summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/p2p/client/basic_port_allocator_unittest.cc
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
commit26a029d407be480d791972afb5975cf62c9360a6 (patch)
treef435a8308119effd964b339f76abb83a57c29483 /third_party/libwebrtc/p2p/client/basic_port_allocator_unittest.cc
parentInitial commit. (diff)
downloadfirefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz
firefox-26a029d407be480d791972afb5975cf62c9360a6.zip
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/libwebrtc/p2p/client/basic_port_allocator_unittest.cc')
-rw-r--r--third_party/libwebrtc/p2p/client/basic_port_allocator_unittest.cc2723
1 files changed, 2723 insertions, 0 deletions
diff --git a/third_party/libwebrtc/p2p/client/basic_port_allocator_unittest.cc b/third_party/libwebrtc/p2p/client/basic_port_allocator_unittest.cc
new file mode 100644
index 0000000000..55222a1be2
--- /dev/null
+++ b/third_party/libwebrtc/p2p/client/basic_port_allocator_unittest.cc
@@ -0,0 +1,2723 @@
+/*
+ * Copyright 2009 The WebRTC Project Authors. All rights reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "p2p/client/basic_port_allocator.h"
+
+#include <memory>
+#include <ostream> // no-presubmit-check TODO(webrtc:8982)
+
+#include "absl/algorithm/container.h"
+#include "absl/strings/string_view.h"
+#include "p2p/base/basic_packet_socket_factory.h"
+#include "p2p/base/p2p_constants.h"
+#include "p2p/base/stun_port.h"
+#include "p2p/base/stun_request.h"
+#include "p2p/base/stun_server.h"
+#include "p2p/base/test_stun_server.h"
+#include "p2p/base/test_turn_server.h"
+#include "rtc_base/fake_clock.h"
+#include "rtc_base/fake_mdns_responder.h"
+#include "rtc_base/fake_network.h"
+#include "rtc_base/firewall_socket_server.h"
+#include "rtc_base/gunit.h"
+#include "rtc_base/ip_address.h"
+#include "rtc_base/logging.h"
+#include "rtc_base/nat_server.h"
+#include "rtc_base/nat_socket_factory.h"
+#include "rtc_base/nat_types.h"
+#include "rtc_base/net_helper.h"
+#include "rtc_base/net_helpers.h"
+#include "rtc_base/net_test_helpers.h"
+#include "rtc_base/network.h"
+#include "rtc_base/network_constants.h"
+#include "rtc_base/network_monitor.h"
+#include "rtc_base/socket.h"
+#include "rtc_base/socket_address.h"
+#include "rtc_base/socket_address_pair.h"
+#include "rtc_base/thread.h"
+#include "rtc_base/virtual_socket_server.h"
+#include "system_wrappers/include/metrics.h"
+#include "test/gmock.h"
+#include "test/gtest.h"
+#include "test/scoped_key_value_config.h"
+
+using rtc::IPAddress;
+using rtc::SocketAddress;
+using ::testing::Contains;
+using ::testing::Not;
+
+#define MAYBE_SKIP_IPV4 \
+ if (!rtc::HasIPv4Enabled()) { \
+ RTC_LOG(LS_INFO) << "No IPv4... skipping"; \
+ return; \
+ }
+
+static const SocketAddress kAnyAddr("0.0.0.0", 0);
+static const SocketAddress kClientAddr("11.11.11.11", 0);
+static const SocketAddress kClientAddr2("22.22.22.22", 0);
+static const SocketAddress kLoopbackAddr("127.0.0.1", 0);
+static const SocketAddress kPrivateAddr("192.168.1.11", 0);
+static const SocketAddress kPrivateAddr2("192.168.1.12", 0);
+static const SocketAddress kClientIPv6Addr("2401:fa00:4:1000:be30:5bff:fee5:c3",
+ 0);
+static const SocketAddress kClientIPv6Addr2(
+ "2401:fa00:4:2000:be30:5bff:fee5:c3",
+ 0);
+static const SocketAddress kClientIPv6Addr3(
+ "2401:fa00:4:3000:be30:5bff:fee5:c3",
+ 0);
+static const SocketAddress kClientIPv6Addr4(
+ "2401:fa00:4:4000:be30:5bff:fee5:c3",
+ 0);
+static const SocketAddress kClientIPv6Addr5(
+ "2401:fa00:4:5000:be30:5bff:fee5:c3",
+ 0);
+static const SocketAddress kNatUdpAddr("77.77.77.77", rtc::NAT_SERVER_UDP_PORT);
+static const SocketAddress kNatTcpAddr("77.77.77.77", rtc::NAT_SERVER_TCP_PORT);
+static const SocketAddress kRemoteClientAddr("22.22.22.22", 0);
+static const SocketAddress kStunAddr("99.99.99.1", cricket::STUN_SERVER_PORT);
+static const SocketAddress kTurnUdpIntAddr("99.99.99.4", 3478);
+static const SocketAddress kTurnUdpIntIPv6Addr(
+ "2402:fb00:4:1000:be30:5bff:fee5:c3",
+ 3479);
+static const SocketAddress kTurnTcpIntAddr("99.99.99.5", 3478);
+static const SocketAddress kTurnTcpIntIPv6Addr(
+ "2402:fb00:4:2000:be30:5bff:fee5:c3",
+ 3479);
+static const SocketAddress kTurnUdpExtAddr("99.99.99.6", 0);
+
+// Minimum and maximum port for port range tests.
+static const int kMinPort = 10000;
+static const int kMaxPort = 10099;
+
+// Based on ICE_UFRAG_LENGTH
+static const char kIceUfrag0[] = "UF00";
+// Based on ICE_PWD_LENGTH
+static const char kIcePwd0[] = "TESTICEPWD00000000000000";
+
+static const char kContentName[] = "test content";
+
+static const int kDefaultAllocationTimeout = 3000;
+static const char kTurnUsername[] = "test";
+static const char kTurnPassword[] = "test";
+
+// STUN timeout (with all retries) is cricket::STUN_TOTAL_TIMEOUT.
+// Add some margin of error for slow bots.
+static const int kStunTimeoutMs = cricket::STUN_TOTAL_TIMEOUT;
+
+constexpr uint64_t kTiebreakerDefault = 44444;
+
+namespace {
+
+void CheckStunKeepaliveIntervalOfAllReadyPorts(
+ const cricket::PortAllocatorSession* allocator_session,
+ int expected) {
+ auto ready_ports = allocator_session->ReadyPorts();
+ for (const auto* port : ready_ports) {
+ if (port->Type() == cricket::STUN_PORT_TYPE ||
+ (port->Type() == cricket::LOCAL_PORT_TYPE &&
+ port->GetProtocol() == cricket::PROTO_UDP)) {
+ EXPECT_EQ(
+ static_cast<const cricket::UDPPort*>(port)->stun_keepalive_delay(),
+ expected);
+ }
+ }
+}
+
+} // namespace
+
+namespace cricket {
+
+// Helper for dumping candidates
+std::ostream& operator<<(std::ostream& os,
+ const std::vector<Candidate>& candidates) {
+ os << '[';
+ bool first = true;
+ for (const Candidate& c : candidates) {
+ if (!first) {
+ os << ", ";
+ }
+ os << c.ToString();
+ first = false;
+ }
+ os << ']';
+ return os;
+}
+
+class BasicPortAllocatorTestBase : public ::testing::Test,
+ public sigslot::has_slots<> {
+ public:
+ BasicPortAllocatorTestBase()
+ : vss_(new rtc::VirtualSocketServer()),
+ fss_(new rtc::FirewallSocketServer(vss_.get())),
+ socket_factory_(fss_.get()),
+ thread_(fss_.get()),
+ // Note that the NAT is not used by default. ResetWithStunServerAndNat
+ // must be called.
+ nat_factory_(vss_.get(), kNatUdpAddr, kNatTcpAddr),
+ nat_socket_factory_(new rtc::BasicPacketSocketFactory(&nat_factory_)),
+ stun_server_(TestStunServer::Create(fss_.get(), kStunAddr)),
+ turn_server_(rtc::Thread::Current(),
+ fss_.get(),
+ kTurnUdpIntAddr,
+ kTurnUdpExtAddr),
+ candidate_allocation_done_(false) {
+ ServerAddresses stun_servers;
+ stun_servers.insert(kStunAddr);
+
+ allocator_ = std::make_unique<BasicPortAllocator>(
+ &network_manager_, &socket_factory_, stun_servers, &field_trials_);
+ allocator_->Initialize();
+ allocator_->set_step_delay(kMinimumStepDelay);
+ allocator_->SetIceTiebreaker(kTiebreakerDefault);
+ webrtc::metrics::Reset();
+ }
+
+ void AddInterface(const SocketAddress& addr) {
+ network_manager_.AddInterface(addr);
+ }
+ void AddInterface(const SocketAddress& addr, absl::string_view if_name) {
+ network_manager_.AddInterface(addr, if_name);
+ }
+ void AddInterface(const SocketAddress& addr,
+ absl::string_view if_name,
+ rtc::AdapterType type) {
+ network_manager_.AddInterface(addr, if_name, type);
+ }
+ // The default source address is the public address that STUN server will
+ // observe when the endpoint is sitting on the public internet and the local
+ // port is bound to the "any" address. Intended for simulating the situation
+ // that client binds the "any" address, and that's also the address returned
+ // by getsockname/GetLocalAddress, so that the client can learn the actual
+ // local address only from the STUN response.
+ void AddInterfaceAsDefaultSourceAddresss(const SocketAddress& addr) {
+ AddInterface(addr);
+ // When a binding comes from the any address, the `addr` will be used as the
+ // srflx address.
+ vss_->SetDefaultSourceAddress(addr.ipaddr());
+ }
+ void RemoveInterface(const SocketAddress& addr) {
+ network_manager_.RemoveInterface(addr);
+ }
+ bool SetPortRange(int min_port, int max_port) {
+ return allocator_->SetPortRange(min_port, max_port);
+ }
+ // Endpoint is on the public network. No STUN or TURN.
+ void ResetWithNoServersOrNat() {
+ allocator_.reset(
+ new BasicPortAllocator(&network_manager_, &socket_factory_));
+ allocator_->Initialize();
+ allocator_->SetIceTiebreaker(kTiebreakerDefault);
+ allocator_->set_step_delay(kMinimumStepDelay);
+ }
+ // Endpoint is behind a NAT, with STUN specified.
+ void ResetWithStunServerAndNat(const rtc::SocketAddress& stun_server) {
+ ResetWithStunServer(stun_server, true);
+ }
+ // Endpoint is on the public network, with STUN specified.
+ void ResetWithStunServerNoNat(const rtc::SocketAddress& stun_server) {
+ ResetWithStunServer(stun_server, false);
+ }
+ // Endpoint is on the public network, with TURN specified.
+ void ResetWithTurnServersNoNat(const rtc::SocketAddress& udp_turn,
+ const rtc::SocketAddress& tcp_turn) {
+ ResetWithNoServersOrNat();
+ AddTurnServers(udp_turn, tcp_turn);
+ }
+
+ RelayServerConfig CreateTurnServers(const rtc::SocketAddress& udp_turn,
+ const rtc::SocketAddress& tcp_turn) {
+ RelayServerConfig turn_server;
+ RelayCredentials credentials(kTurnUsername, kTurnPassword);
+ turn_server.credentials = credentials;
+
+ if (!udp_turn.IsNil()) {
+ turn_server.ports.push_back(ProtocolAddress(udp_turn, PROTO_UDP));
+ }
+ if (!tcp_turn.IsNil()) {
+ turn_server.ports.push_back(ProtocolAddress(tcp_turn, PROTO_TCP));
+ }
+ return turn_server;
+ }
+
+ void AddTurnServers(const rtc::SocketAddress& udp_turn,
+ const rtc::SocketAddress& tcp_turn) {
+ RelayServerConfig turn_server = CreateTurnServers(udp_turn, tcp_turn);
+ allocator_->AddTurnServerForTesting(turn_server);
+ }
+
+ bool CreateSession(int component) {
+ session_ = CreateSession("session", component);
+ if (!session_) {
+ return false;
+ }
+ return true;
+ }
+
+ bool CreateSession(int component, absl::string_view content_name) {
+ session_ = CreateSession("session", content_name, component);
+ if (!session_) {
+ return false;
+ }
+ return true;
+ }
+
+ std::unique_ptr<PortAllocatorSession> CreateSession(absl::string_view sid,
+ int component) {
+ return CreateSession(sid, kContentName, component);
+ }
+
+ std::unique_ptr<PortAllocatorSession> CreateSession(
+ absl::string_view sid,
+ absl::string_view content_name,
+ int component) {
+ return CreateSession(sid, content_name, component, kIceUfrag0, kIcePwd0);
+ }
+
+ std::unique_ptr<PortAllocatorSession> CreateSession(
+ absl::string_view sid,
+ absl::string_view content_name,
+ int component,
+ absl::string_view ice_ufrag,
+ absl::string_view ice_pwd) {
+ std::unique_ptr<PortAllocatorSession> session =
+ allocator_->CreateSession(content_name, component, ice_ufrag, ice_pwd);
+ session->SignalPortReady.connect(this,
+ &BasicPortAllocatorTestBase::OnPortReady);
+ session->SignalPortsPruned.connect(
+ this, &BasicPortAllocatorTestBase::OnPortsPruned);
+ session->SignalCandidatesReady.connect(
+ this, &BasicPortAllocatorTestBase::OnCandidatesReady);
+ session->SignalCandidatesRemoved.connect(
+ this, &BasicPortAllocatorTestBase::OnCandidatesRemoved);
+ session->SignalCandidatesAllocationDone.connect(
+ this, &BasicPortAllocatorTestBase::OnCandidatesAllocationDone);
+ session->set_ice_tiebreaker(kTiebreakerDefault);
+ return session;
+ }
+
+ // Return true if the addresses are the same, or the port is 0 in `pattern`
+ // (acting as a wildcard) and the IPs are the same.
+ // Even with a wildcard port, the port of the address should be nonzero if
+ // the IP is nonzero.
+ static bool AddressMatch(const SocketAddress& address,
+ const SocketAddress& pattern) {
+ return address.ipaddr() == pattern.ipaddr() &&
+ ((pattern.port() == 0 &&
+ (address.port() != 0 || IPIsAny(address.ipaddr()))) ||
+ (pattern.port() != 0 && address.port() == pattern.port()));
+ }
+
+ // Returns the number of ports that have matching type, protocol and
+ // address.
+ static int CountPorts(const std::vector<PortInterface*>& ports,
+ absl::string_view type,
+ ProtocolType protocol,
+ const SocketAddress& client_addr) {
+ return absl::c_count_if(
+ ports, [type, protocol, client_addr](PortInterface* port) {
+ return port->Type() == type && port->GetProtocol() == protocol &&
+ port->Network()->GetBestIP() == client_addr.ipaddr();
+ });
+ }
+
+ static int CountCandidates(const std::vector<Candidate>& candidates,
+ absl::string_view type,
+ absl::string_view proto,
+ const SocketAddress& addr) {
+ return absl::c_count_if(
+ candidates, [type, proto, addr](const Candidate& c) {
+ return c.type() == type && c.protocol() == proto &&
+ AddressMatch(c.address(), addr);
+ });
+ }
+
+ // Find a candidate and return it.
+ static bool FindCandidate(const std::vector<Candidate>& candidates,
+ absl::string_view type,
+ absl::string_view proto,
+ const SocketAddress& addr,
+ Candidate* found) {
+ auto it =
+ absl::c_find_if(candidates, [type, proto, addr](const Candidate& c) {
+ return c.type() == type && c.protocol() == proto &&
+ AddressMatch(c.address(), addr);
+ });
+ if (it != candidates.end() && found) {
+ *found = *it;
+ }
+ return it != candidates.end();
+ }
+
+ // Convenience method to call FindCandidate with no return.
+ static bool HasCandidate(const std::vector<Candidate>& candidates,
+ absl::string_view type,
+ absl::string_view proto,
+ const SocketAddress& addr) {
+ return FindCandidate(candidates, type, proto, addr, nullptr);
+ }
+
+ // Version of HasCandidate that also takes a related address.
+ static bool HasCandidateWithRelatedAddr(
+ const std::vector<Candidate>& candidates,
+ absl::string_view type,
+ absl::string_view proto,
+ const SocketAddress& addr,
+ const SocketAddress& related_addr) {
+ return absl::c_any_of(
+ candidates, [type, proto, addr, related_addr](const Candidate& c) {
+ return c.type() == type && c.protocol() == proto &&
+ AddressMatch(c.address(), addr) &&
+ AddressMatch(c.related_address(), related_addr);
+ });
+ }
+
+ static bool CheckPort(const rtc::SocketAddress& addr,
+ int min_port,
+ int max_port) {
+ return (addr.port() >= min_port && addr.port() <= max_port);
+ }
+
+ static bool HasNetwork(const std::vector<const rtc::Network*>& networks,
+ const rtc::Network& to_be_found) {
+ auto it =
+ absl::c_find_if(networks, [to_be_found](const rtc::Network* network) {
+ return network->description() == to_be_found.description() &&
+ network->name() == to_be_found.name() &&
+ network->prefix() == to_be_found.prefix();
+ });
+ return it != networks.end();
+ }
+
+ void OnCandidatesAllocationDone(PortAllocatorSession* session) {
+ // We should only get this callback once, except in the mux test where
+ // we have multiple port allocation sessions.
+ if (session == session_.get()) {
+ ASSERT_FALSE(candidate_allocation_done_);
+ candidate_allocation_done_ = true;
+ }
+ EXPECT_TRUE(session->CandidatesAllocationDone());
+ }
+
+ // Check if all ports allocated have send-buffer size `expected`. If
+ // `expected` == -1, check if GetOptions returns SOCKET_ERROR.
+ void CheckSendBufferSizesOfAllPorts(int expected) {
+ std::vector<PortInterface*>::iterator it;
+ for (it = ports_.begin(); it < ports_.end(); ++it) {
+ int send_buffer_size;
+ if (expected == -1) {
+ EXPECT_EQ(SOCKET_ERROR,
+ (*it)->GetOption(rtc::Socket::OPT_SNDBUF, &send_buffer_size));
+ } else {
+ EXPECT_EQ(0,
+ (*it)->GetOption(rtc::Socket::OPT_SNDBUF, &send_buffer_size));
+ ASSERT_EQ(expected, send_buffer_size);
+ }
+ }
+ }
+
+ rtc::VirtualSocketServer* virtual_socket_server() { return vss_.get(); }
+
+ protected:
+ BasicPortAllocator& allocator() { return *allocator_; }
+
+ void OnPortReady(PortAllocatorSession* ses, PortInterface* port) {
+ RTC_LOG(LS_INFO) << "OnPortReady: " << port->ToString();
+ ports_.push_back(port);
+ // Make sure the new port is added to ReadyPorts.
+ auto ready_ports = ses->ReadyPorts();
+ EXPECT_THAT(ready_ports, Contains(port));
+ }
+ void OnPortsPruned(PortAllocatorSession* ses,
+ const std::vector<PortInterface*>& pruned_ports) {
+ RTC_LOG(LS_INFO) << "Number of ports pruned: " << pruned_ports.size();
+ auto ready_ports = ses->ReadyPorts();
+ auto new_end = ports_.end();
+ for (PortInterface* port : pruned_ports) {
+ new_end = std::remove(ports_.begin(), new_end, port);
+ // Make sure the pruned port is not in ReadyPorts.
+ EXPECT_THAT(ready_ports, Not(Contains(port)));
+ }
+ ports_.erase(new_end, ports_.end());
+ }
+
+ void OnCandidatesReady(PortAllocatorSession* ses,
+ const std::vector<Candidate>& candidates) {
+ for (const Candidate& candidate : candidates) {
+ RTC_LOG(LS_INFO) << "OnCandidatesReady: " << candidate.ToString();
+ // Sanity check that the ICE component is set.
+ EXPECT_EQ(ICE_CANDIDATE_COMPONENT_RTP, candidate.component());
+ candidates_.push_back(candidate);
+ }
+ // Make sure the new candidates are added to Candidates.
+ auto ses_candidates = ses->ReadyCandidates();
+ for (const Candidate& candidate : candidates) {
+ EXPECT_THAT(ses_candidates, Contains(candidate));
+ }
+ }
+
+ void OnCandidatesRemoved(PortAllocatorSession* session,
+ const std::vector<Candidate>& removed_candidates) {
+ auto new_end = std::remove_if(
+ candidates_.begin(), candidates_.end(),
+ [removed_candidates](Candidate& candidate) {
+ for (const Candidate& removed_candidate : removed_candidates) {
+ if (candidate.MatchesForRemoval(removed_candidate)) {
+ return true;
+ }
+ }
+ return false;
+ });
+ candidates_.erase(new_end, candidates_.end());
+ }
+
+ bool HasRelayAddress(const ProtocolAddress& proto_addr) {
+ for (size_t i = 0; i < allocator_->turn_servers().size(); ++i) {
+ RelayServerConfig server_config = allocator_->turn_servers()[i];
+ PortList::const_iterator relay_port;
+ for (relay_port = server_config.ports.begin();
+ relay_port != server_config.ports.end(); ++relay_port) {
+ if (proto_addr.address == relay_port->address &&
+ proto_addr.proto == relay_port->proto)
+ return true;
+ }
+ }
+ return false;
+ }
+
+ void ResetWithStunServer(const rtc::SocketAddress& stun_server,
+ bool with_nat) {
+ if (with_nat) {
+ nat_server_.reset(new rtc::NATServer(
+ rtc::NAT_OPEN_CONE, vss_.get(), kNatUdpAddr, kNatTcpAddr, vss_.get(),
+ rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0)));
+ } else {
+ nat_socket_factory_ =
+ std::make_unique<rtc::BasicPacketSocketFactory>(fss_.get());
+ }
+
+ ServerAddresses stun_servers;
+ if (!stun_server.IsNil()) {
+ stun_servers.insert(stun_server);
+ }
+ allocator_.reset(new BasicPortAllocator(&network_manager_,
+ nat_socket_factory_.get(),
+ stun_servers, &field_trials_));
+ allocator_->Initialize();
+ allocator_->set_step_delay(kMinimumStepDelay);
+ }
+
+ std::unique_ptr<rtc::VirtualSocketServer> vss_;
+ std::unique_ptr<rtc::FirewallSocketServer> fss_;
+ rtc::BasicPacketSocketFactory socket_factory_;
+ rtc::AutoSocketServerThread thread_;
+ std::unique_ptr<rtc::NATServer> nat_server_;
+ rtc::NATSocketFactory nat_factory_;
+ std::unique_ptr<rtc::BasicPacketSocketFactory> nat_socket_factory_;
+ std::unique_ptr<TestStunServer> stun_server_;
+ TestTurnServer turn_server_;
+ rtc::FakeNetworkManager network_manager_;
+ std::unique_ptr<BasicPortAllocator> allocator_;
+ std::unique_ptr<PortAllocatorSession> session_;
+ std::vector<PortInterface*> ports_;
+ std::vector<Candidate> candidates_;
+ bool candidate_allocation_done_;
+ webrtc::test::ScopedKeyValueConfig field_trials_;
+};
+
+class BasicPortAllocatorTestWithRealClock : public BasicPortAllocatorTestBase {
+};
+
+class FakeClockBase {
+ public:
+ rtc::ScopedFakeClock fake_clock;
+};
+
+class BasicPortAllocatorTest : public FakeClockBase,
+ public BasicPortAllocatorTestBase {
+ public:
+ // This function starts the port/address gathering and check the existence of
+ // candidates as specified. When `expect_stun_candidate` is true,
+ // `stun_candidate_addr` carries the expected reflective address, which is
+ // also the related address for TURN candidate if it is expected. Otherwise,
+ // it should be ignore.
+ void CheckDisableAdapterEnumeration(
+ uint32_t total_ports,
+ const rtc::IPAddress& host_candidate_addr,
+ const rtc::IPAddress& stun_candidate_addr,
+ const rtc::IPAddress& relay_candidate_udp_transport_addr,
+ const rtc::IPAddress& relay_candidate_tcp_transport_addr) {
+ network_manager_.set_default_local_addresses(kPrivateAddr.ipaddr(),
+ rtc::IPAddress());
+ if (!session_) {
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ }
+ session_->set_flags(session_->flags() |
+ PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION |
+ PORTALLOCATOR_ENABLE_SHARED_SOCKET);
+ allocator().set_allow_tcp_listen(false);
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+
+ uint32_t total_candidates = 0;
+ if (!host_candidate_addr.IsNil()) {
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp",
+ rtc::SocketAddress(kPrivateAddr.ipaddr(), 0)));
+ ++total_candidates;
+ }
+ if (!stun_candidate_addr.IsNil()) {
+ rtc::SocketAddress related_address(host_candidate_addr, 0);
+ if (host_candidate_addr.IsNil()) {
+ related_address.SetIP(rtc::GetAnyIP(stun_candidate_addr.family()));
+ }
+ EXPECT_TRUE(HasCandidateWithRelatedAddr(
+ candidates_, "stun", "udp",
+ rtc::SocketAddress(stun_candidate_addr, 0), related_address));
+ ++total_candidates;
+ }
+ if (!relay_candidate_udp_transport_addr.IsNil()) {
+ EXPECT_TRUE(HasCandidateWithRelatedAddr(
+ candidates_, "relay", "udp",
+ rtc::SocketAddress(relay_candidate_udp_transport_addr, 0),
+ rtc::SocketAddress(stun_candidate_addr, 0)));
+ ++total_candidates;
+ }
+ if (!relay_candidate_tcp_transport_addr.IsNil()) {
+ EXPECT_TRUE(HasCandidateWithRelatedAddr(
+ candidates_, "relay", "udp",
+ rtc::SocketAddress(relay_candidate_tcp_transport_addr, 0),
+ rtc::SocketAddress(stun_candidate_addr, 0)));
+ ++total_candidates;
+ }
+
+ EXPECT_EQ(total_candidates, candidates_.size());
+ EXPECT_EQ(total_ports, ports_.size());
+ }
+
+ void TestIPv6TurnPortPrunesIPv4TurnPort() {
+ turn_server_.AddInternalSocket(kTurnUdpIntIPv6Addr, PROTO_UDP);
+ // Add two IP addresses on the same interface.
+ AddInterface(kClientAddr, "net1");
+ AddInterface(kClientIPv6Addr, "net1");
+ allocator_.reset(
+ new BasicPortAllocator(&network_manager_, &socket_factory_));
+ allocator_->Initialize();
+ allocator_->SetConfiguration(allocator_->stun_servers(),
+ allocator_->turn_servers(), 0,
+ webrtc::PRUNE_BASED_ON_PRIORITY);
+ AddTurnServers(kTurnUdpIntIPv6Addr, rtc::SocketAddress());
+ AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
+
+ allocator_->set_step_delay(kMinimumStepDelay);
+ allocator_->set_flags(
+ allocator().flags() | PORTALLOCATOR_ENABLE_SHARED_SOCKET |
+ PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP);
+
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ // Three ports (one IPv4 STUN, one IPv6 STUN and one TURN) will be ready.
+ EXPECT_EQ(3U, session_->ReadyPorts().size());
+ EXPECT_EQ(3U, ports_.size());
+ EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientAddr));
+ EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientIPv6Addr));
+ EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_UDP, kClientIPv6Addr));
+ EXPECT_EQ(0, CountPorts(ports_, "relay", PROTO_UDP, kClientAddr));
+
+ // Now that we remove candidates when a TURN port is pruned, there will be
+ // exactly 3 candidates in both `candidates_` and `ready_candidates`.
+ EXPECT_EQ(3U, candidates_.size());
+ const std::vector<Candidate>& ready_candidates =
+ session_->ReadyCandidates();
+ EXPECT_EQ(3U, ready_candidates.size());
+ EXPECT_TRUE(HasCandidate(ready_candidates, "local", "udp", kClientAddr));
+ EXPECT_TRUE(HasCandidate(ready_candidates, "relay", "udp",
+ rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
+ }
+
+ void TestTurnPortPrunesWithUdpAndTcpPorts(
+ webrtc::PortPrunePolicy prune_policy,
+ bool tcp_pruned) {
+ turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
+ AddInterface(kClientAddr);
+ allocator_.reset(
+ new BasicPortAllocator(&network_manager_, &socket_factory_));
+ allocator_->Initialize();
+ allocator_->SetConfiguration(allocator_->stun_servers(),
+ allocator_->turn_servers(), 0, prune_policy);
+ AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
+ allocator_->set_step_delay(kMinimumStepDelay);
+ allocator_->set_flags(allocator().flags() |
+ PORTALLOCATOR_ENABLE_SHARED_SOCKET |
+ PORTALLOCATOR_DISABLE_TCP);
+
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ // Only 2 ports (one STUN and one TURN) are actually being used.
+ EXPECT_EQ(2U, session_->ReadyPorts().size());
+ // We have verified that each port, when it is added to `ports_`, it is
+ // found in `ready_ports`, and when it is pruned, it is not found in
+ // `ready_ports`, so we only need to verify the content in one of them.
+ EXPECT_EQ(2U, ports_.size());
+ EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientAddr));
+ int num_udp_ports = tcp_pruned ? 1 : 0;
+ EXPECT_EQ(num_udp_ports,
+ CountPorts(ports_, "relay", PROTO_UDP, kClientAddr));
+ EXPECT_EQ(1 - num_udp_ports,
+ CountPorts(ports_, "relay", PROTO_TCP, kClientAddr));
+
+ // Now that we remove candidates when a TURN port is pruned, `candidates_`
+ // should only contains two candidates regardless whether the TCP TURN port
+ // is created before or after the UDP turn port.
+ EXPECT_EQ(2U, candidates_.size());
+ // There will only be 2 candidates in `ready_candidates` because it only
+ // includes the candidates in the ready ports.
+ const std::vector<Candidate>& ready_candidates =
+ session_->ReadyCandidates();
+ EXPECT_EQ(2U, ready_candidates.size());
+ EXPECT_TRUE(HasCandidate(ready_candidates, "local", "udp", kClientAddr));
+
+ // The external candidate is always udp.
+ EXPECT_TRUE(HasCandidate(ready_candidates, "relay", "udp",
+ rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
+ }
+
+ void TestEachInterfaceHasItsOwnTurnPorts() {
+ turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
+ turn_server_.AddInternalSocket(kTurnUdpIntIPv6Addr, PROTO_UDP);
+ turn_server_.AddInternalSocket(kTurnTcpIntIPv6Addr, PROTO_TCP);
+ // Add two interfaces both having IPv4 and IPv6 addresses.
+ AddInterface(kClientAddr, "net1", rtc::ADAPTER_TYPE_WIFI);
+ AddInterface(kClientIPv6Addr, "net1", rtc::ADAPTER_TYPE_WIFI);
+ AddInterface(kClientAddr2, "net2", rtc::ADAPTER_TYPE_CELLULAR);
+ AddInterface(kClientIPv6Addr2, "net2", rtc::ADAPTER_TYPE_CELLULAR);
+ allocator_.reset(
+ new BasicPortAllocator(&network_manager_, &socket_factory_));
+ allocator_->Initialize();
+ allocator_->SetConfiguration(allocator_->stun_servers(),
+ allocator_->turn_servers(), 0,
+ webrtc::PRUNE_BASED_ON_PRIORITY);
+ // Have both UDP/TCP and IPv4/IPv6 TURN ports.
+ AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
+ AddTurnServers(kTurnUdpIntIPv6Addr, kTurnTcpIntIPv6Addr);
+
+ allocator_->set_step_delay(kMinimumStepDelay);
+ allocator_->set_flags(
+ allocator().flags() | PORTALLOCATOR_ENABLE_SHARED_SOCKET |
+ PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_ENABLE_IPV6_ON_WIFI);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ // 10 ports (4 STUN and 1 TURN ports on each interface) will be ready to
+ // use.
+ EXPECT_EQ(10U, session_->ReadyPorts().size());
+ EXPECT_EQ(10U, ports_.size());
+ EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientAddr));
+ EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientAddr2));
+ EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientIPv6Addr));
+ EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientIPv6Addr2));
+ EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kClientAddr));
+ EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kClientAddr2));
+ EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kClientIPv6Addr));
+ EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kClientIPv6Addr2));
+ EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_UDP, kClientIPv6Addr));
+ EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_UDP, kClientIPv6Addr2));
+
+ // Now that we remove candidates when TURN ports are pruned, there will be
+ // exactly 10 candidates in `candidates_`.
+ EXPECT_EQ(10U, candidates_.size());
+ const std::vector<Candidate>& ready_candidates =
+ session_->ReadyCandidates();
+ EXPECT_EQ(10U, ready_candidates.size());
+ EXPECT_TRUE(HasCandidate(ready_candidates, "local", "udp", kClientAddr));
+ EXPECT_TRUE(HasCandidate(ready_candidates, "local", "udp", kClientAddr2));
+ EXPECT_TRUE(
+ HasCandidate(ready_candidates, "local", "udp", kClientIPv6Addr));
+ EXPECT_TRUE(
+ HasCandidate(ready_candidates, "local", "udp", kClientIPv6Addr2));
+ EXPECT_TRUE(HasCandidate(ready_candidates, "local", "tcp", kClientAddr));
+ EXPECT_TRUE(HasCandidate(ready_candidates, "local", "tcp", kClientAddr2));
+ EXPECT_TRUE(
+ HasCandidate(ready_candidates, "local", "tcp", kClientIPv6Addr));
+ EXPECT_TRUE(
+ HasCandidate(ready_candidates, "local", "tcp", kClientIPv6Addr2));
+ EXPECT_TRUE(HasCandidate(ready_candidates, "relay", "udp",
+ rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
+ }
+};
+
+// Tests that we can init the port allocator and create a session.
+TEST_F(BasicPortAllocatorTest, TestBasic) {
+ EXPECT_EQ(&network_manager_, allocator().network_manager());
+ EXPECT_EQ(kStunAddr, *allocator().stun_servers().begin());
+ ASSERT_EQ(0u, allocator().turn_servers().size());
+
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ EXPECT_FALSE(session_->CandidatesAllocationDone());
+}
+
+// Tests that our network filtering works properly.
+TEST_F(BasicPortAllocatorTest, TestIgnoreOnlyLoopbackNetworkByDefault) {
+ AddInterface(SocketAddress(IPAddress(0x12345600U), 0), "test_eth0",
+ rtc::ADAPTER_TYPE_ETHERNET);
+ AddInterface(SocketAddress(IPAddress(0x12345601U), 0), "test_wlan0",
+ rtc::ADAPTER_TYPE_WIFI);
+ AddInterface(SocketAddress(IPAddress(0x12345602U), 0), "test_cell0",
+ rtc::ADAPTER_TYPE_CELLULAR);
+ AddInterface(SocketAddress(IPAddress(0x12345603U), 0), "test_vpn0",
+ rtc::ADAPTER_TYPE_VPN);
+ AddInterface(SocketAddress(IPAddress(0x12345604U), 0), "test_lo",
+ rtc::ADAPTER_TYPE_LOOPBACK);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->set_flags(PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY |
+ PORTALLOCATOR_DISABLE_TCP);
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ EXPECT_EQ(4U, candidates_.size());
+ for (const Candidate& candidate : candidates_) {
+ EXPECT_LT(candidate.address().ip(), 0x12345604U);
+ }
+}
+
+TEST_F(BasicPortAllocatorTest, TestIgnoreNetworksAccordingToIgnoreMask) {
+ AddInterface(SocketAddress(IPAddress(0x12345600U), 0), "test_eth0",
+ rtc::ADAPTER_TYPE_ETHERNET);
+ AddInterface(SocketAddress(IPAddress(0x12345601U), 0), "test_wlan0",
+ rtc::ADAPTER_TYPE_WIFI);
+ AddInterface(SocketAddress(IPAddress(0x12345602U), 0), "test_cell0",
+ rtc::ADAPTER_TYPE_CELLULAR);
+ allocator_->SetNetworkIgnoreMask(rtc::ADAPTER_TYPE_ETHERNET |
+ rtc::ADAPTER_TYPE_LOOPBACK |
+ rtc::ADAPTER_TYPE_WIFI);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->set_flags(PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY |
+ PORTALLOCATOR_DISABLE_TCP);
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ EXPECT_EQ(1U, candidates_.size());
+ EXPECT_EQ(0x12345602U, candidates_[0].address().ip());
+}
+
+// Test that when the PORTALLOCATOR_DISABLE_COSTLY_NETWORKS flag is set and
+// both Wi-Fi and cell interfaces are available, only Wi-Fi is used.
+TEST_F(BasicPortAllocatorTest,
+ WifiUsedInsteadOfCellWhenCostlyNetworksDisabled) {
+ SocketAddress wifi(IPAddress(0x12345600U), 0);
+ SocketAddress cell(IPAddress(0x12345601U), 0);
+ AddInterface(wifi, "test_wlan0", rtc::ADAPTER_TYPE_WIFI);
+ AddInterface(cell, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR);
+ // Disable all but UDP candidates to make the test simpler.
+ allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN |
+ cricket::PORTALLOCATOR_DISABLE_RELAY |
+ cricket::PORTALLOCATOR_DISABLE_TCP |
+ cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
+ ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ // Should only get one Wi-Fi candidate.
+ EXPECT_EQ(1U, candidates_.size());
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", wifi));
+}
+
+// Test that when the PORTALLOCATOR_DISABLE_COSTLY_NETWORKS flag is set and
+// both "unknown" and cell interfaces are available, only the unknown are used.
+// The unknown interface may be something that ultimately uses Wi-Fi, so we do
+// this to be on the safe side.
+TEST_F(BasicPortAllocatorTest,
+ UnknownInterfaceUsedInsteadOfCellWhenCostlyNetworksDisabled) {
+ SocketAddress cell(IPAddress(0x12345601U), 0);
+ SocketAddress unknown1(IPAddress(0x12345602U), 0);
+ SocketAddress unknown2(IPAddress(0x12345603U), 0);
+ AddInterface(cell, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR);
+ AddInterface(unknown1, "test_unknown0", rtc::ADAPTER_TYPE_UNKNOWN);
+ AddInterface(unknown2, "test_unknown1", rtc::ADAPTER_TYPE_UNKNOWN);
+ // Disable all but UDP candidates to make the test simpler.
+ allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN |
+ cricket::PORTALLOCATOR_DISABLE_RELAY |
+ cricket::PORTALLOCATOR_DISABLE_TCP |
+ cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
+ ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ // Should only get two candidates, none of which is cell.
+ EXPECT_EQ(2U, candidates_.size());
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", unknown1));
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", unknown2));
+}
+
+// Test that when the PORTALLOCATOR_DISABLE_COSTLY_NETWORKS flag is set and
+// there are a mix of Wi-Fi, "unknown" and cell interfaces, only the Wi-Fi
+// interface is used.
+TEST_F(BasicPortAllocatorTest,
+ WifiUsedInsteadOfUnknownOrCellWhenCostlyNetworksDisabled) {
+ SocketAddress wifi(IPAddress(0x12345600U), 0);
+ SocketAddress cellular(IPAddress(0x12345601U), 0);
+ SocketAddress unknown1(IPAddress(0x12345602U), 0);
+ SocketAddress unknown2(IPAddress(0x12345603U), 0);
+ AddInterface(wifi, "test_wlan0", rtc::ADAPTER_TYPE_WIFI);
+ AddInterface(cellular, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR);
+ AddInterface(unknown1, "test_unknown0", rtc::ADAPTER_TYPE_UNKNOWN);
+ AddInterface(unknown2, "test_unknown1", rtc::ADAPTER_TYPE_UNKNOWN);
+ // Disable all but UDP candidates to make the test simpler.
+ allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN |
+ cricket::PORTALLOCATOR_DISABLE_RELAY |
+ cricket::PORTALLOCATOR_DISABLE_TCP |
+ cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
+ ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ // Should only get one Wi-Fi candidate.
+ EXPECT_EQ(1U, candidates_.size());
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", wifi));
+}
+
+// Test that if the PORTALLOCATOR_DISABLE_COSTLY_NETWORKS flag is set, but the
+// only interface available is cellular, it ends up used anyway. A costly
+// connection is always better than no connection.
+TEST_F(BasicPortAllocatorTest,
+ CellUsedWhenCostlyNetworksDisabledButThereAreNoOtherInterfaces) {
+ SocketAddress cellular(IPAddress(0x12345601U), 0);
+ AddInterface(cellular, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR);
+ // Disable all but UDP candidates to make the test simpler.
+ allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN |
+ cricket::PORTALLOCATOR_DISABLE_RELAY |
+ cricket::PORTALLOCATOR_DISABLE_TCP |
+ cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
+ ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ // Make sure we got the cell candidate.
+ EXPECT_EQ(1U, candidates_.size());
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", cellular));
+}
+
+// Test that if both PORTALLOCATOR_DISABLE_COSTLY_NETWORKS is set, and there is
+// a WiFi network with link-local IP address and a cellular network, then the
+// cellular candidate will still be gathered.
+TEST_F(BasicPortAllocatorTest,
+ CellNotRemovedWhenCostlyNetworksDisabledAndWifiIsLinkLocal) {
+ SocketAddress wifi_link_local("169.254.0.1", 0);
+ SocketAddress cellular(IPAddress(0x12345601U), 0);
+ AddInterface(wifi_link_local, "test_wlan0", rtc::ADAPTER_TYPE_WIFI);
+ AddInterface(cellular, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR);
+
+ allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN |
+ cricket::PORTALLOCATOR_DISABLE_RELAY |
+ cricket::PORTALLOCATOR_DISABLE_TCP |
+ cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
+ ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ // Make sure we got both wifi and cell candidates.
+ EXPECT_EQ(2U, candidates_.size());
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", wifi_link_local));
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", cellular));
+}
+
+// Test that if both PORTALLOCATOR_DISABLE_COSTLY_NETWORKS is set, and there is
+// a WiFi network with link-local IP address, a WiFi network with a normal IP
+// address and a cellular network, then the cellular candidate will not be
+// gathered.
+TEST_F(BasicPortAllocatorTest,
+ CellRemovedWhenCostlyNetworksDisabledAndBothWifisPresent) {
+ SocketAddress wifi(IPAddress(0x12345600U), 0);
+ SocketAddress wifi_link_local("169.254.0.1", 0);
+ SocketAddress cellular(IPAddress(0x12345601U), 0);
+ AddInterface(wifi, "test_wlan0", rtc::ADAPTER_TYPE_WIFI);
+ AddInterface(wifi_link_local, "test_wlan1", rtc::ADAPTER_TYPE_WIFI);
+ AddInterface(cellular, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR);
+
+ allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN |
+ cricket::PORTALLOCATOR_DISABLE_RELAY |
+ cricket::PORTALLOCATOR_DISABLE_TCP |
+ cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
+ ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ // Make sure we got only wifi candidates.
+ EXPECT_EQ(2U, candidates_.size());
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", wifi));
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", wifi_link_local));
+}
+
+// Test that the adapter types of the Ethernet and the VPN can be correctly
+// identified so that the Ethernet has a lower network cost than the VPN, and
+// the Ethernet is not filtered out if PORTALLOCATOR_DISABLE_COSTLY_NETWORKS is
+// set.
+TEST_F(BasicPortAllocatorTest,
+ EthernetIsNotFilteredOutWhenCostlyNetworksDisabledAndVpnPresent) {
+ AddInterface(kClientAddr, "eth0", rtc::ADAPTER_TYPE_ETHERNET);
+ AddInterface(kClientAddr2, "tap0", rtc::ADAPTER_TYPE_VPN);
+ allocator().set_flags(PORTALLOCATOR_DISABLE_COSTLY_NETWORKS |
+ PORTALLOCATOR_DISABLE_RELAY |
+ PORTALLOCATOR_DISABLE_TCP);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ // The VPN tap0 network should be filtered out as a costly network, and we
+ // should have a UDP port and a STUN port from the Ethernet eth0.
+ ASSERT_EQ(2U, ports_.size());
+ EXPECT_EQ(ports_[0]->Network()->name(), "eth0");
+ EXPECT_EQ(ports_[1]->Network()->name(), "eth0");
+}
+
+// Test that no more than allocator.max_ipv6_networks() IPv6 networks are used
+// to gather candidates.
+TEST_F(BasicPortAllocatorTest, MaxIpv6NetworksLimitEnforced) {
+ // Add three IPv6 network interfaces, but tell the allocator to only use two.
+ allocator().set_max_ipv6_networks(2);
+ AddInterface(kClientIPv6Addr, "eth0", rtc::ADAPTER_TYPE_ETHERNET);
+ AddInterface(kClientIPv6Addr2, "eth1", rtc::ADAPTER_TYPE_ETHERNET);
+ AddInterface(kClientIPv6Addr3, "eth2", rtc::ADAPTER_TYPE_ETHERNET);
+
+ // To simplify the test, only gather UDP host candidates.
+ allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP |
+ PORTALLOCATOR_DISABLE_STUN |
+ PORTALLOCATOR_DISABLE_RELAY);
+
+ ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ EXPECT_EQ(2U, candidates_.size());
+ // Ensure the expected two interfaces (eth0 and eth1) were used.
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr));
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr2));
+}
+
+// Ensure that allocator.max_ipv6_networks() doesn't prevent IPv4 networks from
+// being used.
+TEST_F(BasicPortAllocatorTest, MaxIpv6NetworksLimitDoesNotImpactIpv4Networks) {
+ // Set the "max IPv6" limit to 1, adding two IPv6 and two IPv4 networks.
+ allocator().set_max_ipv6_networks(1);
+ AddInterface(kClientIPv6Addr, "eth0", rtc::ADAPTER_TYPE_ETHERNET);
+ AddInterface(kClientIPv6Addr2, "eth1", rtc::ADAPTER_TYPE_ETHERNET);
+ AddInterface(kClientAddr, "eth2", rtc::ADAPTER_TYPE_ETHERNET);
+ AddInterface(kClientAddr2, "eth3", rtc::ADAPTER_TYPE_ETHERNET);
+
+ // To simplify the test, only gather UDP host candidates.
+ allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP |
+ PORTALLOCATOR_DISABLE_STUN |
+ PORTALLOCATOR_DISABLE_RELAY);
+
+ ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ EXPECT_EQ(3U, candidates_.size());
+ // Ensure that only one IPv6 interface was used, but both IPv4 interfaces
+ // were used.
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr));
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr2));
+}
+
+// Test that we could use loopback interface as host candidate.
+TEST_F(BasicPortAllocatorTest, TestLoopbackNetworkInterface) {
+ AddInterface(kLoopbackAddr, "test_loopback", rtc::ADAPTER_TYPE_LOOPBACK);
+ allocator_->SetNetworkIgnoreMask(0);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->set_flags(PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY |
+ PORTALLOCATOR_DISABLE_TCP);
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ EXPECT_EQ(1U, candidates_.size());
+}
+
+// Tests that we can get all the desired addresses successfully.
+TEST_F(BasicPortAllocatorTest, TestGetAllPortsWithMinimumStepDelay) {
+ AddInterface(kClientAddr);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ EXPECT_EQ(3U, candidates_.size());
+ EXPECT_EQ(3U, ports_.size());
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
+ EXPECT_TRUE(HasCandidate(candidates_, "stun", "udp", kClientAddr));
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr));
+}
+
+// Test that when the same network interface is brought down and up, the
+// port allocator session will restart a new allocation sequence if
+// it is not stopped.
+TEST_F(BasicPortAllocatorTest, TestSameNetworkDownAndUpWhenSessionNotStopped) {
+ std::string if_name("test_net0");
+ AddInterface(kClientAddr, if_name);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ EXPECT_EQ(3U, candidates_.size());
+ EXPECT_EQ(3U, ports_.size());
+ candidate_allocation_done_ = false;
+ candidates_.clear();
+ ports_.clear();
+
+ // Disable socket creation to simulate the network interface being down. When
+ // no network interfaces are available, BasicPortAllocator will fall back to
+ // binding to the "ANY" address, so we need to make sure that fails too.
+ fss_->set_tcp_sockets_enabled(false);
+ fss_->set_udp_sockets_enabled(false);
+ RemoveInterface(kClientAddr);
+ SIMULATED_WAIT(false, 1000, fake_clock);
+ EXPECT_EQ(0U, candidates_.size());
+ ports_.clear();
+ candidate_allocation_done_ = false;
+
+ // When the same interfaces are added again, new candidates/ports should be
+ // generated.
+ fss_->set_tcp_sockets_enabled(true);
+ fss_->set_udp_sockets_enabled(true);
+ AddInterface(kClientAddr, if_name);
+ ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ EXPECT_EQ(3U, candidates_.size());
+ EXPECT_EQ(3U, ports_.size());
+}
+
+// Test that when the same network interface is brought down and up, the
+// port allocator session will not restart a new allocation sequence if
+// it is stopped.
+TEST_F(BasicPortAllocatorTest, TestSameNetworkDownAndUpWhenSessionStopped) {
+ std::string if_name("test_net0");
+ AddInterface(kClientAddr, if_name);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ EXPECT_EQ(3U, candidates_.size());
+ EXPECT_EQ(3U, ports_.size());
+ session_->StopGettingPorts();
+ candidates_.clear();
+ ports_.clear();
+
+ RemoveInterface(kClientAddr);
+ // Wait one (simulated) second and then verify no new candidates have
+ // appeared.
+ SIMULATED_WAIT(false, 1000, fake_clock);
+ EXPECT_EQ(0U, candidates_.size());
+ EXPECT_EQ(0U, ports_.size());
+
+ // When the same interfaces are added again, new candidates/ports should not
+ // be generated because the session has stopped.
+ AddInterface(kClientAddr, if_name);
+ SIMULATED_WAIT(false, 1000, fake_clock);
+ EXPECT_EQ(0U, candidates_.size());
+ EXPECT_EQ(0U, ports_.size());
+}
+
+// Similar to the above tests, but tests a situation when sockets can't be
+// bound to a network interface, then after a network change event can be.
+// Related bug: https://bugs.chromium.org/p/webrtc/issues/detail?id=8256
+TEST_F(BasicPortAllocatorTest, CandidatesRegatheredAfterBindingFails) {
+ // Only test local ports to simplify test.
+ ResetWithNoServersOrNat();
+ // Provide a situation where the interface appears to be available, but
+ // binding the sockets fails. See bug for description of when this can
+ // happen.
+ std::string if_name("test_net0");
+ AddInterface(kClientAddr, if_name);
+ fss_->set_tcp_sockets_enabled(false);
+ fss_->set_udp_sockets_enabled(false);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ // Make sure we actually prevented candidates from being gathered (other than
+ // a single TCP active candidate, since that doesn't require creating a
+ // socket).
+ ASSERT_EQ(1U, candidates_.size());
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr));
+ candidate_allocation_done_ = false;
+
+ // Now simulate the interface coming up, with the newfound ability to bind
+ // sockets.
+ fss_->set_tcp_sockets_enabled(true);
+ fss_->set_udp_sockets_enabled(true);
+ AddInterface(kClientAddr, if_name);
+ ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ // Should get UDP and TCP candidate.
+ ASSERT_EQ(2U, candidates_.size());
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
+ // TODO(deadbeef): This is actually the same active TCP candidate as before.
+ // We should extend this test to also verify that a server candidate is
+ // gathered.
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr));
+}
+
+// Verify candidates with default step delay of 1sec.
+TEST_F(BasicPortAllocatorTest, TestGetAllPortsWithOneSecondStepDelay) {
+ AddInterface(kClientAddr);
+ allocator_->set_step_delay(kDefaultStepDelay);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), 1000, fake_clock);
+ EXPECT_EQ(2U, ports_.size());
+ ASSERT_EQ_SIMULATED_WAIT(3U, candidates_.size(), 2000, fake_clock);
+ EXPECT_EQ(3U, ports_.size());
+
+ ASSERT_EQ_SIMULATED_WAIT(3U, candidates_.size(), 1500, fake_clock);
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr));
+ EXPECT_EQ(3U, ports_.size());
+ EXPECT_TRUE(candidate_allocation_done_);
+ // If we Stop gathering now, we shouldn't get a second "done" callback.
+ session_->StopGettingPorts();
+}
+
+TEST_F(BasicPortAllocatorTest, TestSetupVideoRtpPortsWithNormalSendBuffers) {
+ AddInterface(kClientAddr);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP, CN_VIDEO));
+ session_->StartGettingPorts();
+ ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ EXPECT_EQ(3U, candidates_.size());
+ // If we Stop gathering now, we shouldn't get a second "done" callback.
+ session_->StopGettingPorts();
+
+ // All ports should have unset send-buffer sizes.
+ CheckSendBufferSizesOfAllPorts(-1);
+}
+
+// Tests that we can get callback after StopGetAllPorts when called in the
+// middle of gathering.
+TEST_F(BasicPortAllocatorTest, TestStopGetAllPorts) {
+ AddInterface(kClientAddr);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), kDefaultAllocationTimeout,
+ fake_clock);
+ EXPECT_EQ(2U, ports_.size());
+ session_->StopGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+}
+
+// Test that we restrict client ports appropriately when a port range is set.
+// We check the candidates for udp/stun/tcp ports, and the from address
+// for relay ports.
+TEST_F(BasicPortAllocatorTest, TestGetAllPortsPortRange) {
+ AddInterface(kClientAddr);
+ // Check that an invalid port range fails.
+ EXPECT_FALSE(SetPortRange(kMaxPort, kMinPort));
+ // Check that a null port range succeeds.
+ EXPECT_TRUE(SetPortRange(0, 0));
+ // Check that a valid port range succeeds.
+ EXPECT_TRUE(SetPortRange(kMinPort, kMaxPort));
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ EXPECT_EQ(3U, candidates_.size());
+ EXPECT_EQ(3U, ports_.size());
+
+ int num_nonrelay_candidates = 0;
+ for (const Candidate& candidate : candidates_) {
+ // Check the port number for the UDP/STUN/TCP port objects.
+ if (candidate.type() != RELAY_PORT_TYPE) {
+ EXPECT_TRUE(CheckPort(candidate.address(), kMinPort, kMaxPort));
+ ++num_nonrelay_candidates;
+ }
+ }
+ EXPECT_EQ(3, num_nonrelay_candidates);
+}
+
+// Test that if we have no network adapters, we bind to the ANY address and
+// still get non-host candidates.
+TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoAdapters) {
+ // Default config uses GTURN and no NAT, so replace that with the
+ // desired setup (NAT, STUN server, TURN server, UDP/TCP).
+ ResetWithStunServerAndNat(kStunAddr);
+ turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
+ AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
+ AddTurnServers(kTurnUdpIntIPv6Addr, kTurnTcpIntIPv6Addr);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ EXPECT_EQ(4U, ports_.size());
+ EXPECT_EQ(1, CountPorts(ports_, "stun", PROTO_UDP, kAnyAddr));
+ EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kAnyAddr));
+ // Two TURN ports, using UDP/TCP for the first hop to the TURN server.
+ EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_UDP, kAnyAddr));
+ EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_TCP, kAnyAddr));
+ // The "any" address port should be in the signaled ready ports, but the host
+ // candidate for it is useless and shouldn't be signaled. So we only have
+ // STUN/TURN candidates.
+ EXPECT_EQ(3U, candidates_.size());
+ EXPECT_TRUE(HasCandidate(candidates_, "stun", "udp",
+ rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0)));
+ // Again, two TURN candidates, using UDP/TCP for the first hop to the TURN
+ // server.
+ EXPECT_EQ(2,
+ CountCandidates(candidates_, "relay", "udp",
+ rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
+}
+
+// Test that when enumeration is disabled, we should not have any ports when
+// candidate_filter() is set to CF_RELAY and no relay is specified.
+TEST_F(BasicPortAllocatorTest,
+ TestDisableAdapterEnumerationWithoutNatRelayTransportOnly) {
+ ResetWithStunServerNoNat(kStunAddr);
+ allocator().SetCandidateFilter(CF_RELAY);
+ // Expect to see no ports and no candidates.
+ CheckDisableAdapterEnumeration(0U, rtc::IPAddress(), rtc::IPAddress(),
+ rtc::IPAddress(), rtc::IPAddress());
+}
+
+// Test that even with multiple interfaces, the result should still be a single
+// default private, one STUN and one TURN candidate since we bind to any address
+// (i.e. all 0s).
+TEST_F(BasicPortAllocatorTest,
+ TestDisableAdapterEnumerationBehindNatMultipleInterfaces) {
+ AddInterface(kPrivateAddr);
+ AddInterface(kPrivateAddr2);
+ ResetWithStunServerAndNat(kStunAddr);
+ AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
+
+ // Enable IPv6 here. Since the network_manager doesn't have IPv6 default
+ // address set and we have no IPv6 STUN server, there should be no IPv6
+ // candidates.
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->set_flags(PORTALLOCATOR_ENABLE_IPV6);
+
+ // Expect to see 3 ports for IPv4: HOST/STUN, TURN/UDP and TCP ports, 2 ports
+ // for IPv6: HOST, and TCP. Only IPv4 candidates: a default private, STUN and
+ // TURN/UDP candidates.
+ CheckDisableAdapterEnumeration(5U, kPrivateAddr.ipaddr(),
+ kNatUdpAddr.ipaddr(), kTurnUdpExtAddr.ipaddr(),
+ rtc::IPAddress());
+}
+
+// Test that we should get a default private, STUN, TURN/UDP and TURN/TCP
+// candidates when both TURN/UDP and TURN/TCP servers are specified.
+TEST_F(BasicPortAllocatorTest, TestDisableAdapterEnumerationBehindNatWithTcp) {
+ turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
+ AddInterface(kPrivateAddr);
+ ResetWithStunServerAndNat(kStunAddr);
+ AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
+ // Expect to see 4 ports - STUN, TURN/UDP, TURN/TCP and TCP port. A default
+ // private, STUN, TURN/UDP, and TURN/TCP candidates.
+ CheckDisableAdapterEnumeration(4U, kPrivateAddr.ipaddr(),
+ kNatUdpAddr.ipaddr(), kTurnUdpExtAddr.ipaddr(),
+ kTurnUdpExtAddr.ipaddr());
+}
+
+// Test that when adapter enumeration is disabled, for endpoints without
+// STUN/TURN specified, a default private candidate is still generated.
+TEST_F(BasicPortAllocatorTest,
+ TestDisableAdapterEnumerationWithoutNatOrServers) {
+ ResetWithNoServersOrNat();
+ // Expect to see 2 ports: STUN and TCP ports, one default private candidate.
+ CheckDisableAdapterEnumeration(2U, kPrivateAddr.ipaddr(), rtc::IPAddress(),
+ rtc::IPAddress(), rtc::IPAddress());
+}
+
+// Test that when adapter enumeration is disabled, with
+// PORTALLOCATOR_DISABLE_LOCALHOST_CANDIDATE specified, for endpoints not behind
+// a NAT, there is no local candidate.
+TEST_F(BasicPortAllocatorTest,
+ TestDisableAdapterEnumerationWithoutNatLocalhostCandidateDisabled) {
+ ResetWithStunServerNoNat(kStunAddr);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->set_flags(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE);
+ // Expect to see 2 ports: STUN and TCP ports, localhost candidate and STUN
+ // candidate.
+ CheckDisableAdapterEnumeration(2U, rtc::IPAddress(), rtc::IPAddress(),
+ rtc::IPAddress(), rtc::IPAddress());
+}
+
+// Test that when adapter enumeration is disabled, with
+// PORTALLOCATOR_DISABLE_LOCALHOST_CANDIDATE specified, for endpoints not behind
+// a NAT, there is no local candidate. However, this specified default route
+// (kClientAddr) which was discovered when sending STUN requests, will become
+// the srflx addresses.
+TEST_F(BasicPortAllocatorTest,
+ TestDisableAdapterEnumerationWithoutNatLocalhostCandDisabledDiffRoute) {
+ ResetWithStunServerNoNat(kStunAddr);
+ AddInterfaceAsDefaultSourceAddresss(kClientAddr);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->set_flags(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE);
+ // Expect to see 2 ports: STUN and TCP ports, localhost candidate and STUN
+ // candidate.
+ CheckDisableAdapterEnumeration(2U, rtc::IPAddress(), kClientAddr.ipaddr(),
+ rtc::IPAddress(), rtc::IPAddress());
+}
+
+// Test that when adapter enumeration is disabled, with
+// PORTALLOCATOR_DISABLE_LOCALHOST_CANDIDATE specified, for endpoints behind a
+// NAT, there is only one STUN candidate.
+TEST_F(BasicPortAllocatorTest,
+ TestDisableAdapterEnumerationWithNatLocalhostCandidateDisabled) {
+ ResetWithStunServerAndNat(kStunAddr);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->set_flags(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE);
+ // Expect to see 2 ports: STUN and TCP ports, and single STUN candidate.
+ CheckDisableAdapterEnumeration(2U, rtc::IPAddress(), kNatUdpAddr.ipaddr(),
+ rtc::IPAddress(), rtc::IPAddress());
+}
+
+// Test that we disable relay over UDP, and only TCP is used when connecting to
+// the relay server.
+TEST_F(BasicPortAllocatorTest, TestDisableUdpTurn) {
+ turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
+ AddInterface(kClientAddr);
+ ResetWithStunServerAndNat(kStunAddr);
+ AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->set_flags(PORTALLOCATOR_DISABLE_UDP_RELAY |
+ PORTALLOCATOR_DISABLE_UDP | PORTALLOCATOR_DISABLE_STUN |
+ PORTALLOCATOR_ENABLE_SHARED_SOCKET);
+
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+
+ // Expect to see 2 ports and 2 candidates - TURN/TCP and TCP ports, TCP and
+ // TURN/TCP candidates.
+ EXPECT_EQ(2U, ports_.size());
+ EXPECT_EQ(2U, candidates_.size());
+ Candidate turn_candidate;
+ EXPECT_TRUE(FindCandidate(candidates_, "relay", "udp", kTurnUdpExtAddr,
+ &turn_candidate));
+ // The TURN candidate should use TCP to contact the TURN server.
+ EXPECT_EQ(TCP_PROTOCOL_NAME, turn_candidate.relay_protocol());
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr));
+}
+
+// Test that we can get OnCandidatesAllocationDone callback when all the ports
+// are disabled.
+TEST_F(BasicPortAllocatorTest, TestDisableAllPorts) {
+ AddInterface(kClientAddr);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->set_flags(PORTALLOCATOR_DISABLE_UDP | PORTALLOCATOR_DISABLE_STUN |
+ PORTALLOCATOR_DISABLE_RELAY | PORTALLOCATOR_DISABLE_TCP);
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, 1000, fake_clock);
+ EXPECT_EQ(0U, candidates_.size());
+}
+
+// Test that we don't crash or malfunction if we can't create UDP sockets.
+TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoUdpSockets) {
+ AddInterface(kClientAddr);
+ fss_->set_udp_sockets_enabled(false);
+ ASSERT_TRUE(CreateSession(1));
+ session_->StartGettingPorts();
+ ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ EXPECT_EQ(1U, candidates_.size());
+ EXPECT_EQ(1U, ports_.size());
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr));
+}
+
+// Test that we don't crash or malfunction if we can't create UDP sockets or
+// listen on TCP sockets. We still give out a local TCP address, since
+// apparently this is needed for the remote side to accept our connection.
+TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoUdpSocketsNoTcpListen) {
+ AddInterface(kClientAddr);
+ fss_->set_udp_sockets_enabled(false);
+ fss_->set_tcp_listen_enabled(false);
+ ASSERT_TRUE(CreateSession(1));
+ session_->StartGettingPorts();
+ ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ EXPECT_EQ(1U, candidates_.size());
+ EXPECT_EQ(1U, ports_.size());
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr));
+}
+
+// Test that we don't crash or malfunction if we can't create any sockets.
+// TODO(deadbeef): Find a way to exit early here.
+TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoSockets) {
+ AddInterface(kClientAddr);
+ fss_->set_tcp_sockets_enabled(false);
+ fss_->set_udp_sockets_enabled(false);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ SIMULATED_WAIT(candidates_.size() > 0, 2000, fake_clock);
+ // TODO(deadbeef): Check candidate_allocation_done signal.
+ // In case of Relay, ports creation will succeed but sockets will fail.
+ // There is no error reporting from RelayEntry to handle this failure.
+}
+
+// Testing STUN timeout.
+TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoUdpAllowed) {
+ fss_->AddRule(false, rtc::FP_UDP, rtc::FD_ANY, kClientAddr);
+ AddInterface(kClientAddr);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ EXPECT_EQ_SIMULATED_WAIT(2U, candidates_.size(), kDefaultAllocationTimeout,
+ fake_clock);
+ EXPECT_EQ(2U, ports_.size());
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr));
+ // We wait at least for a full STUN timeout, which
+ // cricket::STUN_TOTAL_TIMEOUT seconds.
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ cricket::STUN_TOTAL_TIMEOUT, fake_clock);
+ // No additional (STUN) candidates.
+ EXPECT_EQ(2U, candidates_.size());
+}
+
+TEST_F(BasicPortAllocatorTest, TestCandidatePriorityOfMultipleInterfaces) {
+ AddInterface(kClientAddr);
+ AddInterface(kClientAddr2);
+ // Allocating only host UDP ports. This is done purely for testing
+ // convenience.
+ allocator().set_flags(PORTALLOCATOR_DISABLE_TCP | PORTALLOCATOR_DISABLE_STUN |
+ PORTALLOCATOR_DISABLE_RELAY);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ ASSERT_EQ(2U, candidates_.size());
+ EXPECT_EQ(2U, ports_.size());
+ // Candidates priorities should be different.
+ EXPECT_NE(candidates_[0].priority(), candidates_[1].priority());
+}
+
+// Test to verify ICE restart process.
+TEST_F(BasicPortAllocatorTest, TestGetAllPortsRestarts) {
+ AddInterface(kClientAddr);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ EXPECT_EQ(3U, candidates_.size());
+ EXPECT_EQ(3U, ports_.size());
+ // TODO(deadbeef): Extend this to verify ICE restart.
+}
+
+// Test that the allocator session uses the candidate filter it's created with,
+// rather than the filter of its parent allocator.
+// The filter of the allocator should only affect the next gathering phase,
+// according to JSEP, which means the *next* allocator session returned.
+TEST_F(BasicPortAllocatorTest, TestSessionUsesOwnCandidateFilter) {
+ AddInterface(kClientAddr);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ // Set candidate filter *after* creating the session. Should have no effect.
+ allocator().SetCandidateFilter(CF_RELAY);
+ session_->StartGettingPorts();
+ // 7 candidates and 4 ports is what we would normally get (see the
+ // TestGetAllPorts* tests).
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ EXPECT_EQ(3U, candidates_.size());
+ EXPECT_EQ(3U, ports_.size());
+}
+
+// Test ICE candidate filter mechanism with options Relay/Host/Reflexive.
+// This test also verifies that when the allocator is only allowed to use
+// relay (i.e. IceTransportsType is relay), the raddr is an empty
+// address with the correct family. This is to prevent any local
+// reflective address leakage in the sdp line.
+TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithRelayOnly) {
+ AddInterface(kClientAddr);
+ // GTURN is not configured here.
+ ResetWithTurnServersNoNat(kTurnUdpIntAddr, rtc::SocketAddress());
+ allocator().SetCandidateFilter(CF_RELAY);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ EXPECT_TRUE(HasCandidate(candidates_, "relay", "udp",
+ rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
+
+ EXPECT_EQ(1U, candidates_.size());
+ EXPECT_EQ(1U, ports_.size()); // Only Relay port will be in ready state.
+ EXPECT_EQ(std::string(RELAY_PORT_TYPE), candidates_[0].type());
+ EXPECT_EQ(
+ candidates_[0].related_address(),
+ rtc::EmptySocketAddressWithFamily(candidates_[0].address().family()));
+}
+
+TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithHostOnly) {
+ AddInterface(kClientAddr);
+ allocator().set_flags(PORTALLOCATOR_ENABLE_SHARED_SOCKET);
+ allocator().SetCandidateFilter(CF_HOST);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ EXPECT_EQ(2U, candidates_.size()); // Host UDP/TCP candidates only.
+ EXPECT_EQ(2U, ports_.size()); // UDP/TCP ports only.
+ for (const Candidate& candidate : candidates_) {
+ EXPECT_EQ(std::string(LOCAL_PORT_TYPE), candidate.type());
+ }
+}
+
+// Host is behind the NAT.
+TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithReflexiveOnly) {
+ AddInterface(kPrivateAddr);
+ ResetWithStunServerAndNat(kStunAddr);
+
+ allocator().set_flags(PORTALLOCATOR_ENABLE_SHARED_SOCKET);
+ allocator().SetCandidateFilter(CF_REFLEXIVE);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ // Host is behind NAT, no private address will be exposed. Hence only UDP
+ // port with STUN candidate will be sent outside.
+ EXPECT_EQ(1U, candidates_.size()); // Only STUN candidate.
+ EXPECT_EQ(1U, ports_.size()); // Only UDP port will be in ready state.
+ EXPECT_EQ(std::string(STUN_PORT_TYPE), candidates_[0].type());
+ EXPECT_EQ(
+ candidates_[0].related_address(),
+ rtc::EmptySocketAddressWithFamily(candidates_[0].address().family()));
+}
+
+// Host is not behind the NAT.
+TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithReflexiveOnlyAndNoNAT) {
+ AddInterface(kClientAddr);
+ allocator().set_flags(PORTALLOCATOR_ENABLE_SHARED_SOCKET);
+ allocator().SetCandidateFilter(CF_REFLEXIVE);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ // Host has a public address, both UDP and TCP candidates will be exposed.
+ EXPECT_EQ(2U, candidates_.size()); // Local UDP + TCP candidate.
+ EXPECT_EQ(2U, ports_.size()); // UDP and TCP ports will be in ready state.
+ for (const Candidate& candidate : candidates_) {
+ EXPECT_EQ(std::string(LOCAL_PORT_TYPE), candidate.type());
+ }
+}
+
+// Test that we get the same ufrag and pwd for all candidates.
+TEST_F(BasicPortAllocatorTest, TestEnableSharedUfrag) {
+ AddInterface(kClientAddr);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ EXPECT_EQ(3U, candidates_.size());
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
+ EXPECT_TRUE(HasCandidate(candidates_, "stun", "udp", kClientAddr));
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr));
+ EXPECT_EQ(3U, ports_.size());
+ for (const Candidate& candidate : candidates_) {
+ EXPECT_EQ(kIceUfrag0, candidate.username());
+ EXPECT_EQ(kIcePwd0, candidate.password());
+ }
+}
+
+// Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled only one port
+// is allocated for udp and stun. Also verify there is only one candidate
+// (local) if stun candidate is same as local candidate, which will be the case
+// in a public network like the below test.
+TEST_F(BasicPortAllocatorTest, TestSharedSocketWithoutNat) {
+ AddInterface(kClientAddr);
+ allocator_->set_flags(allocator().flags() |
+ PORTALLOCATOR_ENABLE_SHARED_SOCKET);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), kDefaultAllocationTimeout,
+ fake_clock);
+ EXPECT_EQ(2U, ports_.size());
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+}
+
+// Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled only one port
+// is allocated for udp and stun. In this test we should expect both stun and
+// local candidates as client behind a nat.
+TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNat) {
+ AddInterface(kClientAddr);
+ ResetWithStunServerAndNat(kStunAddr);
+
+ allocator_->set_flags(allocator().flags() |
+ PORTALLOCATOR_ENABLE_SHARED_SOCKET);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ ASSERT_EQ_SIMULATED_WAIT(3U, candidates_.size(), kDefaultAllocationTimeout,
+ fake_clock);
+ ASSERT_EQ(2U, ports_.size());
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
+ EXPECT_TRUE(HasCandidate(candidates_, "stun", "udp",
+ rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0)));
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ EXPECT_EQ(3U, candidates_.size());
+}
+
+// Test TURN port in shared socket mode with UDP and TCP TURN server addresses.
+TEST_F(BasicPortAllocatorTest, TestSharedSocketWithoutNatUsingTurn) {
+ turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
+ AddInterface(kClientAddr);
+ allocator_.reset(new BasicPortAllocator(&network_manager_, &socket_factory_));
+ allocator_->Initialize();
+
+ AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
+
+ allocator_->set_step_delay(kMinimumStepDelay);
+ allocator_->set_flags(allocator().flags() |
+ PORTALLOCATOR_ENABLE_SHARED_SOCKET |
+ PORTALLOCATOR_DISABLE_TCP);
+
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+
+ ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ ASSERT_EQ(3U, candidates_.size());
+ ASSERT_EQ(3U, ports_.size());
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
+ EXPECT_TRUE(HasCandidate(candidates_, "relay", "udp",
+ rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
+ EXPECT_TRUE(HasCandidate(candidates_, "relay", "udp",
+ rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
+}
+
+// Test that if the turn port prune policy is PRUNE_BASED_ON_PRIORITY, TCP TURN
+// port will not be used if UDP TurnPort is used, given that TCP TURN port
+// becomes ready first.
+TEST_F(BasicPortAllocatorTest,
+ TestUdpTurnPortPrunesTcpTurnPortWithTcpPortReadyFirst) {
+ // UDP has longer delay than TCP so that TCP TURN port becomes ready first.
+ virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 200);
+ virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 100);
+
+ TestTurnPortPrunesWithUdpAndTcpPorts(webrtc::PRUNE_BASED_ON_PRIORITY,
+ true /* tcp_pruned */);
+}
+
+// Test that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, TCP TURN port
+// will not be used if UDP TurnPort is used, given that UDP TURN port becomes
+// ready first.
+TEST_F(BasicPortAllocatorTest,
+ TestUdpTurnPortPrunesTcpTurnPortsWithUdpPortReadyFirst) {
+ // UDP has shorter delay than TCP so that UDP TURN port becomes ready first.
+ virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100);
+ virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 200);
+
+ TestTurnPortPrunesWithUdpAndTcpPorts(webrtc::PRUNE_BASED_ON_PRIORITY,
+ true /* tcp_pruned */);
+}
+
+// Test that if turn_port_prune policy is KEEP_FIRST_READY, the first ready port
+// will be kept regardless of the priority.
+TEST_F(BasicPortAllocatorTest,
+ TestUdpTurnPortPrunesTcpTurnPortIfUdpReadyFirst) {
+ // UDP has shorter delay than TCP so that UDP TURN port becomes ready first.
+ virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100);
+ virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 200);
+
+ TestTurnPortPrunesWithUdpAndTcpPorts(webrtc::KEEP_FIRST_READY,
+ true /* tcp_pruned */);
+}
+
+// Test that if turn_port_prune policy is KEEP_FIRST_READY, the first ready port
+// will be kept regardless of the priority.
+TEST_F(BasicPortAllocatorTest,
+ TestTcpTurnPortPrunesUdpTurnPortIfTcpReadyFirst) {
+ // UDP has longer delay than TCP so that TCP TURN port becomes ready first.
+ virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 200);
+ virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 100);
+
+ TestTurnPortPrunesWithUdpAndTcpPorts(webrtc::KEEP_FIRST_READY,
+ false /* tcp_pruned */);
+}
+
+// Tests that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, IPv4
+// TurnPort will not be used if IPv6 TurnPort is used, given that IPv4 TURN port
+// becomes ready first.
+TEST_F(BasicPortAllocatorTest,
+ TestIPv6TurnPortPrunesIPv4TurnPortWithIPv4PortReadyFirst) {
+ // IPv6 has longer delay than IPv4, so that IPv4 TURN port becomes ready
+ // first.
+ virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100);
+ virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntIPv6Addr, 200);
+
+ TestIPv6TurnPortPrunesIPv4TurnPort();
+}
+
+// Tests that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, IPv4
+// TurnPort will not be used if IPv6 TurnPort is used, given that IPv6 TURN port
+// becomes ready first.
+TEST_F(BasicPortAllocatorTest,
+ TestIPv6TurnPortPrunesIPv4TurnPortWithIPv6PortReadyFirst) {
+ // IPv6 has longer delay than IPv4, so that IPv6 TURN port becomes ready
+ // first.
+ virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 200);
+ virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntIPv6Addr, 100);
+
+ TestIPv6TurnPortPrunesIPv4TurnPort();
+}
+
+// Tests that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, each network
+// interface will has its own set of TurnPorts based on their priorities, in the
+// default case where no transit delay is set.
+TEST_F(BasicPortAllocatorTest, TestEachInterfaceHasItsOwnTurnPortsNoDelay) {
+ TestEachInterfaceHasItsOwnTurnPorts();
+}
+
+// Tests that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, each network
+// interface will has its own set of TurnPorts based on their priorities, given
+// that IPv4/TCP TURN port becomes ready first.
+TEST_F(BasicPortAllocatorTest,
+ TestEachInterfaceHasItsOwnTurnPortsWithTcpIPv4ReadyFirst) {
+ // IPv6/UDP have longer delay than IPv4/TCP, so that IPv4/TCP TURN port
+ // becomes ready last.
+ virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 10);
+ virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100);
+ virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntIPv6Addr, 20);
+ virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntIPv6Addr, 300);
+
+ TestEachInterfaceHasItsOwnTurnPorts();
+}
+
+// Testing DNS resolve for the TURN server, this will test AllocationSequence
+// handling the unresolved address signal from TurnPort.
+// TODO(pthatcher): Make this test work with SIMULATED_WAIT. It
+// appears that it doesn't currently because of the DNS look up not
+// using the fake clock.
+TEST_F(BasicPortAllocatorTestWithRealClock,
+ TestSharedSocketWithServerAddressResolve) {
+ // This test relies on a real query for "localhost", so it won't work on an
+ // IPv6-only machine.
+ MAYBE_SKIP_IPV4;
+ turn_server_.AddInternalSocket(rtc::SocketAddress("127.0.0.1", 3478),
+ PROTO_UDP);
+ AddInterface(kClientAddr);
+ allocator_.reset(new BasicPortAllocator(&network_manager_, &socket_factory_));
+ allocator_->Initialize();
+ RelayServerConfig turn_server;
+ RelayCredentials credentials(kTurnUsername, kTurnPassword);
+ turn_server.credentials = credentials;
+ turn_server.ports.push_back(
+ ProtocolAddress(rtc::SocketAddress("localhost", 3478), PROTO_UDP));
+ allocator_->AddTurnServerForTesting(turn_server);
+
+ allocator_->set_step_delay(kMinimumStepDelay);
+ allocator_->set_flags(allocator().flags() |
+ PORTALLOCATOR_ENABLE_SHARED_SOCKET |
+ PORTALLOCATOR_DISABLE_TCP);
+
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+
+ EXPECT_EQ_WAIT(2U, ports_.size(), kDefaultAllocationTimeout);
+}
+
+// Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled only one port
+// is allocated for udp/stun/turn. In this test we should expect all local,
+// stun and turn candidates.
+TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurn) {
+ AddInterface(kClientAddr);
+ ResetWithStunServerAndNat(kStunAddr);
+
+ AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
+
+ allocator_->set_flags(allocator().flags() |
+ PORTALLOCATOR_ENABLE_SHARED_SOCKET |
+ PORTALLOCATOR_DISABLE_TCP);
+
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+
+ ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ EXPECT_EQ(3U, candidates_.size());
+ ASSERT_EQ(2U, ports_.size());
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
+ EXPECT_TRUE(HasCandidate(candidates_, "stun", "udp",
+ rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0)));
+ EXPECT_TRUE(HasCandidate(candidates_, "relay", "udp",
+ rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ // Local port will be created first and then TURN port.
+ // TODO(deadbeef): This isn't something the BasicPortAllocator API contract
+ // guarantees...
+ EXPECT_EQ(2U, ports_[0]->Candidates().size());
+ EXPECT_EQ(1U, ports_[1]->Candidates().size());
+}
+
+// Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled and the TURN
+// server is also used as the STUN server, we should get 'local', 'stun', and
+// 'relay' candidates.
+TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurnAsStun) {
+ AddInterface(kClientAddr);
+ // Use an empty SocketAddress to add a NAT without STUN server.
+ ResetWithStunServerAndNat(SocketAddress());
+ AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
+
+ // Must set the step delay to 0 to make sure the relay allocation phase is
+ // started before the STUN candidates are obtained, so that the STUN binding
+ // response is processed when both StunPort and TurnPort exist to reproduce
+ // webrtc issue 3537.
+ allocator_->set_step_delay(0);
+ allocator_->set_flags(allocator().flags() |
+ PORTALLOCATOR_ENABLE_SHARED_SOCKET |
+ PORTALLOCATOR_DISABLE_TCP);
+
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+
+ ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ EXPECT_EQ(3U, candidates_.size());
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
+ Candidate stun_candidate;
+ EXPECT_TRUE(FindCandidate(candidates_, "stun", "udp",
+ rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0),
+ &stun_candidate));
+ EXPECT_TRUE(HasCandidateWithRelatedAddr(
+ candidates_, "relay", "udp",
+ rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0),
+ stun_candidate.address()));
+
+ // Local port will be created first and then TURN port.
+ // TODO(deadbeef): This isn't something the BasicPortAllocator API contract
+ // guarantees...
+ EXPECT_EQ(2U, ports_[0]->Candidates().size());
+ EXPECT_EQ(1U, ports_[1]->Candidates().size());
+}
+
+// Test that when only a TCP TURN server is available, we do NOT use it as
+// a UDP STUN server, as this could leak our IP address. Thus we should only
+// expect two ports, a UDPPort and TurnPort.
+TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurnTcpOnly) {
+ turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
+ AddInterface(kClientAddr);
+ ResetWithStunServerAndNat(rtc::SocketAddress());
+ AddTurnServers(rtc::SocketAddress(), kTurnTcpIntAddr);
+
+ allocator_->set_flags(allocator().flags() |
+ PORTALLOCATOR_ENABLE_SHARED_SOCKET |
+ PORTALLOCATOR_DISABLE_TCP);
+
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+
+ ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ EXPECT_EQ(2U, candidates_.size());
+ ASSERT_EQ(2U, ports_.size());
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
+ EXPECT_TRUE(HasCandidate(candidates_, "relay", "udp",
+ rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
+ EXPECT_EQ(1U, ports_[0]->Candidates().size());
+ EXPECT_EQ(1U, ports_[1]->Candidates().size());
+}
+
+// Test that even when PORTALLOCATOR_ENABLE_SHARED_SOCKET is NOT enabled, the
+// TURN server is used as the STUN server and we get 'local', 'stun', and
+// 'relay' candidates.
+// TODO(deadbeef): Remove this test when support for non-shared socket mode
+// is removed.
+TEST_F(BasicPortAllocatorTest, TestNonSharedSocketWithNatUsingTurnAsStun) {
+ AddInterface(kClientAddr);
+ // Use an empty SocketAddress to add a NAT without STUN server.
+ ResetWithStunServerAndNat(SocketAddress());
+ AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
+
+ allocator_->set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_TCP);
+
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+
+ ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ EXPECT_EQ(3U, candidates_.size());
+ ASSERT_EQ(3U, ports_.size());
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
+ Candidate stun_candidate;
+ EXPECT_TRUE(FindCandidate(candidates_, "stun", "udp",
+ rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0),
+ &stun_candidate));
+ Candidate turn_candidate;
+ EXPECT_TRUE(FindCandidate(candidates_, "relay", "udp",
+ rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0),
+ &turn_candidate));
+ // Not using shared socket, so the STUN request's server reflexive address
+ // should be different than the TURN request's server reflexive address.
+ EXPECT_NE(turn_candidate.related_address(), stun_candidate.address());
+
+ EXPECT_EQ(1U, ports_[0]->Candidates().size());
+ EXPECT_EQ(1U, ports_[1]->Candidates().size());
+ EXPECT_EQ(1U, ports_[2]->Candidates().size());
+}
+
+// Test that even when both a STUN and TURN server are configured, the TURN
+// server is used as a STUN server and we get a 'stun' candidate.
+TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurnAndStun) {
+ AddInterface(kClientAddr);
+ // Configure with STUN server but destroy it, so we can ensure that it's
+ // the TURN server actually being used as a STUN server.
+ ResetWithStunServerAndNat(kStunAddr);
+ stun_server_.reset();
+ AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
+
+ allocator_->set_flags(allocator().flags() |
+ PORTALLOCATOR_ENABLE_SHARED_SOCKET |
+ PORTALLOCATOR_DISABLE_TCP);
+
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+
+ ASSERT_EQ_SIMULATED_WAIT(3U, candidates_.size(), kDefaultAllocationTimeout,
+ fake_clock);
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
+ Candidate stun_candidate;
+ EXPECT_TRUE(FindCandidate(candidates_, "stun", "udp",
+ rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0),
+ &stun_candidate));
+ EXPECT_TRUE(HasCandidateWithRelatedAddr(
+ candidates_, "relay", "udp",
+ rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0),
+ stun_candidate.address()));
+
+ // Don't bother waiting for STUN timeout, since we already verified
+ // that we got a STUN candidate from the TURN server.
+}
+
+// This test verifies when PORTALLOCATOR_ENABLE_SHARED_SOCKET flag is enabled
+// and fail to generate STUN candidate, local UDP candidate is generated
+// properly.
+TEST_F(BasicPortAllocatorTest, TestSharedSocketNoUdpAllowed) {
+ allocator().set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_RELAY |
+ PORTALLOCATOR_DISABLE_TCP |
+ PORTALLOCATOR_ENABLE_SHARED_SOCKET);
+ fss_->AddRule(false, rtc::FP_UDP, rtc::FD_ANY, kClientAddr);
+ AddInterface(kClientAddr);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ ASSERT_EQ_SIMULATED_WAIT(1U, ports_.size(), kDefaultAllocationTimeout,
+ fake_clock);
+ EXPECT_EQ(1U, candidates_.size());
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
+ // STUN timeout is 9.5sec. We need to wait to get candidate done signal.
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kStunTimeoutMs,
+ fake_clock);
+ EXPECT_EQ(1U, candidates_.size());
+}
+
+// Test that when the NetworkManager doesn't have permission to enumerate
+// adapters, the PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION is specified
+// automatically.
+TEST_F(BasicPortAllocatorTest, TestNetworkPermissionBlocked) {
+ network_manager_.set_default_local_addresses(kPrivateAddr.ipaddr(),
+ rtc::IPAddress());
+ network_manager_.set_enumeration_permission(
+ rtc::NetworkManager::ENUMERATION_BLOCKED);
+ allocator().set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_RELAY |
+ PORTALLOCATOR_DISABLE_TCP |
+ PORTALLOCATOR_ENABLE_SHARED_SOCKET);
+ EXPECT_EQ(0U,
+ allocator_->flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ EXPECT_EQ(0U, session_->flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION);
+ session_->StartGettingPorts();
+ EXPECT_EQ_SIMULATED_WAIT(1U, ports_.size(), kDefaultAllocationTimeout,
+ fake_clock);
+ EXPECT_EQ(1U, candidates_.size());
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kPrivateAddr));
+ EXPECT_NE(0U, session_->flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION);
+}
+
+// This test verifies allocator can use IPv6 addresses along with IPv4.
+TEST_F(BasicPortAllocatorTest, TestEnableIPv6Addresses) {
+ allocator().set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_RELAY |
+ PORTALLOCATOR_ENABLE_IPV6 |
+ PORTALLOCATOR_ENABLE_SHARED_SOCKET);
+ AddInterface(kClientIPv6Addr);
+ AddInterface(kClientAddr);
+ allocator_->set_step_delay(kMinimumStepDelay);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ EXPECT_EQ(4U, ports_.size());
+ EXPECT_EQ(4U, candidates_.size());
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr));
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientIPv6Addr));
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr));
+}
+
+TEST_F(BasicPortAllocatorTest, TestStopGettingPorts) {
+ AddInterface(kClientAddr);
+ allocator_->set_step_delay(kDefaultStepDelay);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), 1000, fake_clock);
+ EXPECT_EQ(2U, ports_.size());
+ session_->StopGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, 1000, fake_clock);
+
+ // After stopping getting ports, adding a new interface will not start
+ // getting ports again.
+ allocator_->set_step_delay(kMinimumStepDelay);
+ candidates_.clear();
+ ports_.clear();
+ candidate_allocation_done_ = false;
+ network_manager_.AddInterface(kClientAddr2);
+ SIMULATED_WAIT(false, 1000, fake_clock);
+ EXPECT_EQ(0U, candidates_.size());
+ EXPECT_EQ(0U, ports_.size());
+}
+
+TEST_F(BasicPortAllocatorTest, TestClearGettingPorts) {
+ AddInterface(kClientAddr);
+ allocator_->set_step_delay(kDefaultStepDelay);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), 1000, fake_clock);
+ EXPECT_EQ(2U, ports_.size());
+ session_->ClearGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, 1000, fake_clock);
+
+ // After clearing getting ports, adding a new interface will start getting
+ // ports again.
+ allocator_->set_step_delay(kMinimumStepDelay);
+ candidates_.clear();
+ ports_.clear();
+ candidate_allocation_done_ = false;
+ network_manager_.AddInterface(kClientAddr2);
+ ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), 1000, fake_clock);
+ EXPECT_EQ(2U, ports_.size());
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+}
+
+// Test that the ports and candidates are updated with new ufrag/pwd/etc. when
+// a pooled session is taken out of the pool.
+TEST_F(BasicPortAllocatorTest, TestTransportInformationUpdated) {
+ AddInterface(kClientAddr);
+ int pool_size = 1;
+ allocator_->SetConfiguration(allocator_->stun_servers(),
+ allocator_->turn_servers(), pool_size,
+ webrtc::NO_PRUNE);
+ const PortAllocatorSession* peeked_session = allocator_->GetPooledSession();
+ ASSERT_NE(nullptr, peeked_session);
+ EXPECT_EQ_SIMULATED_WAIT(true, peeked_session->CandidatesAllocationDone(),
+ kDefaultAllocationTimeout, fake_clock);
+ // Expect that when TakePooledSession is called,
+ // UpdateTransportInformationInternal will be called and the
+ // BasicPortAllocatorSession will update the ufrag/pwd of ports and
+ // candidates.
+ session_ =
+ allocator_->TakePooledSession(kContentName, 1, kIceUfrag0, kIcePwd0);
+ ASSERT_NE(nullptr, session_.get());
+ auto ready_ports = session_->ReadyPorts();
+ auto candidates = session_->ReadyCandidates();
+ EXPECT_FALSE(ready_ports.empty());
+ EXPECT_FALSE(candidates.empty());
+ for (const PortInterface* port_interface : ready_ports) {
+ const Port* port = static_cast<const Port*>(port_interface);
+ EXPECT_EQ(kContentName, port->content_name());
+ EXPECT_EQ(1, port->component());
+ EXPECT_EQ(kIceUfrag0, port->username_fragment());
+ EXPECT_EQ(kIcePwd0, port->password());
+ }
+ for (const Candidate& candidate : candidates) {
+ EXPECT_EQ(1, candidate.component());
+ EXPECT_EQ(kIceUfrag0, candidate.username());
+ EXPECT_EQ(kIcePwd0, candidate.password());
+ }
+}
+
+// Test that a new candidate filter takes effect even on already-gathered
+// candidates.
+TEST_F(BasicPortAllocatorTest, TestSetCandidateFilterAfterCandidatesGathered) {
+ AddInterface(kClientAddr);
+ int pool_size = 1;
+ allocator_->SetConfiguration(allocator_->stun_servers(),
+ allocator_->turn_servers(), pool_size,
+ webrtc::NO_PRUNE);
+ const PortAllocatorSession* peeked_session = allocator_->GetPooledSession();
+ ASSERT_NE(nullptr, peeked_session);
+ EXPECT_EQ_SIMULATED_WAIT(true, peeked_session->CandidatesAllocationDone(),
+ kDefaultAllocationTimeout, fake_clock);
+ size_t initial_candidates_size = peeked_session->ReadyCandidates().size();
+ size_t initial_ports_size = peeked_session->ReadyPorts().size();
+ allocator_->SetCandidateFilter(CF_RELAY);
+ // Assume that when TakePooledSession is called, the candidate filter will be
+ // applied to the pooled session. This is tested by PortAllocatorTest.
+ session_ =
+ allocator_->TakePooledSession(kContentName, 1, kIceUfrag0, kIcePwd0);
+ ASSERT_NE(nullptr, session_.get());
+ auto candidates = session_->ReadyCandidates();
+ auto ports = session_->ReadyPorts();
+ // Sanity check that the number of candidates and ports decreased.
+ EXPECT_GT(initial_candidates_size, candidates.size());
+ EXPECT_GT(initial_ports_size, ports.size());
+ for (const PortInterface* port : ports) {
+ // Expect only relay ports.
+ EXPECT_EQ(RELAY_PORT_TYPE, port->Type());
+ }
+ for (const Candidate& candidate : candidates) {
+ // Expect only relay candidates now that the filter is applied.
+ EXPECT_EQ(std::string(RELAY_PORT_TYPE), candidate.type());
+ // Expect that the raddr is emptied due to the CF_RELAY filter.
+ EXPECT_EQ(candidate.related_address(),
+ rtc::EmptySocketAddressWithFamily(candidate.address().family()));
+ }
+}
+
+// Test that candidates that do not match a previous candidate filter can be
+// surfaced if they match the new one after setting the filter value.
+TEST_F(BasicPortAllocatorTest,
+ SurfaceNewCandidatesAfterSetCandidateFilterToAddCandidateTypes) {
+ // We would still surface a host candidate if the IP is public, even though it
+ // is disabled by the candidate filter. See
+ // BasicPortAllocatorSession::CheckCandidateFilter. Use the private address so
+ // that the srflx candidate is not equivalent to the host candidate.
+ AddInterface(kPrivateAddr);
+ ResetWithStunServerAndNat(kStunAddr);
+
+ AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
+
+ allocator_->set_flags(allocator().flags() |
+ PORTALLOCATOR_ENABLE_SHARED_SOCKET |
+ PORTALLOCATOR_DISABLE_TCP);
+
+ allocator_->SetCandidateFilter(CF_NONE);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ EXPECT_TRUE(candidates_.empty());
+ EXPECT_TRUE(ports_.empty());
+
+ // Surface the relay candidate previously gathered but not signaled.
+ session_->SetCandidateFilter(CF_RELAY);
+ ASSERT_EQ_SIMULATED_WAIT(1u, candidates_.size(), kDefaultAllocationTimeout,
+ fake_clock);
+ EXPECT_EQ(RELAY_PORT_TYPE, candidates_.back().type());
+ EXPECT_EQ(1u, ports_.size());
+
+ // Surface the srflx candidate previously gathered but not signaled.
+ session_->SetCandidateFilter(CF_RELAY | CF_REFLEXIVE);
+ ASSERT_EQ_SIMULATED_WAIT(2u, candidates_.size(), kDefaultAllocationTimeout,
+ fake_clock);
+ EXPECT_EQ(STUN_PORT_TYPE, candidates_.back().type());
+ EXPECT_EQ(2u, ports_.size());
+
+ // Surface the srflx candidate previously gathered but not signaled.
+ session_->SetCandidateFilter(CF_ALL);
+ ASSERT_EQ_SIMULATED_WAIT(3u, candidates_.size(), kDefaultAllocationTimeout,
+ fake_clock);
+ EXPECT_EQ(LOCAL_PORT_TYPE, candidates_.back().type());
+ EXPECT_EQ(2u, ports_.size());
+}
+
+// This is a similar test as
+// SurfaceNewCandidatesAfterSetCandidateFilterToAddCandidateTypes, and we
+// test the transitions for which the new filter value is not a super set of the
+// previous value.
+TEST_F(
+ BasicPortAllocatorTest,
+ SurfaceNewCandidatesAfterSetCandidateFilterToAllowDifferentCandidateTypes) {
+ // We would still surface a host candidate if the IP is public, even though it
+ // is disabled by the candidate filter. See
+ // BasicPortAllocatorSession::CheckCandidateFilter. Use the private address so
+ // that the srflx candidate is not equivalent to the host candidate.
+ AddInterface(kPrivateAddr);
+ ResetWithStunServerAndNat(kStunAddr);
+
+ AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
+
+ allocator_->set_flags(allocator().flags() |
+ PORTALLOCATOR_ENABLE_SHARED_SOCKET |
+ PORTALLOCATOR_DISABLE_TCP);
+
+ allocator_->SetCandidateFilter(CF_NONE);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ EXPECT_TRUE(candidates_.empty());
+ EXPECT_TRUE(ports_.empty());
+
+ // Surface the relay candidate previously gathered but not signaled.
+ session_->SetCandidateFilter(CF_RELAY);
+ EXPECT_EQ_SIMULATED_WAIT(1u, candidates_.size(), kDefaultAllocationTimeout,
+ fake_clock);
+ EXPECT_EQ(RELAY_PORT_TYPE, candidates_.back().type());
+ EXPECT_EQ(1u, ports_.size());
+
+ // Surface the srflx candidate previously gathered but not signaled.
+ session_->SetCandidateFilter(CF_REFLEXIVE);
+ EXPECT_EQ_SIMULATED_WAIT(2u, candidates_.size(), kDefaultAllocationTimeout,
+ fake_clock);
+ EXPECT_EQ(STUN_PORT_TYPE, candidates_.back().type());
+ EXPECT_EQ(2u, ports_.size());
+
+ // Surface the host candidate previously gathered but not signaled.
+ session_->SetCandidateFilter(CF_HOST);
+ EXPECT_EQ_SIMULATED_WAIT(3u, candidates_.size(), kDefaultAllocationTimeout,
+ fake_clock);
+ EXPECT_EQ(LOCAL_PORT_TYPE, candidates_.back().type());
+ // We use a shared socket and cricket::UDPPort handles the srflx candidate.
+ EXPECT_EQ(2u, ports_.size());
+}
+
+// Test that after an allocation session has stopped getting ports, changing the
+// candidate filter to allow new types of gathered candidates does not surface
+// any candidate.
+TEST_F(BasicPortAllocatorTest,
+ NoCandidateSurfacedWhenUpdatingCandidateFilterIfSessionStopped) {
+ AddInterface(kPrivateAddr);
+ ResetWithStunServerAndNat(kStunAddr);
+
+ AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
+
+ allocator_->set_flags(allocator().flags() |
+ PORTALLOCATOR_ENABLE_SHARED_SOCKET |
+ PORTALLOCATOR_DISABLE_TCP);
+
+ allocator_->SetCandidateFilter(CF_NONE);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ auto test_invariants = [this]() {
+ EXPECT_TRUE(candidates_.empty());
+ EXPECT_TRUE(ports_.empty());
+ };
+
+ test_invariants();
+
+ session_->StopGettingPorts();
+
+ session_->SetCandidateFilter(CF_RELAY);
+ SIMULATED_WAIT(false, kDefaultAllocationTimeout, fake_clock);
+ test_invariants();
+
+ session_->SetCandidateFilter(CF_RELAY | CF_REFLEXIVE);
+ SIMULATED_WAIT(false, kDefaultAllocationTimeout, fake_clock);
+ test_invariants();
+
+ session_->SetCandidateFilter(CF_ALL);
+ SIMULATED_WAIT(false, kDefaultAllocationTimeout, fake_clock);
+ test_invariants();
+}
+
+TEST_F(BasicPortAllocatorTest, SetStunKeepaliveIntervalForPorts) {
+ const int pool_size = 1;
+ const int expected_stun_keepalive_interval = 123;
+ AddInterface(kClientAddr);
+ allocator_->SetConfiguration(
+ allocator_->stun_servers(), allocator_->turn_servers(), pool_size,
+ webrtc::NO_PRUNE, nullptr, expected_stun_keepalive_interval);
+ auto* pooled_session = allocator_->GetPooledSession();
+ ASSERT_NE(nullptr, pooled_session);
+ EXPECT_EQ_SIMULATED_WAIT(true, pooled_session->CandidatesAllocationDone(),
+ kDefaultAllocationTimeout, fake_clock);
+ CheckStunKeepaliveIntervalOfAllReadyPorts(pooled_session,
+ expected_stun_keepalive_interval);
+}
+
+TEST_F(BasicPortAllocatorTest,
+ ChangeStunKeepaliveIntervalForPortsAfterInitialConfig) {
+ const int pool_size = 1;
+ AddInterface(kClientAddr);
+ allocator_->SetConfiguration(
+ allocator_->stun_servers(), allocator_->turn_servers(), pool_size,
+ webrtc::NO_PRUNE, nullptr, 123 /* stun keepalive interval */);
+ auto* pooled_session = allocator_->GetPooledSession();
+ ASSERT_NE(nullptr, pooled_session);
+ EXPECT_EQ_SIMULATED_WAIT(true, pooled_session->CandidatesAllocationDone(),
+ kDefaultAllocationTimeout, fake_clock);
+ const int expected_stun_keepalive_interval = 321;
+ allocator_->SetConfiguration(
+ allocator_->stun_servers(), allocator_->turn_servers(), pool_size,
+ webrtc::NO_PRUNE, nullptr, expected_stun_keepalive_interval);
+ CheckStunKeepaliveIntervalOfAllReadyPorts(pooled_session,
+ expected_stun_keepalive_interval);
+}
+
+TEST_F(BasicPortAllocatorTest,
+ SetStunKeepaliveIntervalForPortsWithSharedSocket) {
+ const int pool_size = 1;
+ const int expected_stun_keepalive_interval = 123;
+ AddInterface(kClientAddr);
+ allocator_->set_flags(allocator().flags() |
+ PORTALLOCATOR_ENABLE_SHARED_SOCKET);
+ allocator_->SetConfiguration(
+ allocator_->stun_servers(), allocator_->turn_servers(), pool_size,
+ webrtc::NO_PRUNE, nullptr, expected_stun_keepalive_interval);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ CheckStunKeepaliveIntervalOfAllReadyPorts(session_.get(),
+ expected_stun_keepalive_interval);
+}
+
+TEST_F(BasicPortAllocatorTest,
+ SetStunKeepaliveIntervalForPortsWithoutSharedSocket) {
+ const int pool_size = 1;
+ const int expected_stun_keepalive_interval = 123;
+ AddInterface(kClientAddr);
+ allocator_->set_flags(allocator().flags() &
+ ~(PORTALLOCATOR_ENABLE_SHARED_SOCKET));
+ allocator_->SetConfiguration(
+ allocator_->stun_servers(), allocator_->turn_servers(), pool_size,
+ webrtc::NO_PRUNE, nullptr, expected_stun_keepalive_interval);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ CheckStunKeepaliveIntervalOfAllReadyPorts(session_.get(),
+ expected_stun_keepalive_interval);
+}
+
+TEST_F(BasicPortAllocatorTest, IceRegatheringMetricsLoggedWhenNetworkChanges) {
+ // Only test local ports to simplify test.
+ ResetWithNoServersOrNat();
+ AddInterface(kClientAddr, "test_net0");
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ candidate_allocation_done_ = false;
+ AddInterface(kClientAddr2, "test_net1");
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ EXPECT_METRIC_EQ(1,
+ webrtc::metrics::NumEvents(
+ "WebRTC.PeerConnection.IceRegatheringReason",
+ static_cast<int>(IceRegatheringReason::NETWORK_CHANGE)));
+}
+
+// Test that when an mDNS responder is present, the local address of a host
+// candidate is concealed by an mDNS hostname and the related address of a srflx
+// candidate is set to 0.0.0.0 or ::0.
+TEST_F(BasicPortAllocatorTest, HostCandidateAddressIsReplacedByHostname) {
+ // Default config uses GTURN and no NAT, so replace that with the
+ // desired setup (NAT, STUN server, TURN server, UDP/TCP).
+ ResetWithStunServerAndNat(kStunAddr);
+ turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
+ AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
+ AddTurnServers(kTurnUdpIntIPv6Addr, kTurnTcpIntIPv6Addr);
+
+ ASSERT_EQ(&network_manager_, allocator().network_manager());
+ network_manager_.set_mdns_responder(
+ std::make_unique<webrtc::FakeMdnsResponder>(rtc::Thread::Current()));
+ AddInterface(kClientAddr);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ EXPECT_EQ(5u, candidates_.size());
+ int num_host_udp_candidates = 0;
+ int num_host_tcp_candidates = 0;
+ int num_srflx_candidates = 0;
+ int num_relay_candidates = 0;
+ for (const auto& candidate : candidates_) {
+ const auto& raddr = candidate.related_address();
+
+ if (candidate.type() == LOCAL_PORT_TYPE) {
+ EXPECT_FALSE(candidate.address().hostname().empty());
+ EXPECT_TRUE(raddr.IsNil());
+ if (candidate.protocol() == UDP_PROTOCOL_NAME) {
+ ++num_host_udp_candidates;
+ } else {
+ ++num_host_tcp_candidates;
+ }
+ } else if (candidate.type() == STUN_PORT_TYPE) {
+ // For a srflx candidate, the related address should be set to 0.0.0.0 or
+ // ::0
+ EXPECT_TRUE(IPIsAny(raddr.ipaddr()));
+ EXPECT_EQ(raddr.port(), 0);
+ ++num_srflx_candidates;
+ } else if (candidate.type() == RELAY_PORT_TYPE) {
+ EXPECT_EQ(kNatUdpAddr.ipaddr(), raddr.ipaddr());
+ EXPECT_EQ(kNatUdpAddr.family(), raddr.family());
+ ++num_relay_candidates;
+ } else {
+ // prflx candidates are not expected
+ FAIL();
+ }
+ }
+ EXPECT_EQ(1, num_host_udp_candidates);
+ EXPECT_EQ(1, num_host_tcp_candidates);
+ EXPECT_EQ(1, num_srflx_candidates);
+ EXPECT_EQ(2, num_relay_candidates);
+}
+
+TEST_F(BasicPortAllocatorTest, TestUseTurnServerAsStunSever) {
+ ServerAddresses stun_servers;
+ stun_servers.insert(kStunAddr);
+ PortConfiguration port_config(stun_servers, "", "");
+ RelayServerConfig turn_servers =
+ CreateTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
+ port_config.AddRelay(turn_servers);
+
+ EXPECT_EQ(2U, port_config.StunServers().size());
+}
+
+TEST_F(BasicPortAllocatorTest, TestDoNotUseTurnServerAsStunSever) {
+ webrtc::test::ScopedKeyValueConfig field_trials(
+ "WebRTC-UseTurnServerAsStunServer/Disabled/");
+ ServerAddresses stun_servers;
+ stun_servers.insert(kStunAddr);
+ PortConfiguration port_config(stun_servers, "" /* user_name */,
+ "" /* password */, &field_trials);
+ RelayServerConfig turn_servers =
+ CreateTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
+ port_config.AddRelay(turn_servers);
+
+ EXPECT_EQ(1U, port_config.StunServers().size());
+}
+
+// Test that candidates from different servers get assigned a unique local
+// preference (the middle 16 bits of the priority)
+TEST_F(BasicPortAllocatorTest, AssignsUniqueLocalPreferencetoRelayCandidates) {
+ allocator_->SetCandidateFilter(CF_RELAY);
+ allocator_->AddTurnServerForTesting(
+ CreateTurnServers(kTurnUdpIntAddr, SocketAddress()));
+ allocator_->AddTurnServerForTesting(
+ CreateTurnServers(kTurnUdpIntAddr, SocketAddress()));
+ allocator_->AddTurnServerForTesting(
+ CreateTurnServers(kTurnUdpIntAddr, SocketAddress()));
+
+ AddInterface(kClientAddr);
+ ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+ EXPECT_EQ(3u, candidates_.size());
+ EXPECT_GT((candidates_[0].priority() >> 8) & 0xFFFF,
+ (candidates_[1].priority() >> 8) & 0xFFFF);
+ EXPECT_GT((candidates_[1].priority() >> 8) & 0xFFFF,
+ (candidates_[2].priority() >> 8) & 0xFFFF);
+}
+
+// Test that no more than allocator.max_ipv6_networks() IPv6 networks are used
+// to gather candidates.
+TEST_F(BasicPortAllocatorTest, TwoIPv6AreSelectedBecauseOfMaxIpv6Limit) {
+ rtc::Network wifi1("wifi1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(),
+ 64, rtc::ADAPTER_TYPE_WIFI);
+ rtc::Network ethe1("ethe1", "Test NetworkAdapter 2",
+ kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET);
+ rtc::Network wifi2("wifi2", "Test NetworkAdapter 3",
+ kClientIPv6Addr3.ipaddr(), 64, rtc::ADAPTER_TYPE_WIFI);
+ std::vector<const rtc::Network*> networks = {&wifi1, &ethe1, &wifi2};
+
+ // Ensure that only 2 interfaces were selected.
+ EXPECT_EQ(2U, BasicPortAllocatorSession::SelectIPv6Networks(
+ networks, /*max_ipv6_networks=*/2)
+ .size());
+}
+
+// Test that if the number of available IPv6 networks is less than
+// allocator.max_ipv6_networks(), all IPv6 networks will be selected.
+TEST_F(BasicPortAllocatorTest, AllIPv6AreSelected) {
+ rtc::Network wifi1("wifi1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(),
+ 64, rtc::ADAPTER_TYPE_WIFI);
+ rtc::Network ethe1("ethe1", "Test NetworkAdapter 2",
+ kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET);
+ std::vector<const rtc::Network*> networks = {&wifi1, &ethe1};
+
+ // Ensure that all 2 interfaces were selected.
+ EXPECT_EQ(2U, BasicPortAllocatorSession::SelectIPv6Networks(
+ networks, /*max_ipv6_networks=*/3)
+ .size());
+}
+
+// If there are some IPv6 networks with different types, diversify IPv6
+// networks.
+TEST_F(BasicPortAllocatorTest, TwoIPv6WifiAreSelectedIfThereAreTwo) {
+ rtc::Network wifi1("wifi1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(),
+ 64, rtc::ADAPTER_TYPE_WIFI);
+ rtc::Network ethe1("ethe1", "Test NetworkAdapter 2",
+ kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET);
+ rtc::Network ethe2("ethe2", "Test NetworkAdapter 3",
+ kClientIPv6Addr3.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET);
+ rtc::Network unknown1("unknown1", "Test NetworkAdapter 4",
+ kClientIPv6Addr2.ipaddr(), 64,
+ rtc::ADAPTER_TYPE_UNKNOWN);
+ rtc::Network cell1("cell1", "Test NetworkAdapter 5",
+ kClientIPv6Addr3.ipaddr(), 64,
+ rtc::ADAPTER_TYPE_CELLULAR_4G);
+ std::vector<const rtc::Network*> networks = {&wifi1, &ethe1, &ethe2,
+ &unknown1, &cell1};
+
+ networks = BasicPortAllocatorSession::SelectIPv6Networks(
+ networks, /*max_ipv6_networks=*/4);
+
+ EXPECT_EQ(4U, networks.size());
+ // Ensure the expected 4 interfaces (wifi1, ethe1, cell1, unknown1) were
+ // selected.
+ EXPECT_TRUE(HasNetwork(networks, wifi1));
+ EXPECT_TRUE(HasNetwork(networks, ethe1));
+ EXPECT_TRUE(HasNetwork(networks, cell1));
+ EXPECT_TRUE(HasNetwork(networks, unknown1));
+}
+
+// If there are some IPv6 networks with the same type, select them because there
+// is no other option.
+TEST_F(BasicPortAllocatorTest, IPv6WithSameTypeAreSelectedIfNoOtherOption) {
+ // Add 5 cellular interfaces
+ rtc::Network cell1("cell1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(),
+ 64, rtc::ADAPTER_TYPE_CELLULAR_2G);
+ rtc::Network cell2("cell2", "Test NetworkAdapter 2",
+ kClientIPv6Addr2.ipaddr(), 64,
+ rtc::ADAPTER_TYPE_CELLULAR_3G);
+ rtc::Network cell3("cell3", "Test NetworkAdapter 3",
+ kClientIPv6Addr3.ipaddr(), 64,
+ rtc::ADAPTER_TYPE_CELLULAR_4G);
+ rtc::Network cell4("cell4", "Test NetworkAdapter 4",
+ kClientIPv6Addr2.ipaddr(), 64,
+ rtc::ADAPTER_TYPE_CELLULAR_5G);
+ rtc::Network cell5("cell5", "Test NetworkAdapter 5",
+ kClientIPv6Addr3.ipaddr(), 64,
+ rtc::ADAPTER_TYPE_CELLULAR_3G);
+ std::vector<const rtc::Network*> networks = {&cell1, &cell2, &cell3, &cell4,
+ &cell5};
+
+ // Ensure that 4 interfaces were selected.
+ EXPECT_EQ(4U, BasicPortAllocatorSession::SelectIPv6Networks(
+ networks, /*max_ipv6_networks=*/4)
+ .size());
+}
+
+TEST_F(BasicPortAllocatorTest, IPv6EthernetHasHigherPriorityThanWifi) {
+ rtc::Network wifi1("wifi1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(),
+ 64, rtc::ADAPTER_TYPE_WIFI);
+ rtc::Network ethe1("ethe1", "Test NetworkAdapter 2",
+ kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET);
+ rtc::Network wifi2("wifi2", "Test NetworkAdapter 3",
+ kClientIPv6Addr3.ipaddr(), 64, rtc::ADAPTER_TYPE_WIFI);
+ std::vector<const rtc::Network*> networks = {&wifi1, &ethe1, &wifi2};
+
+ networks = BasicPortAllocatorSession::SelectIPv6Networks(
+ networks, /*max_ipv6_networks=*/1);
+
+ EXPECT_EQ(1U, networks.size());
+ // Ensure ethe1 was selected.
+ EXPECT_TRUE(HasNetwork(networks, ethe1));
+}
+
+TEST_F(BasicPortAllocatorTest, IPv6EtherAndWifiHaveHigherPriorityThanOthers) {
+ rtc::Network cell1("cell1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(),
+ 64, rtc::ADAPTER_TYPE_CELLULAR_3G);
+ rtc::Network ethe1("ethe1", "Test NetworkAdapter 2",
+ kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET);
+ rtc::Network wifi1("wifi1", "Test NetworkAdapter 3",
+ kClientIPv6Addr3.ipaddr(), 64, rtc::ADAPTER_TYPE_WIFI);
+ rtc::Network unknown("unknown", "Test NetworkAdapter 4",
+ kClientIPv6Addr2.ipaddr(), 64,
+ rtc::ADAPTER_TYPE_UNKNOWN);
+ rtc::Network vpn1("vpn1", "Test NetworkAdapter 5", kClientIPv6Addr3.ipaddr(),
+ 64, rtc::ADAPTER_TYPE_VPN);
+ std::vector<const rtc::Network*> networks = {&cell1, &ethe1, &wifi1, &unknown,
+ &vpn1};
+
+ networks = BasicPortAllocatorSession::SelectIPv6Networks(
+ networks, /*max_ipv6_networks=*/2);
+
+ EXPECT_EQ(2U, networks.size());
+ // Ensure ethe1 and wifi1 were selected.
+ EXPECT_TRUE(HasNetwork(networks, wifi1));
+ EXPECT_TRUE(HasNetwork(networks, ethe1));
+}
+
+TEST_F(BasicPortAllocatorTest, Select2DifferentIntefaces) {
+ allocator().set_max_ipv6_networks(2);
+ AddInterface(kClientIPv6Addr, "ethe1", rtc::ADAPTER_TYPE_ETHERNET);
+ AddInterface(kClientIPv6Addr2, "ethe2", rtc::ADAPTER_TYPE_ETHERNET);
+ AddInterface(kClientIPv6Addr3, "wifi1", rtc::ADAPTER_TYPE_WIFI);
+ AddInterface(kClientIPv6Addr4, "wifi2", rtc::ADAPTER_TYPE_WIFI);
+ AddInterface(kClientIPv6Addr5, "cell1", rtc::ADAPTER_TYPE_CELLULAR_3G);
+
+ // To simplify the test, only gather UDP host candidates.
+ allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP |
+ PORTALLOCATOR_DISABLE_STUN |
+ PORTALLOCATOR_DISABLE_RELAY |
+ PORTALLOCATOR_ENABLE_IPV6_ON_WIFI);
+
+ ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+
+ EXPECT_EQ(2U, candidates_.size());
+ // ethe1 and wifi1 were selected.
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr));
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr3));
+}
+
+TEST_F(BasicPortAllocatorTest, Select3DifferentIntefaces) {
+ allocator().set_max_ipv6_networks(3);
+ AddInterface(kClientIPv6Addr, "ethe1", rtc::ADAPTER_TYPE_ETHERNET);
+ AddInterface(kClientIPv6Addr2, "ethe2", rtc::ADAPTER_TYPE_ETHERNET);
+ AddInterface(kClientIPv6Addr3, "wifi1", rtc::ADAPTER_TYPE_WIFI);
+ AddInterface(kClientIPv6Addr4, "wifi2", rtc::ADAPTER_TYPE_WIFI);
+ AddInterface(kClientIPv6Addr5, "cell1", rtc::ADAPTER_TYPE_CELLULAR_3G);
+
+ // To simplify the test, only gather UDP host candidates.
+ allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP |
+ PORTALLOCATOR_DISABLE_STUN |
+ PORTALLOCATOR_DISABLE_RELAY |
+ PORTALLOCATOR_ENABLE_IPV6_ON_WIFI);
+
+ ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+
+ EXPECT_EQ(3U, candidates_.size());
+ // ethe1, wifi1, and cell1 were selected.
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr));
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr3));
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr5));
+}
+
+TEST_F(BasicPortAllocatorTest, Select4DifferentIntefaces) {
+ allocator().set_max_ipv6_networks(4);
+ AddInterface(kClientIPv6Addr, "ethe1", rtc::ADAPTER_TYPE_ETHERNET);
+ AddInterface(kClientIPv6Addr2, "ethe2", rtc::ADAPTER_TYPE_ETHERNET);
+ AddInterface(kClientIPv6Addr3, "wifi1", rtc::ADAPTER_TYPE_WIFI);
+ AddInterface(kClientIPv6Addr4, "wifi2", rtc::ADAPTER_TYPE_WIFI);
+ AddInterface(kClientIPv6Addr5, "cell1", rtc::ADAPTER_TYPE_CELLULAR_3G);
+
+ // To simplify the test, only gather UDP host candidates.
+ allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP |
+ PORTALLOCATOR_DISABLE_STUN |
+ PORTALLOCATOR_DISABLE_RELAY |
+ PORTALLOCATOR_ENABLE_IPV6_ON_WIFI);
+
+ ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
+ session_->StartGettingPorts();
+ EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
+ kDefaultAllocationTimeout, fake_clock);
+
+ EXPECT_EQ(4U, candidates_.size());
+ // ethe1, ethe2, wifi1, and cell1 were selected.
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr));
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr2));
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr3));
+ EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr5));
+}
+
+} // namespace cricket