summaryrefslogtreecommitdiffstats
path: root/gfx/2d/PathHelpers.h
diff options
context:
space:
mode:
Diffstat (limited to 'gfx/2d/PathHelpers.h')
-rw-r--r--gfx/2d/PathHelpers.h399
1 files changed, 399 insertions, 0 deletions
diff --git a/gfx/2d/PathHelpers.h b/gfx/2d/PathHelpers.h
new file mode 100644
index 0000000000..5fd6d45934
--- /dev/null
+++ b/gfx/2d/PathHelpers.h
@@ -0,0 +1,399 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
+/* vim: set ts=8 sts=2 et sw=2 tw=80: */
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#ifndef MOZILLA_GFX_PATHHELPERS_H_
+#define MOZILLA_GFX_PATHHELPERS_H_
+
+#include "2D.h"
+#include "UserData.h"
+
+#include <cmath>
+
+namespace mozilla {
+namespace gfx {
+
+struct PathOp {
+ ~PathOp() = default;
+
+ enum OpType {
+ OP_MOVETO = 0,
+ OP_LINETO,
+ OP_BEZIERTO,
+ OP_QUADRATICBEZIERTO,
+ OP_ARC,
+ OP_CLOSE
+ };
+
+ OpType mType;
+ Point mP1;
+#if (!defined(__GNUC__) || __GNUC__ >= 7) && defined(__clang__)
+ PathOp() {}
+
+ union {
+ struct {
+ Point mP2;
+ Point mP3;
+ };
+ struct {
+ float mRadius;
+ float mStartAngle;
+ float mEndAngle;
+ bool mAntiClockwise;
+ };
+ };
+#else
+ PathOp() = default;
+
+ Point mP2;
+ Point mP3;
+ float mRadius;
+ float mStartAngle;
+ float mEndAngle;
+ bool mAntiClockwise;
+#endif
+};
+
+const int32_t sPointCount[] = {1, 1, 3, 2, 0, 0};
+
+// Kappa constant for 90-degree angle
+const Float kKappaFactor = 0.55191497064665766025f;
+
+// Calculate kappa constant for partial curve. The sign of angle in the
+// tangent will actually ensure this is negative for a counter clockwise
+// sweep, so changing signs later isn't needed.
+inline Float ComputeKappaFactor(Float aAngle) {
+ return (4.0f / 3.0f) * tanf(aAngle / 4.0f);
+}
+
+/**
+ * Draws a partial arc <= 90 degrees given exact start and end points.
+ * Assumes that it is continuing from an already specified start point.
+ */
+template <typename T>
+inline void PartialArcToBezier(T* aSink, const Point& aStartOffset,
+ const Point& aEndOffset,
+ const Matrix& aTransform,
+ Float aKappaFactor = kKappaFactor) {
+ Point cp1 =
+ aStartOffset + Point(-aStartOffset.y, aStartOffset.x) * aKappaFactor;
+
+ Point cp2 = aEndOffset + Point(aEndOffset.y, -aEndOffset.x) * aKappaFactor;
+
+ aSink->BezierTo(aTransform.TransformPoint(cp1),
+ aTransform.TransformPoint(cp2),
+ aTransform.TransformPoint(aEndOffset));
+}
+
+/**
+ * Draws an acute arc (<= 90 degrees) given exact start and end points.
+ * Specialized version avoiding kappa calculation.
+ */
+template <typename T>
+inline void AcuteArcToBezier(T* aSink, const Point& aOrigin,
+ const Size& aRadius, const Point& aStartPoint,
+ const Point& aEndPoint,
+ Float aKappaFactor = kKappaFactor) {
+ aSink->LineTo(aStartPoint);
+ if (!aRadius.IsEmpty()) {
+ Float kappaX = aKappaFactor * aRadius.width / aRadius.height;
+ Float kappaY = aKappaFactor * aRadius.height / aRadius.width;
+ Point startOffset = aStartPoint - aOrigin;
+ Point endOffset = aEndPoint - aOrigin;
+ aSink->BezierTo(
+ aStartPoint + Point(-startOffset.y * kappaX, startOffset.x * kappaY),
+ aEndPoint + Point(endOffset.y * kappaX, -endOffset.x * kappaY),
+ aEndPoint);
+ } else if (aEndPoint != aStartPoint) {
+ aSink->LineTo(aEndPoint);
+ }
+}
+
+/**
+ * Draws an acute arc (<= 90 degrees) given exact start and end points.
+ */
+template <typename T>
+inline void AcuteArcToBezier(T* aSink, const Point& aOrigin,
+ const Size& aRadius, const Point& aStartPoint,
+ const Point& aEndPoint, Float aStartAngle,
+ Float aEndAngle) {
+ AcuteArcToBezier(aSink, aOrigin, aRadius, aStartPoint, aEndPoint,
+ ComputeKappaFactor(aEndAngle - aStartAngle));
+}
+
+template <typename T>
+void ArcToBezier(T* aSink, const Point& aOrigin, const Size& aRadius,
+ float aStartAngle, float aEndAngle, bool aAntiClockwise,
+ float aRotation = 0.0f, const Matrix& aTransform = Matrix()) {
+ Float sweepDirection = aAntiClockwise ? -1.0f : 1.0f;
+
+ // Calculate the total arc we're going to sweep.
+ Float arcSweepLeft = (aEndAngle - aStartAngle) * sweepDirection;
+
+ // Clockwise we always sweep from the smaller to the larger angle, ccw
+ // it's vice versa.
+ if (arcSweepLeft < 0) {
+ // Rerverse sweep is modulo'd into range rather than clamped.
+ arcSweepLeft = Float(2.0f * M_PI) + fmodf(arcSweepLeft, Float(2.0f * M_PI));
+ // Recalculate the start angle to land closer to end angle.
+ aStartAngle = aEndAngle - arcSweepLeft * sweepDirection;
+ } else if (arcSweepLeft > Float(2.0f * M_PI)) {
+ // Sweeping more than 2 * pi is a full circle.
+ arcSweepLeft = Float(2.0f * M_PI);
+ }
+
+ Float currentStartAngle = aStartAngle;
+ Point currentStartOffset(cosf(aStartAngle), sinf(aStartAngle));
+ Matrix transform = Matrix::Scaling(aRadius.width, aRadius.height);
+ if (aRotation != 0.0f) {
+ transform *= Matrix::Rotation(aRotation);
+ }
+ transform.PostTranslate(aOrigin);
+ transform *= aTransform;
+ aSink->LineTo(transform.TransformPoint(currentStartOffset));
+
+ while (arcSweepLeft > 0) {
+ Float currentEndAngle =
+ currentStartAngle +
+ std::min(arcSweepLeft, Float(M_PI / 2.0f)) * sweepDirection;
+ Point currentEndOffset(cosf(currentEndAngle), sinf(currentEndAngle));
+
+ PartialArcToBezier(aSink, currentStartOffset, currentEndOffset, transform,
+ ComputeKappaFactor(currentEndAngle - currentStartAngle));
+
+ // We guarantee here the current point is the start point of the next
+ // curve segment.
+ arcSweepLeft -= Float(M_PI / 2.0f);
+ currentStartAngle = currentEndAngle;
+ currentStartOffset = currentEndOffset;
+ }
+}
+
+/* This is basically the ArcToBezier with the parameters for drawing a circle
+ * inlined which vastly simplifies it and avoids a bunch of transcedental
+ * function calls which should make it faster. */
+template <typename T>
+void EllipseToBezier(T* aSink, const Point& aOrigin, const Size& aRadius) {
+ Matrix transform(aRadius.width, 0, 0, aRadius.height, aOrigin.x, aOrigin.y);
+ Point currentStartOffset(1, 0);
+
+ aSink->LineTo(transform.TransformPoint(currentStartOffset));
+
+ for (int i = 0; i < 4; i++) {
+ // cos(x+pi/2) == -sin(x)
+ // sin(x+pi/2) == cos(x)
+ Point currentEndOffset(-currentStartOffset.y, currentStartOffset.x);
+
+ PartialArcToBezier(aSink, currentStartOffset, currentEndOffset, transform);
+
+ // We guarantee here the current point is the start point of the next
+ // curve segment.
+ currentStartOffset = currentEndOffset;
+ }
+}
+
+/**
+ * Appends a path represending a rectangle to the path being built by
+ * aPathBuilder.
+ *
+ * aRect The rectangle to append.
+ * aDrawClockwise If set to true, the path will start at the left of the top
+ * left edge and draw clockwise. If set to false the path will
+ * start at the right of the top left edge and draw counter-
+ * clockwise.
+ */
+GFX2D_API void AppendRectToPath(PathBuilder* aPathBuilder, const Rect& aRect,
+ bool aDrawClockwise = true);
+
+inline already_AddRefed<Path> MakePathForRect(const DrawTarget& aDrawTarget,
+ const Rect& aRect,
+ bool aDrawClockwise = true) {
+ RefPtr<PathBuilder> builder = aDrawTarget.CreatePathBuilder();
+ AppendRectToPath(builder, aRect, aDrawClockwise);
+ return builder->Finish();
+}
+
+/**
+ * Appends a path represending a rounded rectangle to the path being built by
+ * aPathBuilder.
+ *
+ * aRect The rectangle to append.
+ * aCornerRadii Contains the radii of the top-left, top-right, bottom-right
+ * and bottom-left corners, in that order.
+ * aDrawClockwise If set to true, the path will start at the left of the top
+ * left edge and draw clockwise. If set to false the path will
+ * start at the right of the top left edge and draw counter-
+ * clockwise.
+ */
+GFX2D_API void AppendRoundedRectToPath(
+ PathBuilder* aPathBuilder, const Rect& aRect, const RectCornerRadii& aRadii,
+ bool aDrawClockwise = true, const Maybe<Matrix>& aTransform = Nothing());
+
+inline already_AddRefed<Path> MakePathForRoundedRect(
+ const DrawTarget& aDrawTarget, const Rect& aRect,
+ const RectCornerRadii& aRadii, bool aDrawClockwise = true) {
+ RefPtr<PathBuilder> builder = aDrawTarget.CreatePathBuilder();
+ AppendRoundedRectToPath(builder, aRect, aRadii, aDrawClockwise);
+ return builder->Finish();
+}
+
+/**
+ * Appends a path represending an ellipse to the path being built by
+ * aPathBuilder.
+ *
+ * The ellipse extends aDimensions.width / 2.0 in the horizontal direction
+ * from aCenter, and aDimensions.height / 2.0 in the vertical direction.
+ */
+GFX2D_API void AppendEllipseToPath(PathBuilder* aPathBuilder,
+ const Point& aCenter,
+ const Size& aDimensions);
+
+inline already_AddRefed<Path> MakePathForEllipse(const DrawTarget& aDrawTarget,
+ const Point& aCenter,
+ const Size& aDimensions) {
+ RefPtr<PathBuilder> builder = aDrawTarget.CreatePathBuilder();
+ AppendEllipseToPath(builder, aCenter, aDimensions);
+ return builder->Finish();
+}
+
+inline already_AddRefed<Path> MakePathForCircle(const DrawTarget& aDrawTarget,
+ const Point& aCenter,
+ float aRadius) {
+ RefPtr<PathBuilder> builder = aDrawTarget.CreatePathBuilder();
+ builder->Arc(aCenter, aRadius, 0.0f, Float(2.0 * M_PI));
+ builder->Close();
+ return builder->Finish();
+}
+
+/**
+ * If aDrawTarget's transform only contains a translation, and if this line is
+ * a horizontal or vertical line, this function will snap the line's vertices
+ * to align with the device pixel grid so that stroking the line with a one
+ * pixel wide stroke will result in a crisp line that is not antialiased over
+ * two pixels across its width.
+ *
+ * @return Returns true if this function snaps aRect's vertices, else returns
+ * false.
+ */
+GFX2D_API bool SnapLineToDevicePixelsForStroking(Point& aP1, Point& aP2,
+ const DrawTarget& aDrawTarget,
+ Float aLineWidth);
+
+/**
+ * This function paints each edge of aRect separately, snapping the edges using
+ * SnapLineToDevicePixelsForStroking. Stroking the edges as separate paths
+ * helps ensure not only that the stroke spans a single row of device pixels if
+ * possible, but also that the ends of stroke dashes start and end on device
+ * pixels too.
+ */
+GFX2D_API void StrokeSnappedEdgesOfRect(const Rect& aRect,
+ DrawTarget& aDrawTarget,
+ const ColorPattern& aColor,
+ const StrokeOptions& aStrokeOptions);
+
+/**
+ * Return the margin, in device space, by which a stroke can extend beyond the
+ * rendered shape.
+ * @param aStrokeOptions The stroke options that the stroke is drawn with.
+ * @param aTransform The user space to device space transform.
+ * @return The stroke margin.
+ */
+GFX2D_API Margin MaxStrokeExtents(const StrokeOptions& aStrokeOptions,
+ const Matrix& aTransform);
+
+extern UserDataKey sDisablePixelSnapping;
+
+/**
+ * If aDrawTarget's transform only contains a translation or, if
+ * aAllowScaleOr90DegreeRotate is true, and/or a scale/90 degree rotation, this
+ * function will convert aRect to device space and snap it to device pixels.
+ * This function returns true if aRect is modified, otherwise it returns false.
+ *
+ * Note that the snapping is such that filling the rect using a DrawTarget
+ * which has the identity matrix as its transform will result in crisp edges.
+ * (That is, aRect will have integer values, aligning its edges between pixel
+ * boundaries.) If on the other hand you stroking the rect with an odd valued
+ * stroke width then the edges of the stroke will be antialiased (assuming an
+ * AntialiasMode that does antialiasing).
+ *
+ * Empty snaps are those which result in a rectangle of 0 area. If they are
+ * disallowed, an axis is left unsnapped if the rounding process results in a
+ * length of 0.
+ */
+inline bool UserToDevicePixelSnapped(Rect& aRect, const DrawTarget& aDrawTarget,
+ bool aAllowScaleOr90DegreeRotate = false,
+ bool aAllowEmptySnaps = true) {
+ if (aDrawTarget.GetUserData(&sDisablePixelSnapping)) {
+ return false;
+ }
+
+ Matrix mat = aDrawTarget.GetTransform();
+
+ const Float epsilon = 0.0000001f;
+#define WITHIN_E(a, b) (fabs((a) - (b)) < epsilon)
+ if (!aAllowScaleOr90DegreeRotate &&
+ (!WITHIN_E(mat._11, 1.f) || !WITHIN_E(mat._22, 1.f) ||
+ !WITHIN_E(mat._12, 0.f) || !WITHIN_E(mat._21, 0.f))) {
+ // We have non-translation, but only translation is allowed.
+ return false;
+ }
+#undef WITHIN_E
+
+ Point p1 = mat.TransformPoint(aRect.TopLeft());
+ Point p2 = mat.TransformPoint(aRect.TopRight());
+ Point p3 = mat.TransformPoint(aRect.BottomRight());
+
+ // Check that the rectangle is axis-aligned. For an axis-aligned rectangle,
+ // two opposite corners define the entire rectangle. So check if
+ // the axis-aligned rectangle with opposite corners p1 and p3
+ // define an axis-aligned rectangle whose other corners are p2 and p4.
+ // We actually only need to check one of p2 and p4, since an affine
+ // transform maps parallelograms to parallelograms.
+ if (p2 == Point(p1.x, p3.y) || p2 == Point(p3.x, p1.y)) {
+ Point p1r = p1;
+ Point p3r = p3;
+ p1r.Round();
+ p3r.Round();
+ if (aAllowEmptySnaps || p1r.x != p3r.x) {
+ p1.x = p1r.x;
+ p3.x = p3r.x;
+ }
+ if (aAllowEmptySnaps || p1r.y != p3r.y) {
+ p1.y = p1r.y;
+ p3.y = p3r.y;
+ }
+
+ aRect.MoveTo(Point(std::min(p1.x, p3.x), std::min(p1.y, p3.y)));
+ aRect.SizeTo(Size(std::max(p1.x, p3.x) - aRect.X(),
+ std::max(p1.y, p3.y) - aRect.Y()));
+ return true;
+ }
+
+ return false;
+}
+
+/**
+ * This function has the same behavior as UserToDevicePixelSnapped except that
+ * aRect is not transformed to device space.
+ */
+inline bool MaybeSnapToDevicePixels(Rect& aRect, const DrawTarget& aDrawTarget,
+ bool aAllowScaleOr90DegreeRotate = false,
+ bool aAllowEmptySnaps = true) {
+ if (UserToDevicePixelSnapped(aRect, aDrawTarget, aAllowScaleOr90DegreeRotate,
+ aAllowEmptySnaps)) {
+ // Since UserToDevicePixelSnapped returned true we know there is no
+ // rotation/skew in 'mat', so we can just use TransformBounds() here.
+ Matrix mat = aDrawTarget.GetTransform();
+ mat.Invert();
+ aRect = mat.TransformBounds(aRect);
+ return true;
+ }
+ return false;
+}
+
+} // namespace gfx
+} // namespace mozilla
+
+#endif /* MOZILLA_GFX_PATHHELPERS_H_ */