summaryrefslogtreecommitdiffstats
path: root/third_party/python/setuptools/pkg_resources/_vendor/packaging/metadata.py
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
commit26a029d407be480d791972afb5975cf62c9360a6 (patch)
treef435a8308119effd964b339f76abb83a57c29483 /third_party/python/setuptools/pkg_resources/_vendor/packaging/metadata.py
parentInitial commit. (diff)
downloadfirefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz
firefox-26a029d407be480d791972afb5975cf62c9360a6.zip
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/python/setuptools/pkg_resources/_vendor/packaging/metadata.py')
-rw-r--r--third_party/python/setuptools/pkg_resources/_vendor/packaging/metadata.py408
1 files changed, 408 insertions, 0 deletions
diff --git a/third_party/python/setuptools/pkg_resources/_vendor/packaging/metadata.py b/third_party/python/setuptools/pkg_resources/_vendor/packaging/metadata.py
new file mode 100644
index 0000000000..e76a60c395
--- /dev/null
+++ b/third_party/python/setuptools/pkg_resources/_vendor/packaging/metadata.py
@@ -0,0 +1,408 @@
+import email.feedparser
+import email.header
+import email.message
+import email.parser
+import email.policy
+import sys
+import typing
+from typing import Dict, List, Optional, Tuple, Union, cast
+
+if sys.version_info >= (3, 8): # pragma: no cover
+ from typing import TypedDict
+else: # pragma: no cover
+ if typing.TYPE_CHECKING:
+ from typing_extensions import TypedDict
+ else:
+ try:
+ from typing_extensions import TypedDict
+ except ImportError:
+
+ class TypedDict:
+ def __init_subclass__(*_args, **_kwargs):
+ pass
+
+
+# The RawMetadata class attempts to make as few assumptions about the underlying
+# serialization formats as possible. The idea is that as long as a serialization
+# formats offer some very basic primitives in *some* way then we can support
+# serializing to and from that format.
+class RawMetadata(TypedDict, total=False):
+ """A dictionary of raw core metadata.
+
+ Each field in core metadata maps to a key of this dictionary (when data is
+ provided). The key is lower-case and underscores are used instead of dashes
+ compared to the equivalent core metadata field. Any core metadata field that
+ can be specified multiple times or can hold multiple values in a single
+ field have a key with a plural name.
+
+ Core metadata fields that can be specified multiple times are stored as a
+ list or dict depending on which is appropriate for the field. Any fields
+ which hold multiple values in a single field are stored as a list.
+
+ """
+
+ # Metadata 1.0 - PEP 241
+ metadata_version: str
+ name: str
+ version: str
+ platforms: List[str]
+ summary: str
+ description: str
+ keywords: List[str]
+ home_page: str
+ author: str
+ author_email: str
+ license: str
+
+ # Metadata 1.1 - PEP 314
+ supported_platforms: List[str]
+ download_url: str
+ classifiers: List[str]
+ requires: List[str]
+ provides: List[str]
+ obsoletes: List[str]
+
+ # Metadata 1.2 - PEP 345
+ maintainer: str
+ maintainer_email: str
+ requires_dist: List[str]
+ provides_dist: List[str]
+ obsoletes_dist: List[str]
+ requires_python: str
+ requires_external: List[str]
+ project_urls: Dict[str, str]
+
+ # Metadata 2.0
+ # PEP 426 attempted to completely revamp the metadata format
+ # but got stuck without ever being able to build consensus on
+ # it and ultimately ended up withdrawn.
+ #
+ # However, a number of tools had started emiting METADATA with
+ # `2.0` Metadata-Version, so for historical reasons, this version
+ # was skipped.
+
+ # Metadata 2.1 - PEP 566
+ description_content_type: str
+ provides_extra: List[str]
+
+ # Metadata 2.2 - PEP 643
+ dynamic: List[str]
+
+ # Metadata 2.3 - PEP 685
+ # No new fields were added in PEP 685, just some edge case were
+ # tightened up to provide better interoptability.
+
+
+_STRING_FIELDS = {
+ "author",
+ "author_email",
+ "description",
+ "description_content_type",
+ "download_url",
+ "home_page",
+ "license",
+ "maintainer",
+ "maintainer_email",
+ "metadata_version",
+ "name",
+ "requires_python",
+ "summary",
+ "version",
+}
+
+_LIST_STRING_FIELDS = {
+ "classifiers",
+ "dynamic",
+ "obsoletes",
+ "obsoletes_dist",
+ "platforms",
+ "provides",
+ "provides_dist",
+ "provides_extra",
+ "requires",
+ "requires_dist",
+ "requires_external",
+ "supported_platforms",
+}
+
+
+def _parse_keywords(data: str) -> List[str]:
+ """Split a string of comma-separate keyboards into a list of keywords."""
+ return [k.strip() for k in data.split(",")]
+
+
+def _parse_project_urls(data: List[str]) -> Dict[str, str]:
+ """Parse a list of label/URL string pairings separated by a comma."""
+ urls = {}
+ for pair in data:
+ # Our logic is slightly tricky here as we want to try and do
+ # *something* reasonable with malformed data.
+ #
+ # The main thing that we have to worry about, is data that does
+ # not have a ',' at all to split the label from the Value. There
+ # isn't a singular right answer here, and we will fail validation
+ # later on (if the caller is validating) so it doesn't *really*
+ # matter, but since the missing value has to be an empty str
+ # and our return value is dict[str, str], if we let the key
+ # be the missing value, then they'd have multiple '' values that
+ # overwrite each other in a accumulating dict.
+ #
+ # The other potentional issue is that it's possible to have the
+ # same label multiple times in the metadata, with no solid "right"
+ # answer with what to do in that case. As such, we'll do the only
+ # thing we can, which is treat the field as unparseable and add it
+ # to our list of unparsed fields.
+ parts = [p.strip() for p in pair.split(",", 1)]
+ parts.extend([""] * (max(0, 2 - len(parts)))) # Ensure 2 items
+
+ # TODO: The spec doesn't say anything about if the keys should be
+ # considered case sensitive or not... logically they should
+ # be case-preserving and case-insensitive, but doing that
+ # would open up more cases where we might have duplicate
+ # entries.
+ label, url = parts
+ if label in urls:
+ # The label already exists in our set of urls, so this field
+ # is unparseable, and we can just add the whole thing to our
+ # unparseable data and stop processing it.
+ raise KeyError("duplicate labels in project urls")
+ urls[label] = url
+
+ return urls
+
+
+def _get_payload(msg: email.message.Message, source: Union[bytes, str]) -> str:
+ """Get the body of the message."""
+ # If our source is a str, then our caller has managed encodings for us,
+ # and we don't need to deal with it.
+ if isinstance(source, str):
+ payload: str = msg.get_payload()
+ return payload
+ # If our source is a bytes, then we're managing the encoding and we need
+ # to deal with it.
+ else:
+ bpayload: bytes = msg.get_payload(decode=True)
+ try:
+ return bpayload.decode("utf8", "strict")
+ except UnicodeDecodeError:
+ raise ValueError("payload in an invalid encoding")
+
+
+# The various parse_FORMAT functions here are intended to be as lenient as
+# possible in their parsing, while still returning a correctly typed
+# RawMetadata.
+#
+# To aid in this, we also generally want to do as little touching of the
+# data as possible, except where there are possibly some historic holdovers
+# that make valid data awkward to work with.
+#
+# While this is a lower level, intermediate format than our ``Metadata``
+# class, some light touch ups can make a massive difference in usability.
+
+# Map METADATA fields to RawMetadata.
+_EMAIL_TO_RAW_MAPPING = {
+ "author": "author",
+ "author-email": "author_email",
+ "classifier": "classifiers",
+ "description": "description",
+ "description-content-type": "description_content_type",
+ "download-url": "download_url",
+ "dynamic": "dynamic",
+ "home-page": "home_page",
+ "keywords": "keywords",
+ "license": "license",
+ "maintainer": "maintainer",
+ "maintainer-email": "maintainer_email",
+ "metadata-version": "metadata_version",
+ "name": "name",
+ "obsoletes": "obsoletes",
+ "obsoletes-dist": "obsoletes_dist",
+ "platform": "platforms",
+ "project-url": "project_urls",
+ "provides": "provides",
+ "provides-dist": "provides_dist",
+ "provides-extra": "provides_extra",
+ "requires": "requires",
+ "requires-dist": "requires_dist",
+ "requires-external": "requires_external",
+ "requires-python": "requires_python",
+ "summary": "summary",
+ "supported-platform": "supported_platforms",
+ "version": "version",
+}
+
+
+def parse_email(data: Union[bytes, str]) -> Tuple[RawMetadata, Dict[str, List[str]]]:
+ """Parse a distribution's metadata.
+
+ This function returns a two-item tuple of dicts. The first dict is of
+ recognized fields from the core metadata specification. Fields that can be
+ parsed and translated into Python's built-in types are converted
+ appropriately. All other fields are left as-is. Fields that are allowed to
+ appear multiple times are stored as lists.
+
+ The second dict contains all other fields from the metadata. This includes
+ any unrecognized fields. It also includes any fields which are expected to
+ be parsed into a built-in type but were not formatted appropriately. Finally,
+ any fields that are expected to appear only once but are repeated are
+ included in this dict.
+
+ """
+ raw: Dict[str, Union[str, List[str], Dict[str, str]]] = {}
+ unparsed: Dict[str, List[str]] = {}
+
+ if isinstance(data, str):
+ parsed = email.parser.Parser(policy=email.policy.compat32).parsestr(data)
+ else:
+ parsed = email.parser.BytesParser(policy=email.policy.compat32).parsebytes(data)
+
+ # We have to wrap parsed.keys() in a set, because in the case of multiple
+ # values for a key (a list), the key will appear multiple times in the
+ # list of keys, but we're avoiding that by using get_all().
+ for name in frozenset(parsed.keys()):
+ # Header names in RFC are case insensitive, so we'll normalize to all
+ # lower case to make comparisons easier.
+ name = name.lower()
+
+ # We use get_all() here, even for fields that aren't multiple use,
+ # because otherwise someone could have e.g. two Name fields, and we
+ # would just silently ignore it rather than doing something about it.
+ headers = parsed.get_all(name)
+
+ # The way the email module works when parsing bytes is that it
+ # unconditionally decodes the bytes as ascii using the surrogateescape
+ # handler. When you pull that data back out (such as with get_all() ),
+ # it looks to see if the str has any surrogate escapes, and if it does
+ # it wraps it in a Header object instead of returning the string.
+ #
+ # As such, we'll look for those Header objects, and fix up the encoding.
+ value = []
+ # Flag if we have run into any issues processing the headers, thus
+ # signalling that the data belongs in 'unparsed'.
+ valid_encoding = True
+ for h in headers:
+ # It's unclear if this can return more types than just a Header or
+ # a str, so we'll just assert here to make sure.
+ assert isinstance(h, (email.header.Header, str))
+
+ # If it's a header object, we need to do our little dance to get
+ # the real data out of it. In cases where there is invalid data
+ # we're going to end up with mojibake, but there's no obvious, good
+ # way around that without reimplementing parts of the Header object
+ # ourselves.
+ #
+ # That should be fine since, if mojibacked happens, this key is
+ # going into the unparsed dict anyways.
+ if isinstance(h, email.header.Header):
+ # The Header object stores it's data as chunks, and each chunk
+ # can be independently encoded, so we'll need to check each
+ # of them.
+ chunks: List[Tuple[bytes, Optional[str]]] = []
+ for bin, encoding in email.header.decode_header(h):
+ try:
+ bin.decode("utf8", "strict")
+ except UnicodeDecodeError:
+ # Enable mojibake.
+ encoding = "latin1"
+ valid_encoding = False
+ else:
+ encoding = "utf8"
+ chunks.append((bin, encoding))
+
+ # Turn our chunks back into a Header object, then let that
+ # Header object do the right thing to turn them into a
+ # string for us.
+ value.append(str(email.header.make_header(chunks)))
+ # This is already a string, so just add it.
+ else:
+ value.append(h)
+
+ # We've processed all of our values to get them into a list of str,
+ # but we may have mojibake data, in which case this is an unparsed
+ # field.
+ if not valid_encoding:
+ unparsed[name] = value
+ continue
+
+ raw_name = _EMAIL_TO_RAW_MAPPING.get(name)
+ if raw_name is None:
+ # This is a bit of a weird situation, we've encountered a key that
+ # we don't know what it means, so we don't know whether it's meant
+ # to be a list or not.
+ #
+ # Since we can't really tell one way or another, we'll just leave it
+ # as a list, even though it may be a single item list, because that's
+ # what makes the most sense for email headers.
+ unparsed[name] = value
+ continue
+
+ # If this is one of our string fields, then we'll check to see if our
+ # value is a list of a single item. If it is then we'll assume that
+ # it was emitted as a single string, and unwrap the str from inside
+ # the list.
+ #
+ # If it's any other kind of data, then we haven't the faintest clue
+ # what we should parse it as, and we have to just add it to our list
+ # of unparsed stuff.
+ if raw_name in _STRING_FIELDS and len(value) == 1:
+ raw[raw_name] = value[0]
+ # If this is one of our list of string fields, then we can just assign
+ # the value, since email *only* has strings, and our get_all() call
+ # above ensures that this is a list.
+ elif raw_name in _LIST_STRING_FIELDS:
+ raw[raw_name] = value
+ # Special Case: Keywords
+ # The keywords field is implemented in the metadata spec as a str,
+ # but it conceptually is a list of strings, and is serialized using
+ # ", ".join(keywords), so we'll do some light data massaging to turn
+ # this into what it logically is.
+ elif raw_name == "keywords" and len(value) == 1:
+ raw[raw_name] = _parse_keywords(value[0])
+ # Special Case: Project-URL
+ # The project urls is implemented in the metadata spec as a list of
+ # specially-formatted strings that represent a key and a value, which
+ # is fundamentally a mapping, however the email format doesn't support
+ # mappings in a sane way, so it was crammed into a list of strings
+ # instead.
+ #
+ # We will do a little light data massaging to turn this into a map as
+ # it logically should be.
+ elif raw_name == "project_urls":
+ try:
+ raw[raw_name] = _parse_project_urls(value)
+ except KeyError:
+ unparsed[name] = value
+ # Nothing that we've done has managed to parse this, so it'll just
+ # throw it in our unparseable data and move on.
+ else:
+ unparsed[name] = value
+
+ # We need to support getting the Description from the message payload in
+ # addition to getting it from the the headers. This does mean, though, there
+ # is the possibility of it being set both ways, in which case we put both
+ # in 'unparsed' since we don't know which is right.
+ try:
+ payload = _get_payload(parsed, data)
+ except ValueError:
+ unparsed.setdefault("description", []).append(
+ parsed.get_payload(decode=isinstance(data, bytes))
+ )
+ else:
+ if payload:
+ # Check to see if we've already got a description, if so then both
+ # it, and this body move to unparseable.
+ if "description" in raw:
+ description_header = cast(str, raw.pop("description"))
+ unparsed.setdefault("description", []).extend(
+ [description_header, payload]
+ )
+ elif "description" in unparsed:
+ unparsed["description"].append(payload)
+ else:
+ raw["description"] = payload
+
+ # We need to cast our `raw` to a metadata, because a TypedDict only support
+ # literal key names, but we're computing our key names on purpose, but the
+ # way this function is implemented, our `TypedDict` can only have valid key
+ # names.
+ return cast(RawMetadata, raw), unparsed