diff options
Diffstat (limited to 'dom/media/driftcontrol/gtest/TestAudioResampler.cpp')
-rw-r--r-- | dom/media/driftcontrol/gtest/TestAudioResampler.cpp | 677 |
1 files changed, 677 insertions, 0 deletions
diff --git a/dom/media/driftcontrol/gtest/TestAudioResampler.cpp b/dom/media/driftcontrol/gtest/TestAudioResampler.cpp new file mode 100644 index 0000000000..f04bc87314 --- /dev/null +++ b/dom/media/driftcontrol/gtest/TestAudioResampler.cpp @@ -0,0 +1,677 @@ +/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*-*/ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this file, + * You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "gtest/gtest.h" + +#include "AudioResampler.h" +#include "nsContentUtils.h" + +using namespace mozilla; + +template <class T> +AudioChunk CreateAudioChunk(uint32_t aFrames, uint32_t aChannels, + AudioSampleFormat aSampleFormat) { + AudioChunk chunk; + nsTArray<nsTArray<T>> buffer; + buffer.AppendElements(aChannels); + + nsTArray<const T*> bufferPtrs; + bufferPtrs.AppendElements(aChannels); + + for (uint32_t i = 0; i < aChannels; ++i) { + T* ptr = buffer[i].AppendElements(aFrames); + bufferPtrs[i] = ptr; + for (uint32_t j = 0; j < aFrames; ++j) { + if (aSampleFormat == AUDIO_FORMAT_FLOAT32) { + ptr[j] = 0.01 * j; + } else { + ptr[j] = j; + } + } + } + + chunk.mBuffer = new mozilla::SharedChannelArrayBuffer(std::move(buffer)); + chunk.mBufferFormat = aSampleFormat; + chunk.mChannelData.AppendElements(aChannels); + for (uint32_t i = 0; i < aChannels; ++i) { + chunk.mChannelData[i] = bufferPtrs[i]; + } + chunk.mDuration = aFrames; + return chunk; +} + +template <class T> +AudioSegment CreateAudioSegment(uint32_t aFrames, uint32_t aChannels, + AudioSampleFormat aSampleFormat) { + AudioSegment segment; + AudioChunk chunk = CreateAudioChunk<T>(aFrames, aChannels, aSampleFormat); + segment.AppendAndConsumeChunk(std::move(chunk)); + return segment; +} + +TEST(TestAudioResampler, OutAudioSegment_Float) +{ + const PrincipalHandle testPrincipal = + MakePrincipalHandle(nsContentUtils::GetSystemPrincipal()); + + uint32_t in_frames = 10; + uint32_t out_frames = 40; + uint32_t channels = 2; + uint32_t in_rate = 24000; + uint32_t out_rate = 48000; + + uint32_t pre_buffer = 21; + + AudioResampler dr(in_rate, out_rate, media::TimeUnit(pre_buffer, in_rate), + testPrincipal); + + AudioSegment inSegment = + CreateAudioSegment<float>(in_frames, channels, AUDIO_FORMAT_FLOAT32); + dr.AppendInput(inSegment); + + out_frames = 20u; + bool hasUnderrun = false; + AudioSegment s = dr.Resample(out_frames, &hasUnderrun); + EXPECT_FALSE(hasUnderrun); + EXPECT_EQ(s.GetDuration(), 20); + EXPECT_EQ(s.GetType(), MediaSegment::AUDIO); + + for (AudioSegment::ChunkIterator ci(s); !ci.IsEnded(); ci.Next()) { + AudioChunk& c = *ci; + EXPECT_EQ(c.mPrincipalHandle, testPrincipal); + EXPECT_EQ(c.ChannelCount(), 2u); + for (uint32_t i = 0; i < out_frames; ++i) { + // The first input segment is part of the pre buffer, so 21-10=11 of the + // input is silence. They make up 22 silent output frames after + // resampling. + EXPECT_FLOAT_EQ(c.ChannelData<float>()[0][i], 0.0); + EXPECT_FLOAT_EQ(c.ChannelData<float>()[1][i], 0.0); + } + } + + // Update out rate + out_rate = 44100; + dr.UpdateOutRate(out_rate); + out_frames = in_frames * out_rate / in_rate; + EXPECT_EQ(out_frames, 18u); + // Even if we provide no input if we have enough buffered input, we can create + // output + hasUnderrun = false; + AudioSegment s1 = dr.Resample(out_frames, &hasUnderrun); + EXPECT_FALSE(hasUnderrun); + EXPECT_EQ(s1.GetDuration(), out_frames); + EXPECT_EQ(s1.GetType(), MediaSegment::AUDIO); + for (AudioSegment::ConstChunkIterator ci(s1); !ci.IsEnded(); ci.Next()) { + EXPECT_EQ(ci->mPrincipalHandle, testPrincipal); + } +} + +TEST(TestAudioResampler, OutAudioSegment_Short) +{ + const PrincipalHandle testPrincipal = + MakePrincipalHandle(nsContentUtils::GetSystemPrincipal()); + + uint32_t in_frames = 10; + uint32_t out_frames = 40; + uint32_t channels = 2; + uint32_t in_rate = 24000; + uint32_t out_rate = 48000; + + uint32_t pre_buffer = 21; + + AudioResampler dr(in_rate, out_rate, media::TimeUnit(pre_buffer, in_rate), + testPrincipal); + + AudioSegment inSegment = + CreateAudioSegment<short>(in_frames, channels, AUDIO_FORMAT_S16); + dr.AppendInput(inSegment); + + out_frames = 20u; + bool hasUnderrun = false; + AudioSegment s = dr.Resample(out_frames, &hasUnderrun); + EXPECT_FALSE(hasUnderrun); + EXPECT_EQ(s.GetDuration(), 20); + EXPECT_EQ(s.GetType(), MediaSegment::AUDIO); + + for (AudioSegment::ChunkIterator ci(s); !ci.IsEnded(); ci.Next()) { + AudioChunk& c = *ci; + EXPECT_EQ(c.mPrincipalHandle, testPrincipal); + EXPECT_EQ(c.ChannelCount(), 2u); + for (uint32_t i = 0; i < out_frames; ++i) { + // The first input segment is part of the pre buffer, so 21-10=11 of the + // input is silence. They make up 22 silent output frames after + // resampling. + EXPECT_FLOAT_EQ(c.ChannelData<short>()[0][i], 0.0); + EXPECT_FLOAT_EQ(c.ChannelData<short>()[1][i], 0.0); + } + } + + // Update out rate + out_rate = 44100; + dr.UpdateOutRate(out_rate); + out_frames = in_frames * out_rate / in_rate; + EXPECT_EQ(out_frames, 18u); + // Even if we provide no input if we have enough buffered input, we can create + // output + hasUnderrun = false; + AudioSegment s1 = dr.Resample(out_frames, &hasUnderrun); + EXPECT_FALSE(hasUnderrun); + EXPECT_EQ(s1.GetDuration(), out_frames); + EXPECT_EQ(s1.GetType(), MediaSegment::AUDIO); + for (AudioSegment::ConstChunkIterator ci(s1); !ci.IsEnded(); ci.Next()) { + EXPECT_EQ(ci->mPrincipalHandle, testPrincipal); + } +} + +TEST(TestAudioResampler, OutAudioSegmentLargerThanResampledInput_Float) +{ + const uint32_t in_frames = 130; + const uint32_t out_frames = 300; + uint32_t channels = 2; + uint32_t in_rate = 24000; + uint32_t out_rate = 48000; + + uint32_t pre_buffer = 5; + + AudioResampler dr(in_rate, out_rate, media::TimeUnit(pre_buffer, in_rate), + PRINCIPAL_HANDLE_NONE); + + AudioSegment inSegment = + CreateAudioSegment<float>(in_frames, channels, AUDIO_FORMAT_FLOAT32); + + // Set the pre-buffer. + dr.AppendInput(inSegment); + bool hasUnderrun = false; + AudioSegment s = dr.Resample(300, &hasUnderrun); + EXPECT_FALSE(hasUnderrun); + EXPECT_EQ(s.GetDuration(), 300); + EXPECT_EQ(s.GetType(), MediaSegment::AUDIO); + + dr.AppendInput(inSegment); + + AudioSegment s2 = dr.Resample(out_frames, &hasUnderrun); + EXPECT_TRUE(hasUnderrun); + EXPECT_EQ(s2.GetDuration(), 300); + EXPECT_EQ(s2.GetType(), MediaSegment::AUDIO); +} + +TEST(TestAudioResampler, InAudioSegment_Float) +{ + const PrincipalHandle testPrincipal = + MakePrincipalHandle(nsContentUtils::GetSystemPrincipal()); + + uint32_t in_frames = 10; + uint32_t out_frames = 20; + uint32_t channels = 2; + uint32_t in_rate = 24000; + uint32_t out_rate = 48000; + + uint32_t pre_buffer = 10; + AudioResampler dr(in_rate, out_rate, media::TimeUnit(pre_buffer, in_rate), + testPrincipal); + + AudioSegment inSegment; + + AudioChunk chunk1; + chunk1.SetNull(in_frames / 2); + inSegment.AppendAndConsumeChunk(std::move(chunk1)); + + AudioChunk chunk2; + nsTArray<nsTArray<float>> buffer; + buffer.AppendElements(channels); + + nsTArray<const float*> bufferPtrs; + bufferPtrs.AppendElements(channels); + + for (uint32_t i = 0; i < channels; ++i) { + float* ptr = buffer[i].AppendElements(5); + bufferPtrs[i] = ptr; + for (uint32_t j = 0; j < 5; ++j) { + ptr[j] = 0.01f * j; + } + } + + chunk2.mBuffer = new mozilla::SharedChannelArrayBuffer(std::move(buffer)); + chunk2.mBufferFormat = AUDIO_FORMAT_FLOAT32; + chunk2.mChannelData.AppendElements(channels); + for (uint32_t i = 0; i < channels; ++i) { + chunk2.mChannelData[i] = bufferPtrs[i]; + } + chunk2.mDuration = in_frames / 2; + inSegment.AppendAndConsumeChunk(std::move(chunk2)); + + dr.AppendInput(inSegment); + bool hasUnderrun = false; + AudioSegment outSegment = dr.Resample(out_frames, &hasUnderrun); + EXPECT_FALSE(hasUnderrun); + // inSegment contains 10 frames, 5 null, 5 non-null. They're part of the pre + // buffer which is 10, meaning there are no extra pre buffered silence frames. + EXPECT_EQ(outSegment.GetDuration(), out_frames); + EXPECT_EQ(outSegment.MaxChannelCount(), 2u); + + // Add another 5 null and 5 non-null frames. + dr.AppendInput(inSegment); + AudioSegment outSegment2 = dr.Resample(out_frames, &hasUnderrun); + EXPECT_FALSE(hasUnderrun); + EXPECT_EQ(outSegment2.GetDuration(), out_frames); + EXPECT_EQ(outSegment2.MaxChannelCount(), 2u); + for (AudioSegment::ConstChunkIterator ci(outSegment2); !ci.IsEnded(); + ci.Next()) { + EXPECT_EQ(ci->mPrincipalHandle, testPrincipal); + } +} + +TEST(TestAudioResampler, InAudioSegment_Short) +{ + const PrincipalHandle testPrincipal = + MakePrincipalHandle(nsContentUtils::GetSystemPrincipal()); + + uint32_t in_frames = 10; + uint32_t out_frames = 20; + uint32_t channels = 2; + uint32_t in_rate = 24000; + uint32_t out_rate = 48000; + + uint32_t pre_buffer = 10; + AudioResampler dr(in_rate, out_rate, media::TimeUnit(pre_buffer, in_rate), + testPrincipal); + + AudioSegment inSegment; + + // The null chunk at the beginning will be ignored. + AudioChunk chunk1; + chunk1.SetNull(in_frames / 2); + inSegment.AppendAndConsumeChunk(std::move(chunk1)); + + AudioChunk chunk2; + nsTArray<nsTArray<short>> buffer; + buffer.AppendElements(channels); + + nsTArray<const short*> bufferPtrs; + bufferPtrs.AppendElements(channels); + + for (uint32_t i = 0; i < channels; ++i) { + short* ptr = buffer[i].AppendElements(5); + bufferPtrs[i] = ptr; + for (uint32_t j = 0; j < 5; ++j) { + ptr[j] = j; + } + } + + chunk2.mBuffer = new mozilla::SharedChannelArrayBuffer(std::move(buffer)); + chunk2.mBufferFormat = AUDIO_FORMAT_S16; + chunk2.mChannelData.AppendElements(channels); + for (uint32_t i = 0; i < channels; ++i) { + chunk2.mChannelData[i] = bufferPtrs[i]; + } + chunk2.mDuration = in_frames / 2; + inSegment.AppendAndConsumeChunk(std::move(chunk2)); + + dr.AppendInput(inSegment); + bool hasUnderrun = false; + AudioSegment outSegment = dr.Resample(out_frames, &hasUnderrun); + EXPECT_FALSE(hasUnderrun); + // inSegment contains 10 frames, 5 null, 5 non-null. They're part of the pre + // buffer which is 10, meaning there are no extra pre buffered silence frames. + EXPECT_EQ(outSegment.GetDuration(), out_frames); + EXPECT_EQ(outSegment.MaxChannelCount(), 2u); + + // Add another 5 null and 5 non-null frames. + dr.AppendInput(inSegment); + AudioSegment outSegment2 = dr.Resample(out_frames, &hasUnderrun); + EXPECT_FALSE(hasUnderrun); + EXPECT_EQ(outSegment2.GetDuration(), out_frames); + EXPECT_EQ(outSegment2.MaxChannelCount(), 2u); + for (AudioSegment::ConstChunkIterator ci(outSegment2); !ci.IsEnded(); + ci.Next()) { + EXPECT_EQ(ci->mPrincipalHandle, testPrincipal); + } +} + +TEST(TestAudioResampler, ChannelChange_MonoToStereo) +{ + const PrincipalHandle testPrincipal = + MakePrincipalHandle(nsContentUtils::GetSystemPrincipal()); + + uint32_t in_frames = 10; + uint32_t out_frames = 40; + uint32_t in_rate = 24000; + uint32_t out_rate = 48000; + + uint32_t pre_buffer = 0; + + AudioResampler dr(in_rate, out_rate, media::TimeUnit(pre_buffer, in_rate), + testPrincipal); + + AudioChunk monoChunk = + CreateAudioChunk<float>(in_frames, 1, AUDIO_FORMAT_FLOAT32); + AudioChunk stereoChunk = + CreateAudioChunk<float>(in_frames, 2, AUDIO_FORMAT_FLOAT32); + + AudioSegment inSegment; + inSegment.AppendAndConsumeChunk(std::move(monoChunk)); + inSegment.AppendAndConsumeChunk(std::move(stereoChunk)); + dr.AppendInput(inSegment); + + bool hasUnderrun = false; + AudioSegment s = dr.Resample(out_frames, &hasUnderrun); + EXPECT_FALSE(hasUnderrun); + EXPECT_EQ(s.GetDuration(), 40); + EXPECT_EQ(s.GetType(), MediaSegment::AUDIO); + EXPECT_EQ(s.MaxChannelCount(), 2u); + for (AudioSegment::ConstChunkIterator ci(s); !ci.IsEnded(); ci.Next()) { + EXPECT_EQ(ci->mPrincipalHandle, testPrincipal); + } +} + +TEST(TestAudioResampler, ChannelChange_StereoToMono) +{ + const PrincipalHandle testPrincipal = + MakePrincipalHandle(nsContentUtils::GetSystemPrincipal()); + + uint32_t in_frames = 10; + uint32_t out_frames = 40; + uint32_t in_rate = 24000; + uint32_t out_rate = 48000; + + uint32_t pre_buffer = 0; + + AudioResampler dr(in_rate, out_rate, media::TimeUnit(pre_buffer, in_rate), + testPrincipal); + + AudioChunk monoChunk = + CreateAudioChunk<float>(in_frames, 1, AUDIO_FORMAT_FLOAT32); + AudioChunk stereoChunk = + CreateAudioChunk<float>(in_frames, 2, AUDIO_FORMAT_FLOAT32); + + AudioSegment inSegment; + inSegment.AppendAndConsumeChunk(std::move(stereoChunk)); + inSegment.AppendAndConsumeChunk(std::move(monoChunk)); + dr.AppendInput(inSegment); + + bool hasUnderrun = false; + AudioSegment s = dr.Resample(out_frames, &hasUnderrun); + EXPECT_FALSE(hasUnderrun); + EXPECT_EQ(s.GetDuration(), 40); + EXPECT_EQ(s.GetType(), MediaSegment::AUDIO); + EXPECT_EQ(s.MaxChannelCount(), 1u); + for (AudioSegment::ConstChunkIterator ci(s); !ci.IsEnded(); ci.Next()) { + EXPECT_EQ(ci->mPrincipalHandle, testPrincipal); + } +} + +TEST(TestAudioResampler, ChannelChange_StereoToQuad) +{ + const PrincipalHandle testPrincipal = + MakePrincipalHandle(nsContentUtils::GetSystemPrincipal()); + + uint32_t in_frames = 10; + uint32_t out_frames = 40; + uint32_t in_rate = 24000; + uint32_t out_rate = 48000; + + uint32_t pre_buffer = 0; + + AudioResampler dr(in_rate, out_rate, media::TimeUnit(pre_buffer, in_rate), + testPrincipal); + + AudioChunk stereoChunk = + CreateAudioChunk<float>(in_frames, 2, AUDIO_FORMAT_FLOAT32); + AudioChunk quadChunk = + CreateAudioChunk<float>(in_frames, 4, AUDIO_FORMAT_FLOAT32); + + AudioSegment inSegment; + inSegment.AppendAndConsumeChunk(std::move(stereoChunk)); + inSegment.AppendAndConsumeChunk(std::move(quadChunk)); + dr.AppendInput(inSegment); + + bool hasUnderrun = false; + AudioSegment s = dr.Resample(out_frames, &hasUnderrun); + EXPECT_FALSE(hasUnderrun); + EXPECT_EQ(s.GetDuration(), 40u); + EXPECT_EQ(s.GetType(), MediaSegment::AUDIO); + + AudioSegment s2 = dr.Resample(out_frames / 2, &hasUnderrun); + EXPECT_TRUE(hasUnderrun); + EXPECT_EQ(s2.GetDuration(), 20u); + EXPECT_EQ(s2.GetType(), MediaSegment::AUDIO); + for (AudioSegment::ConstChunkIterator ci(s); !ci.IsEnded(); ci.Next()) { + EXPECT_EQ(ci->mPrincipalHandle, testPrincipal); + } +} + +TEST(TestAudioResampler, ChannelChange_QuadToStereo) +{ + const PrincipalHandle testPrincipal = + MakePrincipalHandle(nsContentUtils::GetSystemPrincipal()); + + uint32_t in_frames = 10; + uint32_t out_frames = 40; + uint32_t in_rate = 24000; + uint32_t out_rate = 48000; + + AudioResampler dr(in_rate, out_rate, media::TimeUnit::Zero(), testPrincipal); + + AudioChunk stereoChunk = + CreateAudioChunk<float>(in_frames, 2, AUDIO_FORMAT_FLOAT32); + AudioChunk quadChunk = + CreateAudioChunk<float>(in_frames, 4, AUDIO_FORMAT_FLOAT32); + + AudioSegment inSegment; + inSegment.AppendAndConsumeChunk(std::move(quadChunk)); + inSegment.AppendAndConsumeChunk(std::move(stereoChunk)); + dr.AppendInput(inSegment); + + bool hasUnderrun = false; + AudioSegment s = dr.Resample(out_frames, &hasUnderrun); + EXPECT_FALSE(hasUnderrun); + EXPECT_EQ(s.GetDuration(), 40u); + EXPECT_EQ(s.GetType(), MediaSegment::AUDIO); + + AudioSegment s2 = dr.Resample(out_frames / 2, &hasUnderrun); + EXPECT_TRUE(hasUnderrun); + EXPECT_EQ(s2.GetDuration(), 20u); + EXPECT_EQ(s2.GetType(), MediaSegment::AUDIO); + for (AudioSegment::ConstChunkIterator ci(s); !ci.IsEnded(); ci.Next()) { + EXPECT_EQ(ci->mPrincipalHandle, testPrincipal); + } +} + +void printAudioSegment(const AudioSegment& segment); + +TEST(TestAudioResampler, ChannelChange_Discontinuity) +{ + const PrincipalHandle testPrincipal = + MakePrincipalHandle(nsContentUtils::GetSystemPrincipal()); + + uint32_t in_rate = 24000; + uint32_t out_rate = 48000; + + const float amplitude = 0.5; + const float frequency = 200; + const float phase = 0.0; + float time = 0.0; + const float deltaTime = 1.0f / static_cast<float>(in_rate); + + uint32_t in_frames = in_rate / 100; + uint32_t out_frames = out_rate / 100; + AudioResampler dr(in_rate, out_rate, media::TimeUnit::Zero(), testPrincipal); + + AudioChunk monoChunk = + CreateAudioChunk<float>(in_frames, 1, AUDIO_FORMAT_FLOAT32); + for (uint32_t i = 0; i < monoChunk.GetDuration(); ++i) { + double value = amplitude * sin(2 * M_PI * frequency * time + phase); + monoChunk.ChannelDataForWrite<float>(0)[i] = static_cast<float>(value); + time += deltaTime; + } + AudioChunk stereoChunk = + CreateAudioChunk<float>(in_frames, 2, AUDIO_FORMAT_FLOAT32); + for (uint32_t i = 0; i < stereoChunk.GetDuration(); ++i) { + double value = amplitude * sin(2 * M_PI * frequency * time + phase); + stereoChunk.ChannelDataForWrite<float>(0)[i] = static_cast<float>(value); + if (stereoChunk.ChannelCount() == 2) { + stereoChunk.ChannelDataForWrite<float>(1)[i] = value; + } + time += deltaTime; + } + + AudioSegment inSegment; + inSegment.AppendAndConsumeChunk(std::move(stereoChunk)); + // printAudioSegment(inSegment); + + dr.AppendInput(inSegment); + bool hasUnderrun = false; + AudioSegment s = dr.Resample(out_frames, &hasUnderrun); + EXPECT_FALSE(hasUnderrun); + // printAudioSegment(s); + + AudioSegment inSegment2; + inSegment2.AppendAndConsumeChunk(std::move(monoChunk)); + // The resampler here is updated due to the channel change and that creates + // discontinuity. + dr.AppendInput(inSegment2); + AudioSegment s2 = dr.Resample(out_frames, &hasUnderrun); + EXPECT_FALSE(hasUnderrun); + // printAudioSegment(s2); + + EXPECT_EQ(s2.GetDuration(), 480); + EXPECT_EQ(s2.GetType(), MediaSegment::AUDIO); + EXPECT_EQ(s2.MaxChannelCount(), 1u); + for (AudioSegment::ConstChunkIterator ci(s2); !ci.IsEnded(); ci.Next()) { + EXPECT_EQ(ci->mPrincipalHandle, testPrincipal); + } +} + +TEST(TestAudioResampler, ChannelChange_Discontinuity2) +{ + const PrincipalHandle testPrincipal = + MakePrincipalHandle(nsContentUtils::GetSystemPrincipal()); + + uint32_t in_rate = 24000; + uint32_t out_rate = 48000; + + const float amplitude = 0.5; + const float frequency = 200; + const float phase = 0.0; + float time = 0.0; + const float deltaTime = 1.0f / static_cast<float>(in_rate); + + uint32_t in_frames = in_rate / 100; + uint32_t out_frames = out_rate / 100; + AudioResampler dr(in_rate, out_rate, media::TimeUnit(10, in_rate), + testPrincipal); + + AudioChunk monoChunk = + CreateAudioChunk<float>(in_frames / 2, 1, AUDIO_FORMAT_FLOAT32); + for (uint32_t i = 0; i < monoChunk.GetDuration(); ++i) { + double value = amplitude * sin(2 * M_PI * frequency * time + phase); + monoChunk.ChannelDataForWrite<float>(0)[i] = static_cast<float>(value); + time += deltaTime; + } + AudioChunk stereoChunk = + CreateAudioChunk<float>(in_frames / 2, 2, AUDIO_FORMAT_FLOAT32); + for (uint32_t i = 0; i < stereoChunk.GetDuration(); ++i) { + double value = amplitude * sin(2 * M_PI * frequency * time + phase); + stereoChunk.ChannelDataForWrite<float>(0)[i] = static_cast<float>(value); + if (stereoChunk.ChannelCount() == 2) { + stereoChunk.ChannelDataForWrite<float>(1)[i] = value; + } + time += deltaTime; + } + + AudioSegment inSegment; + inSegment.AppendAndConsumeChunk(std::move(monoChunk)); + inSegment.AppendAndConsumeChunk(std::move(stereoChunk)); + // printAudioSegment(inSegment); + + dr.AppendInput(inSegment); + bool hasUnderrun = false; + AudioSegment s1 = dr.Resample(out_frames, &hasUnderrun); + EXPECT_FALSE(hasUnderrun); + // printAudioSegment(s1); + + EXPECT_EQ(s1.GetDuration(), 480); + EXPECT_EQ(s1.GetType(), MediaSegment::AUDIO); + EXPECT_EQ(s1.MaxChannelCount(), 2u); + for (AudioSegment::ConstChunkIterator ci(s1); !ci.IsEnded(); ci.Next()) { + EXPECT_EQ(ci->mPrincipalHandle, testPrincipal); + } + + // The resampler here is updated due to the channel change and that creates + // discontinuity. + dr.AppendInput(inSegment); + AudioSegment s2 = dr.Resample(out_frames, &hasUnderrun); + EXPECT_FALSE(hasUnderrun); + // printAudioSegment(s2); + + EXPECT_EQ(s2.GetDuration(), 480); + EXPECT_EQ(s2.GetType(), MediaSegment::AUDIO); + EXPECT_EQ(s2.MaxChannelCount(), 2u); + for (AudioSegment::ConstChunkIterator ci(s2); !ci.IsEnded(); ci.Next()) { + EXPECT_EQ(ci->mPrincipalHandle, testPrincipal); + } +} + +TEST(TestAudioResampler, ChannelChange_Discontinuity3) +{ + const PrincipalHandle testPrincipal = + MakePrincipalHandle(nsContentUtils::GetSystemPrincipal()); + + uint32_t in_rate = 48000; + uint32_t out_rate = 48000; + + const float amplitude = 0.5; + const float frequency = 200; + const float phase = 0.0; + float time = 0.0; + const float deltaTime = 1.0f / static_cast<float>(in_rate); + + uint32_t in_frames = in_rate / 100; + uint32_t out_frames = out_rate / 100; + AudioResampler dr(in_rate, out_rate, media::TimeUnit(10, in_rate), + testPrincipal); + + AudioChunk stereoChunk = + CreateAudioChunk<float>(in_frames, 2, AUDIO_FORMAT_FLOAT32); + for (uint32_t i = 0; i < stereoChunk.GetDuration(); ++i) { + double value = amplitude * sin(2 * M_PI * frequency * time + phase); + stereoChunk.ChannelDataForWrite<float>(0)[i] = static_cast<float>(value); + if (stereoChunk.ChannelCount() == 2) { + stereoChunk.ChannelDataForWrite<float>(1)[i] = value; + } + time += deltaTime; + } + + AudioSegment inSegment; + inSegment.AppendAndConsumeChunk(std::move(stereoChunk)); + // printAudioSegment(inSegment); + + dr.AppendInput(inSegment); + bool hasUnderrun = false; + AudioSegment s = dr.Resample(out_frames, &hasUnderrun); + EXPECT_FALSE(hasUnderrun); + // printAudioSegment(s); + + EXPECT_EQ(s.GetDuration(), 480); + EXPECT_EQ(s.GetType(), MediaSegment::AUDIO); + EXPECT_EQ(s.MaxChannelCount(), 2u); + + // The resampler here is updated due to the rate change. This is because the + // in and out rate was the same so a pass through logic was used. By updating + // the out rate to something different than the in rate, the resampler will + // start being used and discontinuity will exist. + dr.UpdateOutRate(out_rate + 400); + dr.AppendInput(inSegment); + AudioSegment s2 = dr.Resample(out_frames, &hasUnderrun); + EXPECT_FALSE(hasUnderrun); + // printAudioSegment(s2); + + EXPECT_EQ(s2.GetDuration(), 480); + EXPECT_EQ(s2.GetType(), MediaSegment::AUDIO); + EXPECT_EQ(s2.MaxChannelCount(), 2u); + for (AudioSegment::ConstChunkIterator ci(s2); !ci.IsEnded(); ci.Next()) { + EXPECT_EQ(ci->mPrincipalHandle, testPrincipal); + } +} |