summaryrefslogtreecommitdiffstats
path: root/third_party/rust/naga/src/front/wgsl/parse/number.rs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 00:47:55 +0000
commit26a029d407be480d791972afb5975cf62c9360a6 (patch)
treef435a8308119effd964b339f76abb83a57c29483 /third_party/rust/naga/src/front/wgsl/parse/number.rs
parentInitial commit. (diff)
downloadfirefox-26a029d407be480d791972afb5975cf62c9360a6.tar.xz
firefox-26a029d407be480d791972afb5975cf62c9360a6.zip
Adding upstream version 124.0.1.upstream/124.0.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/rust/naga/src/front/wgsl/parse/number.rs')
-rw-r--r--third_party/rust/naga/src/front/wgsl/parse/number.rs420
1 files changed, 420 insertions, 0 deletions
diff --git a/third_party/rust/naga/src/front/wgsl/parse/number.rs b/third_party/rust/naga/src/front/wgsl/parse/number.rs
new file mode 100644
index 0000000000..7b09ac59bb
--- /dev/null
+++ b/third_party/rust/naga/src/front/wgsl/parse/number.rs
@@ -0,0 +1,420 @@
+use crate::front::wgsl::error::NumberError;
+use crate::front::wgsl::parse::lexer::Token;
+
+/// When using this type assume no Abstract Int/Float for now
+#[derive(Copy, Clone, Debug, PartialEq)]
+pub enum Number {
+ /// Abstract Int (-2^63 ≤ i < 2^63)
+ AbstractInt(i64),
+ /// Abstract Float (IEEE-754 binary64)
+ AbstractFloat(f64),
+ /// Concrete i32
+ I32(i32),
+ /// Concrete u32
+ U32(u32),
+ /// Concrete f32
+ F32(f32),
+ /// Concrete f64
+ F64(f64),
+}
+
+pub(in crate::front::wgsl) fn consume_number(input: &str) -> (Token<'_>, &str) {
+ let (result, rest) = parse(input);
+ (Token::Number(result), rest)
+}
+
+enum Kind {
+ Int(IntKind),
+ Float(FloatKind),
+}
+
+enum IntKind {
+ I32,
+ U32,
+}
+
+#[derive(Debug)]
+enum FloatKind {
+ F16,
+ F32,
+ F64,
+}
+
+// The following regexes (from the WGSL spec) will be matched:
+
+// int_literal:
+// | / 0 [iu]? /
+// | / [1-9][0-9]* [iu]? /
+// | / 0[xX][0-9a-fA-F]+ [iu]? /
+
+// decimal_float_literal:
+// | / 0 [fh] /
+// | / [1-9][0-9]* [fh] /
+// | / [0-9]* \.[0-9]+ ([eE][+-]?[0-9]+)? [fh]? /
+// | / [0-9]+ \.[0-9]* ([eE][+-]?[0-9]+)? [fh]? /
+// | / [0-9]+ [eE][+-]?[0-9]+ [fh]? /
+
+// hex_float_literal:
+// | / 0[xX][0-9a-fA-F]* \.[0-9a-fA-F]+ ([pP][+-]?[0-9]+ [fh]?)? /
+// | / 0[xX][0-9a-fA-F]+ \.[0-9a-fA-F]* ([pP][+-]?[0-9]+ [fh]?)? /
+// | / 0[xX][0-9a-fA-F]+ [pP][+-]?[0-9]+ [fh]? /
+
+// You could visualize the regex below via https://debuggex.com to get a rough idea what `parse` is doing
+// (?:0[xX](?:([0-9a-fA-F]+\.[0-9a-fA-F]*|[0-9a-fA-F]*\.[0-9a-fA-F]+)(?:([pP][+-]?[0-9]+)([fh]?))?|([0-9a-fA-F]+)([pP][+-]?[0-9]+)([fh]?)|([0-9a-fA-F]+)([iu]?))|((?:[0-9]+[eE][+-]?[0-9]+|(?:[0-9]+\.[0-9]*|[0-9]*\.[0-9]+)(?:[eE][+-]?[0-9]+)?))([fh]?)|((?:[0-9]|[1-9][0-9]+))([iufh]?))
+
+// Leading signs are handled as unary operators.
+
+fn parse(input: &str) -> (Result<Number, NumberError>, &str) {
+ /// returns `true` and consumes `X` bytes from the given byte buffer
+ /// if the given `X` nr of patterns are found at the start of the buffer
+ macro_rules! consume {
+ ($bytes:ident, $($pattern:pat),*) => {
+ match $bytes {
+ &[$($pattern),*, ref rest @ ..] => { $bytes = rest; true },
+ _ => false,
+ }
+ };
+ }
+
+ /// consumes one byte from the given byte buffer
+ /// if one of the given patterns are found at the start of the buffer
+ /// returning the corresponding expr for the matched pattern
+ macro_rules! consume_map {
+ ($bytes:ident, [$( $($pattern:pat_param),* => $to:expr),* $(,)?]) => {
+ match $bytes {
+ $( &[ $($pattern),*, ref rest @ ..] => { $bytes = rest; Some($to) }, )*
+ _ => None,
+ }
+ };
+ }
+
+ /// consumes all consecutive bytes matched by the `0-9` pattern from the given byte buffer
+ /// returning the number of consumed bytes
+ macro_rules! consume_dec_digits {
+ ($bytes:ident) => {{
+ let start_len = $bytes.len();
+ while let &[b'0'..=b'9', ref rest @ ..] = $bytes {
+ $bytes = rest;
+ }
+ start_len - $bytes.len()
+ }};
+ }
+
+ /// consumes all consecutive bytes matched by the `0-9 | a-f | A-F` pattern from the given byte buffer
+ /// returning the number of consumed bytes
+ macro_rules! consume_hex_digits {
+ ($bytes:ident) => {{
+ let start_len = $bytes.len();
+ while let &[b'0'..=b'9' | b'a'..=b'f' | b'A'..=b'F', ref rest @ ..] = $bytes {
+ $bytes = rest;
+ }
+ start_len - $bytes.len()
+ }};
+ }
+
+ macro_rules! consume_float_suffix {
+ ($bytes:ident) => {
+ consume_map!($bytes, [
+ b'h' => FloatKind::F16,
+ b'f' => FloatKind::F32,
+ b'l', b'f' => FloatKind::F64,
+ ])
+ };
+ }
+
+ /// maps the given `&[u8]` (tail of the initial `input: &str`) to a `&str`
+ macro_rules! rest_to_str {
+ ($bytes:ident) => {
+ &input[input.len() - $bytes.len()..]
+ };
+ }
+
+ struct ExtractSubStr<'a>(&'a str);
+
+ impl<'a> ExtractSubStr<'a> {
+ /// given an `input` and a `start` (tail of the `input`)
+ /// creates a new [`ExtractSubStr`](`Self`)
+ fn start(input: &'a str, start: &'a [u8]) -> Self {
+ let start = input.len() - start.len();
+ Self(&input[start..])
+ }
+ /// given an `end` (tail of the initial `input`)
+ /// returns a substring of `input`
+ fn end(&self, end: &'a [u8]) -> &'a str {
+ let end = self.0.len() - end.len();
+ &self.0[..end]
+ }
+ }
+
+ let mut bytes = input.as_bytes();
+
+ let general_extract = ExtractSubStr::start(input, bytes);
+
+ if consume!(bytes, b'0', b'x' | b'X') {
+ let digits_extract = ExtractSubStr::start(input, bytes);
+
+ let consumed = consume_hex_digits!(bytes);
+
+ if consume!(bytes, b'.') {
+ let consumed_after_period = consume_hex_digits!(bytes);
+
+ if consumed + consumed_after_period == 0 {
+ return (Err(NumberError::Invalid), rest_to_str!(bytes));
+ }
+
+ let significand = general_extract.end(bytes);
+
+ if consume!(bytes, b'p' | b'P') {
+ consume!(bytes, b'+' | b'-');
+ let consumed = consume_dec_digits!(bytes);
+
+ if consumed == 0 {
+ return (Err(NumberError::Invalid), rest_to_str!(bytes));
+ }
+
+ let number = general_extract.end(bytes);
+
+ let kind = consume_float_suffix!(bytes);
+
+ (parse_hex_float(number, kind), rest_to_str!(bytes))
+ } else {
+ (
+ parse_hex_float_missing_exponent(significand, None),
+ rest_to_str!(bytes),
+ )
+ }
+ } else {
+ if consumed == 0 {
+ return (Err(NumberError::Invalid), rest_to_str!(bytes));
+ }
+
+ let significand = general_extract.end(bytes);
+ let digits = digits_extract.end(bytes);
+
+ let exp_extract = ExtractSubStr::start(input, bytes);
+
+ if consume!(bytes, b'p' | b'P') {
+ consume!(bytes, b'+' | b'-');
+ let consumed = consume_dec_digits!(bytes);
+
+ if consumed == 0 {
+ return (Err(NumberError::Invalid), rest_to_str!(bytes));
+ }
+
+ let exponent = exp_extract.end(bytes);
+
+ let kind = consume_float_suffix!(bytes);
+
+ (
+ parse_hex_float_missing_period(significand, exponent, kind),
+ rest_to_str!(bytes),
+ )
+ } else {
+ let kind = consume_map!(bytes, [b'i' => IntKind::I32, b'u' => IntKind::U32]);
+
+ (parse_hex_int(digits, kind), rest_to_str!(bytes))
+ }
+ }
+ } else {
+ let is_first_zero = bytes.first() == Some(&b'0');
+
+ let consumed = consume_dec_digits!(bytes);
+
+ if consume!(bytes, b'.') {
+ let consumed_after_period = consume_dec_digits!(bytes);
+
+ if consumed + consumed_after_period == 0 {
+ return (Err(NumberError::Invalid), rest_to_str!(bytes));
+ }
+
+ if consume!(bytes, b'e' | b'E') {
+ consume!(bytes, b'+' | b'-');
+ let consumed = consume_dec_digits!(bytes);
+
+ if consumed == 0 {
+ return (Err(NumberError::Invalid), rest_to_str!(bytes));
+ }
+ }
+
+ let number = general_extract.end(bytes);
+
+ let kind = consume_float_suffix!(bytes);
+
+ (parse_dec_float(number, kind), rest_to_str!(bytes))
+ } else {
+ if consumed == 0 {
+ return (Err(NumberError::Invalid), rest_to_str!(bytes));
+ }
+
+ if consume!(bytes, b'e' | b'E') {
+ consume!(bytes, b'+' | b'-');
+ let consumed = consume_dec_digits!(bytes);
+
+ if consumed == 0 {
+ return (Err(NumberError::Invalid), rest_to_str!(bytes));
+ }
+
+ let number = general_extract.end(bytes);
+
+ let kind = consume_float_suffix!(bytes);
+
+ (parse_dec_float(number, kind), rest_to_str!(bytes))
+ } else {
+ // make sure the multi-digit numbers don't start with zero
+ if consumed > 1 && is_first_zero {
+ return (Err(NumberError::Invalid), rest_to_str!(bytes));
+ }
+
+ let digits = general_extract.end(bytes);
+
+ let kind = consume_map!(bytes, [
+ b'i' => Kind::Int(IntKind::I32),
+ b'u' => Kind::Int(IntKind::U32),
+ b'h' => Kind::Float(FloatKind::F16),
+ b'f' => Kind::Float(FloatKind::F32),
+ b'l', b'f' => Kind::Float(FloatKind::F64),
+ ]);
+
+ (parse_dec(digits, kind), rest_to_str!(bytes))
+ }
+ }
+ }
+}
+
+fn parse_hex_float_missing_exponent(
+ // format: 0[xX] ( [0-9a-fA-F]+\.[0-9a-fA-F]* | [0-9a-fA-F]*\.[0-9a-fA-F]+ )
+ significand: &str,
+ kind: Option<FloatKind>,
+) -> Result<Number, NumberError> {
+ let hexf_input = format!("{}{}", significand, "p0");
+ parse_hex_float(&hexf_input, kind)
+}
+
+fn parse_hex_float_missing_period(
+ // format: 0[xX] [0-9a-fA-F]+
+ significand: &str,
+ // format: [pP][+-]?[0-9]+
+ exponent: &str,
+ kind: Option<FloatKind>,
+) -> Result<Number, NumberError> {
+ let hexf_input = format!("{significand}.{exponent}");
+ parse_hex_float(&hexf_input, kind)
+}
+
+fn parse_hex_int(
+ // format: [0-9a-fA-F]+
+ digits: &str,
+ kind: Option<IntKind>,
+) -> Result<Number, NumberError> {
+ parse_int(digits, kind, 16)
+}
+
+fn parse_dec(
+ // format: ( [0-9] | [1-9][0-9]+ )
+ digits: &str,
+ kind: Option<Kind>,
+) -> Result<Number, NumberError> {
+ match kind {
+ None => parse_int(digits, None, 10),
+ Some(Kind::Int(kind)) => parse_int(digits, Some(kind), 10),
+ Some(Kind::Float(kind)) => parse_dec_float(digits, Some(kind)),
+ }
+}
+
+// Float parsing notes
+
+// The following chapters of IEEE 754-2019 are relevant:
+//
+// 7.4 Overflow (largest finite number is exceeded by what would have been
+// the rounded floating-point result were the exponent range unbounded)
+//
+// 7.5 Underflow (tiny non-zero result is detected;
+// for decimal formats tininess is detected before rounding when a non-zero result
+// computed as though both the exponent range and the precision were unbounded
+// would lie strictly between 2^−126)
+//
+// 7.6 Inexact (rounded result differs from what would have been computed
+// were both exponent range and precision unbounded)
+
+// The WGSL spec requires us to error:
+// on overflow for decimal floating point literals
+// on overflow and inexact for hexadecimal floating point literals
+// (underflow is not mentioned)
+
+// hexf_parse errors on overflow, underflow, inexact
+// rust std lib float from str handles overflow, underflow, inexact transparently (rounds and will not error)
+
+// Therefore we only check for overflow manually for decimal floating point literals
+
+// input format: 0[xX] ( [0-9a-fA-F]+\.[0-9a-fA-F]* | [0-9a-fA-F]*\.[0-9a-fA-F]+ ) [pP][+-]?[0-9]+
+fn parse_hex_float(input: &str, kind: Option<FloatKind>) -> Result<Number, NumberError> {
+ match kind {
+ None => match hexf_parse::parse_hexf64(input, false) {
+ Ok(num) => Ok(Number::AbstractFloat(num)),
+ // can only be ParseHexfErrorKind::Inexact but we can't check since it's private
+ _ => Err(NumberError::NotRepresentable),
+ },
+ Some(FloatKind::F16) => Err(NumberError::UnimplementedF16),
+ Some(FloatKind::F32) => match hexf_parse::parse_hexf32(input, false) {
+ Ok(num) => Ok(Number::F32(num)),
+ // can only be ParseHexfErrorKind::Inexact but we can't check since it's private
+ _ => Err(NumberError::NotRepresentable),
+ },
+ Some(FloatKind::F64) => match hexf_parse::parse_hexf64(input, false) {
+ Ok(num) => Ok(Number::F64(num)),
+ // can only be ParseHexfErrorKind::Inexact but we can't check since it's private
+ _ => Err(NumberError::NotRepresentable),
+ },
+ }
+}
+
+// input format: ( [0-9]+\.[0-9]* | [0-9]*\.[0-9]+ ) ([eE][+-]?[0-9]+)?
+// | [0-9]+ [eE][+-]?[0-9]+
+fn parse_dec_float(input: &str, kind: Option<FloatKind>) -> Result<Number, NumberError> {
+ match kind {
+ None => {
+ let num = input.parse::<f64>().unwrap(); // will never fail
+ num.is_finite()
+ .then_some(Number::AbstractFloat(num))
+ .ok_or(NumberError::NotRepresentable)
+ }
+ Some(FloatKind::F32) => {
+ let num = input.parse::<f32>().unwrap(); // will never fail
+ num.is_finite()
+ .then_some(Number::F32(num))
+ .ok_or(NumberError::NotRepresentable)
+ }
+ Some(FloatKind::F64) => {
+ let num = input.parse::<f64>().unwrap(); // will never fail
+ num.is_finite()
+ .then_some(Number::F64(num))
+ .ok_or(NumberError::NotRepresentable)
+ }
+ Some(FloatKind::F16) => Err(NumberError::UnimplementedF16),
+ }
+}
+
+fn parse_int(input: &str, kind: Option<IntKind>, radix: u32) -> Result<Number, NumberError> {
+ fn map_err(e: core::num::ParseIntError) -> NumberError {
+ match *e.kind() {
+ core::num::IntErrorKind::PosOverflow | core::num::IntErrorKind::NegOverflow => {
+ NumberError::NotRepresentable
+ }
+ _ => unreachable!(),
+ }
+ }
+ match kind {
+ None => match i64::from_str_radix(input, radix) {
+ Ok(num) => Ok(Number::AbstractInt(num)),
+ Err(e) => Err(map_err(e)),
+ },
+ Some(IntKind::I32) => match i32::from_str_radix(input, radix) {
+ Ok(num) => Ok(Number::I32(num)),
+ Err(e) => Err(map_err(e)),
+ },
+ Some(IntKind::U32) => match u32::from_str_radix(input, radix) {
+ Ok(num) => Ok(Number::U32(num)),
+ Err(e) => Err(map_err(e)),
+ },
+ }
+}