summaryrefslogtreecommitdiffstats
path: root/gfx/2d/BaseRect.h
diff options
context:
space:
mode:
Diffstat (limited to 'gfx/2d/BaseRect.h')
-rw-r--r--gfx/2d/BaseRect.h751
1 files changed, 751 insertions, 0 deletions
diff --git a/gfx/2d/BaseRect.h b/gfx/2d/BaseRect.h
new file mode 100644
index 0000000000..70d82050b3
--- /dev/null
+++ b/gfx/2d/BaseRect.h
@@ -0,0 +1,751 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
+/* vim: set ts=8 sts=2 et sw=2 tw=80: */
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#ifndef MOZILLA_GFX_BASERECT_H_
+#define MOZILLA_GFX_BASERECT_H_
+
+#include <algorithm>
+#include <cmath>
+#include <ostream>
+#include <type_traits>
+
+#include "mozilla/Assertions.h"
+#include "mozilla/FloatingPoint.h"
+#include "mozilla/gfx/ScaleFactors2D.h"
+#include "Types.h"
+
+namespace mozilla::gfx {
+
+/**
+ * Rectangles have two interpretations: a set of (zero-size) points,
+ * and a rectangular area of the plane. Most rectangle operations behave
+ * the same no matter what interpretation is being used, but some operations
+ * differ:
+ * -- Equality tests behave differently. When a rectangle represents an area,
+ * all zero-width and zero-height rectangles are equal to each other since they
+ * represent the empty area. But when a rectangle represents a set of
+ * mathematical points, zero-width and zero-height rectangles can be unequal.
+ * -- The union operation can behave differently. When rectangles represent
+ * areas, taking the union of a zero-width or zero-height rectangle with
+ * another rectangle can just ignore the empty rectangle. But when rectangles
+ * represent sets of mathematical points, we may need to extend the latter
+ * rectangle to include the points of a zero-width or zero-height rectangle.
+ *
+ * To ensure that these interpretations are explicitly disambiguated, we
+ * deny access to the == and != operators and require use of IsEqualEdges and
+ * IsEqualInterior instead. Similarly we provide separate Union and UnionEdges
+ * methods.
+ *
+ * Do not use this class directly. Subclass it, pass that subclass as the
+ * Sub parameter, and only use that subclass.
+ */
+template <class T, class Sub, class Point, class SizeT, class MarginT>
+struct BaseRect {
+ T x, y, width, height;
+
+ // Constructors
+ BaseRect() : x(0), y(0), width(0), height(0) {}
+ BaseRect(const Point& aOrigin, const SizeT& aSize)
+ : x(aOrigin.x), y(aOrigin.y), width(aSize.width), height(aSize.height) {}
+ BaseRect(T aX, T aY, T aWidth, T aHeight)
+ : x(aX), y(aY), width(aWidth), height(aHeight) {}
+
+ // Emptiness. An empty rect is one that has no area, i.e. its height or width
+ // is <= 0. Zero rect is the one with height and width set to zero. Note
+ // that SetEmpty() may change a rectangle that identified as IsEmpty().
+ MOZ_ALWAYS_INLINE bool IsZeroArea() const {
+ return height == 0 || width == 0;
+ }
+ MOZ_ALWAYS_INLINE bool IsEmpty() const { return height <= 0 || width <= 0; }
+ void SetEmpty() { width = height = 0; }
+
+ // "Finite" means not inf and not NaN
+ bool IsFinite() const {
+ using FloatType =
+ std::conditional_t<std::is_same_v<T, float>, float, double>;
+ return (std::isfinite(FloatType(x)) && std::isfinite(FloatType(y)) &&
+ std::isfinite(FloatType(width)) &&
+ std::isfinite(FloatType(height)));
+ }
+
+ // Returns true if this rectangle contains the interior of aRect. Always
+ // returns true if aRect is empty, and always returns false is aRect is
+ // nonempty but this rect is empty.
+ bool Contains(const Sub& aRect) const {
+ return aRect.IsEmpty() || (x <= aRect.x && aRect.XMost() <= XMost() &&
+ y <= aRect.y && aRect.YMost() <= YMost());
+ }
+ // Returns true if this rectangle contains the point. Points are considered
+ // in the rectangle if they are on the left or top edge, but outside if they
+ // are on the right or bottom edge.
+ MOZ_ALWAYS_INLINE bool Contains(T aX, T aY) const {
+ return x <= aX && aX < XMost() && y <= aY && aY < YMost();
+ }
+ MOZ_ALWAYS_INLINE bool ContainsX(T aX) const {
+ return x <= aX && aX < XMost();
+ }
+ MOZ_ALWAYS_INLINE bool ContainsY(T aY) const {
+ return y <= aY && aY < YMost();
+ }
+ // Returns true if this rectangle contains the point. Points are considered
+ // in the rectangle if they are on the left or top edge, but outside if they
+ // are on the right or bottom edge.
+ bool Contains(const Point& aPoint) const {
+ return Contains(aPoint.x, aPoint.y);
+ }
+
+ // Returns true if this rectangle contains the point, considering points on
+ // all edges of the rectangle to be contained (as compared to Contains()
+ // which only includes points on the top & left but not bottom & right edges).
+ MOZ_ALWAYS_INLINE bool ContainsInclusively(const Point& aPoint) const {
+ return x <= aPoint.x && aPoint.x <= XMost() && y <= aPoint.y &&
+ aPoint.y <= YMost();
+ }
+
+ // Intersection. Returns TRUE if the receiver's area has non-empty
+ // intersection with aRect's area, and FALSE otherwise.
+ // Always returns false if aRect is empty or 'this' is empty.
+ bool Intersects(const Sub& aRect) const {
+ return !IsEmpty() && !aRect.IsEmpty() && x < aRect.XMost() &&
+ aRect.x < XMost() && y < aRect.YMost() && aRect.y < YMost();
+ }
+ // Returns the rectangle containing the intersection of the points
+ // (including edges) of *this and aRect. If there are no points in that
+ // intersection, returns an empty rectangle with x/y set to the std::max of
+ // the x/y of *this and aRect.
+ //
+ // Intersection with an empty Rect may not produce an empty Rect if overflow
+ // occurs. e.g. {INT_MIN, 0, 0, 20} Intersect { 5000, 0, 500, 20 } gives:
+ // the non-emtpy {5000, 0, 500, 20 } instead of {5000, 0, 0, 0}
+ [[nodiscard]] Sub Intersect(const Sub& aRect) const {
+ Sub result;
+ result.x = std::max<T>(x, aRect.x);
+ result.y = std::max<T>(y, aRect.y);
+ result.width =
+ std::min<T>(x - result.x + width, aRect.x - result.x + aRect.width);
+ result.height =
+ std::min<T>(y - result.y + height, aRect.y - result.y + aRect.height);
+ // See bug 1457110, this function expects to -only- size to 0,0 if the
+ // width/height is explicitly negative.
+ if (result.width < 0 || result.height < 0) {
+ result.SizeTo(0, 0);
+ }
+ return result;
+ }
+
+ // Gives the same results as Intersect() but handles integer overflow
+ // better. This comes at a tiny cost in performance.
+ // e.g. {INT_MIN, 0, 0, 20} Intersect { 5000, 0, 500, 20 } gives:
+ // {5000, 0, 0, 0}
+ [[nodiscard]] Sub SafeIntersect(const Sub& aRect) const {
+ Sub result;
+ result.x = std::max<T>(x, aRect.x);
+ result.y = std::max<T>(y, aRect.y);
+ T right = std::min<T>(x + width, aRect.x + aRect.width);
+ T bottom = std::min<T>(y + height, aRect.y + aRect.height);
+ // See bug 1457110, this function expects to -only- size to 0,0 if the
+ // width/height is explicitly negative.
+ if (right < result.x || bottom < result.y) {
+ result.width = 0;
+ result.height = 0;
+ } else {
+ result.width = right - result.x;
+ result.height = bottom - result.y;
+ }
+ return result;
+ }
+
+ // Sets *this to be the rectangle containing the intersection of the points
+ // (including edges) of *this and aRect. If there are no points in that
+ // intersection, sets *this to be an empty rectangle with x/y set to the
+ // std::max of the x/y of *this and aRect.
+ //
+ // 'this' can be the same object as either aRect1 or aRect2
+ bool IntersectRect(const Sub& aRect1, const Sub& aRect2) {
+ T newX = std::max<T>(aRect1.x, aRect2.x);
+ T newY = std::max<T>(aRect1.y, aRect2.y);
+ width = std::min<T>(aRect1.x - newX + aRect1.width,
+ aRect2.x - newX + aRect2.width);
+ height = std::min<T>(aRect1.y - newY + aRect1.height,
+ aRect2.y - newY + aRect2.height);
+ x = newX;
+ y = newY;
+ if (width <= 0 || height <= 0) {
+ SizeTo(0, 0);
+ return false;
+ }
+ return true;
+ }
+
+ // Returns the smallest rectangle that contains both the area of both
+ // this and aRect. Thus, empty input rectangles are ignored.
+ // Note: if both rectangles are empty, returns aRect.
+ // WARNING! This is not safe against overflow, prefer using SafeUnion instead
+ // when dealing with int-based rects.
+ [[nodiscard]] Sub Union(const Sub& aRect) const {
+ if (IsEmpty()) {
+ return aRect;
+ } else if (aRect.IsEmpty()) {
+ return *static_cast<const Sub*>(this);
+ } else {
+ return UnionEdges(aRect);
+ }
+ }
+ // Returns the smallest rectangle that contains both the points (including
+ // edges) of both aRect1 and aRect2.
+ // Thus, empty input rectangles are allowed to affect the result.
+ // WARNING! This is not safe against overflow, prefer using SafeUnionEdges
+ // instead when dealing with int-based rects.
+ [[nodiscard]] Sub UnionEdges(const Sub& aRect) const {
+ Sub result;
+ result.x = std::min(x, aRect.x);
+ result.y = std::min(y, aRect.y);
+ result.width = std::max(XMost(), aRect.XMost()) - result.x;
+ result.height = std::max(YMost(), aRect.YMost()) - result.y;
+ return result;
+ }
+ // Computes the smallest rectangle that contains both the area of both
+ // aRect1 and aRect2, and fills 'this' with the result.
+ // Thus, empty input rectangles are ignored.
+ // If both rectangles are empty, sets 'this' to aRect2.
+ //
+ // 'this' can be the same object as either aRect1 or aRect2
+ void UnionRect(const Sub& aRect1, const Sub& aRect2) {
+ *static_cast<Sub*>(this) = aRect1.Union(aRect2);
+ }
+
+ void OrWith(const Sub& aRect1) {
+ UnionRect(*static_cast<Sub*>(this), aRect1);
+ }
+
+ // Computes the smallest rectangle that contains both the points (including
+ // edges) of both aRect1 and aRect2.
+ // Thus, empty input rectangles are allowed to affect the result.
+ //
+ // 'this' can be the same object as either aRect1 or aRect2
+ void UnionRectEdges(const Sub& aRect1, const Sub& aRect2) {
+ *static_cast<Sub*>(this) = aRect1.UnionEdges(aRect2);
+ }
+
+ // Expands the rect to include the point
+ void ExpandToEnclose(const Point& aPoint) {
+ if (aPoint.x < x) {
+ width = XMost() - aPoint.x;
+ x = aPoint.x;
+ } else if (aPoint.x > XMost()) {
+ width = aPoint.x - x;
+ }
+ if (aPoint.y < y) {
+ height = YMost() - aPoint.y;
+ y = aPoint.y;
+ } else if (aPoint.y > YMost()) {
+ height = aPoint.y - y;
+ }
+ }
+
+ MOZ_ALWAYS_INLINE void SetRect(T aX, T aY, T aWidth, T aHeight) {
+ x = aX;
+ y = aY;
+ width = aWidth;
+ height = aHeight;
+ }
+ MOZ_ALWAYS_INLINE void SetRectX(T aX, T aWidth) {
+ x = aX;
+ width = aWidth;
+ }
+ MOZ_ALWAYS_INLINE void SetRectY(T aY, T aHeight) {
+ y = aY;
+ height = aHeight;
+ }
+ MOZ_ALWAYS_INLINE void SetBox(T aX, T aY, T aXMost, T aYMost) {
+ x = aX;
+ y = aY;
+ width = aXMost - aX;
+ height = aYMost - aY;
+ }
+ MOZ_ALWAYS_INLINE void SetNonEmptyBox(T aX, T aY, T aXMost, T aYMost) {
+ x = aX;
+ y = aY;
+ width = std::max(0, aXMost - aX);
+ height = std::max(0, aYMost - aY);
+ }
+ MOZ_ALWAYS_INLINE void SetBoxX(T aX, T aXMost) {
+ x = aX;
+ width = aXMost - aX;
+ }
+ MOZ_ALWAYS_INLINE void SetBoxY(T aY, T aYMost) {
+ y = aY;
+ height = aYMost - aY;
+ }
+ void SetRect(const Point& aPt, const SizeT& aSize) {
+ SetRect(aPt.x, aPt.y, aSize.width, aSize.height);
+ }
+ MOZ_ALWAYS_INLINE void GetRect(T* aX, T* aY, T* aWidth, T* aHeight) const {
+ *aX = x;
+ *aY = y;
+ *aWidth = width;
+ *aHeight = height;
+ }
+
+ MOZ_ALWAYS_INLINE void MoveTo(T aX, T aY) {
+ x = aX;
+ y = aY;
+ }
+ MOZ_ALWAYS_INLINE void MoveToX(T aX) { x = aX; }
+ MOZ_ALWAYS_INLINE void MoveToY(T aY) { y = aY; }
+ MOZ_ALWAYS_INLINE void MoveTo(const Point& aPoint) {
+ x = aPoint.x;
+ y = aPoint.y;
+ }
+ MOZ_ALWAYS_INLINE void MoveBy(T aDx, T aDy) {
+ x += aDx;
+ y += aDy;
+ }
+ MOZ_ALWAYS_INLINE void MoveByX(T aDx) { x += aDx; }
+ MOZ_ALWAYS_INLINE void MoveByY(T aDy) { y += aDy; }
+ MOZ_ALWAYS_INLINE void MoveBy(const Point& aPoint) {
+ x += aPoint.x;
+ y += aPoint.y;
+ }
+ MOZ_ALWAYS_INLINE void SizeTo(T aWidth, T aHeight) {
+ width = aWidth;
+ height = aHeight;
+ }
+ MOZ_ALWAYS_INLINE void SizeTo(const SizeT& aSize) {
+ width = aSize.width;
+ height = aSize.height;
+ }
+
+ // Variant of MoveBy that ensures that even after translation by a point that
+ // the rectangle coordinates will still fit within numeric limits. The origin
+ // and size will be clipped within numeric limits to ensure this.
+ void SafeMoveByX(T aDx) {
+ T x2 = XMost();
+ if (aDx >= T(0)) {
+ T limit = std::numeric_limits<T>::max();
+ x = limit - aDx < x ? limit : x + aDx;
+ width = (limit - aDx < x2 ? limit : x2 + aDx) - x;
+ } else {
+ T limit = std::numeric_limits<T>::min();
+ x = limit - aDx > x ? limit : x + aDx;
+ width = (limit - aDx > x2 ? limit : x2 + aDx) - x;
+ }
+ }
+ void SafeMoveByY(T aDy) {
+ T y2 = YMost();
+ if (aDy >= T(0)) {
+ T limit = std::numeric_limits<T>::max();
+ y = limit - aDy < y ? limit : y + aDy;
+ height = (limit - aDy < y2 ? limit : y2 + aDy) - y;
+ } else {
+ T limit = std::numeric_limits<T>::min();
+ y = limit - aDy > y ? limit : y + aDy;
+ height = (limit - aDy > y2 ? limit : y2 + aDy) - y;
+ }
+ }
+ void SafeMoveBy(T aDx, T aDy) {
+ SafeMoveByX(aDx);
+ SafeMoveByY(aDy);
+ }
+ void SafeMoveBy(const Point& aPoint) { SafeMoveBy(aPoint.x, aPoint.y); }
+
+ void Inflate(T aD) { Inflate(aD, aD); }
+ void Inflate(T aDx, T aDy) {
+ x -= aDx;
+ y -= aDy;
+ width += 2 * aDx;
+ height += 2 * aDy;
+ }
+ void Inflate(const MarginT& aMargin) {
+ x -= aMargin.left;
+ y -= aMargin.top;
+ width += aMargin.LeftRight();
+ height += aMargin.TopBottom();
+ }
+ void Inflate(const SizeT& aSize) { Inflate(aSize.width, aSize.height); }
+
+ void Deflate(T aD) { Deflate(aD, aD); }
+ void Deflate(T aDx, T aDy) {
+ x += aDx;
+ y += aDy;
+ width = std::max(T(0), width - 2 * aDx);
+ height = std::max(T(0), height - 2 * aDy);
+ }
+ void Deflate(const MarginT& aMargin) {
+ x += aMargin.left;
+ y += aMargin.top;
+ width = std::max(T(0), width - aMargin.LeftRight());
+ height = std::max(T(0), height - aMargin.TopBottom());
+ }
+ void Deflate(const SizeT& aSize) { Deflate(aSize.width, aSize.height); }
+
+ // Return true if the rectangles contain the same set of points, including
+ // points on the edges.
+ // Use when we care about the exact x/y/width/height values being
+ // equal (i.e. we care about differences in empty rectangles).
+ bool IsEqualEdges(const Sub& aRect) const {
+ return x == aRect.x && y == aRect.y && width == aRect.width &&
+ height == aRect.height;
+ }
+ MOZ_ALWAYS_INLINE bool IsEqualRect(T aX, T aY, T aW, T aH) {
+ return x == aX && y == aY && width == aW && height == aH;
+ }
+ MOZ_ALWAYS_INLINE bool IsEqualXY(T aX, T aY) { return x == aX && y == aY; }
+
+ MOZ_ALWAYS_INLINE bool IsEqualSize(T aW, T aH) {
+ return width == aW && height == aH;
+ }
+
+ // Return true if the rectangles contain the same area of the plane.
+ // Use when we do not care about differences in empty rectangles.
+ bool IsEqualInterior(const Sub& aRect) const {
+ return IsEqualEdges(aRect) || (IsEmpty() && aRect.IsEmpty());
+ }
+
+ friend Sub operator+(Sub aSub, const Point& aPoint) {
+ aSub += aPoint;
+ return aSub;
+ }
+ friend Sub operator-(Sub aSub, const Point& aPoint) {
+ aSub -= aPoint;
+ return aSub;
+ }
+ friend Sub operator+(Sub aSub, const SizeT& aSize) {
+ aSub += aSize;
+ return aSub;
+ }
+ friend Sub operator-(Sub aSub, const SizeT& aSize) {
+ aSub -= aSize;
+ return aSub;
+ }
+ Sub& operator+=(const Point& aPoint) {
+ MoveBy(aPoint);
+ return *static_cast<Sub*>(this);
+ }
+ Sub& operator-=(const Point& aPoint) {
+ MoveBy(-aPoint);
+ return *static_cast<Sub*>(this);
+ }
+ Sub& operator+=(const SizeT& aSize) {
+ width += aSize.width;
+ height += aSize.height;
+ return *static_cast<Sub*>(this);
+ }
+ Sub& operator-=(const SizeT& aSize) {
+ width -= aSize.width;
+ height -= aSize.height;
+ return *static_cast<Sub*>(this);
+ }
+ // Find difference as a Margin
+ MarginT operator-(const Sub& aRect) const {
+ return MarginT(aRect.y - y, XMost() - aRect.XMost(),
+ YMost() - aRect.YMost(), aRect.x - x);
+ }
+
+ // Helpers for accessing the vertices
+ Point TopLeft() const { return Point(x, y); }
+ Point TopRight() const { return Point(XMost(), y); }
+ Point BottomLeft() const { return Point(x, YMost()); }
+ Point BottomRight() const { return Point(XMost(), YMost()); }
+ Point AtCorner(Corner aCorner) const {
+ switch (aCorner) {
+ case eCornerTopLeft:
+ return TopLeft();
+ case eCornerTopRight:
+ return TopRight();
+ case eCornerBottomRight:
+ return BottomRight();
+ case eCornerBottomLeft:
+ return BottomLeft();
+ }
+ MOZ_CRASH("GFX: Incomplete switch");
+ }
+ Point CCWCorner(mozilla::Side side) const {
+ switch (side) {
+ case eSideTop:
+ return TopLeft();
+ case eSideRight:
+ return TopRight();
+ case eSideBottom:
+ return BottomRight();
+ case eSideLeft:
+ return BottomLeft();
+ }
+ MOZ_CRASH("GFX: Incomplete switch");
+ }
+ Point CWCorner(mozilla::Side side) const {
+ switch (side) {
+ case eSideTop:
+ return TopRight();
+ case eSideRight:
+ return BottomRight();
+ case eSideBottom:
+ return BottomLeft();
+ case eSideLeft:
+ return TopLeft();
+ }
+ MOZ_CRASH("GFX: Incomplete switch");
+ }
+ Point Center() const { return Point(x, y) + Point(width, height) / 2; }
+ SizeT Size() const { return SizeT(width, height); }
+
+ T Area() const { return width * height; }
+
+ // Helper methods for computing the extents
+ MOZ_ALWAYS_INLINE T X() const { return x; }
+ MOZ_ALWAYS_INLINE T Y() const { return y; }
+ MOZ_ALWAYS_INLINE T Width() const { return width; }
+ MOZ_ALWAYS_INLINE T Height() const { return height; }
+ MOZ_ALWAYS_INLINE T XMost() const { return x + width; }
+ MOZ_ALWAYS_INLINE T YMost() const { return y + height; }
+
+ // Set width and height. SizeTo() sets them together.
+ MOZ_ALWAYS_INLINE void SetWidth(T aWidth) { width = aWidth; }
+ MOZ_ALWAYS_INLINE void SetHeight(T aHeight) { height = aHeight; }
+
+ // Get the coordinate of the edge on the given side.
+ T Edge(mozilla::Side aSide) const {
+ switch (aSide) {
+ case eSideTop:
+ return Y();
+ case eSideRight:
+ return XMost();
+ case eSideBottom:
+ return YMost();
+ case eSideLeft:
+ return X();
+ }
+ MOZ_CRASH("GFX: Incomplete switch");
+ }
+
+ // Moves one edge of the rect without moving the opposite edge.
+ void SetLeftEdge(T aX) {
+ width = XMost() - aX;
+ x = aX;
+ }
+ void SetRightEdge(T aXMost) { width = aXMost - x; }
+ void SetTopEdge(T aY) {
+ height = YMost() - aY;
+ y = aY;
+ }
+ void SetBottomEdge(T aYMost) { height = aYMost - y; }
+ void Swap() {
+ std::swap(x, y);
+ std::swap(width, height);
+ }
+
+ // Round the rectangle edges to integer coordinates, such that the rounded
+ // rectangle has the same set of pixel centers as the original rectangle.
+ // Edges at offset 0.5 round up.
+ // Suitable for most places where integral device coordinates
+ // are needed, but note that any translation should be applied first to
+ // avoid pixel rounding errors.
+ // Note that this is *not* rounding to nearest integer if the values are
+ // negative. They are always rounding as floor(n + 0.5). See
+ // https://bugzilla.mozilla.org/show_bug.cgi?id=410748#c14 If you need similar
+ // method which is using NS_round(), you should create new
+ // |RoundAwayFromZero()| method.
+ void Round() {
+ T x0 = static_cast<T>(std::floor(T(X()) + 0.5f));
+ T y0 = static_cast<T>(std::floor(T(Y()) + 0.5f));
+ T x1 = static_cast<T>(std::floor(T(XMost()) + 0.5f));
+ T y1 = static_cast<T>(std::floor(T(YMost()) + 0.5f));
+
+ x = x0;
+ y = y0;
+
+ width = x1 - x0;
+ height = y1 - y0;
+ }
+
+ // Snap the rectangle edges to integer coordinates, such that the
+ // original rectangle contains the resulting rectangle.
+ void RoundIn() {
+ T x0 = static_cast<T>(std::ceil(T(X())));
+ T y0 = static_cast<T>(std::ceil(T(Y())));
+ T x1 = static_cast<T>(std::floor(T(XMost())));
+ T y1 = static_cast<T>(std::floor(T(YMost())));
+
+ x = x0;
+ y = y0;
+
+ width = x1 - x0;
+ height = y1 - y0;
+ }
+
+ // Snap the rectangle edges to integer coordinates, such that the
+ // resulting rectangle contains the original rectangle.
+ void RoundOut() {
+ T x0 = static_cast<T>(std::floor(T(X())));
+ T y0 = static_cast<T>(std::floor(T(Y())));
+ T x1 = static_cast<T>(std::ceil(T(XMost())));
+ T y1 = static_cast<T>(std::ceil(T(YMost())));
+
+ x = x0;
+ y = y0;
+
+ width = x1 - x0;
+ height = y1 - y0;
+ }
+
+ // Scale 'this' by aScale.xScale and aScale.yScale without doing any rounding.
+ template <class Src, class Dst>
+ void Scale(const BaseScaleFactors2D<Src, Dst, T>& aScale) {
+ Scale(aScale.xScale, aScale.yScale);
+ }
+ // Scale 'this' by aScale without doing any rounding.
+ void Scale(T aScale) { Scale(aScale, aScale); }
+ // Scale 'this' by aXScale and aYScale, without doing any rounding.
+ void Scale(T aXScale, T aYScale) {
+ x = x * aXScale;
+ y = y * aYScale;
+ width = width * aXScale;
+ height = height * aYScale;
+ }
+ // Scale 'this' by aScale, converting coordinates to integers so that the
+ // result is the smallest integer-coordinate rectangle containing the
+ // unrounded result. Note: this can turn an empty rectangle into a non-empty
+ // rectangle
+ void ScaleRoundOut(double aScale) { ScaleRoundOut(aScale, aScale); }
+ // Scale 'this' by aXScale and aYScale, converting coordinates to integers so
+ // that the result is the smallest integer-coordinate rectangle containing the
+ // unrounded result.
+ // Note: this can turn an empty rectangle into a non-empty rectangle
+ void ScaleRoundOut(double aXScale, double aYScale) {
+ T right = static_cast<T>(ceil(double(XMost()) * aXScale));
+ T bottom = static_cast<T>(ceil(double(YMost()) * aYScale));
+ x = static_cast<T>(floor(double(x) * aXScale));
+ y = static_cast<T>(floor(double(y) * aYScale));
+ width = right - x;
+ height = bottom - y;
+ }
+ // Scale 'this' by aScale, converting coordinates to integers so that the
+ // result is the largest integer-coordinate rectangle contained by the
+ // unrounded result.
+ void ScaleRoundIn(double aScale) { ScaleRoundIn(aScale, aScale); }
+ // Scale 'this' by aXScale and aYScale, converting coordinates to integers so
+ // that the result is the largest integer-coordinate rectangle contained by
+ // the unrounded result.
+ void ScaleRoundIn(double aXScale, double aYScale) {
+ T right = static_cast<T>(floor(double(XMost()) * aXScale));
+ T bottom = static_cast<T>(floor(double(YMost()) * aYScale));
+ x = static_cast<T>(ceil(double(x) * aXScale));
+ y = static_cast<T>(ceil(double(y) * aYScale));
+ width = std::max<T>(0, right - x);
+ height = std::max<T>(0, bottom - y);
+ }
+ // Scale 'this' by 1/aScale, converting coordinates to integers so that the
+ // result is the smallest integer-coordinate rectangle containing the
+ // unrounded result. Note: this can turn an empty rectangle into a non-empty
+ // rectangle
+ void ScaleInverseRoundOut(double aScale) {
+ ScaleInverseRoundOut(aScale, aScale);
+ }
+ // Scale 'this' by 1/aXScale and 1/aYScale, converting coordinates to integers
+ // so that the result is the smallest integer-coordinate rectangle containing
+ // the unrounded result. Note: this can turn an empty rectangle into a
+ // non-empty rectangle
+ void ScaleInverseRoundOut(double aXScale, double aYScale) {
+ T right = static_cast<T>(ceil(double(XMost()) / aXScale));
+ T bottom = static_cast<T>(ceil(double(YMost()) / aYScale));
+ x = static_cast<T>(floor(double(x) / aXScale));
+ y = static_cast<T>(floor(double(y) / aYScale));
+ width = right - x;
+ height = bottom - y;
+ }
+ // Scale 'this' by 1/aScale, converting coordinates to integers so that the
+ // result is the largest integer-coordinate rectangle contained by the
+ // unrounded result.
+ void ScaleInverseRoundIn(double aScale) {
+ ScaleInverseRoundIn(aScale, aScale);
+ }
+ // Scale 'this' by 1/aXScale and 1/aYScale, converting coordinates to integers
+ // so that the result is the largest integer-coordinate rectangle contained by
+ // the unrounded result.
+ void ScaleInverseRoundIn(double aXScale, double aYScale) {
+ T right = static_cast<T>(floor(double(XMost()) / aXScale));
+ T bottom = static_cast<T>(floor(double(YMost()) / aYScale));
+ x = static_cast<T>(ceil(double(x) / aXScale));
+ y = static_cast<T>(ceil(double(y) / aYScale));
+ width = std::max<T>(0, right - x);
+ height = std::max<T>(0, bottom - y);
+ }
+
+ /**
+ * Clamp aPoint to this rectangle. It is allowed to end up on any
+ * edge of the rectangle.
+ */
+ [[nodiscard]] Point ClampPoint(const Point& aPoint) const {
+ using Coord = decltype(aPoint.x);
+ return Point(std::max(Coord(x), std::min(Coord(XMost()), aPoint.x)),
+ std::max(Coord(y), std::min(Coord(YMost()), aPoint.y)));
+ }
+
+ /**
+ * Translate this rectangle to be inside aRect. If it doesn't fit inside
+ * aRect then the dimensions that don't fit will be shrunk so that they
+ * do fit. The resulting rect is returned.
+ */
+ [[nodiscard]] Sub MoveInsideAndClamp(const Sub& aRect) const {
+ Sub rect(std::max(aRect.x, x), std::max(aRect.y, y),
+ std::min(aRect.width, width), std::min(aRect.height, height));
+ rect.x = std::min(rect.XMost(), aRect.XMost()) - rect.width;
+ rect.y = std::min(rect.YMost(), aRect.YMost()) - rect.height;
+ return rect;
+ }
+
+ // Returns the largest rectangle that can be represented with 32-bit
+ // signed integers, centered around a point at 0,0. As BaseRect's represent
+ // the dimensions as a top-left point with a width and height, the width
+ // and height will be the largest positive 32-bit value. The top-left
+ // position coordinate is divided by two to center the rectangle around a
+ // point at 0,0.
+ static Sub MaxIntRect() {
+ return Sub(static_cast<T>(-std::numeric_limits<int32_t>::max() * 0.5),
+ static_cast<T>(-std::numeric_limits<int32_t>::max() * 0.5),
+ static_cast<T>(std::numeric_limits<int32_t>::max()),
+ static_cast<T>(std::numeric_limits<int32_t>::max()));
+ };
+
+ // Returns a point representing the distance, along each dimension, of the
+ // given point from this rectangle. The distance along a dimension is defined
+ // as zero if the point is within the bounds of the rectangle in that
+ // dimension; otherwise, it's the distance to the closer endpoint of the
+ // rectangle in that dimension.
+ Point DistanceTo(const Point& aPoint) const {
+ return {DistanceFromInterval(aPoint.x, x, XMost()),
+ DistanceFromInterval(aPoint.y, y, YMost())};
+ }
+
+ friend std::ostream& operator<<(
+ std::ostream& stream,
+ const BaseRect<T, Sub, Point, SizeT, MarginT>& aRect) {
+ return stream << "(x=" << aRect.x << ", y=" << aRect.y
+ << ", w=" << aRect.width << ", h=" << aRect.height << ')';
+ }
+
+ private:
+ // Do not use the default operator== or operator!= !
+ // Use IsEqualEdges or IsEqualInterior explicitly.
+ bool operator==(const Sub& aRect) const { return false; }
+ bool operator!=(const Sub& aRect) const { return false; }
+
+ // Helper function for DistanceTo() that computes the distance of a
+ // coordinate along one dimension from an interval in that dimension.
+ static T DistanceFromInterval(T aCoord, T aIntervalStart, T aIntervalEnd) {
+ if (aCoord < aIntervalStart) {
+ return aIntervalStart - aCoord;
+ }
+ if (aCoord > aIntervalEnd) {
+ return aCoord - aIntervalEnd;
+ }
+ return 0;
+ }
+};
+
+} // namespace mozilla::gfx
+
+#endif /* MOZILLA_GFX_BASERECT_H_ */