index, int scale, + RegisterID dst) { + spew("movzwl " MEM_obs ", %s", ADDR_obs(offset, base, index, scale), + GPReg32Name(dst)); + m_formatter.twoByteOp(OP2_MOVZX_GvEw, offset, base, index, scale, dst); + } + + void movzwl_mr(const void* addr, RegisterID dst) { + spew("movzwl %p, %s", addr, GPReg32Name(dst)); + m_formatter.twoByteOp(OP2_MOVZX_GvEw, addr, dst); + } + + void movswl_rr(RegisterID src, RegisterID dst) { + spew("movswl %s, %s", GPReg16Name(src), GPReg32Name(dst)); + m_formatter.twoByteOp(OP2_MOVSX_GvEw, src, dst); + } + + void movswl_mr(int32_t offset, RegisterID base, RegisterID dst) { + spew("movswl " MEM_ob ", %s", ADDR_ob(offset, base), GPReg32Name(dst)); + m_formatter.twoByteOp(OP2_MOVSX_GvEw, offset, base, dst); + } + + void movswl_mr_disp32(int32_t offset, RegisterID base, RegisterID dst) { + spew("movswl " MEM_o32b ", %s", ADDR_o32b(offset, base), + GPReg32Name(dst)); + m_formatter.twoByteOp_disp32(OP2_MOVSX_GvEw, offset, base, dst); + } + + void movswl_mr(int32_t offset, RegisterID base, RegisterID index, int scale, + RegisterID dst) { + spew("movswl " MEM_obs ", %s", ADDR_obs(offset, base, index, scale), + GPReg32Name(dst)); + m_formatter.twoByteOp(OP2_MOVSX_GvEw, offset, base, index, scale, dst); + } + + void movswl_mr(const void* addr, RegisterID dst) { + spew("movswl %p, %s", addr, GPReg32Name(dst)); + m_formatter.twoByteOp(OP2_MOVSX_GvEw, addr, dst); + } + + void movzbl_rr(RegisterID src, RegisterID dst) { + spew("movzbl %s, %s", GPReg8Name(src), GPReg32Name(dst)); + m_formatter.twoByteOp8_movx(OP2_MOVZX_GvEb, src, dst); + } + + void leal_mr(int32_t offset, RegisterID base, RegisterID index, int scale, + RegisterID dst) { + spew("leal " MEM_obs ", %s", ADDR_obs(offset, base, index, scale), + GPReg32Name(dst)); + m_formatter.oneByteOp(OP_LEA, offset, base, index, scale, dst); + } + + void leal_mr(int32_t offset, RegisterID base, RegisterID dst) { + spew("leal " MEM_ob ", %s", ADDR_ob(offset, base), GPReg32Name(dst)); + m_formatter.oneByteOp(OP_LEA, offset, base, dst); + } + + // Flow control: + + [[nodiscard]] JmpSrc call() { + m_formatter.oneByteOp(OP_CALL_rel32); + JmpSrc r = m_formatter.immediateRel32(); + spew("call .Lfrom%d", r.offset()); + return r; + } + + void call_r(RegisterID dst) { + m_formatter.oneByteOp(OP_GROUP5_Ev, dst, GROUP5_OP_CALLN); + spew("call *%s", GPRegName(dst)); + } + + void call_m(int32_t offset, RegisterID base) { + spew("call *" MEM_ob, ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_GROUP5_Ev, offset, base, GROUP5_OP_CALLN); + } + + // Comparison of EAX against a 32-bit immediate. The immediate is patched + // in as if it were a jump target. The intention is to toggle the first + // byte of the instruction between a CMP and a JMP to produce a pseudo-NOP. + [[nodiscard]] JmpSrc cmp_eax() { + m_formatter.oneByteOp(OP_CMP_EAXIv); + JmpSrc r = m_formatter.immediateRel32(); + spew("cmpl %%eax, .Lfrom%d", r.offset()); + return r; + } + + void jmp_i(JmpDst dst) { + int32_t diff = dst.offset() - m_formatter.size(); + spew("jmp .Llabel%d", dst.offset()); + + // The jump immediate is an offset from the end of the jump instruction. + // A jump instruction is either 1 byte opcode and 1 byte offset, or 1 + // byte opcode and 4 bytes offset. + if (CAN_SIGN_EXTEND_8_32(diff - 2)) { + m_formatter.oneByteOp(OP_JMP_rel8); + m_formatter.immediate8s(diff - 2); + } else { + m_formatter.oneByteOp(OP_JMP_rel32); + m_formatter.immediate32(diff - 5); + } + } + [[nodiscard]] JmpSrc jmp() { + m_formatter.oneByteOp(OP_JMP_rel32); + JmpSrc r = m_formatter.immediateRel32(); + spew("jmp .Lfrom%d", r.offset()); + return r; + } + + void jmp_r(RegisterID dst) { + spew("jmp *%s", GPRegName(dst)); + m_formatter.oneByteOp(OP_GROUP5_Ev, dst, GROUP5_OP_JMPN); + } + + void jmp_m(int32_t offset, RegisterID base) { + spew("jmp *" MEM_ob, ADDR_ob(offset, base)); + m_formatter.oneByteOp(OP_GROUP5_Ev, offset, base, GROUP5_OP_JMPN); + } + + void jmp_m(int32_t offset, RegisterID base, RegisterID index, int scale) { + spew("jmp *" MEM_obs, ADDR_obs(offset, base, index, scale)); + m_formatter.oneByteOp(OP_GROUP5_Ev, offset, base, index, scale, + GROUP5_OP_JMPN); + } + + void jCC_i(Condition cond, JmpDst dst) { + int32_t diff = dst.offset() - m_formatter.size(); + spew("j%s .Llabel%d", CCName(cond), dst.offset()); + + // The jump immediate is an offset from the end of the jump instruction. + // A conditional jump instruction is either 1 byte opcode and 1 byte + // offset, or 2 bytes opcode and 4 bytes offset. + if (CAN_SIGN_EXTEND_8_32(diff - 2)) { + m_formatter.oneByteOp(jccRel8(cond)); + m_formatter.immediate8s(diff - 2); + } else { + m_formatter.twoByteOp(jccRel32(cond)); + m_formatter.immediate32(diff - 6); + } + } + + [[nodiscard]] JmpSrc jCC(Condition cond) { + m_formatter.twoByteOp(jccRel32(cond)); + JmpSrc r = m_formatter.immediateRel32(); + spew("j%s .Lfrom%d", CCName(cond), r.offset()); + return r; + } + + // SSE operations: + + void vpcmpeqb_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpcmpeqb", VEX_PD, OP2_PCMPEQB_VdqWdq, src1, src0, dst); + } + void vpcmpeqb_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpcmpeqb", VEX_PD, OP2_PCMPEQB_VdqWdq, offset, base, src0, + dst); + } + void vpcmpeqb_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpcmpeqb", VEX_PD, OP2_PCMPEQB_VdqWdq, address, src0, dst); + } + + void vpcmpgtb_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpcmpgtb", VEX_PD, OP2_PCMPGTB_VdqWdq, src1, src0, dst); + } + void vpcmpgtb_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpcmpgtb", VEX_PD, OP2_PCMPGTB_VdqWdq, offset, base, src0, + dst); + } + void vpcmpgtb_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpcmpgtb", VEX_PD, OP2_PCMPGTB_VdqWdq, address, src0, dst); + } + + void vpcmpeqw_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpcmpeqw", VEX_PD, OP2_PCMPEQW_VdqWdq, src1, src0, dst); + } + void vpcmpeqw_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpcmpeqw", VEX_PD, OP2_PCMPEQW_VdqWdq, offset, base, src0, + dst); + } + void vpcmpeqw_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpcmpeqw", VEX_PD, OP2_PCMPEQW_VdqWdq, address, src0, dst); + } + + void vpcmpgtw_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpcmpgtw", VEX_PD, OP2_PCMPGTW_VdqWdq, src1, src0, dst); + } + void vpcmpgtw_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpcmpgtw", VEX_PD, OP2_PCMPGTW_VdqWdq, offset, base, src0, + dst); + } + void vpcmpgtw_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpcmpgtw", VEX_PD, OP2_PCMPGTW_VdqWdq, address, src0, dst); + } + + void vpcmpeqd_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpcmpeqd", VEX_PD, OP2_PCMPEQD_VdqWdq, src1, src0, dst); + } + void vpcmpeqd_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpcmpeqd", VEX_PD, OP2_PCMPEQD_VdqWdq, offset, base, src0, + dst); + } + void vpcmpeqd_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpcmpeqd", VEX_PD, OP2_PCMPEQD_VdqWdq, address, src0, dst); + } + + void vpcmpgtd_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpcmpgtd", VEX_PD, OP2_PCMPGTD_VdqWdq, src1, src0, dst); + } + void vpcmpgtd_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpcmpgtd", VEX_PD, OP2_PCMPGTD_VdqWdq, offset, base, src0, + dst); + } + void vpcmpgtd_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpcmpgtd", VEX_PD, OP2_PCMPGTD_VdqWdq, address, src0, dst); + } + + void vpcmpgtq_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + threeByteOpSimd("vpcmpgtq", VEX_PD, OP3_PCMPGTQ_VdqWdq, ESCAPE_38, src1, + src0, dst); + } + + void vpcmpeqq_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + threeByteOpSimd("vpcmpeqq", VEX_PD, OP3_PCMPEQQ_VdqWdq, ESCAPE_38, src1, + src0, dst); + } + void vpcmpeqq_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + threeByteOpSimd("vpcmpeqq", VEX_PD, OP3_PCMPEQQ_VdqWdq, ESCAPE_38, offset, + base, src0, dst); + } + void vpcmpeqq_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + threeByteOpSimd("vpcmpeqq", VEX_PD, OP3_PCMPEQQ_VdqWdq, ESCAPE_38, address, + src0, dst); + } + + void vcmpps_rr(uint8_t order, XMMRegisterID src1, XMMRegisterID src0, + XMMRegisterID dst) { + MOZ_ASSERT_IF(!useVEX_, + order < uint8_t(X86Encoding::ConditionCmp_AVX_Enabled)); + twoByteOpImmSimd("vcmpps", VEX_PS, OP2_CMPPS_VpsWps, order, src1, src0, + dst); + } + void vcmpps_mr(uint8_t order, int32_t offset, RegisterID base, + XMMRegisterID src0, XMMRegisterID dst) { + MOZ_ASSERT_IF(!useVEX_, + order < uint8_t(X86Encoding::ConditionCmp_AVX_Enabled)); + twoByteOpImmSimd("vcmpps", VEX_PS, OP2_CMPPS_VpsWps, order, offset, base, + src0, dst); + } + void vcmpps_mr(uint8_t order, const void* address, XMMRegisterID src0, + XMMRegisterID dst) { + MOZ_ASSERT_IF(!useVEX_, + order < uint8_t(X86Encoding::ConditionCmp_AVX_Enabled)); + twoByteOpImmSimd("vcmpps", VEX_PS, OP2_CMPPS_VpsWps, order, address, src0, + dst); + } + + static constexpr size_t CMPPS_MR_PATCH_OFFSET = 1; + + size_t vcmpeqps_mr(const void* address, XMMRegisterID src0, + XMMRegisterID dst) { + vcmpps_mr(X86Encoding::ConditionCmp_EQ, address, src0, dst); + return CMPPS_MR_PATCH_OFFSET; + } + size_t vcmpneqps_mr(const void* address, XMMRegisterID src0, + XMMRegisterID dst) { + vcmpps_mr(X86Encoding::ConditionCmp_NEQ, address, src0, dst); + return CMPPS_MR_PATCH_OFFSET; + } + size_t vcmpltps_mr(const void* address, XMMRegisterID src0, + XMMRegisterID dst) { + vcmpps_mr(X86Encoding::ConditionCmp_LT, address, src0, dst); + return CMPPS_MR_PATCH_OFFSET; + } + size_t vcmpleps_mr(const void* address, XMMRegisterID src0, + XMMRegisterID dst) { + vcmpps_mr(X86Encoding::ConditionCmp_LE, address, src0, dst); + return CMPPS_MR_PATCH_OFFSET; + } + size_t vcmpgeps_mr(const void* address, XMMRegisterID src0, + XMMRegisterID dst) { + vcmpps_mr(X86Encoding::ConditionCmp_GE, address, src0, dst); + return CMPPS_MR_PATCH_OFFSET; + } + + void vcmppd_rr(uint8_t order, XMMRegisterID src1, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpImmSimd("vcmppd", VEX_PD, OP2_CMPPD_VpdWpd, order, src1, src0, + dst); + } + void vcmppd_mr(uint8_t order, const void* address, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpImmSimd("vcmppd", VEX_PD, OP2_CMPPD_VpdWpd, order, address, src0, + dst); + } + + static constexpr size_t CMPPD_MR_PATCH_OFFSET = 1; + + size_t vcmpeqpd_mr(const void* address, XMMRegisterID src0, + XMMRegisterID dst) { + vcmppd_mr(X86Encoding::ConditionCmp_EQ, address, src0, dst); + return CMPPD_MR_PATCH_OFFSET; + } + size_t vcmpneqpd_mr(const void* address, XMMRegisterID src0, + XMMRegisterID dst) { + vcmppd_mr(X86Encoding::ConditionCmp_NEQ, address, src0, dst); + return CMPPD_MR_PATCH_OFFSET; + } + size_t vcmpltpd_mr(const void* address, XMMRegisterID src0, + XMMRegisterID dst) { + vcmppd_mr(X86Encoding::ConditionCmp_LT, address, src0, dst); + return CMPPD_MR_PATCH_OFFSET; + } + size_t vcmplepd_mr(const void* address, XMMRegisterID src0, + XMMRegisterID dst) { + vcmppd_mr(X86Encoding::ConditionCmp_LE, address, src0, dst); + return CMPPD_MR_PATCH_OFFSET; + } + + void vrcpps_rr(XMMRegisterID src, XMMRegisterID dst) { + twoByteOpSimd("vrcpps", VEX_PS, OP2_RCPPS_VpsWps, src, invalid_xmm, dst); + } + void vrcpps_mr(int32_t offset, RegisterID base, XMMRegisterID dst) { + twoByteOpSimd("vrcpps", VEX_PS, OP2_RCPPS_VpsWps, offset, base, invalid_xmm, + dst); + } + void vrcpps_mr(const void* address, XMMRegisterID dst) { + twoByteOpSimd("vrcpps", VEX_PS, OP2_RCPPS_VpsWps, address, invalid_xmm, + dst); + } + + void vrsqrtps_rr(XMMRegisterID src, XMMRegisterID dst) { + twoByteOpSimd("vrsqrtps", VEX_PS, OP2_RSQRTPS_VpsWps, src, invalid_xmm, + dst); + } + void vrsqrtps_mr(int32_t offset, RegisterID base, XMMRegisterID dst) { + twoByteOpSimd("vrsqrtps", VEX_PS, OP2_RSQRTPS_VpsWps, offset, base, + invalid_xmm, dst); + } + void vrsqrtps_mr(const void* address, XMMRegisterID dst) { + twoByteOpSimd("vrsqrtps", VEX_PS, OP2_RSQRTPS_VpsWps, address, invalid_xmm, + dst); + } + + void vsqrtps_rr(XMMRegisterID src, XMMRegisterID dst) { + twoByteOpSimd("vsqrtps", VEX_PS, OP2_SQRTPS_VpsWps, src, invalid_xmm, dst); + } + void vsqrtps_mr(int32_t offset, RegisterID base, XMMRegisterID dst) { + twoByteOpSimd("vsqrtps", VEX_PS, OP2_SQRTPS_VpsWps, offset, base, + invalid_xmm, dst); + } + void vsqrtps_mr(const void* address, XMMRegisterID dst) { + twoByteOpSimd("vsqrtps", VEX_PS, OP2_SQRTPS_VpsWps, address, invalid_xmm, + dst); + } + void vsqrtpd_rr(XMMRegisterID src, XMMRegisterID dst) { + twoByteOpSimd("vsqrtpd", VEX_PD, OP2_SQRTPD_VpdWpd, src, invalid_xmm, dst); + } + + void vaddsd_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vaddsd", VEX_SD, OP2_ADDSD_VsdWsd, src1, src0, dst); + } + + void vaddss_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vaddss", VEX_SS, OP2_ADDSD_VsdWsd, src1, src0, dst); + } + + void vaddsd_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vaddsd", VEX_SD, OP2_ADDSD_VsdWsd, offset, base, src0, dst); + } + + void vaddss_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vaddss", VEX_SS, OP2_ADDSD_VsdWsd, offset, base, src0, dst); + } + + void vaddsd_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vaddsd", VEX_SD, OP2_ADDSD_VsdWsd, address, src0, dst); + } + void vaddss_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vaddss", VEX_SS, OP2_ADDSD_VsdWsd, address, src0, dst); + } + + void vcvtss2sd_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vcvtss2sd", VEX_SS, OP2_CVTSS2SD_VsdEd, src1, src0, dst); + } + + void vcvtsd2ss_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vcvtsd2ss", VEX_SD, OP2_CVTSD2SS_VsdEd, src1, src0, dst); + } + + void vcvtsi2ss_rr(RegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpInt32Simd("vcvtsi2ss", VEX_SS, OP2_CVTSI2SD_VsdEd, src1, src0, + dst); + } + + void vcvtsi2sd_rr(RegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpInt32Simd("vcvtsi2sd", VEX_SD, OP2_CVTSI2SD_VsdEd, src1, src0, + dst); + } + + void vcvttps2dq_rr(XMMRegisterID src, XMMRegisterID dst) { + twoByteOpSimd("vcvttps2dq", VEX_SS, OP2_CVTTPS2DQ_VdqWps, src, invalid_xmm, + dst); + } + + void vcvttpd2dq_rr(XMMRegisterID src, XMMRegisterID dst) { + twoByteOpSimd("vcvttpd2dq", VEX_PD, OP2_CVTTPD2DQ_VdqWpd, src, invalid_xmm, + dst); + } + + void vcvtdq2ps_rr(XMMRegisterID src, XMMRegisterID dst) { + twoByteOpSimd("vcvtdq2ps", VEX_PS, OP2_CVTDQ2PS_VpsWdq, src, invalid_xmm, + dst); + } + + void vcvtdq2pd_rr(XMMRegisterID src, XMMRegisterID dst) { + twoByteOpSimd("vcvtdq2pd", VEX_SS, OP2_CVTDQ2PD_VpdWdq, src, invalid_xmm, + dst); + } + + void vcvtpd2ps_rr(XMMRegisterID src, XMMRegisterID dst) { + twoByteOpSimd("vcvtpd2ps", VEX_PD, OP2_CVTPD2PS_VpsWpd, src, invalid_xmm, + dst); + } + + void vcvtps2pd_rr(XMMRegisterID src, XMMRegisterID dst) { + twoByteOpSimd("vcvtps2pd", VEX_PS, OP2_CVTPS2PD_VpdWps, src, invalid_xmm, + dst); + } + + void vcvtsi2sd_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vcvtsi2sd", VEX_SD, OP2_CVTSI2SD_VsdEd, offset, base, src0, + dst); + } + + void vcvtsi2sd_mr(int32_t offset, RegisterID base, RegisterID index, + int scale, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vcvtsi2sd", VEX_SD, OP2_CVTSI2SD_VsdEd, offset, base, index, + scale, src0, dst); + } + + void vcvtsi2ss_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vcvtsi2ss", VEX_SS, OP2_CVTSI2SD_VsdEd, offset, base, src0, + dst); + } + + void vcvtsi2ss_mr(int32_t offset, RegisterID base, RegisterID index, + int scale, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vcvtsi2ss", VEX_SS, OP2_CVTSI2SD_VsdEd, offset, base, index, + scale, src0, dst); + } + + void vcvttsd2si_rr(XMMRegisterID src, RegisterID dst) { + twoByteOpSimdInt32("vcvttsd2si", VEX_SD, OP2_CVTTSD2SI_GdWsd, src, dst); + } + + void vcvttss2si_rr(XMMRegisterID src, RegisterID dst) { + twoByteOpSimdInt32("vcvttss2si", VEX_SS, OP2_CVTTSD2SI_GdWsd, src, dst); + } + + void vunpcklps_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vunpcklps", VEX_PS, OP2_UNPCKLPS_VsdWsd, src1, src0, dst); + } + void vunpcklps_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vunpcklps", VEX_PS, OP2_UNPCKLPS_VsdWsd, offset, base, src0, + dst); + } + void vunpcklps_mr(const void* addr, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vunpcklps", VEX_PS, OP2_UNPCKLPS_VsdWsd, addr, src0, dst); + } + + void vunpckhps_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vunpckhps", VEX_PS, OP2_UNPCKHPS_VsdWsd, src1, src0, dst); + } + void vunpckhps_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vunpckhps", VEX_PS, OP2_UNPCKHPS_VsdWsd, offset, base, src0, + dst); + } + void vunpckhps_mr(const void* addr, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vunpckhps", VEX_PS, OP2_UNPCKHPS_VsdWsd, addr, src0, dst); + } + + void vpand_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpand", VEX_PD, OP2_PANDDQ_VdqWdq, src1, src0, dst); + } + void vpand_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpand", VEX_PD, OP2_PANDDQ_VdqWdq, offset, base, src0, dst); + } + void vpand_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpand", VEX_PD, OP2_PANDDQ_VdqWdq, address, src0, dst); + } + void vpor_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpor", VEX_PD, OP2_PORDQ_VdqWdq, src1, src0, dst); + } + void vpor_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpor", VEX_PD, OP2_PORDQ_VdqWdq, offset, base, src0, dst); + } + void vpor_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpor", VEX_PD, OP2_PORDQ_VdqWdq, address, src0, dst); + } + void vpxor_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpxor", VEX_PD, OP2_PXORDQ_VdqWdq, src1, src0, dst); + } + void vpxor_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpxor", VEX_PD, OP2_PXORDQ_VdqWdq, offset, base, src0, dst); + } + void vpxor_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpxor", VEX_PD, OP2_PXORDQ_VdqWdq, address, src0, dst); + } + void vpandn_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpandn", VEX_PD, OP2_PANDNDQ_VdqWdq, src1, src0, dst); + } + void vpandn_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpandn", VEX_PD, OP2_PANDNDQ_VdqWdq, offset, base, src0, + dst); + } + void vpandn_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpandn", VEX_PD, OP2_PANDNDQ_VdqWdq, address, src0, dst); + } + void vptest_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + threeByteOpSimd("vptest", VEX_PD, OP3_PTEST_VdVd, ESCAPE_38, address, src0, + dst); + } + + void vpshufd_irr(uint32_t mask, XMMRegisterID src, XMMRegisterID dst) { + twoByteOpImmSimd("vpshufd", VEX_PD, OP2_PSHUFD_VdqWdqIb, mask, src, + invalid_xmm, dst); + } + void vpshufd_imr(uint32_t mask, int32_t offset, RegisterID base, + XMMRegisterID dst) { + twoByteOpImmSimd("vpshufd", VEX_PD, OP2_PSHUFD_VdqWdqIb, mask, offset, base, + invalid_xmm, dst); + } + void vpshufd_imr(uint32_t mask, const void* address, XMMRegisterID dst) { + twoByteOpImmSimd("vpshufd", VEX_PD, OP2_PSHUFD_VdqWdqIb, mask, address, + invalid_xmm, dst); + } + + void vpshuflw_irr(uint32_t mask, XMMRegisterID src, XMMRegisterID dst) { + twoByteOpImmSimd("vpshuflw", VEX_SD, OP2_PSHUFLW_VdqWdqIb, mask, src, + invalid_xmm, dst); + } + + void vpshufhw_irr(uint32_t mask, XMMRegisterID src, XMMRegisterID dst) { + twoByteOpImmSimd("vpshufhw", VEX_SS, OP2_PSHUFHW_VdqWdqIb, mask, src, + invalid_xmm, dst); + } + + void vpshufb_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + threeByteOpSimd("vpshufb", VEX_PD, OP3_PSHUFB_VdqWdq, ESCAPE_38, src1, src0, + dst); + } + void vpshufb_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + threeByteOpSimd("vpshufb", VEX_PD, OP3_PSHUFB_VdqWdq, ESCAPE_38, address, + src0, dst); + } + + void vshufps_irr(uint32_t mask, XMMRegisterID src1, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpImmSimd("vshufps", VEX_PS, OP2_SHUFPS_VpsWpsIb, mask, src1, src0, + dst); + } + void vshufps_imr(uint32_t mask, int32_t offset, RegisterID base, + XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpImmSimd("vshufps", VEX_PS, OP2_SHUFPS_VpsWpsIb, mask, offset, base, + src0, dst); + } + void vshufps_imr(uint32_t mask, const void* address, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpImmSimd("vshufps", VEX_PS, OP2_SHUFPS_VpsWpsIb, mask, address, + src0, dst); + } + void vshufpd_irr(uint32_t mask, XMMRegisterID src1, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpImmSimd("vshufpd", VEX_PD, OP2_SHUFPD_VpdWpdIb, mask, src1, src0, + dst); + } + + void vmovddup_rr(XMMRegisterID src, XMMRegisterID dst) { + twoByteOpSimd("vmovddup", VEX_SD, OP2_MOVDDUP_VqWq, src, invalid_xmm, dst); + } + void vmovddup_mr(int32_t offset, RegisterID base, XMMRegisterID dst) { + twoByteOpSimd("vmovddup", VEX_SD, OP2_MOVDDUP_VqWq, offset, base, + invalid_xmm, dst); + } + void vmovddup_mr(int32_t offset, RegisterID base, RegisterID index, + int32_t scale, XMMRegisterID dst) { + twoByteOpSimd("vmovddup", VEX_SD, OP2_MOVDDUP_VqWq, offset, base, index, + scale, invalid_xmm, dst); + } + + void vmovhlps_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vmovhlps", VEX_PS, OP2_MOVHLPS_VqUq, src1, src0, dst); + } + + void vmovlhps_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vmovlhps", VEX_PS, OP2_MOVLHPS_VqUq, src1, src0, dst); + } + + void vpsrldq_ir(uint32_t count, XMMRegisterID src, XMMRegisterID dst) { + MOZ_ASSERT(count < 16); + shiftOpImmSimd("vpsrldq", OP2_PSRLDQ_Vd, ShiftID::vpsrldq, count, src, dst); + } + + void vpslldq_ir(uint32_t count, XMMRegisterID src, XMMRegisterID dst) { + MOZ_ASSERT(count < 16); + shiftOpImmSimd("vpslldq", OP2_PSRLDQ_Vd, ShiftID::vpslldq, count, src, dst); + } + + void vpsllq_ir(uint32_t count, XMMRegisterID src, XMMRegisterID dst) { + MOZ_ASSERT(count < 64); + shiftOpImmSimd("vpsllq", OP2_PSRLDQ_Vd, ShiftID::vpsllx, count, src, dst); + } + + void vpsllq_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpsllq", VEX_PD, OP2_PSLLQ_VdqWdq, src1, src0, dst); + } + + void vpsrlq_ir(uint32_t count, XMMRegisterID src, XMMRegisterID dst) { + MOZ_ASSERT(count < 64); + shiftOpImmSimd("vpsrlq", OP2_PSRLDQ_Vd, ShiftID::vpsrlx, count, src, dst); + } + + void vpsrlq_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpsrlq", VEX_PD, OP2_PSRLQ_VdqWdq, src1, src0, dst); + } + + void vpslld_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpslld", VEX_PD, OP2_PSLLD_VdqWdq, src1, src0, dst); + } + + void vpslld_ir(uint32_t count, XMMRegisterID src, XMMRegisterID dst) { + MOZ_ASSERT(count < 32); + shiftOpImmSimd("vpslld", OP2_PSLLD_UdqIb, ShiftID::vpsllx, count, src, dst); + } + + void vpsrad_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpsrad", VEX_PD, OP2_PSRAD_VdqWdq, src1, src0, dst); + } + + void vpsrad_ir(int32_t count, XMMRegisterID src, XMMRegisterID dst) { + MOZ_ASSERT(count < 32); + shiftOpImmSimd("vpsrad", OP2_PSRAD_UdqIb, ShiftID::vpsrad, count, src, dst); + } + + void vpsrld_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpsrld", VEX_PD, OP2_PSRLD_VdqWdq, src1, src0, dst); + } + + void vpsrld_ir(uint32_t count, XMMRegisterID src, XMMRegisterID dst) { + MOZ_ASSERT(count < 32); + shiftOpImmSimd("vpsrld", OP2_PSRLD_UdqIb, ShiftID::vpsrlx, count, src, dst); + } + + void vpsllw_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpsllw", VEX_PD, OP2_PSLLW_VdqWdq, src1, src0, dst); + } + + void vpsllw_ir(uint32_t count, XMMRegisterID src, XMMRegisterID dst) { + MOZ_ASSERT(count < 16); + shiftOpImmSimd("vpsllw", OP2_PSLLW_UdqIb, ShiftID::vpsllx, count, src, dst); + } + + void vpsraw_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpsraw", VEX_PD, OP2_PSRAW_VdqWdq, src1, src0, dst); + } + + void vpsraw_ir(int32_t count, XMMRegisterID src, XMMRegisterID dst) { + MOZ_ASSERT(count < 16); + shiftOpImmSimd("vpsraw", OP2_PSRAW_UdqIb, ShiftID::vpsrad, count, src, dst); + } + + void vpsrlw_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpsrlw", VEX_PD, OP2_PSRLW_VdqWdq, src1, src0, dst); + } + + void vpsrlw_ir(uint32_t count, XMMRegisterID src, XMMRegisterID dst) { + MOZ_ASSERT(count < 16); + shiftOpImmSimd("vpsrlw", OP2_PSRLW_UdqIb, ShiftID::vpsrlx, count, src, dst); + } + + void vmovmskpd_rr(XMMRegisterID src, RegisterID dst) { + twoByteOpSimdInt32("vmovmskpd", VEX_PD, OP2_MOVMSKPD_EdVd, src, dst); + } + + void vmovmskps_rr(XMMRegisterID src, RegisterID dst) { + twoByteOpSimdInt32("vmovmskps", VEX_PS, OP2_MOVMSKPD_EdVd, src, dst); + } + + void vpmovmskb_rr(XMMRegisterID src, RegisterID dst) { + twoByteOpSimdInt32("vpmovmskb", VEX_PD, OP2_PMOVMSKB_EdVd, src, dst); + } + + void vptest_rr(XMMRegisterID rhs, XMMRegisterID lhs) { + threeByteOpSimd("vptest", VEX_PD, OP3_PTEST_VdVd, ESCAPE_38, rhs, + invalid_xmm, lhs); + } + + void vmovd_rr(XMMRegisterID src, RegisterID dst) { + twoByteOpSimdInt32("vmovd", VEX_PD, OP2_MOVD_EdVd, (XMMRegisterID)dst, + (RegisterID)src); + } + + void vmovd_rr(RegisterID src, XMMRegisterID dst) { + twoByteOpInt32Simd("vmovd", VEX_PD, OP2_MOVD_VdEd, src, invalid_xmm, dst); + } + + void vmovd_mr(int32_t offset, RegisterID base, XMMRegisterID dst) { + twoByteOpSimd("vmovd", VEX_PD, OP2_MOVD_VdEd, offset, base, invalid_xmm, + dst); + } + + void vmovd_mr(int32_t offset, RegisterID base, RegisterID index, + int32_t scale, XMMRegisterID dst) { + twoByteOpSimd("vmovd", VEX_PD, OP2_MOVD_VdEd, offset, base, index, scale, + invalid_xmm, dst); + } + + void vmovd_mr_disp32(int32_t offset, RegisterID base, XMMRegisterID dst) { + twoByteOpSimd_disp32("vmovd", VEX_PD, OP2_MOVD_VdEd, offset, base, + invalid_xmm, dst); + } + + void vmovd_mr(const void* address, XMMRegisterID dst) { + twoByteOpSimd("vmovd", VEX_PD, OP2_MOVD_VdEd, address, invalid_xmm, dst); + } + + void vmovd_rm(XMMRegisterID src, int32_t offset, RegisterID base) { + twoByteOpSimd("vmovd", VEX_PD, OP2_MOVD_EdVd, offset, base, invalid_xmm, + src); + } + + void vmovd_rm(XMMRegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + twoByteOpSimd("vmovd", VEX_PD, OP2_MOVD_EdVd, offset, base, index, scale, + invalid_xmm, src); + } + + void vmovd_rm_disp32(XMMRegisterID src, int32_t offset, RegisterID base) { + twoByteOpSimd_disp32("vmovd", VEX_PD, OP2_MOVD_EdVd, offset, base, + invalid_xmm, src); + } + + void vmovd_rm(XMMRegisterID src, const void* address) { + twoByteOpSimd("vmovd", VEX_PD, OP2_MOVD_EdVd, address, invalid_xmm, src); + } + + void vmovsd_rm(XMMRegisterID src, int32_t offset, RegisterID base) { + twoByteOpSimd("vmovsd", VEX_SD, OP2_MOVSD_WsdVsd, offset, base, invalid_xmm, + src); + } + + void vmovsd_rm_disp32(XMMRegisterID src, int32_t offset, RegisterID base) { + twoByteOpSimd_disp32("vmovsd", VEX_SD, OP2_MOVSD_WsdVsd, offset, base, + invalid_xmm, src); + } + + void vmovss_rm(XMMRegisterID src, int32_t offset, RegisterID base) { + twoByteOpSimd("vmovss", VEX_SS, OP2_MOVSD_WsdVsd, offset, base, invalid_xmm, + src); + } + + void vmovss_rm_disp32(XMMRegisterID src, int32_t offset, RegisterID base) { + twoByteOpSimd_disp32("vmovss", VEX_SS, OP2_MOVSD_WsdVsd, offset, base, + invalid_xmm, src); + } + + void vmovss_mr(int32_t offset, RegisterID base, XMMRegisterID dst) { + twoByteOpSimd("vmovss", VEX_SS, OP2_MOVSD_VsdWsd, offset, base, invalid_xmm, + dst); + } + + void vmovss_mr_disp32(int32_t offset, RegisterID base, XMMRegisterID dst) { + twoByteOpSimd_disp32("vmovss", VEX_SS, OP2_MOVSD_VsdWsd, offset, base, + invalid_xmm, dst); + } + + void vmovsd_rm(XMMRegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + twoByteOpSimd("vmovsd", VEX_SD, OP2_MOVSD_WsdVsd, offset, base, index, + scale, invalid_xmm, src); + } + + void vmovss_rm(XMMRegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + twoByteOpSimd("vmovss", VEX_SS, OP2_MOVSD_WsdVsd, offset, base, index, + scale, invalid_xmm, src); + } + + void vmovss_mr(int32_t offset, RegisterID base, RegisterID index, int scale, + XMMRegisterID dst) { + twoByteOpSimd("vmovss", VEX_SS, OP2_MOVSD_VsdWsd, offset, base, index, + scale, invalid_xmm, dst); + } + + void vmovsd_mr(int32_t offset, RegisterID base, XMMRegisterID dst) { + twoByteOpSimd("vmovsd", VEX_SD, OP2_MOVSD_VsdWsd, offset, base, invalid_xmm, + dst); + } + + void vmovsd_mr_disp32(int32_t offset, RegisterID base, XMMRegisterID dst) { + twoByteOpSimd_disp32("vmovsd", VEX_SD, OP2_MOVSD_VsdWsd, offset, base, + invalid_xmm, dst); + } + + void vmovsd_mr(int32_t offset, RegisterID base, RegisterID index, int scale, + XMMRegisterID dst) { + twoByteOpSimd("vmovsd", VEX_SD, OP2_MOVSD_VsdWsd, offset, base, index, + scale, invalid_xmm, dst); + } + + // Note that the register-to-register form of vmovsd does not write to the + // entire output register. For general-purpose register-to-register moves, + // use vmovapd instead. + void vmovsd_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vmovsd", VEX_SD, OP2_MOVSD_VsdWsd, src1, src0, dst); + } + + // The register-to-register form of vmovss has the same problem as vmovsd + // above. Prefer vmovaps for register-to-register moves. + void vmovss_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vmovss", VEX_SS, OP2_MOVSD_VsdWsd, src1, src0, dst); + } + + void vmovsd_mr(const void* address, XMMRegisterID dst) { + twoByteOpSimd("vmovsd", VEX_SD, OP2_MOVSD_VsdWsd, address, invalid_xmm, + dst); + } + + void vmovss_mr(const void* address, XMMRegisterID dst) { + twoByteOpSimd("vmovss", VEX_SS, OP2_MOVSD_VsdWsd, address, invalid_xmm, + dst); + } + + void vmovups_mr(const void* address, XMMRegisterID dst) { + twoByteOpSimd("vmovups", VEX_PS, OP2_MOVPS_VpsWps, address, invalid_xmm, + dst); + } + + void vmovdqu_mr(const void* address, XMMRegisterID dst) { + twoByteOpSimd("vmovdqu", VEX_SS, OP2_MOVDQ_VdqWdq, address, invalid_xmm, + dst); + } + + void vmovsd_rm(XMMRegisterID src, const void* address) { + twoByteOpSimd("vmovsd", VEX_SD, OP2_MOVSD_WsdVsd, address, invalid_xmm, + src); + } + + void vmovss_rm(XMMRegisterID src, const void* address) { + twoByteOpSimd("vmovss", VEX_SS, OP2_MOVSD_WsdVsd, address, invalid_xmm, + src); + } + + void vmovdqa_rm(XMMRegisterID src, const void* address) { + twoByteOpSimd("vmovdqa", VEX_PD, OP2_MOVDQ_WdqVdq, address, invalid_xmm, + src); + } + + void vmovaps_rm(XMMRegisterID src, const void* address) { + twoByteOpSimd("vmovaps", VEX_PS, OP2_MOVAPS_WsdVsd, address, invalid_xmm, + src); + } + + void vmovdqu_rm(XMMRegisterID src, const void* address) { + twoByteOpSimd("vmovdqu", VEX_SS, OP2_MOVDQ_WdqVdq, address, invalid_xmm, + src); + } + + void vmovups_rm(XMMRegisterID src, const void* address) { + twoByteOpSimd("vmovups", VEX_PS, OP2_MOVPS_WpsVps, address, invalid_xmm, + src); + } + + void vmovaps_rr(XMMRegisterID src, XMMRegisterID dst) { +#ifdef JS_CODEGEN_X64 + // There are two opcodes that can encode this instruction. If we have + // one register in [xmm8,xmm15] and one in [xmm0,xmm7], use the + // opcode which swaps the operands, as that way we can get a two-byte + // VEX in that case. + if (src >= xmm8 && dst < xmm8) { + twoByteOpSimd("vmovaps", VEX_PS, OP2_MOVAPS_WsdVsd, dst, invalid_xmm, + src); + return; + } +#endif + twoByteOpSimd("vmovaps", VEX_PS, OP2_MOVAPS_VsdWsd, src, invalid_xmm, dst); + } + void vmovaps_rm(XMMRegisterID src, int32_t offset, RegisterID base) { + twoByteOpSimd("vmovaps", VEX_PS, OP2_MOVAPS_WsdVsd, offset, base, + invalid_xmm, src); + } + void vmovaps_rm(XMMRegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + twoByteOpSimd("vmovaps", VEX_PS, OP2_MOVAPS_WsdVsd, offset, base, index, + scale, invalid_xmm, src); + } + void vmovaps_mr(int32_t offset, RegisterID base, XMMRegisterID dst) { + twoByteOpSimd("vmovaps", VEX_PS, OP2_MOVAPS_VsdWsd, offset, base, + invalid_xmm, dst); + } + void vmovaps_mr(int32_t offset, RegisterID base, RegisterID index, int scale, + XMMRegisterID dst) { + twoByteOpSimd("vmovaps", VEX_PS, OP2_MOVAPS_VsdWsd, offset, base, index, + scale, invalid_xmm, dst); + } + + void vmovups_rm(XMMRegisterID src, int32_t offset, RegisterID base) { + twoByteOpSimd("vmovups", VEX_PS, OP2_MOVPS_WpsVps, offset, base, + invalid_xmm, src); + } + void vmovups_rm_disp32(XMMRegisterID src, int32_t offset, RegisterID base) { + twoByteOpSimd_disp32("vmovups", VEX_PS, OP2_MOVPS_WpsVps, offset, base, + invalid_xmm, src); + } + void vmovups_rm(XMMRegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + twoByteOpSimd("vmovups", VEX_PS, OP2_MOVPS_WpsVps, offset, base, index, + scale, invalid_xmm, src); + } + void vmovups_mr(int32_t offset, RegisterID base, XMMRegisterID dst) { + twoByteOpSimd("vmovups", VEX_PS, OP2_MOVPS_VpsWps, offset, base, + invalid_xmm, dst); + } + void vmovups_mr_disp32(int32_t offset, RegisterID base, XMMRegisterID dst) { + twoByteOpSimd_disp32("vmovups", VEX_PS, OP2_MOVPS_VpsWps, offset, base, + invalid_xmm, dst); + } + void vmovups_mr(int32_t offset, RegisterID base, RegisterID index, int scale, + XMMRegisterID dst) { + twoByteOpSimd("vmovups", VEX_PS, OP2_MOVPS_VpsWps, offset, base, index, + scale, invalid_xmm, dst); + } + + void vmovapd_rr(XMMRegisterID src, XMMRegisterID dst) { +#ifdef JS_CODEGEN_X64 + // There are two opcodes that can encode this instruction. If we have + // one register in [xmm8,xmm15] and one in [xmm0,xmm7], use the + // opcode which swaps the operands, as that way we can get a two-byte + // VEX in that case. + if (src >= xmm8 && dst < xmm8) { + twoByteOpSimd("vmovapd", VEX_PD, OP2_MOVAPS_WsdVsd, dst, invalid_xmm, + src); + return; + } +#endif + twoByteOpSimd("vmovapd", VEX_PD, OP2_MOVAPD_VsdWsd, src, invalid_xmm, dst); + } + + void vmovdqu_rm(XMMRegisterID src, int32_t offset, RegisterID base) { + twoByteOpSimd("vmovdqu", VEX_SS, OP2_MOVDQ_WdqVdq, offset, base, + invalid_xmm, src); + } + + void vmovdqu_rm_disp32(XMMRegisterID src, int32_t offset, RegisterID base) { + twoByteOpSimd_disp32("vmovdqu", VEX_SS, OP2_MOVDQ_WdqVdq, offset, base, + invalid_xmm, src); + } + + void vmovdqu_rm(XMMRegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + twoByteOpSimd("vmovdqu", VEX_SS, OP2_MOVDQ_WdqVdq, offset, base, index, + scale, invalid_xmm, src); + } + + void vmovdqu_mr(int32_t offset, RegisterID base, XMMRegisterID dst) { + twoByteOpSimd("vmovdqu", VEX_SS, OP2_MOVDQ_VdqWdq, offset, base, + invalid_xmm, dst); + } + + void vmovdqu_mr_disp32(int32_t offset, RegisterID base, XMMRegisterID dst) { + twoByteOpSimd_disp32("vmovdqu", VEX_SS, OP2_MOVDQ_VdqWdq, offset, base, + invalid_xmm, dst); + } + + void vmovdqu_mr(int32_t offset, RegisterID base, RegisterID index, int scale, + XMMRegisterID dst) { + twoByteOpSimd("vmovdqu", VEX_SS, OP2_MOVDQ_VdqWdq, offset, base, index, + scale, invalid_xmm, dst); + } + + void vmovdqa_rr(XMMRegisterID src, XMMRegisterID dst) { +#ifdef JS_CODEGEN_X64 + // There are two opcodes that can encode this instruction. If we have + // one register in [xmm8,xmm15] and one in [xmm0,xmm7], use the + // opcode which swaps the operands, as that way we can get a two-byte + // VEX in that case. + if (src >= xmm8 && dst < xmm8) { + twoByteOpSimd("vmovdqa", VEX_PD, OP2_MOVDQ_WdqVdq, dst, invalid_xmm, src); + return; + } +#endif + twoByteOpSimd("vmovdqa", VEX_PD, OP2_MOVDQ_VdqWdq, src, invalid_xmm, dst); + } + + void vmovdqa_rm(XMMRegisterID src, int32_t offset, RegisterID base) { + twoByteOpSimd("vmovdqa", VEX_PD, OP2_MOVDQ_WdqVdq, offset, base, + invalid_xmm, src); + } + + void vmovdqa_rm(XMMRegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + twoByteOpSimd("vmovdqa", VEX_PD, OP2_MOVDQ_WdqVdq, offset, base, index, + scale, invalid_xmm, src); + } + + void vmovdqa_mr(int32_t offset, RegisterID base, XMMRegisterID dst) { + twoByteOpSimd("vmovdqa", VEX_PD, OP2_MOVDQ_VdqWdq, offset, base, + invalid_xmm, dst); + } + + void vmovdqa_mr(int32_t offset, RegisterID base, RegisterID index, int scale, + XMMRegisterID dst) { + twoByteOpSimd("vmovdqa", VEX_PD, OP2_MOVDQ_VdqWdq, offset, base, index, + scale, invalid_xmm, dst); + } + + void vmulsd_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vmulsd", VEX_SD, OP2_MULSD_VsdWsd, src1, src0, dst); + } + + void vmulss_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vmulss", VEX_SS, OP2_MULSD_VsdWsd, src1, src0, dst); + } + + void vmulsd_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vmulsd", VEX_SD, OP2_MULSD_VsdWsd, offset, base, src0, dst); + } + + void vmulss_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vmulss", VEX_SS, OP2_MULSD_VsdWsd, offset, base, src0, dst); + } + + void vpinsrw_irr(uint32_t whichWord, RegisterID src1, XMMRegisterID src0, + XMMRegisterID dst) { + MOZ_ASSERT(whichWord < 8); + twoByteOpImmInt32Simd("vpinsrw", VEX_PD, OP2_PINSRW, whichWord, src1, src0, + dst); + } + void vpinsrw_imr(unsigned lane, int32_t offset, RegisterID base, + XMMRegisterID src0, XMMRegisterID dst) { + MOZ_ASSERT(lane < 16); + twoByteOpImmInt32Simd("vpinsrw", VEX_PD, OP2_PINSRW, lane, offset, base, + src0, dst); + } + void vpinsrw_imr(unsigned lane, int32_t offset, RegisterID base, + RegisterID index, int32_t scale, XMMRegisterID src0, + XMMRegisterID dst) { + MOZ_ASSERT(lane < 16); + twoByteOpImmInt32Simd("vpinsrw", VEX_PD, OP2_PINSRW, lane, offset, base, + index, scale, src0, dst); + } + + void vpextrw_irr(uint32_t whichWord, XMMRegisterID src, RegisterID dst) { + MOZ_ASSERT(whichWord < 8); + twoByteOpImmSimdInt32("vpextrw", VEX_PD, OP2_PEXTRW_GdUdIb, whichWord, src, + dst); + } + + void vpextrw_irm(unsigned lane, XMMRegisterID src, int32_t offset, + RegisterID base) { + MOZ_ASSERT(lane < 8); + threeByteOpImmSimdInt32("vpextrw", VEX_PD, OP3_PEXTRW_EwVdqIb, ESCAPE_3A, + lane, offset, base, (RegisterID)src); + } + + void vpextrw_irm(unsigned lane, XMMRegisterID src, int32_t offset, + RegisterID base, RegisterID index, int scale) { + MOZ_ASSERT(lane < 8); + threeByteOpImmSimdInt32("vpextrw", VEX_PD, OP3_PEXTRW_EwVdqIb, ESCAPE_3A, + lane, offset, base, index, scale, (RegisterID)src); + } + + void vsubsd_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vsubsd", VEX_SD, OP2_SUBSD_VsdWsd, src1, src0, dst); + } + + void vsubss_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vsubss", VEX_SS, OP2_SUBSD_VsdWsd, src1, src0, dst); + } + + void vsubsd_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vsubsd", VEX_SD, OP2_SUBSD_VsdWsd, offset, base, src0, dst); + } + + void vsubss_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vsubss", VEX_SS, OP2_SUBSD_VsdWsd, offset, base, src0, dst); + } + + void vucomiss_rr(XMMRegisterID rhs, XMMRegisterID lhs) { + twoByteOpSimdFlags("vucomiss", VEX_PS, OP2_UCOMISD_VsdWsd, rhs, lhs); + } + + void vucomisd_rr(XMMRegisterID rhs, XMMRegisterID lhs) { + twoByteOpSimdFlags("vucomisd", VEX_PD, OP2_UCOMISD_VsdWsd, rhs, lhs); + } + + void vucomisd_mr(int32_t offset, RegisterID base, XMMRegisterID lhs) { + twoByteOpSimdFlags("vucomisd", VEX_PD, OP2_UCOMISD_VsdWsd, offset, base, + lhs); + } + + void vdivsd_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vdivsd", VEX_SD, OP2_DIVSD_VsdWsd, src1, src0, dst); + } + + void vdivss_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vdivss", VEX_SS, OP2_DIVSD_VsdWsd, src1, src0, dst); + } + + void vdivsd_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vdivsd", VEX_SD, OP2_DIVSD_VsdWsd, offset, base, src0, dst); + } + + void vdivss_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vdivss", VEX_SS, OP2_DIVSD_VsdWsd, offset, base, src0, dst); + } + + void vxorpd_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vxorpd", VEX_PD, OP2_XORPD_VpdWpd, src1, src0, dst); + } + + void vorpd_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vorpd", VEX_PD, OP2_ORPD_VpdWpd, src1, src0, dst); + } + + void vandpd_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vandpd", VEX_PD, OP2_ANDPD_VpdWpd, src1, src0, dst); + } + void vandpd_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vandpd", VEX_PD, OP2_ANDPD_VpdWpd, address, src0, dst); + } + + void vandps_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vandps", VEX_PS, OP2_ANDPS_VpsWps, src1, src0, dst); + } + + void vandps_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vandps", VEX_PS, OP2_ANDPS_VpsWps, offset, base, src0, dst); + } + + void vandps_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vandps", VEX_PS, OP2_ANDPS_VpsWps, address, src0, dst); + } + + void vandnps_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vandnps", VEX_PS, OP2_ANDNPS_VpsWps, src1, src0, dst); + } + + void vandnps_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vandnps", VEX_PS, OP2_ANDNPS_VpsWps, offset, base, src0, + dst); + } + + void vandnps_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vandnps", VEX_PS, OP2_ANDNPS_VpsWps, address, src0, dst); + } + + void vorps_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vorps", VEX_PS, OP2_ORPS_VpsWps, src1, src0, dst); + } + + void vorps_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vorps", VEX_PS, OP2_ORPS_VpsWps, offset, base, src0, dst); + } + + void vorps_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vorps", VEX_PS, OP2_ORPS_VpsWps, address, src0, dst); + } + + void vxorps_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vxorps", VEX_PS, OP2_XORPS_VpsWps, src1, src0, dst); + } + + void vxorps_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vxorps", VEX_PS, OP2_XORPS_VpsWps, offset, base, src0, dst); + } + + void vxorps_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vxorps", VEX_PS, OP2_XORPS_VpsWps, address, src0, dst); + } + + void vsqrtsd_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vsqrtsd", VEX_SD, OP2_SQRTSD_VsdWsd, src1, src0, dst); + } + + void vsqrtss_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vsqrtss", VEX_SS, OP2_SQRTSS_VssWss, src1, src0, dst); + } + + void vroundsd_irr(RoundingMode mode, XMMRegisterID src, XMMRegisterID dst) { + threeByteOpImmSimd("vroundsd", VEX_PD, OP3_ROUNDSD_VsdWsd, ESCAPE_3A, mode, + src, invalid_xmm, dst); + } + + void vroundss_irr(RoundingMode mode, XMMRegisterID src, XMMRegisterID dst) { + threeByteOpImmSimd("vroundss", VEX_PD, OP3_ROUNDSS_VsdWsd, ESCAPE_3A, mode, + src, invalid_xmm, dst); + } + void vroundps_irr(SSERoundingMode mode, XMMRegisterID src, + XMMRegisterID dst) { + threeByteOpImmSimd("vroundps", VEX_PD, OP3_ROUNDPS_VpsWps, ESCAPE_3A, + int(mode), src, invalid_xmm, dst); + } + void vroundpd_irr(SSERoundingMode mode, XMMRegisterID src, + XMMRegisterID dst) { + threeByteOpImmSimd("vroundpd", VEX_PD, OP3_ROUNDPD_VpdWpd, ESCAPE_3A, + int(mode), src, invalid_xmm, dst); + } + + void vinsertps_irr(uint32_t mask, XMMRegisterID src1, XMMRegisterID src0, + XMMRegisterID dst) { + threeByteOpImmSimd("vinsertps", VEX_PD, OP3_INSERTPS_VpsUps, ESCAPE_3A, + mask, src1, src0, dst); + } + void vinsertps_imr(uint32_t mask, int32_t offset, RegisterID base, + XMMRegisterID src0, XMMRegisterID dst) { + threeByteOpImmSimd("vinsertps", VEX_PD, OP3_INSERTPS_VpsUps, ESCAPE_3A, + mask, offset, base, src0, dst); + } + void vinsertps_imr(uint32_t mask, int32_t offset, RegisterID base, + RegisterID index, int scale, XMMRegisterID src0, + XMMRegisterID dst) { + threeByteOpImmSimd("vinsertps", VEX_PD, OP3_INSERTPS_VpsUps, ESCAPE_3A, + mask, offset, base, index, scale, src0, dst); + } + + void vmovlps_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vmovlps", VEX_PS, OP2_MOVLPS_VqEq, offset, base, src0, dst); + } + void vmovlps_mr(int32_t offset, RegisterID base, RegisterID index, int scale, + XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vmovlps", VEX_PS, OP2_MOVLPS_VqEq, offset, base, index, + scale, src0, dst); + } + void vmovlps_rm(XMMRegisterID src, int32_t offset, RegisterID base) { + twoByteOpSimd("vmovlps", VEX_PS, OP2_MOVLPS_EqVq, offset, base, invalid_xmm, + src); + } + void vmovlps_rm(XMMRegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + twoByteOpSimd("vmovlps", VEX_PS, OP2_MOVLPS_EqVq, offset, base, index, + scale, invalid_xmm, src); + } + + void vmovhps_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vmovhps", VEX_PS, OP2_MOVHPS_VqEq, offset, base, src0, dst); + } + void vmovhps_mr(int32_t offset, RegisterID base, RegisterID index, int scale, + XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vmovhps", VEX_PS, OP2_MOVHPS_VqEq, offset, base, index, + scale, src0, dst); + } + + void vmovhps_rm(XMMRegisterID src, int32_t offset, RegisterID base) { + twoByteOpSimd("vmovhps", VEX_PS, OP2_MOVHPS_EqVq, offset, base, invalid_xmm, + src); + } + void vmovhps_rm(XMMRegisterID src, int32_t offset, RegisterID base, + RegisterID index, int scale) { + twoByteOpSimd("vmovhps", VEX_PS, OP2_MOVHPS_EqVq, offset, base, index, + scale, invalid_xmm, src); + } + + void vextractps_rm(unsigned lane, XMMRegisterID src, int32_t offset, + RegisterID base) { + threeByteOpImmSimd("vextractps", VEX_PD, OP3_EXTRACTPS_EdVdqIb, ESCAPE_3A, + lane, offset, base, invalid_xmm, src); + } + void vextractps_rm(unsigned lane, XMMRegisterID src, int32_t offset, + RegisterID base, RegisterID index, int scale) { + threeByteOpImmSimd("vextractps", VEX_PD, OP3_EXTRACTPS_EdVdqIb, ESCAPE_3A, + lane, offset, base, index, scale, invalid_xmm, src); + } + + void vpblendw_irr(unsigned mask, XMMRegisterID src1, XMMRegisterID src0, + XMMRegisterID dst) { + MOZ_ASSERT(mask < 256); + threeByteOpImmSimd("vpblendw", VEX_PD, OP3_PBLENDW_VdqWdqIb, ESCAPE_3A, + mask, src1, src0, dst); + } + + void vpblendvb_rr(XMMRegisterID mask, XMMRegisterID src1, XMMRegisterID src0, + XMMRegisterID dst) { + vblendvOpSimd("vpblendvb", OP3_PBLENDVB_VdqWdq, OP3_VPBLENDVB_VdqWdq, mask, + src1, src0, dst); + } + + void vpinsrb_irr(unsigned lane, RegisterID src1, XMMRegisterID src0, + XMMRegisterID dst) { + MOZ_ASSERT(lane < 16); + threeByteOpImmInt32Simd("vpinsrb", VEX_PD, OP3_PINSRB_VdqEvIb, ESCAPE_3A, + lane, src1, src0, dst); + } + void vpinsrb_imr(unsigned lane, int32_t offset, RegisterID base, + XMMRegisterID src0, XMMRegisterID dst) { + MOZ_ASSERT(lane < 16); + threeByteOpImmInt32Simd("vpinsrb", VEX_PD, OP3_PINSRB_VdqEvIb, ESCAPE_3A, + lane, offset, base, src0, dst); + } + void vpinsrb_imr(unsigned lane, int32_t offset, RegisterID base, + RegisterID index, int32_t scale, XMMRegisterID src0, + XMMRegisterID dst) { + MOZ_ASSERT(lane < 16); + threeByteOpImmInt32Simd("vpinsrb", VEX_PD, OP3_PINSRB_VdqEvIb, ESCAPE_3A, + lane, offset, base, index, scale, src0, dst); + } + + void vpinsrd_irr(unsigned lane, RegisterID src1, XMMRegisterID src0, + XMMRegisterID dst) { + MOZ_ASSERT(lane < 4); + threeByteOpImmInt32Simd("vpinsrd", VEX_PD, OP3_PINSRD_VdqEvIb, ESCAPE_3A, + lane, src1, src0, dst); + } + + void vpextrb_irr(unsigned lane, XMMRegisterID src, RegisterID dst) { + MOZ_ASSERT(lane < 16); + threeByteOpImmSimdInt32("vpextrb", VEX_PD, OP3_PEXTRB_EvVdqIb, ESCAPE_3A, + lane, (XMMRegisterID)dst, (RegisterID)src); + } + + void vpextrb_irm(unsigned lane, XMMRegisterID src, int32_t offset, + RegisterID base) { + MOZ_ASSERT(lane < 16); + threeByteOpImmSimdInt32("vpextrb", VEX_PD, OP3_PEXTRB_EvVdqIb, ESCAPE_3A, + lane, offset, base, (RegisterID)src); + } + + void vpextrb_irm(unsigned lane, XMMRegisterID src, int32_t offset, + RegisterID base, RegisterID index, int scale) { + MOZ_ASSERT(lane < 16); + threeByteOpImmSimdInt32("vpextrb", VEX_PD, OP3_PEXTRB_EvVdqIb, ESCAPE_3A, + lane, offset, base, index, scale, (RegisterID)src); + } + + void vpextrd_irr(unsigned lane, XMMRegisterID src, RegisterID dst) { + MOZ_ASSERT(lane < 4); + threeByteOpImmSimdInt32("vpextrd", VEX_PD, OP3_PEXTRD_EvVdqIb, ESCAPE_3A, + lane, (XMMRegisterID)dst, (RegisterID)src); + } + + void vblendps_irr(unsigned imm, XMMRegisterID src1, XMMRegisterID src0, + XMMRegisterID dst) { + MOZ_ASSERT(imm < 16); + // Despite being a "ps" instruction, vblendps is encoded with the "pd" + // prefix. + threeByteOpImmSimd("vblendps", VEX_PD, OP3_BLENDPS_VpsWpsIb, ESCAPE_3A, imm, + src1, src0, dst); + } + + void vblendps_imr(unsigned imm, int32_t offset, RegisterID base, + XMMRegisterID src0, XMMRegisterID dst) { + MOZ_ASSERT(imm < 16); + // Despite being a "ps" instruction, vblendps is encoded with the "pd" + // prefix. + threeByteOpImmSimd("vblendps", VEX_PD, OP3_BLENDPS_VpsWpsIb, ESCAPE_3A, imm, + offset, base, src0, dst); + } + + void vblendvps_rr(XMMRegisterID mask, XMMRegisterID src1, XMMRegisterID src0, + XMMRegisterID dst) { + vblendvOpSimd("vblendvps", OP3_BLENDVPS_VdqWdq, OP3_VBLENDVPS_VdqWdq, mask, + src1, src0, dst); + } + void vblendvps_mr(XMMRegisterID mask, int32_t offset, RegisterID base, + XMMRegisterID src0, XMMRegisterID dst) { + vblendvOpSimd("vblendvps", OP3_BLENDVPS_VdqWdq, OP3_VBLENDVPS_VdqWdq, mask, + offset, base, src0, dst); + } + void vblendvpd_rr(XMMRegisterID mask, XMMRegisterID src1, XMMRegisterID src0, + XMMRegisterID dst) { + vblendvOpSimd("vblendvpd", OP3_BLENDVPD_VdqWdq, OP3_VBLENDVPD_VdqWdq, mask, + src1, src0, dst); + } + + void vmovsldup_rr(XMMRegisterID src, XMMRegisterID dst) { + twoByteOpSimd("vmovsldup", VEX_SS, OP2_MOVSLDUP_VpsWps, src, invalid_xmm, + dst); + } + void vmovsldup_mr(int32_t offset, RegisterID base, XMMRegisterID dst) { + twoByteOpSimd("vmovsldup", VEX_SS, OP2_MOVSLDUP_VpsWps, offset, base, + invalid_xmm, dst); + } + + void vmovshdup_rr(XMMRegisterID src, XMMRegisterID dst) { + twoByteOpSimd("vmovshdup", VEX_SS, OP2_MOVSHDUP_VpsWps, src, invalid_xmm, + dst); + } + void vmovshdup_mr(int32_t offset, RegisterID base, XMMRegisterID dst) { + twoByteOpSimd("vmovshdup", VEX_SS, OP2_MOVSHDUP_VpsWps, offset, base, + invalid_xmm, dst); + } + + void vminsd_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vminsd", VEX_SD, OP2_MINSD_VsdWsd, src1, src0, dst); + } + void vminsd_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vminsd", VEX_SD, OP2_MINSD_VsdWsd, offset, base, src0, dst); + } + + void vminss_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vminss", VEX_SS, OP2_MINSS_VssWss, src1, src0, dst); + } + + void vmaxsd_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vmaxsd", VEX_SD, OP2_MAXSD_VsdWsd, src1, src0, dst); + } + void vmaxsd_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vmaxsd", VEX_SD, OP2_MAXSD_VsdWsd, offset, base, src0, dst); + } + + void vmaxss_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vmaxss", VEX_SS, OP2_MAXSS_VssWss, src1, src0, dst); + } + + void vpavgb_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpavgb", VEX_PD, OP2_PAVGB_VdqWdq, src1, src0, dst); + } + + void vpavgw_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpavgw", VEX_PD, OP2_PAVGW_VdqWdq, src1, src0, dst); + } + + void vpminsb_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + threeByteOpSimd("vpminsb", VEX_PD, OP3_PMINSB_VdqWdq, ESCAPE_38, src1, src0, + dst); + } + void vpminsb_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + threeByteOpSimd("vpminsb", VEX_PD, OP3_PMINSB_VdqWdq, ESCAPE_38, address, + src0, dst); + } + + void vpmaxsb_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + threeByteOpSimd("vpmaxsb", VEX_PD, OP3_PMAXSB_VdqWdq, ESCAPE_38, src1, src0, + dst); + } + void vpmaxsb_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + threeByteOpSimd("vpmaxsb", VEX_PD, OP3_PMAXSB_VdqWdq, ESCAPE_38, address, + src0, dst); + } + + void vpminub_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpminub", VEX_PD, OP2_PMINUB_VdqWdq, src1, src0, dst); + } + void vpminub_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpminub", VEX_PD, OP2_PMINUB_VdqWdq, address, src0, dst); + } + + void vpmaxub_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpmaxub", VEX_PD, OP2_PMAXUB_VdqWdq, src1, src0, dst); + } + void vpmaxub_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpmaxub", VEX_PD, OP2_PMAXUB_VdqWdq, address, src0, dst); + } + + void vpminsw_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpminsw", VEX_PD, OP2_PMINSW_VdqWdq, src1, src0, dst); + } + void vpminsw_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpminsw", VEX_PD, OP2_PMINSW_VdqWdq, address, src0, dst); + } + + void vpmaxsw_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpmaxsw", VEX_PD, OP2_PMAXSW_VdqWdq, src1, src0, dst); + } + void vpmaxsw_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpmaxsw", VEX_PD, OP2_PMAXSW_VdqWdq, address, src0, dst); + } + + void vpminuw_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + threeByteOpSimd("vpminuw", VEX_PD, OP3_PMINUW_VdqWdq, ESCAPE_38, src1, src0, + dst); + } + void vpminuw_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + threeByteOpSimd("vpminuw", VEX_PD, OP3_PMINUW_VdqWdq, ESCAPE_38, address, + src0, dst); + } + + void vpmaxuw_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + threeByteOpSimd("vpmaxuw", VEX_PD, OP3_PMAXUW_VdqWdq, ESCAPE_38, src1, src0, + dst); + } + void vpmaxuw_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + threeByteOpSimd("vpmaxuw", VEX_PD, OP3_PMAXUW_VdqWdq, ESCAPE_38, address, + src0, dst); + } + + void vpminsd_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + threeByteOpSimd("vpminsd", VEX_PD, OP3_PMINSD_VdqWdq, ESCAPE_38, src1, src0, + dst); + } + void vpminsd_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + threeByteOpSimd("vpminsd", VEX_PD, OP3_PMINSD_VdqWdq, ESCAPE_38, address, + src0, dst); + } + + void vpmaxsd_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + threeByteOpSimd("vpmaxsd", VEX_PD, OP3_PMAXSD_VdqWdq, ESCAPE_38, src1, src0, + dst); + } + void vpmaxsd_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + threeByteOpSimd("vpmaxsd", VEX_PD, OP3_PMAXSD_VdqWdq, ESCAPE_38, address, + src0, dst); + } + + void vpminud_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + threeByteOpSimd("vpminud", VEX_PD, OP3_PMINUD_VdqWdq, ESCAPE_38, src1, src0, + dst); + } + void vpminud_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + threeByteOpSimd("vpminud", VEX_PD, OP3_PMINUD_VdqWdq, ESCAPE_38, address, + src0, dst); + } + + void vpmaxud_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + threeByteOpSimd("vpmaxud", VEX_PD, OP3_PMAXUD_VdqWdq, ESCAPE_38, src1, src0, + dst); + } + void vpmaxud_mr(const void* address, XMMRegisterID src0, XMMRegisterID dst) { + threeByteOpSimd("vpmaxud", VEX_PD, OP3_PMAXUD_VdqWdq, ESCAPE_38, address, + src0, dst); + } + + void vpacksswb_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpacksswb", VEX_PD, OP2_PACKSSWB_VdqWdq, src1, src0, dst); + } + void vpacksswb_mr(const void* address, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpacksswb", VEX_PD, OP2_PACKSSWB_VdqWdq, address, src0, dst); + } + + void vpackuswb_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpackuswb", VEX_PD, OP2_PACKUSWB_VdqWdq, src1, src0, dst); + } + void vpackuswb_mr(const void* address, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpackuswb", VEX_PD, OP2_PACKUSWB_VdqWdq, address, src0, dst); + } + + void vpackssdw_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpackssdw", VEX_PD, OP2_PACKSSDW_VdqWdq, src1, src0, dst); + } + void vpackssdw_mr(const void* address, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpackssdw", VEX_PD, OP2_PACKSSDW_VdqWdq, address, src0, dst); + } + + void vpackusdw_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + threeByteOpSimd("vpackusdw", VEX_PD, OP3_PACKUSDW_VdqWdq, ESCAPE_38, src1, + src0, dst); + } + void vpackusdw_mr(const void* address, XMMRegisterID src0, + XMMRegisterID dst) { + threeByteOpSimd("vpackusdw", VEX_PD, OP3_PACKUSDW_VdqWdq, ESCAPE_38, + address, src0, dst); + } + + void vpabsb_rr(XMMRegisterID src, XMMRegisterID dst) { + threeByteOpSimd("vpabsb", VEX_PD, OP3_PABSB_VdqWdq, ESCAPE_38, src, + invalid_xmm, dst); + } + + void vpabsw_rr(XMMRegisterID src, XMMRegisterID dst) { + threeByteOpSimd("vpabsw", VEX_PD, OP3_PABSW_VdqWdq, ESCAPE_38, src, + invalid_xmm, dst); + } + + void vpabsd_rr(XMMRegisterID src, XMMRegisterID dst) { + threeByteOpSimd("vpabsd", VEX_PD, OP3_PABSD_VdqWdq, ESCAPE_38, src, + invalid_xmm, dst); + } + + void vpmovsxbw_rr(XMMRegisterID src, XMMRegisterID dst) { + threeByteOpSimd("vpmovsxbw", VEX_PD, OP3_PMOVSXBW_VdqWdq, ESCAPE_38, src, + invalid_xmm, dst); + } + void vpmovsxbw_mr(int32_t offset, RegisterID base, XMMRegisterID dst) { + threeByteOpSimd("vpmovsxbw", VEX_PD, OP3_PMOVSXBW_VdqWdq, ESCAPE_38, offset, + base, invalid_xmm, dst); + } + void vpmovsxbw_mr(int32_t offset, RegisterID base, RegisterID index, + int32_t scale, XMMRegisterID dst) { + threeByteOpSimd("vpmovsxbw", VEX_PD, OP3_PMOVSXBW_VdqWdq, ESCAPE_38, offset, + base, index, scale, invalid_xmm, dst); + } + + void vpmovzxbw_rr(XMMRegisterID src, XMMRegisterID dst) { + threeByteOpSimd("vpmovzxbw", VEX_PD, OP3_PMOVZXBW_VdqWdq, ESCAPE_38, src, + invalid_xmm, dst); + } + void vpmovzxbw_mr(int32_t offset, RegisterID base, XMMRegisterID dst) { + threeByteOpSimd("vpmovzxbw", VEX_PD, OP3_PMOVZXBW_VdqWdq, ESCAPE_38, offset, + base, invalid_xmm, dst); + } + void vpmovzxbw_mr(int32_t offset, RegisterID base, RegisterID index, + int32_t scale, XMMRegisterID dst) { + threeByteOpSimd("vpmovzxbw", VEX_PD, OP3_PMOVZXBW_VdqWdq, ESCAPE_38, offset, + base, index, scale, invalid_xmm, dst); + } + + void vpmovzxbd_rr(XMMRegisterID src, XMMRegisterID dst) { + threeByteOpSimd("vpmovzxbd", VEX_PD, OP3_PMOVZXBD_VdqWdq, ESCAPE_38, src, + invalid_xmm, dst); + } + + void vpmovzxbq_rr(XMMRegisterID src, XMMRegisterID dst) { + threeByteOpSimd("vpmovzxbq", VEX_PD, OP3_PMOVZXBQ_VdqWdq, ESCAPE_38, src, + invalid_xmm, dst); + } + + void vpmovsxwd_rr(XMMRegisterID src, XMMRegisterID dst) { + threeByteOpSimd("vpmovsxwd", VEX_PD, OP3_PMOVSXWD_VdqWdq, ESCAPE_38, src, + invalid_xmm, dst); + } + void vpmovsxwd_mr(int32_t offset, RegisterID base, XMMRegisterID dst) { + threeByteOpSimd("vpmovsxwd", VEX_PD, OP3_PMOVSXWD_VdqWdq, ESCAPE_38, offset, + base, invalid_xmm, dst); + } + void vpmovsxwd_mr(int32_t offset, RegisterID base, RegisterID index, + int32_t scale, XMMRegisterID dst) { + threeByteOpSimd("vpmovsxwd", VEX_PD, OP3_PMOVSXWD_VdqWdq, ESCAPE_38, offset, + base, index, scale, invalid_xmm, dst); + } + + void vpmovzxwd_rr(XMMRegisterID src, XMMRegisterID dst) { + threeByteOpSimd("vpmovzxwd", VEX_PD, OP3_PMOVZXWD_VdqWdq, ESCAPE_38, src, + invalid_xmm, dst); + } + void vpmovzxwd_mr(int32_t offset, RegisterID base, XMMRegisterID dst) { + threeByteOpSimd("vpmovzxwd", VEX_PD, OP3_PMOVZXWD_VdqWdq, ESCAPE_38, offset, + base, invalid_xmm, dst); + } + void vpmovzxwd_mr(int32_t offset, RegisterID base, RegisterID index, + int32_t scale, XMMRegisterID dst) { + threeByteOpSimd("vpmovzxwd", VEX_PD, OP3_PMOVZXWD_VdqWdq, ESCAPE_38, offset, + base, index, scale, invalid_xmm, dst); + } + + void vpmovzxwq_rr(XMMRegisterID src, XMMRegisterID dst) { + threeByteOpSimd("vpmovzxwq", VEX_PD, OP3_PMOVZXWQ_VdqWdq, ESCAPE_38, src, + invalid_xmm, dst); + } + + void vpmovsxdq_rr(XMMRegisterID src, XMMRegisterID dst) { + threeByteOpSimd("vpmovsxwd", VEX_PD, OP3_PMOVSXDQ_VdqWdq, ESCAPE_38, src, + invalid_xmm, dst); + } + void vpmovsxdq_mr(int32_t offset, RegisterID base, XMMRegisterID dst) { + threeByteOpSimd("vpmovsxdq", VEX_PD, OP3_PMOVSXDQ_VdqWdq, ESCAPE_38, offset, + base, invalid_xmm, dst); + } + void vpmovsxdq_mr(int32_t offset, RegisterID base, RegisterID index, + int32_t scale, XMMRegisterID dst) { + threeByteOpSimd("vpmovsxdq", VEX_PD, OP3_PMOVSXDQ_VdqWdq, ESCAPE_38, offset, + base, index, scale, invalid_xmm, dst); + } + + void vpmovzxdq_rr(XMMRegisterID src, XMMRegisterID dst) { + threeByteOpSimd("vpmovzxwd", VEX_PD, OP3_PMOVZXDQ_VdqWdq, ESCAPE_38, src, + invalid_xmm, dst); + } + void vpmovzxdq_mr(int32_t offset, RegisterID base, XMMRegisterID dst) { + threeByteOpSimd("vpmovzxdq", VEX_PD, OP3_PMOVZXDQ_VdqWdq, ESCAPE_38, offset, + base, invalid_xmm, dst); + } + void vpmovzxdq_mr(int32_t offset, RegisterID base, RegisterID index, + int32_t scale, XMMRegisterID dst) { + threeByteOpSimd("vpmovzxdq", VEX_PD, OP3_PMOVZXDQ_VdqWdq, ESCAPE_38, offset, + base, index, scale, invalid_xmm, dst); + } + + void vphaddd_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + threeByteOpSimd("vphaddd", VEX_PD, OP3_PHADDD_VdqWdq, ESCAPE_38, src1, src0, + dst); + } + + void vpalignr_irr(unsigned imm, XMMRegisterID src1, XMMRegisterID src0, + XMMRegisterID dst) { + MOZ_ASSERT(imm < 32); + threeByteOpImmSimd("vpalignr", VEX_PD, OP3_PALIGNR_VdqWdqIb, ESCAPE_3A, imm, + src1, src0, dst); + } + + void vpunpcklbw_rr(XMMRegisterID src1, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpunpcklbw", VEX_PD, OP2_PUNPCKLBW_VdqWdq, src1, src0, dst); + } + void vpunpckhbw_rr(XMMRegisterID src1, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpunpckhbw", VEX_PD, OP2_PUNPCKHBW_VdqWdq, src1, src0, dst); + } + + void vpunpckldq_rr(XMMRegisterID src1, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpunpckldq", VEX_PD, OP2_PUNPCKLDQ_VdqWdq, src1, src0, dst); + } + void vpunpckldq_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpunpckldq", VEX_PD, OP2_PUNPCKLDQ_VdqWdq, offset, base, + src0, dst); + } + void vpunpckldq_mr(const void* addr, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpunpckldq", VEX_PD, OP2_PUNPCKLDQ_VdqWdq, addr, src0, dst); + } + void vpunpcklqdq_rr(XMMRegisterID src1, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpunpcklqdq", VEX_PD, OP2_PUNPCKLQDQ_VdqWdq, src1, src0, + dst); + } + void vpunpcklqdq_mr(int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpunpcklqdq", VEX_PD, OP2_PUNPCKLQDQ_VdqWdq, offset, base, + src0, dst); + } + void vpunpcklqdq_mr(const void* addr, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpunpcklqdq", VEX_PD, OP2_PUNPCKLQDQ_VdqWdq, addr, src0, + dst); + } + void vpunpckhdq_rr(XMMRegisterID src1, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpunpckhdq", VEX_PD, OP2_PUNPCKHDQ_VdqWdq, src1, src0, dst); + } + void vpunpckhqdq_rr(XMMRegisterID src1, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpunpckhqdq", VEX_PD, OP2_PUNPCKHQDQ_VdqWdq, src1, src0, + dst); + } + void vpunpcklwd_rr(XMMRegisterID src1, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpunpcklwd", VEX_PD, OP2_PUNPCKLWD_VdqWdq, src1, src0, dst); + } + void vpunpckhwd_rr(XMMRegisterID src1, XMMRegisterID src0, + XMMRegisterID dst) { + twoByteOpSimd("vpunpckhwd", VEX_PD, OP2_PUNPCKHWD_VdqWdq, src1, src0, dst); + } + + void vpaddq_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpaddq", VEX_PD, OP2_PADDQ_VdqWdq, src1, src0, dst); + } + void vpsubq_rr(XMMRegisterID src1, XMMRegisterID src0, XMMRegisterID dst) { + twoByteOpSimd("vpsubq", VEX_PD, OP2_PSUBQ_VdqWdq, src1, src0, dst); + } + + void vbroadcastb_rr(XMMRegisterID src, XMMRegisterID dst) { + threeByteOpSimd("vbroadcastb", VEX_PD, OP3_VBROADCASTB_VxWx, ESCAPE_38, src, + invalid_xmm, dst); + } + void vbroadcastb_mr(int32_t offset, RegisterID base, XMMRegisterID dst) { + threeByteOpSimd("vbroadcastb", VEX_PD, OP3_VBROADCASTB_VxWx, ESCAPE_38, + offset, base, invalid_xmm, dst); + } + void vbroadcastb_mr(int32_t offset, RegisterID base, RegisterID index, + int32_t scale, XMMRegisterID dst) { + threeByteOpSimd("vbroadcastb", VEX_PD, OP3_VBROADCASTB_VxWx, ESCAPE_38, + offset, base, index, scale, invalid_xmm, dst); + } + void vbroadcastw_rr(XMMRegisterID src, XMMRegisterID dst) { + threeByteOpSimd("vbroadcastw", VEX_PD, OP3_VBROADCASTW_VxWx, ESCAPE_38, src, + invalid_xmm, dst); + } + void vbroadcastw_mr(int32_t offset, RegisterID base, XMMRegisterID dst) { + threeByteOpSimd("vbroadcastw", VEX_PD, OP3_VBROADCASTW_VxWx, ESCAPE_38, + offset, base, invalid_xmm, dst); + } + void vbroadcastw_mr(int32_t offset, RegisterID base, RegisterID index, + int32_t scale, XMMRegisterID dst) { + threeByteOpSimd("vbroadcastw", VEX_PD, OP3_VBROADCASTW_VxWx, ESCAPE_38, + offset, base, index, scale, invalid_xmm, dst); + } + void vbroadcastd_rr(XMMRegisterID src, XMMRegisterID dst) { + threeByteOpSimd("vbroadcastd", VEX_PD, OP3_VBROADCASTD_VxWx, ESCAPE_38, src, + invalid_xmm, dst); + } + void vbroadcastd_mr(int32_t offset, RegisterID base, XMMRegisterID dst) { + threeByteOpSimd("vbroadcastd", VEX_PD, OP3_VBROADCASTD_VxWx, ESCAPE_38, + offset, base, invalid_xmm, dst); + } + void vbroadcastd_mr(int32_t offset, RegisterID base, RegisterID index, + int32_t scale, XMMRegisterID dst) { + threeByteOpSimd("vbroadcastd", VEX_PD, OP3_VBROADCASTD_VxWx, ESCAPE_38, + offset, base, index, scale, invalid_xmm, dst); + } + void vbroadcastq_rr(XMMRegisterID src, XMMRegisterID dst) { + threeByteOpSimd("vbroadcastq", VEX_PD, OP3_VBROADCASTQ_VxWx, ESCAPE_38, src, + invalid_xmm, dst); + } + void vbroadcastq_mr(int32_t offset, RegisterID base, XMMRegisterID dst) { + threeByteOpSimd("vbroadcastq", VEX_PD, OP3_VBROADCASTQ_VxWx, ESCAPE_38, + offset, base, invalid_xmm, dst); + } + void vbroadcastq_mr(int32_t offset, RegisterID base, RegisterID index, + int32_t scale, XMMRegisterID dst) { + threeByteOpSimd("vbroadcastq", VEX_PD, OP3_VBROADCASTQ_VxWx, ESCAPE_38, + offset, base, index, scale, invalid_xmm, dst); + } + void vbroadcastss_rr(XMMRegisterID src, XMMRegisterID dst) { + threeByteOpSimd("vbroadcastss", VEX_PD, OP3_VBROADCASTSS_VxWd, ESCAPE_38, + src, invalid_xmm, dst); + } + void vbroadcastss_mr(int32_t offset, RegisterID base, XMMRegisterID dst) { + threeByteOpSimd("vbroadcastss", VEX_PD, OP3_VBROADCASTSS_VxWd, ESCAPE_38, + offset, base, invalid_xmm, dst); + } + void vbroadcastss_mr(int32_t offset, RegisterID base, RegisterID index, + int32_t scale, XMMRegisterID dst) { + threeByteOpSimd("vbroadcastss", VEX_PD, OP3_VBROADCASTSS_VxWd, ESCAPE_38, + offset, base, index, scale, invalid_xmm, dst); + } + + // BMI instructions: + + void sarxl_rrr(RegisterID src, RegisterID shift, RegisterID dst) { + spew("sarxl %s, %s, %s", GPReg32Name(src), GPReg32Name(shift), + GPReg32Name(dst)); + + RegisterID rm = src; + XMMRegisterID src0 = static_cast<XMMRegisterID>(shift); + int reg = dst; + m_formatter.threeByteOpVex(VEX_SS /* = F3 */, OP3_SARX_GyEyBy, ESCAPE_38, + rm, src0, reg); + } + + void shlxl_rrr(RegisterID src, RegisterID shift, RegisterID dst) { + spew("shlxl %s, %s, %s", GPReg32Name(src), GPReg32Name(shift), + GPReg32Name(dst)); + + RegisterID rm = src; + XMMRegisterID src0 = static_cast<XMMRegisterID>(shift); + int reg = dst; + m_formatter.threeByteOpVex(VEX_PD /* = 66 */, OP3_SHLX_GyEyBy, ESCAPE_38, + rm, src0, reg); + } + + void shrxl_rrr(RegisterID src, RegisterID shift, RegisterID dst) { + spew("shrxl %s, %s, %s", GPReg32Name(src), GPReg32Name(shift), + GPReg32Name(dst)); + + RegisterID rm = src; + XMMRegisterID src0 = static_cast<XMMRegisterID>(shift); + int reg = dst; + m_formatter.threeByteOpVex(VEX_SD /* = F2 */, OP3_SHRX_GyEyBy, ESCAPE_38, + rm, src0, reg); + } + + // FMA instructions: + + void vfmadd231ps_rrr(XMMRegisterID src1, XMMRegisterID src0, + XMMRegisterID dst) { + spew("vfmadd213ps %s, %s, %s", XMMRegName(src1), XMMRegName(src0), + XMMRegName(dst)); + + m_formatter.threeByteOpVex(VEX_PD, OP3_VFMADD231PS_VxHxWx, ESCAPE_38, + (RegisterID)src1, src0, (RegisterID)dst); + } + + void vfnmadd231ps_rrr(XMMRegisterID src1, XMMRegisterID src0, + XMMRegisterID dst) { + spew("vfnmadd213ps %s, %s, %s", XMMRegName(src1), XMMRegName(src0), + XMMRegName(dst)); + + m_formatter.threeByteOpVex(VEX_PD, OP3_VFNMADD231PS_VxHxWx, ESCAPE_38, + (RegisterID)src1, src0, (RegisterID)dst); + } + + void vfmadd231pd_rrr(XMMRegisterID src1, XMMRegisterID src0, + XMMRegisterID dst) { + spew("vfmadd213pd %s, %s, %s", XMMRegName(src1), XMMRegName(src0), + XMMRegName(dst)); + + m_formatter.threeByteOpVex64(VEX_PD, OP3_VFMADD231PD_VxHxWx, ESCAPE_38, + (RegisterID)src1, src0, (RegisterID)dst); + } + + void vfnmadd231pd_rrr(XMMRegisterID src1, XMMRegisterID src0, + XMMRegisterID dst) { + spew("vfnmadd213pd %s, %s, %s", XMMRegName(src1), XMMRegName(src0), + XMMRegName(dst)); + + m_formatter.threeByteOpVex64(VEX_PD, OP3_VFNMADD231PD_VxHxWx, ESCAPE_38, + (RegisterID)src1, src0, (RegisterID)dst); + } + + // Misc instructions: + + void int3() { + spew("int3"); + m_formatter.oneByteOp(OP_INT3); + } + + void ud2() { + spew("ud2"); + m_formatter.twoByteOp(OP2_UD2); + } + + void ret() { + spew("ret"); + m_formatter.oneByteOp(OP_RET); + } + + void ret_i(int32_t imm) { + spew("ret $%d", imm); + m_formatter.oneByteOp(OP_RET_Iz); + m_formatter.immediate16u(imm); + } + + void lfence() { + spew("lfence"); + m_formatter.twoByteOp(OP_FENCE, (RegisterID)0, 0b101); + } + void mfence() { + spew("mfence"); + m_formatter.twoByteOp(OP_FENCE, (RegisterID)0, 0b110); + } + + // Assembler admin methods: + + JmpDst label() { + JmpDst r = JmpDst(m_formatter.size()); + spew(".set .Llabel%d, .", r.offset()); + return r; + } + + size_t currentOffset() const { return m_formatter.size(); } + + static JmpDst labelFor(JmpSrc jump, intptr_t offset = 0) { + return JmpDst(jump.offset() + offset); + } + + void haltingAlign(int alignment) { + spew(".balign %d, 0x%x # hlt", alignment, unsigned(OP_HLT)); + while (!m_formatter.isAligned(alignment)) { + m_formatter.oneByteOp(OP_HLT); + } + } + + void nopAlign(int alignment) { + spew(".balign %d", alignment); + + int remainder = m_formatter.size() % alignment; + if (remainder > 0) { + insert_nop(alignment - remainder); + } + } + + void jumpTablePointer(uintptr_t ptr) { +#ifdef JS_CODEGEN_X64 + spew(".quad 0x%" PRIxPTR, ptr); +#else + spew(".int 0x%" PRIxPTR, ptr); +#endif + m_formatter.jumpTablePointer(ptr); + } + + void doubleConstant(double d) { + spew(".double %.16g", d); + m_formatter.doubleConstant(d); + } + void floatConstant(float f) { + spew(".float %.16g", f); + m_formatter.floatConstant(f); + } + + void simd128Constant(const void* data) { + const uint32_t* dw = reinterpret_cast<const uint32_t*>(data); + spew(".int 0x%08x,0x%08x,0x%08x,0x%08x", dw[0], dw[1], dw[2], dw[3]); + MOZ_ASSERT(m_formatter.isAligned(16)); + m_formatter.simd128Constant(data); + } + + void int32Constant(int32_t i) { + spew(".int %d", i); + m_formatter.int32Constant(i); + } + void int64Constant(int64_t i) { + spew(".quad %lld", (long long)i); + m_formatter.int64Constant(i); + } + + // Linking & patching: + + void assertValidJmpSrc(JmpSrc src) { + // The target offset is stored at offset - 4. + MOZ_RELEASE_ASSERT(src.offset() > int32_t(sizeof(int32_t))); + MOZ_RELEASE_ASSERT(size_t(src.offset()) <= size()); + } + + bool nextJump(const JmpSrc& from, JmpSrc* next) { + // Sanity check - if the assembler has OOM'd, it will start overwriting + // its internal buffer and thus our links could be garbage. + if (oom()) { + return false; + } + + assertValidJmpSrc(from); + MOZ_ASSERT(from.trailing() == 0); + + const unsigned char* code = m_formatter.data(); + int32_t offset = GetInt32(code + from.offset()); + if (offset == -1) { + return false; + } + + MOZ_RELEASE_ASSERT(size_t(offset) < size(), "nextJump bogus offset"); + + *next = JmpSrc(offset); + return true; + } + void setNextJump(const JmpSrc& from, const JmpSrc& to) { + // Sanity check - if the assembler has OOM'd, it will start overwriting + // its internal buffer and thus our links could be garbage. + if (oom()) { + return; + } + + assertValidJmpSrc(from); + MOZ_ASSERT(from.trailing() == 0); + MOZ_RELEASE_ASSERT(to.offset() == -1 || size_t(to.offset()) <= size()); + + unsigned char* code = m_formatter.data(); + SetInt32(code + from.offset(), to.offset()); + } + + void linkJump(JmpSrc from, JmpDst to) { + MOZ_ASSERT(from.offset() != -1); + MOZ_ASSERT(to.offset() != -1); + + // Sanity check - if the assembler has OOM'd, it will start overwriting + // its internal buffer and thus our links could be garbage. + if (oom()) { + return; + } + + assertValidJmpSrc(from); + MOZ_RELEASE_ASSERT(size_t(to.offset()) <= size()); + + spew(".set .Lfrom%d, .Llabel%d", from.offset(), to.offset()); + unsigned char* code = m_formatter.data(); + SetRel32(code + from.offset(), code + to.offset(), from.trailing()); + } + + void executableCopy(void* dst) { + const unsigned char* src = m_formatter.buffer(); + memcpy(dst, src, size()); + } + [[nodiscard]] bool appendRawCode(const uint8_t* code, size_t numBytes) { + return m_formatter.append(code, numBytes); + } + + // `offset` is the instruction offset at the end of the instruction. + void addToPCRel4(uint32_t offset, int32_t bias) { + unsigned char* code = m_formatter.data(); + SetInt32(code + offset, GetInt32(code + offset) + bias); + } + + protected: + static bool CAN_SIGN_EXTEND_8_32(int32_t value) { + return value == (int32_t)(int8_t)value; + } + static bool CAN_SIGN_EXTEND_16_32(int32_t value) { + return value == (int32_t)(int16_t)value; + } + static bool CAN_ZERO_EXTEND_8_32(int32_t value) { + return value == (int32_t)(uint8_t)value; + } + static bool CAN_ZERO_EXTEND_8H_32(int32_t value) { + return value == (value & 0xff00); + } + static bool CAN_ZERO_EXTEND_16_32(int32_t value) { + return value == (int32_t)(uint16_t)value; + } + static bool CAN_ZERO_EXTEND_32_64(int32_t value) { return value >= 0; } + + // Methods for encoding SIMD instructions via either legacy SSE encoding or + // VEX encoding. + + bool useLegacySSEEncoding(XMMRegisterID src0, XMMRegisterID dst) { + // If we don't have AVX or it's disabled, use the legacy SSE encoding. + if (!useVEX_) { + MOZ_ASSERT( + src0 == invalid_xmm || src0 == dst, + "Legacy SSE (pre-AVX) encoding requires the output register to be " + "the same as the src0 input register"); + return true; + } + + // If src0 is the same as the output register, we might as well use + // the legacy SSE encoding, since it is smaller. However, this is only + // beneficial as long as we're not using ymm registers anywhere. + return src0 == dst; + } + + bool useLegacySSEEncodingForVblendv(XMMRegisterID mask, XMMRegisterID src0, + XMMRegisterID dst) { + // Similar to useLegacySSEEncoding, but for vblendv the Legacy SSE + // encoding also requires the mask to be in xmm0. + + if (!useVEX_) { + MOZ_ASSERT( + src0 == dst, + "Legacy SSE (pre-AVX) encoding requires the output register to be " + "the same as the src0 input register"); + MOZ_ASSERT( + mask == xmm0, + "Legacy SSE (pre-AVX) encoding for blendv requires the mask to be " + "in xmm0"); + return true; + } + + return src0 == dst && mask == xmm0; + } + + bool useLegacySSEEncodingAlways() { return !useVEX_; } + + const char* legacySSEOpName(const char* name) { + MOZ_ASSERT(name[0] == 'v'); + return name + 1; + } + + void twoByteOpSimd(const char* name, VexOperandType ty, + TwoByteOpcodeID opcode, XMMRegisterID rm, + XMMRegisterID src0, XMMRegisterID dst) { + if (useLegacySSEEncoding(src0, dst)) { + if (IsXMMReversedOperands(opcode)) { + spew("%-11s%s, %s", legacySSEOpName(name), XMMRegName(dst), + XMMRegName(rm)); + } else { + spew("%-11s%s, %s", legacySSEOpName(name), XMMRegName(rm), + XMMRegName(dst)); + } + m_formatter.legacySSEPrefix(ty); + m_formatter.twoByteOp(opcode, (RegisterID)rm, dst); + return; + } + + if (src0 == invalid_xmm) { + if (IsXMMReversedOperands(opcode)) { + spew("%-11s%s, %s", name, XMMRegName(dst), XMMRegName(rm)); + } else { + spew("%-11s%s, %s", name, XMMRegName(rm), XMMRegName(dst)); + } + } else { + spew("%-11s%s, %s, %s", name, XMMRegName(rm), XMMRegName(src0), + XMMRegName(dst)); + } + m_formatter.twoByteOpVex(ty, opcode, (RegisterID)rm, src0, dst); + } + + void twoByteOpImmSimd(const char* name, VexOperandType ty, + TwoByteOpcodeID opcode, uint32_t imm, XMMRegisterID rm, + XMMRegisterID src0, XMMRegisterID dst) { + if (useLegacySSEEncoding(src0, dst)) { + spew("%-11s$0x%x, %s, %s", legacySSEOpName(name), imm, XMMRegName(rm), + XMMRegName(dst)); + m_formatter.legacySSEPrefix(ty); + m_formatter.twoByteOp(opcode, (RegisterID)rm, dst); + m_formatter.immediate8u(imm); + return; + } + + if (src0 == invalid_xmm) { + spew("%-11s$0x%x, %s, %s", name, imm, XMMRegName(rm), XMMRegName(dst)); + } else { + spew("%-11s$0x%x, %s, %s, %s", name, imm, XMMRegName(rm), + XMMRegName(src0), XMMRegName(dst)); + } + m_formatter.twoByteOpVex(ty, opcode, (RegisterID)rm, src0, dst); + m_formatter.immediate8u(imm); + } + + void twoByteOpSimd(const char* name, VexOperandType ty, + TwoByteOpcodeID opcode, int32_t offset, RegisterID base, + XMMRegisterID src0, XMMRegisterID dst) { + if (useLegacySSEEncoding(src0, dst)) { + if (IsXMMReversedOperands(opcode)) { + spew("%-11s%s, " MEM_ob, legacySSEOpName(name), XMMRegName(dst), + ADDR_ob(offset, base)); + } else { + spew("%-11s" MEM_ob ", %s", legacySSEOpName(name), + ADDR_ob(offset, base), XMMRegName(dst)); + } + m_formatter.legacySSEPrefix(ty); + m_formatter.twoByteOp(opcode, offset, base, dst); + return; + } + + if (src0 == invalid_xmm) { + if (IsXMMReversedOperands(opcode)) { + spew("%-11s%s, " MEM_ob, name, XMMRegName(dst), ADDR_ob(offset, base)); + } else { + spew("%-11s" MEM_ob ", %s", name, ADDR_ob(offset, base), + XMMRegName(dst)); + } + } else { + spew("%-11s" MEM_ob ", %s, %s", name, ADDR_ob(offset, base), + XMMRegName(src0), XMMRegName(dst)); + } + m_formatter.twoByteOpVex(ty, opcode, offset, base, src0, dst); + } + + void twoByteOpSimd_disp32(const char* name, VexOperandType ty, + TwoByteOpcodeID opcode, int32_t offset, + RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + if (useLegacySSEEncoding(src0, dst)) { + if (IsXMMReversedOperands(opcode)) { + spew("%-11s%s, " MEM_o32b, legacySSEOpName(name), XMMRegName(dst), + ADDR_o32b(offset, base)); + } else { + spew("%-11s" MEM_o32b ", %s", legacySSEOpName(name), + ADDR_o32b(offset, base), XMMRegName(dst)); + } + m_formatter.legacySSEPrefix(ty); + m_formatter.twoByteOp_disp32(opcode, offset, base, dst); + return; + } + + if (src0 == invalid_xmm) { + if (IsXMMReversedOperands(opcode)) { + spew("%-11s%s, " MEM_o32b, name, XMMRegName(dst), + ADDR_o32b(offset, base)); + } else { + spew("%-11s" MEM_o32b ", %s", name, ADDR_o32b(offset, base), + XMMRegName(dst)); + } + } else { + spew("%-11s" MEM_o32b ", %s, %s", name, ADDR_o32b(offset, base), + XMMRegName(src0), XMMRegName(dst)); + } + m_formatter.twoByteOpVex_disp32(ty, opcode, offset, base, src0, dst); + } + + void twoByteOpImmSimd(const char* name, VexOperandType ty, + TwoByteOpcodeID opcode, uint32_t imm, int32_t offset, + RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + if (useLegacySSEEncoding(src0, dst)) { + spew("%-11s$0x%x, " MEM_ob ", %s", legacySSEOpName(name), imm, + ADDR_ob(offset, base), XMMRegName(dst)); + m_formatter.legacySSEPrefix(ty); + m_formatter.twoByteOp(opcode, offset, base, dst); + m_formatter.immediate8u(imm); + return; + } + + spew("%-11s$0x%x, " MEM_ob ", %s, %s", name, imm, ADDR_ob(offset, base), + XMMRegName(src0), XMMRegName(dst)); + m_formatter.twoByteOpVex(ty, opcode, offset, base, src0, dst); + m_formatter.immediate8u(imm); + } + + void twoByteOpSimd(const char* name, VexOperandType ty, + TwoByteOpcodeID opcode, int32_t offset, RegisterID base, + RegisterID index, int scale, XMMRegisterID src0, + XMMRegisterID dst) { + if (useLegacySSEEncoding(src0, dst)) { + if (IsXMMReversedOperands(opcode)) { + spew("%-11s%s, " MEM_obs, legacySSEOpName(name), XMMRegName(dst), + ADDR_obs(offset, base, index, scale)); + } else { + spew("%-11s" MEM_obs ", %s", legacySSEOpName(name), + ADDR_obs(offset, base, index, scale), XMMRegName(dst)); + } + m_formatter.legacySSEPrefix(ty); + m_formatter.twoByteOp(opcode, offset, base, index, scale, dst); + return; + } + + if (src0 == invalid_xmm) { + if (IsXMMReversedOperands(opcode)) { + spew("%-11s%s, " MEM_obs, name, XMMRegName(dst), + ADDR_obs(offset, base, index, scale)); + } else { + spew("%-11s" MEM_obs ", %s", name, ADDR_obs(offset, base, index, scale), + XMMRegName(dst)); + } + } else { + spew("%-11s" MEM_obs ", %s, %s", name, + ADDR_obs(offset, base, index, scale), XMMRegName(src0), + XMMRegName(dst)); + } + m_formatter.twoByteOpVex(ty, opcode, offset, base, index, scale, src0, dst); + } + + void twoByteOpSimd(const char* name, VexOperandType ty, + TwoByteOpcodeID opcode, const void* address, + XMMRegisterID src0, XMMRegisterID dst) { + if (useLegacySSEEncoding(src0, dst)) { + if (IsXMMReversedOperands(opcode)) { + spew("%-11s%s, %p", legacySSEOpName(name), XMMRegName(dst), address); + } else { + spew("%-11s%p, %s", legacySSEOpName(name), address, XMMRegName(dst)); + } + m_formatter.legacySSEPrefix(ty); + m_formatter.twoByteOp(opcode, address, dst); + return; + } + + if (src0 == invalid_xmm) { + if (IsXMMReversedOperands(opcode)) { + spew("%-11s%s, %p", name, XMMRegName(dst), address); + } else { + spew("%-11s%p, %s", name, address, XMMRegName(dst)); + } + } else { + spew("%-11s%p, %s, %s", name, address, XMMRegName(src0), XMMRegName(dst)); + } + m_formatter.twoByteOpVex(ty, opcode, address, src0, dst); + } + + void twoByteOpImmSimd(const char* name, VexOperandType ty, + TwoByteOpcodeID opcode, uint32_t imm, + const void* address, XMMRegisterID src0, + XMMRegisterID dst) { + if (useLegacySSEEncoding(src0, dst)) { + spew("%-11s$0x%x, %p, %s", legacySSEOpName(name), imm, address, + XMMRegName(dst)); + m_formatter.legacySSEPrefix(ty); + m_formatter.twoByteOp(opcode, address, dst); + m_formatter.immediate8u(imm); + return; + } + + spew("%-11s$0x%x, %p, %s, %s", name, imm, address, XMMRegName(src0), + XMMRegName(dst)); + m_formatter.twoByteOpVex(ty, opcode, address, src0, dst); + m_formatter.immediate8u(imm); + } + + void twoByteOpInt32Simd(const char* name, VexOperandType ty, + TwoByteOpcodeID opcode, RegisterID rm, + XMMRegisterID src0, XMMRegisterID dst) { + if (useLegacySSEEncoding(src0, dst)) { + if (IsXMMReversedOperands(opcode)) { + spew("%-11s%s, %s", legacySSEOpName(name), XMMRegName(dst), + GPReg32Name(rm)); + } else { + spew("%-11s%s, %s", legacySSEOpName(name), GPReg32Name(rm), + XMMRegName(dst)); + } + m_formatter.legacySSEPrefix(ty); + m_formatter.twoByteOp(opcode, rm, dst); + return; + } + + if (src0 == invalid_xmm) { + if (IsXMMReversedOperands(opcode)) { + spew("%-11s%s, %s", name, XMMRegName(dst), GPReg32Name(rm)); + } else { + spew("%-11s%s, %s", name, GPReg32Name(rm), XMMRegName(dst)); + } + } else { + spew("%-11s%s, %s, %s", name, GPReg32Name(rm), XMMRegName(src0), + XMMRegName(dst)); + } + m_formatter.twoByteOpVex(ty, opcode, rm, src0, dst); + } + + void twoByteOpSimdInt32(const char* name, VexOperandType ty, + TwoByteOpcodeID opcode, XMMRegisterID rm, + RegisterID dst) { + if (useLegacySSEEncodingAlways()) { + if (IsXMMReversedOperands(opcode)) { + spew("%-11s%s, %s", legacySSEOpName(name), GPReg32Name(dst), + XMMRegName(rm)); + } else if (opcode == OP2_MOVD_EdVd) { + spew("%-11s%s, %s", legacySSEOpName(name), + XMMRegName((XMMRegisterID)dst), GPReg32Name((RegisterID)rm)); + } else { + spew("%-11s%s, %s", legacySSEOpName(name), XMMRegName(rm), + GPReg32Name(dst)); + } + m_formatter.legacySSEPrefix(ty); + m_formatter.twoByteOp(opcode, (RegisterID)rm, dst); + return; + } + + if (IsXMMReversedOperands(opcode)) { + spew("%-11s%s, %s", name, GPReg32Name(dst), XMMRegName(rm)); + } else if (opcode == OP2_MOVD_EdVd) { + spew("%-11s%s, %s", name, XMMRegName((XMMRegisterID)dst), + GPReg32Name((RegisterID)rm)); + } else { + spew("%-11s%s, %s", name, XMMRegName(rm), GPReg32Name(dst)); + } + m_formatter.twoByteOpVex(ty, opcode, (RegisterID)rm, invalid_xmm, dst); + } + + void twoByteOpImmSimdInt32(const char* name, VexOperandType ty, + TwoByteOpcodeID opcode, uint32_t imm, + XMMRegisterID rm, RegisterID dst) { + if (useLegacySSEEncodingAlways()) { + spew("%-11s$0x%x, %s, %s", legacySSEOpName(name), imm, XMMRegName(rm), + GPReg32Name(dst)); + m_formatter.legacySSEPrefix(ty); + m_formatter.twoByteOp(opcode, (RegisterID)rm, dst); + m_formatter.immediate8u(imm); + return; + } + + spew("%-11s$0x%x, %s, %s", name, imm, XMMRegName(rm), GPReg32Name(dst)); + m_formatter.twoByteOpVex(ty, opcode, (RegisterID)rm, invalid_xmm, dst); + m_formatter.immediate8u(imm); + } + + void twoByteOpImmInt32Simd(const char* name, VexOperandType ty, + TwoByteOpcodeID opcode, uint32_t imm, + RegisterID rm, XMMRegisterID src0, + XMMRegisterID dst) { + if (useLegacySSEEncodingAlways()) { + spew("%-11s$0x%x, %s, %s", legacySSEOpName(name), imm, GPReg32Name(rm), + XMMRegName(dst)); + m_formatter.legacySSEPrefix(ty); + m_formatter.twoByteOp(opcode, rm, dst); + m_formatter.immediate8u(imm); + return; + } + + spew("%-11s$0x%x, %s, %s", name, imm, GPReg32Name(rm), XMMRegName(dst)); + m_formatter.twoByteOpVex(ty, opcode, rm, src0, dst); + m_formatter.immediate8u(imm); + } + + void twoByteOpImmInt32Simd(const char* name, VexOperandType ty, + TwoByteOpcodeID opcode, uint32_t imm, + int32_t offset, RegisterID base, + XMMRegisterID src0, XMMRegisterID dst) { + if (useLegacySSEEncodingAlways()) { + spew("%-11s$0x%x, " MEM_ob ", %s", legacySSEOpName(name), imm, + ADDR_ob(offset, base), XMMRegName(dst)); + m_formatter.legacySSEPrefix(ty); + m_formatter.twoByteOp(opcode, offset, base, dst); + m_formatter.immediate8u(imm); + return; + } + + spew("%-11s$0x%x, " MEM_ob ", %s, %s", name, imm, ADDR_ob(offset, base), + XMMRegName(src0), XMMRegName(dst)); + m_formatter.twoByteOpVex(ty, opcode, offset, base, src0, dst); + m_formatter.immediate8u(imm); + } + + void twoByteOpImmInt32Simd(const char* name, VexOperandType ty, + TwoByteOpcodeID opcode, uint32_t imm, + int32_t offset, RegisterID base, RegisterID index, + int scale, XMMRegisterID src0, XMMRegisterID dst) { + if (useLegacySSEEncodingAlways()) { + spew("%-11s$0x%x, " MEM_obs ", %s", legacySSEOpName(name), imm, + ADDR_obs(offset, base, index, scale), XMMRegName(dst)); + m_formatter.legacySSEPrefix(ty); + m_formatter.twoByteOp(opcode, offset, base, index, scale, dst); + m_formatter.immediate8u(imm); + return; + } + + spew("%-11s$0x%x, " MEM_obs ", %s, %s", name, imm, + ADDR_obs(offset, base, index, scale), XMMRegName(src0), + XMMRegName(dst)); + m_formatter.twoByteOpVex(ty, opcode, offset, base, index, scale, src0, dst); + m_formatter.immediate8u(imm); + } + + void twoByteOpSimdFlags(const char* name, VexOperandType ty, + TwoByteOpcodeID opcode, XMMRegisterID rm, + XMMRegisterID reg) { + if (useLegacySSEEncodingAlways()) { + spew("%-11s%s, %s", legacySSEOpName(name), XMMRegName(rm), + XMMRegName(reg)); + m_formatter.legacySSEPrefix(ty); + m_formatter.twoByteOp(opcode, (RegisterID)rm, reg); + return; + } + + spew("%-11s%s, %s", name, XMMRegName(rm), XMMRegName(reg)); + m_formatter.twoByteOpVex(ty, opcode, (RegisterID)rm, invalid_xmm, + (XMMRegisterID)reg); + } + + void twoByteOpSimdFlags(const char* name, VexOperandType ty, + TwoByteOpcodeID opcode, int32_t offset, + RegisterID base, XMMRegisterID reg) { + if (useLegacySSEEncodingAlways()) { + spew("%-11s" MEM_ob ", %s", legacySSEOpName(name), ADDR_ob(offset, base), + XMMRegName(reg)); + m_formatter.legacySSEPrefix(ty); + m_formatter.twoByteOp(opcode, offset, base, reg); + return; + } + + spew("%-11s" MEM_ob ", %s", name, ADDR_ob(offset, base), XMMRegName(reg)); + m_formatter.twoByteOpVex(ty, opcode, offset, base, invalid_xmm, + (XMMRegisterID)reg); + } + + void threeByteOpSimd(const char* name, VexOperandType ty, + ThreeByteOpcodeID opcode, ThreeByteEscape escape, + XMMRegisterID rm, XMMRegisterID src0, + XMMRegisterID dst) { + if (useLegacySSEEncoding(src0, dst)) { + spew("%-11s%s, %s", legacySSEOpName(name), XMMRegName(rm), + XMMRegName(dst)); + m_formatter.legacySSEPrefix(ty); + m_formatter.threeByteOp(opcode, escape, (RegisterID)rm, dst); + return; + } + + if (src0 == invalid_xmm) { + spew("%-11s%s, %s", name, XMMRegName(rm), XMMRegName(dst)); + } else { + spew("%-11s%s, %s, %s", name, XMMRegName(rm), XMMRegName(src0), + XMMRegName(dst)); + } + m_formatter.threeByteOpVex(ty, opcode, escape, (RegisterID)rm, src0, dst); + } + + void threeByteOpImmSimd(const char* name, VexOperandType ty, + ThreeByteOpcodeID opcode, ThreeByteEscape escape, + uint32_t imm, XMMRegisterID rm, XMMRegisterID src0, + XMMRegisterID dst) { + if (useLegacySSEEncoding(src0, dst)) { + spew("%-11s$0x%x, %s, %s", legacySSEOpName(name), imm, XMMRegName(rm), + XMMRegName(dst)); + m_formatter.legacySSEPrefix(ty); + m_formatter.threeByteOp(opcode, escape, (RegisterID)rm, dst); + m_formatter.immediate8u(imm); + return; + } + + if (src0 == invalid_xmm) { + spew("%-11s$0x%x, %s, %s", name, imm, XMMRegName(rm), XMMRegName(dst)); + } else { + spew("%-11s$0x%x, %s, %s, %s", name, imm, XMMRegName(rm), + XMMRegName(src0), XMMRegName(dst)); + } + m_formatter.threeByteOpVex(ty, opcode, escape, (RegisterID)rm, src0, dst); + m_formatter.immediate8u(imm); + } + + void threeByteOpSimd(const char* name, VexOperandType ty, + ThreeByteOpcodeID opcode, ThreeByteEscape escape, + int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + if (useLegacySSEEncoding(src0, dst)) { + spew("%-11s" MEM_ob ", %s", legacySSEOpName(name), ADDR_ob(offset, base), + XMMRegName(dst)); + m_formatter.legacySSEPrefix(ty); + m_formatter.threeByteOp(opcode, escape, offset, base, dst); + return; + } + + if (src0 == invalid_xmm) { + spew("%-11s" MEM_ob ", %s", name, ADDR_ob(offset, base), XMMRegName(dst)); + } else { + spew("%-11s" MEM_ob ", %s, %s", name, ADDR_ob(offset, base), + XMMRegName(src0), XMMRegName(dst)); + } + m_formatter.threeByteOpVex(ty, opcode, escape, offset, base, src0, dst); + } + + void threeByteOpSimd(const char* name, VexOperandType ty, + ThreeByteOpcodeID opcode, ThreeByteEscape escape, + int32_t offset, RegisterID base, RegisterID index, + int32_t scale, XMMRegisterID src0, XMMRegisterID dst) { + if (useLegacySSEEncoding(src0, dst)) { + spew("%-11s" MEM_obs ", %s", legacySSEOpName(name), + ADDR_obs(offset, base, index, scale), XMMRegName(dst)); + m_formatter.legacySSEPrefix(ty); + m_formatter.threeByteOp(opcode, escape, offset, base, index, scale, dst); + return; + } + + if (src0 == invalid_xmm) { + spew("%-11s" MEM_obs ", %s", name, ADDR_obs(offset, base, index, scale), + XMMRegName(dst)); + } else { + spew("%-11s" MEM_obs ", %s, %s", name, + ADDR_obs(offset, base, index, scale), XMMRegName(src0), + XMMRegName(dst)); + } + m_formatter.threeByteOpVex(ty, opcode, escape, offset, base, index, scale, + src0, dst); + } + + void threeByteOpImmSimd(const char* name, VexOperandType ty, + ThreeByteOpcodeID opcode, ThreeByteEscape escape, + uint32_t imm, int32_t offset, RegisterID base, + XMMRegisterID src0, XMMRegisterID dst) { + if (useLegacySSEEncoding(src0, dst)) { + spew("%-11s$0x%x, " MEM_ob ", %s", legacySSEOpName(name), imm, + ADDR_ob(offset, base), XMMRegName(dst)); + m_formatter.legacySSEPrefix(ty); + m_formatter.threeByteOp(opcode, escape, offset, base, dst); + m_formatter.immediate8u(imm); + return; + } + + if (src0 == invalid_xmm) { + spew("%-11s$0x%x, " MEM_ob ", %s", name, imm, ADDR_ob(offset, base), + XMMRegName(dst)); + } else { + spew("%-11s$0x%x, " MEM_ob ", %s, %s", name, imm, ADDR_ob(offset, base), + XMMRegName(src0), XMMRegName(dst)); + } + m_formatter.threeByteOpVex(ty, opcode, escape, offset, base, src0, dst); + m_formatter.immediate8u(imm); + } + + void threeByteOpImmSimd(const char* name, VexOperandType ty, + ThreeByteOpcodeID opcode, ThreeByteEscape escape, + uint32_t imm, int32_t offset, RegisterID base, + RegisterID index, int scale, XMMRegisterID src0, + XMMRegisterID dst) { + if (useLegacySSEEncoding(src0, dst)) { + spew("%-11s$0x%x, " MEM_obs ", %s", legacySSEOpName(name), imm, + ADDR_obs(offset, base, index, scale), XMMRegName(dst)); + m_formatter.legacySSEPrefix(ty); + m_formatter.threeByteOp(opcode, escape, offset, base, index, scale, dst); + m_formatter.immediate8u(imm); + return; + } + + if (src0 == invalid_xmm) { + spew("%-11s$0x%x, " MEM_obs ", %s", name, imm, + ADDR_obs(offset, base, index, scale), XMMRegName(dst)); + } else { + spew("%-11s$0x%x, " MEM_obs ", %s, %s", name, imm, + ADDR_obs(offset, base, index, scale), XMMRegName(src0), + XMMRegName(dst)); + } + m_formatter.threeByteOpVex(ty, opcode, escape, offset, base, index, scale, + src0, dst); + m_formatter.immediate8u(imm); + } + + void threeByteOpSimd(const char* name, VexOperandType ty, + ThreeByteOpcodeID opcode, ThreeByteEscape escape, + const void* address, XMMRegisterID src0, + XMMRegisterID dst) { + if (useLegacySSEEncoding(src0, dst)) { + spew("%-11s%p, %s", legacySSEOpName(name), address, XMMRegName(dst)); + m_formatter.legacySSEPrefix(ty); + m_formatter.threeByteOp(opcode, escape, address, dst); + return; + } + + if (src0 == invalid_xmm) { + spew("%-11s%p, %s", name, address, XMMRegName(dst)); + } else { + spew("%-11s%p, %s, %s", name, address, XMMRegName(src0), XMMRegName(dst)); + } + m_formatter.threeByteOpVex(ty, opcode, escape, address, src0, dst); + } + + void threeByteOpImmInt32Simd(const char* name, VexOperandType ty, + ThreeByteOpcodeID opcode, ThreeByteEscape escape, + uint32_t imm, RegisterID src1, + XMMRegisterID src0, XMMRegisterID dst) { + if (useLegacySSEEncoding(src0, dst)) { + spew("%-11s$0x%x, %s, %s", legacySSEOpName(name), imm, GPReg32Name(src1), + XMMRegName(dst)); + m_formatter.legacySSEPrefix(ty); + m_formatter.threeByteOp(opcode, escape, src1, dst); + m_formatter.immediate8u(imm); + return; + } + + spew("%-11s$0x%x, %s, %s, %s", name, imm, GPReg32Name(src1), + XMMRegName(src0), XMMRegName(dst)); + m_formatter.threeByteOpVex(ty, opcode, escape, src1, src0, dst); + m_formatter.immediate8u(imm); + } + + void threeByteOpImmInt32Simd(const char* name, VexOperandType ty, + ThreeByteOpcodeID opcode, ThreeByteEscape escape, + uint32_t imm, int32_t offset, RegisterID base, + XMMRegisterID src0, XMMRegisterID dst) { + if (useLegacySSEEncoding(src0, dst)) { + spew("%-11s$0x%x, " MEM_ob ", %s", legacySSEOpName(name), imm, + ADDR_ob(offset, base), XMMRegName(dst)); + m_formatter.legacySSEPrefix(ty); + m_formatter.threeByteOp(opcode, escape, offset, base, dst); + m_formatter.immediate8u(imm); + return; + } + + spew("%-11s$0x%x, " MEM_ob ", %s, %s", name, imm, ADDR_ob(offset, base), + XMMRegName(src0), XMMRegName(dst)); + m_formatter.threeByteOpVex(ty, opcode, escape, offset, base, src0, dst); + m_formatter.immediate8u(imm); + } + + void threeByteOpImmInt32Simd(const char* name, VexOperandType ty, + ThreeByteOpcodeID opcode, ThreeByteEscape escape, + uint32_t imm, int32_t offset, RegisterID base, + RegisterID index, int scale, XMMRegisterID src0, + XMMRegisterID dst) { + if (useLegacySSEEncoding(src0, dst)) { + spew("%-11s$0x%x, " MEM_obs ", %s", legacySSEOpName(name), imm, + ADDR_obs(offset, base, index, scale), XMMRegName(dst)); + m_formatter.legacySSEPrefix(ty); + m_formatter.threeByteOp(opcode, escape, offset, base, index, scale, dst); + m_formatter.immediate8u(imm); + return; + } + + spew("%-11s$0x%x, " MEM_obs ", %s, %s", name, imm, + ADDR_obs(offset, base, index, scale), XMMRegName(src0), + XMMRegName(dst)); + m_formatter.threeByteOpVex(ty, opcode, escape, offset, base, index, scale, + src0, dst); + m_formatter.immediate8u(imm); + } + + void threeByteOpImmSimdInt32(const char* name, VexOperandType ty, + ThreeByteOpcodeID opcode, ThreeByteEscape escape, + uint32_t imm, XMMRegisterID src, + RegisterID dst) { + if (useLegacySSEEncodingAlways()) { + spew("%-11s$0x%x, %s, %s", legacySSEOpName(name), imm, XMMRegName(src), + GPReg32Name(dst)); + m_formatter.legacySSEPrefix(ty); + m_formatter.threeByteOp(opcode, escape, (RegisterID)src, dst); + m_formatter.immediate8u(imm); + return; + } + + if (opcode == OP3_PEXTRD_EvVdqIb) { + spew("%-11s$0x%x, %s, %s", name, imm, XMMRegName((XMMRegisterID)dst), + GPReg32Name((RegisterID)src)); + } else { + spew("%-11s$0x%x, %s, %s", name, imm, XMMRegName(src), GPReg32Name(dst)); + } + m_formatter.threeByteOpVex(ty, opcode, escape, (RegisterID)src, invalid_xmm, + dst); + m_formatter.immediate8u(imm); + } + + void threeByteOpImmSimdInt32(const char* name, VexOperandType ty, + ThreeByteOpcodeID opcode, ThreeByteEscape escape, + uint32_t imm, int32_t offset, RegisterID base, + RegisterID dst) { + if (useLegacySSEEncodingAlways()) { + spew("%-11s$0x%x, " MEM_ob ", %s", legacySSEOpName(name), imm, + ADDR_ob(offset, base), GPReg32Name(dst)); + m_formatter.legacySSEPrefix(ty); + m_formatter.threeByteOp(opcode, escape, offset, base, dst); + m_formatter.immediate8u(imm); + return; + } + + spew("%-11s$0x%x, " MEM_ob ", %s", name, imm, ADDR_ob(offset, base), + GPReg32Name(dst)); + m_formatter.threeByteOpVex(ty, opcode, escape, offset, base, invalid_xmm, + dst); + m_formatter.immediate8u(imm); + } + + void threeByteOpImmSimdInt32(const char* name, VexOperandType ty, + ThreeByteOpcodeID opcode, ThreeByteEscape escape, + uint32_t imm, int32_t offset, RegisterID base, + RegisterID index, int scale, RegisterID dst) { + if (useLegacySSEEncodingAlways()) { + spew("%-11s$0x%x, " MEM_obs ", %s", legacySSEOpName(name), imm, + ADDR_obs(offset, base, index, scale), GPReg32Name(dst)); + m_formatter.legacySSEPrefix(ty); + m_formatter.threeByteOp(opcode, escape, offset, base, index, scale, dst); + m_formatter.immediate8u(imm); + return; + } + + spew("%-11s$0x%x, " MEM_obs ", %s", name, imm, + ADDR_obs(offset, base, index, scale), GPReg32Name(dst)); + m_formatter.threeByteOpVex(ty, opcode, escape, offset, base, index, scale, + invalid_xmm, dst); + m_formatter.immediate8u(imm); + } + + // Blendv is a three-byte op, but the VEX encoding has a different opcode + // than the SSE encoding, so we handle it specially. + void vblendvOpSimd(const char* name, ThreeByteOpcodeID opcode, + ThreeByteOpcodeID vexOpcode, XMMRegisterID mask, + XMMRegisterID rm, XMMRegisterID src0, XMMRegisterID dst) { + if (useLegacySSEEncodingForVblendv(mask, src0, dst)) { + spew("%-11s%s, %s", legacySSEOpName(name), XMMRegName(rm), + XMMRegName(dst)); + // Even though a "ps" instruction, vblendv is encoded with the "pd" + // prefix. + m_formatter.legacySSEPrefix(VEX_PD); + m_formatter.threeByteOp(opcode, ESCAPE_38, (RegisterID)rm, dst); + return; + } + + spew("%-11s%s, %s, %s, %s", name, XMMRegName(mask), XMMRegName(rm), + XMMRegName(src0), XMMRegName(dst)); + // Even though a "ps" instruction, vblendv is encoded with the "pd" prefix. + m_formatter.vblendvOpVex(VEX_PD, vexOpcode, ESCAPE_3A, mask, (RegisterID)rm, + src0, dst); + } + + void vblendvOpSimd(const char* name, ThreeByteOpcodeID opcode, + ThreeByteOpcodeID vexOpcode, XMMRegisterID mask, + int32_t offset, RegisterID base, XMMRegisterID src0, + XMMRegisterID dst) { + if (useLegacySSEEncodingForVblendv(mask, src0, dst)) { + spew("%-11s" MEM_ob ", %s", legacySSEOpName(name), ADDR_ob(offset, base), + XMMRegName(dst)); + // Even though a "ps" instruction, vblendv is encoded with the "pd" + // prefix. + m_formatter.legacySSEPrefix(VEX_PD); + m_formatter.threeByteOp(opcode, ESCAPE_38, offset, base, dst); + return; + } + + spew("%-11s%s, " MEM_ob ", %s, %s", name, XMMRegName(mask), + ADDR_ob(offset, base), XMMRegName(src0), XMMRegName(dst)); + // Even though a "ps" instruction, vblendv is encoded with the "pd" prefix. + m_formatter.vblendvOpVex(VEX_PD, vexOpcode, ESCAPE_3A, mask, offset, base, + src0, dst); + } + + void shiftOpImmSimd(const char* name, TwoByteOpcodeID opcode, + ShiftID shiftKind, uint32_t imm, XMMRegisterID src, + XMMRegisterID dst) { + if (useLegacySSEEncoding(src, dst)) { + spew("%-11s$%d, %s", legacySSEOpName(name), int32_t(imm), + XMMRegName(dst)); + m_formatter.legacySSEPrefix(VEX_PD); + m_formatter.twoByteOp(opcode, (RegisterID)dst, (int)shiftKind); + m_formatter.immediate8u(imm); + return; + } + + spew("%-11s$%d, %s, %s", name, int32_t(imm), XMMRegName(src), + XMMRegName(dst)); + // For shift instructions, destination is stored in vvvv field. + m_formatter.twoByteOpVex(VEX_PD, opcode, (RegisterID)src, dst, + (int)shiftKind); + m_formatter.immediate8u(imm); + } + + class X86InstructionFormatter { + public: + // Legacy prefix bytes: + // + // These are emmitted prior to the instruction. + + void prefix(OneByteOpcodeID pre) { m_buffer.putByte(pre); } + + void legacySSEPrefix(VexOperandType ty) { + switch (ty) { + case VEX_PS: + break; + case VEX_PD: + prefix(PRE_SSE_66); + break; + case VEX_SS: + prefix(PRE_SSE_F3); + break; + case VEX_SD: + prefix(PRE_SSE_F2); + break; + } + } + + /* clang-format off */ + // + // Word-sized operands / no operand instruction formatters. + // + // In addition to the opcode, the following operand permutations are supported: + // * None - instruction takes no operands. + // * One register - the low three bits of the RegisterID are added into the opcode. + // * Two registers - encode a register form ModRm (for all ModRm formats, the reg field is passed first, and a GroupOpcodeID may be passed in its place). + // * Three argument ModRM - a register, and a register and an offset describing a memory operand. + // * Five argument ModRM - a register, and a base register, an index, scale, and offset describing a memory operand. + // + // For 32-bit x86 targets, the address operand may also be provided as a + // void*. On 64-bit targets REX prefixes will be planted as necessary, + // where high numbered registers are used. + // + // The twoByteOp methods plant two-byte Intel instructions sequences + // (first opcode byte 0x0F). + // + /* clang-format on */ + + void oneByteOp(OneByteOpcodeID opcode) { + m_buffer.ensureSpace(MaxInstructionSize); + m_buffer.putByteUnchecked(opcode); + } + + void oneByteOp(OneByteOpcodeID opcode, RegisterID reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIfNeeded(0, 0, reg); + m_buffer.putByteUnchecked(opcode + (reg & 7)); + } + + void oneByteOp(OneByteOpcodeID opcode, RegisterID rm, int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIfNeeded(reg, 0, rm); + m_buffer.putByteUnchecked(opcode); + registerModRM(rm, reg); + } + + void oneByteOp(OneByteOpcodeID opcode, int32_t offset, RegisterID base, + int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIfNeeded(reg, 0, base); + m_buffer.putByteUnchecked(opcode); + memoryModRM(offset, base, reg); + } + + void oneByteOp_disp32(OneByteOpcodeID opcode, int32_t offset, + RegisterID base, int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIfNeeded(reg, 0, base); + m_buffer.putByteUnchecked(opcode); + memoryModRM_disp32(offset, base, reg); + } + + void oneByteOp(OneByteOpcodeID opcode, int32_t offset, RegisterID base, + RegisterID index, int scale, int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIfNeeded(reg, index, base); + m_buffer.putByteUnchecked(opcode); + memoryModRM(offset, base, index, scale, reg); + } + + void oneByteOp_disp32(OneByteOpcodeID opcode, int32_t offset, + RegisterID index, int scale, int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIfNeeded(reg, index, 0); + m_buffer.putByteUnchecked(opcode); + memoryModRM_disp32(offset, index, scale, reg); + } + + void oneByteOp(OneByteOpcodeID opcode, const void* address, int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIfNeeded(reg, 0, 0); + m_buffer.putByteUnchecked(opcode); + memoryModRM_disp32(address, reg); + } + + void oneByteOp_disp32(OneByteOpcodeID opcode, const void* address, + int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIfNeeded(reg, 0, 0); + m_buffer.putByteUnchecked(opcode); + memoryModRM_disp32(address, reg); + } +#ifdef JS_CODEGEN_X64 + void oneByteRipOp(OneByteOpcodeID opcode, int ripOffset, int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIfNeeded(reg, 0, 0); + m_buffer.putByteUnchecked(opcode); + putModRm(ModRmMemoryNoDisp, noBase, reg); + m_buffer.putIntUnchecked(ripOffset); + } + + void oneByteRipOp64(OneByteOpcodeID opcode, int ripOffset, int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexW(reg, 0, 0); + m_buffer.putByteUnchecked(opcode); + putModRm(ModRmMemoryNoDisp, noBase, reg); + m_buffer.putIntUnchecked(ripOffset); + } + + void twoByteRipOp(TwoByteOpcodeID opcode, int ripOffset, int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIfNeeded(reg, 0, 0); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(opcode); + putModRm(ModRmMemoryNoDisp, noBase, reg); + m_buffer.putIntUnchecked(ripOffset); + } + + void twoByteRipOpVex(VexOperandType ty, TwoByteOpcodeID opcode, + int ripOffset, XMMRegisterID src0, XMMRegisterID reg) { + int r = (reg >> 3), x = 0, b = 0; + int m = 1; // 0x0F + int w = 0, v = src0, l = 0; + threeOpVex(ty, r, x, b, m, w, v, l, opcode); + putModRm(ModRmMemoryNoDisp, noBase, reg); + m_buffer.putIntUnchecked(ripOffset); + } +#endif + + void twoByteOp(TwoByteOpcodeID opcode) { + m_buffer.ensureSpace(MaxInstructionSize); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(opcode); + } + + void twoByteOp(TwoByteOpcodeID opcode, int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIfNeeded(0, 0, reg); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(opcode + (reg & 7)); + } + + void twoByteOp(TwoByteOpcodeID opcode, RegisterID rm, int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIfNeeded(reg, 0, rm); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(opcode); + registerModRM(rm, reg); + } + + void twoByteOpVex(VexOperandType ty, TwoByteOpcodeID opcode, RegisterID rm, + XMMRegisterID src0, int reg) { + int r = (reg >> 3), x = 0, b = (rm >> 3); + int m = 1; // 0x0F + int w = 0, v = src0, l = 0; + threeOpVex(ty, r, x, b, m, w, v, l, opcode); + registerModRM(rm, reg); + } + + void twoByteOp(TwoByteOpcodeID opcode, int32_t offset, RegisterID base, + int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIfNeeded(reg, 0, base); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(opcode); + memoryModRM(offset, base, reg); + } + + void twoByteOpVex(VexOperandType ty, TwoByteOpcodeID opcode, int32_t offset, + RegisterID base, XMMRegisterID src0, int reg) { + int r = (reg >> 3), x = 0, b = (base >> 3); + int m = 1; // 0x0F + int w = 0, v = src0, l = 0; + threeOpVex(ty, r, x, b, m, w, v, l, opcode); + memoryModRM(offset, base, reg); + } + + void twoByteOp_disp32(TwoByteOpcodeID opcode, int32_t offset, + RegisterID base, int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIfNeeded(reg, 0, base); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(opcode); + memoryModRM_disp32(offset, base, reg); + } + + void twoByteOpVex_disp32(VexOperandType ty, TwoByteOpcodeID opcode, + int32_t offset, RegisterID base, + XMMRegisterID src0, int reg) { + int r = (reg >> 3), x = 0, b = (base >> 3); + int m = 1; // 0x0F + int w = 0, v = src0, l = 0; + threeOpVex(ty, r, x, b, m, w, v, l, opcode); + memoryModRM_disp32(offset, base, reg); + } + + void twoByteOp(TwoByteOpcodeID opcode, int32_t offset, RegisterID base, + RegisterID index, int scale, int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIfNeeded(reg, index, base); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(opcode); + memoryModRM(offset, base, index, scale, reg); + } + + void twoByteOpVex(VexOperandType ty, TwoByteOpcodeID opcode, int32_t offset, + RegisterID base, RegisterID index, int scale, + XMMRegisterID src0, int reg) { + int r = (reg >> 3), x = (index >> 3), b = (base >> 3); + int m = 1; // 0x0F + int w = 0, v = src0, l = 0; + threeOpVex(ty, r, x, b, m, w, v, l, opcode); + memoryModRM(offset, base, index, scale, reg); + } + + void twoByteOp(TwoByteOpcodeID opcode, const void* address, int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIfNeeded(reg, 0, 0); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(opcode); + memoryModRM(address, reg); + } + + void twoByteOpVex(VexOperandType ty, TwoByteOpcodeID opcode, + const void* address, XMMRegisterID src0, int reg) { + int r = (reg >> 3), x = 0, b = 0; + int m = 1; // 0x0F + int w = 0, v = src0, l = 0; + threeOpVex(ty, r, x, b, m, w, v, l, opcode); + memoryModRM(address, reg); + } + + void threeByteOp(ThreeByteOpcodeID opcode, ThreeByteEscape escape, + RegisterID rm, int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIfNeeded(reg, 0, rm); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(escape); + m_buffer.putByteUnchecked(opcode); + registerModRM(rm, reg); + } + + void threeByteOpVex(VexOperandType ty, ThreeByteOpcodeID opcode, + ThreeByteEscape escape, RegisterID rm, + XMMRegisterID src0, int reg) { + int r = (reg >> 3), x = 0, b = (rm >> 3); + int m = 0, w = 0, v = src0, l = 0; + switch (escape) { + case ESCAPE_38: + m = 2; + break; + case ESCAPE_3A: + m = 3; + break; + default: + MOZ_CRASH("unexpected escape"); + } + threeOpVex(ty, r, x, b, m, w, v, l, opcode); + registerModRM(rm, reg); + } + + void threeByteOp(ThreeByteOpcodeID opcode, ThreeByteEscape escape, + int32_t offset, RegisterID base, int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIfNeeded(reg, 0, base); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(escape); + m_buffer.putByteUnchecked(opcode); + memoryModRM(offset, base, reg); + } + + void threeByteOp(ThreeByteOpcodeID opcode, ThreeByteEscape escape, + int32_t offset, RegisterID base, RegisterID index, + int32_t scale, int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIfNeeded(reg, index, base); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(escape); + m_buffer.putByteUnchecked(opcode); + memoryModRM(offset, base, index, scale, reg); + } + + void threeByteOpVex(VexOperandType ty, ThreeByteOpcodeID opcode, + ThreeByteEscape escape, int32_t offset, RegisterID base, + XMMRegisterID src0, int reg) { + int r = (reg >> 3), x = 0, b = (base >> 3); + int m = 0, w = 0, v = src0, l = 0; + switch (escape) { + case ESCAPE_38: + m = 2; + break; + case ESCAPE_3A: + m = 3; + break; + default: + MOZ_CRASH("unexpected escape"); + } + threeOpVex(ty, r, x, b, m, w, v, l, opcode); + memoryModRM(offset, base, reg); + } + + void threeByteOpVex(VexOperandType ty, ThreeByteOpcodeID opcode, + ThreeByteEscape escape, int32_t offset, RegisterID base, + RegisterID index, int scale, XMMRegisterID src0, + int reg) { + int r = (reg >> 3), x = (index >> 3), b = (base >> 3); + int m = 0, w = 0, v = src0, l = 0; + switch (escape) { + case ESCAPE_38: + m = 2; + break; + case ESCAPE_3A: + m = 3; + break; + default: + MOZ_CRASH("unexpected escape"); + } + threeOpVex(ty, r, x, b, m, w, v, l, opcode); + memoryModRM(offset, base, index, scale, reg); + } + + void threeByteOp(ThreeByteOpcodeID opcode, ThreeByteEscape escape, + const void* address, int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIfNeeded(reg, 0, 0); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(escape); + m_buffer.putByteUnchecked(opcode); + memoryModRM(address, reg); + } + + void threeByteRipOp(ThreeByteOpcodeID opcode, ThreeByteEscape escape, + int ripOffset, int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIfNeeded(reg, 0, 0); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(escape); + m_buffer.putByteUnchecked(opcode); + putModRm(ModRmMemoryNoDisp, noBase, reg); + m_buffer.putIntUnchecked(ripOffset); + } + + void threeByteOpVex(VexOperandType ty, ThreeByteOpcodeID opcode, + ThreeByteEscape escape, const void* address, + XMMRegisterID src0, int reg) { + int r = (reg >> 3), x = 0, b = 0; + int m = 0, w = 0, v = src0, l = 0; + switch (escape) { + case ESCAPE_38: + m = 2; + break; + case ESCAPE_3A: + m = 3; + break; + default: + MOZ_CRASH("unexpected escape"); + } + threeOpVex(ty, r, x, b, m, w, v, l, opcode); + memoryModRM(address, reg); + } + + void threeByteRipOpVex(VexOperandType ty, ThreeByteOpcodeID opcode, + ThreeByteEscape escape, int ripOffset, + XMMRegisterID src0, int reg) { + int r = (reg >> 3), x = 0, b = 0; + int m = 0; + switch (escape) { + case ESCAPE_38: + m = 2; + break; + case ESCAPE_3A: + m = 3; + break; + default: + MOZ_CRASH("unexpected escape"); + } + int w = 0, v = src0, l = 0; + threeOpVex(ty, r, x, b, m, w, v, l, opcode); + putModRm(ModRmMemoryNoDisp, noBase, reg); + m_buffer.putIntUnchecked(ripOffset); + } + + void vblendvOpVex(VexOperandType ty, ThreeByteOpcodeID opcode, + ThreeByteEscape escape, XMMRegisterID mask, RegisterID rm, + XMMRegisterID src0, int reg) { + int r = (reg >> 3), x = 0, b = (rm >> 3); + int m = 0, w = 0, v = src0, l = 0; + switch (escape) { + case ESCAPE_38: + m = 2; + break; + case ESCAPE_3A: + m = 3; + break; + default: + MOZ_CRASH("unexpected escape"); + } + threeOpVex(ty, r, x, b, m, w, v, l, opcode); + registerModRM(rm, reg); + immediate8u(mask << 4); + } + + void vblendvOpVex(VexOperandType ty, ThreeByteOpcodeID opcode, + ThreeByteEscape escape, XMMRegisterID mask, + int32_t offset, RegisterID base, XMMRegisterID src0, + int reg) { + int r = (reg >> 3), x = 0, b = (base >> 3); + int m = 0, w = 0, v = src0, l = 0; + switch (escape) { + case ESCAPE_38: + m = 2; + break; + case ESCAPE_3A: + m = 3; + break; + default: + MOZ_CRASH("unexpected escape"); + } + threeOpVex(ty, r, x, b, m, w, v, l, opcode); + memoryModRM(offset, base, reg); + immediate8u(mask << 4); + } + +#ifdef JS_CODEGEN_X64 + // Quad-word-sized operands: + // + // Used to format 64-bit operantions, planting a REX.w prefix. When + // planting d64 or f64 instructions, not requiring a REX.w prefix, the + // normal (non-'64'-postfixed) formatters should be used. + + void oneByteOp64(OneByteOpcodeID opcode) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexW(0, 0, 0); + m_buffer.putByteUnchecked(opcode); + } + + void oneByteOp64(OneByteOpcodeID opcode, RegisterID reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexW(0, 0, reg); + m_buffer.putByteUnchecked(opcode + (reg & 7)); + } + + void oneByteOp64(OneByteOpcodeID opcode, RegisterID rm, int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexW(reg, 0, rm); + m_buffer.putByteUnchecked(opcode); + registerModRM(rm, reg); + } + + void oneByteOp64(OneByteOpcodeID opcode, int32_t offset, RegisterID base, + int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexW(reg, 0, base); + m_buffer.putByteUnchecked(opcode); + memoryModRM(offset, base, reg); + } + + void oneByteOp64_disp32(OneByteOpcodeID opcode, int32_t offset, + RegisterID base, int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexW(reg, 0, base); + m_buffer.putByteUnchecked(opcode); + memoryModRM_disp32(offset, base, reg); + } + + void oneByteOp64(OneByteOpcodeID opcode, int32_t offset, RegisterID base, + RegisterID index, int scale, int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexW(reg, index, base); + m_buffer.putByteUnchecked(opcode); + memoryModRM(offset, base, index, scale, reg); + } + + void oneByteOp64(OneByteOpcodeID opcode, const void* address, int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexW(reg, 0, 0); + m_buffer.putByteUnchecked(opcode); + memoryModRM(address, reg); + } + + void twoByteOp64(TwoByteOpcodeID opcode, int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexW(0, 0, reg); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(opcode + (reg & 7)); + } + + void twoByteOp64(TwoByteOpcodeID opcode, RegisterID rm, int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexW(reg, 0, rm); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(opcode); + registerModRM(rm, reg); + } + + void twoByteOp64(TwoByteOpcodeID opcode, int offset, RegisterID base, + int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexW(reg, 0, base); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(opcode); + memoryModRM(offset, base, reg); + } + + void twoByteOp64(TwoByteOpcodeID opcode, int offset, RegisterID base, + RegisterID index, int scale, int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexW(reg, index, base); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(opcode); + memoryModRM(offset, base, index, scale, reg); + } + + void twoByteOp64(TwoByteOpcodeID opcode, const void* address, int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexW(reg, 0, 0); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(opcode); + memoryModRM(address, reg); + } + + void twoByteOpVex64(VexOperandType ty, TwoByteOpcodeID opcode, + RegisterID rm, XMMRegisterID src0, XMMRegisterID reg) { + int r = (reg >> 3), x = 0, b = (rm >> 3); + int m = 1; // 0x0F + int w = 1, v = src0, l = 0; + threeOpVex(ty, r, x, b, m, w, v, l, opcode); + registerModRM(rm, reg); + } + + void threeByteOp64(ThreeByteOpcodeID opcode, ThreeByteEscape escape, + RegisterID rm, int reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexW(reg, 0, rm); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(escape); + m_buffer.putByteUnchecked(opcode); + registerModRM(rm, reg); + } +#endif // JS_CODEGEN_X64 + + void threeByteOpVex64(VexOperandType ty, ThreeByteOpcodeID opcode, + ThreeByteEscape escape, RegisterID rm, + XMMRegisterID src0, int reg) { + int r = (reg >> 3), x = 0, b = (rm >> 3); + int m = 0, w = 1, v = src0, l = 0; + switch (escape) { + case ESCAPE_38: + m = 2; + break; + case ESCAPE_3A: + m = 3; + break; + default: + MOZ_CRASH("unexpected escape"); + } + threeOpVex(ty, r, x, b, m, w, v, l, opcode); + registerModRM(rm, reg); + } + + // Byte-operands: + // + // These methods format byte operations. Byte operations differ from + // the normal formatters in the circumstances under which they will + // decide to emit REX prefixes. These should be used where any register + // operand signifies a byte register. + // + // The disctinction is due to the handling of register numbers in the + // range 4..7 on x86-64. These register numbers may either represent + // the second byte of the first four registers (ah..bh) or the first + // byte of the second four registers (spl..dil). + // + // Address operands should still be checked using regRequiresRex(), + // while byteRegRequiresRex() is provided to check byte register + // operands. + + void oneByteOp8(OneByteOpcodeID opcode) { + m_buffer.ensureSpace(MaxInstructionSize); + m_buffer.putByteUnchecked(opcode); + } + + void oneByteOp8(OneByteOpcodeID opcode, RegisterID r) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIf(byteRegRequiresRex(r), 0, 0, r); + m_buffer.putByteUnchecked(opcode + (r & 7)); + } + + void oneByteOp8(OneByteOpcodeID opcode, RegisterID rm, + GroupOpcodeID groupOp) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIf(byteRegRequiresRex(rm), 0, 0, rm); + m_buffer.putByteUnchecked(opcode); + registerModRM(rm, groupOp); + } + + // Like oneByteOp8, but never emits a REX prefix. + void oneByteOp8_norex(OneByteOpcodeID opcode, HRegisterID rm, + GroupOpcodeID groupOp) { + MOZ_ASSERT(!regRequiresRex(RegisterID(rm))); + m_buffer.ensureSpace(MaxInstructionSize); + m_buffer.putByteUnchecked(opcode); + registerModRM(RegisterID(rm), groupOp); + } + + void oneByteOp8(OneByteOpcodeID opcode, int32_t offset, RegisterID base, + RegisterID reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIf(byteRegRequiresRex(reg), reg, 0, base); + m_buffer.putByteUnchecked(opcode); + memoryModRM(offset, base, reg); + } + + void oneByteOp8_disp32(OneByteOpcodeID opcode, int32_t offset, + RegisterID base, RegisterID reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIf(byteRegRequiresRex(reg), reg, 0, base); + m_buffer.putByteUnchecked(opcode); + memoryModRM_disp32(offset, base, reg); + } + + void oneByteOp8(OneByteOpcodeID opcode, int32_t offset, RegisterID base, + RegisterID index, int scale, RegisterID reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIf(byteRegRequiresRex(reg), reg, index, base); + m_buffer.putByteUnchecked(opcode); + memoryModRM(offset, base, index, scale, reg); + } + + void oneByteOp8(OneByteOpcodeID opcode, const void* address, + RegisterID reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIf(byteRegRequiresRex(reg), reg, 0, 0); + m_buffer.putByteUnchecked(opcode); + memoryModRM_disp32(address, reg); + } + + void twoByteOp8(TwoByteOpcodeID opcode, RegisterID rm, RegisterID reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIf(byteRegRequiresRex(reg) || byteRegRequiresRex(rm), reg, 0, rm); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(opcode); + registerModRM(rm, reg); + } + + void twoByteOp8(TwoByteOpcodeID opcode, int32_t offset, RegisterID base, + RegisterID reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIf(byteRegRequiresRex(reg) || regRequiresRex(base), reg, 0, base); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(opcode); + memoryModRM(offset, base, reg); + } + + void twoByteOp8(TwoByteOpcodeID opcode, int32_t offset, RegisterID base, + RegisterID index, int scale, RegisterID reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIf(byteRegRequiresRex(reg) || regRequiresRex(base) || + regRequiresRex(index), + reg, index, base); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(opcode); + memoryModRM(offset, base, index, scale, reg); + } + + // Like twoByteOp8 but doesn't add a REX prefix if the destination reg + // is in esp..edi. This may be used when the destination is not an 8-bit + // register (as in a movzbl instruction), so it doesn't need a REX + // prefix to disambiguate it from ah..bh. + void twoByteOp8_movx(TwoByteOpcodeID opcode, RegisterID rm, + RegisterID reg) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIf(regRequiresRex(reg) || byteRegRequiresRex(rm), reg, 0, rm); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(opcode); + registerModRM(rm, reg); + } + + void twoByteOp8(TwoByteOpcodeID opcode, RegisterID rm, + GroupOpcodeID groupOp) { + m_buffer.ensureSpace(MaxInstructionSize); + emitRexIf(byteRegRequiresRex(rm), 0, 0, rm); + m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); + m_buffer.putByteUnchecked(opcode); + registerModRM(rm, groupOp); + } + + // Immediates: + // + // An immedaite should be appended where appropriate after an op has + // been emitted. The writes are unchecked since the opcode formatters + // above will have ensured space. + + // A signed 8-bit immediate. + MOZ_ALWAYS_INLINE void immediate8s(int32_t imm) { + MOZ_ASSERT(CAN_SIGN_EXTEND_8_32(imm)); + m_buffer.putByteUnchecked(imm); + } + + // An unsigned 8-bit immediate. + MOZ_ALWAYS_INLINE void immediate8u(uint32_t imm) { + MOZ_ASSERT(CAN_ZERO_EXTEND_8_32(imm)); + m_buffer.putByteUnchecked(int32_t(imm)); + } + + // An 8-bit immediate with is either signed or unsigned, for use in + // instructions which actually only operate on 8 bits. + MOZ_ALWAYS_INLINE void immediate8(int32_t imm) { + m_buffer.putByteUnchecked(imm); + } + + // A signed 16-bit immediate. + MOZ_ALWAYS_INLINE void immediate16s(int32_t imm) { + MOZ_ASSERT(CAN_SIGN_EXTEND_16_32(imm)); + m_buffer.putShortUnchecked(imm); + } + + // An unsigned 16-bit immediate. + MOZ_ALWAYS_INLINE void immediate16u(int32_t imm) { + MOZ_ASSERT(CAN_ZERO_EXTEND_16_32(imm)); + m_buffer.putShortUnchecked(imm); + } + + // A 16-bit immediate with is either signed or unsigned, for use in + // instructions which actually only operate on 16 bits. + MOZ_ALWAYS_INLINE void immediate16(int32_t imm) { + m_buffer.putShortUnchecked(imm); + } + + MOZ_ALWAYS_INLINE void immediate32(int32_t imm) { + m_buffer.putIntUnchecked(imm); + } + + MOZ_ALWAYS_INLINE void immediate64(int64_t imm) { + m_buffer.putInt64Unchecked(imm); + } + + [[nodiscard]] MOZ_ALWAYS_INLINE JmpSrc immediateRel32() { + m_buffer.putIntUnchecked(0); + return JmpSrc(m_buffer.size()); + } + + // Data: + + void jumpTablePointer(uintptr_t ptr) { + m_buffer.ensureSpace(sizeof(uintptr_t)); +#ifdef JS_CODEGEN_X64 + m_buffer.putInt64Unchecked(ptr); +#else + m_buffer.putIntUnchecked(ptr); +#endif + } + + void doubleConstant(double d) { + m_buffer.ensureSpace(sizeof(double)); + m_buffer.putInt64Unchecked(mozilla::BitwiseCast<uint64_t>(d)); + } + + void floatConstant(float f) { + m_buffer.ensureSpace(sizeof(float)); + m_buffer.putIntUnchecked(mozilla::BitwiseCast<uint32_t>(f)); + } + + void simd128Constant(const void* data) { + const uint8_t* bytes = reinterpret_cast<const uint8_t*>(data); + m_buffer.ensureSpace(16); + for (size_t i = 0; i < 16; ++i) { + m_buffer.putByteUnchecked(bytes[i]); + } + } + + void int64Constant(int64_t i) { + m_buffer.ensureSpace(sizeof(int64_t)); + m_buffer.putInt64Unchecked(i); + } + + void int32Constant(int32_t i) { + m_buffer.ensureSpace(sizeof(int32_t)); + m_buffer.putIntUnchecked(i); + } + + // Administrative methods: + + size_t size() const { return m_buffer.size(); } + const unsigned char* buffer() const { return m_buffer.buffer(); } + unsigned char* data() { return m_buffer.data(); } + bool oom() const { return m_buffer.oom(); } + bool reserve(size_t size) { return m_buffer.reserve(size); } + bool swapBuffer(wasm::Bytes& other) { return m_buffer.swap(other); } + bool isAligned(int alignment) const { + return m_buffer.isAligned(alignment); + } + + [[nodiscard]] bool append(const unsigned char* values, size_t size) { + return m_buffer.append(values, size); + } + + private: + // Internals; ModRm and REX formatters. + + // Byte operand register spl & above requir a REX prefix, which precludes + // use of the h registers in the same instruction. + static bool byteRegRequiresRex(RegisterID reg) { +#ifdef JS_CODEGEN_X64 + return reg >= rsp; +#else + return false; +#endif + } + + // For non-byte sizes, registers r8 & above always require a REX prefix. + static bool regRequiresRex(RegisterID reg) { +#ifdef JS_CODEGEN_X64 + return reg >= r8; +#else + return false; +#endif + } + +#ifdef JS_CODEGEN_X64 + // Format a REX prefix byte. + void emitRex(bool w, int r, int x, int b) { + m_buffer.putByteUnchecked(PRE_REX | ((int)w << 3) | ((r >> 3) << 2) | + ((x >> 3) << 1) | (b >> 3)); + } + + // Used to plant a REX byte with REX.w set (for 64-bit operations). + void emitRexW(int r, int x, int b) { emitRex(true, r, x, b); } + + // Used for operations with byte operands - use byteRegRequiresRex() to + // check register operands, regRequiresRex() to check other registers + // (i.e. address base & index). + // + // NB: WebKit's use of emitRexIf() is limited such that the + // reqRequiresRex() checks are not needed. SpiderMonkey extends + // oneByteOp8 and twoByteOp8 functionality such that r, x, and b + // can all be used. + void emitRexIf(bool condition, int r, int x, int b) { + if (condition || regRequiresRex(RegisterID(r)) || + regRequiresRex(RegisterID(x)) || regRequiresRex(RegisterID(b))) { + emitRex(false, r, x, b); + } + } + + // Used for word sized operations, will plant a REX prefix if necessary + // (if any register is r8 or above). + void emitRexIfNeeded(int r, int x, int b) { emitRexIf(false, r, x, b); } +#else + // No REX prefix bytes on 32-bit x86. + void emitRexIf(bool condition, int, int, int) { + MOZ_ASSERT(!condition, "32-bit x86 should never use a REX prefix"); + } + void emitRexIfNeeded(int, int, int) {} +#endif + + void putModRm(ModRmMode mode, RegisterID rm, int reg) { + m_buffer.putByteUnchecked((mode << 6) | ((reg & 7) << 3) | (rm & 7)); + } + + void putModRmSib(ModRmMode mode, RegisterID base, RegisterID index, + int scale, int reg) { + MOZ_ASSERT(mode != ModRmRegister); + + putModRm(mode, hasSib, reg); + m_buffer.putByteUnchecked((scale << 6) | ((index & 7) << 3) | (base & 7)); + } + + void registerModRM(RegisterID rm, int reg) { + putModRm(ModRmRegister, rm, reg); + } + + void memoryModRM(int32_t offset, RegisterID base, int reg) { + // A base of esp or r12 would be interpreted as a sib, so force a + // sib with no index & put the base in there. +#ifdef JS_CODEGEN_X64 + if ((base == hasSib) || (base == hasSib2)) { +#else + if (base == hasSib) { +#endif + if (!offset) { // No need to check if the base is noBase, since we know + // it is hasSib! + putModRmSib(ModRmMemoryNoDisp, base, noIndex, 0, reg); + } else if (CAN_SIGN_EXTEND_8_32(offset)) { + putModRmSib(ModRmMemoryDisp8, base, noIndex, 0, reg); + m_buffer.putByteUnchecked(offset); + } else { + putModRmSib(ModRmMemoryDisp32, base, noIndex, 0, reg); + m_buffer.putIntUnchecked(offset); + } + } else { +#ifdef JS_CODEGEN_X64 + if (!offset && (base != noBase) && (base != noBase2)) { +#else + if (!offset && (base != noBase)) { +#endif + putModRm(ModRmMemoryNoDisp, base, reg); + } else if (CAN_SIGN_EXTEND_8_32(offset)) { + putModRm(ModRmMemoryDisp8, base, reg); + m_buffer.putByteUnchecked(offset); + } else { + putModRm(ModRmMemoryDisp32, base, reg); + m_buffer.putIntUnchecked(offset); + } + } + } + + void memoryModRM_disp32(int32_t offset, RegisterID base, int reg) { + // A base of esp or r12 would be interpreted as a sib, so force a + // sib with no index & put the base in there. +#ifdef JS_CODEGEN_X64 + if ((base == hasSib) || (base == hasSib2)) { +#else + if (base == hasSib) { +#endif + putModRmSib(ModRmMemoryDisp32, base, noIndex, 0, reg); + m_buffer.putIntUnchecked(offset); + } else { + putModRm(ModRmMemoryDisp32, base, reg); + m_buffer.putIntUnchecked(offset); + } + } + + void memoryModRM(int32_t offset, RegisterID base, RegisterID index, + int scale, int reg) { + MOZ_ASSERT(index != noIndex); + +#ifdef JS_CODEGEN_X64 + if (!offset && (base != noBase) && (base != noBase2)) { +#else + if (!offset && (base != noBase)) { +#endif + putModRmSib(ModRmMemoryNoDisp, base, index, scale, reg); + } else if (CAN_SIGN_EXTEND_8_32(offset)) { + putModRmSib(ModRmMemoryDisp8, base, index, scale, reg); + m_buffer.putByteUnchecked(offset); + } else { + putModRmSib(ModRmMemoryDisp32, base, index, scale, reg); + m_buffer.putIntUnchecked(offset); + } + } + + void memoryModRM_disp32(int32_t offset, RegisterID index, int scale, + int reg) { + MOZ_ASSERT(index != noIndex); + + // NB: the base-less memoryModRM overloads generate different code + // then the base-full memoryModRM overloads in the base == noBase + // case. The base-less overloads assume that the desired effective + // address is: + // + // reg := [scaled index] + disp32 + // + // which means the mod needs to be ModRmMemoryNoDisp. The base-full + // overloads pass ModRmMemoryDisp32 in all cases and thus, when + // base == noBase (== ebp), the effective address is: + // + // reg := [scaled index] + disp32 + [ebp] + // + // See Intel developer manual, Vol 2, 2.1.5, Table 2-3. + putModRmSib(ModRmMemoryNoDisp, noBase, index, scale, reg); + m_buffer.putIntUnchecked(offset); + } + + void memoryModRM_disp32(const void* address, int reg) { + int32_t disp = AddressImmediate(address); + +#ifdef JS_CODEGEN_X64 + // On x64-64, non-RIP-relative absolute mode requires a SIB. + putModRmSib(ModRmMemoryNoDisp, noBase, noIndex, 0, reg); +#else + // noBase + ModRmMemoryNoDisp means noBase + ModRmMemoryDisp32! + putModRm(ModRmMemoryNoDisp, noBase, reg); +#endif + m_buffer.putIntUnchecked(disp); + } + + void memoryModRM(const void* address, int reg) { + memoryModRM_disp32(address, reg); + } + + void threeOpVex(VexOperandType p, int r, int x, int b, int m, int w, int v, + int l, int opcode) { + m_buffer.ensureSpace(MaxInstructionSize); + + if (v == invalid_xmm) { + v = XMMRegisterID(0); + } + + if (x == 0 && b == 0 && m == 1 && w == 0) { + // Two byte VEX. + m_buffer.putByteUnchecked(PRE_VEX_C5); + m_buffer.putByteUnchecked(((r << 7) | (v << 3) | (l << 2) | p) ^ 0xf8); + } else { + // Three byte VEX. + m_buffer.putByteUnchecked(PRE_VEX_C4); + m_buffer.putByteUnchecked(((r << 7) | (x << 6) | (b << 5) | m) ^ 0xe0); + m_buffer.putByteUnchecked(((w << 7) | (v << 3) | (l << 2) | p) ^ 0x78); + } + + m_buffer.putByteUnchecked(opcode); + } + + AssemblerBuffer m_buffer; + } m_formatter; + + bool useVEX_; +}; + +} // namespace X86Encoding + +} // namespace jit +} // namespace js + +#endif /* jit_x86_shared_BaseAssembler_x86_shared_h */ |