diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-19 00:47:55 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-19 00:47:55 +0000 |
commit | 26a029d407be480d791972afb5975cf62c9360a6 (patch) | |
tree | f435a8308119effd964b339f76abb83a57c29483 /layout/generic/nsFlexContainerFrame.cpp | |
parent | Initial commit. (diff) | |
download | firefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz firefox-26a029d407be480d791972afb5975cf62c9360a6.zip |
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'layout/generic/nsFlexContainerFrame.cpp')
-rw-r--r-- | layout/generic/nsFlexContainerFrame.cpp | 6464 |
1 files changed, 6464 insertions, 0 deletions
diff --git a/layout/generic/nsFlexContainerFrame.cpp b/layout/generic/nsFlexContainerFrame.cpp new file mode 100644 index 0000000000..e5a719fee2 --- /dev/null +++ b/layout/generic/nsFlexContainerFrame.cpp @@ -0,0 +1,6464 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=8 sts=2 et sw=2 tw=80: */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +/* rendering object for CSS "display: flex" */ + +#include "nsFlexContainerFrame.h" + +#include <algorithm> + +#include "gfxContext.h" +#include "mozilla/Baseline.h" +#include "mozilla/ComputedStyle.h" +#include "mozilla/CSSOrderAwareFrameIterator.h" +#include "mozilla/FloatingPoint.h" +#include "mozilla/Logging.h" +#include "mozilla/PresShell.h" +#include "mozilla/StaticPrefs_layout.h" +#include "mozilla/WritingModes.h" +#include "nsBlockFrame.h" +#include "nsContentUtils.h" +#include "nsCSSAnonBoxes.h" +#include "nsDebug.h" +#include "nsDisplayList.h" +#include "nsFieldSetFrame.h" +#include "nsIFrameInlines.h" +#include "nsLayoutUtils.h" +#include "nsPlaceholderFrame.h" +#include "nsPresContext.h" + +using namespace mozilla; +using namespace mozilla::layout; + +// Convenience typedefs for helper classes that we forward-declare in .h file +// (so that nsFlexContainerFrame methods can use them as parameters): +using FlexItem = nsFlexContainerFrame::FlexItem; +using FlexLine = nsFlexContainerFrame::FlexLine; +using FlexboxAxisTracker = nsFlexContainerFrame::FlexboxAxisTracker; +using StrutInfo = nsFlexContainerFrame::StrutInfo; +using CachedBAxisMeasurement = nsFlexContainerFrame::CachedBAxisMeasurement; +using CachedFlexItemData = nsFlexContainerFrame::CachedFlexItemData; + +static mozilla::LazyLogModule gFlexContainerLog("FlexContainer"); +#define FLEX_LOG(...) \ + MOZ_LOG(gFlexContainerLog, LogLevel::Debug, (__VA_ARGS__)); +#define FLEX_LOGV(...) \ + MOZ_LOG(gFlexContainerLog, LogLevel::Verbose, (__VA_ARGS__)); + +// Returns true if aFlexContainer is a frame for some element that has +// display:-webkit-{inline-}box (or -moz-{inline-}box). aFlexContainer is +// expected to be an instance of nsFlexContainerFrame (enforced with an assert); +// otherwise, this function's state-bit-check here is bogus. +static bool IsLegacyBox(const nsIFrame* aFlexContainer) { + MOZ_ASSERT(aFlexContainer->IsFlexContainerFrame(), + "only flex containers may be passed to this function"); + return aFlexContainer->HasAnyStateBits( + NS_STATE_FLEX_IS_EMULATING_LEGACY_WEBKIT_BOX); +} + +// Returns the OrderState enum we should pass to CSSOrderAwareFrameIterator +// (depending on whether aFlexContainer has +// NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER state bit). +static CSSOrderAwareFrameIterator::OrderState OrderStateForIter( + const nsFlexContainerFrame* aFlexContainer) { + return aFlexContainer->HasAnyStateBits( + NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER) + ? CSSOrderAwareFrameIterator::OrderState::Ordered + : CSSOrderAwareFrameIterator::OrderState::Unordered; +} + +// Returns the OrderingProperty enum that we should pass to +// CSSOrderAwareFrameIterator (depending on whether it's a legacy box). +static CSSOrderAwareFrameIterator::OrderingProperty OrderingPropertyForIter( + const nsFlexContainerFrame* aFlexContainer) { + return IsLegacyBox(aFlexContainer) + ? CSSOrderAwareFrameIterator::OrderingProperty::BoxOrdinalGroup + : CSSOrderAwareFrameIterator::OrderingProperty::Order; +} + +// Returns the "align-items" value that's equivalent to the legacy "box-align" +// value in the given style struct. +static StyleAlignFlags ConvertLegacyStyleToAlignItems( + const nsStyleXUL* aStyleXUL) { + // -[moz|webkit]-box-align corresponds to modern "align-items" + switch (aStyleXUL->mBoxAlign) { + case StyleBoxAlign::Stretch: + return StyleAlignFlags::STRETCH; + case StyleBoxAlign::Start: + return StyleAlignFlags::FLEX_START; + case StyleBoxAlign::Center: + return StyleAlignFlags::CENTER; + case StyleBoxAlign::Baseline: + return StyleAlignFlags::BASELINE; + case StyleBoxAlign::End: + return StyleAlignFlags::FLEX_END; + } + + MOZ_ASSERT_UNREACHABLE("Unrecognized mBoxAlign enum value"); + // Fall back to default value of "align-items" property: + return StyleAlignFlags::STRETCH; +} + +// Returns the "justify-content" value that's equivalent to the legacy +// "box-pack" value in the given style struct. +static StyleContentDistribution ConvertLegacyStyleToJustifyContent( + const nsStyleXUL* aStyleXUL) { + // -[moz|webkit]-box-pack corresponds to modern "justify-content" + switch (aStyleXUL->mBoxPack) { + case StyleBoxPack::Start: + return {StyleAlignFlags::FLEX_START}; + case StyleBoxPack::Center: + return {StyleAlignFlags::CENTER}; + case StyleBoxPack::End: + return {StyleAlignFlags::FLEX_END}; + case StyleBoxPack::Justify: + return {StyleAlignFlags::SPACE_BETWEEN}; + } + + MOZ_ASSERT_UNREACHABLE("Unrecognized mBoxPack enum value"); + // Fall back to default value of "justify-content" property: + return {StyleAlignFlags::FLEX_START}; +} + +// Check if the size is auto or it is a keyword in the block axis. +// |aIsInline| should represent whether aSize is in the inline axis, from the +// perspective of the writing mode of the flex item that the size comes from. +// +// max-content and min-content should behave as property's initial value. +// Bug 567039: We treat -moz-fit-content and -moz-available as property's +// initial value for now. +static inline bool IsAutoOrEnumOnBSize(const StyleSize& aSize, bool aIsInline) { + return aSize.IsAuto() || (!aIsInline && !aSize.IsLengthPercentage()); +} + +// Encapsulates our flex container's main & cross axes. This class is backed by +// a FlexboxAxisInfo helper member variable, and it adds some convenience APIs +// on top of what that struct offers. +class MOZ_STACK_CLASS nsFlexContainerFrame::FlexboxAxisTracker { + public: + explicit FlexboxAxisTracker(const nsFlexContainerFrame* aFlexContainer); + + // Accessors: + LogicalAxis MainAxis() const { + return IsRowOriented() ? eLogicalAxisInline : eLogicalAxisBlock; + } + LogicalAxis CrossAxis() const { + return IsRowOriented() ? eLogicalAxisBlock : eLogicalAxisInline; + } + + LogicalSide MainAxisStartSide() const; + LogicalSide MainAxisEndSide() const { + return GetOppositeSide(MainAxisStartSide()); + } + + LogicalSide CrossAxisStartSide() const; + LogicalSide CrossAxisEndSide() const { + return GetOppositeSide(CrossAxisStartSide()); + } + + mozilla::Side MainAxisPhysicalStartSide() const { + return mWM.PhysicalSide(MainAxisStartSide()); + } + mozilla::Side MainAxisPhysicalEndSide() const { + return mWM.PhysicalSide(MainAxisEndSide()); + } + + mozilla::Side CrossAxisPhysicalStartSide() const { + return mWM.PhysicalSide(CrossAxisStartSide()); + } + mozilla::Side CrossAxisPhysicalEndSide() const { + return mWM.PhysicalSide(CrossAxisEndSide()); + } + + // Returns the flex container's writing mode. + WritingMode GetWritingMode() const { return mWM; } + + // Returns true if our main axis is in the reverse direction of our + // writing mode's corresponding axis. (From 'flex-direction: *-reverse') + bool IsMainAxisReversed() const { return mAxisInfo.mIsMainAxisReversed; } + // Returns true if our cross axis is in the reverse direction of our + // writing mode's corresponding axis. (From 'flex-wrap: *-reverse') + bool IsCrossAxisReversed() const { return mAxisInfo.mIsCrossAxisReversed; } + + bool IsRowOriented() const { return mAxisInfo.mIsRowOriented; } + bool IsColumnOriented() const { return !IsRowOriented(); } + + // aSize is expected to match the flex container's WritingMode. + nscoord MainComponent(const LogicalSize& aSize) const { + return IsRowOriented() ? aSize.ISize(mWM) : aSize.BSize(mWM); + } + int32_t MainComponent(const LayoutDeviceIntSize& aIntSize) const { + return IsMainAxisHorizontal() ? aIntSize.width : aIntSize.height; + } + + // aSize is expected to match the flex container's WritingMode. + nscoord CrossComponent(const LogicalSize& aSize) const { + return IsRowOriented() ? aSize.BSize(mWM) : aSize.ISize(mWM); + } + int32_t CrossComponent(const LayoutDeviceIntSize& aIntSize) const { + return IsMainAxisHorizontal() ? aIntSize.height : aIntSize.width; + } + + // NOTE: aMargin is expected to use the flex container's WritingMode. + nscoord MarginSizeInMainAxis(const LogicalMargin& aMargin) const { + // If we're row-oriented, our main axis is the inline axis. + return IsRowOriented() ? aMargin.IStartEnd(mWM) : aMargin.BStartEnd(mWM); + } + nscoord MarginSizeInCrossAxis(const LogicalMargin& aMargin) const { + // If we're row-oriented, our cross axis is the block axis. + return IsRowOriented() ? aMargin.BStartEnd(mWM) : aMargin.IStartEnd(mWM); + } + + /** + * Converts a "flex-relative" point (a main-axis & cross-axis coordinate) + * into a LogicalPoint, using the flex container's writing mode. + * + * @arg aMainCoord The main-axis coordinate -- i.e an offset from the + * main-start edge of the flex container's content box. + * @arg aCrossCoord The cross-axis coordinate -- i.e an offset from the + * cross-start edge of the flex container's content box. + * @arg aContainerMainSize The main size of flex container's content box. + * @arg aContainerCrossSize The cross size of flex container's content box. + * @return A LogicalPoint, with the flex container's writing mode, that + * represents the same position. The logical coordinates are + * relative to the flex container's content box. + */ + LogicalPoint LogicalPointFromFlexRelativePoint( + nscoord aMainCoord, nscoord aCrossCoord, nscoord aContainerMainSize, + nscoord aContainerCrossSize) const { + nscoord logicalCoordInMainAxis = + IsMainAxisReversed() ? aContainerMainSize - aMainCoord : aMainCoord; + nscoord logicalCoordInCrossAxis = + IsCrossAxisReversed() ? aContainerCrossSize - aCrossCoord : aCrossCoord; + + return IsRowOriented() ? LogicalPoint(mWM, logicalCoordInMainAxis, + logicalCoordInCrossAxis) + : LogicalPoint(mWM, logicalCoordInCrossAxis, + logicalCoordInMainAxis); + } + + /** + * Converts a "flex-relative" size (a main-axis & cross-axis size) + * into a LogicalSize, using the flex container's writing mode. + * + * @arg aMainSize The main-axis size. + * @arg aCrossSize The cross-axis size. + * @return A LogicalSize, with the flex container's writing mode, that + * represents the same size. + */ + LogicalSize LogicalSizeFromFlexRelativeSizes(nscoord aMainSize, + nscoord aCrossSize) const { + return IsRowOriented() ? LogicalSize(mWM, aMainSize, aCrossSize) + : LogicalSize(mWM, aCrossSize, aMainSize); + } + + /** + * Converts a "flex-relative" ascent (the distance from the flex container's + * content-box cross-start edge to its baseline) into a logical ascent (the + * distance from the flex container's content-box block-start edge to its + * baseline). + */ + nscoord LogicalAscentFromFlexRelativeAscent( + nscoord aFlexRelativeAscent, nscoord aContentBoxCrossSize) const { + return (IsCrossAxisReversed() ? aContentBoxCrossSize - aFlexRelativeAscent + : aFlexRelativeAscent); + } + + bool IsMainAxisHorizontal() const { + // If we're row-oriented, and our writing mode is NOT vertical, + // or we're column-oriented and our writing mode IS vertical, + // then our main axis is horizontal. This handles all cases: + return IsRowOriented() != mWM.IsVertical(); + } + + // Returns true if this flex item's inline axis in aItemWM is parallel (or + // antiparallel) to the container's main axis. Returns false, otherwise. + // + // Note: this is a helper used before constructing FlexItem. Inside of flex + // reflow code, FlexItem::IsInlineAxisMainAxis() is equivalent & more optimal. + bool IsInlineAxisMainAxis(WritingMode aItemWM) const { + return IsRowOriented() != GetWritingMode().IsOrthogonalTo(aItemWM); + } + + // Maps justify-*: 'left' or 'right' to 'start' or 'end'. + StyleAlignFlags ResolveJustifyLeftRight(const StyleAlignFlags& aFlags) const { + MOZ_ASSERT( + aFlags == StyleAlignFlags::LEFT || aFlags == StyleAlignFlags::RIGHT, + "This helper accepts only 'LEFT' or 'RIGHT' flags!"); + + const auto wm = GetWritingMode(); + const bool isJustifyLeft = aFlags == StyleAlignFlags::LEFT; + if (IsColumnOriented()) { + if (!wm.IsVertical()) { + // Container's alignment axis (main axis) is *not* parallel to the + // line-left <-> line-right axis or the physical left <-> physical right + // axis, so we map both 'left' and 'right' to 'start'. + return StyleAlignFlags::START; + } + + MOZ_ASSERT(wm.PhysicalAxis(MainAxis()) == eAxisHorizontal, + "Vertical column-oriented flex container's main axis should " + "be parallel to physical left <-> right axis!"); + // Map 'left' or 'right' to 'start' or 'end', depending on its block flow + // direction. + return isJustifyLeft == wm.IsVerticalLR() ? StyleAlignFlags::START + : StyleAlignFlags::END; + } + + MOZ_ASSERT(MainAxis() == eLogicalAxisInline, + "Row-oriented flex container's main axis should be parallel to " + "line-left <-> line-right axis!"); + + // If we get here, we're operating on the flex container's inline axis, + // so we map 'left' to whichever of 'start' or 'end' corresponds to the + // *line-relative* left side; and similar for 'right'. + return isJustifyLeft == wm.IsBidiLTR() ? StyleAlignFlags::START + : StyleAlignFlags::END; + } + + // Delete copy-constructor & reassignment operator, to prevent accidental + // (unnecessary) copying. + FlexboxAxisTracker(const FlexboxAxisTracker&) = delete; + FlexboxAxisTracker& operator=(const FlexboxAxisTracker&) = delete; + + private: + const WritingMode mWM; // The flex container's writing mode. + const FlexboxAxisInfo mAxisInfo; +}; + +/** + * Represents a flex item. + * Includes the various pieces of input that the Flexbox Layout Algorithm uses + * to resolve a flexible width. + */ +class nsFlexContainerFrame::FlexItem final { + public: + // Normal constructor: + FlexItem(ReflowInput& aFlexItemReflowInput, float aFlexGrow, + float aFlexShrink, nscoord aFlexBaseSize, nscoord aMainMinSize, + nscoord aMainMaxSize, nscoord aTentativeCrossSize, + nscoord aCrossMinSize, nscoord aCrossMaxSize, + const FlexboxAxisTracker& aAxisTracker); + + // Simplified constructor, to be used only for generating "struts": + // (NOTE: This "strut" constructor uses the *container's* writing mode, which + // we'll use on this FlexItem instead of the child frame's real writing mode. + // This is fine - it doesn't matter what writing mode we use for a + // strut, since it won't render any content and we already know its size.) + FlexItem(nsIFrame* aChildFrame, nscoord aCrossSize, WritingMode aContainerWM, + const FlexboxAxisTracker& aAxisTracker); + + // Clone existing FlexItem for its underlying frame's continuation. + // @param aContinuation a continuation in our next-in-flow chain. + FlexItem CloneFor(nsIFrame* const aContinuation) const { + MOZ_ASSERT(Frame() == aContinuation->FirstInFlow(), + "aContinuation should be in aItem's continuation chain!"); + FlexItem item(*this); + item.mFrame = aContinuation; + item.mHadMeasuringReflow = false; + return item; + } + + // Accessors + nsIFrame* Frame() const { return mFrame; } + nscoord FlexBaseSize() const { return mFlexBaseSize; } + + nscoord MainMinSize() const { + MOZ_ASSERT(!mNeedsMinSizeAutoResolution, + "Someone's using an unresolved 'auto' main min-size"); + return mMainMinSize; + } + nscoord MainMaxSize() const { return mMainMaxSize; } + + // Note: These return the main-axis position and size of our *content box*. + nscoord MainSize() const { return mMainSize; } + nscoord MainPosition() const { return mMainPosn; } + + nscoord CrossMinSize() const { return mCrossMinSize; } + nscoord CrossMaxSize() const { return mCrossMaxSize; } + + // Note: These return the cross-axis position and size of our *content box*. + nscoord CrossSize() const { return mCrossSize; } + nscoord CrossPosition() const { return mCrossPosn; } + + // Lazy getter for mAscent or mAscentForLast. + nscoord ResolvedAscent(bool aUseFirstBaseline) const { + // XXX We should be using the *container's* writing-mode (mCBWM) here, + // instead of the item's (mWM). This is essentially bug 1155322. + nscoord& ascent = aUseFirstBaseline ? mAscent : mAscentForLast; + if (ascent != ReflowOutput::ASK_FOR_BASELINE) { + return ascent; + } + + // Use GetFirstLineBaseline() or GetLastLineBaseline() as appropriate: + bool found = aUseFirstBaseline + ? nsLayoutUtils::GetFirstLineBaseline(mWM, mFrame, &ascent) + : nsLayoutUtils::GetLastLineBaseline(mWM, mFrame, &ascent); + if (found) { + return ascent; + } + + // If the nsLayoutUtils getter fails, then ask the frame directly: + auto baselineGroup = aUseFirstBaseline ? BaselineSharingGroup::First + : BaselineSharingGroup::Last; + if (auto baseline = mFrame->GetNaturalBaselineBOffset( + mWM, baselineGroup, BaselineExportContext::Other)) { + // Offset for last baseline from `GetNaturalBaselineBOffset` originates + // from the frame's block end, so convert it back. + ascent = baselineGroup == BaselineSharingGroup::First + ? *baseline + : mFrame->BSize(mWM) - *baseline; + return ascent; + } + + // We couldn't determine a baseline, so we synthesize one from border box: + ascent = Baseline::SynthesizeBOffsetFromBorderBox( + mFrame, mWM, BaselineSharingGroup::First); + return ascent; + } + + // Convenience methods to compute the main & cross size of our *margin-box*. + nscoord OuterMainSize() const { + return mMainSize + MarginBorderPaddingSizeInMainAxis(); + } + + nscoord OuterCrossSize() const { + return mCrossSize + MarginBorderPaddingSizeInCrossAxis(); + } + + // Convenience method to return the content-box block-size. + nscoord BSize() const { + return IsBlockAxisMainAxis() ? MainSize() : CrossSize(); + } + + // Convenience method to return the measured content-box block-size computed + // in nsFlexContainerFrame::MeasureBSizeForFlexItem(). + Maybe<nscoord> MeasuredBSize() const; + + // Convenience methods to synthesize a style main size or a style cross size + // with box-size considered, to provide the size overrides when constructing + // ReflowInput for flex items. + StyleSize StyleMainSize() const { + nscoord mainSize = MainSize(); + if (Frame()->StylePosition()->mBoxSizing == StyleBoxSizing::Border) { + mainSize += BorderPaddingSizeInMainAxis(); + } + return StyleSize::LengthPercentage( + LengthPercentage::FromAppUnits(mainSize)); + } + + StyleSize StyleCrossSize() const { + nscoord crossSize = CrossSize(); + if (Frame()->StylePosition()->mBoxSizing == StyleBoxSizing::Border) { + crossSize += BorderPaddingSizeInCrossAxis(); + } + return StyleSize::LengthPercentage( + LengthPercentage::FromAppUnits(crossSize)); + } + + // Returns the distance between this FlexItem's baseline and the cross-start + // edge of its margin-box. Used in baseline alignment. + // + // (This function needs to be told which physical start side we're measuring + // the baseline from, so that it can look up the appropriate components from + // margin.) + nscoord BaselineOffsetFromOuterCrossEdge(mozilla::Side aStartSide, + bool aUseFirstLineBaseline) const; + + double ShareOfWeightSoFar() const { return mShareOfWeightSoFar; } + + bool IsFrozen() const { return mIsFrozen; } + + bool HadMinViolation() const { + MOZ_ASSERT(!mIsFrozen, "min violation has no meaning for frozen items."); + return mHadMinViolation; + } + + bool HadMaxViolation() const { + MOZ_ASSERT(!mIsFrozen, "max violation has no meaning for frozen items."); + return mHadMaxViolation; + } + + bool WasMinClamped() const { + MOZ_ASSERT(mIsFrozen, "min clamping has no meaning for unfrozen items."); + return mHadMinViolation; + } + + bool WasMaxClamped() const { + MOZ_ASSERT(mIsFrozen, "max clamping has no meaning for unfrozen items."); + return mHadMaxViolation; + } + + // Indicates whether this item received a preliminary "measuring" reflow + // before its actual reflow. + bool HadMeasuringReflow() const { return mHadMeasuringReflow; } + + // Indicates whether this item's computed cross-size property is 'auto'. + bool IsCrossSizeAuto() const; + + // Indicates whether the cross-size property is set to something definite, + // for the purpose of preferred aspect ratio calculations. + bool IsCrossSizeDefinite(const ReflowInput& aItemReflowInput) const; + + // Indicates whether this item's cross-size has been stretched (from having + // "align-self: stretch" with an auto cross-size and no auto margins in the + // cross axis). + bool IsStretched() const { return mIsStretched; } + + bool IsFlexBaseSizeContentBSize() const { + return mIsFlexBaseSizeContentBSize; + } + + bool IsMainMinSizeContentBSize() const { return mIsMainMinSizeContentBSize; } + + // Indicates whether we need to resolve an 'auto' value for the main-axis + // min-[width|height] property. + bool NeedsMinSizeAutoResolution() const { + return mNeedsMinSizeAutoResolution; + } + + bool HasAnyAutoMargin() const { return mHasAnyAutoMargin; } + + BaselineSharingGroup ItemBaselineSharingGroup() const { + MOZ_ASSERT(mAlignSelf._0 == StyleAlignFlags::BASELINE || + mAlignSelf._0 == StyleAlignFlags::LAST_BASELINE, + "mBaselineSharingGroup only gets a meaningful value " + "for baseline-aligned items"); + return mBaselineSharingGroup; + } + + // Indicates whether this item is a "strut" left behind by an element with + // visibility:collapse. + bool IsStrut() const { return mIsStrut; } + + // The main axis and cross axis are relative to mCBWM. + LogicalAxis MainAxis() const { return mMainAxis; } + LogicalAxis CrossAxis() const { return GetOrthogonalAxis(mMainAxis); } + + // IsInlineAxisMainAxis() returns true if this item's inline axis is parallel + // (or antiparallel) to the container's main axis. Otherwise (i.e. if this + // item's inline axis is orthogonal to the container's main axis), this + // function returns false. The next 3 methods are all other ways of asking + // the same question, and only exist for readability at callsites (depending + // on which axes those callsites are reasoning about). + bool IsInlineAxisMainAxis() const { return mIsInlineAxisMainAxis; } + bool IsInlineAxisCrossAxis() const { return !mIsInlineAxisMainAxis; } + bool IsBlockAxisMainAxis() const { return !mIsInlineAxisMainAxis; } + bool IsBlockAxisCrossAxis() const { return mIsInlineAxisMainAxis; } + + WritingMode GetWritingMode() const { return mWM; } + WritingMode ContainingBlockWM() const { return mCBWM; } + StyleAlignSelf AlignSelf() const { return mAlignSelf; } + StyleAlignFlags AlignSelfFlags() const { return mAlignSelfFlags; } + + // Returns the flex factor (flex-grow or flex-shrink), depending on + // 'aIsUsingFlexGrow'. + // + // Asserts fatally if called on a frozen item (since frozen items are not + // flexible). + float GetFlexFactor(bool aIsUsingFlexGrow) { + MOZ_ASSERT(!IsFrozen(), "shouldn't need flex factor after item is frozen"); + + return aIsUsingFlexGrow ? mFlexGrow : mFlexShrink; + } + + // Returns the weight that we should use in the "resolving flexible lengths" + // algorithm. If we're using the flex grow factor, we just return that; + // otherwise, we return the "scaled flex shrink factor" (scaled by our flex + // base size, so that when both large and small items are shrinking, the large + // items shrink more). + // + // I'm calling this a "weight" instead of a "[scaled] flex-[grow|shrink] + // factor", to more clearly distinguish it from the actual flex-grow & + // flex-shrink factors. + // + // Asserts fatally if called on a frozen item (since frozen items are not + // flexible). + float GetWeight(bool aIsUsingFlexGrow) { + MOZ_ASSERT(!IsFrozen(), "shouldn't need weight after item is frozen"); + + if (aIsUsingFlexGrow) { + return mFlexGrow; + } + + // We're using flex-shrink --> return mFlexShrink * mFlexBaseSize + if (mFlexBaseSize == 0) { + // Special-case for mFlexBaseSize == 0 -- we have no room to shrink, so + // regardless of mFlexShrink, we should just return 0. + // (This is really a special-case for when mFlexShrink is infinity, to + // avoid performing mFlexShrink * mFlexBaseSize = inf * 0 = undefined.) + return 0.0f; + } + return mFlexShrink * mFlexBaseSize; + } + + bool TreatBSizeAsIndefinite() const { return mTreatBSizeAsIndefinite; } + + const AspectRatio& GetAspectRatio() const { return mAspectRatio; } + bool HasAspectRatio() const { return !!mAspectRatio; } + + // Getters for margin: + // =================== + LogicalMargin Margin() const { return mMargin; } + nsMargin PhysicalMargin() const { return mMargin.GetPhysicalMargin(mCBWM); } + + // Returns the margin component for a given LogicalSide in flex container's + // writing-mode. + nscoord GetMarginComponentForSide(LogicalSide aSide) const { + return mMargin.Side(aSide, mCBWM); + } + + // Returns the total space occupied by this item's margins in the given axis + nscoord MarginSizeInMainAxis() const { + return mMargin.StartEnd(MainAxis(), mCBWM); + } + nscoord MarginSizeInCrossAxis() const { + return mMargin.StartEnd(CrossAxis(), mCBWM); + } + + // Getters for border/padding + // ========================== + // Returns the total space occupied by this item's borders and padding in + // the given axis + LogicalMargin BorderPadding() const { return mBorderPadding; } + nscoord BorderPaddingSizeInMainAxis() const { + return mBorderPadding.StartEnd(MainAxis(), mCBWM); + } + nscoord BorderPaddingSizeInCrossAxis() const { + return mBorderPadding.StartEnd(CrossAxis(), mCBWM); + } + + // Getter for combined margin/border/padding + // ========================================= + // Returns the total space occupied by this item's margins, borders and + // padding in the given axis + nscoord MarginBorderPaddingSizeInMainAxis() const { + return MarginSizeInMainAxis() + BorderPaddingSizeInMainAxis(); + } + nscoord MarginBorderPaddingSizeInCrossAxis() const { + return MarginSizeInCrossAxis() + BorderPaddingSizeInCrossAxis(); + } + + // Setters + // ======= + // Helper to set the resolved value of min-[width|height]:auto for the main + // axis. (Should only be used if NeedsMinSizeAutoResolution() returns true.) + void UpdateMainMinSize(nscoord aNewMinSize) { + NS_ASSERTION(aNewMinSize >= 0, + "How did we end up with a negative min-size?"); + MOZ_ASSERT( + mMainMaxSize == NS_UNCONSTRAINEDSIZE || mMainMaxSize >= aNewMinSize, + "Should only use this function for resolving min-size:auto, " + "and main max-size should be an upper-bound for resolved val"); + MOZ_ASSERT( + mNeedsMinSizeAutoResolution && + (mMainMinSize == 0 || mFrame->IsThemed(mFrame->StyleDisplay())), + "Should only use this function for resolving min-size:auto, " + "so we shouldn't already have a nonzero min-size established " + "(unless it's a themed-widget-imposed minimum size)"); + + if (aNewMinSize > mMainMinSize) { + mMainMinSize = aNewMinSize; + // Also clamp main-size to be >= new min-size: + mMainSize = std::max(mMainSize, aNewMinSize); + } + mNeedsMinSizeAutoResolution = false; + } + + // This sets our flex base size, and then sets our main size to the + // resulting "hypothetical main size" (the base size clamped to our + // main-axis [min,max] sizing constraints). + void SetFlexBaseSizeAndMainSize(nscoord aNewFlexBaseSize) { + MOZ_ASSERT(!mIsFrozen || mFlexBaseSize == NS_UNCONSTRAINEDSIZE, + "flex base size shouldn't change after we're frozen " + "(unless we're just resolving an intrinsic size)"); + mFlexBaseSize = aNewFlexBaseSize; + + // Before we've resolved flexible lengths, we keep mMainSize set to + // the 'hypothetical main size', which is the flex base size, clamped + // to the [min,max] range: + mMainSize = NS_CSS_MINMAX(mFlexBaseSize, mMainMinSize, mMainMaxSize); + + FLEX_LOGV( + "Set flex base size: %d, hypothetical main size: %d for flex item %p", + mFlexBaseSize, mMainSize, mFrame); + } + + // Setters used while we're resolving flexible lengths + // --------------------------------------------------- + + // Sets the main-size of our flex item's content-box. + void SetMainSize(nscoord aNewMainSize) { + MOZ_ASSERT(!mIsFrozen, "main size shouldn't change after we're frozen"); + mMainSize = aNewMainSize; + } + + void SetShareOfWeightSoFar(double aNewShare) { + MOZ_ASSERT(!mIsFrozen || aNewShare == 0.0, + "shouldn't be giving this item any share of the weight " + "after it's frozen"); + mShareOfWeightSoFar = aNewShare; + } + + void Freeze() { + mIsFrozen = true; + // Now that we are frozen, the meaning of mHadMinViolation and + // mHadMaxViolation changes to indicate min and max clamping. Clear + // both of the member variables so that they are ready to be set + // as clamping state later, if necessary. + mHadMinViolation = false; + mHadMaxViolation = false; + } + + void SetHadMinViolation() { + MOZ_ASSERT(!mIsFrozen, + "shouldn't be changing main size & having violations " + "after we're frozen"); + mHadMinViolation = true; + } + void SetHadMaxViolation() { + MOZ_ASSERT(!mIsFrozen, + "shouldn't be changing main size & having violations " + "after we're frozen"); + mHadMaxViolation = true; + } + void ClearViolationFlags() { + MOZ_ASSERT(!mIsFrozen, + "shouldn't be altering violation flags after we're " + "frozen"); + mHadMinViolation = mHadMaxViolation = false; + } + + void SetWasMinClamped() { + MOZ_ASSERT(!mHadMinViolation && !mHadMaxViolation, "only clamp once"); + // This reuses the mHadMinViolation member variable to track clamping + // events. This is allowable because mHadMinViolation only reflects + // a violation up until the item is frozen. + MOZ_ASSERT(mIsFrozen, "shouldn't set clamping state when we are unfrozen"); + mHadMinViolation = true; + } + void SetWasMaxClamped() { + MOZ_ASSERT(!mHadMinViolation && !mHadMaxViolation, "only clamp once"); + // This reuses the mHadMaxViolation member variable to track clamping + // events. This is allowable because mHadMaxViolation only reflects + // a violation up until the item is frozen. + MOZ_ASSERT(mIsFrozen, "shouldn't set clamping state when we are unfrozen"); + mHadMaxViolation = true; + } + + // Setters for values that are determined after we've resolved our main size + // ------------------------------------------------------------------------- + + // Sets the main-axis position of our flex item's content-box. + // (This is the distance between the main-start edge of the flex container + // and the main-start edge of the flex item's content-box.) + void SetMainPosition(nscoord aPosn) { + MOZ_ASSERT(mIsFrozen, "main size should be resolved before this"); + mMainPosn = aPosn; + } + + // Sets the cross-size of our flex item's content-box. + void SetCrossSize(nscoord aCrossSize) { + MOZ_ASSERT(!mIsStretched, + "Cross size shouldn't be modified after it's been stretched"); + mCrossSize = aCrossSize; + } + + // Sets the cross-axis position of our flex item's content-box. + // (This is the distance between the cross-start edge of the flex container + // and the cross-start edge of the flex item.) + void SetCrossPosition(nscoord aPosn) { + MOZ_ASSERT(mIsFrozen, "main size should be resolved before this"); + mCrossPosn = aPosn; + } + + // After a FlexItem has had a reflow, this method can be used to cache its + // (possibly-unresolved) ascent, in case it's needed later for + // baseline-alignment or to establish the container's baseline. + // (NOTE: This can be marked 'const' even though it's modifying mAscent, + // because mAscent is mutable. It's nice for this to be 'const', because it + // means our final reflow can iterate over const FlexItem pointers, and we + // can be sure it's not modifying those FlexItems, except via this method.) + void SetAscent(nscoord aAscent) const { + mAscent = aAscent; // NOTE: this may be ASK_FOR_BASELINE + } + + void SetHadMeasuringReflow() { mHadMeasuringReflow = true; } + + void SetIsStretched() { + MOZ_ASSERT(mIsFrozen, "main size should be resolved before this"); + mIsStretched = true; + } + + void SetIsFlexBaseSizeContentBSize() { mIsFlexBaseSizeContentBSize = true; } + + void SetIsMainMinSizeContentBSize() { mIsMainMinSizeContentBSize = true; } + + // Setter for margin components (for resolving "auto" margins) + void SetMarginComponentForSide(LogicalSide aSide, nscoord aLength) { + MOZ_ASSERT(mIsFrozen, "main size should be resolved before this"); + mMargin.Side(aSide, mCBWM) = aLength; + } + + void ResolveStretchedCrossSize(nscoord aLineCrossSize); + + // Resolves flex base size if flex-basis' used value is 'content', using this + // item's preferred aspect ratio and cross size. + void ResolveFlexBaseSizeFromAspectRatio(const ReflowInput& aItemReflowInput); + + uint32_t NumAutoMarginsInMainAxis() const { + return NumAutoMarginsInAxis(MainAxis()); + }; + + uint32_t NumAutoMarginsInCrossAxis() const { + return NumAutoMarginsInAxis(CrossAxis()); + }; + + // Once the main size has been resolved, should we bother doing layout to + // establish the cross size? + bool CanMainSizeInfluenceCrossSize() const; + + // Returns a main size, clamped by any definite min and max cross size + // converted through the preferred aspect ratio. The caller is responsible for + // ensuring that the flex item's preferred aspect ratio is not zero. + nscoord ClampMainSizeViaCrossAxisConstraints( + nscoord aMainSize, const ReflowInput& aItemReflowInput) const; + + // Indicates whether we think this flex item needs a "final" reflow + // (after its final flexed size & final position have been determined). + // + // @param aParentReflowInput the flex container's reflow input. + // @return true if such a reflow is needed, or false if we believe it can + // simply be moved to its final position and skip the reflow. + bool NeedsFinalReflow(const ReflowInput& aParentReflowInput) const; + + // Gets the block frame that contains the flex item's content. This is + // Frame() itself or one of its descendants. + nsBlockFrame* BlockFrame() const; + + protected: + bool IsMinSizeAutoResolutionNeeded() const; + + uint32_t NumAutoMarginsInAxis(LogicalAxis aAxis) const; + + // Values that we already know in constructor, and remain unchanged: + // The flex item's frame. + nsIFrame* mFrame = nullptr; + float mFlexGrow = 0.0f; + float mFlexShrink = 0.0f; + AspectRatio mAspectRatio; + + // The flex item's writing mode. + WritingMode mWM; + + // The flex container's writing mode. + WritingMode mCBWM; + + // The flex container's main axis in flex container's writing mode. + LogicalAxis mMainAxis; + + // Stored in flex container's writing mode. + LogicalMargin mBorderPadding; + + // Stored in flex container's writing mode. Its value can change when we + // resolve "auto" marigns. + LogicalMargin mMargin; + + // These are non-const so that we can lazily update them with the item's + // intrinsic size (obtained via a "measuring" reflow), when necessary. + // (e.g. for "flex-basis:auto;height:auto" & "min-height:auto") + nscoord mFlexBaseSize = 0; + nscoord mMainMinSize = 0; + nscoord mMainMaxSize = 0; + + // mCrossMinSize and mCrossMaxSize are not changed after constructor. + nscoord mCrossMinSize = 0; + nscoord mCrossMaxSize = 0; + + // Values that we compute after constructor: + nscoord mMainSize = 0; + nscoord mMainPosn = 0; + nscoord mCrossSize = 0; + nscoord mCrossPosn = 0; + + // Mutable b/c it's set & resolved lazily, sometimes via const pointer. See + // comment above SetAscent(). + // We initialize this to ASK_FOR_BASELINE, and opportunistically fill it in + // with a real value if we end up reflowing this flex item. (But if we don't + // reflow this flex item, then this sentinel tells us that we don't know it + // yet & anyone who cares will need to explicitly request it.) + // + // Both mAscent and mAscentForLast are distance from the frame's border-box + // block-start edge. + mutable nscoord mAscent = ReflowOutput::ASK_FOR_BASELINE; + mutable nscoord mAscentForLast = ReflowOutput::ASK_FOR_BASELINE; + + // Temporary state, while we're resolving flexible widths (for our main size) + // XXXdholbert To save space, we could use a union to make these variables + // overlay the same memory as some other member vars that aren't touched + // until after main-size has been resolved. In particular, these could share + // memory with mMainPosn through mAscent, and mIsStretched. + double mShareOfWeightSoFar = 0.0; + + bool mIsFrozen = false; + bool mHadMinViolation = false; + bool mHadMaxViolation = false; + + // Did this item get a preliminary reflow, to measure its desired height? + bool mHadMeasuringReflow = false; + + // See IsStretched() documentation. + bool mIsStretched = false; + + // Is this item a "strut" left behind by an element with visibility:collapse? + bool mIsStrut = false; + + // See IsInlineAxisMainAxis() documentation. This is not changed after + // constructor. + bool mIsInlineAxisMainAxis = true; + + // Does this item need to resolve a min-[width|height]:auto (in main-axis)? + // + // Note: mNeedsMinSizeAutoResolution needs to be declared towards the end of + // the member variables since it's initialized in a method that depends on + // other members declared above such as mCBWM, mMainAxis, and + // mIsInlineAxisMainAxis. + bool mNeedsMinSizeAutoResolution = false; + + // Should we take care to treat this item's resolved BSize as indefinite? + bool mTreatBSizeAsIndefinite = false; + + // Does this item have an auto margin in either main or cross axis? + bool mHasAnyAutoMargin = false; + + // Does this item have a content-based flex base size (and is that a size in + // its block-axis)? + bool mIsFlexBaseSizeContentBSize = false; + + // Does this item have a content-based resolved auto min size (and is that a + // size in its block-axis)? + bool mIsMainMinSizeContentBSize = false; + + // If this item is {first,last}-baseline-aligned using 'align-self', which of + // its FlexLine's baseline sharing groups does it participate in? + BaselineSharingGroup mBaselineSharingGroup = BaselineSharingGroup::First; + + // My "align-self" computed value (with "auto" swapped out for parent"s + // "align-items" value, in our constructor). + StyleAlignSelf mAlignSelf{StyleAlignFlags::AUTO}; + + // Flags for 'align-self' (safe/unsafe/legacy). + StyleAlignFlags mAlignSelfFlags{0}; +}; + +/** + * Represents a single flex line in a flex container. + * Manages an array of the FlexItems that are in the line. + */ +class nsFlexContainerFrame::FlexLine final { + public: + explicit FlexLine(nscoord aMainGapSize) : mMainGapSize(aMainGapSize) {} + + nscoord SumOfGaps() const { + return NumItems() > 0 ? (NumItems() - 1) * mMainGapSize : 0; + } + + // Returns the sum of our FlexItems' outer hypothetical main sizes plus the + // sum of main axis {row,column}-gaps between items. + // ("outer" = margin-box, and "hypothetical" = before flexing) + AuCoord64 TotalOuterHypotheticalMainSize() const { + return mTotalOuterHypotheticalMainSize; + } + + // Accessors for our FlexItems & information about them: + // + // Note: Callers must use IsEmpty() to ensure that the FlexLine is non-empty + // before calling accessors that return FlexItem. + FlexItem& FirstItem() { return mItems[0]; } + const FlexItem& FirstItem() const { return mItems[0]; } + + FlexItem& LastItem() { return mItems.LastElement(); } + const FlexItem& LastItem() const { return mItems.LastElement(); } + + // The "startmost"/"endmost" is from the perspective of the flex container's + // writing-mode, not from the perspective of the flex-relative main axis. + const FlexItem& StartmostItem(const FlexboxAxisTracker& aAxisTracker) const { + return aAxisTracker.IsMainAxisReversed() ? LastItem() : FirstItem(); + } + const FlexItem& EndmostItem(const FlexboxAxisTracker& aAxisTracker) const { + return aAxisTracker.IsMainAxisReversed() ? FirstItem() : LastItem(); + } + + bool IsEmpty() const { return mItems.IsEmpty(); } + + uint32_t NumItems() const { return mItems.Length(); } + + nsTArray<FlexItem>& Items() { return mItems; } + const nsTArray<FlexItem>& Items() const { return mItems; } + + // Adds the last flex item's hypothetical outer main-size and + // margin/border/padding to our totals. This should be called exactly once for + // each flex item, after we've determined that this line is the correct home + // for that item. + void AddLastItemToMainSizeTotals() { + const FlexItem& lastItem = Items().LastElement(); + + // Update our various bookkeeping member-vars: + if (lastItem.IsFrozen()) { + mNumFrozenItems++; + } + + mTotalItemMBP += lastItem.MarginBorderPaddingSizeInMainAxis(); + mTotalOuterHypotheticalMainSize += lastItem.OuterMainSize(); + + // If the item added was not the first item in the line, we add in any gap + // space as needed. + if (NumItems() >= 2) { + mTotalOuterHypotheticalMainSize += mMainGapSize; + } + } + + // Computes the cross-size and baseline position of this FlexLine, based on + // its FlexItems. + void ComputeCrossSizeAndBaseline(const FlexboxAxisTracker& aAxisTracker); + + // Returns the cross-size of this line. + nscoord LineCrossSize() const { return mLineCrossSize; } + + // Setter for line cross-size -- needed for cases where the flex container + // imposes a cross-size on the line. (e.g. for single-line flexbox, or for + // multi-line flexbox with 'align-content: stretch') + void SetLineCrossSize(nscoord aLineCrossSize) { + mLineCrossSize = aLineCrossSize; + } + + /** + * Returns the offset within this line where any baseline-aligned FlexItems + * should place their baseline. The return value represents a distance from + * the line's cross-start edge. + * + * If there are no baseline-aligned FlexItems, returns nscoord_MIN. + */ + nscoord FirstBaselineOffset() const { return mFirstBaselineOffset; } + + /** + * Returns the offset within this line where any last baseline-aligned + * FlexItems should place their baseline. Opposite the case of the first + * baseline offset, this represents a distance from the line's cross-end + * edge (since last baseline-aligned items are flush to the cross-end edge). + * + * If there are no last baseline-aligned FlexItems, returns nscoord_MIN. + */ + nscoord LastBaselineOffset() const { return mLastBaselineOffset; } + + // Extract a baseline from this line, which would be suitable for use as the + // flex container's 'aBaselineGroup' (i.e. first/last) baseline. + // https://drafts.csswg.org/css-flexbox-1/#flex-baselines + // + // The return value always represents a distance from the line's cross-start + // edge, even if we are querying last baseline. If this line has no flex items + // in its aBaselineGroup group, this method falls back to trying the opposite + // group. If this line has no baseline-aligned items at all, this returns + // nscoord_MIN. + nscoord ExtractBaselineOffset(BaselineSharingGroup aBaselineGroup) const; + + /** + * Returns the gap size in the main axis for this line. Used for gap + * calculations. + */ + nscoord MainGapSize() const { return mMainGapSize; } + + // Runs the "Resolving Flexible Lengths" algorithm from section 9.7 of the + // CSS flexbox spec to distribute aFlexContainerMainSize among our flex items. + // https://drafts.csswg.org/css-flexbox-1/#resolve-flexible-lengths + void ResolveFlexibleLengths(nscoord aFlexContainerMainSize, + ComputedFlexLineInfo* aLineInfo); + + void PositionItemsInMainAxis(const StyleContentDistribution& aJustifyContent, + nscoord aContentBoxMainSize, + const FlexboxAxisTracker& aAxisTracker); + + void PositionItemsInCrossAxis(nscoord aLineStartPosition, + const FlexboxAxisTracker& aAxisTracker); + + private: + // Helpers for ResolveFlexibleLengths(): + void FreezeItemsEarly(bool aIsUsingFlexGrow, ComputedFlexLineInfo* aLineInfo); + + void FreezeOrRestoreEachFlexibleSize(const nscoord aTotalViolation, + bool aIsFinalIteration); + + // Stores this line's flex items. + nsTArray<FlexItem> mItems; + + // Number of *frozen* FlexItems in this line, based on FlexItem::IsFrozen(). + // Mostly used for optimization purposes, e.g. to bail out early from loops + // when we can tell they have nothing left to do. + uint32_t mNumFrozenItems = 0; + + // Sum of margin/border/padding for the FlexItems in this FlexLine. + nscoord mTotalItemMBP = 0; + + // Sum of FlexItems' outer hypothetical main sizes and all main-axis + // {row,columnm}-gaps between items. + // (i.e. their flex base sizes, clamped via their min/max-size properties, + // plus their main-axis margin/border/padding, plus the sum of the gaps.) + // + // This variable uses a 64-bit coord type to avoid integer overflow in case + // several of the individual items have huge hypothetical main sizes, which + // can happen with percent-width table-layout:fixed descendants. We have to + // avoid integer overflow in order to shrink items properly in that scenario. + AuCoord64 mTotalOuterHypotheticalMainSize = 0; + + nscoord mLineCrossSize = 0; + nscoord mFirstBaselineOffset = nscoord_MIN; + nscoord mLastBaselineOffset = nscoord_MIN; + + // Maintain size of each {row,column}-gap in the main axis + const nscoord mMainGapSize; +}; + +// The "startmost"/"endmost" is from the perspective of the flex container's +// writing-mode, not from the perspective of the flex-relative cross axis. +const FlexLine& StartmostLine(const nsTArray<FlexLine>& aLines, + const FlexboxAxisTracker& aAxisTracker) { + return aAxisTracker.IsCrossAxisReversed() ? aLines.LastElement() : aLines[0]; +} +const FlexLine& EndmostLine(const nsTArray<FlexLine>& aLines, + const FlexboxAxisTracker& aAxisTracker) { + return aAxisTracker.IsCrossAxisReversed() ? aLines[0] : aLines.LastElement(); +} + +// Information about a strut left behind by a FlexItem that's been collapsed +// using "visibility:collapse". +struct nsFlexContainerFrame::StrutInfo { + StrutInfo(uint32_t aItemIdx, nscoord aStrutCrossSize) + : mItemIdx(aItemIdx), mStrutCrossSize(aStrutCrossSize) {} + + uint32_t mItemIdx; // Index in the child list. + nscoord mStrutCrossSize; // The cross-size of this strut. +}; + +// Flex data shared by the flex container frames in a continuation chain, owned +// by the first-in-flow. The data is initialized at the end of the +// first-in-flow's Reflow(). +struct nsFlexContainerFrame::SharedFlexData final { + // The flex lines generated in DoFlexLayout() by our first-in-flow. + nsTArray<FlexLine> mLines; + + // The final content main/cross size computed by DoFlexLayout. + nscoord mContentBoxMainSize = NS_UNCONSTRAINEDSIZE; + nscoord mContentBoxCrossSize = NS_UNCONSTRAINEDSIZE; + + // Update this struct. Called by the first-in-flow. + void Update(FlexLayoutResult&& aFlr) { + mLines = std::move(aFlr.mLines); + mContentBoxMainSize = aFlr.mContentBoxMainSize; + mContentBoxCrossSize = aFlr.mContentBoxCrossSize; + } + + // The frame property under which this struct is stored. Set only on the + // first-in-flow. + NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, SharedFlexData) +}; + +// Flex data stored in every flex container's in-flow fragment (continuation). +// +// It's intended to prevent quadratic operations resulting from each fragment +// having to walk its full prev-in-flow chain, and also serves as an argument to +// the flex container next-in-flow's ReflowChildren(), to compute the position +// offset for each flex item. +struct nsFlexContainerFrame::PerFragmentFlexData final { + // Suppose D is the distance from a flex container fragment's content-box + // block-start edge to whichever is larger of either (a) the block-end edge of + // its children, or (b) the available space's block-end edge. (Note: in case + // (b), D is conceptually the sum of the block-size of the children, the + // packing space before & in between them, and part of the packing space after + // them.) + // + // This variable stores the sum of the D values for the current flex container + // fragments and for all its previous fragments + nscoord mCumulativeContentBoxBSize = 0; + + // This variable accumulates FirstLineOrFirstItemBAxisMetrics::mBEndEdgeShift, + // for the current flex container fragment and for all its previous fragments. + // See the comment of mBEndEdgeShift for its computation details. In short, + // this value is the net block-end edge shift, accumulated for the children in + // all the previous fragments. This number is non-negative. + // + // This value is also used to grow a flex container's block-size if the + // container's computed block-size is unconstrained. For example: a tall item + // may be pushed to the next page/column, which leaves some wasted area at the + // bottom of the current flex container fragment, and causes the flex + // container fragments to be (collectively) larger than the hypothetical + // unfragmented size. Another example: a tall flex item may be broken into + // multiple fragments, and those fragments may have a larger collective + // block-size as compared to the item's original unfragmented size; the + // container would need to increase its block-size to account for this. + nscoord mCumulativeBEndEdgeShift = 0; + + // The frame property under which this struct is stored. Cached on every + // in-flow fragment (continuation) at the end of the flex container's + // Reflow(). + NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, PerFragmentFlexData) +}; + +static void BuildStrutInfoFromCollapsedItems(const nsTArray<FlexLine>& aLines, + nsTArray<StrutInfo>& aStruts) { + MOZ_ASSERT(aStruts.IsEmpty(), + "We should only build up StrutInfo once per reflow, so " + "aStruts should be empty when this is called"); + + uint32_t itemIdxInContainer = 0; + for (const FlexLine& line : aLines) { + for (const FlexItem& item : line.Items()) { + if (item.Frame()->StyleVisibility()->IsCollapse()) { + // Note the cross size of the line as the item's strut size. + aStruts.AppendElement( + StrutInfo(itemIdxInContainer, line.LineCrossSize())); + } + itemIdxInContainer++; + } + } +} + +static mozilla::StyleAlignFlags SimplifyAlignOrJustifyContentForOneItem( + const StyleContentDistribution& aAlignmentVal, bool aIsAlign) { + // Mask away any explicit fallback, to get the main (non-fallback) part of + // the specified value: + StyleAlignFlags specified = aAlignmentVal.primary; + + // XXX strip off <overflow-position> bits until we implement it (bug 1311892) + specified &= ~StyleAlignFlags::FLAG_BITS; + + // FIRST: handle a special-case for "justify-content:stretch" (or equivalent), + // which requires that we ignore any author-provided explicit fallback value. + if (specified == StyleAlignFlags::NORMAL) { + // In a flex container, *-content: "'normal' behaves as 'stretch'". + // Do that conversion early, so it benefits from our 'stretch' special-case. + // https://drafts.csswg.org/css-align-3/#distribution-flex + specified = StyleAlignFlags::STRETCH; + } + if (!aIsAlign && specified == StyleAlignFlags::STRETCH) { + // In a flex container, in "justify-content Axis: [...] 'stretch' behaves + // as 'flex-start' (ignoring the specified fallback alignment, if any)." + // https://drafts.csswg.org/css-align-3/#distribution-flex + // So, we just directly return 'flex-start', & ignore explicit fallback.. + return StyleAlignFlags::FLEX_START; + } + + // TODO: Check for an explicit fallback value (and if it's present, use it) + // here once we parse it, see https://github.com/w3c/csswg-drafts/issues/1002. + + // If there's no explicit fallback, use the implied fallback values for + // space-{between,around,evenly} (since those values only make sense with + // multiple alignment subjects), and otherwise just use the specified value: + if (specified == StyleAlignFlags::SPACE_BETWEEN) { + return StyleAlignFlags::FLEX_START; + } + if (specified == StyleAlignFlags::SPACE_AROUND || + specified == StyleAlignFlags::SPACE_EVENLY) { + return StyleAlignFlags::CENTER; + } + return specified; +} + +bool nsFlexContainerFrame::DrainSelfOverflowList() { + return DrainAndMergeSelfOverflowList(); +} + +void nsFlexContainerFrame::AppendFrames(ChildListID aListID, + nsFrameList&& aFrameList) { + NoteNewChildren(aListID, aFrameList); + nsContainerFrame::AppendFrames(aListID, std::move(aFrameList)); +} + +void nsFlexContainerFrame::InsertFrames( + ChildListID aListID, nsIFrame* aPrevFrame, + const nsLineList::iterator* aPrevFrameLine, nsFrameList&& aFrameList) { + NoteNewChildren(aListID, aFrameList); + nsContainerFrame::InsertFrames(aListID, aPrevFrame, aPrevFrameLine, + std::move(aFrameList)); +} + +void nsFlexContainerFrame::RemoveFrame(DestroyContext& aContext, + ChildListID aListID, + nsIFrame* aOldFrame) { + MOZ_ASSERT(aListID == FrameChildListID::Principal, "unexpected child list"); + +#ifdef DEBUG + SetDidPushItemsBitIfNeeded(aListID, aOldFrame); +#endif + + nsContainerFrame::RemoveFrame(aContext, aListID, aOldFrame); +} + +StyleAlignFlags nsFlexContainerFrame::CSSAlignmentForAbsPosChild( + const ReflowInput& aChildRI, LogicalAxis aLogicalAxis) const { + const FlexboxAxisTracker axisTracker(this); + + // If we're row-oriented and the caller is asking about our inline axis (or + // alternately, if we're column-oriented and the caller is asking about our + // block axis), then the caller is really asking about our *main* axis. + // Otherwise, the caller is asking about our cross axis. + const bool isMainAxis = + (axisTracker.IsRowOriented() == (aLogicalAxis == eLogicalAxisInline)); + const nsStylePosition* containerStylePos = StylePosition(); + const bool isAxisReversed = isMainAxis ? axisTracker.IsMainAxisReversed() + : axisTracker.IsCrossAxisReversed(); + + StyleAlignFlags alignment{0}; + StyleAlignFlags alignmentFlags{0}; + if (isMainAxis) { + // We're aligning in the main axis: align according to 'justify-content'. + // (We don't care about justify-self; it has no effect on children of flex + // containers, unless https://github.com/w3c/csswg-drafts/issues/7644 + // changes that.) + alignment = SimplifyAlignOrJustifyContentForOneItem( + containerStylePos->mJustifyContent, + /*aIsAlign = */ false); + } else { + // We're aligning in the cross axis: align according to 'align-self'. + // (We don't care about align-content; it has no effect on abspos flex + // children, per https://github.com/w3c/csswg-drafts/issues/7596 ) + alignment = aChildRI.mStylePosition->UsedAlignSelf(Style())._0; + // Extract and strip align flag bits + alignmentFlags = alignment & StyleAlignFlags::FLAG_BITS; + alignment &= ~StyleAlignFlags::FLAG_BITS; + + if (alignment == StyleAlignFlags::NORMAL) { + // "the 'normal' keyword behaves as 'start' on replaced + // absolutely-positioned boxes, and behaves as 'stretch' on all other + // absolutely-positioned boxes." + // https://drafts.csswg.org/css-align/#align-abspos + alignment = aChildRI.mFrame->IsReplaced() ? StyleAlignFlags::START + : StyleAlignFlags::STRETCH; + } + } + + if (alignment == StyleAlignFlags::STRETCH) { + // The default fallback alignment for 'stretch' is 'flex-start'. + alignment = StyleAlignFlags::FLEX_START; + } + + // Resolve flex-start, flex-end, auto, left, right, baseline, last baseline; + if (alignment == StyleAlignFlags::FLEX_START) { + alignment = isAxisReversed ? StyleAlignFlags::END : StyleAlignFlags::START; + } else if (alignment == StyleAlignFlags::FLEX_END) { + alignment = isAxisReversed ? StyleAlignFlags::START : StyleAlignFlags::END; + } else if (alignment == StyleAlignFlags::LEFT || + alignment == StyleAlignFlags::RIGHT) { + MOZ_ASSERT(isMainAxis, "Only justify-* can have 'left' and 'right'!"); + alignment = axisTracker.ResolveJustifyLeftRight(alignment); + } else if (alignment == StyleAlignFlags::BASELINE) { + alignment = StyleAlignFlags::START; + } else if (alignment == StyleAlignFlags::LAST_BASELINE) { + alignment = StyleAlignFlags::END; + } + + MOZ_ASSERT(alignment != StyleAlignFlags::STRETCH, + "We should've converted 'stretch' to the fallback alignment!"); + MOZ_ASSERT(alignment != StyleAlignFlags::FLEX_START && + alignment != StyleAlignFlags::FLEX_END, + "nsAbsoluteContainingBlock doesn't know how to handle " + "flex-relative axis for flex containers!"); + + return (alignment | alignmentFlags); +} + +void nsFlexContainerFrame::GenerateFlexItemForChild( + FlexLine& aLine, nsIFrame* aChildFrame, + const ReflowInput& aParentReflowInput, + const FlexboxAxisTracker& aAxisTracker, + const nscoord aTentativeContentBoxCrossSize) { + const auto flexWM = aAxisTracker.GetWritingMode(); + const auto childWM = aChildFrame->GetWritingMode(); + + // Note: we use GetStyleFrame() to access the sizing & flex properties here. + // This lets us correctly handle table wrapper frames as flex items since + // their inline-size and block-size properties are always 'auto'. In order for + // 'flex-basis:auto' to actually resolve to the author's specified inline-size + // or block-size, we need to dig through to the inner table. + const auto* stylePos = + nsLayoutUtils::GetStyleFrame(aChildFrame)->StylePosition(); + + // Construct a StyleSizeOverrides for this flex item so that its ReflowInput + // below will use and resolve its flex base size rather than its corresponding + // preferred main size property (only for modern CSS flexbox). + StyleSizeOverrides sizeOverrides; + if (!IsLegacyBox(this)) { + Maybe<StyleSize> styleFlexBaseSize; + + // When resolving flex base size, flex items use their 'flex-basis' property + // in place of their preferred main size (e.g. 'width') for sizing purposes, + // *unless* they have 'flex-basis:auto' in which case they use their + // preferred main size after all. + const auto& flexBasis = stylePos->mFlexBasis; + const auto& styleMainSize = stylePos->Size(aAxisTracker.MainAxis(), flexWM); + if (IsUsedFlexBasisContent(flexBasis, styleMainSize)) { + // If we get here, we're resolving the flex base size for a flex item, and + // we fall into the flexbox spec section 9.2 step 3, substep C (if we have + // a definite cross size) or E (if not). + styleFlexBaseSize.emplace(StyleSize::MaxContent()); + } else if (flexBasis.IsSize() && !flexBasis.IsAuto()) { + // For all other non-'auto' flex-basis values, we just swap in the + // flex-basis itself for the preferred main-size property. + styleFlexBaseSize.emplace(flexBasis.AsSize()); + } else { + // else: flex-basis is 'auto', which is deferring to some explicit value + // in the preferred main size. + MOZ_ASSERT(flexBasis.IsAuto()); + styleFlexBaseSize.emplace(styleMainSize); + } + + MOZ_ASSERT(styleFlexBaseSize, "We should've emplace styleFlexBaseSize!"); + + // Provide the size override for the preferred main size property. + if (aAxisTracker.IsInlineAxisMainAxis(childWM)) { + sizeOverrides.mStyleISize = std::move(styleFlexBaseSize); + } else { + sizeOverrides.mStyleBSize = std::move(styleFlexBaseSize); + } + + // 'flex-basis' should works on the inner table frame for a table flex item, + // just like how 'height' works on a table element. + sizeOverrides.mApplyOverridesVerbatim = true; + } + + // Create temporary reflow input just for sizing -- to get hypothetical + // main-size and the computed values of min / max main-size property. + // (This reflow input will _not_ be used for reflow.) + ReflowInput childRI(PresContext(), aParentReflowInput, aChildFrame, + aParentReflowInput.ComputedSize(childWM), Nothing(), {}, + sizeOverrides, {ComputeSizeFlag::ShrinkWrap}); + + // FLEX GROW & SHRINK WEIGHTS + // -------------------------- + float flexGrow, flexShrink; + if (IsLegacyBox(this)) { + flexGrow = flexShrink = aChildFrame->StyleXUL()->mBoxFlex; + } else { + flexGrow = stylePos->mFlexGrow; + flexShrink = stylePos->mFlexShrink; + } + + // MAIN SIZES (flex base size, min/max size) + // ----------------------------------------- + const LogicalSize computedSizeInFlexWM = childRI.ComputedSize(flexWM); + const LogicalSize computedMinSizeInFlexWM = childRI.ComputedMinSize(flexWM); + const LogicalSize computedMaxSizeInFlexWM = childRI.ComputedMaxSize(flexWM); + + const nscoord flexBaseSize = aAxisTracker.MainComponent(computedSizeInFlexWM); + const nscoord mainMinSize = + aAxisTracker.MainComponent(computedMinSizeInFlexWM); + const nscoord mainMaxSize = + aAxisTracker.MainComponent(computedMaxSizeInFlexWM); + + // This is enforced by the ReflowInput where these values come from: + MOZ_ASSERT(mainMinSize <= mainMaxSize, "min size is larger than max size"); + + // CROSS SIZES (tentative cross size, min/max cross size) + // ------------------------------------------------------ + // Grab the cross size from the reflow input. This might be the right value, + // or we might resolve it to something else in SizeItemInCrossAxis(); hence, + // it's tentative. See comment under "Cross Size Determination" for more. + const nscoord tentativeCrossSize = + aAxisTracker.CrossComponent(computedSizeInFlexWM); + const nscoord crossMinSize = + aAxisTracker.CrossComponent(computedMinSizeInFlexWM); + const nscoord crossMaxSize = + aAxisTracker.CrossComponent(computedMaxSizeInFlexWM); + + // Construct the flex item! + FlexItem& item = *aLine.Items().EmplaceBack( + childRI, flexGrow, flexShrink, flexBaseSize, mainMinSize, mainMaxSize, + tentativeCrossSize, crossMinSize, crossMaxSize, aAxisTracker); + + // We may be about to do computations based on our item's cross-size + // (e.g. using it as a constraint when measuring our content in the + // main axis, or using it with the preferred aspect ratio to obtain a main + // size). BEFORE WE DO THAT, we need let the item "pre-stretch" its cross size + // (if it's got 'align-self:stretch'), for a certain case where the spec says + // the stretched cross size is considered "definite". That case is if we + // have a single-line (nowrap) flex container which itself has a definite + // cross-size. Otherwise, we'll wait to do stretching, since (in other + // cases) we don't know how much the item should stretch yet. + const bool isSingleLine = + StyleFlexWrap::Nowrap == aParentReflowInput.mStylePosition->mFlexWrap; + if (isSingleLine) { + // Is container's cross size "definite"? + // - If it's column-oriented, then "yes", because its cross size is its + // inline-size which is always definite from its descendants' perspective. + // - Otherwise (if it's row-oriented), then we check the actual size + // and call it definite if it's not NS_UNCONSTRAINEDSIZE. + if (aAxisTracker.IsColumnOriented() || + aTentativeContentBoxCrossSize != NS_UNCONSTRAINEDSIZE) { + // Container's cross size is "definite", so we can resolve the item's + // stretched cross size using that. + item.ResolveStretchedCrossSize(aTentativeContentBoxCrossSize); + } + } + + // Before thinking about freezing the item at its base size, we need to give + // it a chance to recalculate the base size from its cross size and aspect + // ratio (since its cross size might've *just* now become definite due to + // 'stretch' above) + item.ResolveFlexBaseSizeFromAspectRatio(childRI); + + // If we're inflexible, we can just freeze to our hypothetical main-size + // up-front. + if (flexGrow == 0.0f && flexShrink == 0.0f) { + item.Freeze(); + if (flexBaseSize < mainMinSize) { + item.SetWasMinClamped(); + } else if (flexBaseSize > mainMaxSize) { + item.SetWasMaxClamped(); + } + } + + // Resolve "flex-basis:auto" and/or "min-[width|height]:auto" (which might + // require us to reflow the item to measure content height) + ResolveAutoFlexBasisAndMinSize(item, childRI, aAxisTracker); +} + +// Static helper-functions for ResolveAutoFlexBasisAndMinSize(): +// ------------------------------------------------------------- +// Partially resolves "min-[width|height]:auto" and returns the resulting value. +// By "partially", I mean we don't consider the min-content size (but we do +// consider the main-size and main max-size properties, and the preferred aspect +// ratio). The caller is responsible for computing & considering the min-content +// size in combination with the partially-resolved value that this function +// returns. +// +// Basically, this function gets the specified size suggestion; if not, the +// transferred size suggestion; if both sizes do not exist, return nscoord_MAX. +// +// Spec reference: https://drafts.csswg.org/css-flexbox-1/#min-size-auto +static nscoord PartiallyResolveAutoMinSize( + const FlexItem& aFlexItem, const ReflowInput& aItemReflowInput, + const FlexboxAxisTracker& aAxisTracker) { + MOZ_ASSERT(aFlexItem.NeedsMinSizeAutoResolution(), + "only call for FlexItems that need min-size auto resolution"); + + const auto itemWM = aFlexItem.GetWritingMode(); + const auto cbWM = aAxisTracker.GetWritingMode(); + const auto& mainStyleSize = + aItemReflowInput.mStylePosition->Size(aAxisTracker.MainAxis(), cbWM); + const auto& maxMainStyleSize = + aItemReflowInput.mStylePosition->MaxSize(aAxisTracker.MainAxis(), cbWM); + const auto boxSizingAdjust = + aItemReflowInput.mStylePosition->mBoxSizing == StyleBoxSizing::Border + ? aFlexItem.BorderPadding().Size(cbWM) + : LogicalSize(cbWM); + + // If this flex item is a compressible replaced element list in CSS Sizing 3 + // §5.2.2, CSS Sizing 3 §5.2.1c requires us to resolve the percentage part of + // the preferred main size property against zero, yielding a definite + // specified size suggestion. Here we can use a zero percentage basis to + // fulfill this requirement. + const auto percentBasis = + aFlexItem.Frame()->IsPercentageResolvedAgainstZero(mainStyleSize, + maxMainStyleSize) + ? LogicalSize(cbWM, 0, 0) + : aItemReflowInput.mContainingBlockSize.ConvertTo(cbWM, itemWM); + + // Compute the specified size suggestion, which is the main-size property if + // it's definite. + nscoord specifiedSizeSuggestion = nscoord_MAX; + + if (aAxisTracker.IsRowOriented()) { + if (mainStyleSize.IsLengthPercentage()) { + // NOTE: We ignore extremum inline-size. This is OK because the caller is + // responsible for computing the min-content inline-size and min()'ing it + // with the value we return. + specifiedSizeSuggestion = aFlexItem.Frame()->ComputeISizeValue( + cbWM, percentBasis, boxSizingAdjust, + mainStyleSize.AsLengthPercentage()); + } + } else { + if (!nsLayoutUtils::IsAutoBSize(mainStyleSize, percentBasis.BSize(cbWM))) { + // NOTE: We ignore auto and extremum block-size. This is OK because the + // caller is responsible for computing the min-content block-size and + // min()'ing it with the value we return. + specifiedSizeSuggestion = nsLayoutUtils::ComputeBSizeValue( + percentBasis.BSize(cbWM), boxSizingAdjust.BSize(cbWM), + mainStyleSize.AsLengthPercentage()); + } + } + + if (specifiedSizeSuggestion != nscoord_MAX) { + // We have the specified size suggestion. Return it now since we don't need + // to consider transferred size suggestion. + FLEX_LOGV(" Specified size suggestion: %d", specifiedSizeSuggestion); + return specifiedSizeSuggestion; + } + + // Compute the transferred size suggestion, which is the cross size converted + // through the aspect ratio (if the item is replaced, and it has an aspect + // ratio and a definite cross size). + if (const auto& aspectRatio = aFlexItem.GetAspectRatio(); + aFlexItem.Frame()->IsReplaced() && aspectRatio && + aFlexItem.IsCrossSizeDefinite(aItemReflowInput)) { + // We have a usable aspect ratio. (not going to divide by 0) + nscoord transferredSizeSuggestion = aspectRatio.ComputeRatioDependentSize( + aFlexItem.MainAxis(), cbWM, aFlexItem.CrossSize(), boxSizingAdjust); + + // Clamp the transferred size suggestion by any definite min and max + // cross size converted through the aspect ratio. + transferredSizeSuggestion = aFlexItem.ClampMainSizeViaCrossAxisConstraints( + transferredSizeSuggestion, aItemReflowInput); + + FLEX_LOGV(" Transferred size suggestion: %d", transferredSizeSuggestion); + return transferredSizeSuggestion; + } + + return nscoord_MAX; +} + +// Note: If & when we handle "min-height: min-content" for flex items, +// we may want to resolve that in this function, too. +void nsFlexContainerFrame::ResolveAutoFlexBasisAndMinSize( + FlexItem& aFlexItem, const ReflowInput& aItemReflowInput, + const FlexboxAxisTracker& aAxisTracker) { + // (Note: We can guarantee that the flex-basis will have already been + // resolved if the main axis is the same as the item's inline + // axis. Inline-axis values should always be resolvable without reflow.) + const bool isMainSizeAuto = + (!aFlexItem.IsInlineAxisMainAxis() && + NS_UNCONSTRAINEDSIZE == aFlexItem.FlexBaseSize()); + + const bool isMainMinSizeAuto = aFlexItem.NeedsMinSizeAutoResolution(); + + if (!isMainSizeAuto && !isMainMinSizeAuto) { + // Nothing to do; this function is only needed for flex items + // with a used flex-basis of "auto" or a min-main-size of "auto". + return; + } + + FLEX_LOGV("Resolving auto main size or auto min main size for flex item %p", + aFlexItem.Frame()); + + nscoord resolvedMinSize; // (only set/used if isMainMinSizeAuto==true) + bool minSizeNeedsToMeasureContent = false; // assume the best + if (isMainMinSizeAuto) { + // Resolve the min-size, except for considering the min-content size. + // (We'll consider that later, if we need to.) + resolvedMinSize = + PartiallyResolveAutoMinSize(aFlexItem, aItemReflowInput, aAxisTracker); + if (resolvedMinSize > 0) { + // If resolvedMinSize were already at 0, we could skip calculating content + // size suggestion because it can't go any lower. + minSizeNeedsToMeasureContent = true; + } + } + + const bool flexBasisNeedsToMeasureContent = isMainSizeAuto; + + // Measure content, if needed (w/ intrinsic-width method or a reflow) + if (minSizeNeedsToMeasureContent || flexBasisNeedsToMeasureContent) { + // Compute the content size suggestion, which is the min-content size in the + // main axis. + nscoord contentSizeSuggestion = nscoord_MAX; + + if (aFlexItem.IsInlineAxisMainAxis()) { + if (minSizeNeedsToMeasureContent) { + // Compute the flex item's content size suggestion, which is the + // 'min-content' size on the main axis. + // https://drafts.csswg.org/css-flexbox-1/#content-size-suggestion + const auto cbWM = aAxisTracker.GetWritingMode(); + const auto itemWM = aFlexItem.GetWritingMode(); + const nscoord availISize = 0; // for min-content size + StyleSizeOverrides sizeOverrides; + sizeOverrides.mStyleISize.emplace(StyleSize::Auto()); + const auto sizeInItemWM = aFlexItem.Frame()->ComputeSize( + aItemReflowInput.mRenderingContext, itemWM, + aItemReflowInput.mContainingBlockSize, availISize, + aItemReflowInput.ComputedLogicalMargin(itemWM).Size(itemWM), + aItemReflowInput.ComputedLogicalBorderPadding(itemWM).Size(itemWM), + sizeOverrides, {ComputeSizeFlag::ShrinkWrap}); + + contentSizeSuggestion = aAxisTracker.MainComponent( + sizeInItemWM.mLogicalSize.ConvertTo(cbWM, itemWM)); + } + NS_ASSERTION(!flexBasisNeedsToMeasureContent, + "flex-basis:auto should have been resolved in the " + "reflow input, for horizontal flexbox. It shouldn't need " + "special handling here"); + } else { + // If this item is flexible (in its block axis)... + // OR if we're measuring its 'auto' min-BSize, with its main-size (in its + // block axis) being something non-"auto"... + // THEN: we assume that the computed BSize that we're reflowing with now + // could be different from the one we'll use for this flex item's + // "actual" reflow later on. In that case, we need to be sure the flex + // item treats this as a block-axis resize (regardless of whether there + // are actually any ancestors being resized in that axis). + // (Note: We don't have to do this for the inline axis, because + // InitResizeFlags will always turn on mIsIResize on when it sees that + // the computed ISize is different from current ISize, and that's all we + // need.) + bool forceBResizeForMeasuringReflow = + !aFlexItem.IsFrozen() || // Is the item flexible? + !flexBasisNeedsToMeasureContent; // Are we *only* measuring it for + // 'min-block-size:auto'? + + const ReflowInput& flexContainerRI = *aItemReflowInput.mParentReflowInput; + nscoord contentBSize = MeasureFlexItemContentBSize( + aFlexItem, forceBResizeForMeasuringReflow, flexContainerRI); + if (minSizeNeedsToMeasureContent) { + contentSizeSuggestion = contentBSize; + } + if (flexBasisNeedsToMeasureContent) { + aFlexItem.SetFlexBaseSizeAndMainSize(contentBSize); + aFlexItem.SetIsFlexBaseSizeContentBSize(); + } + } + + if (minSizeNeedsToMeasureContent) { + // Clamp the content size suggestion by any definite min and max cross + // size converted through the aspect ratio. + if (aFlexItem.HasAspectRatio()) { + contentSizeSuggestion = aFlexItem.ClampMainSizeViaCrossAxisConstraints( + contentSizeSuggestion, aItemReflowInput); + } + + FLEX_LOGV(" Content size suggestion: %d", contentSizeSuggestion); + resolvedMinSize = std::min(resolvedMinSize, contentSizeSuggestion); + + // Clamp the resolved min main size by the max main size if it's definite. + if (aFlexItem.MainMaxSize() != NS_UNCONSTRAINEDSIZE) { + resolvedMinSize = std::min(resolvedMinSize, aFlexItem.MainMaxSize()); + } else if (MOZ_UNLIKELY(resolvedMinSize > nscoord_MAX)) { + NS_WARNING("Bogus resolved auto min main size!"); + // Our resolved min-size is bogus, probably due to some huge sizes in + // the content. Clamp it to the valid nscoord range, so that we can at + // least depend on it being <= the max-size (which is also the + // nscoord_MAX sentinel value if we reach this point). + resolvedMinSize = nscoord_MAX; + } + FLEX_LOGV(" Resolved auto min main size: %d", resolvedMinSize); + + if (resolvedMinSize == contentSizeSuggestion) { + // When we are here, we've measured the item's content-based size, and + // we used it as the resolved auto min main size. Record the fact so + // that we can use it to determine whether we allow a flex item to grow + // its block-size in ReflowFlexItem(). + aFlexItem.SetIsMainMinSizeContentBSize(); + } + } + } + + if (isMainMinSizeAuto) { + aFlexItem.UpdateMainMinSize(resolvedMinSize); + } +} + +/** + * A cached result for a flex item's block-axis measuring reflow. This cache + * prevents us from doing exponential reflows in cases of deeply nested flex + * and scroll frames. + * + * We store the cached value in the flex item's frame property table, for + * simplicity. + * + * Right now, we cache the following as a "key", from the item's ReflowInput: + * - its ComputedSize + * - its min/max block size (in case its ComputedBSize is unconstrained) + * - its AvailableBSize + * ...and we cache the following as the "value", from the item's ReflowOutput: + * - its final content-box BSize + * + * The assumption here is that a given flex item measurement from our "value" + * won't change unless one of the pieces of the "key" change, or the flex + * item's intrinsic size is marked as dirty (due to a style or DOM change). + * (The latter will cause the cached value to be discarded, in + * nsIFrame::MarkIntrinsicISizesDirty.) + * + * Note that the components of "Key" (mComputed{MinB,MaxB,}Size and + * mAvailableBSize) are sufficient to catch any changes to the flex container's + * size that the item may care about for its measuring reflow. Specifically: + * - If the item cares about the container's size (e.g. if it has a percent + * height and the container's height changes, in a horizontal-WM container) + * then that'll be detectable via the item's ReflowInput's "ComputedSize()" + * differing from the value in our Key. And the same applies for the + * inline axis. + * - If the item is fragmentable (pending bug 939897) and its measured BSize + * depends on where it gets fragmented, then that sort of change can be + * detected due to the item's ReflowInput's "AvailableBSize()" differing + * from the value in our Key. + * + * One particular case to consider (& need to be sure not to break when + * changing this class): the flex item's computed BSize may change between + * measuring reflows due to how the mIsFlexContainerMeasuringBSize flag affects + * size computation (see bug 1336708). This is one reason we need to use the + * computed BSize as part of the key. + */ +class nsFlexContainerFrame::CachedBAxisMeasurement { + struct Key { + const LogicalSize mComputedSize; + const nscoord mComputedMinBSize; + const nscoord mComputedMaxBSize; + const nscoord mAvailableBSize; + + explicit Key(const ReflowInput& aRI) + : mComputedSize(aRI.ComputedSize()), + mComputedMinBSize(aRI.ComputedMinBSize()), + mComputedMaxBSize(aRI.ComputedMaxBSize()), + mAvailableBSize(aRI.AvailableBSize()) {} + + bool operator==(const Key& aOther) const { + return mComputedSize == aOther.mComputedSize && + mComputedMinBSize == aOther.mComputedMinBSize && + mComputedMaxBSize == aOther.mComputedMaxBSize && + mAvailableBSize == aOther.mAvailableBSize; + } + }; + + const Key mKey; + + // This could/should be const, but it's non-const for now just because it's + // assigned via a series of steps in the constructor body: + nscoord mBSize; + + public: + CachedBAxisMeasurement(const ReflowInput& aReflowInput, + const ReflowOutput& aReflowOutput) + : mKey(aReflowInput) { + // To get content-box bsize, we have to subtract off border & padding + // (and floor at 0 in case the border/padding are too large): + WritingMode itemWM = aReflowInput.GetWritingMode(); + nscoord borderBoxBSize = aReflowOutput.BSize(itemWM); + mBSize = + borderBoxBSize - + aReflowInput.ComputedLogicalBorderPadding(itemWM).BStartEnd(itemWM); + mBSize = std::max(0, mBSize); + } + + /** + * Returns true if this cached flex item measurement is valid for (i.e. can + * be expected to match the output of) a measuring reflow whose input + * parameters are given via aReflowInput. + */ + bool IsValidFor(const ReflowInput& aReflowInput) const { + return mKey == Key(aReflowInput); + } + + nscoord BSize() const { return mBSize; } +}; + +/** + * A cached copy of various metrics from a flex item's most recent final reflow. + * It can be used to determine whether we can optimize away the flex item's + * final reflow, when we perform an incremental reflow of its flex container. + */ +class CachedFinalReflowMetrics final { + public: + CachedFinalReflowMetrics(const ReflowInput& aReflowInput, + const ReflowOutput& aReflowOutput) + : CachedFinalReflowMetrics(aReflowInput.GetWritingMode(), aReflowInput, + aReflowOutput) {} + + CachedFinalReflowMetrics(const FlexItem& aItem, const LogicalSize& aSize) + : mBorderPadding(aItem.BorderPadding().ConvertTo( + aItem.GetWritingMode(), aItem.ContainingBlockWM())), + mSize(aSize), + mTreatBSizeAsIndefinite(aItem.TreatBSizeAsIndefinite()) {} + + const LogicalSize& Size() const { return mSize; } + const LogicalMargin& BorderPadding() const { return mBorderPadding; } + bool TreatBSizeAsIndefinite() const { return mTreatBSizeAsIndefinite; } + + private: + // A convenience constructor with a WritingMode argument. + CachedFinalReflowMetrics(WritingMode aWM, const ReflowInput& aReflowInput, + const ReflowOutput& aReflowOutput) + : mBorderPadding(aReflowInput.ComputedLogicalBorderPadding(aWM)), + mSize(aReflowOutput.Size(aWM) - mBorderPadding.Size(aWM)), + mTreatBSizeAsIndefinite(aReflowInput.mFlags.mTreatBSizeAsIndefinite) {} + + // The flex item's border and padding, in its own writing-mode, that it used + // used during its most recent "final reflow". + LogicalMargin mBorderPadding; + + // The flex item's content-box size, in its own writing-mode, that it used + // during its most recent "final reflow". + LogicalSize mSize; + + // True if the flex item's BSize was considered "indefinite" in its most + // recent "final reflow". (For a flex item "final reflow", this is fully + // determined by the mTreatBSizeAsIndefinite flag in ReflowInput. See the + // flag's documentation for more information.) + bool mTreatBSizeAsIndefinite; +}; + +/** + * When we instantiate/update a CachedFlexItemData, this enum must be used to + * indicate the sort of reflow whose results we're capturing. This impacts + * what we cache & how we use the cached information. + */ +enum class FlexItemReflowType { + // A reflow to measure the block-axis size of a flex item (as an input to the + // flex layout algorithm). + Measuring, + + // A reflow with the flex item's "final" size at the end of the flex layout + // algorithm. + Final, +}; + +/** + * This class stores information about the conditions and results for the most + * recent ReflowChild call that we made on a given flex item. This information + * helps us reason about whether we can assume that a subsequent ReflowChild() + * invocation is unnecessary & skippable. + */ +class nsFlexContainerFrame::CachedFlexItemData { + public: + CachedFlexItemData(const ReflowInput& aReflowInput, + const ReflowOutput& aReflowOutput, + FlexItemReflowType aType) { + Update(aReflowInput, aReflowOutput, aType); + } + + // This method is intended to be called after we perform either a "measuring + // reflow" or a "final reflow" for a given flex item. + void Update(const ReflowInput& aReflowInput, + const ReflowOutput& aReflowOutput, FlexItemReflowType aType) { + if (aType == FlexItemReflowType::Measuring) { + mBAxisMeasurement.reset(); + mBAxisMeasurement.emplace(aReflowInput, aReflowOutput); + // Clear any cached "last final reflow metrics", too, because now the most + // recent reflow was *not* a "final reflow". + mFinalReflowMetrics.reset(); + return; + } + + MOZ_ASSERT(aType == FlexItemReflowType::Final); + mFinalReflowMetrics.reset(); + mFinalReflowMetrics.emplace(aReflowInput, aReflowOutput); + } + + // This method is intended to be called for situations where we decide to + // skip a final reflow because we've just done a measuring reflow which left + // us (and our descendants) with the correct sizes. In this scenario, we + // still want to cache the size as if we did a final reflow (because we've + // determined that the recent measuring reflow was sufficient). That way, + // our flex container can still skip a final reflow for this item in the + // future as long as conditions are right. + void Update(const FlexItem& aItem, const LogicalSize& aSize) { + MOZ_ASSERT(!mFinalReflowMetrics, + "This version of the method is only intended to be called when " + "the most recent reflow was a 'measuring reflow'; and that " + "should have cleared out mFinalReflowMetrics"); + + mFinalReflowMetrics.reset(); // Just in case this assert^ fails. + mFinalReflowMetrics.emplace(aItem, aSize); + } + + // If the flex container needs a measuring reflow for the flex item, then the + // resulting block-axis measurements can be cached here. If no measurement + // has been needed so far, then this member will be Nothing(). + Maybe<CachedBAxisMeasurement> mBAxisMeasurement; + + // The metrics that the corresponding flex item used in its most recent + // "final reflow". (Note: the assumption here is that this reflow was this + // item's most recent reflow of any type. If the item ends up undergoing a + // subsequent measuring reflow, then this value needs to be cleared, because + // at that point it's no longer an accurate way of reasoning about the + // current state of the frame tree.) + Maybe<CachedFinalReflowMetrics> mFinalReflowMetrics; + + // Instances of this class are stored under this frame property, on + // frames that are flex items: + NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, CachedFlexItemData) +}; + +void nsFlexContainerFrame::MarkCachedFlexMeasurementsDirty( + nsIFrame* aItemFrame) { + MOZ_ASSERT(aItemFrame->IsFlexItem()); + if (auto* cache = aItemFrame->GetProperty(CachedFlexItemData::Prop())) { + cache->mBAxisMeasurement.reset(); + cache->mFinalReflowMetrics.reset(); + } +} + +const CachedBAxisMeasurement& nsFlexContainerFrame::MeasureBSizeForFlexItem( + FlexItem& aItem, ReflowInput& aChildReflowInput) { + auto* cachedData = aItem.Frame()->GetProperty(CachedFlexItemData::Prop()); + + if (cachedData && cachedData->mBAxisMeasurement) { + if (!aItem.Frame()->IsSubtreeDirty() && + cachedData->mBAxisMeasurement->IsValidFor(aChildReflowInput)) { + FLEX_LOG("[perf] MeasureBSizeForFlexItem accepted cached value"); + return *(cachedData->mBAxisMeasurement); + } + FLEX_LOG("[perf] MeasureBSizeForFlexItem rejected cached value"); + } else { + FLEX_LOG("[perf] MeasureBSizeForFlexItem didn't have a cached value"); + } + + // CachedFlexItemData is stored in item's writing mode, so we pass + // aChildReflowInput into ReflowOutput's constructor. + ReflowOutput childReflowOutput(aChildReflowInput); + nsReflowStatus childReflowStatus; + + const ReflowChildFlags flags = ReflowChildFlags::NoMoveFrame; + const WritingMode outerWM = GetWritingMode(); + const LogicalPoint dummyPosition(outerWM); + const nsSize dummyContainerSize; + + // We use NoMoveFrame, so the position and container size used here are + // unimportant. + ReflowChild(aItem.Frame(), PresContext(), childReflowOutput, + aChildReflowInput, outerWM, dummyPosition, dummyContainerSize, + flags, childReflowStatus); + aItem.SetHadMeasuringReflow(); + + // We always use unconstrained available block-size to measure flex items, + // which means they should always complete. + MOZ_ASSERT(childReflowStatus.IsComplete(), + "We gave flex item unconstrained available block-size, so it " + "should be complete"); + + // Tell the child we're done with its initial reflow. + // (Necessary for e.g. GetBaseline() to work below w/out asserting) + FinishReflowChild(aItem.Frame(), PresContext(), childReflowOutput, + &aChildReflowInput, outerWM, dummyPosition, + dummyContainerSize, flags); + + aItem.SetAscent(childReflowOutput.BlockStartAscent()); + + // Update (or add) our cached measurement, so that we can hopefully skip this + // measuring reflow the next time around: + if (cachedData) { + cachedData->Update(aChildReflowInput, childReflowOutput, + FlexItemReflowType::Measuring); + } else { + cachedData = new CachedFlexItemData(aChildReflowInput, childReflowOutput, + FlexItemReflowType::Measuring); + aItem.Frame()->SetProperty(CachedFlexItemData::Prop(), cachedData); + } + return *(cachedData->mBAxisMeasurement); +} + +/* virtual */ +void nsFlexContainerFrame::MarkIntrinsicISizesDirty() { + mCachedMinISize = NS_INTRINSIC_ISIZE_UNKNOWN; + mCachedPrefISize = NS_INTRINSIC_ISIZE_UNKNOWN; + + nsContainerFrame::MarkIntrinsicISizesDirty(); +} + +nscoord nsFlexContainerFrame::MeasureFlexItemContentBSize( + FlexItem& aFlexItem, bool aForceBResizeForMeasuringReflow, + const ReflowInput& aParentReflowInput) { + FLEX_LOG("Measuring flex item's content block-size"); + + // Set up a reflow input for measuring the flex item's content block-size: + WritingMode wm = aFlexItem.Frame()->GetWritingMode(); + LogicalSize availSize = aParentReflowInput.ComputedSize(wm); + availSize.BSize(wm) = NS_UNCONSTRAINEDSIZE; + + StyleSizeOverrides sizeOverrides; + if (aFlexItem.IsStretched()) { + sizeOverrides.mStyleISize.emplace(aFlexItem.StyleCrossSize()); + // Suppress any AspectRatio that we might have to prevent ComputeSize() from + // transferring our inline-size override through the aspect-ratio to set the + // block-size, because that would prevent us from measuring the content + // block-size. + sizeOverrides.mAspectRatio.emplace(AspectRatio()); + FLEX_LOGV(" Cross size override: %d", aFlexItem.CrossSize()); + } + sizeOverrides.mStyleBSize.emplace(StyleSize::Auto()); + + ReflowInput childRIForMeasuringBSize( + PresContext(), aParentReflowInput, aFlexItem.Frame(), availSize, + Nothing(), {}, sizeOverrides, {ComputeSizeFlag::ShrinkWrap}); + + // When measuring flex item's content block-size, disregard the item's + // min-block-size and max-block-size by resetting both to to their + // unconstraining (extreme) values. The flexbox layout algorithm does still + // explicitly clamp both sizes when resolving the target main size. + childRIForMeasuringBSize.SetComputedMinBSize(0); + childRIForMeasuringBSize.SetComputedMaxBSize(NS_UNCONSTRAINEDSIZE); + + if (aForceBResizeForMeasuringReflow) { + childRIForMeasuringBSize.SetBResize(true); + // Not 100% sure this is needed, but be conservative for now: + childRIForMeasuringBSize.mFlags.mIsBResizeForPercentages = true; + } + + const CachedBAxisMeasurement& measurement = + MeasureBSizeForFlexItem(aFlexItem, childRIForMeasuringBSize); + + return measurement.BSize(); +} + +FlexItem::FlexItem(ReflowInput& aFlexItemReflowInput, float aFlexGrow, + float aFlexShrink, nscoord aFlexBaseSize, + nscoord aMainMinSize, nscoord aMainMaxSize, + nscoord aTentativeCrossSize, nscoord aCrossMinSize, + nscoord aCrossMaxSize, + const FlexboxAxisTracker& aAxisTracker) + : mFrame(aFlexItemReflowInput.mFrame), + mFlexGrow(aFlexGrow), + mFlexShrink(aFlexShrink), + mAspectRatio(mFrame->GetAspectRatio()), + mWM(aFlexItemReflowInput.GetWritingMode()), + mCBWM(aAxisTracker.GetWritingMode()), + mMainAxis(aAxisTracker.MainAxis()), + mBorderPadding(aFlexItemReflowInput.ComputedLogicalBorderPadding(mCBWM)), + mMargin(aFlexItemReflowInput.ComputedLogicalMargin(mCBWM)), + mMainMinSize(aMainMinSize), + mMainMaxSize(aMainMaxSize), + mCrossMinSize(aCrossMinSize), + mCrossMaxSize(aCrossMaxSize), + mCrossSize(aTentativeCrossSize), + mIsInlineAxisMainAxis(aAxisTracker.IsInlineAxisMainAxis(mWM)), + mNeedsMinSizeAutoResolution(IsMinSizeAutoResolutionNeeded()) +// mAlignSelf, mHasAnyAutoMargin see below +{ + MOZ_ASSERT(mFrame, "expecting a non-null child frame"); + MOZ_ASSERT(!mFrame->IsPlaceholderFrame(), + "placeholder frames should not be treated as flex items"); + MOZ_ASSERT(!mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW), + "out-of-flow frames should not be treated as flex items"); + MOZ_ASSERT(mIsInlineAxisMainAxis == + nsFlexContainerFrame::IsItemInlineAxisMainAxis(mFrame), + "public API should be consistent with internal state (about " + "whether flex item's inline axis is flex container's main axis)"); + + const ReflowInput* containerRS = aFlexItemReflowInput.mParentReflowInput; + if (IsLegacyBox(containerRS->mFrame)) { + // For -webkit-{inline-}box and -moz-{inline-}box, we need to: + // (1) Use prefixed "box-align" instead of "align-items" to determine the + // container's cross-axis alignment behavior. + // (2) Suppress the ability for flex items to override that with their own + // cross-axis alignment. (The legacy box model doesn't support this.) + // So, each FlexItem simply copies the container's converted "align-items" + // value and disregards their own "align-self" property. + const nsStyleXUL* containerStyleXUL = containerRS->mFrame->StyleXUL(); + mAlignSelf = {ConvertLegacyStyleToAlignItems(containerStyleXUL)}; + mAlignSelfFlags = {0}; + } else { + mAlignSelf = aFlexItemReflowInput.mStylePosition->UsedAlignSelf( + containerRS->mFrame->Style()); + if (MOZ_LIKELY(mAlignSelf._0 == StyleAlignFlags::NORMAL)) { + mAlignSelf = {StyleAlignFlags::STRETCH}; + } + + // Store and strip off the <overflow-position> bits + mAlignSelfFlags = mAlignSelf._0 & StyleAlignFlags::FLAG_BITS; + mAlignSelf._0 &= ~StyleAlignFlags::FLAG_BITS; + } + + // Our main-size is considered definite if any of these are true: + // (a) main axis is the item's inline axis. + // (b) flex container has definite main size. + // (c) flex item has a definite flex basis. + // + // Hence, we need to take care to treat the final main-size as *indefinite* + // if none of these conditions are satisfied. + if (mIsInlineAxisMainAxis) { + // The item's block-axis is the flex container's cross axis. We don't need + // any special handling to treat cross sizes as indefinite, because the + // cases where we stomp on the cross size with a definite value are all... + // - situations where the spec requires us to treat the cross size as + // definite; specifically, `align-self:stretch` whose cross size is + // definite. + // - situations where definiteness doesn't matter (e.g. for an element with + // an aspect ratio, which for now are all leaf nodes and hence + // can't have any percent-height descendants that would care about the + // definiteness of its size. (Once bug 1528375 is fixed, we might need to + // be more careful about definite vs. indefinite sizing on flex items with + // aspect ratios.) + mTreatBSizeAsIndefinite = false; + } else { + // The item's block-axis is the flex container's main axis. So, the flex + // item's main size is its BSize, and is considered definite under certain + // conditions laid out for definite flex-item main-sizes in the spec. + if (aAxisTracker.IsRowOriented() || + (containerRS->ComputedBSize() != NS_UNCONSTRAINEDSIZE && + !containerRS->mFlags.mTreatBSizeAsIndefinite)) { + // The flex *container* has a definite main-size (either by being + // row-oriented [and using its own inline size which is by definition + // definite, or by being column-oriented and having a definite + // block-size). The spec says this means all of the flex items' + // post-flexing main sizes should *also* be treated as definite. + mTreatBSizeAsIndefinite = false; + } else if (aFlexBaseSize != NS_UNCONSTRAINEDSIZE) { + // The flex item has a definite flex basis, which we'll treat as making + // its main-size definite. + mTreatBSizeAsIndefinite = false; + } else { + // Otherwise, we have to treat the item's BSize as indefinite. + mTreatBSizeAsIndefinite = true; + } + } + + SetFlexBaseSizeAndMainSize(aFlexBaseSize); + + const nsStyleMargin* styleMargin = aFlexItemReflowInput.mStyleMargin; + mHasAnyAutoMargin = styleMargin->HasInlineAxisAuto(mCBWM) || + styleMargin->HasBlockAxisAuto(mCBWM); + + // Assert that any "auto" margin components are set to 0. + // (We'll resolve them later; until then, we want to treat them as 0-sized.) +#ifdef DEBUG + { + for (const auto side : AllLogicalSides()) { + if (styleMargin->mMargin.Get(mCBWM, side).IsAuto()) { + MOZ_ASSERT(GetMarginComponentForSide(side) == 0, + "Someone else tried to resolve our auto margin"); + } + } + } +#endif // DEBUG + + if (mAlignSelf._0 == StyleAlignFlags::BASELINE || + mAlignSelf._0 == StyleAlignFlags::LAST_BASELINE) { + // Check which of the item's baselines we're meant to use (first vs. last) + const bool usingItemFirstBaseline = + (mAlignSelf._0 == StyleAlignFlags::BASELINE); + if (IsBlockAxisCrossAxis()) { + // The flex item wants to be aligned in the cross axis using one of its + // baselines; and the cross axis is the item's block axis, so + // baseline-alignment in that axis makes sense. + + // To determine the item's baseline sharing group, we check whether the + // item's block axis has the same vs. opposite flow direction as the + // corresponding LogicalAxis on the flex container. We do this by + // getting the physical side that corresponds to these axes' "logical + // start" sides, and we compare those physical sides to find out if + // they're the same vs. opposite. + mozilla::Side itemBlockStartSide = mWM.PhysicalSide(eLogicalSideBStart); + + // (Note: this is *not* the "flex-start" side; rather, it's the *logical* + // i.e. WM-relative block-start or inline-start side.) + mozilla::Side containerStartSideInCrossAxis = mCBWM.PhysicalSide( + MakeLogicalSide(aAxisTracker.CrossAxis(), eLogicalEdgeStart)); + + // We already know these two Sides (the item's block-start and the + // container's 'logical start' side for its cross axis) are in the same + // physical axis, since we're inside of a check for + // FlexItem::IsBlockAxisCrossAxis(). So these two Sides must be either + // the same physical side or opposite from each other. If the Sides are + // the same, then the flow direction is the same, which means the item's + // {first,last} baseline participates in the {first,last} + // baseline-sharing group in its FlexLine. Otherwise, the flow direction + // is opposite, and so the item's {first,last} baseline participates in + // the opposite i.e. {last,first} baseline-sharing group. This is + // roughly per css-align-3 section 9.2, specifically the definition of + // what makes baseline alignment preferences "compatible". + bool itemBlockAxisFlowDirMatchesContainer = + (itemBlockStartSide == containerStartSideInCrossAxis); + mBaselineSharingGroup = + (itemBlockAxisFlowDirMatchesContainer == usingItemFirstBaseline) + ? BaselineSharingGroup::First + : BaselineSharingGroup::Last; + } else { + // The flex item wants to be aligned in the cross axis using one of its + // baselines, but we cannot get its baseline because the FlexItem's block + // axis is *orthogonal* to the container's cross axis. To handle this, we + // are supposed to synthesize a baseline from the item's border box and + // using that for baseline alignment. + mBaselineSharingGroup = usingItemFirstBaseline + ? BaselineSharingGroup::First + : BaselineSharingGroup::Last; + } + } +} + +// Simplified constructor for creating a special "strut" FlexItem, for a child +// with visibility:collapse. The strut has 0 main-size, and it only exists to +// impose a minimum cross size on whichever FlexLine it ends up in. +FlexItem::FlexItem(nsIFrame* aChildFrame, nscoord aCrossSize, + WritingMode aContainerWM, + const FlexboxAxisTracker& aAxisTracker) + : mFrame(aChildFrame), + mWM(aChildFrame->GetWritingMode()), + mCBWM(aContainerWM), + mMainAxis(aAxisTracker.MainAxis()), + mBorderPadding(mCBWM), + mMargin(mCBWM), + mCrossSize(aCrossSize), + // Struts don't do layout, so its WM doesn't matter at this point. So, we + // just share container's WM for simplicity: + mIsFrozen(true), + mIsStrut(true), // (this is the constructor for making struts, after all) + mAlignSelf({StyleAlignFlags::FLEX_START}) { + MOZ_ASSERT(mFrame, "expecting a non-null child frame"); + MOZ_ASSERT(mFrame->StyleVisibility()->IsCollapse(), + "Should only make struts for children with 'visibility:collapse'"); + MOZ_ASSERT(!mFrame->IsPlaceholderFrame(), + "placeholder frames should not be treated as flex items"); + MOZ_ASSERT(!mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW), + "out-of-flow frames should not be treated as flex items"); +} + +bool FlexItem::IsMinSizeAutoResolutionNeeded() const { + // We'll need special behavior for "min-[width|height]:auto" (whichever is in + // the flex container's main axis) iff: + // (a) its computed value is "auto", and + // (b) the item is *not* a scroll container. (A scroll container's automatic + // minimum size is zero.) + // https://drafts.csswg.org/css-flexbox-1/#min-size-auto + // + // Note that the scroll container case is redefined to be looking at the + // computed value instead, see https://github.com/w3c/csswg-drafts/issues/7714 + const auto& mainMinSize = + Frame()->StylePosition()->MinSize(MainAxis(), ContainingBlockWM()); + + return IsAutoOrEnumOnBSize(mainMinSize, IsInlineAxisMainAxis()) && + !Frame()->StyleDisplay()->IsScrollableOverflow(); +} + +Maybe<nscoord> FlexItem::MeasuredBSize() const { + auto* cachedData = + Frame()->FirstInFlow()->GetProperty(CachedFlexItemData::Prop()); + if (!cachedData || !cachedData->mBAxisMeasurement) { + return Nothing(); + } + return Some(cachedData->mBAxisMeasurement->BSize()); +} + +nscoord FlexItem::BaselineOffsetFromOuterCrossEdge( + mozilla::Side aStartSide, bool aUseFirstLineBaseline) const { + // NOTE: + // * We only use baselines for aligning in the flex container's cross axis. + // * Baselines are a measurement in the item's block axis. + if (IsBlockAxisMainAxis()) { + // We get here if the item's block axis is *orthogonal* the container's + // cross axis. For example, a flex item with writing-mode:horizontal-tb in a + // column-oriented flex container. We need to synthesize the item's baseline + // from its border-box edge. + const bool isMainAxisHorizontal = + mCBWM.PhysicalAxis(MainAxis()) == mozilla::eAxisHorizontal; + + // When the main axis is horizontal, the synthesized baseline is the bottom + // edge of the item's border-box. Otherwise, when the main axis is vertical, + // the left edge. This is for compatibility with Google Chrome. + nscoord marginTopOrLeftToBaseline = + isMainAxisHorizontal ? PhysicalMargin().top : PhysicalMargin().left; + if (mCBWM.IsAlphabeticalBaseline()) { + marginTopOrLeftToBaseline += (isMainAxisHorizontal ? CrossSize() : 0); + } else { + MOZ_ASSERT(mCBWM.IsCentralBaseline()); + marginTopOrLeftToBaseline += CrossSize() / 2; + } + + return aStartSide == mozilla::eSideTop || aStartSide == mozilla::eSideLeft + ? marginTopOrLeftToBaseline + : OuterCrossSize() - marginTopOrLeftToBaseline; + } + + // We get here if the item's block axis is parallel (or antiparallel) to the + // container's cross axis. We call ResolvedAscent() to get the item's + // baseline. If the item has no baseline, the method will synthesize one from + // the border-box edge. + MOZ_ASSERT(IsBlockAxisCrossAxis(), + "Only expecting to be doing baseline computations when the " + "cross axis is the block axis"); + + mozilla::Side itemBlockStartSide = mWM.PhysicalSide(eLogicalSideBStart); + + nscoord marginBStartToBaseline = ResolvedAscent(aUseFirstLineBaseline) + + PhysicalMargin().Side(itemBlockStartSide); + + return (aStartSide == itemBlockStartSide) + ? marginBStartToBaseline + : OuterCrossSize() - marginBStartToBaseline; +} + +bool FlexItem::IsCrossSizeAuto() const { + const nsStylePosition* stylePos = + nsLayoutUtils::GetStyleFrame(mFrame)->StylePosition(); + // Check whichever component is in the flex container's cross axis. + // (IsInlineAxisCrossAxis() tells us whether that's our ISize or BSize, in + // terms of our own WritingMode, mWM.) + return IsInlineAxisCrossAxis() ? stylePos->ISize(mWM).IsAuto() + : stylePos->BSize(mWM).IsAuto(); +} + +bool FlexItem::IsCrossSizeDefinite(const ReflowInput& aItemReflowInput) const { + if (IsStretched()) { + // Definite cross-size, imposed via 'align-self:stretch' & flex container. + return true; + } + + const nsStylePosition* pos = aItemReflowInput.mStylePosition; + const auto itemWM = GetWritingMode(); + + // The logic here should be similar to the logic for isAutoISize/isAutoBSize + // in nsContainerFrame::ComputeSizeWithIntrinsicDimensions(). + if (IsInlineAxisCrossAxis()) { + return !pos->ISize(itemWM).IsAuto(); + } + + nscoord cbBSize = aItemReflowInput.mContainingBlockSize.BSize(itemWM); + return !nsLayoutUtils::IsAutoBSize(pos->BSize(itemWM), cbBSize); +} + +void FlexItem::ResolveFlexBaseSizeFromAspectRatio( + const ReflowInput& aItemReflowInput) { + // This implements the Flex Layout Algorithm Step 3B: + // https://drafts.csswg.org/css-flexbox-1/#algo-main-item + // If the flex item has ... + // - an aspect ratio, + // - a [used] flex-basis of 'content', and + // - a definite cross size + // then the flex base size is calculated from its inner cross size and the + // flex item's preferred aspect ratio. + if (HasAspectRatio() && + nsFlexContainerFrame::IsUsedFlexBasisContent( + aItemReflowInput.mStylePosition->mFlexBasis, + aItemReflowInput.mStylePosition->Size(MainAxis(), mCBWM)) && + IsCrossSizeDefinite(aItemReflowInput)) { + const LogicalSize contentBoxSizeToBoxSizingAdjust = + aItemReflowInput.mStylePosition->mBoxSizing == StyleBoxSizing::Border + ? BorderPadding().Size(mCBWM) + : LogicalSize(mCBWM); + const nscoord mainSizeFromRatio = mAspectRatio.ComputeRatioDependentSize( + MainAxis(), mCBWM, CrossSize(), contentBoxSizeToBoxSizingAdjust); + SetFlexBaseSizeAndMainSize(mainSizeFromRatio); + } +} + +uint32_t FlexItem::NumAutoMarginsInAxis(LogicalAxis aAxis) const { + uint32_t numAutoMargins = 0; + const auto& styleMargin = mFrame->StyleMargin()->mMargin; + for (const auto edge : {eLogicalEdgeStart, eLogicalEdgeEnd}) { + const auto side = MakeLogicalSide(aAxis, edge); + if (styleMargin.Get(mCBWM, side).IsAuto()) { + numAutoMargins++; + } + } + + // Mostly for clarity: + MOZ_ASSERT(numAutoMargins <= 2, + "We're just looking at one item along one dimension, so we " + "should only have examined 2 margins"); + + return numAutoMargins; +} + +bool FlexItem::CanMainSizeInfluenceCrossSize() const { + if (mIsStretched) { + // We've already had our cross-size stretched for "align-self:stretch"). + // The container is imposing its cross size on us. + return false; + } + + if (mIsStrut) { + // Struts (for visibility:collapse items) have a predetermined size; + // no need to measure anything. + return false; + } + + if (HasAspectRatio()) { + // For flex items that have an aspect ratio (and maintain it, i.e. are + // not stretched, which we already checked above): changes to main-size + // *do* influence the cross size. + return true; + } + + if (IsInlineAxisCrossAxis()) { + // If we get here, this function is really asking: "can changes to this + // item's block size have an influence on its inline size"? For blocks and + // tables, the answer is "no". + if (mFrame->IsBlockFrame() || mFrame->IsTableWrapperFrame()) { + // XXXdholbert (Maybe use an IsFrameOfType query or something more + // general to test this across all frame types? For now, I'm just + // optimizing for block and table, since those are common containers that + // can contain arbitrarily-large subtrees (and that reliably have ISize + // being unaffected by BSize, per CSS2). So optimizing away needless + // relayout is possible & especially valuable for these containers.) + return false; + } + // Other opt-outs can go here, as they're identified as being useful + // (particularly for containers where an extra reflow is expensive). But in + // general, we have to assume that a flexed BSize *could* influence the + // ISize. Some examples where this can definitely happen: + // * Intrinsically-sized multicol with fixed-ISize columns, which adds + // columns (i.e. grows in inline axis) depending on its block size. + // * Intrinsically-sized multi-line column-oriented flex container, which + // adds flex lines (i.e. grows in inline axis) depending on its block size. + } + + // Default assumption, if we haven't proven otherwise: the resolved main size + // *can* change the cross size. + return true; +} + +nscoord FlexItem::ClampMainSizeViaCrossAxisConstraints( + nscoord aMainSize, const ReflowInput& aItemReflowInput) const { + MOZ_ASSERT(HasAspectRatio(), "Caller should've checked the ratio is valid!"); + + const LogicalSize contentBoxSizeToBoxSizingAdjust = + aItemReflowInput.mStylePosition->mBoxSizing == StyleBoxSizing::Border + ? BorderPadding().Size(mCBWM) + : LogicalSize(mCBWM); + + const nscoord mainMinSizeFromRatio = mAspectRatio.ComputeRatioDependentSize( + MainAxis(), mCBWM, CrossMinSize(), contentBoxSizeToBoxSizingAdjust); + nscoord clampedMainSize = std::max(aMainSize, mainMinSizeFromRatio); + + if (CrossMaxSize() != NS_UNCONSTRAINEDSIZE) { + const nscoord mainMaxSizeFromRatio = mAspectRatio.ComputeRatioDependentSize( + MainAxis(), mCBWM, CrossMaxSize(), contentBoxSizeToBoxSizingAdjust); + clampedMainSize = std::min(clampedMainSize, mainMaxSizeFromRatio); + } + + return clampedMainSize; +} + +/** + * Returns true if aFrame or any of its children have the + * NS_FRAME_CONTAINS_RELATIVE_BSIZE flag set -- i.e. if any of these frames (or + * their descendants) might have a relative-BSize dependency on aFrame (or its + * ancestors). + */ +static bool FrameHasRelativeBSizeDependency(nsIFrame* aFrame) { + if (aFrame->HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE)) { + return true; + } + for (const auto& childList : aFrame->ChildLists()) { + for (nsIFrame* childFrame : childList.mList) { + if (childFrame->HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE)) { + return true; + } + } + } + return false; +} + +bool FlexItem::NeedsFinalReflow(const ReflowInput& aParentReflowInput) const { + if (!StaticPrefs::layout_flexbox_item_final_reflow_optimization_enabled()) { + FLEX_LOG( + "[perf] Flex item %p needed a final reflow due to optimization being " + "disabled via the preference", + mFrame); + return true; + } + + // NOTE: We can have continuations from an earlier constrained reflow. + if (mFrame->GetPrevInFlow() || mFrame->GetNextInFlow()) { + // This is an item has continuation(s). Reflow it. + FLEX_LOG("[frag] Flex item %p needed a final reflow due to continuation(s)", + mFrame); + return true; + } + + // A flex item can grow its block-size in a fragmented context if there's any + // force break within it (bug 1663079), or if it has a repeated table header + // or footer (bug 1744363). We currently always reflow it. + // + // Bug 1815294: investigate if we can design a more specific condition to + // prevent triggering O(n^2) behavior when printing a deeply-nested flex + // container. + if (aParentReflowInput.IsInFragmentedContext()) { + FLEX_LOG( + "[frag] Flex item %p needed both a measuring reflow and a final " + "reflow due to being in a fragmented context.", + mFrame); + return true; + } + + // Flex item's final content-box size (in terms of its own writing-mode): + const LogicalSize finalSize = mIsInlineAxisMainAxis + ? LogicalSize(mWM, mMainSize, mCrossSize) + : LogicalSize(mWM, mCrossSize, mMainSize); + + if (HadMeasuringReflow()) { + // We've already reflowed this flex item once, to measure it. In that + // reflow, did its frame happen to end up with the correct final size + // that the flex container would like it to have? + if (finalSize != mFrame->ContentSize(mWM)) { + // The measuring reflow left the item with a different size than its + // final flexed size. So, we need to reflow to give it the correct size. + FLEX_LOG( + "[perf] Flex item %p needed both a measuring reflow and a final " + "reflow due to measured size disagreeing with final size", + mFrame); + return true; + } + + if (FrameHasRelativeBSizeDependency(mFrame)) { + // This item has descendants with relative BSizes who may care that its + // size may now be considered "definite" in the final reflow (whereas it + // was indefinite during the measuring reflow). + FLEX_LOG( + "[perf] Flex item %p needed both a measuring reflow and a final " + "reflow due to BSize potentially becoming definite", + mFrame); + return true; + } + + // If we get here, then this flex item had a measuring reflow, it left us + // with the correct size, none of its descendants care that its BSize may + // now be considered definite, and it can fit into the available block-size. + // So it doesn't need a final reflow. + // + // We now cache this size as if we had done a final reflow (because we've + // determined that the measuring reflow was effectively equivalent). This + // way, in our next time through flex layout, we may be able to skip both + // the measuring reflow *and* the final reflow (if conditions are the same + // as they are now). + if (auto* cache = mFrame->GetProperty(CachedFlexItemData::Prop())) { + cache->Update(*this, finalSize); + } + + return false; + } + + // This item didn't receive a measuring reflow (at least, not during this + // reflow of our flex container). We may still be able to skip reflowing it + // (i.e. return false from this function), if its subtree is clean & its most + // recent "final reflow" had it at the correct content-box size & + // definiteness. + // Let's check for each condition that would still require us to reflow: + if (mFrame->IsSubtreeDirty()) { + FLEX_LOG( + "[perf] Flex item %p needed a final reflow due to its subtree " + "being dirty", + mFrame); + return true; + } + + // Cool; this item & its subtree haven't experienced any style/content + // changes that would automatically require a reflow. + + // Did we cache the metrics from its most recent "final reflow"? + auto* cache = mFrame->GetProperty(CachedFlexItemData::Prop()); + if (!cache || !cache->mFinalReflowMetrics) { + FLEX_LOG( + "[perf] Flex item %p needed a final reflow due to lacking a " + "cached mFinalReflowMetrics (maybe cache was cleared)", + mFrame); + return true; + } + + // Does the cached size match our current size? + if (cache->mFinalReflowMetrics->Size() != finalSize) { + FLEX_LOG( + "[perf] Flex item %p needed a final reflow due to having a " + "different content box size vs. its most recent final reflow", + mFrame); + return true; + } + + // Does the cached border and padding match our current ones? + // + // Note: this is just to detect cases where we have a percent padding whose + // basis has changed. Any other sort of change to BorderPadding() (e.g. a new + // specified value) should result in the frame being marked dirty via proper + // change hint (see nsStylePadding::CalcDifference()), which will force it to + // reflow. + if (cache->mFinalReflowMetrics->BorderPadding() != + BorderPadding().ConvertTo(mWM, mCBWM)) { + FLEX_LOG( + "[perf] Flex item %p needed a final reflow due to having a " + "different border and padding vs. its most recent final reflow", + mFrame); + return true; + } + + // The flex container is giving this flex item the same size that the item + // had on its most recent "final reflow". But if its definiteness changed and + // one of the descendants cares, then it would still need a reflow. + if (cache->mFinalReflowMetrics->TreatBSizeAsIndefinite() != + mTreatBSizeAsIndefinite && + FrameHasRelativeBSizeDependency(mFrame)) { + FLEX_LOG( + "[perf] Flex item %p needed a final reflow due to having " + "its BSize change definiteness & having a rel-BSize child", + mFrame); + return true; + } + + // If we get here, we can skip the final reflow! (The item's subtree isn't + // dirty, and our current conditions are sufficiently similar to the most + // recent "final reflow" that it should have left our subtree in the correct + // state.) + FLEX_LOG("[perf] Flex item %p didn't need a final reflow", mFrame); + return false; +} + +// Keeps track of our position along a particular axis (where a '0' position +// corresponds to the 'start' edge of that axis). +// This class shouldn't be instantiated directly -- rather, it should only be +// instantiated via its subclasses defined below. +class MOZ_STACK_CLASS PositionTracker { + public: + // Accessor for the current value of the position that we're tracking. + inline nscoord Position() const { return mPosition; } + inline LogicalAxis Axis() const { return mAxis; } + + inline LogicalSide StartSide() { + return MakeLogicalSide( + mAxis, mIsAxisReversed ? eLogicalEdgeEnd : eLogicalEdgeStart); + } + + inline LogicalSide EndSide() { + return MakeLogicalSide( + mAxis, mIsAxisReversed ? eLogicalEdgeStart : eLogicalEdgeEnd); + } + + // Advances our position across the start edge of the given margin, in the + // axis we're tracking. + void EnterMargin(const LogicalMargin& aMargin) { + mPosition += aMargin.Side(StartSide(), mWM); + } + + // Advances our position across the end edge of the given margin, in the axis + // we're tracking. + void ExitMargin(const LogicalMargin& aMargin) { + mPosition += aMargin.Side(EndSide(), mWM); + } + + // Advances our current position from the start side of a child frame's + // border-box to the frame's upper or left edge (depending on our axis). + // (Note that this is a no-op if our axis grows in the same direction as + // the corresponding logical axis.) + void EnterChildFrame(nscoord aChildFrameSize) { + if (mIsAxisReversed) { + mPosition += aChildFrameSize; + } + } + + // Advances our current position from a frame's upper or left border-box edge + // (whichever is in the axis we're tracking) to the 'end' side of the frame + // in the axis that we're tracking. (Note that this is a no-op if our axis + // is reversed with respect to the corresponding logical axis.) + void ExitChildFrame(nscoord aChildFrameSize) { + if (!mIsAxisReversed) { + mPosition += aChildFrameSize; + } + } + + // Delete copy-constructor & reassignment operator, to prevent accidental + // (unnecessary) copying. + PositionTracker(const PositionTracker&) = delete; + PositionTracker& operator=(const PositionTracker&) = delete; + + protected: + // Protected constructor, to be sure we're only instantiated via a subclass. + PositionTracker(WritingMode aWM, LogicalAxis aAxis, bool aIsAxisReversed) + : mWM(aWM), mAxis(aAxis), mIsAxisReversed(aIsAxisReversed) {} + + // Member data: + // The position we're tracking. + nscoord mPosition = 0; + + // The flex container's writing mode. + const WritingMode mWM; + + // The axis along which we're moving. + const LogicalAxis mAxis = eLogicalAxisInline; + + // Is the axis along which we're moving reversed (e.g. LTR vs RTL) with + // respect to the corresponding axis on the flex container's WM? + const bool mIsAxisReversed = false; +}; + +// Tracks our position in the main axis, when we're laying out flex items. +// The "0" position represents the main-start edge of the flex container's +// content-box. +class MOZ_STACK_CLASS MainAxisPositionTracker : public PositionTracker { + public: + MainAxisPositionTracker(const FlexboxAxisTracker& aAxisTracker, + const FlexLine* aLine, + const StyleContentDistribution& aJustifyContent, + nscoord aContentBoxMainSize); + + ~MainAxisPositionTracker() { + MOZ_ASSERT(mNumPackingSpacesRemaining == 0, + "miscounted the number of packing spaces"); + MOZ_ASSERT(mNumAutoMarginsInMainAxis == 0, + "miscounted the number of auto margins"); + } + + // Advances past the gap space (if any) between two flex items + void TraverseGap(nscoord aGapSize) { mPosition += aGapSize; } + + // Advances past the packing space (if any) between two flex items + void TraversePackingSpace(); + + // If aItem has any 'auto' margins in the main axis, this method updates the + // corresponding values in its margin. + void ResolveAutoMarginsInMainAxis(FlexItem& aItem); + + private: + nscoord mPackingSpaceRemaining = 0; + uint32_t mNumAutoMarginsInMainAxis = 0; + uint32_t mNumPackingSpacesRemaining = 0; + StyleContentDistribution mJustifyContent = {StyleAlignFlags::AUTO}; +}; + +// Utility class for managing our position along the cross axis along +// the whole flex container (at a higher level than a single line). +// The "0" position represents the cross-start edge of the flex container's +// content-box. +class MOZ_STACK_CLASS CrossAxisPositionTracker : public PositionTracker { + public: + CrossAxisPositionTracker(nsTArray<FlexLine>& aLines, + const ReflowInput& aReflowInput, + nscoord aContentBoxCrossSize, + bool aIsCrossSizeDefinite, + const FlexboxAxisTracker& aAxisTracker, + const nscoord aCrossGapSize); + + // Advances past the gap (if any) between two flex lines + void TraverseGap() { mPosition += mCrossGapSize; } + + // Advances past the packing space (if any) between two flex lines + void TraversePackingSpace(); + + // Advances past the given FlexLine + void TraverseLine(FlexLine& aLine) { mPosition += aLine.LineCrossSize(); } + + // Redeclare the frame-related methods from PositionTracker with + // = delete, to be sure (at compile time) that no client code can invoke + // them. (Unlike the other PositionTracker derived classes, this class here + // deals with FlexLines, not with individual FlexItems or frames.) + void EnterMargin(const LogicalMargin& aMargin) = delete; + void ExitMargin(const LogicalMargin& aMargin) = delete; + void EnterChildFrame(nscoord aChildFrameSize) = delete; + void ExitChildFrame(nscoord aChildFrameSize) = delete; + + private: + nscoord mPackingSpaceRemaining = 0; + uint32_t mNumPackingSpacesRemaining = 0; + StyleContentDistribution mAlignContent = {StyleAlignFlags::AUTO}; + + const nscoord mCrossGapSize; +}; + +// Utility class for managing our position along the cross axis, *within* a +// single flex line. +class MOZ_STACK_CLASS SingleLineCrossAxisPositionTracker + : public PositionTracker { + public: + explicit SingleLineCrossAxisPositionTracker( + const FlexboxAxisTracker& aAxisTracker); + + void ResolveAutoMarginsInCrossAxis(const FlexLine& aLine, FlexItem& aItem); + + void EnterAlignPackingSpace(const FlexLine& aLine, const FlexItem& aItem, + const FlexboxAxisTracker& aAxisTracker); + + // Resets our position to the cross-start edge of this line. + inline void ResetPosition() { mPosition = 0; } +}; + +//---------------------------------------------------------------------- + +// Frame class boilerplate +// ======================= + +NS_QUERYFRAME_HEAD(nsFlexContainerFrame) + NS_QUERYFRAME_ENTRY(nsFlexContainerFrame) +NS_QUERYFRAME_TAIL_INHERITING(nsContainerFrame) + +NS_IMPL_FRAMEARENA_HELPERS(nsFlexContainerFrame) + +nsContainerFrame* NS_NewFlexContainerFrame(PresShell* aPresShell, + ComputedStyle* aStyle) { + return new (aPresShell) + nsFlexContainerFrame(aStyle, aPresShell->GetPresContext()); +} + +//---------------------------------------------------------------------- + +// nsFlexContainerFrame Method Implementations +// =========================================== + +/* virtual */ +nsFlexContainerFrame::~nsFlexContainerFrame() = default; + +/* virtual */ +void nsFlexContainerFrame::Init(nsIContent* aContent, nsContainerFrame* aParent, + nsIFrame* aPrevInFlow) { + nsContainerFrame::Init(aContent, aParent, aPrevInFlow); + + if (HasAnyStateBits(NS_FRAME_FONT_INFLATION_CONTAINER)) { + AddStateBits(NS_FRAME_FONT_INFLATION_FLOW_ROOT); + } + + auto displayInside = StyleDisplay()->DisplayInside(); + // If this frame is for a scrollable element, then it will actually have + // "display:block", and its *parent frame* will have the real + // flex-flavored display value. So in that case, check the parent frame to + // find out if we're legacy. + // + // TODO(emilio): Maybe ::-moz-scrolled-content and co should inherit `display` + // (or a blockified version thereof, to not hit bug 456484). + if (displayInside == StyleDisplayInside::Flow) { + MOZ_ASSERT(StyleDisplay()->mDisplay == StyleDisplay::Block); + MOZ_ASSERT(Style()->GetPseudoType() == PseudoStyleType::buttonContent || + Style()->GetPseudoType() == PseudoStyleType::scrolledContent, + "The only way a nsFlexContainerFrame can have 'display:block' " + "should be if it's the inner part of a scrollable or button " + "element"); + displayInside = GetParent()->StyleDisplay()->DisplayInside(); + } + + // Figure out if we should set a frame state bit to indicate that this frame + // represents a legacy -moz-{inline-}box or -webkit-{inline-}box container. + if (displayInside == StyleDisplayInside::WebkitBox) { + AddStateBits(NS_STATE_FLEX_IS_EMULATING_LEGACY_WEBKIT_BOX); + } +} + +#ifdef DEBUG_FRAME_DUMP +nsresult nsFlexContainerFrame::GetFrameName(nsAString& aResult) const { + return MakeFrameName(u"FlexContainer"_ns, aResult); +} +#endif + +void nsFlexContainerFrame::BuildDisplayList(nsDisplayListBuilder* aBuilder, + const nsDisplayListSet& aLists) { + nsDisplayListCollection tempLists(aBuilder); + + DisplayBorderBackgroundOutline(aBuilder, tempLists); + if (GetPrevInFlow()) { + DisplayOverflowContainers(aBuilder, tempLists); + } + + // Our children are all block-level, so their borders/backgrounds all go on + // the BlockBorderBackgrounds list. + nsDisplayListSet childLists(tempLists, tempLists.BlockBorderBackgrounds()); + + CSSOrderAwareFrameIterator iter( + this, FrameChildListID::Principal, + CSSOrderAwareFrameIterator::ChildFilter::IncludeAll, + OrderStateForIter(this), OrderingPropertyForIter(this)); + + const auto flags = DisplayFlagsForFlexOrGridItem(); + for (; !iter.AtEnd(); iter.Next()) { + nsIFrame* childFrame = *iter; + BuildDisplayListForChild(aBuilder, childFrame, childLists, flags); + } + + tempLists.MoveTo(aLists); +} + +void FlexLine::FreezeItemsEarly(bool aIsUsingFlexGrow, + ComputedFlexLineInfo* aLineInfo) { + // After we've established the type of flexing we're doing (growing vs. + // shrinking), and before we try to flex any items, we freeze items that + // obviously *can't* flex. + // + // Quoting the spec: + // # Freeze, setting its target main size to its hypothetical main size... + // # - any item that has a flex factor of zero + // # - if using the flex grow factor: any item that has a flex base size + // # greater than its hypothetical main size + // # - if using the flex shrink factor: any item that has a flex base size + // # smaller than its hypothetical main size + // https://drafts.csswg.org/css-flexbox/#resolve-flexible-lengths + // + // (NOTE: At this point, item->MainSize() *is* the item's hypothetical + // main size, since SetFlexBaseSizeAndMainSize() sets it up that way, and the + // item hasn't had a chance to flex away from that yet.) + + // Since this loop only operates on unfrozen flex items, we can break as + // soon as we have seen all of them. + uint32_t numUnfrozenItemsToBeSeen = NumItems() - mNumFrozenItems; + for (FlexItem& item : Items()) { + if (numUnfrozenItemsToBeSeen == 0) { + break; + } + + if (!item.IsFrozen()) { + numUnfrozenItemsToBeSeen--; + bool shouldFreeze = (0.0f == item.GetFlexFactor(aIsUsingFlexGrow)); + if (!shouldFreeze) { + if (aIsUsingFlexGrow) { + if (item.FlexBaseSize() > item.MainSize()) { + shouldFreeze = true; + } + } else { // using flex-shrink + if (item.FlexBaseSize() < item.MainSize()) { + shouldFreeze = true; + } + } + } + if (shouldFreeze) { + // Freeze item! (at its hypothetical main size) + item.Freeze(); + if (item.FlexBaseSize() < item.MainSize()) { + item.SetWasMinClamped(); + } else if (item.FlexBaseSize() > item.MainSize()) { + item.SetWasMaxClamped(); + } + mNumFrozenItems++; + } + } + } + + MOZ_ASSERT(numUnfrozenItemsToBeSeen == 0, "miscounted frozen items?"); +} + +// Based on the sign of aTotalViolation, this function freezes a subset of our +// flexible sizes, and restores the remaining ones to their initial pref sizes. +void FlexLine::FreezeOrRestoreEachFlexibleSize(const nscoord aTotalViolation, + bool aIsFinalIteration) { + enum FreezeType { + eFreezeEverything, + eFreezeMinViolations, + eFreezeMaxViolations + }; + + FreezeType freezeType; + if (aTotalViolation == 0) { + freezeType = eFreezeEverything; + } else if (aTotalViolation > 0) { + freezeType = eFreezeMinViolations; + } else { // aTotalViolation < 0 + freezeType = eFreezeMaxViolations; + } + + // Since this loop only operates on unfrozen flex items, we can break as + // soon as we have seen all of them. + uint32_t numUnfrozenItemsToBeSeen = NumItems() - mNumFrozenItems; + for (FlexItem& item : Items()) { + if (numUnfrozenItemsToBeSeen == 0) { + break; + } + + if (!item.IsFrozen()) { + numUnfrozenItemsToBeSeen--; + + MOZ_ASSERT(!item.HadMinViolation() || !item.HadMaxViolation(), + "Can have either min or max violation, but not both"); + + bool hadMinViolation = item.HadMinViolation(); + bool hadMaxViolation = item.HadMaxViolation(); + if (eFreezeEverything == freezeType || + (eFreezeMinViolations == freezeType && hadMinViolation) || + (eFreezeMaxViolations == freezeType && hadMaxViolation)) { + MOZ_ASSERT(item.MainSize() >= item.MainMinSize(), + "Freezing item at a size below its minimum"); + MOZ_ASSERT(item.MainSize() <= item.MainMaxSize(), + "Freezing item at a size above its maximum"); + + item.Freeze(); + if (hadMinViolation) { + item.SetWasMinClamped(); + } else if (hadMaxViolation) { + item.SetWasMaxClamped(); + } + mNumFrozenItems++; + } else if (MOZ_UNLIKELY(aIsFinalIteration)) { + // XXXdholbert If & when bug 765861 is fixed, we should upgrade this + // assertion to be fatal except in documents with enormous lengths. + NS_ERROR( + "Final iteration still has unfrozen items, this shouldn't" + " happen unless there was nscoord under/overflow."); + item.Freeze(); + mNumFrozenItems++; + } // else, we'll reset this item's main size to its flex base size on the + // next iteration of this algorithm. + + if (!item.IsFrozen()) { + // Clear this item's violation(s), now that we've dealt with them + item.ClearViolationFlags(); + } + } + } + + MOZ_ASSERT(numUnfrozenItemsToBeSeen == 0, "miscounted frozen items?"); +} + +void FlexLine::ResolveFlexibleLengths(nscoord aFlexContainerMainSize, + ComputedFlexLineInfo* aLineInfo) { + // In this function, we use 64-bit coord type to avoid integer overflow in + // case several of the individual items have huge hypothetical main sizes, + // which can happen with percent-width table-layout:fixed descendants. Here we + // promote the container's main size to 64-bit to make the arithmetic + // convenient. + AuCoord64 flexContainerMainSize(aFlexContainerMainSize); + + // Before we start resolving sizes: if we have an aLineInfo structure to fill + // out, we inform it of each item's base size, and we initialize the "delta" + // for each item to 0. (And if the flex algorithm wants to grow or shrink the + // item, we'll update this delta further down.) + if (aLineInfo) { + uint32_t itemIndex = 0; + for (FlexItem& item : Items()) { + aLineInfo->mItems[itemIndex].mMainBaseSize = item.FlexBaseSize(); + aLineInfo->mItems[itemIndex].mMainDeltaSize = 0; + ++itemIndex; + } + } + + // Determine whether we're going to be growing or shrinking items. + const bool isUsingFlexGrow = + (mTotalOuterHypotheticalMainSize < flexContainerMainSize); + + if (aLineInfo) { + aLineInfo->mGrowthState = + isUsingFlexGrow ? mozilla::dom::FlexLineGrowthState::Growing + : mozilla::dom::FlexLineGrowthState::Shrinking; + } + + // Do an "early freeze" for flex items that obviously can't flex in the + // direction we've chosen: + FreezeItemsEarly(isUsingFlexGrow, aLineInfo); + + if ((mNumFrozenItems == NumItems()) && !aLineInfo) { + // All our items are frozen, so we have no flexible lengths to resolve, + // and we aren't being asked to generate computed line info. + FLEX_LOG("No flexible length to resolve"); + return; + } + MOZ_ASSERT(!IsEmpty() || aLineInfo, + "empty lines should take the early-return above"); + + FLEX_LOG("Resolving flexible lengths for items"); + + // Subtract space occupied by our items' margins/borders/padding/gaps, so + // we can just be dealing with the space available for our flex items' content + // boxes. + const AuCoord64 totalItemMBPAndGaps = mTotalItemMBP + SumOfGaps(); + const AuCoord64 spaceAvailableForFlexItemsContentBoxes = + flexContainerMainSize - totalItemMBPAndGaps; + + Maybe<AuCoord64> origAvailableFreeSpace; + + // NOTE: I claim that this chunk of the algorithm (the looping part) needs to + // run the loop at MOST NumItems() times. This claim should hold up + // because we'll freeze at least one item on each loop iteration, and once + // we've run out of items to freeze, there's nothing left to do. However, + // in most cases, we'll break out of this loop long before we hit that many + // iterations. + for (uint32_t iterationCounter = 0; iterationCounter < NumItems(); + iterationCounter++) { + // Set every not-yet-frozen item's used main size to its + // flex base size, and subtract all the used main sizes from our + // total amount of space to determine the 'available free space' + // (positive or negative) to be distributed among our flexible items. + AuCoord64 availableFreeSpace = spaceAvailableForFlexItemsContentBoxes; + for (FlexItem& item : Items()) { + if (!item.IsFrozen()) { + item.SetMainSize(item.FlexBaseSize()); + } + availableFreeSpace -= item.MainSize(); + } + + FLEX_LOG(" available free space: %" PRId64 "; flex items should \"%s\"", + availableFreeSpace.value, isUsingFlexGrow ? "grow" : "shrink"); + + // The sign of our free space should agree with the type of flexing + // (grow/shrink) that we're doing. Any disagreement should've made us use + // the other type of flexing, or should've been resolved in + // FreezeItemsEarly. + // + // Note: it's possible that an individual flex item has huge + // margin/border/padding that makes either its + // MarginBorderPaddingSizeInMainAxis() or OuterMainSize() negative due to + // integer overflow. If that happens, the accumulated + // mTotalOuterHypotheticalMainSize or mTotalItemMBP could be negative due to + // that one item's negative (overflowed) size. Likewise, a huge main gap + // size between flex items can also make our accumulated SumOfGaps() + // negative. In these case, we throw up our hands and don't require + // isUsingFlexGrow to agree with availableFreeSpace. Luckily, we won't get + // stuck in the algorithm below, and just distribute the wrong + // availableFreeSpace with the wrong grow/shrink factors. + MOZ_ASSERT(!(mTotalOuterHypotheticalMainSize >= 0 && mTotalItemMBP >= 0 && + totalItemMBPAndGaps >= 0) || + (isUsingFlexGrow && availableFreeSpace >= 0) || + (!isUsingFlexGrow && availableFreeSpace <= 0), + "availableFreeSpace's sign should match isUsingFlexGrow"); + + // If we have any free space available, give each flexible item a portion + // of availableFreeSpace. + if (availableFreeSpace != AuCoord64(0)) { + // The first time we do this, we initialize origAvailableFreeSpace. + if (!origAvailableFreeSpace) { + origAvailableFreeSpace.emplace(availableFreeSpace); + } + + // STRATEGY: On each item, we compute & store its "share" of the total + // weight that we've seen so far: + // curWeight / weightSum + // + // Then, when we go to actually distribute the space (in the next loop), + // we can simply walk backwards through the elements and give each item + // its "share" multiplied by the remaining available space. + // + // SPECIAL CASE: If the sum of the weights is larger than the + // maximum representable double (overflowing to infinity), then we can't + // sensibly divide out proportional shares anymore. In that case, we + // simply treat the flex item(s) with the largest weights as if + // their weights were infinite (dwarfing all the others), and we + // distribute all of the available space among them. + double weightSum = 0.0; + double flexFactorSum = 0.0; + double largestWeight = 0.0; + uint32_t numItemsWithLargestWeight = 0; + + // Since this loop only operates on unfrozen flex items, we can break as + // soon as we have seen all of them. + uint32_t numUnfrozenItemsToBeSeen = NumItems() - mNumFrozenItems; + for (FlexItem& item : Items()) { + if (numUnfrozenItemsToBeSeen == 0) { + break; + } + + if (!item.IsFrozen()) { + numUnfrozenItemsToBeSeen--; + + const double curWeight = item.GetWeight(isUsingFlexGrow); + const double curFlexFactor = item.GetFlexFactor(isUsingFlexGrow); + MOZ_ASSERT(curWeight >= 0.0, "weights are non-negative"); + MOZ_ASSERT(curFlexFactor >= 0.0, "flex factors are non-negative"); + + weightSum += curWeight; + flexFactorSum += curFlexFactor; + + if (std::isfinite(weightSum)) { + if (curWeight == 0.0) { + item.SetShareOfWeightSoFar(0.0); + } else { + item.SetShareOfWeightSoFar(curWeight / weightSum); + } + } // else, the sum of weights overflows to infinity, in which + // case we don't bother with "SetShareOfWeightSoFar" since + // we know we won't use it. (instead, we'll just give every + // item with the largest weight an equal share of space.) + + // Update our largest-weight tracking vars + if (curWeight > largestWeight) { + largestWeight = curWeight; + numItemsWithLargestWeight = 1; + } else if (curWeight == largestWeight) { + numItemsWithLargestWeight++; + } + } + } + + MOZ_ASSERT(numUnfrozenItemsToBeSeen == 0, "miscounted frozen items?"); + + if (weightSum != 0.0) { + MOZ_ASSERT(flexFactorSum != 0.0, + "flex factor sum can't be 0, if a weighted sum " + "of its components (weightSum) is nonzero"); + if (flexFactorSum < 1.0) { + // Our unfrozen flex items don't want all of the original free space! + // (Their flex factors add up to something less than 1.) + // Hence, make sure we don't distribute any more than the portion of + // our original free space that these items actually want. + auto totalDesiredPortionOfOrigFreeSpace = + AuCoord64::FromRound(*origAvailableFreeSpace * flexFactorSum); + + // Clamp availableFreeSpace to be no larger than that ^^. + // (using min or max, depending on sign). + // This should not change the sign of availableFreeSpace (except + // possibly by setting it to 0), as enforced by this assertion: + NS_ASSERTION(totalDesiredPortionOfOrigFreeSpace == AuCoord64(0) || + ((totalDesiredPortionOfOrigFreeSpace > 0) == + (availableFreeSpace > 0)), + "When we reduce available free space for flex " + "factors < 1, we shouldn't change the sign of the " + "free space..."); + + if (availableFreeSpace > 0) { + availableFreeSpace = std::min(availableFreeSpace, + totalDesiredPortionOfOrigFreeSpace); + } else { + availableFreeSpace = std::max(availableFreeSpace, + totalDesiredPortionOfOrigFreeSpace); + } + } + + FLEX_LOG(" Distributing available space:"); + // Since this loop only operates on unfrozen flex items, we can break as + // soon as we have seen all of them. + numUnfrozenItemsToBeSeen = NumItems() - mNumFrozenItems; + + // NOTE: It's important that we traverse our items in *reverse* order + // here, for correct width distribution according to the items' + // "ShareOfWeightSoFar" progressively-calculated values. + for (FlexItem& item : Reversed(Items())) { + if (numUnfrozenItemsToBeSeen == 0) { + break; + } + + if (!item.IsFrozen()) { + numUnfrozenItemsToBeSeen--; + + // To avoid rounding issues, we compute the change in size for this + // item, and then subtract it from the remaining available space. + AuCoord64 sizeDelta = 0; + if (std::isfinite(weightSum)) { + double myShareOfRemainingSpace = item.ShareOfWeightSoFar(); + + MOZ_ASSERT(myShareOfRemainingSpace >= 0.0 && + myShareOfRemainingSpace <= 1.0, + "my share should be nonnegative fractional amount"); + + if (myShareOfRemainingSpace == 1.0) { + // (We special-case 1.0 to avoid float error from converting + // availableFreeSpace from integer*1.0 --> double --> integer) + sizeDelta = availableFreeSpace; + } else if (myShareOfRemainingSpace > 0.0) { + sizeDelta = AuCoord64::FromRound(availableFreeSpace * + myShareOfRemainingSpace); + } + } else if (item.GetWeight(isUsingFlexGrow) == largestWeight) { + // Total flexibility is infinite, so we're just distributing + // the available space equally among the items that are tied for + // having the largest weight (and this is one of those items). + sizeDelta = AuCoord64::FromRound( + availableFreeSpace / double(numItemsWithLargestWeight)); + numItemsWithLargestWeight--; + } + + availableFreeSpace -= sizeDelta; + + item.SetMainSize(item.MainSize() + + nscoord(sizeDelta.ToMinMaxClamped())); + FLEX_LOG(" flex item %p receives %" PRId64 ", for a total of %d", + item.Frame(), sizeDelta.value, item.MainSize()); + } + } + + MOZ_ASSERT(numUnfrozenItemsToBeSeen == 0, "miscounted frozen items?"); + + // If we have an aLineInfo structure to fill out, capture any + // size changes that may have occurred in the previous loop. + // We don't do this inside the previous loop, because we don't + // want to burden layout when aLineInfo is null. + if (aLineInfo) { + uint32_t itemIndex = 0; + for (FlexItem& item : Items()) { + if (!item.IsFrozen()) { + // Calculate a deltaSize that represents how much the flex sizing + // algorithm "wants" to stretch or shrink this item during this + // pass through the algorithm. Later passes through the algorithm + // may overwrite this, until this item is frozen. Note that this + // value may not reflect how much the size of the item is + // actually changed, since the size of the item will be clamped + // to min and max values later in this pass. That's intentional, + // since we want to report the value that the sizing algorithm + // tried to stretch or shrink the item. + nscoord deltaSize = + item.MainSize() - aLineInfo->mItems[itemIndex].mMainBaseSize; + + aLineInfo->mItems[itemIndex].mMainDeltaSize = deltaSize; + } + ++itemIndex; + } + } + } + } + + // Fix min/max violations: + nscoord totalViolation = 0; // keeps track of adjustments for min/max + FLEX_LOG(" Checking for violations:"); + + // Since this loop only operates on unfrozen flex items, we can break as + // soon as we have seen all of them. + uint32_t numUnfrozenItemsToBeSeen = NumItems() - mNumFrozenItems; + for (FlexItem& item : Items()) { + if (numUnfrozenItemsToBeSeen == 0) { + break; + } + + if (!item.IsFrozen()) { + numUnfrozenItemsToBeSeen--; + + if (item.MainSize() < item.MainMinSize()) { + // min violation + totalViolation += item.MainMinSize() - item.MainSize(); + item.SetMainSize(item.MainMinSize()); + item.SetHadMinViolation(); + } else if (item.MainSize() > item.MainMaxSize()) { + // max violation + totalViolation += item.MainMaxSize() - item.MainSize(); + item.SetMainSize(item.MainMaxSize()); + item.SetHadMaxViolation(); + } + } + } + + MOZ_ASSERT(numUnfrozenItemsToBeSeen == 0, "miscounted frozen items?"); + + FreezeOrRestoreEachFlexibleSize(totalViolation, + iterationCounter + 1 == NumItems()); + + FLEX_LOG(" Total violation: %d", totalViolation); + + if (mNumFrozenItems == NumItems()) { + break; + } + + MOZ_ASSERT(totalViolation != 0, + "Zero violation should've made us freeze all items & break"); + } + +#ifdef DEBUG + // Post-condition: all items should've been frozen. + // Make sure the counts match: + MOZ_ASSERT(mNumFrozenItems == NumItems(), "All items should be frozen"); + + // For good measure, check each item directly, in case our counts are busted: + for (const FlexItem& item : Items()) { + MOZ_ASSERT(item.IsFrozen(), "All items should be frozen"); + } +#endif // DEBUG +} + +MainAxisPositionTracker::MainAxisPositionTracker( + const FlexboxAxisTracker& aAxisTracker, const FlexLine* aLine, + const StyleContentDistribution& aJustifyContent, + nscoord aContentBoxMainSize) + : PositionTracker(aAxisTracker.GetWritingMode(), aAxisTracker.MainAxis(), + aAxisTracker.IsMainAxisReversed()), + // we chip away at this below + mPackingSpaceRemaining(aContentBoxMainSize), + mJustifyContent(aJustifyContent) { + // Extract the flag portion of mJustifyContent and strip off the flag bits + // NOTE: This must happen before any assignment to mJustifyContent to + // avoid overwriting the flag bits. + StyleAlignFlags justifyContentFlags = + mJustifyContent.primary & StyleAlignFlags::FLAG_BITS; + mJustifyContent.primary &= ~StyleAlignFlags::FLAG_BITS; + + // 'normal' behaves as 'stretch', and 'stretch' behaves as 'flex-start', + // in the main axis + // https://drafts.csswg.org/css-align-3/#propdef-justify-content + if (mJustifyContent.primary == StyleAlignFlags::NORMAL || + mJustifyContent.primary == StyleAlignFlags::STRETCH) { + mJustifyContent.primary = StyleAlignFlags::FLEX_START; + } + + // mPackingSpaceRemaining is initialized to the container's main size. Now + // we'll subtract out the main sizes of our flex items, so that it ends up + // with the *actual* amount of packing space. + for (const FlexItem& item : aLine->Items()) { + mPackingSpaceRemaining -= item.OuterMainSize(); + mNumAutoMarginsInMainAxis += item.NumAutoMarginsInMainAxis(); + } + + // Subtract space required for row/col gap from the remaining packing space + mPackingSpaceRemaining -= aLine->SumOfGaps(); + + if (mPackingSpaceRemaining <= 0) { + // No available packing space to use for resolving auto margins. + mNumAutoMarginsInMainAxis = 0; + // If packing space is negative and <overflow-position> is set to 'safe' + // all justify options fall back to 'start' + if (justifyContentFlags & StyleAlignFlags::SAFE) { + mJustifyContent.primary = StyleAlignFlags::START; + } + } + + // If packing space is negative or we only have one item, 'space-between' + // falls back to 'flex-start', and 'space-around' & 'space-evenly' fall back + // to 'center'. In those cases, it's simplest to just pretend we have a + // different 'justify-content' value and share code. + if (mPackingSpaceRemaining < 0 || aLine->NumItems() == 1) { + if (mJustifyContent.primary == StyleAlignFlags::SPACE_BETWEEN) { + mJustifyContent.primary = StyleAlignFlags::FLEX_START; + } else if (mJustifyContent.primary == StyleAlignFlags::SPACE_AROUND || + mJustifyContent.primary == StyleAlignFlags::SPACE_EVENLY) { + mJustifyContent.primary = StyleAlignFlags::CENTER; + } + } + + // Map 'left'/'right' to 'start'/'end' + if (mJustifyContent.primary == StyleAlignFlags::LEFT || + mJustifyContent.primary == StyleAlignFlags::RIGHT) { + mJustifyContent.primary = + aAxisTracker.ResolveJustifyLeftRight(mJustifyContent.primary); + } + + // Map 'start'/'end' to 'flex-start'/'flex-end'. + if (mJustifyContent.primary == StyleAlignFlags::START) { + mJustifyContent.primary = aAxisTracker.IsMainAxisReversed() + ? StyleAlignFlags::FLEX_END + : StyleAlignFlags::FLEX_START; + } else if (mJustifyContent.primary == StyleAlignFlags::END) { + mJustifyContent.primary = aAxisTracker.IsMainAxisReversed() + ? StyleAlignFlags::FLEX_START + : StyleAlignFlags::FLEX_END; + } + + // Figure out how much space we'll set aside for auto margins or + // packing spaces, and advance past any leading packing-space. + if (mNumAutoMarginsInMainAxis == 0 && mPackingSpaceRemaining != 0 && + !aLine->IsEmpty()) { + if (mJustifyContent.primary == StyleAlignFlags::FLEX_START) { + // All packing space should go at the end --> nothing to do here. + } else if (mJustifyContent.primary == StyleAlignFlags::FLEX_END) { + // All packing space goes at the beginning + mPosition += mPackingSpaceRemaining; + } else if (mJustifyContent.primary == StyleAlignFlags::CENTER) { + // Half the packing space goes at the beginning + mPosition += mPackingSpaceRemaining / 2; + } else if (mJustifyContent.primary == StyleAlignFlags::SPACE_BETWEEN || + mJustifyContent.primary == StyleAlignFlags::SPACE_AROUND || + mJustifyContent.primary == StyleAlignFlags::SPACE_EVENLY) { + nsFlexContainerFrame::CalculatePackingSpace( + aLine->NumItems(), mJustifyContent, &mPosition, + &mNumPackingSpacesRemaining, &mPackingSpaceRemaining); + } else { + MOZ_ASSERT_UNREACHABLE("Unexpected justify-content value"); + } + } + + MOZ_ASSERT(mNumPackingSpacesRemaining == 0 || mNumAutoMarginsInMainAxis == 0, + "extra space should either go to packing space or to " + "auto margins, but not to both"); +} + +void MainAxisPositionTracker::ResolveAutoMarginsInMainAxis(FlexItem& aItem) { + if (mNumAutoMarginsInMainAxis) { + const auto& styleMargin = aItem.Frame()->StyleMargin()->mMargin; + for (const auto side : {StartSide(), EndSide()}) { + if (styleMargin.Get(mWM, side).IsAuto()) { + // NOTE: This integer math will skew the distribution of remainder + // app-units towards the end, which is fine. + nscoord curAutoMarginSize = + mPackingSpaceRemaining / mNumAutoMarginsInMainAxis; + + MOZ_ASSERT(aItem.GetMarginComponentForSide(side) == 0, + "Expecting auto margins to have value '0' before we " + "resolve them"); + aItem.SetMarginComponentForSide(side, curAutoMarginSize); + + mNumAutoMarginsInMainAxis--; + mPackingSpaceRemaining -= curAutoMarginSize; + } + } + } +} + +void MainAxisPositionTracker::TraversePackingSpace() { + if (mNumPackingSpacesRemaining) { + MOZ_ASSERT(mJustifyContent.primary == StyleAlignFlags::SPACE_BETWEEN || + mJustifyContent.primary == StyleAlignFlags::SPACE_AROUND || + mJustifyContent.primary == StyleAlignFlags::SPACE_EVENLY, + "mNumPackingSpacesRemaining only applies for " + "space-between/space-around/space-evenly"); + + MOZ_ASSERT(mPackingSpaceRemaining >= 0, + "ran out of packing space earlier than we expected"); + + // NOTE: This integer math will skew the distribution of remainder + // app-units towards the end, which is fine. + nscoord curPackingSpace = + mPackingSpaceRemaining / mNumPackingSpacesRemaining; + + mPosition += curPackingSpace; + mNumPackingSpacesRemaining--; + mPackingSpaceRemaining -= curPackingSpace; + } +} + +CrossAxisPositionTracker::CrossAxisPositionTracker( + nsTArray<FlexLine>& aLines, const ReflowInput& aReflowInput, + nscoord aContentBoxCrossSize, bool aIsCrossSizeDefinite, + const FlexboxAxisTracker& aAxisTracker, const nscoord aCrossGapSize) + : PositionTracker(aAxisTracker.GetWritingMode(), aAxisTracker.CrossAxis(), + aAxisTracker.IsCrossAxisReversed()), + mAlignContent(aReflowInput.mStylePosition->mAlignContent), + mCrossGapSize(aCrossGapSize) { + // Extract and strip the flag bits from alignContent + StyleAlignFlags alignContentFlags = + mAlignContent.primary & StyleAlignFlags::FLAG_BITS; + mAlignContent.primary &= ~StyleAlignFlags::FLAG_BITS; + + // 'normal' behaves as 'stretch' + if (mAlignContent.primary == StyleAlignFlags::NORMAL) { + mAlignContent.primary = StyleAlignFlags::STRETCH; + } + + const bool isSingleLine = + StyleFlexWrap::Nowrap == aReflowInput.mStylePosition->mFlexWrap; + if (isSingleLine) { + MOZ_ASSERT(aLines.Length() == 1, + "If we're styled as single-line, we should only have 1 line"); + // "If the flex container is single-line and has a definite cross size, the + // cross size of the flex line is the flex container's inner cross size." + // + // SOURCE: https://drafts.csswg.org/css-flexbox/#algo-cross-line + // NOTE: This means (by definition) that there's no packing space, which + // means we don't need to be concerned with "align-content" at all and we + // can return early. This is handy, because this is the usual case (for + // single-line flexbox). + if (aIsCrossSizeDefinite) { + aLines[0].SetLineCrossSize(aContentBoxCrossSize); + return; + } + + // "If the flex container is single-line, then clamp the line's + // cross-size to be within the container's computed min and max cross-size + // properties." + aLines[0].SetLineCrossSize( + aReflowInput.ApplyMinMaxBSize(aLines[0].LineCrossSize())); + } + + // NOTE: The rest of this function should essentially match + // MainAxisPositionTracker's constructor, though with FlexLines instead of + // FlexItems, and with the additional value "stretch" (and of course with + // cross sizes instead of main sizes.) + + // Figure out how much packing space we have (container's cross size minus + // all the lines' cross sizes). Also, share this loop to count how many + // lines we have. (We need that count in some cases below.) + mPackingSpaceRemaining = aContentBoxCrossSize; + uint32_t numLines = 0; + for (FlexLine& line : aLines) { + mPackingSpaceRemaining -= line.LineCrossSize(); + numLines++; + } + + // Subtract space required for row/col gap from the remaining packing space + MOZ_ASSERT(numLines >= 1, + "GenerateFlexLines should've produced at least 1 line"); + mPackingSpaceRemaining -= aCrossGapSize * (numLines - 1); + + // If <overflow-position> is 'safe' and packing space is negative + // all align options fall back to 'start' + if ((alignContentFlags & StyleAlignFlags::SAFE) && + mPackingSpaceRemaining < 0) { + mAlignContent.primary = StyleAlignFlags::START; + } + + // If packing space is negative, 'space-between' and 'stretch' behave like + // 'flex-start', and 'space-around' and 'space-evenly' behave like 'center'. + // In those cases, it's simplest to just pretend we have a different + // 'align-content' value and share code. (If we only have one line, all of + // the 'space-*' keywords fall back as well, but 'stretch' doesn't because + // even a single line can still stretch.) + if (mPackingSpaceRemaining < 0 && + mAlignContent.primary == StyleAlignFlags::STRETCH) { + mAlignContent.primary = StyleAlignFlags::FLEX_START; + } else if (mPackingSpaceRemaining < 0 || numLines == 1) { + if (mAlignContent.primary == StyleAlignFlags::SPACE_BETWEEN) { + mAlignContent.primary = StyleAlignFlags::FLEX_START; + } else if (mAlignContent.primary == StyleAlignFlags::SPACE_AROUND || + mAlignContent.primary == StyleAlignFlags::SPACE_EVENLY) { + mAlignContent.primary = StyleAlignFlags::CENTER; + } + } + + // Map 'start'/'end' to 'flex-start'/'flex-end'. + if (mAlignContent.primary == StyleAlignFlags::START) { + mAlignContent.primary = aAxisTracker.IsCrossAxisReversed() + ? StyleAlignFlags::FLEX_END + : StyleAlignFlags::FLEX_START; + } else if (mAlignContent.primary == StyleAlignFlags::END) { + mAlignContent.primary = aAxisTracker.IsCrossAxisReversed() + ? StyleAlignFlags::FLEX_START + : StyleAlignFlags::FLEX_END; + } + + // Figure out how much space we'll set aside for packing spaces, and advance + // past any leading packing-space. + if (mPackingSpaceRemaining != 0) { + if (mAlignContent.primary == StyleAlignFlags::BASELINE || + mAlignContent.primary == StyleAlignFlags::LAST_BASELINE) { + // TODO: Bug 1480850 will implement 'align-content: [first/last] baseline' + // for flexbox. Until then, behaves as if align-content is 'flex-start' by + // doing nothing. + } else if (mAlignContent.primary == StyleAlignFlags::FLEX_START) { + // All packing space should go at the end --> nothing to do here. + } else if (mAlignContent.primary == StyleAlignFlags::FLEX_END) { + // All packing space goes at the beginning + mPosition += mPackingSpaceRemaining; + } else if (mAlignContent.primary == StyleAlignFlags::CENTER) { + // Half the packing space goes at the beginning + mPosition += mPackingSpaceRemaining / 2; + } else if (mAlignContent.primary == StyleAlignFlags::SPACE_BETWEEN || + mAlignContent.primary == StyleAlignFlags::SPACE_AROUND || + mAlignContent.primary == StyleAlignFlags::SPACE_EVENLY) { + nsFlexContainerFrame::CalculatePackingSpace( + numLines, mAlignContent, &mPosition, &mNumPackingSpacesRemaining, + &mPackingSpaceRemaining); + } else if (mAlignContent.primary == StyleAlignFlags::STRETCH) { + // Split space equally between the lines: + MOZ_ASSERT(mPackingSpaceRemaining > 0, + "negative packing space should make us use 'flex-start' " + "instead of 'stretch' (and we shouldn't bother with this " + "code if we have 0 packing space)"); + + uint32_t numLinesLeft = numLines; + for (FlexLine& line : aLines) { + // Our share is the amount of space remaining, divided by the number + // of lines remainig. + MOZ_ASSERT(numLinesLeft > 0, "miscalculated num lines"); + nscoord shareOfExtraSpace = mPackingSpaceRemaining / numLinesLeft; + nscoord newSize = line.LineCrossSize() + shareOfExtraSpace; + line.SetLineCrossSize(newSize); + + mPackingSpaceRemaining -= shareOfExtraSpace; + numLinesLeft--; + } + MOZ_ASSERT(numLinesLeft == 0, "miscalculated num lines"); + } else { + MOZ_ASSERT_UNREACHABLE("Unexpected align-content value"); + } + } +} + +void CrossAxisPositionTracker::TraversePackingSpace() { + if (mNumPackingSpacesRemaining) { + MOZ_ASSERT(mAlignContent.primary == StyleAlignFlags::SPACE_BETWEEN || + mAlignContent.primary == StyleAlignFlags::SPACE_AROUND || + mAlignContent.primary == StyleAlignFlags::SPACE_EVENLY, + "mNumPackingSpacesRemaining only applies for " + "space-between/space-around/space-evenly"); + + MOZ_ASSERT(mPackingSpaceRemaining >= 0, + "ran out of packing space earlier than we expected"); + + // NOTE: This integer math will skew the distribution of remainder + // app-units towards the end, which is fine. + nscoord curPackingSpace = + mPackingSpaceRemaining / mNumPackingSpacesRemaining; + + mPosition += curPackingSpace; + mNumPackingSpacesRemaining--; + mPackingSpaceRemaining -= curPackingSpace; + } +} + +SingleLineCrossAxisPositionTracker::SingleLineCrossAxisPositionTracker( + const FlexboxAxisTracker& aAxisTracker) + : PositionTracker(aAxisTracker.GetWritingMode(), aAxisTracker.CrossAxis(), + aAxisTracker.IsCrossAxisReversed()) {} + +void FlexLine::ComputeCrossSizeAndBaseline( + const FlexboxAxisTracker& aAxisTracker) { + // NOTE: in these "cross{Start,End}ToFurthest{First,Last}Baseline" variables, + // the "first/last" term is referring to the flex *line's* baseline-sharing + // groups, which may or may not match any flex *item's* exact align-self + // value. See the code that sets FlexItem::mBaselineSharingGroup for more + // details. + nscoord crossStartToFurthestFirstBaseline = nscoord_MIN; + nscoord crossEndToFurthestFirstBaseline = nscoord_MIN; + nscoord crossStartToFurthestLastBaseline = nscoord_MIN; + nscoord crossEndToFurthestLastBaseline = nscoord_MIN; + + nscoord largestOuterCrossSize = 0; + for (const FlexItem& item : Items()) { + nscoord curOuterCrossSize = item.OuterCrossSize(); + + if ((item.AlignSelf()._0 == StyleAlignFlags::BASELINE || + item.AlignSelf()._0 == StyleAlignFlags::LAST_BASELINE) && + item.NumAutoMarginsInCrossAxis() == 0) { + const bool usingItemFirstBaseline = + (item.AlignSelf()._0 == StyleAlignFlags::BASELINE); + + // Find distance from our item's cross-start and cross-end margin-box + // edges to its baseline. + // + // Here's a diagram of a flex-item that we might be doing this on. + // "mmm" is the margin-box, "bbb" is the border-box. The bottom of + // the text "BASE" is the baseline. + // + // ---(cross-start)--- + // ___ ___ ___ + // mmmmmmmmmmmm | |margin-start | + // m m | _|_ ___ | + // m bbbbbbbb m |curOuterCrossSize | |crossStartToBaseline + // m b b m | |ascent | + // m b BASE b m | _|_ _|_ + // m b b m | | + // m bbbbbbbb m | |crossEndToBaseline + // m m | | + // mmmmmmmmmmmm _|_ _|_ + // + // ---(cross-end)--- + // + // We already have the curOuterCrossSize, margin-start, and the ascent. + // * We can get crossStartToBaseline by adding margin-start + ascent. + // * If we subtract that from the curOuterCrossSize, we get + // crossEndToBaseline. + + nscoord crossStartToBaseline = item.BaselineOffsetFromOuterCrossEdge( + aAxisTracker.CrossAxisPhysicalStartSide(), usingItemFirstBaseline); + nscoord crossEndToBaseline = curOuterCrossSize - crossStartToBaseline; + + // Now, update our "largest" values for these (across all the flex items + // in this flex line), so we can use them in computing the line's cross + // size below: + if (item.ItemBaselineSharingGroup() == BaselineSharingGroup::First) { + crossStartToFurthestFirstBaseline = + std::max(crossStartToFurthestFirstBaseline, crossStartToBaseline); + crossEndToFurthestFirstBaseline = + std::max(crossEndToFurthestFirstBaseline, crossEndToBaseline); + } else { + crossStartToFurthestLastBaseline = + std::max(crossStartToFurthestLastBaseline, crossStartToBaseline); + crossEndToFurthestLastBaseline = + std::max(crossEndToFurthestLastBaseline, crossEndToBaseline); + } + } else { + largestOuterCrossSize = + std::max(largestOuterCrossSize, curOuterCrossSize); + } + } + + // The line's baseline offset is the distance from the line's edge to the + // furthest item-baseline. The item(s) with that baseline will be exactly + // aligned with the line's edge. + mFirstBaselineOffset = crossStartToFurthestFirstBaseline; + mLastBaselineOffset = crossEndToFurthestLastBaseline; + + // The line's cross-size is the larger of: + // (a) [largest cross-start-to-baseline + largest baseline-to-cross-end] of + // all baseline-aligned items with no cross-axis auto margins... + // and + // (b) [largest cross-start-to-baseline + largest baseline-to-cross-end] of + // all last baseline-aligned items with no cross-axis auto margins... + // and + // (c) largest cross-size of all other children. + mLineCrossSize = std::max( + std::max( + crossStartToFurthestFirstBaseline + crossEndToFurthestFirstBaseline, + crossStartToFurthestLastBaseline + crossEndToFurthestLastBaseline), + largestOuterCrossSize); +} + +nscoord FlexLine::ExtractBaselineOffset( + BaselineSharingGroup aBaselineGroup) const { + auto LastBaselineOffsetFromStartEdge = [this]() { + // Convert the distance to be relative from the line's cross-start edge. + const nscoord offset = LastBaselineOffset(); + return offset != nscoord_MIN ? LineCrossSize() - offset : offset; + }; + + auto PrimaryBaseline = [=]() { + return aBaselineGroup == BaselineSharingGroup::First + ? FirstBaselineOffset() + : LastBaselineOffsetFromStartEdge(); + }; + auto SecondaryBaseline = [=]() { + return aBaselineGroup == BaselineSharingGroup::First + ? LastBaselineOffsetFromStartEdge() + : FirstBaselineOffset(); + }; + + const nscoord primaryBaseline = PrimaryBaseline(); + if (primaryBaseline != nscoord_MIN) { + return primaryBaseline; + } + return SecondaryBaseline(); +} + +void FlexItem::ResolveStretchedCrossSize(nscoord aLineCrossSize) { + // We stretch IFF we are align-self:stretch, have no auto margins in + // cross axis, and have cross-axis size property == "auto". If any of those + // conditions don't hold up, we won't stretch. + if (mAlignSelf._0 != StyleAlignFlags::STRETCH || + NumAutoMarginsInCrossAxis() != 0 || !IsCrossSizeAuto()) { + return; + } + + // If we've already been stretched, we can bail out early, too. + // No need to redo the calculation. + if (mIsStretched) { + return; + } + + // Reserve space for margins & border & padding, and then use whatever + // remains as our item's cross-size (clamped to its min/max range). + nscoord stretchedSize = aLineCrossSize - MarginBorderPaddingSizeInCrossAxis(); + + stretchedSize = NS_CSS_MINMAX(stretchedSize, mCrossMinSize, mCrossMaxSize); + + // Update the cross-size & make a note that it's stretched, so we know to + // override the reflow input's computed cross-size in our final reflow. + SetCrossSize(stretchedSize); + mIsStretched = true; +} + +static nsBlockFrame* FindFlexItemBlockFrame(nsIFrame* aFrame) { + if (nsBlockFrame* block = do_QueryFrame(aFrame)) { + return block; + } + for (nsIFrame* f : aFrame->PrincipalChildList()) { + if (nsBlockFrame* block = FindFlexItemBlockFrame(f)) { + return block; + } + } + return nullptr; +} + +nsBlockFrame* FlexItem::BlockFrame() const { + return FindFlexItemBlockFrame(Frame()); +} + +void SingleLineCrossAxisPositionTracker::ResolveAutoMarginsInCrossAxis( + const FlexLine& aLine, FlexItem& aItem) { + // Subtract the space that our item is already occupying, to see how much + // space (if any) is available for its auto margins. + nscoord spaceForAutoMargins = aLine.LineCrossSize() - aItem.OuterCrossSize(); + + if (spaceForAutoMargins <= 0) { + return; // No available space --> nothing to do + } + + uint32_t numAutoMargins = aItem.NumAutoMarginsInCrossAxis(); + if (numAutoMargins == 0) { + return; // No auto margins --> nothing to do. + } + + // OK, we have at least one auto margin and we have some available space. + // Give each auto margin a share of the space. + const auto& styleMargin = aItem.Frame()->StyleMargin()->mMargin; + for (const auto side : {StartSide(), EndSide()}) { + if (styleMargin.Get(mWM, side).IsAuto()) { + MOZ_ASSERT(aItem.GetMarginComponentForSide(side) == 0, + "Expecting auto margins to have value '0' before we " + "update them"); + + // NOTE: integer divison is fine here; numAutoMargins is either 1 or 2. + // If it's 2 & spaceForAutoMargins is odd, 1st margin gets smaller half. + nscoord curAutoMarginSize = spaceForAutoMargins / numAutoMargins; + aItem.SetMarginComponentForSide(side, curAutoMarginSize); + numAutoMargins--; + spaceForAutoMargins -= curAutoMarginSize; + } + } +} + +void SingleLineCrossAxisPositionTracker::EnterAlignPackingSpace( + const FlexLine& aLine, const FlexItem& aItem, + const FlexboxAxisTracker& aAxisTracker) { + // We don't do align-self alignment on items that have auto margins + // in the cross axis. + if (aItem.NumAutoMarginsInCrossAxis()) { + return; + } + + StyleAlignFlags alignSelf = aItem.AlignSelf()._0; + // NOTE: 'stretch' behaves like 'flex-start' once we've stretched any + // auto-sized items (which we've already done). + if (alignSelf == StyleAlignFlags::STRETCH) { + alignSelf = StyleAlignFlags::FLEX_START; + } + + // Map 'self-start'/'self-end' to 'start'/'end' + if (alignSelf == StyleAlignFlags::SELF_START || + alignSelf == StyleAlignFlags::SELF_END) { + const LogicalAxis logCrossAxis = + aAxisTracker.IsRowOriented() ? eLogicalAxisBlock : eLogicalAxisInline; + const WritingMode cWM = aAxisTracker.GetWritingMode(); + const bool sameStart = + cWM.ParallelAxisStartsOnSameSide(logCrossAxis, aItem.GetWritingMode()); + alignSelf = sameStart == (alignSelf == StyleAlignFlags::SELF_START) + ? StyleAlignFlags::START + : StyleAlignFlags::END; + } + + // Map 'start'/'end' to 'flex-start'/'flex-end'. + if (alignSelf == StyleAlignFlags::START) { + alignSelf = aAxisTracker.IsCrossAxisReversed() + ? StyleAlignFlags::FLEX_END + : StyleAlignFlags::FLEX_START; + } else if (alignSelf == StyleAlignFlags::END) { + alignSelf = aAxisTracker.IsCrossAxisReversed() ? StyleAlignFlags::FLEX_START + : StyleAlignFlags::FLEX_END; + } + + // 'align-self' falls back to 'flex-start' if it is 'center'/'flex-end' and we + // have cross axis overflow + // XXX we should really be falling back to 'start' as of bug 1472843 + if (aLine.LineCrossSize() < aItem.OuterCrossSize() && + (aItem.AlignSelfFlags() & StyleAlignFlags::SAFE)) { + alignSelf = StyleAlignFlags::FLEX_START; + } + + if (alignSelf == StyleAlignFlags::FLEX_START) { + // No space to skip over -- we're done. + } else if (alignSelf == StyleAlignFlags::FLEX_END) { + mPosition += aLine.LineCrossSize() - aItem.OuterCrossSize(); + } else if (alignSelf == StyleAlignFlags::CENTER) { + // Note: If cross-size is odd, the "after" space will get the extra unit. + mPosition += (aLine.LineCrossSize() - aItem.OuterCrossSize()) / 2; + } else if (alignSelf == StyleAlignFlags::BASELINE || + alignSelf == StyleAlignFlags::LAST_BASELINE) { + const bool usingItemFirstBaseline = + (alignSelf == StyleAlignFlags::BASELINE); + + // The first-baseline sharing group gets (collectively) aligned to the + // FlexLine's cross-start side, and similarly the last-baseline sharing + // group gets snapped to the cross-end side. + const bool isFirstBaselineSharingGroup = + aItem.ItemBaselineSharingGroup() == BaselineSharingGroup::First; + const mozilla::Side alignSide = + isFirstBaselineSharingGroup ? aAxisTracker.CrossAxisPhysicalStartSide() + : aAxisTracker.CrossAxisPhysicalEndSide(); + + // To compute the aligned position for our flex item, we determine: + // (1) The distance from the item's alignSide edge to the item's relevant + // baseline. + nscoord itemBaselineOffset = aItem.BaselineOffsetFromOuterCrossEdge( + alignSide, usingItemFirstBaseline); + + // (2) The distance between the FlexLine's alignSide edge and the relevant + // baseline-sharing-group's baseline position. + nscoord lineBaselineOffset = isFirstBaselineSharingGroup + ? aLine.FirstBaselineOffset() + : aLine.LastBaselineOffset(); + + NS_ASSERTION(lineBaselineOffset >= itemBaselineOffset, + "failed at finding largest baseline offset"); + + // (3) The difference between the above offsets, which tells us how far we + // need to shift the item away from the FlexLine's alignSide edge so + // that its baseline is at the proper position for its group. + nscoord itemOffsetFromLineEdge = lineBaselineOffset - itemBaselineOffset; + + if (isFirstBaselineSharingGroup) { + // alignSide is the line's cross-start edge. mPosition is already there. + // From there, we step *forward* by the baseline adjustment: + mPosition += itemOffsetFromLineEdge; + } else { + // alignSide is the line's cross-end edge. Advance mPosition to align + // item with that edge (as in FLEX_END case)... + mPosition += aLine.LineCrossSize() - aItem.OuterCrossSize(); + // ...and step *back* by the baseline adjustment: + mPosition -= itemOffsetFromLineEdge; + } + } else { + MOZ_ASSERT_UNREACHABLE("Unexpected align-self value"); + } +} + +FlexboxAxisInfo::FlexboxAxisInfo(const nsIFrame* aFlexContainer) { + MOZ_ASSERT(aFlexContainer && aFlexContainer->IsFlexContainerFrame(), + "Only flex containers may be passed to this constructor!"); + if (IsLegacyBox(aFlexContainer)) { + InitAxesFromLegacyProps(aFlexContainer); + } else { + InitAxesFromModernProps(aFlexContainer); + } +} + +void FlexboxAxisInfo::InitAxesFromLegacyProps(const nsIFrame* aFlexContainer) { + const nsStyleXUL* styleXUL = aFlexContainer->StyleXUL(); + + const bool boxOrientIsVertical = + styleXUL->mBoxOrient == StyleBoxOrient::Vertical; + const bool wmIsVertical = aFlexContainer->GetWritingMode().IsVertical(); + + // If box-orient agrees with our writing-mode, then we're "row-oriented" + // (i.e. the flexbox main axis is the same as our writing mode's inline + // direction). Otherwise, we're column-oriented (i.e. the flexbox's main + // axis is perpendicular to the writing-mode's inline direction). + mIsRowOriented = (boxOrientIsVertical == wmIsVertical); + + // Legacy flexbox can use "-webkit-box-direction: reverse" to reverse the + // main axis (so it runs in the reverse direction of the inline axis): + mIsMainAxisReversed = styleXUL->mBoxDirection == StyleBoxDirection::Reverse; + + // Legacy flexbox does not support reversing the cross axis -- it has no + // equivalent of modern flexbox's "flex-wrap: wrap-reverse". + mIsCrossAxisReversed = false; +} + +void FlexboxAxisInfo::InitAxesFromModernProps(const nsIFrame* aFlexContainer) { + const nsStylePosition* stylePos = aFlexContainer->StylePosition(); + StyleFlexDirection flexDirection = stylePos->mFlexDirection; + + // Determine main axis: + switch (flexDirection) { + case StyleFlexDirection::Row: + mIsRowOriented = true; + mIsMainAxisReversed = false; + break; + case StyleFlexDirection::RowReverse: + mIsRowOriented = true; + mIsMainAxisReversed = true; + break; + case StyleFlexDirection::Column: + mIsRowOriented = false; + mIsMainAxisReversed = false; + break; + case StyleFlexDirection::ColumnReverse: + mIsRowOriented = false; + mIsMainAxisReversed = true; + break; + } + + // "flex-wrap: wrap-reverse" reverses our cross axis. + mIsCrossAxisReversed = stylePos->mFlexWrap == StyleFlexWrap::WrapReverse; +} + +FlexboxAxisTracker::FlexboxAxisTracker( + const nsFlexContainerFrame* aFlexContainer) + : mWM(aFlexContainer->GetWritingMode()), mAxisInfo(aFlexContainer) {} + +LogicalSide FlexboxAxisTracker::MainAxisStartSide() const { + return MakeLogicalSide( + MainAxis(), IsMainAxisReversed() ? eLogicalEdgeEnd : eLogicalEdgeStart); +} + +LogicalSide FlexboxAxisTracker::CrossAxisStartSide() const { + return MakeLogicalSide( + CrossAxis(), IsCrossAxisReversed() ? eLogicalEdgeEnd : eLogicalEdgeStart); +} + +void nsFlexContainerFrame::GenerateFlexLines( + const ReflowInput& aReflowInput, const nscoord aTentativeContentBoxMainSize, + const nscoord aTentativeContentBoxCrossSize, + const nsTArray<StrutInfo>& aStruts, const FlexboxAxisTracker& aAxisTracker, + nscoord aMainGapSize, nsTArray<nsIFrame*>& aPlaceholders, + nsTArray<FlexLine>& aLines, bool& aHasCollapsedItems) { + MOZ_ASSERT(aLines.IsEmpty(), "Expecting outparam to start out empty"); + + auto ConstructNewFlexLine = [&aLines, aMainGapSize]() { + return aLines.EmplaceBack(aMainGapSize); + }; + + const bool isSingleLine = + StyleFlexWrap::Nowrap == aReflowInput.mStylePosition->mFlexWrap; + + // We have at least one FlexLine. Even an empty flex container has a single + // (empty) flex line. + FlexLine* curLine = ConstructNewFlexLine(); + + nscoord wrapThreshold; + if (isSingleLine) { + // Not wrapping. Set threshold to sentinel value that tells us not to wrap. + wrapThreshold = NS_UNCONSTRAINEDSIZE; + } else { + // Wrapping! Set wrap threshold to flex container's content-box main-size. + wrapThreshold = aTentativeContentBoxMainSize; + + // If the flex container doesn't have a definite content-box main-size + // (e.g. if main axis is vertical & 'height' is 'auto'), make sure we at + // least wrap when we hit its max main-size. + if (wrapThreshold == NS_UNCONSTRAINEDSIZE) { + const nscoord flexContainerMaxMainSize = + aAxisTracker.MainComponent(aReflowInput.ComputedMaxSize()); + wrapThreshold = flexContainerMaxMainSize; + } + } + + // Tracks the index of the next strut, in aStruts (and when this hits + // aStruts.Length(), that means there are no more struts): + uint32_t nextStrutIdx = 0; + + // Overall index of the current flex item in the flex container. (This gets + // checked against entries in aStruts.) + uint32_t itemIdxInContainer = 0; + + CSSOrderAwareFrameIterator iter( + this, FrameChildListID::Principal, + CSSOrderAwareFrameIterator::ChildFilter::IncludeAll, + CSSOrderAwareFrameIterator::OrderState::Unknown, + OrderingPropertyForIter(this)); + + AddOrRemoveStateBits(NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER, + iter.ItemsAreAlreadyInOrder()); + + const bool useMozBoxCollapseBehavior = + StyleVisibility()->UseLegacyCollapseBehavior(); + + for (; !iter.AtEnd(); iter.Next()) { + nsIFrame* childFrame = *iter; + // Don't create flex items / lines for placeholder frames: + if (childFrame->IsPlaceholderFrame()) { + aPlaceholders.AppendElement(childFrame); + continue; + } + + const bool collapsed = childFrame->StyleVisibility()->IsCollapse(); + aHasCollapsedItems = aHasCollapsedItems || collapsed; + + if (useMozBoxCollapseBehavior && collapsed) { + // Legacy visibility:collapse behavior: make a 0-sized strut. (No need to + // bother with aStruts and remembering cross size.) + curLine->Items().EmplaceBack(childFrame, 0, aReflowInput.GetWritingMode(), + aAxisTracker); + } else if (nextStrutIdx < aStruts.Length() && + aStruts[nextStrutIdx].mItemIdx == itemIdxInContainer) { + // Use the simplified "strut" FlexItem constructor: + curLine->Items().EmplaceBack(childFrame, + aStruts[nextStrutIdx].mStrutCrossSize, + aReflowInput.GetWritingMode(), aAxisTracker); + nextStrutIdx++; + } else { + GenerateFlexItemForChild(*curLine, childFrame, aReflowInput, aAxisTracker, + aTentativeContentBoxCrossSize); + } + + // Check if we need to wrap the newly appended item to a new line, i.e. if + // its outer hypothetical main size pushes our line over the threshold. + // But we don't wrap if the line-length is unconstrained, nor do we wrap if + // this was the first item on the line. + if (wrapThreshold != NS_UNCONSTRAINEDSIZE && + curLine->Items().Length() > 1) { + // If the line will be longer than wrapThreshold or at least as long as + // nscoord_MAX because of the newly appended item, then wrap and move the + // item to a new line. + auto newOuterSize = curLine->TotalOuterHypotheticalMainSize(); + newOuterSize += curLine->Items().LastElement().OuterMainSize(); + + // Account for gap between this line's previous item and this item. + newOuterSize += aMainGapSize; + + if (newOuterSize >= nscoord_MAX || newOuterSize > wrapThreshold) { + curLine = ConstructNewFlexLine(); + + // Get the previous line after adding a new line because the address can + // change if nsTArray needs to reallocate a new space for the new line. + FlexLine& prevLine = aLines[aLines.Length() - 2]; + + // Move the item from the end of prevLine to the end of curLine. + curLine->Items().AppendElement(prevLine.Items().PopLastElement()); + } + } + + // Update the line's bookkeeping about how large its items collectively are. + curLine->AddLastItemToMainSizeTotals(); + itemIdxInContainer++; + } +} + +nsFlexContainerFrame::FlexLayoutResult +nsFlexContainerFrame::GenerateFlexLayoutResult() { + MOZ_ASSERT(GetPrevInFlow(), "This should be called by non-first-in-flows!"); + + auto* data = FirstInFlow()->GetProperty(SharedFlexData::Prop()); + MOZ_ASSERT(data, "SharedFlexData should be set by our first-in-flow!"); + + FlexLayoutResult flr; + + // The order state of the children is consistent across entire continuation + // chain due to calling nsContainerFrame::NormalizeChildLists() at the + // beginning of Reflow(), so we can align our state bit with our + // prev-in-flow's state. Setup here before calling OrderStateForIter() below. + AddOrRemoveStateBits(NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER, + GetPrevInFlow()->HasAnyStateBits( + NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER)); + + // Construct flex items for this flex container fragment from existing flex + // items in SharedFlexData. + CSSOrderAwareFrameIterator iter( + this, FrameChildListID::Principal, + CSSOrderAwareFrameIterator::ChildFilter::SkipPlaceholders, + OrderStateForIter(this), OrderingPropertyForIter(this)); + + auto ConstructNewFlexLine = [&flr]() { + // Use zero main gap size since it doesn't matter in flex container's + // next-in-flows. We've computed flex items' positions in first-in-flow. + return flr.mLines.EmplaceBack(0); + }; + + // We have at least one FlexLine. Even an empty flex container has a single + // (empty) flex line. + FlexLine* currentLine = ConstructNewFlexLine(); + + if (!iter.AtEnd()) { + nsIFrame* child = *iter; + nsIFrame* childFirstInFlow = child->FirstInFlow(); + + // We are iterating nested for-loops over the FlexLines and FlexItems + // generated by GenerateFlexLines() and cached in flex container's + // first-in-flow. For each flex item, check if its frame (must be a + // first-in-flow) is the first-in-flow of the first child frame in this flex + // container continuation. If so, clone the data from that FlexItem into a + // FlexLine. When we find a match for the item, we know that the next child + // frame might have its first-in-flow as the next item in the same original + // line. In this case, we'll put the cloned data in the same line here as + // well. + for (const FlexLine& line : data->mLines) { + // If currentLine is empty, either it is the first line, or all the items + // in the previous line have been placed in our prev-in-flows. No need to + // construct a new line. + if (!currentLine->IsEmpty()) { + currentLine = ConstructNewFlexLine(); + } + for (const FlexItem& item : line.Items()) { + if (item.Frame() == childFirstInFlow) { + currentLine->Items().AppendElement(item.CloneFor(child)); + iter.Next(); + if (iter.AtEnd()) { + // We've constructed flex items for all children. No need to check + // rest of the items. + child = childFirstInFlow = nullptr; + break; + } + child = *iter; + childFirstInFlow = child->FirstInFlow(); + } + } + if (iter.AtEnd()) { + // We've constructed flex items for all children. No need to check + // rest of the lines. + break; + } + } + } + + flr.mContentBoxMainSize = data->mContentBoxMainSize; + flr.mContentBoxCrossSize = data->mContentBoxCrossSize; + + return flr; +} + +// Returns the largest outer hypothetical main-size of any line in |aLines|. +// (i.e. the hypothetical main-size of the largest line) +static AuCoord64 GetLargestLineMainSize(nsTArray<FlexLine>& aLines) { + AuCoord64 largestLineOuterSize = 0; + for (const FlexLine& line : aLines) { + largestLineOuterSize = + std::max(largestLineOuterSize, line.TotalOuterHypotheticalMainSize()); + } + return largestLineOuterSize; +} + +nscoord nsFlexContainerFrame::ComputeMainSize( + const ReflowInput& aReflowInput, const FlexboxAxisTracker& aAxisTracker, + const nscoord aTentativeContentBoxMainSize, + nsTArray<FlexLine>& aLines) const { + if (aAxisTracker.IsRowOriented()) { + // Row-oriented --> our main axis is the inline axis, so our main size + // is our inline size (which should already be resolved). + return aTentativeContentBoxMainSize; + } + + const bool shouldApplyAutomaticMinimumOnBlockAxis = + aReflowInput.ShouldApplyAutomaticMinimumOnBlockAxis(); + if (aTentativeContentBoxMainSize != NS_UNCONSTRAINEDSIZE && + !shouldApplyAutomaticMinimumOnBlockAxis) { + // Column-oriented case, with fixed BSize: + // Just use our fixed block-size because we always assume the available + // block-size is unconstrained, and the reflow input has already done the + // appropriate min/max-BSize clamping. + return aTentativeContentBoxMainSize; + } + + // Column-oriented case, with size-containment in block axis: + // Behave as if we had no content and just use our MinBSize. + if (Maybe<nscoord> containBSize = + aReflowInput.mFrame->ContainIntrinsicBSize()) { + return aReflowInput.ApplyMinMaxBSize(*containBSize); + } + + const AuCoord64 largestLineMainSize = GetLargestLineMainSize(aLines); + const nscoord contentBSize = aReflowInput.ApplyMinMaxBSize( + nscoord(largestLineMainSize.ToMinMaxClamped())); + + // If the clamped largest FlexLine length is larger than the tentative main + // size (which is resolved by aspect-ratio), we extend it to contain the + // entire FlexLine. + // https://drafts.csswg.org/css-sizing-4/#aspect-ratio-minimum + if (shouldApplyAutomaticMinimumOnBlockAxis) { + // Column-oriented case, with auto BSize which is resolved by + // aspect-ratio. + return std::max(contentBSize, aTentativeContentBoxMainSize); + } + + // Column-oriented case, with auto BSize: + // Resolve auto BSize to the largest FlexLine length, clamped to our + // computed min/max main-size properties. + return contentBSize; +} + +nscoord nsFlexContainerFrame::ComputeCrossSize( + const ReflowInput& aReflowInput, const FlexboxAxisTracker& aAxisTracker, + const nscoord aTentativeContentBoxCrossSize, nscoord aSumLineCrossSizes, + bool* aIsDefinite) const { + MOZ_ASSERT(aIsDefinite, "outparam pointer must be non-null"); + + if (aAxisTracker.IsColumnOriented()) { + // Column-oriented --> our cross axis is the inline axis, so our cross size + // is our inline size (which should already be resolved). + *aIsDefinite = true; + // FIXME: Bug 1661847 - there are cases where aTentativeContentBoxCrossSize + // (i.e. aReflowInput.ComputedISize()) might not be the right thing to + // return here. Specifically: if our cross size is an intrinsic size, and we + // have flex items that are flexible and have aspect ratios, then we may + // need to take their post-flexing main sizes into account (multiplied + // through their aspect ratios to get their cross sizes), in order to + // determine their flex line's size & the flex container's cross size (e.g. + // as `aSumLineCrossSizes`). + return aTentativeContentBoxCrossSize; + } + + const bool shouldApplyAutomaticMinimumOnBlockAxis = + aReflowInput.ShouldApplyAutomaticMinimumOnBlockAxis(); + const nscoord computedBSize = aReflowInput.ComputedBSize(); + if (computedBSize != NS_UNCONSTRAINEDSIZE && + !shouldApplyAutomaticMinimumOnBlockAxis) { + // Row-oriented case (cross axis is block-axis), with fixed BSize: + *aIsDefinite = true; + + // Just use our fixed block-size because we always assume the available + // block-size is unconstrained, and the reflow input has already done the + // appropriate min/max-BSize clamping. + return computedBSize; + } + + // Row-oriented case, with size-containment in block axis: + // Behave as if we had no content and just use our MinBSize. + if (Maybe<nscoord> containBSize = + aReflowInput.mFrame->ContainIntrinsicBSize()) { + *aIsDefinite = true; + return aReflowInput.ApplyMinMaxBSize(*containBSize); + } + + // The cross size must not be definite in the following cases. + *aIsDefinite = false; + + const nscoord contentBSize = + aReflowInput.ApplyMinMaxBSize(aSumLineCrossSizes); + // If the content block-size is larger than the effective computed + // block-size, we extend the block-size to contain all the content. + // https://drafts.csswg.org/css-sizing-4/#aspect-ratio-minimum + if (shouldApplyAutomaticMinimumOnBlockAxis) { + // Row-oriented case (cross axis is block-axis), with auto BSize which is + // resolved by aspect-ratio or content size. + return std::max(contentBSize, computedBSize); + } + + // Row-oriented case (cross axis is block axis), with auto BSize: + // Shrink-wrap our line(s), subject to our min-size / max-size + // constraints in that (block) axis. + return contentBSize; +} + +LogicalSize nsFlexContainerFrame::ComputeAvailableSizeForItems( + const ReflowInput& aReflowInput, + const mozilla::LogicalMargin& aBorderPadding) const { + const WritingMode wm = GetWritingMode(); + nscoord availableBSize = aReflowInput.AvailableBSize(); + + if (availableBSize != NS_UNCONSTRAINEDSIZE) { + // Available block-size is constrained. Subtract block-start border and + // padding from it. + availableBSize -= aBorderPadding.BStart(wm); + + if (aReflowInput.mStyleBorder->mBoxDecorationBreak == + StyleBoxDecorationBreak::Clone) { + // We have box-decoration-break:clone. Subtract block-end border and + // padding from the available block-size as well. + availableBSize -= aBorderPadding.BEnd(wm); + } + + // Available block-size can became negative after subtracting block-axis + // border and padding. Per spec, to guarantee progress, fragmentainers are + // assumed to have a minimum block size of 1px regardless of their used + // size. https://drafts.csswg.org/css-break/#breaking-rules + availableBSize = + std::max(nsPresContext::CSSPixelsToAppUnits(1), availableBSize); + } + + return LogicalSize(wm, aReflowInput.ComputedISize(), availableBSize); +} + +void FlexLine::PositionItemsInMainAxis( + const StyleContentDistribution& aJustifyContent, + nscoord aContentBoxMainSize, const FlexboxAxisTracker& aAxisTracker) { + MainAxisPositionTracker mainAxisPosnTracker( + aAxisTracker, this, aJustifyContent, aContentBoxMainSize); + for (FlexItem& item : Items()) { + nscoord itemMainBorderBoxSize = + item.MainSize() + item.BorderPaddingSizeInMainAxis(); + + // Resolve any main-axis 'auto' margins on aChild to an actual value. + mainAxisPosnTracker.ResolveAutoMarginsInMainAxis(item); + + // Advance our position tracker to child's upper-left content-box corner, + // and use that as its position in the main axis. + mainAxisPosnTracker.EnterMargin(item.Margin()); + mainAxisPosnTracker.EnterChildFrame(itemMainBorderBoxSize); + + item.SetMainPosition(mainAxisPosnTracker.Position()); + + mainAxisPosnTracker.ExitChildFrame(itemMainBorderBoxSize); + mainAxisPosnTracker.ExitMargin(item.Margin()); + mainAxisPosnTracker.TraversePackingSpace(); + if (&item != &Items().LastElement()) { + mainAxisPosnTracker.TraverseGap(mMainGapSize); + } + } +} + +void nsFlexContainerFrame::SizeItemInCrossAxis(ReflowInput& aChildReflowInput, + FlexItem& aItem) { + // If cross axis is the item's inline axis, just use ISize from reflow input, + // and don't bother with a full reflow. + if (aItem.IsInlineAxisCrossAxis()) { + aItem.SetCrossSize(aChildReflowInput.ComputedISize()); + return; + } + + MOZ_ASSERT(!aItem.HadMeasuringReflow(), + "We shouldn't need more than one measuring reflow"); + + if (aItem.AlignSelf()._0 == StyleAlignFlags::STRETCH) { + // This item's got "align-self: stretch", so we probably imposed a + // stretched computed cross-size on it during its previous + // reflow. We're not imposing that BSize for *this* "measuring" reflow, so + // we need to tell it to treat this reflow as a resize in its block axis + // (regardless of whether any of its ancestors are actually being resized). + // (Note: we know that the cross axis is the item's *block* axis -- if it + // weren't, then we would've taken the early-return above.) + aChildReflowInput.SetBResize(true); + // Not 100% sure this is needed, but be conservative for now: + aChildReflowInput.mFlags.mIsBResizeForPercentages = true; + } + + // Potentially reflow the item, and get the sizing info. + const CachedBAxisMeasurement& measurement = + MeasureBSizeForFlexItem(aItem, aChildReflowInput); + + // Save the sizing info that we learned from this reflow + // ----------------------------------------------------- + + // Tentatively store the child's desired content-box cross-size. + aItem.SetCrossSize(measurement.BSize()); +} + +void FlexLine::PositionItemsInCrossAxis( + nscoord aLineStartPosition, const FlexboxAxisTracker& aAxisTracker) { + SingleLineCrossAxisPositionTracker lineCrossAxisPosnTracker(aAxisTracker); + + for (FlexItem& item : Items()) { + // First, stretch the item's cross size (if appropriate), and resolve any + // auto margins in this axis. + item.ResolveStretchedCrossSize(mLineCrossSize); + lineCrossAxisPosnTracker.ResolveAutoMarginsInCrossAxis(*this, item); + + // Compute the cross-axis position of this item + nscoord itemCrossBorderBoxSize = + item.CrossSize() + item.BorderPaddingSizeInCrossAxis(); + lineCrossAxisPosnTracker.EnterAlignPackingSpace(*this, item, aAxisTracker); + lineCrossAxisPosnTracker.EnterMargin(item.Margin()); + lineCrossAxisPosnTracker.EnterChildFrame(itemCrossBorderBoxSize); + + item.SetCrossPosition(aLineStartPosition + + lineCrossAxisPosnTracker.Position()); + + // Back out to cross-axis edge of the line. + lineCrossAxisPosnTracker.ResetPosition(); + } +} + +void nsFlexContainerFrame::Reflow(nsPresContext* aPresContext, + ReflowOutput& aReflowOutput, + const ReflowInput& aReflowInput, + nsReflowStatus& aStatus) { + if (IsHiddenByContentVisibilityOfInFlowParentForLayout()) { + return; + } + + MarkInReflow(); + DO_GLOBAL_REFLOW_COUNT("nsFlexContainerFrame"); + DISPLAY_REFLOW(aPresContext, this, aReflowInput, aReflowOutput, aStatus); + MOZ_ASSERT(aStatus.IsEmpty(), "Caller should pass a fresh reflow status!"); + MOZ_ASSERT(aPresContext == PresContext()); + NS_WARNING_ASSERTION( + aReflowInput.ComputedISize() != NS_UNCONSTRAINEDSIZE, + "Unconstrained inline size; this should only result from huge sizes " + "(not intrinsic sizing w/ orthogonal flows)"); + + FLEX_LOG("Reflow() for nsFlexContainerFrame %p", this); + + if (IsFrameTreeTooDeep(aReflowInput, aReflowOutput, aStatus)) { + return; + } + + NormalizeChildLists(); + +#ifdef DEBUG + mDidPushItemsBitMayLie = false; + SanityCheckChildListsBeforeReflow(); +#endif // DEBUG + + // We (and our children) can only depend on our ancestor's bsize if we have + // a percent-bsize, or if we're positioned and we have "block-start" and + // "block-end" set and have block-size:auto. (There are actually other cases, + // too -- e.g. if our parent is itself a block-dir flex container and we're + // flexible -- but we'll let our ancestors handle those sorts of cases.) + // + // TODO(emilio): the !bsize.IsLengthPercentage() preserves behavior, but it's + // too conservative. min/max-content don't really depend on the container. + WritingMode wm = aReflowInput.GetWritingMode(); + const nsStylePosition* stylePos = StylePosition(); + const auto& bsize = stylePos->BSize(wm); + if (bsize.HasPercent() || (StyleDisplay()->IsAbsolutelyPositionedStyle() && + (bsize.IsAuto() || !bsize.IsLengthPercentage()) && + !stylePos->mOffset.GetBStart(wm).IsAuto() && + !stylePos->mOffset.GetBEnd(wm).IsAuto())) { + AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE); + } + + const FlexboxAxisTracker axisTracker(this); + + // Check to see if we need to create a computed info structure, to + // be filled out for use by devtools. + ComputedFlexContainerInfo* containerInfo = CreateOrClearFlexContainerInfo(); + + FlexLayoutResult flr; + PerFragmentFlexData fragmentData; + const nsIFrame* prevInFlow = GetPrevInFlow(); + if (!prevInFlow) { + const LogicalSize tentativeContentBoxSize = aReflowInput.ComputedSize(); + const nscoord tentativeContentBoxMainSize = + axisTracker.MainComponent(tentativeContentBoxSize); + const nscoord tentativeContentBoxCrossSize = + axisTracker.CrossComponent(tentativeContentBoxSize); + + // Calculate gap sizes for main and cross axis. We only need them in + // DoFlexLayout in the first-in-flow, so no need to worry about consumed + // block-size. + const auto& mainGapStyle = + axisTracker.IsRowOriented() ? stylePos->mColumnGap : stylePos->mRowGap; + const auto& crossGapStyle = + axisTracker.IsRowOriented() ? stylePos->mRowGap : stylePos->mColumnGap; + const nscoord mainGapSize = nsLayoutUtils::ResolveGapToLength( + mainGapStyle, tentativeContentBoxMainSize); + const nscoord crossGapSize = nsLayoutUtils::ResolveGapToLength( + crossGapStyle, tentativeContentBoxCrossSize); + + // When fragmenting a flex container, we run the flex algorithm without + // regards to pagination in order to compute the flex container's desired + // content-box size. https://drafts.csswg.org/css-flexbox-1/#pagination-algo + // + // Note: For a multi-line column-oriented flex container, the sample + // algorithm suggests we wrap the flex line at the block-end edge of a + // column/page, but we do not implement it intentionally. This brings the + // layout result closer to the one as if there's no fragmentation. + AutoTArray<StrutInfo, 1> struts; + flr = DoFlexLayout(aReflowInput, tentativeContentBoxMainSize, + tentativeContentBoxCrossSize, axisTracker, mainGapSize, + crossGapSize, struts, containerInfo); + + if (!struts.IsEmpty()) { + // We're restarting flex layout, with new knowledge of collapsed items. + flr.mLines.Clear(); + flr.mPlaceholders.Clear(); + flr = DoFlexLayout(aReflowInput, tentativeContentBoxMainSize, + tentativeContentBoxCrossSize, axisTracker, mainGapSize, + crossGapSize, struts, containerInfo); + } + } else { + flr = GenerateFlexLayoutResult(); + auto* fragmentDataProp = + prevInFlow->GetProperty(PerFragmentFlexData::Prop()); + MOZ_ASSERT(fragmentDataProp, + "PerFragmentFlexData should be set in our prev-in-flow!"); + fragmentData = *fragmentDataProp; + } + + LogicalSize contentBoxSize = axisTracker.LogicalSizeFromFlexRelativeSizes( + flr.mContentBoxMainSize, flr.mContentBoxCrossSize); + + const nscoord consumedBSize = CalcAndCacheConsumedBSize(); + const nscoord effectiveContentBSize = + contentBoxSize.BSize(wm) - consumedBSize; + LogicalMargin borderPadding = aReflowInput.ComputedLogicalBorderPadding(wm); + if (MOZ_UNLIKELY(aReflowInput.AvailableBSize() != NS_UNCONSTRAINEDSIZE)) { + // We assume we are the last fragment by using + // PreReflowBlockLevelLogicalSkipSides(), and skip block-end border and + // padding if needed. + borderPadding.ApplySkipSides(PreReflowBlockLevelLogicalSkipSides()); + } + + // Determine this frame's tentative border-box size. This is used for logical + // to physical coordinate conversion when positioning children. + // + // Note that vertical-rl writing-mode is the only case where the block flow + // direction progresses in a negative physical direction, and therefore block + // direction coordinate conversion depends on knowing the width of the + // coordinate space in order to translate between the logical and physical + // origins. As a result, if our final border-box block-size is different from + // this tentative one, and we are in vertical-rl writing mode, we need to + // adjust our children's position after reflowing them. + const LogicalSize tentativeBorderBoxSize( + wm, contentBoxSize.ISize(wm) + borderPadding.IStartEnd(wm), + std::min(effectiveContentBSize + borderPadding.BStartEnd(wm), + aReflowInput.AvailableBSize())); + const nsSize containerSize = tentativeBorderBoxSize.GetPhysicalSize(wm); + + OverflowAreas ocBounds; + nsReflowStatus ocStatus; + if (prevInFlow) { + ReflowOverflowContainerChildren( + aPresContext, aReflowInput, ocBounds, ReflowChildFlags::Default, + ocStatus, MergeSortedFrameListsFor, Some(containerSize)); + } + + const LogicalSize availableSizeForItems = + ComputeAvailableSizeForItems(aReflowInput, borderPadding); + const auto [childrenBEndEdge, childrenStatus] = + ReflowChildren(aReflowInput, containerSize, availableSizeForItems, + borderPadding, axisTracker, flr, fragmentData); + + bool mayNeedNextInFlow = false; + if (aReflowInput.IsInFragmentedContext()) { + // This fragment's contribution to the flex container's cumulative + // content-box block-size, if it turns out that this is the final vs. + // non-final fragment: + // + // * If it turns out we *are* the final fragment, then this fragment's + // content-box contribution is the distance from the start of our content + // box to the block-end edge of our children (note the borderPadding + // subtraction is just to get us to a content-box-relative offset here): + const nscoord bSizeContributionIfFinalFragment = + childrenBEndEdge - borderPadding.BStart(wm); + + // * If it turns out we're *not* the final fragment, then this fragment's + // content-box extends to the edge of the availableSizeForItems (at least), + // regardless of whether we actually have items at that location: + const nscoord bSizeContributionIfNotFinalFragment = std::max( + bSizeContributionIfFinalFragment, availableSizeForItems.BSize(wm)); + + // mCumulativeBEndEdgeShift was updated in ReflowChildren(), and our + // children's block-size may grow in fragmented context. If our block-size + // and max-block-size are unconstrained, then we allow the flex container to + // grow to accommodate any children whose sizes grew as a result of + // fragmentation. + if (aReflowInput.ComputedBSize() == NS_UNCONSTRAINEDSIZE) { + contentBoxSize.BSize(wm) = aReflowInput.ApplyMinMaxBSize( + contentBoxSize.BSize(wm) + fragmentData.mCumulativeBEndEdgeShift); + + if (childrenStatus.IsComplete()) { + // All of the children fit! We know that we're using a content-based + // block-size, and we know our children's block-size may have grown due + // to fragmentation. So we allow ourselves to grow our block-size here + // to contain the block-end edge of our last child (subject to our + // min/max constraints). + contentBoxSize.BSize(wm) = aReflowInput.ApplyMinMaxBSize(std::max( + contentBoxSize.BSize(wm), fragmentData.mCumulativeContentBoxBSize + + bSizeContributionIfFinalFragment)); + } else { + // As in the if-branch above, we extend our block-size, but in this case + // we know that a child didn't fit and might overshot our available + // size, so we assume this fragment won't be the final fragment, and + // hence it should contribute bSizeContributionIfNotFinalFragment + // (subject to our min/max constraints). + contentBoxSize.BSize(wm) = aReflowInput.ApplyMinMaxBSize(std::max( + contentBoxSize.BSize(wm), fragmentData.mCumulativeContentBoxBSize + + bSizeContributionIfNotFinalFragment)); + + if (aReflowInput.ComputedMaxBSize() == NS_UNCONSTRAINEDSIZE) { + mayNeedNextInFlow = true; + } else { + // The definite max-block-size can be the upper bound of our + // content-box block-size. We should check whether we need a + // next-in-flow. + mayNeedNextInFlow = contentBoxSize.BSize(wm) - consumedBSize > + availableSizeForItems.BSize(wm); + } + } + } else { + mayNeedNextInFlow = contentBoxSize.BSize(wm) - consumedBSize > + availableSizeForItems.BSize(wm); + } + fragmentData.mCumulativeContentBoxBSize += + bSizeContributionIfNotFinalFragment; + + // If we may need a next-in-flow, we'll need to skip block-end border and + // padding. + if (mayNeedNextInFlow && aReflowInput.mStyleBorder->mBoxDecorationBreak == + StyleBoxDecorationBreak::Slice) { + borderPadding.BEnd(wm) = 0; + } + } + + PopulateReflowOutput(aReflowOutput, aReflowInput, aStatus, contentBoxSize, + borderPadding, consumedBSize, mayNeedNextInFlow, + childrenBEndEdge, childrenStatus, axisTracker, flr); + + if (wm.IsVerticalRL()) { + // If the final border-box block-size is different from the tentative one, + // adjust our children's position. + const nscoord deltaBCoord = + tentativeBorderBoxSize.BSize(wm) - aReflowOutput.Size(wm).BSize(wm); + if (deltaBCoord != 0) { + const LogicalPoint delta(wm, 0, deltaBCoord); + for (const FlexLine& line : flr.mLines) { + for (const FlexItem& item : line.Items()) { + item.Frame()->MovePositionBy(wm, delta); + } + } + } + } + + // Overflow area = union(my overflow area, children's overflow areas) + aReflowOutput.SetOverflowAreasToDesiredBounds(); + UnionInFlowChildOverflow(aReflowOutput.mOverflowAreas); + + // Merge overflow container bounds and status. + aReflowOutput.mOverflowAreas.UnionWith(ocBounds); + aStatus.MergeCompletionStatusFrom(ocStatus); + + FinishReflowWithAbsoluteFrames(PresContext(), aReflowOutput, aReflowInput, + aStatus); + + // Finally update our line and item measurements in our containerInfo. + if (MOZ_UNLIKELY(containerInfo)) { + UpdateFlexLineAndItemInfo(*containerInfo, flr.mLines); + } + + // If we are the first-in-flow, we want to store data for our next-in-flows, + // or clear the existing data if it is not needed. + if (!prevInFlow) { + SharedFlexData* sharedData = GetProperty(SharedFlexData::Prop()); + if (!aStatus.IsFullyComplete()) { + if (!sharedData) { + sharedData = new SharedFlexData; + SetProperty(SharedFlexData::Prop(), sharedData); + } + sharedData->Update(std::move(flr)); + } else if (sharedData && !GetNextInFlow()) { + // We are fully-complete, so no next-in-flow is needed. However, if we + // report SetInlineLineBreakBeforeAndReset() in an incremental reflow, our + // next-in-flow might still exist. It can be reflowed again before us if + // it is an overflow container. Delete the existing data only if we don't + // have a next-in-flow. + RemoveProperty(SharedFlexData::Prop()); + } + } + + PerFragmentFlexData* fragmentDataProp = + GetProperty(PerFragmentFlexData::Prop()); + if (!aStatus.IsFullyComplete()) { + if (!fragmentDataProp) { + fragmentDataProp = new PerFragmentFlexData; + SetProperty(PerFragmentFlexData::Prop(), fragmentDataProp); + } + *fragmentDataProp = fragmentData; + } else if (fragmentDataProp && !GetNextInFlow()) { + // Similar to the condition to remove SharedFlexData, delete the + // existing data only if we don't have a next-in-flow. + RemoveProperty(PerFragmentFlexData::Prop()); + } +} + +Maybe<nscoord> nsFlexContainerFrame::GetNaturalBaselineBOffset( + WritingMode aWM, BaselineSharingGroup aBaselineGroup, + BaselineExportContext) const { + if (StyleDisplay()->IsContainLayout() || + HasAnyStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE)) { + return Nothing{}; + } + return Some(aBaselineGroup == BaselineSharingGroup::First ? mFirstBaseline + : mLastBaseline); +} + +void nsFlexContainerFrame::UnionInFlowChildOverflow( + OverflowAreas& aOverflowAreas) { + // The CSS Overflow spec [1] requires that a scrollable container's + // scrollable overflow should include the following areas. + // + // a) "the box's own content and padding areas": we treat the *content* as + // the scrolled inner frame's theoretical content-box that's intrinsically + // sized to the union of all the flex items' margin boxes, _without_ + // relative positioning applied. The *padding areas* is just inflation on + // top of the theoretical content-box by the flex container's padding. + // + // b) "the margin areas of grid item and flex item boxes for which the box + // establishes a containing block": a) already includes the flex items' + // normal-positioned margin boxes into the scrollable overflow, but their + // relative-positioned margin boxes should also be included because relpos + // children are still flex items. + // + // [1] https://drafts.csswg.org/css-overflow-3/#scrollable. + const bool isScrolledContent = + Style()->GetPseudoType() == PseudoStyleType::scrolledContent; + bool anyScrolledContentItem = false; + // Union of normal-positioned margin boxes for all the items. + nsRect itemMarginBoxes; + // Union of relative-positioned margin boxes for the relpos items only. + nsRect relPosItemMarginBoxes; + const bool useMozBoxCollapseBehavior = + StyleVisibility()->UseLegacyCollapseBehavior(); + for (nsIFrame* f : mFrames) { + if (useMozBoxCollapseBehavior && f->StyleVisibility()->IsCollapse()) { + continue; + } + ConsiderChildOverflow(aOverflowAreas, f); + if (!isScrolledContent) { + continue; + } + if (f->IsPlaceholderFrame()) { + continue; + } + anyScrolledContentItem = true; + if (MOZ_UNLIKELY(f->IsRelativelyOrStickyPositioned())) { + const nsRect marginRect = f->GetMarginRectRelativeToSelf(); + itemMarginBoxes = + itemMarginBoxes.Union(marginRect + f->GetNormalPosition()); + relPosItemMarginBoxes = + relPosItemMarginBoxes.Union(marginRect + f->GetPosition()); + } else { + itemMarginBoxes = itemMarginBoxes.Union(f->GetMarginRect()); + } + } + + if (anyScrolledContentItem) { + itemMarginBoxes.Inflate(GetUsedPadding()); + aOverflowAreas.UnionAllWith(itemMarginBoxes); + aOverflowAreas.UnionAllWith(relPosItemMarginBoxes); + } +} + +void nsFlexContainerFrame::UnionChildOverflow(OverflowAreas& aOverflowAreas) { + UnionInFlowChildOverflow(aOverflowAreas); + // Union with child frames, skipping the principal list since we already + // handled those above. + nsLayoutUtils::UnionChildOverflow(this, aOverflowAreas, + {FrameChildListID::Principal}); +} + +void nsFlexContainerFrame::CalculatePackingSpace( + uint32_t aNumThingsToPack, const StyleContentDistribution& aAlignVal, + nscoord* aFirstSubjectOffset, uint32_t* aNumPackingSpacesRemaining, + nscoord* aPackingSpaceRemaining) { + StyleAlignFlags val = aAlignVal.primary; + MOZ_ASSERT(val == StyleAlignFlags::SPACE_BETWEEN || + val == StyleAlignFlags::SPACE_AROUND || + val == StyleAlignFlags::SPACE_EVENLY, + "Unexpected alignment value"); + + MOZ_ASSERT(*aPackingSpaceRemaining >= 0, + "Should not be called with negative packing space"); + + // Note: In the aNumThingsToPack==1 case, the fallback behavior for + // 'space-between' depends on precise information about the axes that we + // don't have here. So, for that case, we just depend on the caller to + // explicitly convert 'space-{between,around,evenly}' keywords to the + // appropriate fallback alignment and skip this function. + MOZ_ASSERT(aNumThingsToPack > 1, + "Should not be called unless there's more than 1 thing to pack"); + + // Packing spaces between items: + *aNumPackingSpacesRemaining = aNumThingsToPack - 1; + + if (val == StyleAlignFlags::SPACE_BETWEEN) { + // No need to reserve space at beginning/end, so we're done. + return; + } + + // We need to add 1 or 2 packing spaces, split between beginning/end, for + // space-around / space-evenly: + size_t numPackingSpacesForEdges = + val == StyleAlignFlags::SPACE_AROUND ? 1 : 2; + + // How big will each "full" packing space be: + nscoord packingSpaceSize = + *aPackingSpaceRemaining / + (*aNumPackingSpacesRemaining + numPackingSpacesForEdges); + // How much packing-space are we allocating to the edges: + nscoord totalEdgePackingSpace = numPackingSpacesForEdges * packingSpaceSize; + + // Use half of that edge packing space right now: + *aFirstSubjectOffset += totalEdgePackingSpace / 2; + // ...but we need to subtract all of it right away, so that we won't + // hand out any of it to intermediate packing spaces. + *aPackingSpaceRemaining -= totalEdgePackingSpace; +} + +ComputedFlexContainerInfo* +nsFlexContainerFrame::CreateOrClearFlexContainerInfo() { + if (!HasAnyStateBits(NS_STATE_FLEX_COMPUTED_INFO)) { + return nullptr; + } + + // The flag that sets ShouldGenerateComputedInfo() will never be cleared. + // That's acceptable because it's only set in a Chrome API invoked by + // devtools, and won't impact normal browsing. + + // Re-use the ComputedFlexContainerInfo, if it exists. + ComputedFlexContainerInfo* info = GetProperty(FlexContainerInfo()); + if (info) { + // We can reuse, as long as we clear out old data. + info->mLines.Clear(); + } else { + info = new ComputedFlexContainerInfo(); + SetProperty(FlexContainerInfo(), info); + } + + return info; +} + +nscoord nsFlexContainerFrame::FlexItemConsumedBSize(const FlexItem& aItem) { + nsSplittableFrame* f = do_QueryFrame(aItem.Frame()); + return f ? ConsumedBSize(f) : 0; +} + +void nsFlexContainerFrame::CreateFlexLineAndFlexItemInfo( + ComputedFlexContainerInfo& aContainerInfo, + const nsTArray<FlexLine>& aLines) { + for (const FlexLine& line : aLines) { + ComputedFlexLineInfo* lineInfo = aContainerInfo.mLines.AppendElement(); + // Most of the remaining lineInfo properties will be filled out in + // UpdateFlexLineAndItemInfo (some will be provided by other functions), + // when we have real values. But we still add all the items here, so + // we can capture computed data for each item as we proceed. + for (const FlexItem& item : line.Items()) { + nsIFrame* frame = item.Frame(); + + // The frame may be for an element, or it may be for an + // anonymous flex item, e.g. wrapping one or more text nodes. + // DevTools wants the content node for the actual child in + // the DOM tree, so we descend through anonymous boxes. + nsIFrame* targetFrame = GetFirstNonAnonBoxInSubtree(frame); + nsIContent* content = targetFrame->GetContent(); + + // Skip over content that is only whitespace, which might + // have been broken off from a text node which is our real + // target. + while (content && content->TextIsOnlyWhitespace()) { + // If content is only whitespace, try the frame sibling. + targetFrame = targetFrame->GetNextSibling(); + if (targetFrame) { + content = targetFrame->GetContent(); + } else { + content = nullptr; + } + } + + ComputedFlexItemInfo* itemInfo = lineInfo->mItems.AppendElement(); + + itemInfo->mNode = content; + + // itemInfo->mMainBaseSize and mMainDeltaSize will be filled out + // in ResolveFlexibleLengths(). Other measurements will be captured in + // UpdateFlexLineAndItemInfo. + } + } +} + +void nsFlexContainerFrame::ComputeFlexDirections( + ComputedFlexContainerInfo& aContainerInfo, + const FlexboxAxisTracker& aAxisTracker) { + auto ConvertPhysicalStartSideToFlexPhysicalDirection = + [](mozilla::Side aStartSide) { + switch (aStartSide) { + case eSideLeft: + return dom::FlexPhysicalDirection::Horizontal_lr; + case eSideRight: + return dom::FlexPhysicalDirection::Horizontal_rl; + case eSideTop: + return dom::FlexPhysicalDirection::Vertical_tb; + case eSideBottom: + return dom::FlexPhysicalDirection::Vertical_bt; + } + + MOZ_ASSERT_UNREACHABLE("We should handle all sides!"); + return dom::FlexPhysicalDirection::Horizontal_lr; + }; + + aContainerInfo.mMainAxisDirection = + ConvertPhysicalStartSideToFlexPhysicalDirection( + aAxisTracker.MainAxisPhysicalStartSide()); + aContainerInfo.mCrossAxisDirection = + ConvertPhysicalStartSideToFlexPhysicalDirection( + aAxisTracker.CrossAxisPhysicalStartSide()); +} + +void nsFlexContainerFrame::UpdateFlexLineAndItemInfo( + ComputedFlexContainerInfo& aContainerInfo, + const nsTArray<FlexLine>& aLines) { + uint32_t lineIndex = 0; + for (const FlexLine& line : aLines) { + ComputedFlexLineInfo& lineInfo = aContainerInfo.mLines[lineIndex]; + + lineInfo.mCrossSize = line.LineCrossSize(); + lineInfo.mFirstBaselineOffset = line.FirstBaselineOffset(); + lineInfo.mLastBaselineOffset = line.LastBaselineOffset(); + + uint32_t itemIndex = 0; + for (const FlexItem& item : line.Items()) { + ComputedFlexItemInfo& itemInfo = lineInfo.mItems[itemIndex]; + itemInfo.mFrameRect = item.Frame()->GetRect(); + itemInfo.mMainMinSize = item.MainMinSize(); + itemInfo.mMainMaxSize = item.MainMaxSize(); + itemInfo.mCrossMinSize = item.CrossMinSize(); + itemInfo.mCrossMaxSize = item.CrossMaxSize(); + itemInfo.mClampState = + item.WasMinClamped() + ? mozilla::dom::FlexItemClampState::Clamped_to_min + : (item.WasMaxClamped() + ? mozilla::dom::FlexItemClampState::Clamped_to_max + : mozilla::dom::FlexItemClampState::Unclamped); + ++itemIndex; + } + ++lineIndex; + } +} + +nsFlexContainerFrame* nsFlexContainerFrame::GetFlexFrameWithComputedInfo( + nsIFrame* aFrame) { + // Prepare a lambda function that we may need to call multiple times. + auto GetFlexContainerFrame = [](nsIFrame* aFrame) { + // Return the aFrame's content insertion frame, iff it is + // a flex container frame. + nsFlexContainerFrame* flexFrame = nullptr; + + if (aFrame) { + nsIFrame* inner = aFrame; + if (MOZ_UNLIKELY(aFrame->IsFieldSetFrame())) { + inner = static_cast<nsFieldSetFrame*>(aFrame)->GetInner(); + } + // Since "Get" methods like GetInner and GetContentInsertionFrame can + // return null, we check the return values before dereferencing. Our + // calling pattern makes this unlikely, but we're being careful. + nsIFrame* insertionFrame = + inner ? inner->GetContentInsertionFrame() : nullptr; + nsIFrame* possibleFlexFrame = insertionFrame ? insertionFrame : aFrame; + flexFrame = possibleFlexFrame->IsFlexContainerFrame() + ? static_cast<nsFlexContainerFrame*>(possibleFlexFrame) + : nullptr; + } + return flexFrame; + }; + + nsFlexContainerFrame* flexFrame = GetFlexContainerFrame(aFrame); + if (!flexFrame) { + return nullptr; + } + // Generate the FlexContainerInfo data, if it's not already there. + if (flexFrame->HasProperty(FlexContainerInfo())) { + return flexFrame; + } + // Trigger a reflow that generates additional flex property data. + // Hold onto aFrame while we do this, in case reflow destroys it. + AutoWeakFrame weakFrameRef(aFrame); + + RefPtr<mozilla::PresShell> presShell = flexFrame->PresShell(); + flexFrame->AddStateBits(NS_STATE_FLEX_COMPUTED_INFO); + presShell->FrameNeedsReflow(flexFrame, IntrinsicDirty::None, + NS_FRAME_IS_DIRTY); + presShell->FlushPendingNotifications(FlushType::Layout); + + // Since the reflow may have side effects, get the flex frame + // again. But if the weakFrameRef is no longer valid, then we + // must bail out. + if (!weakFrameRef.IsAlive()) { + return nullptr; + } + + flexFrame = GetFlexContainerFrame(weakFrameRef.GetFrame()); + + NS_WARNING_ASSERTION( + !flexFrame || flexFrame->HasProperty(FlexContainerInfo()), + "The state bit should've made our forced-reflow " + "generate a FlexContainerInfo object"); + return flexFrame; +} + +/* static */ +bool nsFlexContainerFrame::IsItemInlineAxisMainAxis(nsIFrame* aFrame) { + MOZ_ASSERT(aFrame && aFrame->IsFlexItem(), "expecting arg to be a flex item"); + const WritingMode flexItemWM = aFrame->GetWritingMode(); + const nsIFrame* flexContainer = aFrame->GetParent(); + + if (IsLegacyBox(flexContainer)) { + // For legacy boxes, the main axis is determined by "box-orient", and we can + // just directly check if that's vertical, and compare that to whether the + // item's WM is also vertical: + bool boxOrientIsVertical = + flexContainer->StyleXUL()->mBoxOrient == StyleBoxOrient::Vertical; + return flexItemWM.IsVertical() == boxOrientIsVertical; + } + + // For modern CSS flexbox, we get our return value by asking two questions + // and comparing their answers. + // Question 1: does aFrame have the same inline axis as its flex container? + bool itemInlineAxisIsParallelToParent = + !flexItemWM.IsOrthogonalTo(flexContainer->GetWritingMode()); + + // Question 2: is aFrame's flex container row-oriented? (This tells us + // whether the flex container's main axis is its inline axis.) + auto flexDirection = flexContainer->StylePosition()->mFlexDirection; + bool flexContainerIsRowOriented = + flexDirection == StyleFlexDirection::Row || + flexDirection == StyleFlexDirection::RowReverse; + + // aFrame's inline axis is its flex container's main axis IFF the above + // questions have the same answer. + return flexContainerIsRowOriented == itemInlineAxisIsParallelToParent; +} + +/* static */ +bool nsFlexContainerFrame::IsUsedFlexBasisContent( + const StyleFlexBasis& aFlexBasis, const StyleSize& aMainSize) { + // We have a used flex-basis of 'content' if flex-basis explicitly has that + // value, OR if flex-basis is 'auto' (deferring to the main-size property) + // and the main-size property is also 'auto'. + // See https://drafts.csswg.org/css-flexbox-1/#valdef-flex-basis-auto + if (aFlexBasis.IsContent()) { + return true; + } + return aFlexBasis.IsAuto() && aMainSize.IsAuto(); +} + +nsFlexContainerFrame::FlexLayoutResult nsFlexContainerFrame::DoFlexLayout( + const ReflowInput& aReflowInput, const nscoord aTentativeContentBoxMainSize, + const nscoord aTentativeContentBoxCrossSize, + const FlexboxAxisTracker& aAxisTracker, nscoord aMainGapSize, + nscoord aCrossGapSize, nsTArray<StrutInfo>& aStruts, + ComputedFlexContainerInfo* const aContainerInfo) { + FlexLayoutResult flr; + + GenerateFlexLines(aReflowInput, aTentativeContentBoxMainSize, + aTentativeContentBoxCrossSize, aStruts, aAxisTracker, + aMainGapSize, flr.mPlaceholders, flr.mLines, + flr.mHasCollapsedItems); + + if ((flr.mLines.Length() == 1 && flr.mLines[0].IsEmpty()) || + aReflowInput.mStyleDisplay->IsContainLayout()) { + // We have no flex items, or we're layout-contained. So, we have no + // baseline, and our parent should synthesize a baseline if needed. + AddStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE); + } else { + RemoveStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE); + } + + // Construct our computed info if we've been asked to do so. This is + // necessary to do now so we can capture some computed values for + // FlexItems during layout that would not otherwise be saved (like + // size adjustments). We'll later fix up the line properties, + // because the correct values aren't available yet. + if (aContainerInfo) { + MOZ_ASSERT(HasAnyStateBits(NS_STATE_FLEX_COMPUTED_INFO), + "We should only have the info struct if we should generate it"); + + if (!aStruts.IsEmpty()) { + // We restarted DoFlexLayout, and may have stale mLines to clear: + aContainerInfo->mLines.Clear(); + } else { + MOZ_ASSERT(aContainerInfo->mLines.IsEmpty(), "Shouldn't have lines yet."); + } + + CreateFlexLineAndFlexItemInfo(*aContainerInfo, flr.mLines); + ComputeFlexDirections(*aContainerInfo, aAxisTracker); + } + + flr.mContentBoxMainSize = ComputeMainSize( + aReflowInput, aAxisTracker, aTentativeContentBoxMainSize, flr.mLines); + + uint32_t lineIndex = 0; + for (FlexLine& line : flr.mLines) { + ComputedFlexLineInfo* lineInfo = + aContainerInfo ? &aContainerInfo->mLines[lineIndex] : nullptr; + line.ResolveFlexibleLengths(flr.mContentBoxMainSize, lineInfo); + ++lineIndex; + } + + // Cross Size Determination - Flexbox spec section 9.4 + // https://drafts.csswg.org/css-flexbox-1/#cross-sizing + // =================================================== + // Calculate the hypothetical cross size of each item: + + // 'sumLineCrossSizes' includes the size of all gaps between lines. We + // initialize it with the sum of all the gaps, and add each line's cross size + // at the end of the following for-loop. + nscoord sumLineCrossSizes = aCrossGapSize * (flr.mLines.Length() - 1); + for (FlexLine& line : flr.mLines) { + for (FlexItem& item : line.Items()) { + // The item may already have the correct cross-size; only recalculate + // if the item's main size resolution (flexing) could have influenced it: + if (item.CanMainSizeInfluenceCrossSize()) { + StyleSizeOverrides sizeOverrides; + if (item.IsInlineAxisMainAxis()) { + sizeOverrides.mStyleISize.emplace(item.StyleMainSize()); + } else { + sizeOverrides.mStyleBSize.emplace(item.StyleMainSize()); + } + FLEX_LOG("Sizing flex item %p in cross axis", item.Frame()); + FLEX_LOGV(" Main size override: %d", item.MainSize()); + + const WritingMode wm = item.GetWritingMode(); + LogicalSize availSize = aReflowInput.ComputedSize(wm); + availSize.BSize(wm) = NS_UNCONSTRAINEDSIZE; + ReflowInput childReflowInput(PresContext(), aReflowInput, item.Frame(), + availSize, Nothing(), {}, sizeOverrides, + {ComputeSizeFlag::ShrinkWrap}); + if (item.IsBlockAxisMainAxis() && item.TreatBSizeAsIndefinite()) { + childReflowInput.mFlags.mTreatBSizeAsIndefinite = true; + } + + SizeItemInCrossAxis(childReflowInput, item); + } + } + // Now that we've finished with this line's items, size the line itself: + line.ComputeCrossSizeAndBaseline(aAxisTracker); + sumLineCrossSizes += line.LineCrossSize(); + } + + bool isCrossSizeDefinite; + flr.mContentBoxCrossSize = ComputeCrossSize( + aReflowInput, aAxisTracker, aTentativeContentBoxCrossSize, + sumLineCrossSizes, &isCrossSizeDefinite); + + // Set up state for cross-axis alignment, at a high level (outside the + // scope of a particular flex line) + CrossAxisPositionTracker crossAxisPosnTracker( + flr.mLines, aReflowInput, flr.mContentBoxCrossSize, isCrossSizeDefinite, + aAxisTracker, aCrossGapSize); + + // Now that we know the cross size of each line (including + // "align-content:stretch" adjustments, from the CrossAxisPositionTracker + // constructor), we can create struts for any flex items with + // "visibility: collapse" (and restart flex layout). + // Make sure to only do this if we had no struts. + if (aStruts.IsEmpty() && flr.mHasCollapsedItems && + !StyleVisibility()->UseLegacyCollapseBehavior()) { + BuildStrutInfoFromCollapsedItems(flr.mLines, aStruts); + if (!aStruts.IsEmpty()) { + // Restart flex layout, using our struts. + return flr; + } + } + + // If the flex container is row-oriented, it should derive its first/last + // baseline from the WM-relative startmost/endmost FlexLine if any items in + // the line participate in baseline alignment. + // https://drafts.csswg.org/css-flexbox-1/#flex-baselines + // + // Initialize the relevant variables here so that we can establish baselines + // while iterating FlexLine later (while crossAxisPosnTracker is conveniently + // pointing at the cross-start edge of that line, which the line's baseline + // offset is measured from). + const FlexLine* lineForFirstBaseline = nullptr; + const FlexLine* lineForLastBaseline = nullptr; + if (aAxisTracker.IsRowOriented()) { + lineForFirstBaseline = &StartmostLine(flr.mLines, aAxisTracker); + lineForLastBaseline = &EndmostLine(flr.mLines, aAxisTracker); + } else { + // For column-oriented flex container, use sentinel value to prompt us to + // get baselines from the startmost/endmost items. + flr.mAscent = nscoord_MIN; + flr.mAscentForLast = nscoord_MIN; + } + + const auto justifyContent = + IsLegacyBox(aReflowInput.mFrame) + ? ConvertLegacyStyleToJustifyContent(StyleXUL()) + : aReflowInput.mStylePosition->mJustifyContent; + + lineIndex = 0; + for (FlexLine& line : flr.mLines) { + // Main-Axis Alignment - Flexbox spec section 9.5 + // https://drafts.csswg.org/css-flexbox-1/#main-alignment + // ============================================== + line.PositionItemsInMainAxis(justifyContent, flr.mContentBoxMainSize, + aAxisTracker); + + // See if we need to extract some computed info for this line. + if (MOZ_UNLIKELY(aContainerInfo)) { + ComputedFlexLineInfo& lineInfo = aContainerInfo->mLines[lineIndex]; + lineInfo.mCrossStart = crossAxisPosnTracker.Position(); + } + + // Cross-Axis Alignment - Flexbox spec section 9.6 + // https://drafts.csswg.org/css-flexbox-1/#cross-alignment + // =============================================== + line.PositionItemsInCrossAxis(crossAxisPosnTracker.Position(), + aAxisTracker); + + // Flex Container Baselines - Flexbox spec section 8.5 + // https://drafts.csswg.org/css-flexbox-1/#flex-baselines + auto ComputeAscentFromLine = [&](const FlexLine& aLine, + BaselineSharingGroup aBaselineGroup) { + MOZ_ASSERT(aAxisTracker.IsRowOriented(), + "This makes sense only if we are row-oriented!"); + + // baselineOffsetInLine is a distance from the line's cross-start edge. + const nscoord baselineOffsetInLine = + aLine.ExtractBaselineOffset(aBaselineGroup); + + if (baselineOffsetInLine == nscoord_MIN) { + // No "first baseline"-aligned or "last baseline"-aligned items in + // aLine. Return a sentinel value to prompt us to get baseline from the + // startmost or endmost FlexItem after we've reflowed it. + return nscoord_MIN; + } + + // This "ascent" variable is a distance from the flex container's + // content-box block-start edge. + const nscoord ascent = aAxisTracker.LogicalAscentFromFlexRelativeAscent( + crossAxisPosnTracker.Position() + baselineOffsetInLine, + flr.mContentBoxCrossSize); + + // Convert "ascent" variable to a distance from border-box start or end + // edge, per documentation for FlexLayoutResult ascent members. + const auto wm = aAxisTracker.GetWritingMode(); + if (aBaselineGroup == BaselineSharingGroup::First) { + return ascent + + aReflowInput.ComputedLogicalBorderPadding(wm).BStart(wm); + } + return flr.mContentBoxCrossSize - ascent + + aReflowInput.ComputedLogicalBorderPadding(wm).BEnd(wm); + }; + + if (lineForFirstBaseline && lineForFirstBaseline == &line) { + flr.mAscent = ComputeAscentFromLine(line, BaselineSharingGroup::First); + } + if (lineForLastBaseline && lineForLastBaseline == &line) { + flr.mAscentForLast = + ComputeAscentFromLine(line, BaselineSharingGroup::Last); + } + + crossAxisPosnTracker.TraverseLine(line); + crossAxisPosnTracker.TraversePackingSpace(); + + if (&line != &flr.mLines.LastElement()) { + crossAxisPosnTracker.TraverseGap(); + } + ++lineIndex; + } + + return flr; +} + +// This data structure is used in fragmentation, storing the block coordinate +// metrics when reflowing 1) the BStart-most line in each fragment of a +// row-oriented flex container or, 2) the BStart-most item in each fragment of a +// single-line column-oriented flex container. +// +// When we lay out a row-oriented flex container fragment, its first line might +// contain one or more monolithic items that were pushed from the previous +// fragment specifically to avoid having those monolithic items overlap the +// page/column break. The situation is similar for single-row column-oriented +// flex container fragments, but a bit simpler; only their first item might have +// been pushed to avoid overlapping a page/column break. +// +// We'll have to place any such pushed items at the block-start edge of the +// current fragment's content-box, which is as close as we can get them to their +// theoretical/unfragmented position (without slicing them); but it does +// represent a shift away from their theoretical/unfragmented position (which +// was somewhere in the previous fragment). +// +// When that happens, we need to record the maximum such shift that we had to +// perform so that we can apply the same block-endwards shift to "downstream" +// items (items towards the block-end edge) that we could otherwise collide +// with. We also potentially apply the same shift when computing the block-end +// edge of this flex container fragment's content-box so that we don't +// inadvertently shift the last item (or line-of-items) to overlap the flex +// container's border, or content beyond the flex container. +// +// We use this structure to keep track of several metrics, in service of this +// goal. This structure is also necessary to adjust PerFragmentFlexData at the +// end of ReflowChildren(). +// +// Note: "First" in the struct name means "BStart-most", not the order in the +// flex line array or flex item array. +struct FirstLineOrFirstItemBAxisMetrics final { + // This value stores the block-end edge shift for 1) the BStart-most line in + // the current fragment of a row-oriented flex container, or 2) the + // BStart-most item in the current fragment of a single-line column-oriented + // flex container. This number is non-negative. + // + // This value may become positive when any item is a first-in-flow and also + // satisfies either the above condition 1) or 2), since that's a hint that it + // could be monolithic or have a monolithic first descendant, and therefore an + // item that might incur a page/column-break-dodging position-shift that this + // variable needs to track. + // + // This value also stores the fragmentation-imposed growth in the block-size + // of a) the BStart-most line in the current fragment of a row-oriented flex + // container, or b) the BStart-most item in the current fragment of a + // single-line column-oriented flex container. This number is non-negative. + nscoord mBEndEdgeShift = 0; + + // The first and second value in the pair store the max block-end edges for + // items before and after applying the per-item position-shift in the block + // axis. We only record the block-end edges for items with first-in-flow + // frames placed in the current flex container fragment. This is used only by + // row-oriented flex containers. + Maybe<std::pair<nscoord, nscoord>> mMaxBEndEdge; +}; + +std::tuple<nscoord, nsReflowStatus> nsFlexContainerFrame::ReflowChildren( + const ReflowInput& aReflowInput, const nsSize& aContainerSize, + const LogicalSize& aAvailableSizeForItems, + const LogicalMargin& aBorderPadding, const FlexboxAxisTracker& aAxisTracker, + FlexLayoutResult& aFlr, PerFragmentFlexData& aFragmentData) { + if (HidesContentForLayout()) { + return {0, nsReflowStatus()}; + } + + // Before giving each child a final reflow, calculate the origin of the + // flex container's content box (with respect to its border-box), so that + // we can compute our flex item's final positions. + WritingMode flexWM = aReflowInput.GetWritingMode(); + const LogicalPoint containerContentBoxOrigin = + aBorderPadding.StartOffset(flexWM); + + // The block-end of children is relative to the flex container's border-box. + nscoord maxBlockEndEdgeOfChildren = containerContentBoxOrigin.B(flexWM); + + FirstLineOrFirstItemBAxisMetrics bAxisMetrics; + FrameHashtable pushedItems; + FrameHashtable incompleteItems; + FrameHashtable overflowIncompleteItems; + + const bool isSingleLine = + StyleFlexWrap::Nowrap == aReflowInput.mStylePosition->mFlexWrap; + + // FINAL REFLOW: Give each child frame another chance to reflow, now that + // we know its final size and position. + const FlexLine& startmostLine = StartmostLine(aFlr.mLines, aAxisTracker); + const FlexItem* startmostItem = + startmostLine.IsEmpty() ? nullptr + : &startmostLine.StartmostItem(aAxisTracker); + + const size_t numLines = aFlr.mLines.Length(); + for (size_t lineIdx = 0; lineIdx < numLines; ++lineIdx) { + // Iterate flex lines from the startmost to endmost (relative to flex + // container's writing-mode). + const auto& line = + aFlr.mLines[aAxisTracker.IsCrossAxisReversed() ? numLines - lineIdx - 1 + : lineIdx]; + MOZ_ASSERT(lineIdx != 0 || &line == &startmostLine, + "Logic for finding startmost line should be consistent!"); + + const size_t numItems = line.Items().Length(); + for (size_t itemIdx = 0; itemIdx < numItems; ++itemIdx) { + // Iterate flex items from the startmost to endmost (relative to flex + // container's writing-mode). + const FlexItem& item = line.Items()[aAxisTracker.IsMainAxisReversed() + ? numItems - itemIdx - 1 + : itemIdx]; + MOZ_ASSERT(lineIdx != 0 || itemIdx != 0 || &item == startmostItem, + "Logic for finding startmost item should be consistent!"); + + LogicalPoint framePos = aAxisTracker.LogicalPointFromFlexRelativePoint( + item.MainPosition(), item.CrossPosition(), aFlr.mContentBoxMainSize, + aFlr.mContentBoxCrossSize); + // This variable records the item's block-end edge before we give it a + // per-item-position-shift, if the item is a first-in-flow in the + // startmost line of a row-oriented flex container fragment. It is used to + // determine the block-end edge shift for the startmost line at the end of + // the outer loop. + Maybe<nscoord> frameBPosBeforePerItemShift; + + if (item.Frame()->GetPrevInFlow()) { + // The item is a continuation. Lay it out at the beginning of the + // available space. + framePos.B(flexWM) = 0; + } else if (GetPrevInFlow()) { + // The item we're placing is not a continuation; though we're placing it + // into a flex container fragment which *is* a continuation. To compute + // the item's correct position in this fragment, we adjust the item's + // theoretical/unfragmented block-direction position by subtracting the + // cumulative content-box block-size for all the previous fragments and + // adding the cumulative block-end edge shift. + // + // Note that the item's position in this fragment has not been finalized + // yet. At this point, we've adjusted the item's + // theoretical/unfragmented position to be relative to the block-end + // edge of the previous container fragment's content-box. Later, we'll + // compute per-item position-shift to finalize its position. + framePos.B(flexWM) -= aFragmentData.mCumulativeContentBoxBSize; + framePos.B(flexWM) += aFragmentData.mCumulativeBEndEdgeShift; + + // This helper gets the per-item position-shift in the block-axis. + auto GetPerItemPositionShiftToBEnd = [&]() { + if (framePos.B(flexWM) >= 0) { + // The item final position might be in current flex container + // fragment or in any of the later fragments. No adjustment needed. + return 0; + } + + // The item's block position is negative, but we want to place it at + // the content-box block-start edge of this container fragment. To + // achieve this, return a negated (positive) value to make the final + // block position zero. + // + // This scenario occurs when fragmenting a row-oriented flex container + // where this item is pushed to this container fragment. + return -framePos.B(flexWM); + }; + + if (aAxisTracker.IsRowOriented()) { + if (&line == &startmostLine) { + frameBPosBeforePerItemShift.emplace(framePos.B(flexWM)); + framePos.B(flexWM) += GetPerItemPositionShiftToBEnd(); + } else { + // We've computed two things for the startmost line during the outer + // loop's first iteration: 1) how far the block-end edge had to + // shift and 2) how large the block-size needed to grow. Here, we + // just shift all items in the rest of the lines the same amount. + framePos.B(flexWM) += bAxisMetrics.mBEndEdgeShift; + } + } else { + MOZ_ASSERT(aAxisTracker.IsColumnOriented()); + if (isSingleLine) { + if (&item == startmostItem) { + bAxisMetrics.mBEndEdgeShift = GetPerItemPositionShiftToBEnd(); + } + framePos.B(flexWM) += bAxisMetrics.mBEndEdgeShift; + } else { + // Bug 1806717: We need a more sophisticated solution for multi-line + // column-oriented flex container when each line has a different + // position-shift value. For now, we don't shift them. + } + } + } + + // Adjust available block-size for the item. (We compute it here because + // framePos is still relative to the container's content-box.) + // + // Note: The available block-size can become negative if item's + // block-direction position is below available space's block-end. + const nscoord availableBSizeForItem = + aAvailableSizeForItems.BSize(flexWM) == NS_UNCONSTRAINEDSIZE + ? NS_UNCONSTRAINEDSIZE + : aAvailableSizeForItems.BSize(flexWM) - framePos.B(flexWM); + + // Adjust framePos to be relative to the container's border-box + // (i.e. its frame rect), instead of the container's content-box: + framePos += containerContentBoxOrigin; + + // Check if we actually need to reflow the item -- if the item's position + // is below the available space's block-end, push it to our next-in-flow; + // if it does need a reflow, and we already reflowed it with the right + // content-box size. + const bool childBPosExceedAvailableSpaceBEnd = + availableBSizeForItem != NS_UNCONSTRAINEDSIZE && + availableBSizeForItem <= 0; + bool itemInPushedItems = false; + if (childBPosExceedAvailableSpaceBEnd) { + // Note: Even if all of our items are beyond the available space & get + // pushed here, we'll be guaranteed to place at least one of them (and + // make progress) in one of the flex container's *next* fragment. It's + // because ComputeAvailableSizeForItems() always reserves at least 1px + // available block-size for its children, and we consume all available + // block-size and add it to + // PerFragmentFlexData::mCumulativeContentBoxBSize even if we are not + // laying out any child. + FLEX_LOG( + "[frag] Flex item %p needed to be pushed to container's " + "next-in-flow due to position below available space's block-end", + item.Frame()); + pushedItems.Insert(item.Frame()); + itemInPushedItems = true; + } else if (item.NeedsFinalReflow(aReflowInput)) { + // The available size must be in item's writing-mode. + const WritingMode itemWM = item.GetWritingMode(); + const auto availableSize = + LogicalSize(flexWM, aAvailableSizeForItems.ISize(flexWM), + availableBSizeForItem) + .ConvertTo(itemWM, flexWM); + + const nsReflowStatus childReflowStatus = + ReflowFlexItem(aAxisTracker, aReflowInput, item, framePos, + availableSize, aContainerSize); + + const bool shouldPushItem = [&]() { + if (availableBSizeForItem == NS_UNCONSTRAINEDSIZE) { + // If the available block-size is unconstrained, then we're not + // fragmenting and we don't want to push the item. + return false; + } + if (framePos.B(flexWM) == containerContentBoxOrigin.B(flexWM)) { + // The flex item is adjacent with block-start of the container's + // content-box. Don't push it, or we'll trap in an infinite loop. + return false; + } + if (item.Frame()->BSize() <= availableBSizeForItem) { + return false; + } + if (aAxisTracker.IsColumnOriented() && + item.Frame()->StyleDisplay()->mBreakBefore == + StyleBreakBetween::Avoid) { + return false; + } + return true; + }(); + if (shouldPushItem) { + FLEX_LOG( + "[frag] Flex item %p needed to be pushed to container's " + "next-in-flow because its block-size is larger than the " + "available space", + item.Frame()); + pushedItems.Insert(item.Frame()); + itemInPushedItems = true; + } else if (childReflowStatus.IsIncomplete()) { + incompleteItems.Insert(item.Frame()); + } else if (childReflowStatus.IsOverflowIncomplete()) { + overflowIncompleteItems.Insert(item.Frame()); + } + } else { + MoveFlexItemToFinalPosition(item, framePos, aContainerSize); + } + + if (!itemInPushedItems) { + const nscoord borderBoxBSize = item.Frame()->BSize(flexWM); + const nscoord bEndEdgeAfterPerItemShift = + framePos.B(flexWM) + borderBoxBSize; + + // The item (or a fragment thereof) was placed in this flex container + // fragment. Update the max block-end edge with the item's block-end + // edge. + maxBlockEndEdgeOfChildren = + std::max(maxBlockEndEdgeOfChildren, bEndEdgeAfterPerItemShift); + + if (frameBPosBeforePerItemShift) { + // Make the block-end edge relative to flex container's border-box + // because bEndEdgeAfterPerItemShift is relative to the border-box. + const nscoord bEndEdgeBeforePerItemShift = + containerContentBoxOrigin.B(flexWM) + + *frameBPosBeforePerItemShift + borderBoxBSize; + + if (bAxisMetrics.mMaxBEndEdge) { + auto& [before, after] = *bAxisMetrics.mMaxBEndEdge; + before = std::max(before, bEndEdgeBeforePerItemShift); + after = std::max(after, bEndEdgeAfterPerItemShift); + } else { + bAxisMetrics.mMaxBEndEdge.emplace(bEndEdgeBeforePerItemShift, + bEndEdgeAfterPerItemShift); + } + } + + if (item.Frame()->GetPrevInFlow()) { + // Items with a previous-continuation may experience some + // fragmentation-imposed growth in their block-size; we compute that + // here. + const nscoord bSizeOfThisFragment = + item.Frame()->ContentSize(flexWM).BSize(flexWM); + const nscoord consumedBSize = FlexItemConsumedBSize(item); + const nscoord unfragmentedBSize = item.BSize(); + nscoord bSizeGrowthOfThisFragment = 0; + + if (consumedBSize >= unfragmentedBSize) { + // The item's block-size has been grown to exceed the unfragmented + // block-size in the previous fragments. + bSizeGrowthOfThisFragment = bSizeOfThisFragment; + } else if (consumedBSize + bSizeOfThisFragment >= unfragmentedBSize) { + // The item's block-size just grows in the current fragment to + // exceed the unfragmented block-size. + bSizeGrowthOfThisFragment = + consumedBSize + bSizeOfThisFragment - unfragmentedBSize; + } + + if (aAxisTracker.IsRowOriented()) { + if (&line == &startmostLine) { + bAxisMetrics.mBEndEdgeShift = std::max( + bAxisMetrics.mBEndEdgeShift, bSizeGrowthOfThisFragment); + } + } else { + MOZ_ASSERT(aAxisTracker.IsColumnOriented()); + if (isSingleLine) { + if (&item == startmostItem) { + MOZ_ASSERT(bAxisMetrics.mBEndEdgeShift == 0, + "The item's frame is a continuation, so it " + "shouldn't shift!"); + bAxisMetrics.mBEndEdgeShift = bSizeGrowthOfThisFragment; + } + } else { + // Bug 1806717: We need a more sophisticated solution for + // multi-line column-oriented flex container when each line has a + // different block-size growth value. For now, we don't deal with + // them. + } + } + } + } + + // If the item has auto margins, and we were tracking the UsedMargin + // property, set the property to the computed margin values. + if (item.HasAnyAutoMargin()) { + nsMargin* propValue = + item.Frame()->GetProperty(nsIFrame::UsedMarginProperty()); + if (propValue) { + *propValue = item.PhysicalMargin(); + } + } + } + + // Now we've finished processing all the items in the startmost line. + // Determine the amount by which the startmost line's block-end edge has + // shifted, so we can apply the same shift for the remaining lines. + if (GetPrevInFlow() && aAxisTracker.IsRowOriented() && + &line == &startmostLine && bAxisMetrics.mMaxBEndEdge) { + auto& [before, after] = *bAxisMetrics.mMaxBEndEdge; + bAxisMetrics.mBEndEdgeShift = + std::max(bAxisMetrics.mBEndEdgeShift, after - before); + } + } + + if (!aFlr.mPlaceholders.IsEmpty()) { + ReflowPlaceholders(aReflowInput, aFlr.mPlaceholders, + containerContentBoxOrigin, aContainerSize); + } + + nsReflowStatus childrenStatus; + if (!pushedItems.IsEmpty() || !incompleteItems.IsEmpty()) { + childrenStatus.SetIncomplete(); + } else if (!overflowIncompleteItems.IsEmpty()) { + childrenStatus.SetOverflowIncomplete(); + } + PushIncompleteChildren(pushedItems, incompleteItems, overflowIncompleteItems); + + // TODO: Try making this a fatal assertion after we fix bug 1751260. + NS_ASSERTION(childrenStatus.IsFullyComplete() || + aAvailableSizeForItems.BSize(flexWM) != NS_UNCONSTRAINEDSIZE, + "We shouldn't have any incomplete children if the available " + "block-size is unconstrained!"); + + if (!pushedItems.IsEmpty()) { + AddStateBits(NS_STATE_FLEX_DID_PUSH_ITEMS); + } + + if (GetPrevInFlow()) { + aFragmentData.mCumulativeBEndEdgeShift += bAxisMetrics.mBEndEdgeShift; + } + + return {maxBlockEndEdgeOfChildren, childrenStatus}; +} + +void nsFlexContainerFrame::PopulateReflowOutput( + ReflowOutput& aReflowOutput, const ReflowInput& aReflowInput, + nsReflowStatus& aStatus, const LogicalSize& aContentBoxSize, + const LogicalMargin& aBorderPadding, const nscoord aConsumedBSize, + const bool aMayNeedNextInFlow, const nscoord aMaxBlockEndEdgeOfChildren, + const nsReflowStatus& aChildrenStatus, + const FlexboxAxisTracker& aAxisTracker, FlexLayoutResult& aFlr) { + const WritingMode flexWM = aReflowInput.GetWritingMode(); + + // Compute flex container's desired size (in its own writing-mode). + LogicalSize desiredSizeInFlexWM(flexWM); + desiredSizeInFlexWM.ISize(flexWM) = + aContentBoxSize.ISize(flexWM) + aBorderPadding.IStartEnd(flexWM); + + // Unconditionally skip adding block-end border and padding for now. We add it + // lower down, after we've established baseline and decided whether bottom + // border-padding fits (if we're fragmented). + const nscoord effectiveContentBSizeWithBStartBP = + aContentBoxSize.BSize(flexWM) - aConsumedBSize + + aBorderPadding.BStart(flexWM); + nscoord blockEndContainerBP = aBorderPadding.BEnd(flexWM); + + if (aMayNeedNextInFlow) { + // We assume our status should be reported as incomplete because we may need + // a next-in-flow. + bool isStatusIncomplete = true; + + const nscoord availableBSizeMinusBEndBP = + aReflowInput.AvailableBSize() - aBorderPadding.BEnd(flexWM); + + if (aMaxBlockEndEdgeOfChildren <= availableBSizeMinusBEndBP) { + // Consume all the available block-size. + desiredSizeInFlexWM.BSize(flexWM) = availableBSizeMinusBEndBP; + } else { + // This case happens if we have some tall unbreakable children exceeding + // the available block-size. + desiredSizeInFlexWM.BSize(flexWM) = std::min( + effectiveContentBSizeWithBStartBP, aMaxBlockEndEdgeOfChildren); + + if ((aReflowInput.ComputedBSize() != NS_UNCONSTRAINEDSIZE || + aChildrenStatus.IsFullyComplete()) && + aMaxBlockEndEdgeOfChildren >= effectiveContentBSizeWithBStartBP) { + // We have some tall unbreakable child that's sticking off the end of + // our fragment, *and* forcing us to consume all of our remaining + // content block-size and call ourselves complete. + // + // - If we have a definite block-size: we get here if the tall child + // makes us reach that block-size. + // - If we have a content-based block-size: we get here if the tall + // child makes us reach the content-based block-size from a + // theoretical unfragmented layout, *and* all our children are + // complete. (Note that if we have some incomplete child, then we + // instead prefer to return an incomplete status, so we can get a + // next-in-flow to include that child's requested next-in-flow, in the + // spirit of having a block-size that fits the content.) + // + // TODO: the auto-height case might need more subtlety; see bug 1828977. + isStatusIncomplete = false; + + // We also potentially need to get the unskipped block-end border and + // padding (if we assumed it'd be skipped as part of our tentative + // assumption that we'd be incomplete). + if (aReflowInput.mStyleBorder->mBoxDecorationBreak == + StyleBoxDecorationBreak::Slice) { + blockEndContainerBP = + aReflowInput.ComputedLogicalBorderPadding(flexWM).BEnd(flexWM); + } + } + } + + if (isStatusIncomplete) { + aStatus.SetIncomplete(); + } + } else { + // Our own effective content-box block-size can fit within the available + // block-size. + desiredSizeInFlexWM.BSize(flexWM) = effectiveContentBSizeWithBStartBP; + } + + // Now, we account for how the block-end border and padding (if any) impacts + // our desired size. If adding it pushes us over the available block-size, + // then we become incomplete (unless we already weren't asking for any + // block-size, in which case we stay complete to avoid looping forever). + // + // NOTE: If we have auto block-size, we allow our block-end border and padding + // to push us over the available block-size without requesting a continuation, + // for consistency with the behavior of "display:block" elements. + const nscoord effectiveContentBSizeWithBStartEndBP = + desiredSizeInFlexWM.BSize(flexWM) + blockEndContainerBP; + + if (aReflowInput.AvailableBSize() != NS_UNCONSTRAINEDSIZE && + effectiveContentBSizeWithBStartEndBP > aReflowInput.AvailableBSize() && + desiredSizeInFlexWM.BSize(flexWM) != 0 && + aReflowInput.ComputedBSize() != NS_UNCONSTRAINEDSIZE) { + // We couldn't fit with the block-end border and padding included, so we'll + // need a continuation. + aStatus.SetIncomplete(); + + if (aReflowInput.mStyleBorder->mBoxDecorationBreak == + StyleBoxDecorationBreak::Slice) { + blockEndContainerBP = 0; + } + } + + // The variable "blockEndContainerBP" now accurately reflects how much (if + // any) block-end border and padding we want for this frame, so we can proceed + // to add it in. + desiredSizeInFlexWM.BSize(flexWM) += blockEndContainerBP; + + if (aStatus.IsComplete() && !aChildrenStatus.IsFullyComplete()) { + aStatus.SetOverflowIncomplete(); + aStatus.SetNextInFlowNeedsReflow(); + } + + // If we are the first-in-flow and not fully complete (either our block-size + // or any of our flex items cannot fit in the available block-size), and the + // style requires us to avoid breaking inside, set the status to prompt our + // parent to push us to the next page/column. + if (!GetPrevInFlow() && !aStatus.IsFullyComplete() && + ShouldAvoidBreakInside(aReflowInput)) { + aStatus.SetInlineLineBreakBeforeAndReset(); + return; + } + + // If we haven't established a baseline for the container yet, i.e. if we + // don't have any flex item in the startmost flex line that participates in + // baseline alignment, then use the startmost flex item to derive the + // container's baseline. + if (const FlexLine& line = StartmostLine(aFlr.mLines, aAxisTracker); + aFlr.mAscent == nscoord_MIN && !line.IsEmpty()) { + const FlexItem& item = line.StartmostItem(aAxisTracker); + aFlr.mAscent = item.Frame() + ->GetLogicalPosition( + flexWM, desiredSizeInFlexWM.GetPhysicalSize(flexWM)) + .B(flexWM) + + item.ResolvedAscent(true); + } + + // Likewise, if we don't have any flex item in the endmost flex line that + // participates in last baseline alignment, then use the endmost flex item to + // derived the container's last baseline. + if (const FlexLine& line = EndmostLine(aFlr.mLines, aAxisTracker); + aFlr.mAscentForLast == nscoord_MIN && !line.IsEmpty()) { + const FlexItem& item = line.EndmostItem(aAxisTracker); + const nscoord lastAscent = + item.Frame() + ->GetLogicalPosition(flexWM, + desiredSizeInFlexWM.GetPhysicalSize(flexWM)) + .B(flexWM) + + item.ResolvedAscent(false); + + aFlr.mAscentForLast = desiredSizeInFlexWM.BSize(flexWM) - lastAscent; + } + + if (aFlr.mAscent == nscoord_MIN) { + // Still don't have our baseline set -- this happens if we have no + // children, if our children are huge enough that they have nscoord_MIN + // as their baseline, or our content is hidden in which case, we'll use the + // wrong baseline (but no big deal). + NS_WARNING_ASSERTION( + HidesContentForLayout() || aFlr.mLines[0].IsEmpty(), + "Have flex items but didn't get an ascent - that's odd (or there are " + "just gigantic sizes involved)"); + // Per spec, synthesize baseline from the flex container's content box + // (i.e. use block-end side of content-box) + // XXXdholbert This only makes sense if parent's writing mode is + // horizontal (& even then, really we should be using the BSize in terms + // of the parent's writing mode, not ours). Clean up in bug 1155322. + aFlr.mAscent = effectiveContentBSizeWithBStartBP; + } + + if (aFlr.mAscentForLast == nscoord_MIN) { + // Still don't have our last baseline set -- this happens if we have no + // children, if our children are huge enough that they have nscoord_MIN + // as their baseline, or our content is hidden in which case, we'll use the + // wrong baseline (but no big deal). + NS_WARNING_ASSERTION( + HidesContentForLayout() || aFlr.mLines[0].IsEmpty(), + "Have flex items but didn't get an ascent - that's odd (or there are " + "just gigantic sizes involved)"); + // Per spec, synthesize baseline from the flex container's content box + // (i.e. use block-end side of content-box) + // XXXdholbert This only makes sense if parent's writing mode is + // horizontal (& even then, really we should be using the BSize in terms + // of the parent's writing mode, not ours). Clean up in bug 1155322. + aFlr.mAscentForLast = blockEndContainerBP; + } + + if (HasAnyStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE)) { + // This will force our parent to call GetLogicalBaseline, which will + // synthesize a margin-box baseline. + aReflowOutput.SetBlockStartAscent(ReflowOutput::ASK_FOR_BASELINE); + } else { + // XXXdholbert aFlr.mAscent needs to be in terms of our parent's + // writing-mode here. See bug 1155322. + aReflowOutput.SetBlockStartAscent(aFlr.mAscent); + } + + // Cache the container baselines so that our parent can baseline-align us. + mFirstBaseline = aFlr.mAscent; + mLastBaseline = aFlr.mAscentForLast; + + // Convert flex container's final desired size to parent's WM, for outparam. + aReflowOutput.SetSize(flexWM, desiredSizeInFlexWM); +} + +void nsFlexContainerFrame::MoveFlexItemToFinalPosition( + const FlexItem& aItem, const LogicalPoint& aFramePos, + const nsSize& aContainerSize) { + const WritingMode outerWM = aItem.ContainingBlockWM(); + const nsStyleDisplay* display = aItem.Frame()->StyleDisplay(); + LogicalPoint pos(aFramePos); + if (display->IsRelativelyOrStickyPositionedStyle()) { + // If the item is relatively positioned, look up its offsets (cached from + // previous reflow). A sticky positioned item can pass a dummy + // logicalOffsets into ApplyRelativePositioning(). + LogicalMargin logicalOffsets(outerWM); + if (display->IsRelativelyPositionedStyle()) { + nsMargin* cachedOffsets = + aItem.Frame()->GetProperty(nsIFrame::ComputedOffsetProperty()); + MOZ_ASSERT( + cachedOffsets, + "relpos previously-reflowed frame should've cached its offsets"); + logicalOffsets = LogicalMargin(outerWM, *cachedOffsets); + } + ReflowInput::ApplyRelativePositioning(aItem.Frame(), outerWM, + logicalOffsets, &pos, aContainerSize); + } + + FLEX_LOG("Moving flex item %p to its desired position %s", aItem.Frame(), + ToString(pos).c_str()); + aItem.Frame()->SetPosition(outerWM, pos, aContainerSize); + PositionFrameView(aItem.Frame()); + PositionChildViews(aItem.Frame()); +} + +nsReflowStatus nsFlexContainerFrame::ReflowFlexItem( + const FlexboxAxisTracker& aAxisTracker, const ReflowInput& aReflowInput, + const FlexItem& aItem, const LogicalPoint& aFramePos, + const LogicalSize& aAvailableSize, const nsSize& aContainerSize) { + FLEX_LOG("Doing final reflow for flex item %p", aItem.Frame()); + + // Returns true if we should use 'auto' in block axis's StyleSizeOverrides to + // allow fragmentation-imposed block-size growth. + auto ComputeBSizeOverrideWithAuto = [&]() { + if (!aReflowInput.IsInFragmentedContext()) { + return false; + } + if (aItem.Frame()->IsReplaced()) { + // Disallow fragmentation-imposed block-size growth for replaced elements + // since they are monolithic, and cannot be fragmented. + return false; + } + if (aItem.HasAspectRatio()) { + // Aspect-ratio's automatic content-based minimum size doesn't work + // properly in a fragmented context (Bug 1868284) when we use 'auto' + // block-size to apply the fragmentation-imposed block-size growth. + // Disable it for now so that items with aspect-ratios can still use their + // known block-sizes (from flex layout algorithm) in final reflow. + return false; + } + if (aItem.IsBlockAxisMainAxis()) { + if (aItem.IsFlexBaseSizeContentBSize()) { + // The flex item resolved its indefinite flex-basis to the content + // block-size. + if (aItem.IsMainMinSizeContentBSize()) { + // The item's flex base size and main min-size are both content + // block-size. We interpret this content-based block-size as + // permission to apply fragmentation-imposed block-size growth. + return true; + } + if (aReflowInput.ComputedBSize() == NS_UNCONSTRAINEDSIZE) { + // The flex container has an indefinite block-size. We allow the + // item's to apply fragmentation-imposed block-size growth. + return true; + } + } + return false; + } + + MOZ_ASSERT(aItem.IsBlockAxisCrossAxis()); + MOZ_ASSERT(aItem.IsStretched(), + "No need to override block-size with 'auto' if the item is not " + "stretched in the cross axis!"); + + Maybe<nscoord> measuredBSize = aItem.MeasuredBSize(); + if (measuredBSize && aItem.CrossSize() == *measuredBSize) { + // The item has a measured content-based block-size due to having an + // indefinite cross-size. If its cross-size is equal to the content-based + // block-size, then it is the tallest item that established the cross-size + // of the flex line. We allow it apply fragmentation-imposed block-size + // growth. + // + // Note: We only allow the tallest item to grow because it is likely to + // have the most impact on the overall flex container block-size growth. + // This is not a perfect solution since other shorter items in the same + // line might also have fragmentation-imposed block-size growth, but + // currently there is no reliable way to detect whether they will outgrow + // the tallest item. + return true; + } + return false; + }; + + StyleSizeOverrides sizeOverrides; + bool overrideBSizeWithAuto = false; + + // Override flex item's main size. + if (aItem.IsInlineAxisMainAxis()) { + sizeOverrides.mStyleISize.emplace(aItem.StyleMainSize()); + FLEX_LOGV(" Main size (inline-size) override: %d", aItem.MainSize()); + } else { + overrideBSizeWithAuto = ComputeBSizeOverrideWithAuto(); + if (overrideBSizeWithAuto) { + sizeOverrides.mStyleBSize.emplace(StyleSize::Auto()); + FLEX_LOGV(" Main size (block-size) override: Auto"); + } else { + sizeOverrides.mStyleBSize.emplace(aItem.StyleMainSize()); + FLEX_LOGV(" Main size (block-size) override: %d", aItem.MainSize()); + } + } + + // Override flex item's cross size if it was stretched in the cross axis (in + // which case we're imposing a cross size). + if (aItem.IsStretched()) { + if (aItem.IsInlineAxisCrossAxis()) { + sizeOverrides.mStyleISize.emplace(aItem.StyleCrossSize()); + FLEX_LOGV(" Cross size (inline-size) override: %d", aItem.CrossSize()); + } else { + overrideBSizeWithAuto = ComputeBSizeOverrideWithAuto(); + if (overrideBSizeWithAuto) { + sizeOverrides.mStyleBSize.emplace(StyleSize::Auto()); + FLEX_LOGV(" Cross size (block-size) override: Auto"); + } else { + sizeOverrides.mStyleBSize.emplace(aItem.StyleCrossSize()); + FLEX_LOGV(" Cross size (block-size) override: %d", aItem.CrossSize()); + } + } + } + if (sizeOverrides.mStyleBSize) { + // We are overriding the block-size. For robustness, we always assume that + // this represents a block-axis resize for the frame. This may be + // conservative, but we do capture all the conditions in the block-axis + // (checked in NeedsFinalReflow()) that make this item require a final + // reflow. This sets relevant flags in ReflowInput::InitResizeFlags(). + aItem.Frame()->SetHasBSizeChange(true); + } + + ReflowInput childReflowInput(PresContext(), aReflowInput, aItem.Frame(), + aAvailableSize, Nothing(), {}, sizeOverrides, + {ComputeSizeFlag::ShrinkWrap}); + if (overrideBSizeWithAuto) { + // If we use 'auto' to override the item's block-size, set the item's + // original block-size to min-size as a lower bound. + childReflowInput.SetComputedMinBSize(aItem.BSize()); + + // Set the item's block-size as the percentage basis so that its children + // can resolve percentage sizes correctly. + childReflowInput.SetPercentageBasisInBlockAxis(aItem.BSize()); + } + + if (aItem.TreatBSizeAsIndefinite() && aItem.IsBlockAxisMainAxis()) { + childReflowInput.mFlags.mTreatBSizeAsIndefinite = true; + } + + if (aItem.IsStretched() && aItem.IsBlockAxisCrossAxis()) { + // This item is stretched (in the cross axis), and that axis is its block + // axis. That stretching effectively gives it a relative BSize. + // XXXdholbert This flag only makes a difference if we use the flex items' + // frame-state when deciding whether to reflow them -- and we don't, as of + // the changes in bug 851607. So this has no effect right now, but it might + // make a difference if we optimize to use dirty bits in the + // future. (Reftests flexbox-resizeviewport-1.xhtml and -2.xhtml are + // intended to catch any regressions here, if we end up relying on this bit + // & neglecting to set it.) + aItem.Frame()->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE); + } + + // NOTE: Be very careful about doing anything else with childReflowInput + // after this point, because some of its methods (e.g. SetComputedWidth) + // internally call InitResizeFlags and stomp on mVResize & mHResize. + + FLEX_LOG("Reflowing flex item %p at its desired position %s", aItem.Frame(), + ToString(aFramePos).c_str()); + + // CachedFlexItemData is stored in item's writing mode, so we pass + // aChildReflowInput into ReflowOutput's constructor. + ReflowOutput childReflowOutput(childReflowInput); + nsReflowStatus childReflowStatus; + WritingMode outerWM = aReflowInput.GetWritingMode(); + ReflowChild(aItem.Frame(), PresContext(), childReflowOutput, childReflowInput, + outerWM, aFramePos, aContainerSize, ReflowChildFlags::Default, + childReflowStatus); + + // XXXdholbert Perhaps we should call CheckForInterrupt here; see bug 1495532. + + FinishReflowChild(aItem.Frame(), PresContext(), childReflowOutput, + &childReflowInput, outerWM, aFramePos, aContainerSize, + ReflowChildFlags::ApplyRelativePositioning); + + aItem.SetAscent(childReflowOutput.BlockStartAscent()); + + // Update our cached flex item info: + if (auto* cached = aItem.Frame()->GetProperty(CachedFlexItemData::Prop())) { + cached->Update(childReflowInput, childReflowOutput, + FlexItemReflowType::Final); + } else { + cached = new CachedFlexItemData(childReflowInput, childReflowOutput, + FlexItemReflowType::Final); + aItem.Frame()->SetProperty(CachedFlexItemData::Prop(), cached); + } + + return childReflowStatus; +} + +void nsFlexContainerFrame::ReflowPlaceholders( + const ReflowInput& aReflowInput, nsTArray<nsIFrame*>& aPlaceholders, + const LogicalPoint& aContentBoxOrigin, const nsSize& aContainerSize) { + WritingMode outerWM = aReflowInput.GetWritingMode(); + + // As noted in this method's documentation, we'll reflow every entry in + // |aPlaceholders| at the container's content-box origin. + for (nsIFrame* placeholder : aPlaceholders) { + MOZ_ASSERT(placeholder->IsPlaceholderFrame(), + "placeholders array should only contain placeholder frames"); + WritingMode wm = placeholder->GetWritingMode(); + LogicalSize availSize = aReflowInput.ComputedSize(wm); + ReflowInput childReflowInput(PresContext(), aReflowInput, placeholder, + availSize); + // No need to set the -webkit-line-clamp related flags when reflowing + // a placeholder. + ReflowOutput childReflowOutput(outerWM); + nsReflowStatus childReflowStatus; + ReflowChild(placeholder, PresContext(), childReflowOutput, childReflowInput, + outerWM, aContentBoxOrigin, aContainerSize, + ReflowChildFlags::Default, childReflowStatus); + + FinishReflowChild(placeholder, PresContext(), childReflowOutput, + &childReflowInput, outerWM, aContentBoxOrigin, + aContainerSize, ReflowChildFlags::Default); + + // Mark the placeholder frame to indicate that it's not actually at the + // element's static position, because we need to apply CSS Alignment after + // we determine the OOF's size: + placeholder->AddStateBits(PLACEHOLDER_STATICPOS_NEEDS_CSSALIGN); + } +} + +nscoord nsFlexContainerFrame::IntrinsicISize(gfxContext* aRenderingContext, + IntrinsicISizeType aType) { + nscoord containerISize = 0; + const nsStylePosition* stylePos = StylePosition(); + const FlexboxAxisTracker axisTracker(this); + + nscoord mainGapSize; + if (axisTracker.IsRowOriented()) { + mainGapSize = nsLayoutUtils::ResolveGapToLength(stylePos->mColumnGap, + NS_UNCONSTRAINEDSIZE); + } else { + mainGapSize = nsLayoutUtils::ResolveGapToLength(stylePos->mRowGap, + NS_UNCONSTRAINEDSIZE); + } + + const bool useMozBoxCollapseBehavior = + StyleVisibility()->UseLegacyCollapseBehavior(); + + // The loop below sets aside space for a gap before each item besides the + // first. This bool helps us handle that special-case. + bool onFirstChild = true; + + for (nsIFrame* childFrame : mFrames) { + // Skip out-of-flow children because they don't participate in flex layout. + if (childFrame->IsPlaceholderFrame()) { + continue; + } + + if (useMozBoxCollapseBehavior && + childFrame->StyleVisibility()->IsCollapse()) { + // If we're using legacy "visibility:collapse" behavior, then we don't + // care about the sizes of any collapsed children. + continue; + } + + nscoord childISize = nsLayoutUtils::IntrinsicForContainer( + aRenderingContext, childFrame, aType); + + // * For a row-oriented single-line flex container, the intrinsic + // {min/pref}-isize is the sum of its items' {min/pref}-isizes and + // (n-1) column gaps. + // * For a column-oriented flex container, the intrinsic min isize + // is the max of its items' min isizes. + // * For a row-oriented multi-line flex container, the intrinsic + // pref isize is former (sum), and its min isize is the latter (max). + bool isSingleLine = (StyleFlexWrap::Nowrap == stylePos->mFlexWrap); + if (axisTracker.IsRowOriented() && + (isSingleLine || aType == IntrinsicISizeType::PrefISize)) { + containerISize += childISize; + if (!onFirstChild) { + containerISize += mainGapSize; + } + onFirstChild = false; + } else { // (col-oriented, or MinISize for multi-line row flex container) + containerISize = std::max(containerISize, childISize); + } + } + + return containerISize; +} + +/* virtual */ +nscoord nsFlexContainerFrame::GetMinISize(gfxContext* aRenderingContext) { + DISPLAY_MIN_INLINE_SIZE(this, mCachedMinISize); + if (mCachedMinISize == NS_INTRINSIC_ISIZE_UNKNOWN) { + if (Maybe<nscoord> containISize = ContainIntrinsicISize()) { + mCachedMinISize = *containISize; + } else { + mCachedMinISize = + IntrinsicISize(aRenderingContext, IntrinsicISizeType::MinISize); + } + } + + return mCachedMinISize; +} + +/* virtual */ +nscoord nsFlexContainerFrame::GetPrefISize(gfxContext* aRenderingContext) { + DISPLAY_PREF_INLINE_SIZE(this, mCachedPrefISize); + if (mCachedPrefISize == NS_INTRINSIC_ISIZE_UNKNOWN) { + if (Maybe<nscoord> containISize = ContainIntrinsicISize()) { + mCachedPrefISize = *containISize; + } else { + mCachedPrefISize = + IntrinsicISize(aRenderingContext, IntrinsicISizeType::PrefISize); + } + } + + return mCachedPrefISize; +} + +int32_t nsFlexContainerFrame::GetNumLines() const { + // TODO(emilio, bug 1793251): Treating all row oriented frames as single-lines + // might not be great for flex-wrap'd containers, consider trying to do + // better? We probably would need to persist more stuff than we do after + // layout. + return FlexboxAxisInfo(this).mIsRowOriented ? 1 : mFrames.GetLength(); +} + +bool nsFlexContainerFrame::IsLineIteratorFlowRTL() { + FlexboxAxisInfo info(this); + if (info.mIsRowOriented) { + const bool isRtl = StyleVisibility()->mDirection == StyleDirection::Rtl; + return info.mIsMainAxisReversed != isRtl; + } + return false; +} + +Result<nsILineIterator::LineInfo, nsresult> nsFlexContainerFrame::GetLine( + int32_t aLineNumber) { + if (aLineNumber < 0 || aLineNumber >= GetNumLines()) { + return Err(NS_ERROR_FAILURE); + } + FlexboxAxisInfo info(this); + LineInfo lineInfo; + if (info.mIsRowOriented) { + lineInfo.mLineBounds = GetRect(); + lineInfo.mFirstFrameOnLine = mFrames.FirstChild(); + // This isn't quite ideal for multi-line row flexbox, see bug 1793251. + lineInfo.mNumFramesOnLine = mFrames.GetLength(); + } else { + // TODO(emilio, bug 1793322): Deal with column-reverse (mIsMainAxisReversed) + nsIFrame* f = mFrames.FrameAt(aLineNumber); + lineInfo.mLineBounds = f->GetRect(); + lineInfo.mFirstFrameOnLine = f; + lineInfo.mNumFramesOnLine = 1; + } + return lineInfo; +} + +int32_t nsFlexContainerFrame::FindLineContaining(nsIFrame* aFrame, + int32_t aStartLine) { + const int32_t index = mFrames.IndexOf(aFrame); + if (index < 0) { + return -1; + } + const FlexboxAxisInfo info(this); + if (info.mIsRowOriented) { + return 0; + } + if (index < aStartLine) { + return -1; + } + return index; +} + +NS_IMETHODIMP +nsFlexContainerFrame::CheckLineOrder(int32_t aLine, bool* aIsReordered, + nsIFrame** aFirstVisual, + nsIFrame** aLastVisual) { + *aIsReordered = false; + *aFirstVisual = nullptr; + *aLastVisual = nullptr; + return NS_OK; +} + +NS_IMETHODIMP +nsFlexContainerFrame::FindFrameAt(int32_t aLineNumber, nsPoint aPos, + nsIFrame** aFrameFound, + bool* aPosIsBeforeFirstFrame, + bool* aPosIsAfterLastFrame) { + const auto wm = GetWritingMode(); + const LogicalPoint pos(wm, aPos, GetSize()); + const FlexboxAxisInfo info(this); + + *aFrameFound = nullptr; + *aPosIsBeforeFirstFrame = true; + *aPosIsAfterLastFrame = false; + + if (!info.mIsRowOriented) { + nsIFrame* f = mFrames.FrameAt(aLineNumber); + if (!f) { + return NS_OK; + } + + auto rect = f->GetLogicalRect(wm, GetSize()); + *aFrameFound = f; + *aPosIsBeforeFirstFrame = pos.I(wm) < rect.IStart(wm); + *aPosIsAfterLastFrame = pos.I(wm) > rect.IEnd(wm); + return NS_OK; + } + + LineFrameFinder finder(aPos, GetSize(), GetWritingMode(), + IsLineIteratorFlowRTL()); + for (nsIFrame* f : mFrames) { + finder.Scan(f); + if (finder.IsDone()) { + break; + } + } + finder.Finish(aFrameFound, aPosIsBeforeFirstFrame, aPosIsAfterLastFrame); + return NS_OK; +} |