diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-19 00:47:55 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-19 00:47:55 +0000 |
commit | 26a029d407be480d791972afb5975cf62c9360a6 (patch) | |
tree | f435a8308119effd964b339f76abb83a57c29483 /media/libopus/celt/mathops.h | |
parent | Initial commit. (diff) | |
download | firefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz firefox-26a029d407be480d791972afb5975cf62c9360a6.zip |
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'media/libopus/celt/mathops.h')
-rw-r--r-- | media/libopus/celt/mathops.h | 290 |
1 files changed, 290 insertions, 0 deletions
diff --git a/media/libopus/celt/mathops.h b/media/libopus/celt/mathops.h new file mode 100644 index 0000000000..478ac9187c --- /dev/null +++ b/media/libopus/celt/mathops.h @@ -0,0 +1,290 @@ +/* Copyright (c) 2002-2008 Jean-Marc Valin + Copyright (c) 2007-2008 CSIRO + Copyright (c) 2007-2009 Xiph.Org Foundation + Written by Jean-Marc Valin */ +/** + @file mathops.h + @brief Various math functions +*/ +/* + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions + are met: + + - Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + + - Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER + OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +*/ + +#ifndef MATHOPS_H +#define MATHOPS_H + +#include "arch.h" +#include "entcode.h" +#include "os_support.h" + +#define PI 3.141592653f + +/* Multiplies two 16-bit fractional values. Bit-exactness of this macro is important */ +#define FRAC_MUL16(a,b) ((16384+((opus_int32)(opus_int16)(a)*(opus_int16)(b)))>>15) + +unsigned isqrt32(opus_uint32 _val); + +/* CELT doesn't need it for fixed-point, by analysis.c does. */ +#if !defined(FIXED_POINT) || defined(ANALYSIS_C) +#define cA 0.43157974f +#define cB 0.67848403f +#define cC 0.08595542f +#define cE ((float)PI/2) +static OPUS_INLINE float fast_atan2f(float y, float x) { + float x2, y2; + x2 = x*x; + y2 = y*y; + /* For very small values, we don't care about the answer, so + we can just return 0. */ + if (x2 + y2 < 1e-18f) + { + return 0; + } + if(x2<y2){ + float den = (y2 + cB*x2) * (y2 + cC*x2); + return -x*y*(y2 + cA*x2) / den + (y<0 ? -cE : cE); + }else{ + float den = (x2 + cB*y2) * (x2 + cC*y2); + return x*y*(x2 + cA*y2) / den + (y<0 ? -cE : cE) - (x*y<0 ? -cE : cE); + } +} +#undef cA +#undef cB +#undef cC +#undef cE +#endif + + +#ifndef OVERRIDE_CELT_MAXABS16 +static OPUS_INLINE opus_val32 celt_maxabs16(const opus_val16 *x, int len) +{ + int i; + opus_val16 maxval = 0; + opus_val16 minval = 0; + for (i=0;i<len;i++) + { + maxval = MAX16(maxval, x[i]); + minval = MIN16(minval, x[i]); + } + return MAX32(EXTEND32(maxval),-EXTEND32(minval)); +} +#endif + +#ifndef OVERRIDE_CELT_MAXABS32 +#ifdef FIXED_POINT +static OPUS_INLINE opus_val32 celt_maxabs32(const opus_val32 *x, int len) +{ + int i; + opus_val32 maxval = 0; + opus_val32 minval = 0; + for (i=0;i<len;i++) + { + maxval = MAX32(maxval, x[i]); + minval = MIN32(minval, x[i]); + } + return MAX32(maxval, -minval); +} +#else +#define celt_maxabs32(x,len) celt_maxabs16(x,len) +#endif +#endif + + +#ifndef FIXED_POINT + +#define celt_sqrt(x) ((float)sqrt(x)) +#define celt_rsqrt(x) (1.f/celt_sqrt(x)) +#define celt_rsqrt_norm(x) (celt_rsqrt(x)) +#define celt_cos_norm(x) ((float)cos((.5f*PI)*(x))) +#define celt_rcp(x) (1.f/(x)) +#define celt_div(a,b) ((a)/(b)) +#define frac_div32(a,b) ((float)(a)/(b)) + +#ifdef FLOAT_APPROX + +/* Note: This assumes radix-2 floating point with the exponent at bits 23..30 and an offset of 127 + denorm, +/- inf and NaN are *not* handled */ + +/** Base-2 log approximation (log2(x)). */ +static OPUS_INLINE float celt_log2(float x) +{ + int integer; + float frac; + union { + float f; + opus_uint32 i; + } in; + in.f = x; + integer = (in.i>>23)-127; + in.i -= (opus_uint32)integer<<23; + frac = in.f - 1.5f; + frac = -0.41445418f + frac*(0.95909232f + + frac*(-0.33951290f + frac*0.16541097f)); + return 1+integer+frac; +} + +/** Base-2 exponential approximation (2^x). */ +static OPUS_INLINE float celt_exp2(float x) +{ + int integer; + float frac; + union { + float f; + opus_uint32 i; + } res; + integer = (int)floor(x); + if (integer < -50) + return 0; + frac = x-integer; + /* K0 = 1, K1 = log(2), K2 = 3-4*log(2), K3 = 3*log(2) - 2 */ + res.f = 0.99992522f + frac * (0.69583354f + + frac * (0.22606716f + 0.078024523f*frac)); + res.i = (res.i + ((opus_uint32)integer<<23)) & 0x7fffffff; + return res.f; +} + +#else +#define celt_log2(x) ((float)(1.442695040888963387*log(x))) +#define celt_exp2(x) ((float)exp(0.6931471805599453094*(x))) +#endif + +#endif + +#ifdef FIXED_POINT + +#include "os_support.h" + +#ifndef OVERRIDE_CELT_ILOG2 +/** Integer log in base2. Undefined for zero and negative numbers */ +static OPUS_INLINE opus_int16 celt_ilog2(opus_int32 x) +{ + celt_sig_assert(x>0); + return EC_ILOG(x)-1; +} +#endif + + +/** Integer log in base2. Defined for zero, but not for negative numbers */ +static OPUS_INLINE opus_int16 celt_zlog2(opus_val32 x) +{ + return x <= 0 ? 0 : celt_ilog2(x); +} + +opus_val16 celt_rsqrt_norm(opus_val32 x); + +opus_val32 celt_sqrt(opus_val32 x); + +opus_val16 celt_cos_norm(opus_val32 x); + +/** Base-2 logarithm approximation (log2(x)). (Q14 input, Q10 output) */ +static OPUS_INLINE opus_val16 celt_log2(opus_val32 x) +{ + int i; + opus_val16 n, frac; + /* -0.41509302963303146, 0.9609890551383969, -0.31836011537636605, + 0.15530808010959576, -0.08556153059057618 */ + static const opus_val16 C[5] = {-6801+(1<<(13-DB_SHIFT)), 15746, -5217, 2545, -1401}; + if (x==0) + return -32767; + i = celt_ilog2(x); + n = VSHR32(x,i-15)-32768-16384; + frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, C[4])))))))); + return SHL16(i-13,DB_SHIFT)+SHR16(frac,14-DB_SHIFT); +} + +/* + K0 = 1 + K1 = log(2) + K2 = 3-4*log(2) + K3 = 3*log(2) - 2 +*/ +#define D0 16383 +#define D1 22804 +#define D2 14819 +#define D3 10204 + +static OPUS_INLINE opus_val32 celt_exp2_frac(opus_val16 x) +{ + opus_val16 frac; + frac = SHL16(x, 4); + return ADD16(D0, MULT16_16_Q15(frac, ADD16(D1, MULT16_16_Q15(frac, ADD16(D2 , MULT16_16_Q15(D3,frac)))))); +} +/** Base-2 exponential approximation (2^x). (Q10 input, Q16 output) */ +static OPUS_INLINE opus_val32 celt_exp2(opus_val16 x) +{ + int integer; + opus_val16 frac; + integer = SHR16(x,10); + if (integer>14) + return 0x7f000000; + else if (integer < -15) + return 0; + frac = celt_exp2_frac(x-SHL16(integer,10)); + return VSHR32(EXTEND32(frac), -integer-2); +} + +opus_val32 celt_rcp(opus_val32 x); + +#define celt_div(a,b) MULT32_32_Q31((opus_val32)(a),celt_rcp(b)) + +opus_val32 frac_div32(opus_val32 a, opus_val32 b); + +#define M1 32767 +#define M2 -21 +#define M3 -11943 +#define M4 4936 + +/* Atan approximation using a 4th order polynomial. Input is in Q15 format + and normalized by pi/4. Output is in Q15 format */ +static OPUS_INLINE opus_val16 celt_atan01(opus_val16 x) +{ + return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x))))))); +} + +#undef M1 +#undef M2 +#undef M3 +#undef M4 + +/* atan2() approximation valid for positive input values */ +static OPUS_INLINE opus_val16 celt_atan2p(opus_val16 y, opus_val16 x) +{ + if (y < x) + { + opus_val32 arg; + arg = celt_div(SHL32(EXTEND32(y),15),x); + if (arg >= 32767) + arg = 32767; + return SHR16(celt_atan01(EXTRACT16(arg)),1); + } else { + opus_val32 arg; + arg = celt_div(SHL32(EXTEND32(x),15),y); + if (arg >= 32767) + arg = 32767; + return 25736-SHR16(celt_atan01(EXTRACT16(arg)),1); + } +} + +#endif /* FIXED_POINT */ +#endif /* MATHOPS_H */ |