diff options
Diffstat (limited to 'gfx/2d/Path.cpp')
-rw-r--r-- | gfx/2d/Path.cpp | 552 |
1 files changed, 552 insertions, 0 deletions
diff --git a/gfx/2d/Path.cpp b/gfx/2d/Path.cpp new file mode 100644 index 0000000000..a54e29789f --- /dev/null +++ b/gfx/2d/Path.cpp @@ -0,0 +1,552 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=8 sts=2 et sw=2 tw=80: */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "2D.h" +#include "PathAnalysis.h" +#include "PathHelpers.h" + +namespace mozilla { +namespace gfx { + +static double CubicRoot(double aValue) { + if (aValue < 0.0) { + return -CubicRoot(-aValue); + } else { + return pow(aValue, 1.0 / 3.0); + } +} + +struct PointD : public BasePoint<double, PointD> { + typedef BasePoint<double, PointD> Super; + + PointD() = default; + PointD(double aX, double aY) : Super(aX, aY) {} + MOZ_IMPLICIT PointD(const Point& aPoint) : Super(aPoint.x, aPoint.y) {} + + Point ToPoint() const { + return Point(static_cast<Float>(x), static_cast<Float>(y)); + } +}; + +struct BezierControlPoints { + BezierControlPoints() = default; + BezierControlPoints(const PointD& aCP1, const PointD& aCP2, + const PointD& aCP3, const PointD& aCP4) + : mCP1(aCP1), mCP2(aCP2), mCP3(aCP3), mCP4(aCP4) {} + + PointD mCP1, mCP2, mCP3, mCP4; +}; + +void FlattenBezier(const BezierControlPoints& aPoints, PathSink* aSink, + double aTolerance); + +Path::Path() = default; + +Path::~Path() = default; + +Float Path::ComputeLength() { + EnsureFlattenedPath(); + return mFlattenedPath->ComputeLength(); +} + +Point Path::ComputePointAtLength(Float aLength, Point* aTangent) { + EnsureFlattenedPath(); + return mFlattenedPath->ComputePointAtLength(aLength, aTangent); +} + +void Path::EnsureFlattenedPath() { + if (!mFlattenedPath) { + mFlattenedPath = new FlattenedPath(); + StreamToSink(mFlattenedPath); + } +} + +// This is the maximum deviation we allow (with an additional ~20% margin of +// error) of the approximation from the actual Bezier curve. +const Float kFlatteningTolerance = 0.0001f; + +void FlattenedPath::MoveTo(const Point& aPoint) { + MOZ_ASSERT(!mCalculatedLength); + FlatPathOp op; + op.mType = FlatPathOp::OP_MOVETO; + op.mPoint = aPoint; + mPathOps.push_back(op); + + mBeginPoint = aPoint; +} + +void FlattenedPath::LineTo(const Point& aPoint) { + MOZ_ASSERT(!mCalculatedLength); + FlatPathOp op; + op.mType = FlatPathOp::OP_LINETO; + op.mPoint = aPoint; + mPathOps.push_back(op); +} + +void FlattenedPath::BezierTo(const Point& aCP1, const Point& aCP2, + const Point& aCP3) { + MOZ_ASSERT(!mCalculatedLength); + FlattenBezier(BezierControlPoints(CurrentPoint(), aCP1, aCP2, aCP3), this, + kFlatteningTolerance); +} + +void FlattenedPath::QuadraticBezierTo(const Point& aCP1, const Point& aCP2) { + MOZ_ASSERT(!mCalculatedLength); + // We need to elevate the degree of this quadratic B�zier to cubic, so we're + // going to add an intermediate control point, and recompute control point 1. + // The first and last control points remain the same. + // This formula can be found on http://fontforge.sourceforge.net/bezier.html + Point CP0 = CurrentPoint(); + Point CP1 = (CP0 + aCP1 * 2.0) / 3.0; + Point CP2 = (aCP2 + aCP1 * 2.0) / 3.0; + Point CP3 = aCP2; + + BezierTo(CP1, CP2, CP3); +} + +void FlattenedPath::Close() { + MOZ_ASSERT(!mCalculatedLength); + LineTo(mBeginPoint); +} + +void FlattenedPath::Arc(const Point& aOrigin, float aRadius, float aStartAngle, + float aEndAngle, bool aAntiClockwise) { + ArcToBezier(this, aOrigin, Size(aRadius, aRadius), aStartAngle, aEndAngle, + aAntiClockwise); +} + +Float FlattenedPath::ComputeLength() { + if (!mCalculatedLength) { + Point currentPoint; + + for (uint32_t i = 0; i < mPathOps.size(); i++) { + if (mPathOps[i].mType == FlatPathOp::OP_MOVETO) { + currentPoint = mPathOps[i].mPoint; + } else { + mCachedLength += Distance(currentPoint, mPathOps[i].mPoint); + currentPoint = mPathOps[i].mPoint; + } + } + + mCalculatedLength = true; + } + + return mCachedLength; +} + +Point FlattenedPath::ComputePointAtLength(Float aLength, Point* aTangent) { + if (aLength < mCursor.mLength) { + // If cursor is beyond the target length, reset to the beginning. + mCursor.Reset(); + } else { + // Adjust aLength to account for the position where we'll start searching. + aLength -= mCursor.mLength; + } + + while (mCursor.mIndex < mPathOps.size()) { + const auto& op = mPathOps[mCursor.mIndex]; + if (op.mType == FlatPathOp::OP_MOVETO) { + if (Distance(mCursor.mCurrentPoint, op.mPoint) > 0.0f) { + mCursor.mLastPointSinceMove = mCursor.mCurrentPoint; + } + mCursor.mCurrentPoint = op.mPoint; + } else { + Float segmentLength = Distance(mCursor.mCurrentPoint, op.mPoint); + + if (segmentLength) { + mCursor.mLastPointSinceMove = mCursor.mCurrentPoint; + if (segmentLength > aLength) { + Point currentVector = op.mPoint - mCursor.mCurrentPoint; + Point tangent = currentVector / segmentLength; + if (aTangent) { + *aTangent = tangent; + } + return mCursor.mCurrentPoint + tangent * aLength; + } + } + + aLength -= segmentLength; + mCursor.mLength += segmentLength; + mCursor.mCurrentPoint = op.mPoint; + } + mCursor.mIndex++; + } + + if (aTangent) { + Point currentVector = mCursor.mCurrentPoint - mCursor.mLastPointSinceMove; + if (auto h = hypotf(currentVector.x, currentVector.y)) { + *aTangent = currentVector / h; + } else { + *aTangent = Point(); + } + } + return mCursor.mCurrentPoint; +} + +// This function explicitly permits aControlPoints to refer to the same object +// as either of the other arguments. +static void SplitBezier(const BezierControlPoints& aControlPoints, + BezierControlPoints* aFirstSegmentControlPoints, + BezierControlPoints* aSecondSegmentControlPoints, + double t) { + MOZ_ASSERT(aSecondSegmentControlPoints); + + *aSecondSegmentControlPoints = aControlPoints; + + PointD cp1a = + aControlPoints.mCP1 + (aControlPoints.mCP2 - aControlPoints.mCP1) * t; + PointD cp2a = + aControlPoints.mCP2 + (aControlPoints.mCP3 - aControlPoints.mCP2) * t; + PointD cp1aa = cp1a + (cp2a - cp1a) * t; + PointD cp3a = + aControlPoints.mCP3 + (aControlPoints.mCP4 - aControlPoints.mCP3) * t; + PointD cp2aa = cp2a + (cp3a - cp2a) * t; + PointD cp1aaa = cp1aa + (cp2aa - cp1aa) * t; + aSecondSegmentControlPoints->mCP4 = aControlPoints.mCP4; + + if (aFirstSegmentControlPoints) { + aFirstSegmentControlPoints->mCP1 = aControlPoints.mCP1; + aFirstSegmentControlPoints->mCP2 = cp1a; + aFirstSegmentControlPoints->mCP3 = cp1aa; + aFirstSegmentControlPoints->mCP4 = cp1aaa; + } + aSecondSegmentControlPoints->mCP1 = cp1aaa; + aSecondSegmentControlPoints->mCP2 = cp2aa; + aSecondSegmentControlPoints->mCP3 = cp3a; +} + +static void FlattenBezierCurveSegment(const BezierControlPoints& aControlPoints, + PathSink* aSink, double aTolerance) { + /* The algorithm implemented here is based on: + * http://cis.usouthal.edu/~hain/general/Publications/Bezier/Bezier%20Offset%20Curves.pdf + * + * The basic premise is that for a small t the third order term in the + * equation of a cubic bezier curve is insignificantly small. This can + * then be approximated by a quadratic equation for which the maximum + * difference from a linear approximation can be much more easily determined. + */ + BezierControlPoints currentCP = aControlPoints; + + double t = 0; + double currentTolerance = aTolerance; + while (t < 1.0) { + PointD cp21 = currentCP.mCP2 - currentCP.mCP1; + PointD cp31 = currentCP.mCP3 - currentCP.mCP1; + + /* To remove divisions and check for divide-by-zero, this is optimized from: + * Float s3 = (cp31.x * cp21.y - cp31.y * cp21.x) / hypotf(cp21.x, cp21.y); + * t = 2 * Float(sqrt(aTolerance / (3. * std::abs(s3)))); + */ + double cp21x31 = cp31.x * cp21.y - cp31.y * cp21.x; + double h = hypot(cp21.x, cp21.y); + if (cp21x31 * h == 0) { + break; + } + + double s3inv = h / cp21x31; + t = 2 * sqrt(currentTolerance * std::abs(s3inv) / 3.); + currentTolerance *= 1 + aTolerance; + // Increase tolerance every iteration to prevent this loop from executing + // too many times. This approximates the length of large curves more + // roughly. In practice, aTolerance is the constant kFlatteningTolerance + // which has value 0.0001. With this value, it takes 6,932 splits to double + // currentTolerance (to 0.0002) and 23,028 splits to increase + // currentTolerance by an order of magnitude (to 0.001). + if (t >= 1.0) { + break; + } + + SplitBezier(currentCP, nullptr, ¤tCP, t); + + aSink->LineTo(currentCP.mCP1.ToPoint()); + } + + aSink->LineTo(currentCP.mCP4.ToPoint()); +} + +static inline void FindInflectionApproximationRange( + BezierControlPoints aControlPoints, double* aMin, double* aMax, double aT, + double aTolerance) { + SplitBezier(aControlPoints, nullptr, &aControlPoints, aT); + + PointD cp21 = aControlPoints.mCP2 - aControlPoints.mCP1; + PointD cp41 = aControlPoints.mCP4 - aControlPoints.mCP1; + + if (cp21.x == 0. && cp21.y == 0.) { + cp21 = aControlPoints.mCP3 - aControlPoints.mCP1; + } + + if (cp21.x == 0. && cp21.y == 0.) { + // In this case s3 becomes lim[n->0] (cp41.x * n) / n - (cp41.y * n) / n = + // cp41.x - cp41.y. + double s3 = cp41.x - cp41.y; + + // Use the absolute value so that Min and Max will correspond with the + // minimum and maximum of the range. + if (s3 == 0) { + *aMin = -1.0; + *aMax = 2.0; + } else { + double r = CubicRoot(std::abs(aTolerance / s3)); + *aMin = aT - r; + *aMax = aT + r; + } + return; + } + + double s3 = (cp41.x * cp21.y - cp41.y * cp21.x) / hypot(cp21.x, cp21.y); + + if (s3 == 0) { + // This means within the precision we have it can be approximated + // infinitely by a linear segment. Deal with this by specifying the + // approximation range as extending beyond the entire curve. + *aMin = -1.0; + *aMax = 2.0; + return; + } + + double tf = CubicRoot(std::abs(aTolerance / s3)); + + *aMin = aT - tf * (1 - aT); + *aMax = aT + tf * (1 - aT); +} + +/* Find the inflection points of a bezier curve. Will return false if the + * curve is degenerate in such a way that it is best approximated by a straight + * line. + * + * The below algorithm was written by Jeff Muizelaar <jmuizelaar@mozilla.com>, + * explanation follows: + * + * The lower inflection point is returned in aT1, the higher one in aT2. In the + * case of a single inflection point this will be in aT1. + * + * The method is inspired by the algorithm in "analysis of in?ection points for + * planar cubic bezier curve" + * + * Here are some differences between this algorithm and versions discussed + * elsewhere in the literature: + * + * zhang et. al compute a0, d0 and e0 incrementally using the follow formula: + * + * Point a0 = CP2 - CP1 + * Point a1 = CP3 - CP2 + * Point a2 = CP4 - CP1 + * + * Point d0 = a1 - a0 + * Point d1 = a2 - a1 + + * Point e0 = d1 - d0 + * + * this avoids any multiplications and may or may not be faster than the + * approach take below. + * + * "fast, precise flattening of cubic bezier path and ofset curves" by hain et. + * al + * Point a = CP1 + 3 * CP2 - 3 * CP3 + CP4 + * Point b = 3 * CP1 - 6 * CP2 + 3 * CP3 + * Point c = -3 * CP1 + 3 * CP2 + * Point d = CP1 + * the a, b, c, d can be expressed in terms of a0, d0 and e0 defined above as: + * c = 3 * a0 + * b = 3 * d0 + * a = e0 + * + * + * a = 3a = a.y * b.x - a.x * b.y + * b = 3b = a.y * c.x - a.x * c.y + * c = 9c = b.y * c.x - b.x * c.y + * + * The additional multiples of 3 cancel each other out as show below: + * + * x = (-b + sqrt(b * b - 4 * a * c)) / (2 * a) + * x = (-3 * b + sqrt(3 * b * 3 * b - 4 * a * 3 * 9 * c / 3)) / (2 * 3 * a) + * x = 3 * (-b + sqrt(b * b - 4 * a * c)) / (2 * 3 * a) + * x = (-b + sqrt(b * b - 4 * a * c)) / (2 * a) + * + * I haven't looked into whether the formulation of the quadratic formula in + * hain has any numerical advantages over the one used below. + */ +static inline void FindInflectionPoints( + const BezierControlPoints& aControlPoints, double* aT1, double* aT2, + uint32_t* aCount) { + // Find inflection points. + // See www.faculty.idc.ac.il/arik/quality/appendixa.html for an explanation + // of this approach. + PointD A = aControlPoints.mCP2 - aControlPoints.mCP1; + PointD B = + aControlPoints.mCP3 - (aControlPoints.mCP2 * 2) + aControlPoints.mCP1; + PointD C = aControlPoints.mCP4 - (aControlPoints.mCP3 * 3) + + (aControlPoints.mCP2 * 3) - aControlPoints.mCP1; + + double a = B.x * C.y - B.y * C.x; + double b = A.x * C.y - A.y * C.x; + double c = A.x * B.y - A.y * B.x; + + if (a == 0) { + // Not a quadratic equation. + if (b == 0) { + // Instead of a linear acceleration change we have a constant + // acceleration change. This means the equation has no solution + // and there are no inflection points, unless the constant is 0. + // In that case the curve is a straight line, essentially that means + // the easiest way to deal with is is by saying there's an inflection + // point at t == 0. The inflection point approximation range found will + // automatically extend into infinity. + if (c == 0) { + *aCount = 1; + *aT1 = 0; + return; + } + *aCount = 0; + return; + } + *aT1 = -c / b; + *aCount = 1; + return; + } + + double discriminant = b * b - 4 * a * c; + + if (discriminant < 0) { + // No inflection points. + *aCount = 0; + } else if (discriminant == 0) { + *aCount = 1; + *aT1 = -b / (2 * a); + } else { + /* Use the following formula for computing the roots: + * + * q = -1/2 * (b + sign(b) * sqrt(b^2 - 4ac)) + * t1 = q / a + * t2 = c / q + */ + double q = sqrt(discriminant); + if (b < 0) { + q = b - q; + } else { + q = b + q; + } + q *= -1. / 2; + + *aT1 = q / a; + *aT2 = c / q; + if (*aT1 > *aT2) { + std::swap(*aT1, *aT2); + } + *aCount = 2; + } +} + +void FlattenBezier(const BezierControlPoints& aControlPoints, PathSink* aSink, + double aTolerance) { + double t1; + double t2; + uint32_t count; + + FindInflectionPoints(aControlPoints, &t1, &t2, &count); + + // Check that at least one of the inflection points is inside [0..1] + if (count == 0 || + ((t1 < 0.0 || t1 >= 1.0) && (count == 1 || (t2 < 0.0 || t2 >= 1.0)))) { + FlattenBezierCurveSegment(aControlPoints, aSink, aTolerance); + return; + } + + double t1min = t1, t1max = t1, t2min = t2, t2max = t2; + + BezierControlPoints remainingCP = aControlPoints; + + // For both inflection points, calulate the range where they can be linearly + // approximated if they are positioned within [0,1] + if (count > 0 && t1 >= 0 && t1 < 1.0) { + FindInflectionApproximationRange(aControlPoints, &t1min, &t1max, t1, + aTolerance); + } + if (count > 1 && t2 >= 0 && t2 < 1.0) { + FindInflectionApproximationRange(aControlPoints, &t2min, &t2max, t2, + aTolerance); + } + BezierControlPoints nextCPs = aControlPoints; + BezierControlPoints prevCPs; + + // Process ranges. [t1min, t1max] and [t2min, t2max] are approximated by line + // segments. + if (count == 1 && t1min <= 0 && t1max >= 1.0) { + // The whole range can be approximated by a line segment. + aSink->LineTo(aControlPoints.mCP4.ToPoint()); + return; + } + + if (t1min > 0) { + // Flatten the Bezier up until the first inflection point's approximation + // point. + SplitBezier(aControlPoints, &prevCPs, &remainingCP, t1min); + FlattenBezierCurveSegment(prevCPs, aSink, aTolerance); + } + if (t1max >= 0 && t1max < 1.0 && (count == 1 || t2min > t1max)) { + // The second inflection point's approximation range begins after the end + // of the first, approximate the first inflection point by a line and + // subsequently flatten up until the end or the next inflection point. + SplitBezier(aControlPoints, nullptr, &nextCPs, t1max); + + aSink->LineTo(nextCPs.mCP1.ToPoint()); + + if (count == 1 || (count > 1 && t2min >= 1.0)) { + // No more inflection points to deal with, flatten the rest of the curve. + FlattenBezierCurveSegment(nextCPs, aSink, aTolerance); + } + } else if (count > 1 && t2min > 1.0) { + // We've already concluded t2min <= t1max, so if this is true the + // approximation range for the first inflection point runs past the + // end of the curve, draw a line to the end and we're done. + aSink->LineTo(aControlPoints.mCP4.ToPoint()); + return; + } + + if (count > 1 && t2min < 1.0 && t2max > 0) { + if (t2min > 0 && t2min < t1max) { + // In this case the t2 approximation range starts inside the t1 + // approximation range. + SplitBezier(aControlPoints, nullptr, &nextCPs, t1max); + aSink->LineTo(nextCPs.mCP1.ToPoint()); + } else if (t2min > 0 && t1max > 0) { + SplitBezier(aControlPoints, nullptr, &nextCPs, t1max); + + // Find a control points describing the portion of the curve between t1max + // and t2min. + double t2mina = (t2min - t1max) / (1 - t1max); + SplitBezier(nextCPs, &prevCPs, &nextCPs, t2mina); + FlattenBezierCurveSegment(prevCPs, aSink, aTolerance); + } else if (t2min > 0) { + // We have nothing interesting before t2min, find that bit and flatten it. + SplitBezier(aControlPoints, &prevCPs, &nextCPs, t2min); + FlattenBezierCurveSegment(prevCPs, aSink, aTolerance); + } + if (t2max < 1.0) { + // Flatten the portion of the curve after t2max + SplitBezier(aControlPoints, nullptr, &nextCPs, t2max); + + // Draw a line to the start, this is the approximation between t2min and + // t2max. + aSink->LineTo(nextCPs.mCP1.ToPoint()); + FlattenBezierCurveSegment(nextCPs, aSink, aTolerance); + } else { + // Our approximation range extends beyond the end of the curve. + aSink->LineTo(aControlPoints.mCP4.ToPoint()); + return; + } + } +} + +Rect Path::GetFastBounds(const Matrix& aTransform, + const StrokeOptions* aStrokeOptions) const { + return aStrokeOptions ? GetStrokedBounds(*aStrokeOptions, aTransform) + : GetBounds(aTransform); +} + +} // namespace gfx +} // namespace mozilla |