summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/audio_processing/audio_processing_unittest.cc
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
commit26a029d407be480d791972afb5975cf62c9360a6 (patch)
treef435a8308119effd964b339f76abb83a57c29483 /third_party/libwebrtc/modules/audio_processing/audio_processing_unittest.cc
parentInitial commit. (diff)
downloadfirefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz
firefox-26a029d407be480d791972afb5975cf62c9360a6.zip
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/libwebrtc/modules/audio_processing/audio_processing_unittest.cc')
-rw-r--r--third_party/libwebrtc/modules/audio_processing/audio_processing_unittest.cc3441
1 files changed, 3441 insertions, 0 deletions
diff --git a/third_party/libwebrtc/modules/audio_processing/audio_processing_unittest.cc b/third_party/libwebrtc/modules/audio_processing/audio_processing_unittest.cc
new file mode 100644
index 0000000000..e320e71405
--- /dev/null
+++ b/third_party/libwebrtc/modules/audio_processing/audio_processing_unittest.cc
@@ -0,0 +1,3441 @@
+/*
+ * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+#include "modules/audio_processing/include/audio_processing.h"
+
+#include <math.h>
+#include <stdio.h>
+
+#include <algorithm>
+#include <cmath>
+#include <limits>
+#include <memory>
+#include <numeric>
+#include <queue>
+#include <string>
+
+#include "absl/flags/flag.h"
+#include "absl/strings/string_view.h"
+#include "api/audio/echo_detector_creator.h"
+#include "api/make_ref_counted.h"
+#include "common_audio/include/audio_util.h"
+#include "common_audio/resampler/include/push_resampler.h"
+#include "common_audio/resampler/push_sinc_resampler.h"
+#include "common_audio/signal_processing/include/signal_processing_library.h"
+#include "modules/audio_processing/aec_dump/aec_dump_factory.h"
+#include "modules/audio_processing/audio_processing_impl.h"
+#include "modules/audio_processing/include/mock_audio_processing.h"
+#include "modules/audio_processing/test/audio_processing_builder_for_testing.h"
+#include "modules/audio_processing/test/protobuf_utils.h"
+#include "modules/audio_processing/test/test_utils.h"
+#include "rtc_base/arraysize.h"
+#include "rtc_base/checks.h"
+#include "rtc_base/fake_clock.h"
+#include "rtc_base/gtest_prod_util.h"
+#include "rtc_base/ignore_wundef.h"
+#include "rtc_base/numerics/safe_conversions.h"
+#include "rtc_base/numerics/safe_minmax.h"
+#include "rtc_base/protobuf_utils.h"
+#include "rtc_base/strings/string_builder.h"
+#include "rtc_base/swap_queue.h"
+#include "rtc_base/system/arch.h"
+#include "rtc_base/task_queue_for_test.h"
+#include "rtc_base/thread.h"
+#include "system_wrappers/include/cpu_features_wrapper.h"
+#include "test/gtest.h"
+#include "test/testsupport/file_utils.h"
+
+RTC_PUSH_IGNORING_WUNDEF()
+#include "modules/audio_processing/debug.pb.h"
+#ifdef WEBRTC_ANDROID_PLATFORM_BUILD
+#include "external/webrtc/webrtc/modules/audio_processing/test/unittest.pb.h"
+#else
+#include "modules/audio_processing/test/unittest.pb.h"
+#endif
+RTC_POP_IGNORING_WUNDEF()
+
+ABSL_FLAG(bool,
+ write_apm_ref_data,
+ false,
+ "Write ApmTest.Process results to file, instead of comparing results "
+ "to the existing reference data file.");
+
+namespace webrtc {
+namespace {
+
+// All sample rates used by APM internally during processing. Other input /
+// output rates are resampled to / from one of these.
+const int kProcessSampleRates[] = {16000, 32000, 48000};
+
+enum StreamDirection { kForward = 0, kReverse };
+
+void ConvertToFloat(const int16_t* int_data, ChannelBuffer<float>* cb) {
+ ChannelBuffer<int16_t> cb_int(cb->num_frames(), cb->num_channels());
+ Deinterleave(int_data, cb->num_frames(), cb->num_channels(),
+ cb_int.channels());
+ for (size_t i = 0; i < cb->num_channels(); ++i) {
+ S16ToFloat(cb_int.channels()[i], cb->num_frames(), cb->channels()[i]);
+ }
+}
+
+void ConvertToFloat(const Int16FrameData& frame, ChannelBuffer<float>* cb) {
+ ConvertToFloat(frame.data.data(), cb);
+}
+
+void MixStereoToMono(const float* stereo,
+ float* mono,
+ size_t samples_per_channel) {
+ for (size_t i = 0; i < samples_per_channel; ++i)
+ mono[i] = (stereo[i * 2] + stereo[i * 2 + 1]) / 2;
+}
+
+void MixStereoToMono(const int16_t* stereo,
+ int16_t* mono,
+ size_t samples_per_channel) {
+ for (size_t i = 0; i < samples_per_channel; ++i)
+ mono[i] = (stereo[i * 2] + stereo[i * 2 + 1]) >> 1;
+}
+
+void CopyLeftToRightChannel(int16_t* stereo, size_t samples_per_channel) {
+ for (size_t i = 0; i < samples_per_channel; i++) {
+ stereo[i * 2 + 1] = stereo[i * 2];
+ }
+}
+
+void VerifyChannelsAreEqual(const int16_t* stereo, size_t samples_per_channel) {
+ for (size_t i = 0; i < samples_per_channel; i++) {
+ EXPECT_EQ(stereo[i * 2 + 1], stereo[i * 2]);
+ }
+}
+
+void SetFrameTo(Int16FrameData* frame, int16_t value) {
+ for (size_t i = 0; i < frame->samples_per_channel * frame->num_channels;
+ ++i) {
+ frame->data[i] = value;
+ }
+}
+
+void SetFrameTo(Int16FrameData* frame, int16_t left, int16_t right) {
+ ASSERT_EQ(2u, frame->num_channels);
+ for (size_t i = 0; i < frame->samples_per_channel * 2; i += 2) {
+ frame->data[i] = left;
+ frame->data[i + 1] = right;
+ }
+}
+
+void ScaleFrame(Int16FrameData* frame, float scale) {
+ for (size_t i = 0; i < frame->samples_per_channel * frame->num_channels;
+ ++i) {
+ frame->data[i] = FloatS16ToS16(frame->data[i] * scale);
+ }
+}
+
+bool FrameDataAreEqual(const Int16FrameData& frame1,
+ const Int16FrameData& frame2) {
+ if (frame1.samples_per_channel != frame2.samples_per_channel) {
+ return false;
+ }
+ if (frame1.num_channels != frame2.num_channels) {
+ return false;
+ }
+ if (memcmp(
+ frame1.data.data(), frame2.data.data(),
+ frame1.samples_per_channel * frame1.num_channels * sizeof(int16_t))) {
+ return false;
+ }
+ return true;
+}
+
+rtc::ArrayView<int16_t> GetMutableFrameData(Int16FrameData* frame) {
+ int16_t* ptr = frame->data.data();
+ const size_t len = frame->samples_per_channel * frame->num_channels;
+ return rtc::ArrayView<int16_t>(ptr, len);
+}
+
+rtc::ArrayView<const int16_t> GetFrameData(const Int16FrameData& frame) {
+ const int16_t* ptr = frame.data.data();
+ const size_t len = frame.samples_per_channel * frame.num_channels;
+ return rtc::ArrayView<const int16_t>(ptr, len);
+}
+
+void EnableAllAPComponents(AudioProcessing* ap) {
+ AudioProcessing::Config apm_config = ap->GetConfig();
+ apm_config.echo_canceller.enabled = true;
+#if defined(WEBRTC_AUDIOPROC_FIXED_PROFILE)
+ apm_config.echo_canceller.mobile_mode = true;
+
+ apm_config.gain_controller1.enabled = true;
+ apm_config.gain_controller1.mode =
+ AudioProcessing::Config::GainController1::kAdaptiveDigital;
+#elif defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
+ apm_config.echo_canceller.mobile_mode = false;
+
+ apm_config.gain_controller1.enabled = true;
+ apm_config.gain_controller1.mode =
+ AudioProcessing::Config::GainController1::kAdaptiveAnalog;
+#endif
+
+ apm_config.noise_suppression.enabled = true;
+
+ apm_config.high_pass_filter.enabled = true;
+ apm_config.pipeline.maximum_internal_processing_rate = 48000;
+ ap->ApplyConfig(apm_config);
+}
+
+// These functions are only used by ApmTest.Process.
+template <class T>
+T AbsValue(T a) {
+ return a > 0 ? a : -a;
+}
+
+int16_t MaxAudioFrame(const Int16FrameData& frame) {
+ const size_t length = frame.samples_per_channel * frame.num_channels;
+ int16_t max_data = AbsValue(frame.data[0]);
+ for (size_t i = 1; i < length; i++) {
+ max_data = std::max(max_data, AbsValue(frame.data[i]));
+ }
+
+ return max_data;
+}
+
+void OpenFileAndWriteMessage(absl::string_view filename,
+ const MessageLite& msg) {
+ FILE* file = fopen(std::string(filename).c_str(), "wb");
+ ASSERT_TRUE(file != NULL);
+
+ int32_t size = rtc::checked_cast<int32_t>(msg.ByteSizeLong());
+ ASSERT_GT(size, 0);
+ std::unique_ptr<uint8_t[]> array(new uint8_t[size]);
+ ASSERT_TRUE(msg.SerializeToArray(array.get(), size));
+
+ ASSERT_EQ(1u, fwrite(&size, sizeof(size), 1, file));
+ ASSERT_EQ(static_cast<size_t>(size),
+ fwrite(array.get(), sizeof(array[0]), size, file));
+ fclose(file);
+}
+
+std::string ResourceFilePath(absl::string_view name, int sample_rate_hz) {
+ rtc::StringBuilder ss;
+ // Resource files are all stereo.
+ ss << name << sample_rate_hz / 1000 << "_stereo";
+ return test::ResourcePath(ss.str(), "pcm");
+}
+
+// Temporary filenames unique to this process. Used to be able to run these
+// tests in parallel as each process needs to be running in isolation they can't
+// have competing filenames.
+std::map<std::string, std::string> temp_filenames;
+
+std::string OutputFilePath(absl::string_view name,
+ int input_rate,
+ int output_rate,
+ int reverse_input_rate,
+ int reverse_output_rate,
+ size_t num_input_channels,
+ size_t num_output_channels,
+ size_t num_reverse_input_channels,
+ size_t num_reverse_output_channels,
+ StreamDirection file_direction) {
+ rtc::StringBuilder ss;
+ ss << name << "_i" << num_input_channels << "_" << input_rate / 1000 << "_ir"
+ << num_reverse_input_channels << "_" << reverse_input_rate / 1000 << "_";
+ if (num_output_channels == 1) {
+ ss << "mono";
+ } else if (num_output_channels == 2) {
+ ss << "stereo";
+ } else {
+ RTC_DCHECK_NOTREACHED();
+ }
+ ss << output_rate / 1000;
+ if (num_reverse_output_channels == 1) {
+ ss << "_rmono";
+ } else if (num_reverse_output_channels == 2) {
+ ss << "_rstereo";
+ } else {
+ RTC_DCHECK_NOTREACHED();
+ }
+ ss << reverse_output_rate / 1000;
+ ss << "_d" << file_direction << "_pcm";
+
+ std::string filename = ss.str();
+ if (temp_filenames[filename].empty())
+ temp_filenames[filename] = test::TempFilename(test::OutputPath(), filename);
+ return temp_filenames[filename];
+}
+
+void ClearTempFiles() {
+ for (auto& kv : temp_filenames)
+ remove(kv.second.c_str());
+}
+
+// Only remove "out" files. Keep "ref" files.
+void ClearTempOutFiles() {
+ for (auto it = temp_filenames.begin(); it != temp_filenames.end();) {
+ const std::string& filename = it->first;
+ if (filename.substr(0, 3).compare("out") == 0) {
+ remove(it->second.c_str());
+ temp_filenames.erase(it++);
+ } else {
+ it++;
+ }
+ }
+}
+
+void OpenFileAndReadMessage(absl::string_view filename, MessageLite* msg) {
+ FILE* file = fopen(std::string(filename).c_str(), "rb");
+ ASSERT_TRUE(file != NULL);
+ ReadMessageFromFile(file, msg);
+ fclose(file);
+}
+
+// Reads a 10 ms chunk (actually AudioProcessing::GetFrameSize() samples per
+// channel) of int16 interleaved audio from the given (assumed stereo) file,
+// converts to deinterleaved float (optionally downmixing) and returns the
+// result in `cb`. Returns false if the file ended (or on error) and true
+// otherwise.
+//
+// `int_data` and `float_data` are just temporary space that must be
+// sufficiently large to hold the 10 ms chunk.
+bool ReadChunk(FILE* file,
+ int16_t* int_data,
+ float* float_data,
+ ChannelBuffer<float>* cb) {
+ // The files always contain stereo audio.
+ size_t frame_size = cb->num_frames() * 2;
+ size_t read_count = fread(int_data, sizeof(int16_t), frame_size, file);
+ if (read_count != frame_size) {
+ // Check that the file really ended.
+ RTC_DCHECK(feof(file));
+ return false; // This is expected.
+ }
+
+ S16ToFloat(int_data, frame_size, float_data);
+ if (cb->num_channels() == 1) {
+ MixStereoToMono(float_data, cb->channels()[0], cb->num_frames());
+ } else {
+ Deinterleave(float_data, cb->num_frames(), 2, cb->channels());
+ }
+
+ return true;
+}
+
+// Returns the reference file name that matches the current CPU
+// architecture/optimizations.
+std::string GetReferenceFilename() {
+#if defined(WEBRTC_AUDIOPROC_FIXED_PROFILE)
+ return test::ResourcePath("audio_processing/output_data_fixed", "pb");
+#elif defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
+ if (GetCPUInfo(kAVX2) != 0) {
+ return test::ResourcePath("audio_processing/output_data_float_avx2", "pb");
+ }
+ return test::ResourcePath("audio_processing/output_data_float", "pb");
+#endif
+}
+
+// Flag that can temporarily be enabled for local debugging to inspect
+// `ApmTest.VerifyDebugDump(Int|Float)` failures. Do not upload code changes
+// with this flag set to true.
+constexpr bool kDumpWhenExpectMessageEqFails = false;
+
+// Checks the debug constants values used in this file so that no code change is
+// submitted with values temporarily used for local debugging.
+TEST(ApmUnitTests, CheckDebugConstants) {
+ ASSERT_FALSE(kDumpWhenExpectMessageEqFails);
+}
+
+// Expects the equality of `actual` and `expected` by inspecting a hard-coded
+// subset of `audioproc::Stream` fields.
+void ExpectStreamFieldsEq(const audioproc::Stream& actual,
+ const audioproc::Stream& expected) {
+ EXPECT_EQ(actual.input_data(), expected.input_data());
+ EXPECT_EQ(actual.output_data(), expected.output_data());
+ EXPECT_EQ(actual.delay(), expected.delay());
+ EXPECT_EQ(actual.drift(), expected.drift());
+ EXPECT_EQ(actual.applied_input_volume(), expected.applied_input_volume());
+ EXPECT_EQ(actual.keypress(), expected.keypress());
+}
+
+// Expects the equality of `actual` and `expected` by inspecting a hard-coded
+// subset of `audioproc::Event` fields.
+void ExpectEventFieldsEq(const audioproc::Event& actual,
+ const audioproc::Event& expected) {
+ EXPECT_EQ(actual.type(), expected.type());
+ if (actual.type() != expected.type()) {
+ return;
+ }
+ switch (actual.type()) {
+ case audioproc::Event::STREAM:
+ ExpectStreamFieldsEq(actual.stream(), expected.stream());
+ break;
+ default:
+ // Not implemented.
+ break;
+ }
+}
+
+// Returns true if the `actual` and `expected` byte streams share the same size
+// and contain the same data. If they differ and `kDumpWhenExpectMessageEqFails`
+// is true, checks the equality of a subset of `audioproc::Event` (nested)
+// fields.
+bool ExpectMessageEq(rtc::ArrayView<const uint8_t> actual,
+ rtc::ArrayView<const uint8_t> expected) {
+ EXPECT_EQ(actual.size(), expected.size());
+ if (actual.size() != expected.size()) {
+ return false;
+ }
+ if (memcmp(actual.data(), expected.data(), actual.size()) == 0) {
+ // Same message. No need to parse.
+ return true;
+ }
+ if (kDumpWhenExpectMessageEqFails) {
+ // Parse differing messages and expect equality to produce detailed error
+ // messages.
+ audioproc::Event event_actual, event_expected;
+ RTC_DCHECK(event_actual.ParseFromArray(actual.data(), actual.size()));
+ RTC_DCHECK(event_expected.ParseFromArray(expected.data(), expected.size()));
+ ExpectEventFieldsEq(event_actual, event_expected);
+ }
+ return false;
+}
+
+class ApmTest : public ::testing::Test {
+ protected:
+ ApmTest();
+ virtual void SetUp();
+ virtual void TearDown();
+
+ static void SetUpTestSuite() {}
+
+ static void TearDownTestSuite() { ClearTempFiles(); }
+
+ // Used to select between int and float interface tests.
+ enum Format { kIntFormat, kFloatFormat };
+
+ void Init(int sample_rate_hz,
+ int output_sample_rate_hz,
+ int reverse_sample_rate_hz,
+ size_t num_input_channels,
+ size_t num_output_channels,
+ size_t num_reverse_channels,
+ bool open_output_file);
+ void Init(AudioProcessing* ap);
+ void EnableAllComponents();
+ bool ReadFrame(FILE* file, Int16FrameData* frame);
+ bool ReadFrame(FILE* file, Int16FrameData* frame, ChannelBuffer<float>* cb);
+ void ReadFrameWithRewind(FILE* file, Int16FrameData* frame);
+ void ReadFrameWithRewind(FILE* file,
+ Int16FrameData* frame,
+ ChannelBuffer<float>* cb);
+ void ProcessDelayVerificationTest(int delay_ms,
+ int system_delay_ms,
+ int delay_min,
+ int delay_max);
+ void TestChangingChannelsInt16Interface(
+ size_t num_channels,
+ AudioProcessing::Error expected_return);
+ void TestChangingForwardChannels(size_t num_in_channels,
+ size_t num_out_channels,
+ AudioProcessing::Error expected_return);
+ void TestChangingReverseChannels(size_t num_rev_channels,
+ AudioProcessing::Error expected_return);
+ void RunQuantizedVolumeDoesNotGetStuckTest(int sample_rate);
+ void RunManualVolumeChangeIsPossibleTest(int sample_rate);
+ void StreamParametersTest(Format format);
+ int ProcessStreamChooser(Format format);
+ int AnalyzeReverseStreamChooser(Format format);
+ void ProcessDebugDump(absl::string_view in_filename,
+ absl::string_view out_filename,
+ Format format,
+ int max_size_bytes);
+ void VerifyDebugDumpTest(Format format);
+
+ const std::string output_path_;
+ const std::string ref_filename_;
+ rtc::scoped_refptr<AudioProcessing> apm_;
+ Int16FrameData frame_;
+ Int16FrameData revframe_;
+ std::unique_ptr<ChannelBuffer<float>> float_cb_;
+ std::unique_ptr<ChannelBuffer<float>> revfloat_cb_;
+ int output_sample_rate_hz_;
+ size_t num_output_channels_;
+ FILE* far_file_;
+ FILE* near_file_;
+ FILE* out_file_;
+};
+
+ApmTest::ApmTest()
+ : output_path_(test::OutputPath()),
+ ref_filename_(GetReferenceFilename()),
+ output_sample_rate_hz_(0),
+ num_output_channels_(0),
+ far_file_(NULL),
+ near_file_(NULL),
+ out_file_(NULL) {
+ apm_ = AudioProcessingBuilderForTesting().Create();
+ AudioProcessing::Config apm_config = apm_->GetConfig();
+ apm_config.gain_controller1.analog_gain_controller.enabled = false;
+ apm_config.pipeline.maximum_internal_processing_rate = 48000;
+ apm_->ApplyConfig(apm_config);
+}
+
+void ApmTest::SetUp() {
+ ASSERT_TRUE(apm_.get() != NULL);
+
+ Init(32000, 32000, 32000, 2, 2, 2, false);
+}
+
+void ApmTest::TearDown() {
+ if (far_file_) {
+ ASSERT_EQ(0, fclose(far_file_));
+ }
+ far_file_ = NULL;
+
+ if (near_file_) {
+ ASSERT_EQ(0, fclose(near_file_));
+ }
+ near_file_ = NULL;
+
+ if (out_file_) {
+ ASSERT_EQ(0, fclose(out_file_));
+ }
+ out_file_ = NULL;
+}
+
+void ApmTest::Init(AudioProcessing* ap) {
+ ASSERT_EQ(
+ kNoErr,
+ ap->Initialize({{{frame_.sample_rate_hz, frame_.num_channels},
+ {output_sample_rate_hz_, num_output_channels_},
+ {revframe_.sample_rate_hz, revframe_.num_channels},
+ {revframe_.sample_rate_hz, revframe_.num_channels}}}));
+}
+
+void ApmTest::Init(int sample_rate_hz,
+ int output_sample_rate_hz,
+ int reverse_sample_rate_hz,
+ size_t num_input_channels,
+ size_t num_output_channels,
+ size_t num_reverse_channels,
+ bool open_output_file) {
+ SetContainerFormat(sample_rate_hz, num_input_channels, &frame_, &float_cb_);
+ output_sample_rate_hz_ = output_sample_rate_hz;
+ num_output_channels_ = num_output_channels;
+
+ SetContainerFormat(reverse_sample_rate_hz, num_reverse_channels, &revframe_,
+ &revfloat_cb_);
+ Init(apm_.get());
+
+ if (far_file_) {
+ ASSERT_EQ(0, fclose(far_file_));
+ }
+ std::string filename = ResourceFilePath("far", sample_rate_hz);
+ far_file_ = fopen(filename.c_str(), "rb");
+ ASSERT_TRUE(far_file_ != NULL) << "Could not open file " << filename << "\n";
+
+ if (near_file_) {
+ ASSERT_EQ(0, fclose(near_file_));
+ }
+ filename = ResourceFilePath("near", sample_rate_hz);
+ near_file_ = fopen(filename.c_str(), "rb");
+ ASSERT_TRUE(near_file_ != NULL) << "Could not open file " << filename << "\n";
+
+ if (open_output_file) {
+ if (out_file_) {
+ ASSERT_EQ(0, fclose(out_file_));
+ }
+ filename = OutputFilePath(
+ "out", sample_rate_hz, output_sample_rate_hz, reverse_sample_rate_hz,
+ reverse_sample_rate_hz, num_input_channels, num_output_channels,
+ num_reverse_channels, num_reverse_channels, kForward);
+ out_file_ = fopen(filename.c_str(), "wb");
+ ASSERT_TRUE(out_file_ != NULL)
+ << "Could not open file " << filename << "\n";
+ }
+}
+
+void ApmTest::EnableAllComponents() {
+ EnableAllAPComponents(apm_.get());
+}
+
+bool ApmTest::ReadFrame(FILE* file,
+ Int16FrameData* frame,
+ ChannelBuffer<float>* cb) {
+ // The files always contain stereo audio.
+ size_t frame_size = frame->samples_per_channel * 2;
+ size_t read_count =
+ fread(frame->data.data(), sizeof(int16_t), frame_size, file);
+ if (read_count != frame_size) {
+ // Check that the file really ended.
+ EXPECT_NE(0, feof(file));
+ return false; // This is expected.
+ }
+
+ if (frame->num_channels == 1) {
+ MixStereoToMono(frame->data.data(), frame->data.data(),
+ frame->samples_per_channel);
+ }
+
+ if (cb) {
+ ConvertToFloat(*frame, cb);
+ }
+ return true;
+}
+
+bool ApmTest::ReadFrame(FILE* file, Int16FrameData* frame) {
+ return ReadFrame(file, frame, NULL);
+}
+
+// If the end of the file has been reached, rewind it and attempt to read the
+// frame again.
+void ApmTest::ReadFrameWithRewind(FILE* file,
+ Int16FrameData* frame,
+ ChannelBuffer<float>* cb) {
+ if (!ReadFrame(near_file_, &frame_, cb)) {
+ rewind(near_file_);
+ ASSERT_TRUE(ReadFrame(near_file_, &frame_, cb));
+ }
+}
+
+void ApmTest::ReadFrameWithRewind(FILE* file, Int16FrameData* frame) {
+ ReadFrameWithRewind(file, frame, NULL);
+}
+
+int ApmTest::ProcessStreamChooser(Format format) {
+ if (format == kIntFormat) {
+ return apm_->ProcessStream(
+ frame_.data.data(),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ frame_.data.data());
+ }
+ return apm_->ProcessStream(
+ float_cb_->channels(),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ StreamConfig(output_sample_rate_hz_, num_output_channels_),
+ float_cb_->channels());
+}
+
+int ApmTest::AnalyzeReverseStreamChooser(Format format) {
+ if (format == kIntFormat) {
+ return apm_->ProcessReverseStream(
+ revframe_.data.data(),
+ StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels),
+ StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels),
+ revframe_.data.data());
+ }
+ return apm_->AnalyzeReverseStream(
+ revfloat_cb_->channels(),
+ StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels));
+}
+
+void ApmTest::ProcessDelayVerificationTest(int delay_ms,
+ int system_delay_ms,
+ int delay_min,
+ int delay_max) {
+ // The `revframe_` and `frame_` should include the proper frame information,
+ // hence can be used for extracting information.
+ Int16FrameData tmp_frame;
+ std::queue<Int16FrameData*> frame_queue;
+ bool causal = true;
+
+ tmp_frame.CopyFrom(revframe_);
+ SetFrameTo(&tmp_frame, 0);
+
+ EXPECT_EQ(apm_->kNoError, apm_->Initialize());
+ // Initialize the `frame_queue` with empty frames.
+ int frame_delay = delay_ms / 10;
+ while (frame_delay < 0) {
+ Int16FrameData* frame = new Int16FrameData();
+ frame->CopyFrom(tmp_frame);
+ frame_queue.push(frame);
+ frame_delay++;
+ causal = false;
+ }
+ while (frame_delay > 0) {
+ Int16FrameData* frame = new Int16FrameData();
+ frame->CopyFrom(tmp_frame);
+ frame_queue.push(frame);
+ frame_delay--;
+ }
+ // Run for 4.5 seconds, skipping statistics from the first 2.5 seconds. We
+ // need enough frames with audio to have reliable estimates, but as few as
+ // possible to keep processing time down. 4.5 seconds seemed to be a good
+ // compromise for this recording.
+ for (int frame_count = 0; frame_count < 450; ++frame_count) {
+ Int16FrameData* frame = new Int16FrameData();
+ frame->CopyFrom(tmp_frame);
+ // Use the near end recording, since that has more speech in it.
+ ASSERT_TRUE(ReadFrame(near_file_, frame));
+ frame_queue.push(frame);
+ Int16FrameData* reverse_frame = frame;
+ Int16FrameData* process_frame = frame_queue.front();
+ if (!causal) {
+ reverse_frame = frame_queue.front();
+ // When we call ProcessStream() the frame is modified, so we can't use the
+ // pointer directly when things are non-causal. Use an intermediate frame
+ // and copy the data.
+ process_frame = &tmp_frame;
+ process_frame->CopyFrom(*frame);
+ }
+ EXPECT_EQ(apm_->kNoError, apm_->ProcessReverseStream(
+ reverse_frame->data.data(),
+ StreamConfig(reverse_frame->sample_rate_hz,
+ reverse_frame->num_channels),
+ StreamConfig(reverse_frame->sample_rate_hz,
+ reverse_frame->num_channels),
+ reverse_frame->data.data()));
+ EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(system_delay_ms));
+ EXPECT_EQ(apm_->kNoError,
+ apm_->ProcessStream(process_frame->data.data(),
+ StreamConfig(process_frame->sample_rate_hz,
+ process_frame->num_channels),
+ StreamConfig(process_frame->sample_rate_hz,
+ process_frame->num_channels),
+ process_frame->data.data()));
+ frame = frame_queue.front();
+ frame_queue.pop();
+ delete frame;
+
+ if (frame_count == 250) {
+ // Discard the first delay metrics to avoid convergence effects.
+ static_cast<void>(apm_->GetStatistics());
+ }
+ }
+
+ rewind(near_file_);
+ while (!frame_queue.empty()) {
+ Int16FrameData* frame = frame_queue.front();
+ frame_queue.pop();
+ delete frame;
+ }
+ // Calculate expected delay estimate and acceptable regions. Further,
+ // limit them w.r.t. AEC delay estimation support.
+ const size_t samples_per_ms =
+ rtc::SafeMin<size_t>(16u, frame_.samples_per_channel / 10);
+ const int expected_median =
+ rtc::SafeClamp<int>(delay_ms - system_delay_ms, delay_min, delay_max);
+ const int expected_median_high = rtc::SafeClamp<int>(
+ expected_median + rtc::dchecked_cast<int>(96 / samples_per_ms), delay_min,
+ delay_max);
+ const int expected_median_low = rtc::SafeClamp<int>(
+ expected_median - rtc::dchecked_cast<int>(96 / samples_per_ms), delay_min,
+ delay_max);
+ // Verify delay metrics.
+ AudioProcessingStats stats = apm_->GetStatistics();
+ ASSERT_TRUE(stats.delay_median_ms.has_value());
+ int32_t median = *stats.delay_median_ms;
+ EXPECT_GE(expected_median_high, median);
+ EXPECT_LE(expected_median_low, median);
+}
+
+void ApmTest::StreamParametersTest(Format format) {
+ // No errors when the components are disabled.
+ EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format));
+
+ // -- Missing AGC level --
+ AudioProcessing::Config apm_config = apm_->GetConfig();
+ apm_config.gain_controller1.enabled = true;
+ apm_->ApplyConfig(apm_config);
+ EXPECT_EQ(apm_->kStreamParameterNotSetError, ProcessStreamChooser(format));
+
+ // Resets after successful ProcessStream().
+ apm_->set_stream_analog_level(127);
+ EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format));
+ EXPECT_EQ(apm_->kStreamParameterNotSetError, ProcessStreamChooser(format));
+
+ // Other stream parameters set correctly.
+ apm_config.echo_canceller.enabled = true;
+ apm_config.echo_canceller.mobile_mode = false;
+ apm_->ApplyConfig(apm_config);
+ EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100));
+ EXPECT_EQ(apm_->kStreamParameterNotSetError, ProcessStreamChooser(format));
+ apm_config.gain_controller1.enabled = false;
+ apm_->ApplyConfig(apm_config);
+
+ // -- Missing delay --
+ EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format));
+ EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format));
+
+ // Resets after successful ProcessStream().
+ EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100));
+ EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format));
+ EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format));
+
+ // Other stream parameters set correctly.
+ apm_config.gain_controller1.enabled = true;
+ apm_->ApplyConfig(apm_config);
+ apm_->set_stream_analog_level(127);
+ EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format));
+ apm_config.gain_controller1.enabled = false;
+ apm_->ApplyConfig(apm_config);
+
+ // -- No stream parameters --
+ EXPECT_EQ(apm_->kNoError, AnalyzeReverseStreamChooser(format));
+ EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format));
+
+ // -- All there --
+ EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100));
+ apm_->set_stream_analog_level(127);
+ EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format));
+}
+
+TEST_F(ApmTest, StreamParametersInt) {
+ StreamParametersTest(kIntFormat);
+}
+
+TEST_F(ApmTest, StreamParametersFloat) {
+ StreamParametersTest(kFloatFormat);
+}
+
+void ApmTest::TestChangingChannelsInt16Interface(
+ size_t num_channels,
+ AudioProcessing::Error expected_return) {
+ frame_.num_channels = num_channels;
+
+ EXPECT_EQ(expected_return,
+ apm_->ProcessStream(
+ frame_.data.data(),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ frame_.data.data()));
+ EXPECT_EQ(expected_return,
+ apm_->ProcessReverseStream(
+ frame_.data.data(),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ frame_.data.data()));
+}
+
+void ApmTest::TestChangingForwardChannels(
+ size_t num_in_channels,
+ size_t num_out_channels,
+ AudioProcessing::Error expected_return) {
+ const StreamConfig input_stream = {frame_.sample_rate_hz, num_in_channels};
+ const StreamConfig output_stream = {output_sample_rate_hz_, num_out_channels};
+
+ EXPECT_EQ(expected_return,
+ apm_->ProcessStream(float_cb_->channels(), input_stream,
+ output_stream, float_cb_->channels()));
+}
+
+void ApmTest::TestChangingReverseChannels(
+ size_t num_rev_channels,
+ AudioProcessing::Error expected_return) {
+ const ProcessingConfig processing_config = {
+ {{frame_.sample_rate_hz, apm_->num_input_channels()},
+ {output_sample_rate_hz_, apm_->num_output_channels()},
+ {frame_.sample_rate_hz, num_rev_channels},
+ {frame_.sample_rate_hz, num_rev_channels}}};
+
+ EXPECT_EQ(
+ expected_return,
+ apm_->ProcessReverseStream(
+ float_cb_->channels(), processing_config.reverse_input_stream(),
+ processing_config.reverse_output_stream(), float_cb_->channels()));
+}
+
+TEST_F(ApmTest, ChannelsInt16Interface) {
+ // Testing number of invalid and valid channels.
+ Init(16000, 16000, 16000, 4, 4, 4, false);
+
+ TestChangingChannelsInt16Interface(0, apm_->kBadNumberChannelsError);
+
+ for (size_t i = 1; i < 4; i++) {
+ TestChangingChannelsInt16Interface(i, kNoErr);
+ EXPECT_EQ(i, apm_->num_input_channels());
+ }
+}
+
+TEST_F(ApmTest, Channels) {
+ // Testing number of invalid and valid channels.
+ Init(16000, 16000, 16000, 4, 4, 4, false);
+
+ TestChangingForwardChannels(0, 1, apm_->kBadNumberChannelsError);
+ TestChangingReverseChannels(0, apm_->kBadNumberChannelsError);
+
+ for (size_t i = 1; i < 4; ++i) {
+ for (size_t j = 0; j < 1; ++j) {
+ // Output channels much be one or match input channels.
+ if (j == 1 || i == j) {
+ TestChangingForwardChannels(i, j, kNoErr);
+ TestChangingReverseChannels(i, kNoErr);
+
+ EXPECT_EQ(i, apm_->num_input_channels());
+ EXPECT_EQ(j, apm_->num_output_channels());
+ // The number of reverse channels used for processing to is always 1.
+ EXPECT_EQ(1u, apm_->num_reverse_channels());
+ } else {
+ TestChangingForwardChannels(i, j,
+ AudioProcessing::kBadNumberChannelsError);
+ }
+ }
+ }
+}
+
+TEST_F(ApmTest, SampleRatesInt) {
+ // Testing some valid sample rates.
+ for (int sample_rate : {8000, 12000, 16000, 32000, 44100, 48000, 96000}) {
+ SetContainerFormat(sample_rate, 2, &frame_, &float_cb_);
+ EXPECT_NOERR(ProcessStreamChooser(kIntFormat));
+ }
+}
+
+// This test repeatedly reconfigures the pre-amplifier in APM, processes a
+// number of frames, and checks that output signal has the right level.
+TEST_F(ApmTest, PreAmplifier) {
+ // Fill the audio frame with a sawtooth pattern.
+ rtc::ArrayView<int16_t> frame_data = GetMutableFrameData(&frame_);
+ const size_t samples_per_channel = frame_.samples_per_channel;
+ for (size_t i = 0; i < samples_per_channel; i++) {
+ for (size_t ch = 0; ch < frame_.num_channels; ++ch) {
+ frame_data[i + ch * samples_per_channel] = 10000 * ((i % 3) - 1);
+ }
+ }
+ // Cache the frame in tmp_frame.
+ Int16FrameData tmp_frame;
+ tmp_frame.CopyFrom(frame_);
+
+ auto compute_power = [](const Int16FrameData& frame) {
+ rtc::ArrayView<const int16_t> data = GetFrameData(frame);
+ return std::accumulate(data.begin(), data.end(), 0.0f,
+ [](float a, float b) { return a + b * b; }) /
+ data.size() / 32768 / 32768;
+ };
+
+ const float input_power = compute_power(tmp_frame);
+ // Double-check that the input data is large compared to the error kEpsilon.
+ constexpr float kEpsilon = 1e-4f;
+ RTC_DCHECK_GE(input_power, 10 * kEpsilon);
+
+ // 1. Enable pre-amp with 0 dB gain.
+ AudioProcessing::Config config = apm_->GetConfig();
+ config.pre_amplifier.enabled = true;
+ config.pre_amplifier.fixed_gain_factor = 1.0f;
+ apm_->ApplyConfig(config);
+
+ for (int i = 0; i < 20; ++i) {
+ frame_.CopyFrom(tmp_frame);
+ EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kIntFormat));
+ }
+ float output_power = compute_power(frame_);
+ EXPECT_NEAR(output_power, input_power, kEpsilon);
+ config = apm_->GetConfig();
+ EXPECT_EQ(config.pre_amplifier.fixed_gain_factor, 1.0f);
+
+ // 2. Change pre-amp gain via ApplyConfig.
+ config.pre_amplifier.fixed_gain_factor = 2.0f;
+ apm_->ApplyConfig(config);
+
+ for (int i = 0; i < 20; ++i) {
+ frame_.CopyFrom(tmp_frame);
+ EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kIntFormat));
+ }
+ output_power = compute_power(frame_);
+ EXPECT_NEAR(output_power, 4 * input_power, kEpsilon);
+ config = apm_->GetConfig();
+ EXPECT_EQ(config.pre_amplifier.fixed_gain_factor, 2.0f);
+
+ // 3. Change pre-amp gain via a RuntimeSetting.
+ apm_->SetRuntimeSetting(
+ AudioProcessing::RuntimeSetting::CreateCapturePreGain(1.5f));
+
+ for (int i = 0; i < 20; ++i) {
+ frame_.CopyFrom(tmp_frame);
+ EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kIntFormat));
+ }
+ output_power = compute_power(frame_);
+ EXPECT_NEAR(output_power, 2.25 * input_power, kEpsilon);
+ config = apm_->GetConfig();
+ EXPECT_EQ(config.pre_amplifier.fixed_gain_factor, 1.5f);
+}
+
+// Ensures that the emulated analog mic gain functionality runs without
+// crashing.
+TEST_F(ApmTest, AnalogMicGainEmulation) {
+ // Fill the audio frame with a sawtooth pattern.
+ rtc::ArrayView<int16_t> frame_data = GetMutableFrameData(&frame_);
+ const size_t samples_per_channel = frame_.samples_per_channel;
+ for (size_t i = 0; i < samples_per_channel; i++) {
+ for (size_t ch = 0; ch < frame_.num_channels; ++ch) {
+ frame_data[i + ch * samples_per_channel] = 100 * ((i % 3) - 1);
+ }
+ }
+ // Cache the frame in tmp_frame.
+ Int16FrameData tmp_frame;
+ tmp_frame.CopyFrom(frame_);
+
+ // Enable the analog gain emulation.
+ AudioProcessing::Config config = apm_->GetConfig();
+ config.capture_level_adjustment.enabled = true;
+ config.capture_level_adjustment.analog_mic_gain_emulation.enabled = true;
+ config.capture_level_adjustment.analog_mic_gain_emulation.initial_level = 21;
+ config.gain_controller1.enabled = true;
+ config.gain_controller1.mode =
+ AudioProcessing::Config::GainController1::Mode::kAdaptiveAnalog;
+ config.gain_controller1.analog_gain_controller.enabled = true;
+ apm_->ApplyConfig(config);
+
+ // Process a number of frames to ensure that the code runs without crashes.
+ for (int i = 0; i < 20; ++i) {
+ frame_.CopyFrom(tmp_frame);
+ EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kIntFormat));
+ }
+}
+
+// This test repeatedly reconfigures the capture level adjustment functionality
+// in APM, processes a number of frames, and checks that output signal has the
+// right level.
+TEST_F(ApmTest, CaptureLevelAdjustment) {
+ // Fill the audio frame with a sawtooth pattern.
+ rtc::ArrayView<int16_t> frame_data = GetMutableFrameData(&frame_);
+ const size_t samples_per_channel = frame_.samples_per_channel;
+ for (size_t i = 0; i < samples_per_channel; i++) {
+ for (size_t ch = 0; ch < frame_.num_channels; ++ch) {
+ frame_data[i + ch * samples_per_channel] = 100 * ((i % 3) - 1);
+ }
+ }
+ // Cache the frame in tmp_frame.
+ Int16FrameData tmp_frame;
+ tmp_frame.CopyFrom(frame_);
+
+ auto compute_power = [](const Int16FrameData& frame) {
+ rtc::ArrayView<const int16_t> data = GetFrameData(frame);
+ return std::accumulate(data.begin(), data.end(), 0.0f,
+ [](float a, float b) { return a + b * b; }) /
+ data.size() / 32768 / 32768;
+ };
+
+ const float input_power = compute_power(tmp_frame);
+ // Double-check that the input data is large compared to the error kEpsilon.
+ constexpr float kEpsilon = 1e-20f;
+ RTC_DCHECK_GE(input_power, 10 * kEpsilon);
+
+ // 1. Enable pre-amp with 0 dB gain.
+ AudioProcessing::Config config = apm_->GetConfig();
+ config.capture_level_adjustment.enabled = true;
+ config.capture_level_adjustment.pre_gain_factor = 0.5f;
+ config.capture_level_adjustment.post_gain_factor = 4.f;
+ const float expected_output_power1 =
+ config.capture_level_adjustment.pre_gain_factor *
+ config.capture_level_adjustment.pre_gain_factor *
+ config.capture_level_adjustment.post_gain_factor *
+ config.capture_level_adjustment.post_gain_factor * input_power;
+ apm_->ApplyConfig(config);
+
+ for (int i = 0; i < 20; ++i) {
+ frame_.CopyFrom(tmp_frame);
+ EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kIntFormat));
+ }
+ float output_power = compute_power(frame_);
+ EXPECT_NEAR(output_power, expected_output_power1, kEpsilon);
+ config = apm_->GetConfig();
+ EXPECT_EQ(config.capture_level_adjustment.pre_gain_factor, 0.5f);
+ EXPECT_EQ(config.capture_level_adjustment.post_gain_factor, 4.f);
+
+ // 2. Change pre-amp gain via ApplyConfig.
+ config.capture_level_adjustment.pre_gain_factor = 1.0f;
+ config.capture_level_adjustment.post_gain_factor = 2.f;
+ const float expected_output_power2 =
+ config.capture_level_adjustment.pre_gain_factor *
+ config.capture_level_adjustment.pre_gain_factor *
+ config.capture_level_adjustment.post_gain_factor *
+ config.capture_level_adjustment.post_gain_factor * input_power;
+ apm_->ApplyConfig(config);
+
+ for (int i = 0; i < 20; ++i) {
+ frame_.CopyFrom(tmp_frame);
+ EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kIntFormat));
+ }
+ output_power = compute_power(frame_);
+ EXPECT_NEAR(output_power, expected_output_power2, kEpsilon);
+ config = apm_->GetConfig();
+ EXPECT_EQ(config.capture_level_adjustment.pre_gain_factor, 1.0f);
+ EXPECT_EQ(config.capture_level_adjustment.post_gain_factor, 2.f);
+
+ // 3. Change pre-amp gain via a RuntimeSetting.
+ constexpr float kPreGain3 = 0.5f;
+ constexpr float kPostGain3 = 3.f;
+ const float expected_output_power3 =
+ kPreGain3 * kPreGain3 * kPostGain3 * kPostGain3 * input_power;
+
+ apm_->SetRuntimeSetting(
+ AudioProcessing::RuntimeSetting::CreateCapturePreGain(kPreGain3));
+ apm_->SetRuntimeSetting(
+ AudioProcessing::RuntimeSetting::CreateCapturePostGain(kPostGain3));
+
+ for (int i = 0; i < 20; ++i) {
+ frame_.CopyFrom(tmp_frame);
+ EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kIntFormat));
+ }
+ output_power = compute_power(frame_);
+ EXPECT_NEAR(output_power, expected_output_power3, kEpsilon);
+ config = apm_->GetConfig();
+ EXPECT_EQ(config.capture_level_adjustment.pre_gain_factor, 0.5f);
+ EXPECT_EQ(config.capture_level_adjustment.post_gain_factor, 3.f);
+}
+
+TEST_F(ApmTest, GainControl) {
+ AudioProcessing::Config config = apm_->GetConfig();
+ config.gain_controller1.enabled = false;
+ apm_->ApplyConfig(config);
+ config.gain_controller1.enabled = true;
+ apm_->ApplyConfig(config);
+
+ // Testing gain modes
+ for (auto mode :
+ {AudioProcessing::Config::GainController1::kAdaptiveDigital,
+ AudioProcessing::Config::GainController1::kFixedDigital,
+ AudioProcessing::Config::GainController1::kAdaptiveAnalog}) {
+ config.gain_controller1.mode = mode;
+ apm_->ApplyConfig(config);
+ apm_->set_stream_analog_level(100);
+ EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kFloatFormat));
+ }
+
+ // Testing target levels
+ for (int target_level_dbfs : {0, 15, 31}) {
+ config.gain_controller1.target_level_dbfs = target_level_dbfs;
+ apm_->ApplyConfig(config);
+ apm_->set_stream_analog_level(100);
+ EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kFloatFormat));
+ }
+
+ // Testing compression gains
+ for (int compression_gain_db : {0, 10, 90}) {
+ config.gain_controller1.compression_gain_db = compression_gain_db;
+ apm_->ApplyConfig(config);
+ apm_->set_stream_analog_level(100);
+ EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kFloatFormat));
+ }
+
+ // Testing limiter off/on
+ for (bool enable : {false, true}) {
+ config.gain_controller1.enable_limiter = enable;
+ apm_->ApplyConfig(config);
+ apm_->set_stream_analog_level(100);
+ EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kFloatFormat));
+ }
+
+ // Testing level limits.
+ constexpr int kMinLevel = 0;
+ constexpr int kMaxLevel = 255;
+ apm_->set_stream_analog_level(kMinLevel);
+ EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kFloatFormat));
+ apm_->set_stream_analog_level((kMinLevel + kMaxLevel) / 2);
+ EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kFloatFormat));
+ apm_->set_stream_analog_level(kMaxLevel);
+ EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kFloatFormat));
+}
+
+#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
+using ApmDeathTest = ApmTest;
+
+TEST_F(ApmDeathTest, GainControlDiesOnTooLowTargetLevelDbfs) {
+ auto config = apm_->GetConfig();
+ config.gain_controller1.enabled = true;
+ config.gain_controller1.target_level_dbfs = -1;
+ EXPECT_DEATH(apm_->ApplyConfig(config), "");
+}
+
+TEST_F(ApmDeathTest, GainControlDiesOnTooHighTargetLevelDbfs) {
+ auto config = apm_->GetConfig();
+ config.gain_controller1.enabled = true;
+ config.gain_controller1.target_level_dbfs = 32;
+ EXPECT_DEATH(apm_->ApplyConfig(config), "");
+}
+
+TEST_F(ApmDeathTest, GainControlDiesOnTooLowCompressionGainDb) {
+ auto config = apm_->GetConfig();
+ config.gain_controller1.enabled = true;
+ config.gain_controller1.compression_gain_db = -1;
+ EXPECT_DEATH(apm_->ApplyConfig(config), "");
+}
+
+TEST_F(ApmDeathTest, GainControlDiesOnTooHighCompressionGainDb) {
+ auto config = apm_->GetConfig();
+ config.gain_controller1.enabled = true;
+ config.gain_controller1.compression_gain_db = 91;
+ EXPECT_DEATH(apm_->ApplyConfig(config), "");
+}
+
+TEST_F(ApmDeathTest, ApmDiesOnTooLowAnalogLevel) {
+ auto config = apm_->GetConfig();
+ config.gain_controller1.enabled = true;
+ apm_->ApplyConfig(config);
+ EXPECT_DEATH(apm_->set_stream_analog_level(-1), "");
+}
+
+TEST_F(ApmDeathTest, ApmDiesOnTooHighAnalogLevel) {
+ auto config = apm_->GetConfig();
+ config.gain_controller1.enabled = true;
+ apm_->ApplyConfig(config);
+ EXPECT_DEATH(apm_->set_stream_analog_level(256), "");
+}
+#endif
+
+void ApmTest::RunQuantizedVolumeDoesNotGetStuckTest(int sample_rate) {
+ Init(sample_rate, sample_rate, sample_rate, 2, 2, 2, false);
+ auto config = apm_->GetConfig();
+ config.gain_controller1.enabled = true;
+ config.gain_controller1.mode =
+ AudioProcessing::Config::GainController1::kAdaptiveAnalog;
+ apm_->ApplyConfig(config);
+
+ int out_analog_level = 0;
+ for (int i = 0; i < 2000; ++i) {
+ ReadFrameWithRewind(near_file_, &frame_);
+ // Ensure the audio is at a low level, so the AGC will try to increase it.
+ ScaleFrame(&frame_, 0.25);
+
+ // Always pass in the same volume.
+ apm_->set_stream_analog_level(100);
+ EXPECT_EQ(apm_->kNoError,
+ apm_->ProcessStream(
+ frame_.data.data(),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ frame_.data.data()));
+ out_analog_level = apm_->recommended_stream_analog_level();
+ }
+
+ // Ensure the AGC is still able to reach the maximum.
+ EXPECT_EQ(255, out_analog_level);
+}
+
+// Verifies that despite volume slider quantization, the AGC can continue to
+// increase its volume.
+TEST_F(ApmTest, QuantizedVolumeDoesNotGetStuck) {
+ for (size_t sample_rate_hz : kProcessSampleRates) {
+ SCOPED_TRACE(::testing::Message() << "sample_rate_hz=" << sample_rate_hz);
+ RunQuantizedVolumeDoesNotGetStuckTest(sample_rate_hz);
+ }
+}
+
+void ApmTest::RunManualVolumeChangeIsPossibleTest(int sample_rate) {
+ Init(sample_rate, sample_rate, sample_rate, 2, 2, 2, false);
+ auto config = apm_->GetConfig();
+ config.gain_controller1.enabled = true;
+ config.gain_controller1.mode =
+ AudioProcessing::Config::GainController1::kAdaptiveAnalog;
+ apm_->ApplyConfig(config);
+
+ int out_analog_level = 100;
+ for (int i = 0; i < 1000; ++i) {
+ ReadFrameWithRewind(near_file_, &frame_);
+ // Ensure the audio is at a low level, so the AGC will try to increase it.
+ ScaleFrame(&frame_, 0.25);
+
+ apm_->set_stream_analog_level(out_analog_level);
+ EXPECT_EQ(apm_->kNoError,
+ apm_->ProcessStream(
+ frame_.data.data(),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ frame_.data.data()));
+ out_analog_level = apm_->recommended_stream_analog_level();
+ }
+
+ // Ensure the volume was raised.
+ EXPECT_GT(out_analog_level, 100);
+ int highest_level_reached = out_analog_level;
+ // Simulate a user manual volume change.
+ out_analog_level = 100;
+
+ for (int i = 0; i < 300; ++i) {
+ ReadFrameWithRewind(near_file_, &frame_);
+ ScaleFrame(&frame_, 0.25);
+
+ apm_->set_stream_analog_level(out_analog_level);
+ EXPECT_EQ(apm_->kNoError,
+ apm_->ProcessStream(
+ frame_.data.data(),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ frame_.data.data()));
+ out_analog_level = apm_->recommended_stream_analog_level();
+ // Check that AGC respected the manually adjusted volume.
+ EXPECT_LT(out_analog_level, highest_level_reached);
+ }
+ // Check that the volume was still raised.
+ EXPECT_GT(out_analog_level, 100);
+}
+
+TEST_F(ApmTest, ManualVolumeChangeIsPossible) {
+ for (size_t sample_rate_hz : kProcessSampleRates) {
+ SCOPED_TRACE(::testing::Message() << "sample_rate_hz=" << sample_rate_hz);
+ RunManualVolumeChangeIsPossibleTest(sample_rate_hz);
+ }
+}
+
+TEST_F(ApmTest, HighPassFilter) {
+ // Turn HP filter on/off
+ AudioProcessing::Config apm_config;
+ apm_config.high_pass_filter.enabled = true;
+ apm_->ApplyConfig(apm_config);
+ apm_config.high_pass_filter.enabled = false;
+ apm_->ApplyConfig(apm_config);
+}
+
+TEST_F(ApmTest, AllProcessingDisabledByDefault) {
+ AudioProcessing::Config config = apm_->GetConfig();
+ EXPECT_FALSE(config.echo_canceller.enabled);
+ EXPECT_FALSE(config.high_pass_filter.enabled);
+ EXPECT_FALSE(config.gain_controller1.enabled);
+ EXPECT_FALSE(config.noise_suppression.enabled);
+}
+
+TEST_F(ApmTest, NoProcessingWhenAllComponentsDisabledInt) {
+ // Test that ProcessStream simply copies input to output when all components
+ // are disabled.
+ // Runs over all processing rates, and some particularly common or special
+ // rates.
+ // - 8000 Hz: lowest sample rate seen in Chrome metrics,
+ // - 22050 Hz: APM input/output frames are not exactly 10 ms,
+ // - 44100 Hz: very common desktop sample rate.
+ constexpr int kSampleRatesHz[] = {8000, 16000, 22050, 32000, 44100, 48000};
+ for (size_t sample_rate_hz : kSampleRatesHz) {
+ SCOPED_TRACE(::testing::Message() << "sample_rate_hz=" << sample_rate_hz);
+ Init(sample_rate_hz, sample_rate_hz, sample_rate_hz, 2, 2, 2, false);
+ SetFrameTo(&frame_, 1000, 2000);
+ Int16FrameData frame_copy;
+ frame_copy.CopyFrom(frame_);
+ for (int j = 0; j < 1000; j++) {
+ EXPECT_EQ(apm_->kNoError,
+ apm_->ProcessStream(
+ frame_.data.data(),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ frame_.data.data()));
+ EXPECT_TRUE(FrameDataAreEqual(frame_, frame_copy));
+ EXPECT_EQ(apm_->kNoError,
+ apm_->ProcessReverseStream(
+ frame_.data.data(),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ frame_.data.data()));
+ EXPECT_TRUE(FrameDataAreEqual(frame_, frame_copy));
+ }
+ }
+}
+
+TEST_F(ApmTest, NoProcessingWhenAllComponentsDisabledFloat) {
+ // Test that ProcessStream simply copies input to output when all components
+ // are disabled.
+ const size_t kSamples = 160;
+ const int sample_rate = 16000;
+ const float src[kSamples] = {-1.0f, 0.0f, 1.0f};
+ float dest[kSamples] = {};
+
+ auto src_channels = &src[0];
+ auto dest_channels = &dest[0];
+
+ apm_ = AudioProcessingBuilderForTesting().Create();
+ EXPECT_NOERR(apm_->ProcessStream(&src_channels, StreamConfig(sample_rate, 1),
+ StreamConfig(sample_rate, 1),
+ &dest_channels));
+
+ for (size_t i = 0; i < kSamples; ++i) {
+ EXPECT_EQ(src[i], dest[i]);
+ }
+
+ // Same for ProcessReverseStream.
+ float rev_dest[kSamples] = {};
+ auto rev_dest_channels = &rev_dest[0];
+
+ StreamConfig input_stream = {sample_rate, 1};
+ StreamConfig output_stream = {sample_rate, 1};
+ EXPECT_NOERR(apm_->ProcessReverseStream(&src_channels, input_stream,
+ output_stream, &rev_dest_channels));
+
+ for (size_t i = 0; i < kSamples; ++i) {
+ EXPECT_EQ(src[i], rev_dest[i]);
+ }
+}
+
+TEST_F(ApmTest, IdenticalInputChannelsResultInIdenticalOutputChannels) {
+ EnableAllComponents();
+
+ for (size_t i = 0; i < arraysize(kProcessSampleRates); i++) {
+ Init(kProcessSampleRates[i], kProcessSampleRates[i], kProcessSampleRates[i],
+ 2, 2, 2, false);
+ int analog_level = 127;
+ ASSERT_EQ(0, feof(far_file_));
+ ASSERT_EQ(0, feof(near_file_));
+ while (ReadFrame(far_file_, &revframe_) && ReadFrame(near_file_, &frame_)) {
+ CopyLeftToRightChannel(revframe_.data.data(),
+ revframe_.samples_per_channel);
+
+ ASSERT_EQ(
+ kNoErr,
+ apm_->ProcessReverseStream(
+ revframe_.data.data(),
+ StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels),
+ StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels),
+ revframe_.data.data()));
+
+ CopyLeftToRightChannel(frame_.data.data(), frame_.samples_per_channel);
+
+ ASSERT_EQ(kNoErr, apm_->set_stream_delay_ms(0));
+ apm_->set_stream_analog_level(analog_level);
+ ASSERT_EQ(kNoErr,
+ apm_->ProcessStream(
+ frame_.data.data(),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ frame_.data.data()));
+ analog_level = apm_->recommended_stream_analog_level();
+
+ VerifyChannelsAreEqual(frame_.data.data(), frame_.samples_per_channel);
+ }
+ rewind(far_file_);
+ rewind(near_file_);
+ }
+}
+
+TEST_F(ApmTest, SplittingFilter) {
+ // Verify the filter is not active through undistorted audio when:
+ // 1. No components are enabled...
+ SetFrameTo(&frame_, 1000);
+ Int16FrameData frame_copy;
+ frame_copy.CopyFrom(frame_);
+ EXPECT_EQ(apm_->kNoError,
+ apm_->ProcessStream(
+ frame_.data.data(),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ frame_.data.data()));
+ EXPECT_EQ(apm_->kNoError,
+ apm_->ProcessStream(
+ frame_.data.data(),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ frame_.data.data()));
+ EXPECT_TRUE(FrameDataAreEqual(frame_, frame_copy));
+
+ // 2. Only the level estimator is enabled...
+ auto apm_config = apm_->GetConfig();
+ SetFrameTo(&frame_, 1000);
+ frame_copy.CopyFrom(frame_);
+ apm_->ApplyConfig(apm_config);
+ EXPECT_EQ(apm_->kNoError,
+ apm_->ProcessStream(
+ frame_.data.data(),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ frame_.data.data()));
+ EXPECT_EQ(apm_->kNoError,
+ apm_->ProcessStream(
+ frame_.data.data(),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ frame_.data.data()));
+ EXPECT_TRUE(FrameDataAreEqual(frame_, frame_copy));
+ apm_->ApplyConfig(apm_config);
+
+ // Check the test is valid. We should have distortion from the filter
+ // when AEC is enabled (which won't affect the audio).
+ apm_config.echo_canceller.enabled = true;
+ apm_config.echo_canceller.mobile_mode = false;
+ apm_->ApplyConfig(apm_config);
+ frame_.samples_per_channel = 320;
+ frame_.num_channels = 2;
+ frame_.sample_rate_hz = 32000;
+ SetFrameTo(&frame_, 1000);
+ frame_copy.CopyFrom(frame_);
+ EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(0));
+ EXPECT_EQ(apm_->kNoError,
+ apm_->ProcessStream(
+ frame_.data.data(),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ frame_.data.data()));
+ EXPECT_FALSE(FrameDataAreEqual(frame_, frame_copy));
+}
+
+#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
+void ApmTest::ProcessDebugDump(absl::string_view in_filename,
+ absl::string_view out_filename,
+ Format format,
+ int max_size_bytes) {
+ TaskQueueForTest worker_queue("ApmTest_worker_queue");
+ FILE* in_file = fopen(std::string(in_filename).c_str(), "rb");
+ ASSERT_TRUE(in_file != NULL);
+ audioproc::Event event_msg;
+ bool first_init = true;
+
+ while (ReadMessageFromFile(in_file, &event_msg)) {
+ if (event_msg.type() == audioproc::Event::INIT) {
+ const audioproc::Init msg = event_msg.init();
+ int reverse_sample_rate = msg.sample_rate();
+ if (msg.has_reverse_sample_rate()) {
+ reverse_sample_rate = msg.reverse_sample_rate();
+ }
+ int output_sample_rate = msg.sample_rate();
+ if (msg.has_output_sample_rate()) {
+ output_sample_rate = msg.output_sample_rate();
+ }
+
+ Init(msg.sample_rate(), output_sample_rate, reverse_sample_rate,
+ msg.num_input_channels(), msg.num_output_channels(),
+ msg.num_reverse_channels(), false);
+ if (first_init) {
+ // AttachAecDump() writes an additional init message. Don't start
+ // recording until after the first init to avoid the extra message.
+ auto aec_dump =
+ AecDumpFactory::Create(out_filename, max_size_bytes, &worker_queue);
+ EXPECT_TRUE(aec_dump);
+ apm_->AttachAecDump(std::move(aec_dump));
+ first_init = false;
+ }
+
+ } else if (event_msg.type() == audioproc::Event::REVERSE_STREAM) {
+ const audioproc::ReverseStream msg = event_msg.reverse_stream();
+
+ if (msg.channel_size() > 0) {
+ ASSERT_EQ(revframe_.num_channels,
+ static_cast<size_t>(msg.channel_size()));
+ for (int i = 0; i < msg.channel_size(); ++i) {
+ memcpy(revfloat_cb_->channels()[i], msg.channel(i).data(),
+ msg.channel(i).size());
+ }
+ } else {
+ memcpy(revframe_.data.data(), msg.data().data(), msg.data().size());
+ if (format == kFloatFormat) {
+ // We're using an int16 input file; convert to float.
+ ConvertToFloat(revframe_, revfloat_cb_.get());
+ }
+ }
+ AnalyzeReverseStreamChooser(format);
+
+ } else if (event_msg.type() == audioproc::Event::STREAM) {
+ const audioproc::Stream msg = event_msg.stream();
+ // ProcessStream could have changed this for the output frame.
+ frame_.num_channels = apm_->num_input_channels();
+
+ apm_->set_stream_analog_level(msg.applied_input_volume());
+ EXPECT_NOERR(apm_->set_stream_delay_ms(msg.delay()));
+ if (msg.has_keypress()) {
+ apm_->set_stream_key_pressed(msg.keypress());
+ } else {
+ apm_->set_stream_key_pressed(true);
+ }
+
+ if (msg.input_channel_size() > 0) {
+ ASSERT_EQ(frame_.num_channels,
+ static_cast<size_t>(msg.input_channel_size()));
+ for (int i = 0; i < msg.input_channel_size(); ++i) {
+ memcpy(float_cb_->channels()[i], msg.input_channel(i).data(),
+ msg.input_channel(i).size());
+ }
+ } else {
+ memcpy(frame_.data.data(), msg.input_data().data(),
+ msg.input_data().size());
+ if (format == kFloatFormat) {
+ // We're using an int16 input file; convert to float.
+ ConvertToFloat(frame_, float_cb_.get());
+ }
+ }
+ ProcessStreamChooser(format);
+ }
+ }
+ apm_->DetachAecDump();
+ fclose(in_file);
+}
+
+void ApmTest::VerifyDebugDumpTest(Format format) {
+ rtc::ScopedFakeClock fake_clock;
+ const std::string in_filename = test::ResourcePath("ref03", "aecdump");
+ std::string format_string;
+ switch (format) {
+ case kIntFormat:
+ format_string = "_int";
+ break;
+ case kFloatFormat:
+ format_string = "_float";
+ break;
+ }
+ const std::string ref_filename = test::TempFilename(
+ test::OutputPath(), std::string("ref") + format_string + "_aecdump");
+ const std::string out_filename = test::TempFilename(
+ test::OutputPath(), std::string("out") + format_string + "_aecdump");
+ const std::string limited_filename = test::TempFilename(
+ test::OutputPath(), std::string("limited") + format_string + "_aecdump");
+ const size_t logging_limit_bytes = 100000;
+ // We expect at least this many bytes in the created logfile.
+ const size_t logging_expected_bytes = 95000;
+ EnableAllComponents();
+ ProcessDebugDump(in_filename, ref_filename, format, -1);
+ ProcessDebugDump(ref_filename, out_filename, format, -1);
+ ProcessDebugDump(ref_filename, limited_filename, format, logging_limit_bytes);
+
+ FILE* ref_file = fopen(ref_filename.c_str(), "rb");
+ FILE* out_file = fopen(out_filename.c_str(), "rb");
+ FILE* limited_file = fopen(limited_filename.c_str(), "rb");
+ ASSERT_TRUE(ref_file != NULL);
+ ASSERT_TRUE(out_file != NULL);
+ ASSERT_TRUE(limited_file != NULL);
+ std::unique_ptr<uint8_t[]> ref_bytes;
+ std::unique_ptr<uint8_t[]> out_bytes;
+ std::unique_ptr<uint8_t[]> limited_bytes;
+
+ size_t ref_size = ReadMessageBytesFromFile(ref_file, &ref_bytes);
+ size_t out_size = ReadMessageBytesFromFile(out_file, &out_bytes);
+ size_t limited_size = ReadMessageBytesFromFile(limited_file, &limited_bytes);
+ size_t bytes_read = 0;
+ size_t bytes_read_limited = 0;
+ while (ref_size > 0 && out_size > 0) {
+ bytes_read += ref_size;
+ bytes_read_limited += limited_size;
+ EXPECT_EQ(ref_size, out_size);
+ EXPECT_GE(ref_size, limited_size);
+ EXPECT_TRUE(ExpectMessageEq(/*actual=*/{out_bytes.get(), out_size},
+ /*expected=*/{ref_bytes.get(), ref_size}));
+ if (limited_size > 0) {
+ EXPECT_TRUE(
+ ExpectMessageEq(/*actual=*/{limited_bytes.get(), limited_size},
+ /*expected=*/{ref_bytes.get(), ref_size}));
+ }
+ ref_size = ReadMessageBytesFromFile(ref_file, &ref_bytes);
+ out_size = ReadMessageBytesFromFile(out_file, &out_bytes);
+ limited_size = ReadMessageBytesFromFile(limited_file, &limited_bytes);
+ }
+ EXPECT_GT(bytes_read, 0u);
+ EXPECT_GT(bytes_read_limited, logging_expected_bytes);
+ EXPECT_LE(bytes_read_limited, logging_limit_bytes);
+ EXPECT_NE(0, feof(ref_file));
+ EXPECT_NE(0, feof(out_file));
+ EXPECT_NE(0, feof(limited_file));
+ ASSERT_EQ(0, fclose(ref_file));
+ ASSERT_EQ(0, fclose(out_file));
+ ASSERT_EQ(0, fclose(limited_file));
+ remove(ref_filename.c_str());
+ remove(out_filename.c_str());
+ remove(limited_filename.c_str());
+}
+
+TEST_F(ApmTest, VerifyDebugDumpInt) {
+ VerifyDebugDumpTest(kIntFormat);
+}
+
+TEST_F(ApmTest, VerifyDebugDumpFloat) {
+ VerifyDebugDumpTest(kFloatFormat);
+}
+#endif
+
+// TODO(andrew): expand test to verify output.
+TEST_F(ApmTest, DebugDump) {
+ TaskQueueForTest worker_queue("ApmTest_worker_queue");
+ const std::string filename =
+ test::TempFilename(test::OutputPath(), "debug_aec");
+ {
+ auto aec_dump = AecDumpFactory::Create("", -1, &worker_queue);
+ EXPECT_FALSE(aec_dump);
+ }
+
+#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
+ // Stopping without having started should be OK.
+ apm_->DetachAecDump();
+
+ auto aec_dump = AecDumpFactory::Create(filename, -1, &worker_queue);
+ EXPECT_TRUE(aec_dump);
+ apm_->AttachAecDump(std::move(aec_dump));
+ EXPECT_EQ(apm_->kNoError,
+ apm_->ProcessStream(
+ frame_.data.data(),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ frame_.data.data()));
+ EXPECT_EQ(apm_->kNoError,
+ apm_->ProcessReverseStream(
+ revframe_.data.data(),
+ StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels),
+ StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels),
+ revframe_.data.data()));
+ apm_->DetachAecDump();
+
+ // Verify the file has been written.
+ FILE* fid = fopen(filename.c_str(), "r");
+ ASSERT_TRUE(fid != NULL);
+
+ // Clean it up.
+ ASSERT_EQ(0, fclose(fid));
+ ASSERT_EQ(0, remove(filename.c_str()));
+#else
+ // Verify the file has NOT been written.
+ ASSERT_TRUE(fopen(filename.c_str(), "r") == NULL);
+#endif // WEBRTC_AUDIOPROC_DEBUG_DUMP
+}
+
+// TODO(andrew): expand test to verify output.
+TEST_F(ApmTest, DebugDumpFromFileHandle) {
+ TaskQueueForTest worker_queue("ApmTest_worker_queue");
+
+ const std::string filename =
+ test::TempFilename(test::OutputPath(), "debug_aec");
+ FileWrapper f = FileWrapper::OpenWriteOnly(filename);
+ ASSERT_TRUE(f.is_open());
+
+#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
+ // Stopping without having started should be OK.
+ apm_->DetachAecDump();
+
+ auto aec_dump = AecDumpFactory::Create(std::move(f), -1, &worker_queue);
+ EXPECT_TRUE(aec_dump);
+ apm_->AttachAecDump(std::move(aec_dump));
+ EXPECT_EQ(apm_->kNoError,
+ apm_->ProcessReverseStream(
+ revframe_.data.data(),
+ StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels),
+ StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels),
+ revframe_.data.data()));
+ EXPECT_EQ(apm_->kNoError,
+ apm_->ProcessStream(
+ frame_.data.data(),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ frame_.data.data()));
+ apm_->DetachAecDump();
+
+ // Verify the file has been written.
+ FILE* fid = fopen(filename.c_str(), "r");
+ ASSERT_TRUE(fid != NULL);
+
+ // Clean it up.
+ ASSERT_EQ(0, fclose(fid));
+ ASSERT_EQ(0, remove(filename.c_str()));
+#endif // WEBRTC_AUDIOPROC_DEBUG_DUMP
+}
+
+// TODO(andrew): Add a test to process a few frames with different combinations
+// of enabled components.
+
+TEST_F(ApmTest, Process) {
+ GOOGLE_PROTOBUF_VERIFY_VERSION;
+ audioproc::OutputData ref_data;
+
+ if (!absl::GetFlag(FLAGS_write_apm_ref_data)) {
+ OpenFileAndReadMessage(ref_filename_, &ref_data);
+ } else {
+ const int kChannels[] = {1, 2};
+ // Write the desired tests to the protobuf reference file.
+ for (size_t i = 0; i < arraysize(kChannels); i++) {
+ for (size_t j = 0; j < arraysize(kChannels); j++) {
+ for (int sample_rate_hz : AudioProcessing::kNativeSampleRatesHz) {
+ audioproc::Test* test = ref_data.add_test();
+ test->set_num_reverse_channels(kChannels[i]);
+ test->set_num_input_channels(kChannels[j]);
+ test->set_num_output_channels(kChannels[j]);
+ test->set_sample_rate(sample_rate_hz);
+ test->set_use_aec_extended_filter(false);
+ }
+ }
+ }
+#if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
+ // To test the extended filter mode.
+ audioproc::Test* test = ref_data.add_test();
+ test->set_num_reverse_channels(2);
+ test->set_num_input_channels(2);
+ test->set_num_output_channels(2);
+ test->set_sample_rate(AudioProcessing::kSampleRate32kHz);
+ test->set_use_aec_extended_filter(true);
+#endif
+ }
+
+ for (int i = 0; i < ref_data.test_size(); i++) {
+ printf("Running test %d of %d...\n", i + 1, ref_data.test_size());
+
+ audioproc::Test* test = ref_data.mutable_test(i);
+ // TODO(ajm): We no longer allow different input and output channels. Skip
+ // these tests for now, but they should be removed from the set.
+ if (test->num_input_channels() != test->num_output_channels())
+ continue;
+
+ apm_ = AudioProcessingBuilderForTesting()
+ .SetEchoDetector(CreateEchoDetector())
+ .Create();
+ AudioProcessing::Config apm_config = apm_->GetConfig();
+ apm_config.gain_controller1.analog_gain_controller.enabled = false;
+ apm_->ApplyConfig(apm_config);
+
+ EnableAllComponents();
+
+ Init(test->sample_rate(), test->sample_rate(), test->sample_rate(),
+ static_cast<size_t>(test->num_input_channels()),
+ static_cast<size_t>(test->num_output_channels()),
+ static_cast<size_t>(test->num_reverse_channels()), true);
+
+ int frame_count = 0;
+ int analog_level = 127;
+ int analog_level_average = 0;
+ int max_output_average = 0;
+#if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
+ int stats_index = 0;
+#endif
+
+ while (ReadFrame(far_file_, &revframe_) && ReadFrame(near_file_, &frame_)) {
+ EXPECT_EQ(
+ apm_->kNoError,
+ apm_->ProcessReverseStream(
+ revframe_.data.data(),
+ StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels),
+ StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels),
+ revframe_.data.data()));
+
+ EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(0));
+ apm_->set_stream_analog_level(analog_level);
+
+ EXPECT_EQ(apm_->kNoError,
+ apm_->ProcessStream(
+ frame_.data.data(),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
+ frame_.data.data()));
+
+ // Ensure the frame was downmixed properly.
+ EXPECT_EQ(static_cast<size_t>(test->num_output_channels()),
+ frame_.num_channels);
+
+ max_output_average += MaxAudioFrame(frame_);
+
+ analog_level = apm_->recommended_stream_analog_level();
+ analog_level_average += analog_level;
+ AudioProcessingStats stats = apm_->GetStatistics();
+
+ size_t frame_size = frame_.samples_per_channel * frame_.num_channels;
+ size_t write_count =
+ fwrite(frame_.data.data(), sizeof(int16_t), frame_size, out_file_);
+ ASSERT_EQ(frame_size, write_count);
+
+ // Reset in case of downmixing.
+ frame_.num_channels = static_cast<size_t>(test->num_input_channels());
+ frame_count++;
+
+#if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
+ const int kStatsAggregationFrameNum = 100; // 1 second.
+ if (frame_count % kStatsAggregationFrameNum == 0) {
+ // Get echo and delay metrics.
+ AudioProcessingStats stats2 = apm_->GetStatistics();
+
+ // Echo metrics.
+ const float echo_return_loss = stats2.echo_return_loss.value_or(-1.0f);
+ const float echo_return_loss_enhancement =
+ stats2.echo_return_loss_enhancement.value_or(-1.0f);
+ const float residual_echo_likelihood =
+ stats2.residual_echo_likelihood.value_or(-1.0f);
+ const float residual_echo_likelihood_recent_max =
+ stats2.residual_echo_likelihood_recent_max.value_or(-1.0f);
+
+ if (!absl::GetFlag(FLAGS_write_apm_ref_data)) {
+ const audioproc::Test::EchoMetrics& reference =
+ test->echo_metrics(stats_index);
+ constexpr float kEpsilon = 0.01;
+ EXPECT_NEAR(echo_return_loss, reference.echo_return_loss(), kEpsilon);
+ EXPECT_NEAR(echo_return_loss_enhancement,
+ reference.echo_return_loss_enhancement(), kEpsilon);
+ EXPECT_NEAR(residual_echo_likelihood,
+ reference.residual_echo_likelihood(), kEpsilon);
+ EXPECT_NEAR(residual_echo_likelihood_recent_max,
+ reference.residual_echo_likelihood_recent_max(),
+ kEpsilon);
+ ++stats_index;
+ } else {
+ audioproc::Test::EchoMetrics* message_echo = test->add_echo_metrics();
+ message_echo->set_echo_return_loss(echo_return_loss);
+ message_echo->set_echo_return_loss_enhancement(
+ echo_return_loss_enhancement);
+ message_echo->set_residual_echo_likelihood(residual_echo_likelihood);
+ message_echo->set_residual_echo_likelihood_recent_max(
+ residual_echo_likelihood_recent_max);
+ }
+ }
+#endif // defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE).
+ }
+ max_output_average /= frame_count;
+ analog_level_average /= frame_count;
+
+ if (!absl::GetFlag(FLAGS_write_apm_ref_data)) {
+ const int kIntNear = 1;
+ // All numbers being consistently higher on N7 compare to the reference
+ // data.
+ // TODO(bjornv): If we start getting more of these offsets on Android we
+ // should consider a different approach. Either using one slack for all,
+ // or generate a separate android reference.
+#if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS)
+ const int kMaxOutputAverageOffset = 9;
+ const int kMaxOutputAverageNear = 26;
+#else
+ const int kMaxOutputAverageOffset = 0;
+ const int kMaxOutputAverageNear = kIntNear;
+#endif
+ EXPECT_NEAR(test->analog_level_average(), analog_level_average, kIntNear);
+ EXPECT_NEAR(test->max_output_average(),
+ max_output_average - kMaxOutputAverageOffset,
+ kMaxOutputAverageNear);
+ } else {
+ test->set_analog_level_average(analog_level_average);
+ test->set_max_output_average(max_output_average);
+ }
+
+ rewind(far_file_);
+ rewind(near_file_);
+ }
+
+ if (absl::GetFlag(FLAGS_write_apm_ref_data)) {
+ OpenFileAndWriteMessage(ref_filename_, ref_data);
+ }
+}
+
+// Compares the reference and test arrays over a region around the expected
+// delay. Finds the highest SNR in that region and adds the variance and squared
+// error results to the supplied accumulators.
+void UpdateBestSNR(const float* ref,
+ const float* test,
+ size_t length,
+ int expected_delay,
+ double* variance_acc,
+ double* sq_error_acc) {
+ RTC_CHECK_LT(expected_delay, length)
+ << "delay greater than signal length, cannot compute SNR";
+ double best_snr = std::numeric_limits<double>::min();
+ double best_variance = 0;
+ double best_sq_error = 0;
+ // Search over a region of nine samples around the expected delay.
+ for (int delay = std::max(expected_delay - 4, 0); delay <= expected_delay + 4;
+ ++delay) {
+ double sq_error = 0;
+ double variance = 0;
+ for (size_t i = 0; i < length - delay; ++i) {
+ double error = test[i + delay] - ref[i];
+ sq_error += error * error;
+ variance += ref[i] * ref[i];
+ }
+
+ if (sq_error == 0) {
+ *variance_acc += variance;
+ return;
+ }
+ double snr = variance / sq_error;
+ if (snr > best_snr) {
+ best_snr = snr;
+ best_variance = variance;
+ best_sq_error = sq_error;
+ }
+ }
+
+ *variance_acc += best_variance;
+ *sq_error_acc += best_sq_error;
+}
+
+// Used to test a multitude of sample rate and channel combinations. It works
+// by first producing a set of reference files (in SetUpTestCase) that are
+// assumed to be correct, as the used parameters are verified by other tests
+// in this collection. Primarily the reference files are all produced at
+// "native" rates which do not involve any resampling.
+
+// Each test pass produces an output file with a particular format. The output
+// is matched against the reference file closest to its internal processing
+// format. If necessary the output is resampled back to its process format.
+// Due to the resampling distortion, we don't expect identical results, but
+// enforce SNR thresholds which vary depending on the format. 0 is a special
+// case SNR which corresponds to inf, or zero error.
+typedef std::tuple<int, int, int, int, double, double> AudioProcessingTestData;
+class AudioProcessingTest
+ : public ::testing::TestWithParam<AudioProcessingTestData> {
+ public:
+ AudioProcessingTest()
+ : input_rate_(std::get<0>(GetParam())),
+ output_rate_(std::get<1>(GetParam())),
+ reverse_input_rate_(std::get<2>(GetParam())),
+ reverse_output_rate_(std::get<3>(GetParam())),
+ expected_snr_(std::get<4>(GetParam())),
+ expected_reverse_snr_(std::get<5>(GetParam())) {}
+
+ virtual ~AudioProcessingTest() {}
+
+ static void SetUpTestSuite() {
+ // Create all needed output reference files.
+ const size_t kNumChannels[] = {1, 2};
+ for (size_t i = 0; i < arraysize(kProcessSampleRates); ++i) {
+ for (size_t j = 0; j < arraysize(kNumChannels); ++j) {
+ for (size_t k = 0; k < arraysize(kNumChannels); ++k) {
+ // The reference files always have matching input and output channels.
+ ProcessFormat(kProcessSampleRates[i], kProcessSampleRates[i],
+ kProcessSampleRates[i], kProcessSampleRates[i],
+ kNumChannels[j], kNumChannels[j], kNumChannels[k],
+ kNumChannels[k], "ref");
+ }
+ }
+ }
+ }
+
+ void TearDown() {
+ // Remove "out" files after each test.
+ ClearTempOutFiles();
+ }
+
+ static void TearDownTestSuite() { ClearTempFiles(); }
+
+ // Runs a process pass on files with the given parameters and dumps the output
+ // to a file specified with `output_file_prefix`. Both forward and reverse
+ // output streams are dumped.
+ static void ProcessFormat(int input_rate,
+ int output_rate,
+ int reverse_input_rate,
+ int reverse_output_rate,
+ size_t num_input_channels,
+ size_t num_output_channels,
+ size_t num_reverse_input_channels,
+ size_t num_reverse_output_channels,
+ absl::string_view output_file_prefix) {
+ AudioProcessing::Config apm_config;
+ apm_config.gain_controller1.analog_gain_controller.enabled = false;
+ rtc::scoped_refptr<AudioProcessing> ap =
+ AudioProcessingBuilderForTesting().SetConfig(apm_config).Create();
+
+ EnableAllAPComponents(ap.get());
+
+ ProcessingConfig processing_config = {
+ {{input_rate, num_input_channels},
+ {output_rate, num_output_channels},
+ {reverse_input_rate, num_reverse_input_channels},
+ {reverse_output_rate, num_reverse_output_channels}}};
+ ap->Initialize(processing_config);
+
+ FILE* far_file =
+ fopen(ResourceFilePath("far", reverse_input_rate).c_str(), "rb");
+ FILE* near_file = fopen(ResourceFilePath("near", input_rate).c_str(), "rb");
+ FILE* out_file = fopen(
+ OutputFilePath(
+ output_file_prefix, input_rate, output_rate, reverse_input_rate,
+ reverse_output_rate, num_input_channels, num_output_channels,
+ num_reverse_input_channels, num_reverse_output_channels, kForward)
+ .c_str(),
+ "wb");
+ FILE* rev_out_file = fopen(
+ OutputFilePath(
+ output_file_prefix, input_rate, output_rate, reverse_input_rate,
+ reverse_output_rate, num_input_channels, num_output_channels,
+ num_reverse_input_channels, num_reverse_output_channels, kReverse)
+ .c_str(),
+ "wb");
+ ASSERT_TRUE(far_file != NULL);
+ ASSERT_TRUE(near_file != NULL);
+ ASSERT_TRUE(out_file != NULL);
+ ASSERT_TRUE(rev_out_file != NULL);
+
+ ChannelBuffer<float> fwd_cb(AudioProcessing::GetFrameSize(input_rate),
+ num_input_channels);
+ ChannelBuffer<float> rev_cb(
+ AudioProcessing::GetFrameSize(reverse_input_rate),
+ num_reverse_input_channels);
+ ChannelBuffer<float> out_cb(AudioProcessing::GetFrameSize(output_rate),
+ num_output_channels);
+ ChannelBuffer<float> rev_out_cb(
+ AudioProcessing::GetFrameSize(reverse_output_rate),
+ num_reverse_output_channels);
+
+ // Temporary buffers.
+ const int max_length =
+ 2 * std::max(std::max(out_cb.num_frames(), rev_out_cb.num_frames()),
+ std::max(fwd_cb.num_frames(), rev_cb.num_frames()));
+ std::unique_ptr<float[]> float_data(new float[max_length]);
+ std::unique_ptr<int16_t[]> int_data(new int16_t[max_length]);
+
+ int analog_level = 127;
+ while (ReadChunk(far_file, int_data.get(), float_data.get(), &rev_cb) &&
+ ReadChunk(near_file, int_data.get(), float_data.get(), &fwd_cb)) {
+ EXPECT_NOERR(ap->ProcessReverseStream(
+ rev_cb.channels(), processing_config.reverse_input_stream(),
+ processing_config.reverse_output_stream(), rev_out_cb.channels()));
+
+ EXPECT_NOERR(ap->set_stream_delay_ms(0));
+ ap->set_stream_analog_level(analog_level);
+
+ EXPECT_NOERR(ap->ProcessStream(
+ fwd_cb.channels(), StreamConfig(input_rate, num_input_channels),
+ StreamConfig(output_rate, num_output_channels), out_cb.channels()));
+
+ // Dump forward output to file.
+ Interleave(out_cb.channels(), out_cb.num_frames(), out_cb.num_channels(),
+ float_data.get());
+ size_t out_length = out_cb.num_channels() * out_cb.num_frames();
+
+ ASSERT_EQ(out_length, fwrite(float_data.get(), sizeof(float_data[0]),
+ out_length, out_file));
+
+ // Dump reverse output to file.
+ Interleave(rev_out_cb.channels(), rev_out_cb.num_frames(),
+ rev_out_cb.num_channels(), float_data.get());
+ size_t rev_out_length =
+ rev_out_cb.num_channels() * rev_out_cb.num_frames();
+
+ ASSERT_EQ(rev_out_length, fwrite(float_data.get(), sizeof(float_data[0]),
+ rev_out_length, rev_out_file));
+
+ analog_level = ap->recommended_stream_analog_level();
+ }
+ fclose(far_file);
+ fclose(near_file);
+ fclose(out_file);
+ fclose(rev_out_file);
+ }
+
+ protected:
+ int input_rate_;
+ int output_rate_;
+ int reverse_input_rate_;
+ int reverse_output_rate_;
+ double expected_snr_;
+ double expected_reverse_snr_;
+};
+
+TEST_P(AudioProcessingTest, Formats) {
+ struct ChannelFormat {
+ int num_input;
+ int num_output;
+ int num_reverse_input;
+ int num_reverse_output;
+ };
+ ChannelFormat cf[] = {
+ {1, 1, 1, 1}, {1, 1, 2, 1}, {2, 1, 1, 1},
+ {2, 1, 2, 1}, {2, 2, 1, 1}, {2, 2, 2, 2},
+ };
+
+ for (size_t i = 0; i < arraysize(cf); ++i) {
+ ProcessFormat(input_rate_, output_rate_, reverse_input_rate_,
+ reverse_output_rate_, cf[i].num_input, cf[i].num_output,
+ cf[i].num_reverse_input, cf[i].num_reverse_output, "out");
+
+ // Verify output for both directions.
+ std::vector<StreamDirection> stream_directions;
+ stream_directions.push_back(kForward);
+ stream_directions.push_back(kReverse);
+ for (StreamDirection file_direction : stream_directions) {
+ const int in_rate = file_direction ? reverse_input_rate_ : input_rate_;
+ const int out_rate = file_direction ? reverse_output_rate_ : output_rate_;
+ const int out_num =
+ file_direction ? cf[i].num_reverse_output : cf[i].num_output;
+ const double expected_snr =
+ file_direction ? expected_reverse_snr_ : expected_snr_;
+
+ const int min_ref_rate = std::min(in_rate, out_rate);
+ int ref_rate;
+ if (min_ref_rate > 32000) {
+ ref_rate = 48000;
+ } else if (min_ref_rate > 16000) {
+ ref_rate = 32000;
+ } else {
+ ref_rate = 16000;
+ }
+
+ FILE* out_file = fopen(
+ OutputFilePath("out", input_rate_, output_rate_, reverse_input_rate_,
+ reverse_output_rate_, cf[i].num_input,
+ cf[i].num_output, cf[i].num_reverse_input,
+ cf[i].num_reverse_output, file_direction)
+ .c_str(),
+ "rb");
+ // The reference files always have matching input and output channels.
+ FILE* ref_file =
+ fopen(OutputFilePath("ref", ref_rate, ref_rate, ref_rate, ref_rate,
+ cf[i].num_output, cf[i].num_output,
+ cf[i].num_reverse_output,
+ cf[i].num_reverse_output, file_direction)
+ .c_str(),
+ "rb");
+ ASSERT_TRUE(out_file != NULL);
+ ASSERT_TRUE(ref_file != NULL);
+
+ const size_t ref_length =
+ AudioProcessing::GetFrameSize(ref_rate) * out_num;
+ const size_t out_length =
+ AudioProcessing::GetFrameSize(out_rate) * out_num;
+ // Data from the reference file.
+ std::unique_ptr<float[]> ref_data(new float[ref_length]);
+ // Data from the output file.
+ std::unique_ptr<float[]> out_data(new float[out_length]);
+ // Data from the resampled output, in case the reference and output rates
+ // don't match.
+ std::unique_ptr<float[]> cmp_data(new float[ref_length]);
+
+ PushResampler<float> resampler;
+ resampler.InitializeIfNeeded(out_rate, ref_rate, out_num);
+
+ // Compute the resampling delay of the output relative to the reference,
+ // to find the region over which we should search for the best SNR.
+ float expected_delay_sec = 0;
+ if (in_rate != ref_rate) {
+ // Input resampling delay.
+ expected_delay_sec +=
+ PushSincResampler::AlgorithmicDelaySeconds(in_rate);
+ }
+ if (out_rate != ref_rate) {
+ // Output resampling delay.
+ expected_delay_sec +=
+ PushSincResampler::AlgorithmicDelaySeconds(ref_rate);
+ // Delay of converting the output back to its processing rate for
+ // testing.
+ expected_delay_sec +=
+ PushSincResampler::AlgorithmicDelaySeconds(out_rate);
+ }
+ // The delay is multiplied by the number of channels because
+ // UpdateBestSNR() computes the SNR over interleaved data without taking
+ // channels into account.
+ int expected_delay =
+ std::floor(expected_delay_sec * ref_rate + 0.5f) * out_num;
+
+ double variance = 0;
+ double sq_error = 0;
+ while (fread(out_data.get(), sizeof(out_data[0]), out_length, out_file) &&
+ fread(ref_data.get(), sizeof(ref_data[0]), ref_length, ref_file)) {
+ float* out_ptr = out_data.get();
+ if (out_rate != ref_rate) {
+ // Resample the output back to its internal processing rate if
+ // necessary.
+ ASSERT_EQ(ref_length,
+ static_cast<size_t>(resampler.Resample(
+ out_ptr, out_length, cmp_data.get(), ref_length)));
+ out_ptr = cmp_data.get();
+ }
+
+ // Update the `sq_error` and `variance` accumulators with the highest
+ // SNR of reference vs output.
+ UpdateBestSNR(ref_data.get(), out_ptr, ref_length, expected_delay,
+ &variance, &sq_error);
+ }
+
+ std::cout << "(" << input_rate_ << ", " << output_rate_ << ", "
+ << reverse_input_rate_ << ", " << reverse_output_rate_ << ", "
+ << cf[i].num_input << ", " << cf[i].num_output << ", "
+ << cf[i].num_reverse_input << ", " << cf[i].num_reverse_output
+ << ", " << file_direction << "): ";
+ if (sq_error > 0) {
+ double snr = 10 * log10(variance / sq_error);
+ EXPECT_GE(snr, expected_snr);
+ EXPECT_NE(0, expected_snr);
+ std::cout << "SNR=" << snr << " dB" << std::endl;
+ } else {
+ std::cout << "SNR=inf dB" << std::endl;
+ }
+
+ fclose(out_file);
+ fclose(ref_file);
+ }
+ }
+}
+
+#if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
+INSTANTIATE_TEST_SUITE_P(
+ CommonFormats,
+ AudioProcessingTest,
+ // Internal processing rates and the particularly common sample rate 44100
+ // Hz are tested in a grid of combinations (capture in, render in, out).
+ ::testing::Values(std::make_tuple(48000, 48000, 48000, 48000, 0, 0),
+ std::make_tuple(48000, 48000, 32000, 48000, 40, 30),
+ std::make_tuple(48000, 48000, 16000, 48000, 40, 20),
+ std::make_tuple(48000, 44100, 48000, 44100, 20, 20),
+ std::make_tuple(48000, 44100, 32000, 44100, 20, 15),
+ std::make_tuple(48000, 44100, 16000, 44100, 20, 15),
+ std::make_tuple(48000, 32000, 48000, 32000, 30, 35),
+ std::make_tuple(48000, 32000, 32000, 32000, 30, 0),
+ std::make_tuple(48000, 32000, 16000, 32000, 30, 20),
+ std::make_tuple(48000, 16000, 48000, 16000, 25, 20),
+ std::make_tuple(48000, 16000, 32000, 16000, 25, 20),
+ std::make_tuple(48000, 16000, 16000, 16000, 25, 0),
+
+ std::make_tuple(44100, 48000, 48000, 48000, 30, 0),
+ std::make_tuple(44100, 48000, 32000, 48000, 30, 30),
+ std::make_tuple(44100, 48000, 16000, 48000, 30, 20),
+ std::make_tuple(44100, 44100, 48000, 44100, 20, 20),
+ std::make_tuple(44100, 44100, 32000, 44100, 20, 15),
+ std::make_tuple(44100, 44100, 16000, 44100, 20, 15),
+ std::make_tuple(44100, 32000, 48000, 32000, 30, 35),
+ std::make_tuple(44100, 32000, 32000, 32000, 30, 0),
+ std::make_tuple(44100, 32000, 16000, 32000, 30, 20),
+ std::make_tuple(44100, 16000, 48000, 16000, 25, 20),
+ std::make_tuple(44100, 16000, 32000, 16000, 25, 20),
+ std::make_tuple(44100, 16000, 16000, 16000, 25, 0),
+
+ std::make_tuple(32000, 48000, 48000, 48000, 15, 0),
+ std::make_tuple(32000, 48000, 32000, 48000, 15, 30),
+ std::make_tuple(32000, 48000, 16000, 48000, 15, 20),
+ std::make_tuple(32000, 44100, 48000, 44100, 19, 20),
+ std::make_tuple(32000, 44100, 32000, 44100, 19, 15),
+ std::make_tuple(32000, 44100, 16000, 44100, 19, 15),
+ std::make_tuple(32000, 32000, 48000, 32000, 40, 35),
+ std::make_tuple(32000, 32000, 32000, 32000, 0, 0),
+ std::make_tuple(32000, 32000, 16000, 32000, 39, 20),
+ std::make_tuple(32000, 16000, 48000, 16000, 25, 20),
+ std::make_tuple(32000, 16000, 32000, 16000, 25, 20),
+ std::make_tuple(32000, 16000, 16000, 16000, 25, 0),
+
+ std::make_tuple(16000, 48000, 48000, 48000, 9, 0),
+ std::make_tuple(16000, 48000, 32000, 48000, 9, 30),
+ std::make_tuple(16000, 48000, 16000, 48000, 9, 20),
+ std::make_tuple(16000, 44100, 48000, 44100, 15, 20),
+ std::make_tuple(16000, 44100, 32000, 44100, 15, 15),
+ std::make_tuple(16000, 44100, 16000, 44100, 15, 15),
+ std::make_tuple(16000, 32000, 48000, 32000, 25, 35),
+ std::make_tuple(16000, 32000, 32000, 32000, 25, 0),
+ std::make_tuple(16000, 32000, 16000, 32000, 25, 20),
+ std::make_tuple(16000, 16000, 48000, 16000, 39, 20),
+ std::make_tuple(16000, 16000, 32000, 16000, 39, 20),
+ std::make_tuple(16000, 16000, 16000, 16000, 0, 0),
+
+ // Other sample rates are not tested exhaustively, to keep
+ // the test runtime manageable.
+ //
+ // Testing most other sample rates logged by Chrome UMA:
+ // - WebRTC.AudioInputSampleRate
+ // - WebRTC.AudioOutputSampleRate
+ // ApmConfiguration.HandlingOfRateCombinations covers
+ // remaining sample rates.
+ std::make_tuple(192000, 192000, 48000, 192000, 20, 40),
+ std::make_tuple(176400, 176400, 48000, 176400, 20, 35),
+ std::make_tuple(96000, 96000, 48000, 96000, 20, 40),
+ std::make_tuple(88200, 88200, 48000, 88200, 20, 20),
+ std::make_tuple(44100, 44100, 48000, 44100, 20, 20)));
+
+#elif defined(WEBRTC_AUDIOPROC_FIXED_PROFILE)
+INSTANTIATE_TEST_SUITE_P(
+ CommonFormats,
+ AudioProcessingTest,
+ ::testing::Values(std::make_tuple(48000, 48000, 48000, 48000, 19, 0),
+ std::make_tuple(48000, 48000, 32000, 48000, 19, 30),
+ std::make_tuple(48000, 48000, 16000, 48000, 19, 20),
+ std::make_tuple(48000, 44100, 48000, 44100, 15, 20),
+ std::make_tuple(48000, 44100, 32000, 44100, 15, 15),
+ std::make_tuple(48000, 44100, 16000, 44100, 15, 15),
+ std::make_tuple(48000, 32000, 48000, 32000, 19, 35),
+ std::make_tuple(48000, 32000, 32000, 32000, 19, 0),
+ std::make_tuple(48000, 32000, 16000, 32000, 19, 20),
+ std::make_tuple(48000, 16000, 48000, 16000, 20, 20),
+ std::make_tuple(48000, 16000, 32000, 16000, 20, 20),
+ std::make_tuple(48000, 16000, 16000, 16000, 20, 0),
+
+ std::make_tuple(44100, 48000, 48000, 48000, 15, 0),
+ std::make_tuple(44100, 48000, 32000, 48000, 15, 30),
+ std::make_tuple(44100, 48000, 16000, 48000, 15, 20),
+ std::make_tuple(44100, 44100, 48000, 44100, 15, 20),
+ std::make_tuple(44100, 44100, 32000, 44100, 15, 15),
+ std::make_tuple(44100, 44100, 16000, 44100, 15, 15),
+ std::make_tuple(44100, 32000, 48000, 32000, 18, 35),
+ std::make_tuple(44100, 32000, 32000, 32000, 18, 0),
+ std::make_tuple(44100, 32000, 16000, 32000, 18, 20),
+ std::make_tuple(44100, 16000, 48000, 16000, 19, 20),
+ std::make_tuple(44100, 16000, 32000, 16000, 19, 20),
+ std::make_tuple(44100, 16000, 16000, 16000, 19, 0),
+
+ std::make_tuple(32000, 48000, 48000, 48000, 17, 0),
+ std::make_tuple(32000, 48000, 32000, 48000, 17, 30),
+ std::make_tuple(32000, 48000, 16000, 48000, 17, 20),
+ std::make_tuple(32000, 44100, 48000, 44100, 20, 20),
+ std::make_tuple(32000, 44100, 32000, 44100, 20, 15),
+ std::make_tuple(32000, 44100, 16000, 44100, 20, 15),
+ std::make_tuple(32000, 32000, 48000, 32000, 27, 35),
+ std::make_tuple(32000, 32000, 32000, 32000, 0, 0),
+ std::make_tuple(32000, 32000, 16000, 32000, 30, 20),
+ std::make_tuple(32000, 16000, 48000, 16000, 20, 20),
+ std::make_tuple(32000, 16000, 32000, 16000, 20, 20),
+ std::make_tuple(32000, 16000, 16000, 16000, 20, 0),
+
+ std::make_tuple(16000, 48000, 48000, 48000, 11, 0),
+ std::make_tuple(16000, 48000, 32000, 48000, 11, 30),
+ std::make_tuple(16000, 48000, 16000, 48000, 11, 20),
+ std::make_tuple(16000, 44100, 48000, 44100, 15, 20),
+ std::make_tuple(16000, 44100, 32000, 44100, 15, 15),
+ std::make_tuple(16000, 44100, 16000, 44100, 15, 15),
+ std::make_tuple(16000, 32000, 48000, 32000, 24, 35),
+ std::make_tuple(16000, 32000, 32000, 32000, 24, 0),
+ std::make_tuple(16000, 32000, 16000, 32000, 25, 20),
+ std::make_tuple(16000, 16000, 48000, 16000, 28, 20),
+ std::make_tuple(16000, 16000, 32000, 16000, 28, 20),
+ std::make_tuple(16000, 16000, 16000, 16000, 0, 0),
+
+ std::make_tuple(192000, 192000, 48000, 192000, 20, 40),
+ std::make_tuple(176400, 176400, 48000, 176400, 20, 35),
+ std::make_tuple(96000, 96000, 48000, 96000, 20, 40),
+ std::make_tuple(88200, 88200, 48000, 88200, 20, 20),
+ std::make_tuple(44100, 44100, 48000, 44100, 20, 20)));
+#endif
+
+// Produces a scoped trace debug output.
+std::string ProduceDebugText(int render_input_sample_rate_hz,
+ int render_output_sample_rate_hz,
+ int capture_input_sample_rate_hz,
+ int capture_output_sample_rate_hz,
+ size_t render_input_num_channels,
+ size_t render_output_num_channels,
+ size_t capture_input_num_channels,
+ size_t capture_output_num_channels) {
+ rtc::StringBuilder ss;
+ ss << "Sample rates:"
+ "\n Render input: "
+ << render_input_sample_rate_hz
+ << " Hz"
+ "\n Render output: "
+ << render_output_sample_rate_hz
+ << " Hz"
+ "\n Capture input: "
+ << capture_input_sample_rate_hz
+ << " Hz"
+ "\n Capture output: "
+ << capture_output_sample_rate_hz
+ << " Hz"
+ "\nNumber of channels:"
+ "\n Render input: "
+ << render_input_num_channels
+ << "\n Render output: " << render_output_num_channels
+ << "\n Capture input: " << capture_input_num_channels
+ << "\n Capture output: " << capture_output_num_channels;
+ return ss.Release();
+}
+
+// Validates that running the audio processing module using various combinations
+// of sample rates and number of channels works as intended.
+void RunApmRateAndChannelTest(
+ rtc::ArrayView<const int> sample_rates_hz,
+ rtc::ArrayView<const int> render_channel_counts,
+ rtc::ArrayView<const int> capture_channel_counts) {
+ webrtc::AudioProcessing::Config apm_config;
+ apm_config.pipeline.multi_channel_render = true;
+ apm_config.pipeline.multi_channel_capture = true;
+ apm_config.echo_canceller.enabled = true;
+ rtc::scoped_refptr<AudioProcessing> apm =
+ AudioProcessingBuilderForTesting().SetConfig(apm_config).Create();
+
+ StreamConfig render_input_stream_config;
+ StreamConfig render_output_stream_config;
+ StreamConfig capture_input_stream_config;
+ StreamConfig capture_output_stream_config;
+
+ std::vector<float> render_input_frame_channels;
+ std::vector<float*> render_input_frame;
+ std::vector<float> render_output_frame_channels;
+ std::vector<float*> render_output_frame;
+ std::vector<float> capture_input_frame_channels;
+ std::vector<float*> capture_input_frame;
+ std::vector<float> capture_output_frame_channels;
+ std::vector<float*> capture_output_frame;
+
+ for (auto render_input_sample_rate_hz : sample_rates_hz) {
+ for (auto render_output_sample_rate_hz : sample_rates_hz) {
+ for (auto capture_input_sample_rate_hz : sample_rates_hz) {
+ for (auto capture_output_sample_rate_hz : sample_rates_hz) {
+ for (size_t render_input_num_channels : render_channel_counts) {
+ for (size_t capture_input_num_channels : capture_channel_counts) {
+ size_t render_output_num_channels = render_input_num_channels;
+ size_t capture_output_num_channels = capture_input_num_channels;
+ auto populate_audio_frame = [](int sample_rate_hz,
+ size_t num_channels,
+ StreamConfig* cfg,
+ std::vector<float>* channels_data,
+ std::vector<float*>* frame_data) {
+ cfg->set_sample_rate_hz(sample_rate_hz);
+ cfg->set_num_channels(num_channels);
+
+ size_t max_frame_size =
+ AudioProcessing::GetFrameSize(sample_rate_hz);
+ channels_data->resize(num_channels * max_frame_size);
+ std::fill(channels_data->begin(), channels_data->end(), 0.5f);
+ frame_data->resize(num_channels);
+ for (size_t channel = 0; channel < num_channels; ++channel) {
+ (*frame_data)[channel] =
+ &(*channels_data)[channel * max_frame_size];
+ }
+ };
+
+ populate_audio_frame(
+ render_input_sample_rate_hz, render_input_num_channels,
+ &render_input_stream_config, &render_input_frame_channels,
+ &render_input_frame);
+ populate_audio_frame(
+ render_output_sample_rate_hz, render_output_num_channels,
+ &render_output_stream_config, &render_output_frame_channels,
+ &render_output_frame);
+ populate_audio_frame(
+ capture_input_sample_rate_hz, capture_input_num_channels,
+ &capture_input_stream_config, &capture_input_frame_channels,
+ &capture_input_frame);
+ populate_audio_frame(
+ capture_output_sample_rate_hz, capture_output_num_channels,
+ &capture_output_stream_config, &capture_output_frame_channels,
+ &capture_output_frame);
+
+ for (size_t frame = 0; frame < 2; ++frame) {
+ SCOPED_TRACE(ProduceDebugText(
+ render_input_sample_rate_hz, render_output_sample_rate_hz,
+ capture_input_sample_rate_hz, capture_output_sample_rate_hz,
+ render_input_num_channels, render_output_num_channels,
+ render_input_num_channels, capture_output_num_channels));
+
+ int result = apm->ProcessReverseStream(
+ &render_input_frame[0], render_input_stream_config,
+ render_output_stream_config, &render_output_frame[0]);
+ EXPECT_EQ(result, AudioProcessing::kNoError);
+ result = apm->ProcessStream(
+ &capture_input_frame[0], capture_input_stream_config,
+ capture_output_stream_config, &capture_output_frame[0]);
+ EXPECT_EQ(result, AudioProcessing::kNoError);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+constexpr void Toggle(bool& b) {
+ b ^= true;
+}
+
+} // namespace
+
+TEST(RuntimeSettingTest, TestDefaultCtor) {
+ auto s = AudioProcessing::RuntimeSetting();
+ EXPECT_EQ(AudioProcessing::RuntimeSetting::Type::kNotSpecified, s.type());
+}
+
+TEST(RuntimeSettingTest, TestUsageWithSwapQueue) {
+ SwapQueue<AudioProcessing::RuntimeSetting> q(1);
+ auto s = AudioProcessing::RuntimeSetting();
+ ASSERT_TRUE(q.Insert(&s));
+ ASSERT_TRUE(q.Remove(&s));
+ EXPECT_EQ(AudioProcessing::RuntimeSetting::Type::kNotSpecified, s.type());
+}
+
+TEST(ApmConfiguration, EnablePostProcessing) {
+ // Verify that apm uses a capture post processing module if one is provided.
+ auto mock_post_processor_ptr =
+ new ::testing::NiceMock<test::MockCustomProcessing>();
+ auto mock_post_processor =
+ std::unique_ptr<CustomProcessing>(mock_post_processor_ptr);
+ rtc::scoped_refptr<AudioProcessing> apm =
+ AudioProcessingBuilderForTesting()
+ .SetCapturePostProcessing(std::move(mock_post_processor))
+ .Create();
+
+ Int16FrameData audio;
+ audio.num_channels = 1;
+ SetFrameSampleRate(&audio, AudioProcessing::NativeRate::kSampleRate16kHz);
+
+ EXPECT_CALL(*mock_post_processor_ptr, Process(::testing::_)).Times(1);
+ apm->ProcessStream(audio.data.data(),
+ StreamConfig(audio.sample_rate_hz, audio.num_channels),
+ StreamConfig(audio.sample_rate_hz, audio.num_channels),
+ audio.data.data());
+}
+
+TEST(ApmConfiguration, EnablePreProcessing) {
+ // Verify that apm uses a capture post processing module if one is provided.
+ auto mock_pre_processor_ptr =
+ new ::testing::NiceMock<test::MockCustomProcessing>();
+ auto mock_pre_processor =
+ std::unique_ptr<CustomProcessing>(mock_pre_processor_ptr);
+ rtc::scoped_refptr<AudioProcessing> apm =
+ AudioProcessingBuilderForTesting()
+ .SetRenderPreProcessing(std::move(mock_pre_processor))
+ .Create();
+
+ Int16FrameData audio;
+ audio.num_channels = 1;
+ SetFrameSampleRate(&audio, AudioProcessing::NativeRate::kSampleRate16kHz);
+
+ EXPECT_CALL(*mock_pre_processor_ptr, Process(::testing::_)).Times(1);
+ apm->ProcessReverseStream(
+ audio.data.data(), StreamConfig(audio.sample_rate_hz, audio.num_channels),
+ StreamConfig(audio.sample_rate_hz, audio.num_channels),
+ audio.data.data());
+}
+
+TEST(ApmConfiguration, EnableCaptureAnalyzer) {
+ // Verify that apm uses a capture analyzer if one is provided.
+ auto mock_capture_analyzer_ptr =
+ new ::testing::NiceMock<test::MockCustomAudioAnalyzer>();
+ auto mock_capture_analyzer =
+ std::unique_ptr<CustomAudioAnalyzer>(mock_capture_analyzer_ptr);
+ rtc::scoped_refptr<AudioProcessing> apm =
+ AudioProcessingBuilderForTesting()
+ .SetCaptureAnalyzer(std::move(mock_capture_analyzer))
+ .Create();
+
+ Int16FrameData audio;
+ audio.num_channels = 1;
+ SetFrameSampleRate(&audio, AudioProcessing::NativeRate::kSampleRate16kHz);
+
+ EXPECT_CALL(*mock_capture_analyzer_ptr, Analyze(::testing::_)).Times(1);
+ apm->ProcessStream(audio.data.data(),
+ StreamConfig(audio.sample_rate_hz, audio.num_channels),
+ StreamConfig(audio.sample_rate_hz, audio.num_channels),
+ audio.data.data());
+}
+
+TEST(ApmConfiguration, PreProcessingReceivesRuntimeSettings) {
+ auto mock_pre_processor_ptr =
+ new ::testing::NiceMock<test::MockCustomProcessing>();
+ auto mock_pre_processor =
+ std::unique_ptr<CustomProcessing>(mock_pre_processor_ptr);
+ rtc::scoped_refptr<AudioProcessing> apm =
+ AudioProcessingBuilderForTesting()
+ .SetRenderPreProcessing(std::move(mock_pre_processor))
+ .Create();
+ apm->SetRuntimeSetting(
+ AudioProcessing::RuntimeSetting::CreateCustomRenderSetting(0));
+
+ // RuntimeSettings forwarded during 'Process*Stream' calls.
+ // Therefore we have to make one such call.
+ Int16FrameData audio;
+ audio.num_channels = 1;
+ SetFrameSampleRate(&audio, AudioProcessing::NativeRate::kSampleRate16kHz);
+
+ EXPECT_CALL(*mock_pre_processor_ptr, SetRuntimeSetting(::testing::_))
+ .Times(1);
+ apm->ProcessReverseStream(
+ audio.data.data(), StreamConfig(audio.sample_rate_hz, audio.num_channels),
+ StreamConfig(audio.sample_rate_hz, audio.num_channels),
+ audio.data.data());
+}
+
+class MyEchoControlFactory : public EchoControlFactory {
+ public:
+ std::unique_ptr<EchoControl> Create(int sample_rate_hz) {
+ auto ec = new test::MockEchoControl();
+ EXPECT_CALL(*ec, AnalyzeRender(::testing::_)).Times(1);
+ EXPECT_CALL(*ec, AnalyzeCapture(::testing::_)).Times(2);
+ EXPECT_CALL(*ec, ProcessCapture(::testing::_, ::testing::_, ::testing::_))
+ .Times(2);
+ return std::unique_ptr<EchoControl>(ec);
+ }
+
+ std::unique_ptr<EchoControl> Create(int sample_rate_hz,
+ int num_render_channels,
+ int num_capture_channels) {
+ return Create(sample_rate_hz);
+ }
+};
+
+TEST(ApmConfiguration, EchoControlInjection) {
+ // Verify that apm uses an injected echo controller if one is provided.
+ std::unique_ptr<EchoControlFactory> echo_control_factory(
+ new MyEchoControlFactory());
+
+ rtc::scoped_refptr<AudioProcessing> apm =
+ AudioProcessingBuilderForTesting()
+ .SetEchoControlFactory(std::move(echo_control_factory))
+ .Create();
+
+ Int16FrameData audio;
+ audio.num_channels = 1;
+ SetFrameSampleRate(&audio, AudioProcessing::NativeRate::kSampleRate16kHz);
+ apm->ProcessStream(audio.data.data(),
+ StreamConfig(audio.sample_rate_hz, audio.num_channels),
+ StreamConfig(audio.sample_rate_hz, audio.num_channels),
+ audio.data.data());
+ apm->ProcessReverseStream(
+ audio.data.data(), StreamConfig(audio.sample_rate_hz, audio.num_channels),
+ StreamConfig(audio.sample_rate_hz, audio.num_channels),
+ audio.data.data());
+ apm->ProcessStream(audio.data.data(),
+ StreamConfig(audio.sample_rate_hz, audio.num_channels),
+ StreamConfig(audio.sample_rate_hz, audio.num_channels),
+ audio.data.data());
+}
+
+TEST(ApmConfiguration, EchoDetectorInjection) {
+ using ::testing::_;
+ rtc::scoped_refptr<test::MockEchoDetector> mock_echo_detector =
+ rtc::make_ref_counted<::testing::StrictMock<test::MockEchoDetector>>();
+ EXPECT_CALL(*mock_echo_detector,
+ Initialize(/*capture_sample_rate_hz=*/16000, _,
+ /*render_sample_rate_hz=*/16000, _))
+ .Times(1);
+ rtc::scoped_refptr<AudioProcessing> apm =
+ AudioProcessingBuilderForTesting()
+ .SetEchoDetector(mock_echo_detector)
+ .Create();
+
+ // The echo detector is included in processing when enabled.
+ EXPECT_CALL(*mock_echo_detector, AnalyzeRenderAudio(_))
+ .WillOnce([](rtc::ArrayView<const float> render_audio) {
+ EXPECT_EQ(render_audio.size(), 160u);
+ });
+ EXPECT_CALL(*mock_echo_detector, AnalyzeCaptureAudio(_))
+ .WillOnce([](rtc::ArrayView<const float> capture_audio) {
+ EXPECT_EQ(capture_audio.size(), 160u);
+ });
+ EXPECT_CALL(*mock_echo_detector, GetMetrics()).Times(1);
+
+ Int16FrameData frame;
+ frame.num_channels = 1;
+ SetFrameSampleRate(&frame, 16000);
+
+ apm->ProcessReverseStream(frame.data.data(), StreamConfig(16000, 1),
+ StreamConfig(16000, 1), frame.data.data());
+ apm->ProcessStream(frame.data.data(), StreamConfig(16000, 1),
+ StreamConfig(16000, 1), frame.data.data());
+
+ // When processing rates change, the echo detector is also reinitialized to
+ // match those.
+ EXPECT_CALL(*mock_echo_detector,
+ Initialize(/*capture_sample_rate_hz=*/48000, _,
+ /*render_sample_rate_hz=*/16000, _))
+ .Times(1);
+ EXPECT_CALL(*mock_echo_detector,
+ Initialize(/*capture_sample_rate_hz=*/48000, _,
+ /*render_sample_rate_hz=*/48000, _))
+ .Times(1);
+ EXPECT_CALL(*mock_echo_detector, AnalyzeRenderAudio(_))
+ .WillOnce([](rtc::ArrayView<const float> render_audio) {
+ EXPECT_EQ(render_audio.size(), 480u);
+ });
+ EXPECT_CALL(*mock_echo_detector, AnalyzeCaptureAudio(_))
+ .Times(2)
+ .WillRepeatedly([](rtc::ArrayView<const float> capture_audio) {
+ EXPECT_EQ(capture_audio.size(), 480u);
+ });
+ EXPECT_CALL(*mock_echo_detector, GetMetrics()).Times(2);
+
+ SetFrameSampleRate(&frame, 48000);
+ apm->ProcessStream(frame.data.data(), StreamConfig(48000, 1),
+ StreamConfig(48000, 1), frame.data.data());
+ apm->ProcessReverseStream(frame.data.data(), StreamConfig(48000, 1),
+ StreamConfig(48000, 1), frame.data.data());
+ apm->ProcessStream(frame.data.data(), StreamConfig(48000, 1),
+ StreamConfig(48000, 1), frame.data.data());
+}
+
+rtc::scoped_refptr<AudioProcessing> CreateApm(bool mobile_aec) {
+ // Enable residual echo detection, for stats.
+ rtc::scoped_refptr<AudioProcessing> apm =
+ AudioProcessingBuilderForTesting()
+ .SetEchoDetector(CreateEchoDetector())
+ .Create();
+ if (!apm) {
+ return apm;
+ }
+
+ ProcessingConfig processing_config = {
+ {{32000, 1}, {32000, 1}, {32000, 1}, {32000, 1}}};
+
+ if (apm->Initialize(processing_config) != 0) {
+ return nullptr;
+ }
+
+ // Disable all components except for an AEC.
+ AudioProcessing::Config apm_config;
+ apm_config.high_pass_filter.enabled = false;
+ apm_config.gain_controller1.enabled = false;
+ apm_config.gain_controller2.enabled = false;
+ apm_config.echo_canceller.enabled = true;
+ apm_config.echo_canceller.mobile_mode = mobile_aec;
+ apm_config.noise_suppression.enabled = false;
+ apm->ApplyConfig(apm_config);
+ return apm;
+}
+
+#if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS) || defined(WEBRTC_MAC)
+#define MAYBE_ApmStatistics DISABLED_ApmStatistics
+#else
+#define MAYBE_ApmStatistics ApmStatistics
+#endif
+
+TEST(MAYBE_ApmStatistics, AECEnabledTest) {
+ // Set up APM with AEC3 and process some audio.
+ rtc::scoped_refptr<AudioProcessing> apm = CreateApm(false);
+ ASSERT_TRUE(apm);
+ AudioProcessing::Config apm_config;
+ apm_config.echo_canceller.enabled = true;
+ apm->ApplyConfig(apm_config);
+
+ // Set up an audioframe.
+ Int16FrameData frame;
+ frame.num_channels = 1;
+ SetFrameSampleRate(&frame, AudioProcessing::NativeRate::kSampleRate32kHz);
+
+ // Fill the audio frame with a sawtooth pattern.
+ int16_t* ptr = frame.data.data();
+ for (size_t i = 0; i < frame.kMaxDataSizeSamples; i++) {
+ ptr[i] = 10000 * ((i % 3) - 1);
+ }
+
+ // Do some processing.
+ for (int i = 0; i < 200; i++) {
+ EXPECT_EQ(apm->ProcessReverseStream(
+ frame.data.data(),
+ StreamConfig(frame.sample_rate_hz, frame.num_channels),
+ StreamConfig(frame.sample_rate_hz, frame.num_channels),
+ frame.data.data()),
+ 0);
+ EXPECT_EQ(apm->set_stream_delay_ms(0), 0);
+ EXPECT_EQ(apm->ProcessStream(
+ frame.data.data(),
+ StreamConfig(frame.sample_rate_hz, frame.num_channels),
+ StreamConfig(frame.sample_rate_hz, frame.num_channels),
+ frame.data.data()),
+ 0);
+ }
+
+ // Test statistics interface.
+ AudioProcessingStats stats = apm->GetStatistics();
+ // We expect all statistics to be set and have a sensible value.
+ ASSERT_TRUE(stats.residual_echo_likelihood.has_value());
+ EXPECT_GE(*stats.residual_echo_likelihood, 0.0);
+ EXPECT_LE(*stats.residual_echo_likelihood, 1.0);
+ ASSERT_TRUE(stats.residual_echo_likelihood_recent_max.has_value());
+ EXPECT_GE(*stats.residual_echo_likelihood_recent_max, 0.0);
+ EXPECT_LE(*stats.residual_echo_likelihood_recent_max, 1.0);
+ ASSERT_TRUE(stats.echo_return_loss.has_value());
+ EXPECT_NE(*stats.echo_return_loss, -100.0);
+ ASSERT_TRUE(stats.echo_return_loss_enhancement.has_value());
+ EXPECT_NE(*stats.echo_return_loss_enhancement, -100.0);
+}
+
+TEST(MAYBE_ApmStatistics, AECMEnabledTest) {
+ // Set up APM with AECM and process some audio.
+ rtc::scoped_refptr<AudioProcessing> apm = CreateApm(true);
+ ASSERT_TRUE(apm);
+
+ // Set up an audioframe.
+ Int16FrameData frame;
+ frame.num_channels = 1;
+ SetFrameSampleRate(&frame, AudioProcessing::NativeRate::kSampleRate32kHz);
+
+ // Fill the audio frame with a sawtooth pattern.
+ int16_t* ptr = frame.data.data();
+ for (size_t i = 0; i < frame.kMaxDataSizeSamples; i++) {
+ ptr[i] = 10000 * ((i % 3) - 1);
+ }
+
+ // Do some processing.
+ for (int i = 0; i < 200; i++) {
+ EXPECT_EQ(apm->ProcessReverseStream(
+ frame.data.data(),
+ StreamConfig(frame.sample_rate_hz, frame.num_channels),
+ StreamConfig(frame.sample_rate_hz, frame.num_channels),
+ frame.data.data()),
+ 0);
+ EXPECT_EQ(apm->set_stream_delay_ms(0), 0);
+ EXPECT_EQ(apm->ProcessStream(
+ frame.data.data(),
+ StreamConfig(frame.sample_rate_hz, frame.num_channels),
+ StreamConfig(frame.sample_rate_hz, frame.num_channels),
+ frame.data.data()),
+ 0);
+ }
+
+ // Test statistics interface.
+ AudioProcessingStats stats = apm->GetStatistics();
+ // We expect only the residual echo detector statistics to be set and have a
+ // sensible value.
+ ASSERT_TRUE(stats.residual_echo_likelihood.has_value());
+ EXPECT_GE(*stats.residual_echo_likelihood, 0.0);
+ EXPECT_LE(*stats.residual_echo_likelihood, 1.0);
+ ASSERT_TRUE(stats.residual_echo_likelihood_recent_max.has_value());
+ EXPECT_GE(*stats.residual_echo_likelihood_recent_max, 0.0);
+ EXPECT_LE(*stats.residual_echo_likelihood_recent_max, 1.0);
+ EXPECT_FALSE(stats.echo_return_loss.has_value());
+ EXPECT_FALSE(stats.echo_return_loss_enhancement.has_value());
+}
+
+TEST(ApmStatistics, DoNotReportVoiceDetectedStat) {
+ ProcessingConfig processing_config = {
+ {{32000, 1}, {32000, 1}, {32000, 1}, {32000, 1}}};
+
+ // Set up an audioframe.
+ Int16FrameData frame;
+ frame.num_channels = 1;
+ SetFrameSampleRate(&frame, AudioProcessing::NativeRate::kSampleRate32kHz);
+
+ // Fill the audio frame with a sawtooth pattern.
+ int16_t* ptr = frame.data.data();
+ for (size_t i = 0; i < frame.kMaxDataSizeSamples; i++) {
+ ptr[i] = 10000 * ((i % 3) - 1);
+ }
+
+ rtc::scoped_refptr<AudioProcessing> apm =
+ AudioProcessingBuilderForTesting().Create();
+ apm->Initialize(processing_config);
+
+ // No metric should be reported.
+ EXPECT_EQ(
+ apm->ProcessStream(frame.data.data(),
+ StreamConfig(frame.sample_rate_hz, frame.num_channels),
+ StreamConfig(frame.sample_rate_hz, frame.num_channels),
+ frame.data.data()),
+ 0);
+ EXPECT_FALSE(apm->GetStatistics().voice_detected.has_value());
+}
+
+TEST(ApmStatistics, GetStatisticsReportsNoEchoDetectorStatsWhenDisabled) {
+ rtc::scoped_refptr<AudioProcessing> apm =
+ AudioProcessingBuilderForTesting().Create();
+ Int16FrameData frame;
+ frame.num_channels = 1;
+ SetFrameSampleRate(&frame, AudioProcessing::NativeRate::kSampleRate32kHz);
+ ASSERT_EQ(
+ apm->ProcessStream(frame.data.data(),
+ StreamConfig(frame.sample_rate_hz, frame.num_channels),
+ StreamConfig(frame.sample_rate_hz, frame.num_channels),
+ frame.data.data()),
+ 0);
+ // Echo detector is disabled by default, no stats reported.
+ AudioProcessingStats stats = apm->GetStatistics();
+ EXPECT_FALSE(stats.residual_echo_likelihood.has_value());
+ EXPECT_FALSE(stats.residual_echo_likelihood_recent_max.has_value());
+}
+
+TEST(ApmStatistics, GetStatisticsReportsEchoDetectorStatsWhenEnabled) {
+ // Create APM with an echo detector injected.
+ rtc::scoped_refptr<AudioProcessing> apm =
+ AudioProcessingBuilderForTesting()
+ .SetEchoDetector(CreateEchoDetector())
+ .Create();
+ Int16FrameData frame;
+ frame.num_channels = 1;
+ SetFrameSampleRate(&frame, AudioProcessing::NativeRate::kSampleRate32kHz);
+ // Echo detector enabled: Report stats.
+ ASSERT_EQ(
+ apm->ProcessStream(frame.data.data(),
+ StreamConfig(frame.sample_rate_hz, frame.num_channels),
+ StreamConfig(frame.sample_rate_hz, frame.num_channels),
+ frame.data.data()),
+ 0);
+ AudioProcessingStats stats = apm->GetStatistics();
+ EXPECT_TRUE(stats.residual_echo_likelihood.has_value());
+ EXPECT_TRUE(stats.residual_echo_likelihood_recent_max.has_value());
+}
+
+TEST(ApmConfiguration, HandlingOfRateAndChannelCombinations) {
+ std::array<int, 3> sample_rates_hz = {16000, 32000, 48000};
+ std::array<int, 2> render_channel_counts = {1, 7};
+ std::array<int, 2> capture_channel_counts = {1, 7};
+ RunApmRateAndChannelTest(sample_rates_hz, render_channel_counts,
+ capture_channel_counts);
+}
+
+TEST(ApmConfiguration, HandlingOfChannelCombinations) {
+ std::array<int, 1> sample_rates_hz = {48000};
+ std::array<int, 8> render_channel_counts = {1, 2, 3, 4, 5, 6, 7, 8};
+ std::array<int, 8> capture_channel_counts = {1, 2, 3, 4, 5, 6, 7, 8};
+ RunApmRateAndChannelTest(sample_rates_hz, render_channel_counts,
+ capture_channel_counts);
+}
+
+TEST(ApmConfiguration, HandlingOfRateCombinations) {
+ // Test rates <= 96000 logged by Chrome UMA:
+ // - WebRTC.AudioInputSampleRate
+ // - WebRTC.AudioOutputSampleRate
+ // Higher rates are tested in AudioProcessingTest.Format, to keep the number
+ // of combinations in this test manageable.
+ std::array<int, 9> sample_rates_hz = {8000, 11025, 16000, 22050, 32000,
+ 44100, 48000, 88200, 96000};
+ std::array<int, 1> render_channel_counts = {2};
+ std::array<int, 1> capture_channel_counts = {2};
+ RunApmRateAndChannelTest(sample_rates_hz, render_channel_counts,
+ capture_channel_counts);
+}
+
+TEST(ApmConfiguration, SelfAssignment) {
+ // At some point memory sanitizer was complaining about self-assigment.
+ // Make sure we don't regress.
+ AudioProcessing::Config config;
+ AudioProcessing::Config* config2 = &config;
+ *config2 = *config2; // Workaround -Wself-assign-overloaded
+ SUCCEED(); // Real success is absence of defects from asan/msan/ubsan.
+}
+
+TEST(AudioProcessing, GainController1ConfigEqual) {
+ AudioProcessing::Config::GainController1 a;
+ AudioProcessing::Config::GainController1 b;
+ EXPECT_EQ(a, b);
+
+ Toggle(a.enabled);
+ b.enabled = a.enabled;
+ EXPECT_EQ(a, b);
+
+ a.mode = AudioProcessing::Config::GainController1::Mode::kAdaptiveDigital;
+ b.mode = a.mode;
+ EXPECT_EQ(a, b);
+
+ a.target_level_dbfs++;
+ b.target_level_dbfs = a.target_level_dbfs;
+ EXPECT_EQ(a, b);
+
+ a.compression_gain_db++;
+ b.compression_gain_db = a.compression_gain_db;
+ EXPECT_EQ(a, b);
+
+ Toggle(a.enable_limiter);
+ b.enable_limiter = a.enable_limiter;
+ EXPECT_EQ(a, b);
+
+ auto& a_analog = a.analog_gain_controller;
+ auto& b_analog = b.analog_gain_controller;
+
+ Toggle(a_analog.enabled);
+ b_analog.enabled = a_analog.enabled;
+ EXPECT_EQ(a, b);
+
+ a_analog.startup_min_volume++;
+ b_analog.startup_min_volume = a_analog.startup_min_volume;
+ EXPECT_EQ(a, b);
+
+ a_analog.clipped_level_min++;
+ b_analog.clipped_level_min = a_analog.clipped_level_min;
+ EXPECT_EQ(a, b);
+
+ Toggle(a_analog.enable_digital_adaptive);
+ b_analog.enable_digital_adaptive = a_analog.enable_digital_adaptive;
+ EXPECT_EQ(a, b);
+}
+
+// Checks that one differing parameter is sufficient to make two configs
+// different.
+TEST(AudioProcessing, GainController1ConfigNotEqual) {
+ AudioProcessing::Config::GainController1 a;
+ const AudioProcessing::Config::GainController1 b;
+
+ Toggle(a.enabled);
+ EXPECT_NE(a, b);
+ a = b;
+
+ a.mode = AudioProcessing::Config::GainController1::Mode::kAdaptiveDigital;
+ EXPECT_NE(a, b);
+ a = b;
+
+ a.target_level_dbfs++;
+ EXPECT_NE(a, b);
+ a = b;
+
+ a.compression_gain_db++;
+ EXPECT_NE(a, b);
+ a = b;
+
+ Toggle(a.enable_limiter);
+ EXPECT_NE(a, b);
+ a = b;
+
+ auto& a_analog = a.analog_gain_controller;
+ const auto& b_analog = b.analog_gain_controller;
+
+ Toggle(a_analog.enabled);
+ EXPECT_NE(a, b);
+ a_analog = b_analog;
+
+ a_analog.startup_min_volume++;
+ EXPECT_NE(a, b);
+ a_analog = b_analog;
+
+ a_analog.clipped_level_min++;
+ EXPECT_NE(a, b);
+ a_analog = b_analog;
+
+ Toggle(a_analog.enable_digital_adaptive);
+ EXPECT_NE(a, b);
+ a_analog = b_analog;
+}
+
+TEST(AudioProcessing, GainController2ConfigEqual) {
+ AudioProcessing::Config::GainController2 a;
+ AudioProcessing::Config::GainController2 b;
+ EXPECT_EQ(a, b);
+
+ Toggle(a.enabled);
+ b.enabled = a.enabled;
+ EXPECT_EQ(a, b);
+
+ a.fixed_digital.gain_db += 1.0f;
+ b.fixed_digital.gain_db = a.fixed_digital.gain_db;
+ EXPECT_EQ(a, b);
+
+ auto& a_adaptive = a.adaptive_digital;
+ auto& b_adaptive = b.adaptive_digital;
+
+ Toggle(a_adaptive.enabled);
+ b_adaptive.enabled = a_adaptive.enabled;
+ EXPECT_EQ(a, b);
+
+ a_adaptive.headroom_db += 1.0f;
+ b_adaptive.headroom_db = a_adaptive.headroom_db;
+ EXPECT_EQ(a, b);
+
+ a_adaptive.max_gain_db += 1.0f;
+ b_adaptive.max_gain_db = a_adaptive.max_gain_db;
+ EXPECT_EQ(a, b);
+
+ a_adaptive.initial_gain_db += 1.0f;
+ b_adaptive.initial_gain_db = a_adaptive.initial_gain_db;
+ EXPECT_EQ(a, b);
+
+ a_adaptive.max_gain_change_db_per_second += 1.0f;
+ b_adaptive.max_gain_change_db_per_second =
+ a_adaptive.max_gain_change_db_per_second;
+ EXPECT_EQ(a, b);
+
+ a_adaptive.max_output_noise_level_dbfs += 1.0f;
+ b_adaptive.max_output_noise_level_dbfs =
+ a_adaptive.max_output_noise_level_dbfs;
+ EXPECT_EQ(a, b);
+}
+
+// Checks that one differing parameter is sufficient to make two configs
+// different.
+TEST(AudioProcessing, GainController2ConfigNotEqual) {
+ AudioProcessing::Config::GainController2 a;
+ const AudioProcessing::Config::GainController2 b;
+
+ Toggle(a.enabled);
+ EXPECT_NE(a, b);
+ a = b;
+
+ a.fixed_digital.gain_db += 1.0f;
+ EXPECT_NE(a, b);
+ a.fixed_digital = b.fixed_digital;
+
+ auto& a_adaptive = a.adaptive_digital;
+ const auto& b_adaptive = b.adaptive_digital;
+
+ Toggle(a_adaptive.enabled);
+ EXPECT_NE(a, b);
+ a_adaptive = b_adaptive;
+
+ a_adaptive.headroom_db += 1.0f;
+ EXPECT_NE(a, b);
+ a_adaptive = b_adaptive;
+
+ a_adaptive.max_gain_db += 1.0f;
+ EXPECT_NE(a, b);
+ a_adaptive = b_adaptive;
+
+ a_adaptive.initial_gain_db += 1.0f;
+ EXPECT_NE(a, b);
+ a_adaptive = b_adaptive;
+
+ a_adaptive.max_gain_change_db_per_second += 1.0f;
+ EXPECT_NE(a, b);
+ a_adaptive = b_adaptive;
+
+ a_adaptive.max_output_noise_level_dbfs += 1.0f;
+ EXPECT_NE(a, b);
+ a_adaptive = b_adaptive;
+}
+
+struct ApmFormatHandlingTestParams {
+ enum class ExpectedOutput {
+ kErrorAndUnmodified,
+ kErrorAndSilence,
+ kErrorAndCopyOfFirstChannel,
+ kErrorAndExactCopy,
+ kNoError
+ };
+
+ StreamConfig input_config;
+ StreamConfig output_config;
+ ExpectedOutput expected_output;
+};
+
+class ApmFormatHandlingTest
+ : public ::testing::TestWithParam<
+ std::tuple<StreamDirection, ApmFormatHandlingTestParams>> {
+ public:
+ ApmFormatHandlingTest()
+ : stream_direction_(std::get<0>(GetParam())),
+ test_params_(std::get<1>(GetParam())) {}
+
+ protected:
+ ::testing::Message ProduceDebugMessage() {
+ return ::testing::Message()
+ << "input sample_rate_hz="
+ << test_params_.input_config.sample_rate_hz()
+ << " num_channels=" << test_params_.input_config.num_channels()
+ << ", output sample_rate_hz="
+ << test_params_.output_config.sample_rate_hz()
+ << " num_channels=" << test_params_.output_config.num_channels()
+ << ", stream_direction=" << stream_direction_ << ", expected_output="
+ << static_cast<int>(test_params_.expected_output);
+ }
+
+ StreamDirection stream_direction_;
+ ApmFormatHandlingTestParams test_params_;
+};
+
+INSTANTIATE_TEST_SUITE_P(
+ FormatValidation,
+ ApmFormatHandlingTest,
+ testing::Combine(
+ ::testing::Values(kForward, kReverse),
+ ::testing::Values(
+ // Test cases with values on the boundary of legal ranges.
+ ApmFormatHandlingTestParams{
+ StreamConfig(16000, 1), StreamConfig(8000, 1),
+ ApmFormatHandlingTestParams::ExpectedOutput::kNoError},
+ ApmFormatHandlingTestParams{
+ StreamConfig(8000, 1), StreamConfig(16000, 1),
+ ApmFormatHandlingTestParams::ExpectedOutput::kNoError},
+ ApmFormatHandlingTestParams{
+ StreamConfig(384000, 1), StreamConfig(16000, 1),
+ ApmFormatHandlingTestParams::ExpectedOutput::kNoError},
+ ApmFormatHandlingTestParams{
+ StreamConfig(16000, 1), StreamConfig(384000, 1),
+ ApmFormatHandlingTestParams::ExpectedOutput::kNoError},
+ ApmFormatHandlingTestParams{
+ StreamConfig(16000, 2), StreamConfig(16000, 1),
+ ApmFormatHandlingTestParams::ExpectedOutput::kNoError},
+ ApmFormatHandlingTestParams{
+ StreamConfig(16000, 3), StreamConfig(16000, 3),
+ ApmFormatHandlingTestParams::ExpectedOutput::kNoError},
+
+ // Supported but incompatible formats.
+ ApmFormatHandlingTestParams{
+ StreamConfig(16000, 3), StreamConfig(16000, 2),
+ ApmFormatHandlingTestParams::ExpectedOutput::
+ kErrorAndCopyOfFirstChannel},
+ ApmFormatHandlingTestParams{
+ StreamConfig(16000, 3), StreamConfig(16000, 4),
+ ApmFormatHandlingTestParams::ExpectedOutput::
+ kErrorAndCopyOfFirstChannel},
+
+ // Unsupported format and input / output mismatch.
+ ApmFormatHandlingTestParams{
+ StreamConfig(7900, 1), StreamConfig(16000, 1),
+ ApmFormatHandlingTestParams::ExpectedOutput::kErrorAndSilence},
+ ApmFormatHandlingTestParams{
+ StreamConfig(16000, 1), StreamConfig(7900, 1),
+ ApmFormatHandlingTestParams::ExpectedOutput::kErrorAndSilence},
+ ApmFormatHandlingTestParams{
+ StreamConfig(390000, 1), StreamConfig(16000, 1),
+ ApmFormatHandlingTestParams::ExpectedOutput::kErrorAndSilence},
+ ApmFormatHandlingTestParams{
+ StreamConfig(16000, 1), StreamConfig(390000, 1),
+ ApmFormatHandlingTestParams::ExpectedOutput::kErrorAndSilence},
+ ApmFormatHandlingTestParams{
+ StreamConfig(-16000, 1), StreamConfig(16000, 1),
+ ApmFormatHandlingTestParams::ExpectedOutput::kErrorAndSilence},
+
+ // Unsupported format but input / output formats match.
+ ApmFormatHandlingTestParams{StreamConfig(7900, 1),
+ StreamConfig(7900, 1),
+ ApmFormatHandlingTestParams::
+ ExpectedOutput::kErrorAndExactCopy},
+ ApmFormatHandlingTestParams{StreamConfig(390000, 1),
+ StreamConfig(390000, 1),
+ ApmFormatHandlingTestParams::
+ ExpectedOutput::kErrorAndExactCopy},
+
+ // Unsupported but identical sample rate, channel mismatch.
+ ApmFormatHandlingTestParams{
+ StreamConfig(7900, 1), StreamConfig(7900, 2),
+ ApmFormatHandlingTestParams::ExpectedOutput::
+ kErrorAndCopyOfFirstChannel},
+ ApmFormatHandlingTestParams{
+ StreamConfig(7900, 2), StreamConfig(7900, 1),
+ ApmFormatHandlingTestParams::ExpectedOutput::
+ kErrorAndCopyOfFirstChannel},
+
+ // Test cases with meaningless output format.
+ ApmFormatHandlingTestParams{
+ StreamConfig(16000, 1), StreamConfig(-16000, 1),
+ ApmFormatHandlingTestParams::ExpectedOutput::
+ kErrorAndUnmodified},
+ ApmFormatHandlingTestParams{
+ StreamConfig(-16000, 1), StreamConfig(-16000, 1),
+ ApmFormatHandlingTestParams::ExpectedOutput::
+ kErrorAndUnmodified})));
+
+TEST_P(ApmFormatHandlingTest, IntApi) {
+ SCOPED_TRACE(ProduceDebugMessage());
+
+ // Set up input and output data.
+ const size_t num_input_samples =
+ test_params_.input_config.num_channels() *
+ std::abs(test_params_.input_config.sample_rate_hz() / 100);
+ const size_t num_output_samples =
+ test_params_.output_config.num_channels() *
+ std::abs(test_params_.output_config.sample_rate_hz() / 100);
+ std::vector<int16_t> input_block(num_input_samples);
+ for (int i = 0; i < static_cast<int>(input_block.size()); ++i) {
+ input_block[i] = i;
+ }
+ std::vector<int16_t> output_block(num_output_samples);
+ constexpr int kUnlikelyOffset = 37;
+ for (int i = 0; i < static_cast<int>(output_block.size()); ++i) {
+ output_block[i] = i - kUnlikelyOffset;
+ }
+
+ // Call APM.
+ rtc::scoped_refptr<AudioProcessing> ap =
+ AudioProcessingBuilderForTesting().Create();
+ int error;
+ if (stream_direction_ == kForward) {
+ error = ap->ProcessStream(input_block.data(), test_params_.input_config,
+ test_params_.output_config, output_block.data());
+ } else {
+ error = ap->ProcessReverseStream(
+ input_block.data(), test_params_.input_config,
+ test_params_.output_config, output_block.data());
+ }
+
+ // Check output.
+ switch (test_params_.expected_output) {
+ case ApmFormatHandlingTestParams::ExpectedOutput::kNoError:
+ EXPECT_EQ(error, AudioProcessing::kNoError);
+ break;
+ case ApmFormatHandlingTestParams::ExpectedOutput::kErrorAndUnmodified:
+ EXPECT_NE(error, AudioProcessing::kNoError);
+ for (int i = 0; i < static_cast<int>(output_block.size()); ++i) {
+ EXPECT_EQ(output_block[i], i - kUnlikelyOffset);
+ }
+ break;
+ case ApmFormatHandlingTestParams::ExpectedOutput::kErrorAndSilence:
+ EXPECT_NE(error, AudioProcessing::kNoError);
+ for (int i = 0; i < static_cast<int>(output_block.size()); ++i) {
+ EXPECT_EQ(output_block[i], 0);
+ }
+ break;
+ case ApmFormatHandlingTestParams::ExpectedOutput::
+ kErrorAndCopyOfFirstChannel:
+ EXPECT_NE(error, AudioProcessing::kNoError);
+ for (size_t ch = 0; ch < test_params_.output_config.num_channels();
+ ++ch) {
+ for (size_t i = 0; i < test_params_.output_config.num_frames(); ++i) {
+ EXPECT_EQ(
+ output_block[ch + i * test_params_.output_config.num_channels()],
+ static_cast<int16_t>(i *
+ test_params_.input_config.num_channels()));
+ }
+ }
+ break;
+ case ApmFormatHandlingTestParams::ExpectedOutput::kErrorAndExactCopy:
+ EXPECT_NE(error, AudioProcessing::kNoError);
+ for (int i = 0; i < static_cast<int>(output_block.size()); ++i) {
+ EXPECT_EQ(output_block[i], i);
+ }
+ break;
+ }
+}
+
+TEST_P(ApmFormatHandlingTest, FloatApi) {
+ SCOPED_TRACE(ProduceDebugMessage());
+
+ // Set up input and output data.
+ const size_t input_samples_per_channel =
+ std::abs(test_params_.input_config.sample_rate_hz()) / 100;
+ const size_t output_samples_per_channel =
+ std::abs(test_params_.output_config.sample_rate_hz()) / 100;
+ const size_t input_num_channels = test_params_.input_config.num_channels();
+ const size_t output_num_channels = test_params_.output_config.num_channels();
+ ChannelBuffer<float> input_block(input_samples_per_channel,
+ input_num_channels);
+ ChannelBuffer<float> output_block(output_samples_per_channel,
+ output_num_channels);
+ for (size_t ch = 0; ch < input_num_channels; ++ch) {
+ for (size_t i = 0; i < input_samples_per_channel; ++i) {
+ input_block.channels()[ch][i] = ch + i * input_num_channels;
+ }
+ }
+ constexpr int kUnlikelyOffset = 37;
+ for (size_t ch = 0; ch < output_num_channels; ++ch) {
+ for (size_t i = 0; i < output_samples_per_channel; ++i) {
+ output_block.channels()[ch][i] =
+ ch + i * output_num_channels - kUnlikelyOffset;
+ }
+ }
+
+ // Call APM.
+ rtc::scoped_refptr<AudioProcessing> ap =
+ AudioProcessingBuilderForTesting().Create();
+ int error;
+ if (stream_direction_ == kForward) {
+ error =
+ ap->ProcessStream(input_block.channels(), test_params_.input_config,
+ test_params_.output_config, output_block.channels());
+ } else {
+ error = ap->ProcessReverseStream(
+ input_block.channels(), test_params_.input_config,
+ test_params_.output_config, output_block.channels());
+ }
+
+ // Check output.
+ switch (test_params_.expected_output) {
+ case ApmFormatHandlingTestParams::ExpectedOutput::kNoError:
+ EXPECT_EQ(error, AudioProcessing::kNoError);
+ break;
+ case ApmFormatHandlingTestParams::ExpectedOutput::kErrorAndUnmodified:
+ EXPECT_NE(error, AudioProcessing::kNoError);
+ for (size_t ch = 0; ch < output_num_channels; ++ch) {
+ for (size_t i = 0; i < output_samples_per_channel; ++i) {
+ EXPECT_EQ(output_block.channels()[ch][i],
+ ch + i * output_num_channels - kUnlikelyOffset);
+ }
+ }
+ break;
+ case ApmFormatHandlingTestParams::ExpectedOutput::kErrorAndSilence:
+ EXPECT_NE(error, AudioProcessing::kNoError);
+ for (size_t ch = 0; ch < output_num_channels; ++ch) {
+ for (size_t i = 0; i < output_samples_per_channel; ++i) {
+ EXPECT_EQ(output_block.channels()[ch][i], 0);
+ }
+ }
+ break;
+ case ApmFormatHandlingTestParams::ExpectedOutput::
+ kErrorAndCopyOfFirstChannel:
+ EXPECT_NE(error, AudioProcessing::kNoError);
+ for (size_t ch = 0; ch < output_num_channels; ++ch) {
+ for (size_t i = 0; i < output_samples_per_channel; ++i) {
+ EXPECT_EQ(output_block.channels()[ch][i],
+ input_block.channels()[0][i]);
+ }
+ }
+ break;
+ case ApmFormatHandlingTestParams::ExpectedOutput::kErrorAndExactCopy:
+ EXPECT_NE(error, AudioProcessing::kNoError);
+ for (size_t ch = 0; ch < output_num_channels; ++ch) {
+ for (size_t i = 0; i < output_samples_per_channel; ++i) {
+ EXPECT_EQ(output_block.channels()[ch][i],
+ input_block.channels()[ch][i]);
+ }
+ }
+ break;
+ }
+}
+
+TEST(ApmAnalyzeReverseStreamFormatTest, AnalyzeReverseStream) {
+ for (auto&& [input_config, expect_error] :
+ {std::tuple(StreamConfig(16000, 2), /*expect_error=*/false),
+ std::tuple(StreamConfig(8000, 1), /*expect_error=*/false),
+ std::tuple(StreamConfig(384000, 1), /*expect_error=*/false),
+ std::tuple(StreamConfig(7900, 1), /*expect_error=*/true),
+ std::tuple(StreamConfig(390000, 1), /*expect_error=*/true),
+ std::tuple(StreamConfig(16000, 0), /*expect_error=*/true),
+ std::tuple(StreamConfig(-16000, 0), /*expect_error=*/true)}) {
+ SCOPED_TRACE(::testing::Message()
+ << "sample_rate_hz=" << input_config.sample_rate_hz()
+ << " num_channels=" << input_config.num_channels());
+
+ // Set up input data.
+ ChannelBuffer<float> input_block(
+ std::abs(input_config.sample_rate_hz()) / 100,
+ input_config.num_channels());
+
+ // Call APM.
+ rtc::scoped_refptr<AudioProcessing> ap =
+ AudioProcessingBuilderForTesting().Create();
+ int error = ap->AnalyzeReverseStream(input_block.channels(), input_config);
+
+ // Check output.
+ if (expect_error) {
+ EXPECT_NE(error, AudioProcessing::kNoError);
+ } else {
+ EXPECT_EQ(error, AudioProcessing::kNoError);
+ }
+ }
+}
+
+} // namespace webrtc