diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-19 00:47:55 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-19 00:47:55 +0000 |
commit | 26a029d407be480d791972afb5975cf62c9360a6 (patch) | |
tree | f435a8308119effd964b339f76abb83a57c29483 /mozglue/misc/SIMD.cpp | |
parent | Initial commit. (diff) | |
download | firefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz firefox-26a029d407be480d791972afb5975cf62c9360a6.zip |
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'mozglue/misc/SIMD.cpp')
-rw-r--r-- | mozglue/misc/SIMD.cpp | 565 |
1 files changed, 565 insertions, 0 deletions
diff --git a/mozglue/misc/SIMD.cpp b/mozglue/misc/SIMD.cpp new file mode 100644 index 0000000000..3893de57b3 --- /dev/null +++ b/mozglue/misc/SIMD.cpp @@ -0,0 +1,565 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=8 sts=2 et sw=2 tw=80: */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "mozilla/SIMD.h" + +#include <cstring> +#include <stdint.h> +#include <type_traits> + +#include "mozilla/EndianUtils.h" +#include "mozilla/SSE.h" + +#ifdef MOZILLA_PRESUME_SSE2 + +# include <immintrin.h> + +#endif + +namespace mozilla { + +template <typename TValue> +const TValue* FindInBufferNaive(const TValue* ptr, TValue value, + size_t length) { + const TValue* end = ptr + length; + while (ptr < end) { + if (*ptr == value) { + return ptr; + } + ptr++; + } + return nullptr; +} + +#ifdef MOZILLA_PRESUME_SSE2 + +const __m128i* Cast128(uintptr_t ptr) { + return reinterpret_cast<const __m128i*>(ptr); +} + +template <typename T> +T GetAs(uintptr_t ptr) { + return *reinterpret_cast<const T*>(ptr); +} + +// Akin to ceil/floor, AlignDown/AlignUp will return the original pointer if it +// is already aligned. +uintptr_t AlignDown16(uintptr_t ptr) { return ptr & ~0xf; } + +uintptr_t AlignUp16(uintptr_t ptr) { return AlignDown16(ptr + 0xf); } + +template <typename TValue> +__m128i CmpEq128(__m128i a, __m128i b) { + static_assert(sizeof(TValue) == 1 || sizeof(TValue) == 2); + if (sizeof(TValue) == 1) { + return _mm_cmpeq_epi8(a, b); + } + return _mm_cmpeq_epi16(a, b); +} + +# ifdef __GNUC__ + +// Earlier versions of GCC are missing the _mm_loadu_si32 instruction. This +// workaround from Peter Cordes (https://stackoverflow.com/a/72837992) compiles +// down to the same instructions. We could just replace _mm_loadu_si32 +__m128i Load32BitsIntoXMM(uintptr_t ptr) { + int tmp; + memcpy(&tmp, reinterpret_cast<const void*>(ptr), + sizeof(tmp)); // unaligned aliasing-safe load + return _mm_cvtsi32_si128(tmp); // efficient on GCC/clang/MSVC +} + +# else + +__m128i Load32BitsIntoXMM(uintptr_t ptr) { + return _mm_loadu_si32(Cast128(ptr)); +} + +# endif + +const char* Check4x4Chars(__m128i needle, uintptr_t a, uintptr_t b, uintptr_t c, + uintptr_t d) { + __m128i haystackA = Load32BitsIntoXMM(a); + __m128i cmpA = CmpEq128<char>(needle, haystackA); + __m128i haystackB = Load32BitsIntoXMM(b); + __m128i cmpB = CmpEq128<char>(needle, haystackB); + __m128i haystackC = Load32BitsIntoXMM(c); + __m128i cmpC = CmpEq128<char>(needle, haystackC); + __m128i haystackD = Load32BitsIntoXMM(d); + __m128i cmpD = CmpEq128<char>(needle, haystackD); + __m128i or_ab = _mm_or_si128(cmpA, cmpB); + __m128i or_cd = _mm_or_si128(cmpC, cmpD); + __m128i or_abcd = _mm_or_si128(or_ab, or_cd); + int orMask = _mm_movemask_epi8(or_abcd); + if (orMask & 0xf) { + int cmpMask; + cmpMask = _mm_movemask_epi8(cmpA); + if (cmpMask & 0xf) { + return reinterpret_cast<const char*>(a + __builtin_ctz(cmpMask)); + } + cmpMask = _mm_movemask_epi8(cmpB); + if (cmpMask & 0xf) { + return reinterpret_cast<const char*>(b + __builtin_ctz(cmpMask)); + } + cmpMask = _mm_movemask_epi8(cmpC); + if (cmpMask & 0xf) { + return reinterpret_cast<const char*>(c + __builtin_ctz(cmpMask)); + } + cmpMask = _mm_movemask_epi8(cmpD); + if (cmpMask & 0xf) { + return reinterpret_cast<const char*>(d + __builtin_ctz(cmpMask)); + } + } + + return nullptr; +} + +template <typename TValue> +const TValue* Check4x16Bytes(__m128i needle, uintptr_t a, uintptr_t b, + uintptr_t c, uintptr_t d) { + __m128i haystackA = _mm_loadu_si128(Cast128(a)); + __m128i cmpA = CmpEq128<TValue>(needle, haystackA); + __m128i haystackB = _mm_loadu_si128(Cast128(b)); + __m128i cmpB = CmpEq128<TValue>(needle, haystackB); + __m128i haystackC = _mm_loadu_si128(Cast128(c)); + __m128i cmpC = CmpEq128<TValue>(needle, haystackC); + __m128i haystackD = _mm_loadu_si128(Cast128(d)); + __m128i cmpD = CmpEq128<TValue>(needle, haystackD); + __m128i or_ab = _mm_or_si128(cmpA, cmpB); + __m128i or_cd = _mm_or_si128(cmpC, cmpD); + __m128i or_abcd = _mm_or_si128(or_ab, or_cd); + int orMask = _mm_movemask_epi8(or_abcd); + if (orMask) { + int cmpMask; + cmpMask = _mm_movemask_epi8(cmpA); + if (cmpMask) { + return reinterpret_cast<const TValue*>(a + __builtin_ctz(cmpMask)); + } + cmpMask = _mm_movemask_epi8(cmpB); + if (cmpMask) { + return reinterpret_cast<const TValue*>(b + __builtin_ctz(cmpMask)); + } + cmpMask = _mm_movemask_epi8(cmpC); + if (cmpMask) { + return reinterpret_cast<const TValue*>(c + __builtin_ctz(cmpMask)); + } + cmpMask = _mm_movemask_epi8(cmpD); + if (cmpMask) { + return reinterpret_cast<const TValue*>(d + __builtin_ctz(cmpMask)); + } + } + + return nullptr; +} + +enum class HaystackOverlap { + Overlapping, + Sequential, +}; + +// Check two 16-byte chunks for the two-byte sequence loaded into needle1 +// followed by needle1. `carryOut` is an optional pointer which we will +// populate based on whether the last character of b matches needle1. This +// should be provided on subsequent calls via `carryIn` so we can detect cases +// where the last byte of b's 16-byte chunk is needle1 and the first byte of +// the next a's 16-byte chunk is needle2. `overlap` and whether +// `carryIn`/`carryOut` are NULL should be knowable at compile time to avoid +// branching. +template <typename TValue> +const TValue* Check2x2x16Bytes(__m128i needle1, __m128i needle2, uintptr_t a, + uintptr_t b, __m128i* carryIn, __m128i* carryOut, + HaystackOverlap overlap) { + const int shiftRightAmount = 16 - sizeof(TValue); + const int shiftLeftAmount = sizeof(TValue); + __m128i haystackA = _mm_loadu_si128(Cast128(a)); + __m128i cmpA1 = CmpEq128<TValue>(needle1, haystackA); + __m128i cmpA2 = CmpEq128<TValue>(needle2, haystackA); + __m128i cmpA; + if (carryIn) { + cmpA = _mm_and_si128( + _mm_or_si128(_mm_bslli_si128(cmpA1, shiftLeftAmount), *carryIn), cmpA2); + } else { + cmpA = _mm_and_si128(_mm_bslli_si128(cmpA1, shiftLeftAmount), cmpA2); + } + __m128i haystackB = _mm_loadu_si128(Cast128(b)); + __m128i cmpB1 = CmpEq128<TValue>(needle1, haystackB); + __m128i cmpB2 = CmpEq128<TValue>(needle2, haystackB); + __m128i cmpB; + if (overlap == HaystackOverlap::Overlapping) { + cmpB = _mm_and_si128(_mm_bslli_si128(cmpB1, shiftLeftAmount), cmpB2); + } else { + MOZ_ASSERT(overlap == HaystackOverlap::Sequential); + __m128i carryAB = _mm_bsrli_si128(cmpA1, shiftRightAmount); + cmpB = _mm_and_si128( + _mm_or_si128(_mm_bslli_si128(cmpB1, shiftLeftAmount), carryAB), cmpB2); + } + __m128i or_ab = _mm_or_si128(cmpA, cmpB); + int orMask = _mm_movemask_epi8(or_ab); + if (orMask) { + int cmpMask; + cmpMask = _mm_movemask_epi8(cmpA); + if (cmpMask) { + return reinterpret_cast<const TValue*>(a + __builtin_ctz(cmpMask) - + shiftLeftAmount); + } + cmpMask = _mm_movemask_epi8(cmpB); + if (cmpMask) { + return reinterpret_cast<const TValue*>(b + __builtin_ctz(cmpMask) - + shiftLeftAmount); + } + } + + if (carryOut) { + _mm_store_si128(carryOut, _mm_bsrli_si128(cmpB1, shiftRightAmount)); + } + + return nullptr; +} + +template <typename TValue> +const TValue* FindInBuffer(const TValue* ptr, TValue value, size_t length) { + static_assert(sizeof(TValue) == 1 || sizeof(TValue) == 2); + static_assert(std::is_unsigned<TValue>::value); + uint64_t splat64; + if (sizeof(TValue) == 1) { + splat64 = 0x0101010101010101llu; + } else { + splat64 = 0x0001000100010001llu; + } + + // Load our needle into a 16-byte register + uint64_t u64_value = static_cast<uint64_t>(value) * splat64; + int64_t i64_value = *reinterpret_cast<int64_t*>(&u64_value); + __m128i needle = _mm_set_epi64x(i64_value, i64_value); + + size_t numBytes = length * sizeof(TValue); + uintptr_t cur = reinterpret_cast<uintptr_t>(ptr); + uintptr_t end = cur + numBytes; + + if ((sizeof(TValue) > 1 && numBytes < 16) || numBytes < 4) { + while (cur < end) { + if (GetAs<TValue>(cur) == value) { + return reinterpret_cast<const TValue*>(cur); + } + cur += sizeof(TValue); + } + return nullptr; + } + + if (numBytes < 16) { + // NOTE: here and below, we have some bit fiddling which could look a + // little weird. The important thing to note though is it's just a trick + // for getting the number 4 if numBytes is greater than or equal to 8, + // and 0 otherwise. This lets us fully cover the range without any + // branching for the case where numBytes is in [4,8), and [8,16). We get + // four ranges from this - if numbytes > 8, we get: + // [0,4), [4,8], [end - 8), [end - 4) + // and if numbytes < 8, we get + // [0,4), [0,4), [end - 4), [end - 4) + uintptr_t a = cur; + uintptr_t b = cur + ((numBytes & 8) >> 1); + uintptr_t c = end - 4 - ((numBytes & 8) >> 1); + uintptr_t d = end - 4; + const char* charResult = Check4x4Chars(needle, a, b, c, d); + // Note: we ensure above that sizeof(TValue) == 1 here, so this is + // either char to char or char to something like a uint8_t. + return reinterpret_cast<const TValue*>(charResult); + } + + if (numBytes < 64) { + // NOTE: see the above explanation of the similar chunk of code, but in + // this case, replace 8 with 32 and 4 with 16. + uintptr_t a = cur; + uintptr_t b = cur + ((numBytes & 32) >> 1); + uintptr_t c = end - 16 - ((numBytes & 32) >> 1); + uintptr_t d = end - 16; + return Check4x16Bytes<TValue>(needle, a, b, c, d); + } + + // Get the initial unaligned load out of the way. This will overlap with the + // aligned stuff below, but the overlapped part should effectively be free + // (relative to a mispredict from doing a byte-by-byte loop). + __m128i haystack = _mm_loadu_si128(Cast128(cur)); + __m128i cmp = CmpEq128<TValue>(needle, haystack); + int cmpMask = _mm_movemask_epi8(cmp); + if (cmpMask) { + return reinterpret_cast<const TValue*>(cur + __builtin_ctz(cmpMask)); + } + + // Now we're working with aligned memory. Hooray! \o/ + cur = AlignUp16(cur); + + // The address of the final 48-63 bytes. We overlap this with what we check in + // our hot loop below to avoid branching. Again, the overlap should be + // negligible compared with a branch mispredict. + uintptr_t tailStartPtr = AlignDown16(end - 48); + uintptr_t tailEndPtr = end - 16; + + while (cur < tailStartPtr) { + uintptr_t a = cur; + uintptr_t b = cur + 16; + uintptr_t c = cur + 32; + uintptr_t d = cur + 48; + const TValue* result = Check4x16Bytes<TValue>(needle, a, b, c, d); + if (result) { + return result; + } + cur += 64; + } + + uintptr_t a = tailStartPtr; + uintptr_t b = tailStartPtr + 16; + uintptr_t c = tailStartPtr + 32; + uintptr_t d = tailEndPtr; + return Check4x16Bytes<TValue>(needle, a, b, c, d); +} + +template <typename TValue> +const TValue* TwoElementLoop(uintptr_t start, uintptr_t end, TValue v1, + TValue v2) { + static_assert(sizeof(TValue) == 1 || sizeof(TValue) == 2); + + const TValue* cur = reinterpret_cast<const TValue*>(start); + const TValue* preEnd = reinterpret_cast<const TValue*>(end - sizeof(TValue)); + + uint32_t expected = static_cast<uint32_t>(v1) | + (static_cast<uint32_t>(v2) << (sizeof(TValue) * 8)); + while (cur < preEnd) { + // NOTE: this should only ever be called on little endian architectures. + static_assert(MOZ_LITTLE_ENDIAN()); + // We or cur[0] and cur[1] together explicitly and compare to expected, + // in order to avoid UB from just loading them as a uint16_t/uint32_t. + // However, it will compile down the same code after optimizations on + // little endian systems which support unaligned loads. Comparing them + // value-by-value, however, will not, and seems to perform worse in local + // microbenchmarking. Even after bitwise or'ing the comparison values + // together to avoid the short circuit, the compiler doesn't seem to get + // the hint and creates two branches, the first of which might be + // frequently mispredicted. + uint32_t actual = static_cast<uint32_t>(cur[0]) | + (static_cast<uint32_t>(cur[1]) << (sizeof(TValue) * 8)); + if (actual == expected) { + return cur; + } + cur++; + } + return nullptr; +} + +template <typename TValue> +const TValue* FindTwoInBuffer(const TValue* ptr, TValue v1, TValue v2, + size_t length) { + static_assert(sizeof(TValue) == 1 || sizeof(TValue) == 2); + static_assert(std::is_unsigned<TValue>::value); + uint64_t splat64; + if (sizeof(TValue) == 1) { + splat64 = 0x0101010101010101llu; + } else { + splat64 = 0x0001000100010001llu; + } + + // Load our needle into a 16-byte register + uint64_t u64_v1 = static_cast<uint64_t>(v1) * splat64; + int64_t i64_v1 = *reinterpret_cast<int64_t*>(&u64_v1); + __m128i needle1 = _mm_set_epi64x(i64_v1, i64_v1); + uint64_t u64_v2 = static_cast<uint64_t>(v2) * splat64; + int64_t i64_v2 = *reinterpret_cast<int64_t*>(&u64_v2); + __m128i needle2 = _mm_set_epi64x(i64_v2, i64_v2); + + size_t numBytes = length * sizeof(TValue); + uintptr_t cur = reinterpret_cast<uintptr_t>(ptr); + uintptr_t end = cur + numBytes; + + if (numBytes < 16) { + return TwoElementLoop<TValue>(cur, end, v1, v2); + } + + if (numBytes < 32) { + uintptr_t a = cur; + uintptr_t b = end - 16; + return Check2x2x16Bytes<TValue>(needle1, needle2, a, b, nullptr, nullptr, + HaystackOverlap::Overlapping); + } + + // Get the initial unaligned load out of the way. This will likely overlap + // with the aligned stuff below, but the overlapped part should effectively + // be free. + __m128i haystack = _mm_loadu_si128(Cast128(cur)); + __m128i cmp1 = CmpEq128<TValue>(needle1, haystack); + __m128i cmp2 = CmpEq128<TValue>(needle2, haystack); + int cmpMask1 = _mm_movemask_epi8(cmp1); + int cmpMask2 = _mm_movemask_epi8(cmp2); + int cmpMask = (cmpMask1 << sizeof(TValue)) & cmpMask2; + if (cmpMask) { + return reinterpret_cast<const TValue*>(cur + __builtin_ctz(cmpMask) - + sizeof(TValue)); + } + + // Now we're working with aligned memory. Hooray! \o/ + cur = AlignUp16(cur); + + // The address of the final 48-63 bytes. We overlap this with what we check in + // our hot loop below to avoid branching. Again, the overlap should be + // negligible compared with a branch mispredict. + uintptr_t tailEndPtr = end - 16; + uintptr_t tailStartPtr = AlignDown16(tailEndPtr); + + __m128i cmpMaskCarry = _mm_set1_epi32(0); + while (cur < tailStartPtr) { + uintptr_t a = cur; + uintptr_t b = cur + 16; + const TValue* result = + Check2x2x16Bytes<TValue>(needle1, needle2, a, b, &cmpMaskCarry, + &cmpMaskCarry, HaystackOverlap::Sequential); + if (result) { + return result; + } + cur += 32; + } + + uint32_t carry = (cur == tailStartPtr) ? 0xffffffff : 0; + __m128i wideCarry = Load32BitsIntoXMM(reinterpret_cast<uintptr_t>(&carry)); + cmpMaskCarry = _mm_and_si128(cmpMaskCarry, wideCarry); + uintptr_t a = tailStartPtr; + uintptr_t b = tailEndPtr; + return Check2x2x16Bytes<TValue>(needle1, needle2, a, b, &cmpMaskCarry, + nullptr, HaystackOverlap::Overlapping); +} + +const char* SIMD::memchr8SSE2(const char* ptr, char value, size_t length) { + // Signed chars are just really annoying to do bit logic with. Convert to + // unsigned at the outermost scope so we don't have to worry about it. + const unsigned char* uptr = reinterpret_cast<const unsigned char*>(ptr); + unsigned char uvalue = static_cast<unsigned char>(value); + const unsigned char* uresult = + FindInBuffer<unsigned char>(uptr, uvalue, length); + return reinterpret_cast<const char*>(uresult); +} + +// So, this is a bit awkward. It generally simplifies things if we can just +// assume all the AVX2 code is 64-bit, so we have this preprocessor guard +// in SIMD_avx2 over all of its actual code, and it also defines versions +// of its endpoints that just assert false if the guard is not satisfied. +// A 32 bit processor could implement the AVX2 instruction set though, which +// would result in it passing the supports_avx2() check and landing in an +// assertion failure. Accordingly, we just don't allow that to happen. We +// are not particularly concerned about ensuring that newer 32 bit processors +// get access to the AVX2 functions exposed here. +# if defined(MOZILLA_MAY_SUPPORT_AVX2) && defined(__x86_64__) + +bool SupportsAVX2() { return supports_avx2(); } + +# else + +bool SupportsAVX2() { return false; } + +# endif + +const char* SIMD::memchr8(const char* ptr, char value, size_t length) { + if (SupportsAVX2()) { + return memchr8AVX2(ptr, value, length); + } + return memchr8SSE2(ptr, value, length); +} + +const char16_t* SIMD::memchr16SSE2(const char16_t* ptr, char16_t value, + size_t length) { + return FindInBuffer<char16_t>(ptr, value, length); +} + +const char16_t* SIMD::memchr16(const char16_t* ptr, char16_t value, + size_t length) { + if (SupportsAVX2()) { + return memchr16AVX2(ptr, value, length); + } + return memchr16SSE2(ptr, value, length); +} + +const uint64_t* SIMD::memchr64(const uint64_t* ptr, uint64_t value, + size_t length) { + if (SupportsAVX2()) { + return memchr64AVX2(ptr, value, length); + } + return FindInBufferNaive<uint64_t>(ptr, value, length); +} + +const char* SIMD::memchr2x8(const char* ptr, char v1, char v2, size_t length) { + // Signed chars are just really annoying to do bit logic with. Convert to + // unsigned at the outermost scope so we don't have to worry about it. + const unsigned char* uptr = reinterpret_cast<const unsigned char*>(ptr); + unsigned char uv1 = static_cast<unsigned char>(v1); + unsigned char uv2 = static_cast<unsigned char>(v2); + const unsigned char* uresult = + FindTwoInBuffer<unsigned char>(uptr, uv1, uv2, length); + return reinterpret_cast<const char*>(uresult); +} + +const char16_t* SIMD::memchr2x16(const char16_t* ptr, char16_t v1, char16_t v2, + size_t length) { + return FindTwoInBuffer<char16_t>(ptr, v1, v2, length); +} + +#else + +const char* SIMD::memchr8(const char* ptr, char value, size_t length) { + const void* result = ::memchr(reinterpret_cast<const void*>(ptr), + static_cast<int>(value), length); + return reinterpret_cast<const char*>(result); +} + +const char* SIMD::memchr8SSE2(const char* ptr, char value, size_t length) { + return memchr8(ptr, value, length); +} + +const char16_t* SIMD::memchr16(const char16_t* ptr, char16_t value, + size_t length) { + return FindInBufferNaive<char16_t>(ptr, value, length); +} + +const char16_t* SIMD::memchr16SSE2(const char16_t* ptr, char16_t value, + size_t length) { + return memchr16(ptr, value, length); +} + +const uint64_t* SIMD::memchr64(const uint64_t* ptr, uint64_t value, + size_t length) { + return FindInBufferNaive<uint64_t>(ptr, value, length); +} + +const char* SIMD::memchr2x8(const char* ptr, char v1, char v2, size_t length) { + const char* end = ptr + length - 1; + while (ptr < end) { + ptr = memchr8(ptr, v1, end - ptr); + if (!ptr) { + return nullptr; + } + if (ptr[1] == v2) { + return ptr; + } + ptr++; + } + return nullptr; +} + +const char16_t* SIMD::memchr2x16(const char16_t* ptr, char16_t v1, char16_t v2, + size_t length) { + const char16_t* end = ptr + length - 1; + while (ptr < end) { + ptr = memchr16(ptr, v1, end - ptr); + if (!ptr) { + return nullptr; + } + if (ptr[1] == v2) { + return ptr; + } + ptr++; + } + return nullptr; +} + +#endif + +} // namespace mozilla |