summaryrefslogtreecommitdiffstats
path: root/gfx/harfbuzz/src/graph/graph.hh
diff options
context:
space:
mode:
Diffstat (limited to 'gfx/harfbuzz/src/graph/graph.hh')
-rw-r--r--gfx/harfbuzz/src/graph/graph.hh1519
1 files changed, 1519 insertions, 0 deletions
diff --git a/gfx/harfbuzz/src/graph/graph.hh b/gfx/harfbuzz/src/graph/graph.hh
new file mode 100644
index 0000000000..26ad00bdd9
--- /dev/null
+++ b/gfx/harfbuzz/src/graph/graph.hh
@@ -0,0 +1,1519 @@
+/*
+ * Copyright © 2022 Google, Inc.
+ *
+ * This is part of HarfBuzz, a text shaping library.
+ *
+ * Permission is hereby granted, without written agreement and without
+ * license or royalty fees, to use, copy, modify, and distribute this
+ * software and its documentation for any purpose, provided that the
+ * above copyright notice and the following two paragraphs appear in
+ * all copies of this software.
+ *
+ * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
+ * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
+ * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
+ * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ *
+ * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
+ * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
+ * FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
+ * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
+ * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
+ *
+ * Google Author(s): Garret Rieger
+ */
+
+#include "../hb-set.hh"
+#include "../hb-priority-queue.hh"
+#include "../hb-serialize.hh"
+
+#ifndef GRAPH_GRAPH_HH
+#define GRAPH_GRAPH_HH
+
+namespace graph {
+
+/**
+ * Represents a serialized table in the form of a graph.
+ * Provides methods for modifying and reordering the graph.
+ */
+struct graph_t
+{
+ struct vertex_t
+ {
+ hb_serialize_context_t::object_t obj;
+ int64_t distance = 0 ;
+ unsigned space = 0 ;
+ unsigned start = 0;
+ unsigned end = 0;
+ unsigned priority = 0;
+ private:
+ unsigned incoming_edges_ = 0;
+ unsigned single_parent = (unsigned) -1;
+ hb_hashmap_t<unsigned, unsigned> parents;
+ public:
+
+ auto parents_iter () const HB_AUTO_RETURN
+ (
+ hb_concat (
+ hb_iter (&single_parent, single_parent != (unsigned) -1),
+ parents.keys_ref ()
+ )
+ )
+
+ bool in_error () const
+ {
+ return parents.in_error ();
+ }
+
+ bool link_positions_valid (unsigned num_objects, bool removed_nil)
+ {
+ hb_set_t assigned_bytes;
+ for (const auto& l : obj.real_links)
+ {
+ if (l.objidx >= num_objects
+ || (removed_nil && !l.objidx))
+ {
+ DEBUG_MSG (SUBSET_REPACK, nullptr,
+ "Invalid graph. Invalid object index.");
+ return false;
+ }
+
+ unsigned start = l.position;
+ unsigned end = start + l.width - 1;
+
+ if (unlikely (l.width < 2 || l.width > 4))
+ {
+ DEBUG_MSG (SUBSET_REPACK, nullptr,
+ "Invalid graph. Invalid link width.");
+ return false;
+ }
+
+ if (unlikely (end >= table_size ()))
+ {
+ DEBUG_MSG (SUBSET_REPACK, nullptr,
+ "Invalid graph. Link position is out of bounds.");
+ return false;
+ }
+
+ if (unlikely (assigned_bytes.intersects (start, end)))
+ {
+ DEBUG_MSG (SUBSET_REPACK, nullptr,
+ "Invalid graph. Found offsets whose positions overlap.");
+ return false;
+ }
+
+ assigned_bytes.add_range (start, end);
+ }
+
+ return !assigned_bytes.in_error ();
+ }
+
+ void normalize ()
+ {
+ obj.real_links.qsort ();
+ for (auto& l : obj.real_links)
+ {
+ for (unsigned i = 0; i < l.width; i++)
+ {
+ obj.head[l.position + i] = 0;
+ }
+ }
+ }
+
+ bool equals (const vertex_t& other,
+ const graph_t& graph,
+ const graph_t& other_graph,
+ unsigned depth) const
+ {
+ if (!(as_bytes () == other.as_bytes ()))
+ {
+ DEBUG_MSG (SUBSET_REPACK, nullptr,
+ "vertex [%lu] bytes != [%lu] bytes, depth = %u",
+ (unsigned long) table_size (),
+ (unsigned long) other.table_size (),
+ depth);
+
+ auto a = as_bytes ();
+ auto b = other.as_bytes ();
+ while (a || b)
+ {
+ DEBUG_MSG (SUBSET_REPACK, nullptr,
+ " 0x%x %s 0x%x", (unsigned) *a, (*a == *b) ? "==" : "!=", (unsigned) *b);
+ a++;
+ b++;
+ }
+ return false;
+ }
+
+ return links_equal (obj.real_links, other.obj.real_links, graph, other_graph, depth);
+ }
+
+ hb_bytes_t as_bytes () const
+ {
+ return hb_bytes_t (obj.head, table_size ());
+ }
+
+ friend void swap (vertex_t& a, vertex_t& b)
+ {
+ hb_swap (a.obj, b.obj);
+ hb_swap (a.distance, b.distance);
+ hb_swap (a.space, b.space);
+ hb_swap (a.single_parent, b.single_parent);
+ hb_swap (a.parents, b.parents);
+ hb_swap (a.incoming_edges_, b.incoming_edges_);
+ hb_swap (a.start, b.start);
+ hb_swap (a.end, b.end);
+ hb_swap (a.priority, b.priority);
+ }
+
+ hb_hashmap_t<unsigned, unsigned>
+ position_to_index_map () const
+ {
+ hb_hashmap_t<unsigned, unsigned> result;
+
+ result.alloc (obj.real_links.length);
+ for (const auto& l : obj.real_links) {
+ result.set (l.position, l.objidx);
+ }
+
+ return result;
+ }
+
+ bool is_shared () const
+ {
+ return parents.get_population () > 1;
+ }
+
+ unsigned incoming_edges () const
+ {
+ if (HB_DEBUG_SUBSET_REPACK)
+ {
+ assert (incoming_edges_ == (single_parent != (unsigned) -1) +
+ (parents.values_ref () | hb_reduce (hb_add, 0)));
+ }
+ return incoming_edges_;
+ }
+
+ void reset_parents ()
+ {
+ incoming_edges_ = 0;
+ single_parent = (unsigned) -1;
+ parents.reset ();
+ }
+
+ void add_parent (unsigned parent_index)
+ {
+ assert (parent_index != (unsigned) -1);
+ if (incoming_edges_ == 0)
+ {
+ single_parent = parent_index;
+ incoming_edges_ = 1;
+ return;
+ }
+ else if (single_parent != (unsigned) -1)
+ {
+ assert (incoming_edges_ == 1);
+ if (!parents.set (single_parent, 1))
+ return;
+ single_parent = (unsigned) -1;
+ }
+
+ unsigned *v;
+ if (parents.has (parent_index, &v))
+ {
+ (*v)++;
+ incoming_edges_++;
+ }
+ else if (parents.set (parent_index, 1))
+ incoming_edges_++;
+ }
+
+ void remove_parent (unsigned parent_index)
+ {
+ if (parent_index == single_parent)
+ {
+ single_parent = (unsigned) -1;
+ incoming_edges_--;
+ return;
+ }
+
+ unsigned *v;
+ if (parents.has (parent_index, &v))
+ {
+ incoming_edges_--;
+ if (*v > 1)
+ (*v)--;
+ else
+ parents.del (parent_index);
+
+ if (incoming_edges_ == 1)
+ {
+ single_parent = *parents.keys ();
+ parents.reset ();
+ }
+ }
+ }
+
+ void remove_real_link (unsigned child_index, const void* offset)
+ {
+ unsigned count = obj.real_links.length;
+ for (unsigned i = 0; i < count; i++)
+ {
+ auto& link = obj.real_links.arrayZ[i];
+ if (link.objidx != child_index)
+ continue;
+
+ if ((obj.head + link.position) != offset)
+ continue;
+
+ obj.real_links.remove_unordered (i);
+ return;
+ }
+ }
+
+ bool remap_parents (const hb_vector_t<unsigned>& id_map)
+ {
+ if (single_parent != (unsigned) -1)
+ {
+ assert (single_parent < id_map.length);
+ single_parent = id_map[single_parent];
+ return true;
+ }
+
+ hb_hashmap_t<unsigned, unsigned> new_parents;
+ new_parents.alloc (parents.get_population ());
+ for (auto _ : parents)
+ {
+ assert (_.first < id_map.length);
+ assert (!new_parents.has (id_map[_.first]));
+ new_parents.set (id_map[_.first], _.second);
+ }
+
+ if (parents.in_error() || new_parents.in_error ())
+ return false;
+
+ parents = std::move (new_parents);
+ return true;
+ }
+
+ void remap_parent (unsigned old_index, unsigned new_index)
+ {
+ if (single_parent != (unsigned) -1)
+ {
+ if (single_parent == old_index)
+ single_parent = new_index;
+ return;
+ }
+
+ const unsigned *pv;
+ if (parents.has (old_index, &pv))
+ {
+ unsigned v = *pv;
+ if (!parents.set (new_index, v))
+ incoming_edges_ -= v;
+ parents.del (old_index);
+
+ if (incoming_edges_ == 1)
+ {
+ single_parent = *parents.keys ();
+ parents.reset ();
+ }
+ }
+ }
+
+ bool is_leaf () const
+ {
+ return !obj.real_links.length && !obj.virtual_links.length;
+ }
+
+ bool raise_priority ()
+ {
+ if (has_max_priority ()) return false;
+ priority++;
+ return true;
+ }
+
+ bool has_max_priority () const {
+ return priority >= 3;
+ }
+
+ size_t table_size () const {
+ return obj.tail - obj.head;
+ }
+
+ int64_t modified_distance (unsigned order) const
+ {
+ // TODO(garretrieger): once priority is high enough, should try
+ // setting distance = 0 which will force to sort immediately after
+ // it's parent where possible.
+
+ int64_t modified_distance =
+ hb_min (hb_max(distance + distance_modifier (), 0), 0x7FFFFFFFFFF);
+ if (has_max_priority ()) {
+ modified_distance = 0;
+ }
+ return (modified_distance << 18) | (0x003FFFF & order);
+ }
+
+ int64_t distance_modifier () const
+ {
+ if (!priority) return 0;
+ int64_t table_size = obj.tail - obj.head;
+
+ if (priority == 1)
+ return -table_size / 2;
+
+ return -table_size;
+ }
+
+ private:
+ bool links_equal (const hb_vector_t<hb_serialize_context_t::object_t::link_t>& this_links,
+ const hb_vector_t<hb_serialize_context_t::object_t::link_t>& other_links,
+ const graph_t& graph,
+ const graph_t& other_graph,
+ unsigned depth) const
+ {
+ auto a = this_links.iter ();
+ auto b = other_links.iter ();
+
+ while (a && b)
+ {
+ const auto& link_a = *a;
+ const auto& link_b = *b;
+
+ if (link_a.width != link_b.width ||
+ link_a.is_signed != link_b.is_signed ||
+ link_a.whence != link_b.whence ||
+ link_a.position != link_b.position ||
+ link_a.bias != link_b.bias)
+ return false;
+
+ if (!graph.vertices_[link_a.objidx].equals (
+ other_graph.vertices_[link_b.objidx], graph, other_graph, depth + 1))
+ return false;
+
+ a++;
+ b++;
+ }
+
+ if (bool (a) != bool (b))
+ return false;
+
+ return true;
+ }
+ };
+
+ template <typename T>
+ struct vertex_and_table_t
+ {
+ vertex_and_table_t () : index (0), vertex (nullptr), table (nullptr)
+ {}
+
+ unsigned index;
+ vertex_t* vertex;
+ T* table;
+
+ operator bool () {
+ return table && vertex;
+ }
+ };
+
+ /*
+ * A topological sorting of an object graph. Ordered
+ * in reverse serialization order (first object in the
+ * serialization is at the end of the list). This matches
+ * the 'packed' object stack used internally in the
+ * serializer
+ */
+ template<typename T>
+ graph_t (const T& objects)
+ : parents_invalid (true),
+ distance_invalid (true),
+ positions_invalid (true),
+ successful (true),
+ buffers ()
+ {
+ num_roots_for_space_.push (1);
+ bool removed_nil = false;
+ vertices_.alloc (objects.length);
+ vertices_scratch_.alloc (objects.length);
+ unsigned count = objects.length;
+ for (unsigned i = 0; i < count; i++)
+ {
+ // If this graph came from a serialization buffer object 0 is the
+ // nil object. We don't need it for our purposes here so drop it.
+ if (i == 0 && !objects.arrayZ[i])
+ {
+ removed_nil = true;
+ continue;
+ }
+
+ vertex_t* v = vertices_.push ();
+ if (check_success (!vertices_.in_error ()))
+ v->obj = *objects.arrayZ[i];
+
+ check_success (v->link_positions_valid (count, removed_nil));
+
+ if (!removed_nil) continue;
+ // Fix indices to account for removed nil object.
+ for (auto& l : v->obj.all_links_writer ()) {
+ l.objidx--;
+ }
+ }
+ }
+
+ ~graph_t ()
+ {
+ for (char* b : buffers)
+ hb_free (b);
+ }
+
+ bool operator== (const graph_t& other) const
+ {
+ return root ().equals (other.root (), *this, other, 0);
+ }
+
+ void print () const {
+ for (int i = vertices_.length - 1; i >= 0; i--)
+ {
+ const auto& v = vertices_[i];
+ printf("%d: %u [", i, (unsigned int)v.table_size());
+ for (const auto &l : v.obj.real_links) {
+ printf("%u, ", l.objidx);
+ }
+ printf("]\n");
+ }
+ }
+
+ // Sorts links of all objects in a consistent manner and zeroes all offsets.
+ void normalize ()
+ {
+ for (auto& v : vertices_.writer ())
+ v.normalize ();
+ }
+
+ bool in_error () const
+ {
+ return !successful ||
+ vertices_.in_error () ||
+ num_roots_for_space_.in_error ();
+ }
+
+ const vertex_t& root () const
+ {
+ return vertices_[root_idx ()];
+ }
+
+ unsigned root_idx () const
+ {
+ // Object graphs are in reverse order, the first object is at the end
+ // of the vector. Since the graph is topologically sorted it's safe to
+ // assume the first object has no incoming edges.
+ return vertices_.length - 1;
+ }
+
+ const hb_serialize_context_t::object_t& object (unsigned i) const
+ {
+ return vertices_[i].obj;
+ }
+
+ bool add_buffer (char* buffer)
+ {
+ buffers.push (buffer);
+ return !buffers.in_error ();
+ }
+
+ /*
+ * Adds a 16 bit link from parent_id to child_id
+ */
+ template<typename T>
+ void add_link (T* offset,
+ unsigned parent_id,
+ unsigned child_id)
+ {
+ auto& v = vertices_[parent_id];
+ auto* link = v.obj.real_links.push ();
+ link->width = 2;
+ link->objidx = child_id;
+ link->position = (char*) offset - (char*) v.obj.head;
+ vertices_[child_id].add_parent (parent_id);
+ }
+
+ /*
+ * Generates a new topological sorting of graph ordered by the shortest
+ * distance to each node if positions are marked as invalid.
+ */
+ void sort_shortest_distance_if_needed ()
+ {
+ if (!positions_invalid) return;
+ sort_shortest_distance ();
+ }
+
+
+ /*
+ * Generates a new topological sorting of graph ordered by the shortest
+ * distance to each node.
+ */
+ void sort_shortest_distance ()
+ {
+ positions_invalid = true;
+
+ if (vertices_.length <= 1) {
+ // Graph of 1 or less doesn't need sorting.
+ return;
+ }
+
+ update_distances ();
+
+ hb_priority_queue_t<int64_t> queue;
+ queue.alloc (vertices_.length);
+ hb_vector_t<vertex_t> &sorted_graph = vertices_scratch_;
+ if (unlikely (!check_success (sorted_graph.resize (vertices_.length)))) return;
+ hb_vector_t<unsigned> id_map;
+ if (unlikely (!check_success (id_map.resize (vertices_.length)))) return;
+
+ hb_vector_t<unsigned> removed_edges;
+ if (unlikely (!check_success (removed_edges.resize (vertices_.length)))) return;
+ update_parents ();
+
+ queue.insert (root ().modified_distance (0), root_idx ());
+ int new_id = root_idx ();
+ unsigned order = 1;
+ while (!queue.in_error () && !queue.is_empty ())
+ {
+ unsigned next_id = queue.pop_minimum().second;
+
+ sorted_graph[new_id] = std::move (vertices_[next_id]);
+ const vertex_t& next = sorted_graph[new_id];
+
+ if (unlikely (!check_success(new_id >= 0))) {
+ // We are out of ids. Which means we've visited a node more than once.
+ // This graph contains a cycle which is not allowed.
+ DEBUG_MSG (SUBSET_REPACK, nullptr, "Invalid graph. Contains cycle.");
+ return;
+ }
+
+ id_map[next_id] = new_id--;
+
+ for (const auto& link : next.obj.all_links ()) {
+ removed_edges[link.objidx]++;
+ if (!(vertices_[link.objidx].incoming_edges () - removed_edges[link.objidx]))
+ // Add the order that the links were encountered to the priority.
+ // This ensures that ties between priorities objects are broken in a consistent
+ // way. More specifically this is set up so that if a set of objects have the same
+ // distance they'll be added to the topological order in the order that they are
+ // referenced from the parent object.
+ queue.insert (vertices_[link.objidx].modified_distance (order++),
+ link.objidx);
+ }
+ }
+
+ check_success (!queue.in_error ());
+ check_success (!sorted_graph.in_error ());
+
+ check_success (remap_all_obj_indices (id_map, &sorted_graph));
+ vertices_ = std::move (sorted_graph);
+
+ if (!check_success (new_id == -1))
+ print_orphaned_nodes ();
+ }
+
+ /*
+ * Finds the set of nodes (placed into roots) that should be assigned unique spaces.
+ * More specifically this looks for the top most 24 bit or 32 bit links in the graph.
+ * Some special casing is done that is specific to the layout of GSUB/GPOS tables.
+ */
+ void find_space_roots (hb_set_t& visited, hb_set_t& roots)
+ {
+ int root_index = (int) root_idx ();
+ for (int i = root_index; i >= 0; i--)
+ {
+ if (visited.has (i)) continue;
+
+ // Only real links can form 32 bit spaces
+ for (auto& l : vertices_[i].obj.real_links)
+ {
+ if (l.is_signed || l.width < 3)
+ continue;
+
+ if (i == root_index && l.width == 3)
+ // Ignore 24bit links from the root node, this skips past the single 24bit
+ // pointer to the lookup list.
+ continue;
+
+ if (l.width == 3)
+ {
+ // A 24bit offset forms a root, unless there is 32bit offsets somewhere
+ // in it's subgraph, then those become the roots instead. This is to make sure
+ // that extension subtables beneath a 24bit lookup become the spaces instead
+ // of the offset to the lookup.
+ hb_set_t sub_roots;
+ find_32bit_roots (l.objidx, sub_roots);
+ if (sub_roots) {
+ for (unsigned sub_root_idx : sub_roots) {
+ roots.add (sub_root_idx);
+ find_subgraph (sub_root_idx, visited);
+ }
+ continue;
+ }
+ }
+
+ roots.add (l.objidx);
+ find_subgraph (l.objidx, visited);
+ }
+ }
+ }
+
+ template <typename T, typename ...Ts>
+ vertex_and_table_t<T> as_table (unsigned parent, const void* offset, Ts... ds)
+ {
+ return as_table_from_index<T> (index_for_offset (parent, offset), std::forward<Ts>(ds)...);
+ }
+
+ template <typename T, typename ...Ts>
+ vertex_and_table_t<T> as_mutable_table (unsigned parent, const void* offset, Ts... ds)
+ {
+ return as_table_from_index<T> (mutable_index_for_offset (parent, offset), std::forward<Ts>(ds)...);
+ }
+
+ template <typename T, typename ...Ts>
+ vertex_and_table_t<T> as_table_from_index (unsigned index, Ts... ds)
+ {
+ if (index >= vertices_.length)
+ return vertex_and_table_t<T> ();
+
+ vertex_and_table_t<T> r;
+ r.vertex = &vertices_[index];
+ r.table = (T*) r.vertex->obj.head;
+ r.index = index;
+ if (!r.table)
+ return vertex_and_table_t<T> ();
+
+ if (!r.table->sanitize (*(r.vertex), std::forward<Ts>(ds)...))
+ return vertex_and_table_t<T> ();
+
+ return r;
+ }
+
+ // Finds the object id of the object pointed to by the offset at 'offset'
+ // within object[node_idx].
+ unsigned index_for_offset (unsigned node_idx, const void* offset) const
+ {
+ const auto& node = object (node_idx);
+ if (offset < node.head || offset >= node.tail) return -1;
+
+ unsigned count = node.real_links.length;
+ for (unsigned i = 0; i < count; i++)
+ {
+ // Use direct access for increased performance, this is a hot method.
+ const auto& link = node.real_links.arrayZ[i];
+ if (offset != node.head + link.position)
+ continue;
+ return link.objidx;
+ }
+
+ return -1;
+ }
+
+ // Finds the object id of the object pointed to by the offset at 'offset'
+ // within object[node_idx]. Ensures that the returned object is safe to mutate.
+ // That is, if the original child object is shared by parents other than node_idx
+ // it will be duplicated and the duplicate will be returned instead.
+ unsigned mutable_index_for_offset (unsigned node_idx, const void* offset)
+ {
+ unsigned child_idx = index_for_offset (node_idx, offset);
+ auto& child = vertices_[child_idx];
+ for (unsigned p : child.parents_iter ())
+ {
+ if (p != node_idx) {
+ return duplicate (node_idx, child_idx);
+ }
+ }
+
+ return child_idx;
+ }
+
+
+ /*
+ * Assign unique space numbers to each connected subgraph of 24 bit and/or 32 bit offset(s).
+ * Currently, this is implemented specifically tailored to the structure of a GPOS/GSUB
+ * (including with 24bit offsets) table.
+ */
+ bool assign_spaces ()
+ {
+ update_parents ();
+
+ hb_set_t visited;
+ hb_set_t roots;
+ find_space_roots (visited, roots);
+
+ // Mark everything not in the subgraphs of the roots as visited. This prevents
+ // subgraphs from being connected via nodes not in those subgraphs.
+ visited.invert ();
+
+ if (!roots) return false;
+
+ while (roots)
+ {
+ uint32_t next = HB_SET_VALUE_INVALID;
+ if (unlikely (!check_success (!roots.in_error ()))) break;
+ if (!roots.next (&next)) break;
+
+ hb_set_t connected_roots;
+ find_connected_nodes (next, roots, visited, connected_roots);
+ if (unlikely (!check_success (!connected_roots.in_error ()))) break;
+
+ isolate_subgraph (connected_roots);
+ if (unlikely (!check_success (!connected_roots.in_error ()))) break;
+
+ unsigned next_space = this->next_space ();
+ num_roots_for_space_.push (0);
+ for (unsigned root : connected_roots)
+ {
+ DEBUG_MSG (SUBSET_REPACK, nullptr, "Subgraph %u gets space %u", root, next_space);
+ vertices_[root].space = next_space;
+ num_roots_for_space_[next_space] = num_roots_for_space_[next_space] + 1;
+ distance_invalid = true;
+ positions_invalid = true;
+ }
+
+ // TODO(grieger): special case for GSUB/GPOS use extension promotions to move 16 bit space
+ // into the 32 bit space as needed, instead of using isolation.
+ }
+
+
+
+ return true;
+ }
+
+ /*
+ * Isolates the subgraph of nodes reachable from root. Any links to nodes in the subgraph
+ * that originate from outside of the subgraph will be removed by duplicating the linked to
+ * object.
+ *
+ * Indices stored in roots will be updated if any of the roots are duplicated to new indices.
+ */
+ bool isolate_subgraph (hb_set_t& roots)
+ {
+ update_parents ();
+ hb_map_t subgraph;
+
+ // incoming edges to root_idx should be all 32 bit in length so we don't need to de-dup these
+ // set the subgraph incoming edge count to match all of root_idx's incoming edges
+ hb_set_t parents;
+ for (unsigned root_idx : roots)
+ {
+ subgraph.set (root_idx, wide_parents (root_idx, parents));
+ find_subgraph (root_idx, subgraph);
+ }
+ if (subgraph.in_error ())
+ return false;
+
+ unsigned original_root_idx = root_idx ();
+ hb_map_t index_map;
+ bool made_changes = false;
+ for (auto entry : subgraph.iter ())
+ {
+ assert (entry.first < vertices_.length);
+ const auto& node = vertices_[entry.first];
+ unsigned subgraph_incoming_edges = entry.second;
+
+ if (subgraph_incoming_edges < node.incoming_edges ())
+ {
+ // Only de-dup objects with incoming links from outside the subgraph.
+ made_changes = true;
+ duplicate_subgraph (entry.first, index_map);
+ }
+ }
+
+ if (in_error ())
+ return false;
+
+ if (!made_changes)
+ return false;
+
+ if (original_root_idx != root_idx ()
+ && parents.has (original_root_idx))
+ {
+ // If the root idx has changed since parents was determined, update root idx in parents
+ parents.add (root_idx ());
+ parents.del (original_root_idx);
+ }
+
+ auto new_subgraph =
+ + subgraph.keys ()
+ | hb_map([&] (uint32_t node_idx) {
+ const uint32_t *v;
+ if (index_map.has (node_idx, &v)) return *v;
+ return node_idx;
+ })
+ ;
+
+ remap_obj_indices (index_map, new_subgraph);
+ remap_obj_indices (index_map, parents.iter (), true);
+
+ // Update roots set with new indices as needed.
+ for (auto next : roots)
+ {
+ const uint32_t *v;
+ if (index_map.has (next, &v))
+ {
+ roots.del (next);
+ roots.add (*v);
+ }
+ }
+
+ return true;
+ }
+
+ void find_subgraph (unsigned node_idx, hb_map_t& subgraph)
+ {
+ for (const auto& link : vertices_[node_idx].obj.all_links ())
+ {
+ hb_codepoint_t *v;
+ if (subgraph.has (link.objidx, &v))
+ {
+ (*v)++;
+ continue;
+ }
+ subgraph.set (link.objidx, 1);
+ find_subgraph (link.objidx, subgraph);
+ }
+ }
+
+ void find_subgraph (unsigned node_idx, hb_set_t& subgraph)
+ {
+ if (subgraph.has (node_idx)) return;
+ subgraph.add (node_idx);
+ for (const auto& link : vertices_[node_idx].obj.all_links ())
+ find_subgraph (link.objidx, subgraph);
+ }
+
+ size_t find_subgraph_size (unsigned node_idx, hb_set_t& subgraph, unsigned max_depth = -1)
+ {
+ if (subgraph.has (node_idx)) return 0;
+ subgraph.add (node_idx);
+
+ const auto& o = vertices_[node_idx].obj;
+ size_t size = o.tail - o.head;
+ if (max_depth == 0)
+ return size;
+
+ for (const auto& link : o.all_links ())
+ size += find_subgraph_size (link.objidx, subgraph, max_depth - 1);
+ return size;
+ }
+
+ /*
+ * Finds the topmost children of 32bit offsets in the subgraph starting
+ * at node_idx. Found indices are placed into 'found'.
+ */
+ void find_32bit_roots (unsigned node_idx, hb_set_t& found)
+ {
+ for (const auto& link : vertices_[node_idx].obj.all_links ())
+ {
+ if (!link.is_signed && link.width == 4) {
+ found.add (link.objidx);
+ continue;
+ }
+ find_32bit_roots (link.objidx, found);
+ }
+ }
+
+ /*
+ * Moves the child of old_parent_idx pointed to by old_offset to a new
+ * vertex at the new_offset.
+ */
+ template<typename O>
+ void move_child (unsigned old_parent_idx,
+ const O* old_offset,
+ unsigned new_parent_idx,
+ const O* new_offset)
+ {
+ distance_invalid = true;
+ positions_invalid = true;
+
+ auto& old_v = vertices_[old_parent_idx];
+ auto& new_v = vertices_[new_parent_idx];
+
+ unsigned child_id = index_for_offset (old_parent_idx,
+ old_offset);
+
+ auto* new_link = new_v.obj.real_links.push ();
+ new_link->width = O::static_size;
+ new_link->objidx = child_id;
+ new_link->position = (const char*) new_offset - (const char*) new_v.obj.head;
+
+ auto& child = vertices_[child_id];
+ child.add_parent (new_parent_idx);
+
+ old_v.remove_real_link (child_id, old_offset);
+ child.remove_parent (old_parent_idx);
+ }
+
+ /*
+ * duplicates all nodes in the subgraph reachable from node_idx. Does not re-assign
+ * links. index_map is updated with mappings from old id to new id. If a duplication has already
+ * been performed for a given index, then it will be skipped.
+ */
+ void duplicate_subgraph (unsigned node_idx, hb_map_t& index_map)
+ {
+ if (index_map.has (node_idx))
+ return;
+
+ unsigned clone_idx = duplicate (node_idx);
+ if (!check_success (clone_idx != (unsigned) -1))
+ return;
+
+ index_map.set (node_idx, clone_idx);
+ for (const auto& l : object (node_idx).all_links ()) {
+ duplicate_subgraph (l.objidx, index_map);
+ }
+ }
+
+ /*
+ * Creates a copy of node_idx and returns it's new index.
+ */
+ unsigned duplicate (unsigned node_idx)
+ {
+ positions_invalid = true;
+ distance_invalid = true;
+
+ auto* clone = vertices_.push ();
+ auto& child = vertices_[node_idx];
+ if (vertices_.in_error ()) {
+ return -1;
+ }
+
+ clone->obj.head = child.obj.head;
+ clone->obj.tail = child.obj.tail;
+ clone->distance = child.distance;
+ clone->space = child.space;
+ clone->reset_parents ();
+
+ unsigned clone_idx = vertices_.length - 2;
+ for (const auto& l : child.obj.real_links)
+ {
+ clone->obj.real_links.push (l);
+ vertices_[l.objidx].add_parent (clone_idx);
+ }
+ for (const auto& l : child.obj.virtual_links)
+ {
+ clone->obj.virtual_links.push (l);
+ vertices_[l.objidx].add_parent (clone_idx);
+ }
+
+ check_success (!clone->obj.real_links.in_error ());
+ check_success (!clone->obj.virtual_links.in_error ());
+
+ // The last object is the root of the graph, so swap back the root to the end.
+ // The root's obj idx does change, however since it's root nothing else refers to it.
+ // all other obj idx's will be unaffected.
+ hb_swap (vertices_[vertices_.length - 2], *clone);
+
+ // Since the root moved, update the parents arrays of all children on the root.
+ for (const auto& l : root ().obj.all_links ())
+ vertices_[l.objidx].remap_parent (root_idx () - 1, root_idx ());
+
+ return clone_idx;
+ }
+
+ /*
+ * Creates a copy of child and re-assigns the link from
+ * parent to the clone. The copy is a shallow copy, objects
+ * linked from child are not duplicated.
+ */
+ unsigned duplicate_if_shared (unsigned parent_idx, unsigned child_idx)
+ {
+ unsigned new_idx = duplicate (parent_idx, child_idx);
+ if (new_idx == (unsigned) -1) return child_idx;
+ return new_idx;
+ }
+
+
+ /*
+ * Creates a copy of child and re-assigns the link from
+ * parent to the clone. The copy is a shallow copy, objects
+ * linked from child are not duplicated.
+ */
+ unsigned duplicate (unsigned parent_idx, unsigned child_idx)
+ {
+ update_parents ();
+
+ unsigned links_to_child = 0;
+ for (const auto& l : vertices_[parent_idx].obj.all_links ())
+ {
+ if (l.objidx == child_idx) links_to_child++;
+ }
+
+ if (vertices_[child_idx].incoming_edges () <= links_to_child)
+ {
+ // Can't duplicate this node, doing so would orphan the original one as all remaining links
+ // to child are from parent.
+ DEBUG_MSG (SUBSET_REPACK, nullptr, " Not duplicating %u => %u",
+ parent_idx, child_idx);
+ return -1;
+ }
+
+ DEBUG_MSG (SUBSET_REPACK, nullptr, " Duplicating %u => %u",
+ parent_idx, child_idx);
+
+ unsigned clone_idx = duplicate (child_idx);
+ if (clone_idx == (unsigned) -1) return false;
+ // duplicate shifts the root node idx, so if parent_idx was root update it.
+ if (parent_idx == clone_idx) parent_idx++;
+
+ auto& parent = vertices_[parent_idx];
+ for (auto& l : parent.obj.all_links_writer ())
+ {
+ if (l.objidx != child_idx)
+ continue;
+
+ reassign_link (l, parent_idx, clone_idx);
+ }
+
+ return clone_idx;
+ }
+
+
+ /*
+ * Adds a new node to the graph, not connected to anything.
+ */
+ unsigned new_node (char* head, char* tail)
+ {
+ positions_invalid = true;
+ distance_invalid = true;
+
+ auto* clone = vertices_.push ();
+ if (vertices_.in_error ()) {
+ return -1;
+ }
+
+ clone->obj.head = head;
+ clone->obj.tail = tail;
+ clone->distance = 0;
+ clone->space = 0;
+
+ unsigned clone_idx = vertices_.length - 2;
+
+ // The last object is the root of the graph, so swap back the root to the end.
+ // The root's obj idx does change, however since it's root nothing else refers to it.
+ // all other obj idx's will be unaffected.
+ hb_swap (vertices_[vertices_.length - 2], *clone);
+
+ // Since the root moved, update the parents arrays of all children on the root.
+ for (const auto& l : root ().obj.all_links ())
+ vertices_[l.objidx].remap_parent (root_idx () - 1, root_idx ());
+
+ return clone_idx;
+ }
+
+ /*
+ * Raises the sorting priority of all children.
+ */
+ bool raise_childrens_priority (unsigned parent_idx)
+ {
+ DEBUG_MSG (SUBSET_REPACK, nullptr, " Raising priority of all children of %u",
+ parent_idx);
+ // This operation doesn't change ordering until a sort is run, so no need
+ // to invalidate positions. It does not change graph structure so no need
+ // to update distances or edge counts.
+ auto& parent = vertices_[parent_idx].obj;
+ bool made_change = false;
+ for (auto& l : parent.all_links_writer ())
+ made_change |= vertices_[l.objidx].raise_priority ();
+ return made_change;
+ }
+
+ bool is_fully_connected ()
+ {
+ update_parents();
+
+ if (root().incoming_edges ())
+ // Root cannot have parents.
+ return false;
+
+ for (unsigned i = 0; i < root_idx (); i++)
+ {
+ if (!vertices_[i].incoming_edges ())
+ return false;
+ }
+ return true;
+ }
+
+#if 0
+ /*
+ * Saves the current graph to a packed binary format which the repacker fuzzer takes
+ * as a seed.
+ */
+ void save_fuzzer_seed (hb_tag_t tag) const
+ {
+ FILE* f = fopen ("./repacker_fuzzer_seed", "w");
+ fwrite ((void*) &tag, sizeof (tag), 1, f);
+
+ uint16_t num_objects = vertices_.length;
+ fwrite ((void*) &num_objects, sizeof (num_objects), 1, f);
+
+ for (const auto& v : vertices_)
+ {
+ uint16_t blob_size = v.table_size ();
+ fwrite ((void*) &blob_size, sizeof (blob_size), 1, f);
+ fwrite ((const void*) v.obj.head, blob_size, 1, f);
+ }
+
+ uint16_t link_count = 0;
+ for (const auto& v : vertices_)
+ link_count += v.obj.real_links.length;
+
+ fwrite ((void*) &link_count, sizeof (link_count), 1, f);
+
+ typedef struct
+ {
+ uint16_t parent;
+ uint16_t child;
+ uint16_t position;
+ uint8_t width;
+ } link_t;
+
+ for (unsigned i = 0; i < vertices_.length; i++)
+ {
+ for (const auto& l : vertices_[i].obj.real_links)
+ {
+ link_t link {
+ (uint16_t) i, (uint16_t) l.objidx,
+ (uint16_t) l.position, (uint8_t) l.width
+ };
+ fwrite ((void*) &link, sizeof (link), 1, f);
+ }
+ }
+
+ fclose (f);
+ }
+#endif
+
+ void print_orphaned_nodes ()
+ {
+ if (!DEBUG_ENABLED(SUBSET_REPACK)) return;
+
+ DEBUG_MSG (SUBSET_REPACK, nullptr, "Graph is not fully connected.");
+ parents_invalid = true;
+ update_parents();
+
+ if (root().incoming_edges ()) {
+ DEBUG_MSG (SUBSET_REPACK, nullptr, "Root node has incoming edges.");
+ }
+
+ for (unsigned i = 0; i < root_idx (); i++)
+ {
+ const auto& v = vertices_[i];
+ if (!v.incoming_edges ())
+ DEBUG_MSG (SUBSET_REPACK, nullptr, "Node %u is orphaned.", i);
+ }
+ }
+
+ unsigned num_roots_for_space (unsigned space) const
+ {
+ return num_roots_for_space_[space];
+ }
+
+ unsigned next_space () const
+ {
+ return num_roots_for_space_.length;
+ }
+
+ void move_to_new_space (const hb_set_t& indices)
+ {
+ num_roots_for_space_.push (0);
+ unsigned new_space = num_roots_for_space_.length - 1;
+
+ for (unsigned index : indices) {
+ auto& node = vertices_[index];
+ num_roots_for_space_[node.space] = num_roots_for_space_[node.space] - 1;
+ num_roots_for_space_[new_space] = num_roots_for_space_[new_space] + 1;
+ node.space = new_space;
+ distance_invalid = true;
+ positions_invalid = true;
+ }
+ }
+
+ unsigned space_for (unsigned index, unsigned* root = nullptr) const
+ {
+ loop:
+ assert (index < vertices_.length);
+ const auto& node = vertices_[index];
+ if (node.space)
+ {
+ if (root != nullptr)
+ *root = index;
+ return node.space;
+ }
+
+ if (!node.incoming_edges ())
+ {
+ if (root)
+ *root = index;
+ return 0;
+ }
+
+ index = *node.parents_iter ();
+ goto loop;
+ }
+
+ void err_other_error () { this->successful = false; }
+
+ size_t total_size_in_bytes () const {
+ size_t total_size = 0;
+ unsigned count = vertices_.length;
+ for (unsigned i = 0; i < count; i++) {
+ size_t size = vertices_.arrayZ[i].obj.tail - vertices_.arrayZ[i].obj.head;
+ total_size += size;
+ }
+ return total_size;
+ }
+
+
+ private:
+
+ /*
+ * Returns the numbers of incoming edges that are 24 or 32 bits wide.
+ */
+ unsigned wide_parents (unsigned node_idx, hb_set_t& parents) const
+ {
+ unsigned count = 0;
+ for (unsigned p : vertices_[node_idx].parents_iter ())
+ {
+ // Only real links can be wide
+ for (const auto& l : vertices_[p].obj.real_links)
+ {
+ if (l.objidx == node_idx
+ && (l.width == 3 || l.width == 4)
+ && !l.is_signed)
+ {
+ count++;
+ parents.add (p);
+ }
+ }
+ }
+ return count;
+ }
+
+ bool check_success (bool success)
+ { return this->successful && (success || ((void) err_other_error (), false)); }
+
+ public:
+ /*
+ * Creates a map from objid to # of incoming edges.
+ */
+ void update_parents ()
+ {
+ if (!parents_invalid) return;
+
+ unsigned count = vertices_.length;
+
+ for (unsigned i = 0; i < count; i++)
+ vertices_.arrayZ[i].reset_parents ();
+
+ for (unsigned p = 0; p < count; p++)
+ {
+ for (auto& l : vertices_.arrayZ[p].obj.all_links ())
+ vertices_[l.objidx].add_parent (p);
+ }
+
+ for (unsigned i = 0; i < count; i++)
+ // parents arrays must be accurate or downstream operations like cycle detection
+ // and sorting won't work correctly.
+ check_success (!vertices_.arrayZ[i].in_error ());
+
+ parents_invalid = false;
+ }
+
+ /*
+ * compute the serialized start and end positions for each vertex.
+ */
+ void update_positions ()
+ {
+ if (!positions_invalid) return;
+
+ unsigned current_pos = 0;
+ for (int i = root_idx (); i >= 0; i--)
+ {
+ auto& v = vertices_[i];
+ v.start = current_pos;
+ current_pos += v.obj.tail - v.obj.head;
+ v.end = current_pos;
+ }
+
+ positions_invalid = false;
+ }
+
+ /*
+ * Finds the distance to each object in the graph
+ * from the initial node.
+ */
+ void update_distances ()
+ {
+ if (!distance_invalid) return;
+
+ // Uses Dijkstra's algorithm to find all of the shortest distances.
+ // https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
+ //
+ // Implementation Note:
+ // Since our priority queue doesn't support fast priority decreases
+ // we instead just add new entries into the queue when a priority changes.
+ // Redundant ones are filtered out later on by the visited set.
+ // According to https://www3.cs.stonybrook.edu/~rezaul/papers/TR-07-54.pdf
+ // for practical performance this is faster then using a more advanced queue
+ // (such as a fibonacci queue) with a fast decrease priority.
+ unsigned count = vertices_.length;
+ for (unsigned i = 0; i < count; i++)
+ vertices_.arrayZ[i].distance = hb_int_max (int64_t);
+ vertices_.tail ().distance = 0;
+
+ hb_priority_queue_t<int64_t> queue;
+ queue.alloc (count);
+ queue.insert (0, vertices_.length - 1);
+
+ hb_vector_t<bool> visited;
+ visited.resize (vertices_.length);
+
+ while (!queue.in_error () && !queue.is_empty ())
+ {
+ unsigned next_idx = queue.pop_minimum ().second;
+ if (visited[next_idx]) continue;
+ const auto& next = vertices_[next_idx];
+ int64_t next_distance = vertices_[next_idx].distance;
+ visited[next_idx] = true;
+
+ for (const auto& link : next.obj.all_links ())
+ {
+ if (visited[link.objidx]) continue;
+
+ const auto& child = vertices_.arrayZ[link.objidx].obj;
+ unsigned link_width = link.width ? link.width : 4; // treat virtual offsets as 32 bits wide
+ int64_t child_weight = (child.tail - child.head) +
+ ((int64_t) 1 << (link_width * 8)) * (vertices_.arrayZ[link.objidx].space + 1);
+ int64_t child_distance = next_distance + child_weight;
+
+ if (child_distance < vertices_.arrayZ[link.objidx].distance)
+ {
+ vertices_.arrayZ[link.objidx].distance = child_distance;
+ queue.insert (child_distance, link.objidx);
+ }
+ }
+ }
+
+ check_success (!queue.in_error ());
+ if (!check_success (queue.is_empty ()))
+ {
+ print_orphaned_nodes ();
+ return;
+ }
+
+ distance_invalid = false;
+ }
+
+ private:
+ /*
+ * Updates a link in the graph to point to a different object. Corrects the
+ * parents vector on the previous and new child nodes.
+ */
+ void reassign_link (hb_serialize_context_t::object_t::link_t& link,
+ unsigned parent_idx,
+ unsigned new_idx)
+ {
+ unsigned old_idx = link.objidx;
+ link.objidx = new_idx;
+ vertices_[old_idx].remove_parent (parent_idx);
+ vertices_[new_idx].add_parent (parent_idx);
+ }
+
+ /*
+ * Updates all objidx's in all links using the provided mapping. Corrects incoming edge counts.
+ */
+ template<typename Iterator, hb_requires (hb_is_iterator (Iterator))>
+ void remap_obj_indices (const hb_map_t& id_map,
+ Iterator subgraph,
+ bool only_wide = false)
+ {
+ if (!id_map) return;
+ for (unsigned i : subgraph)
+ {
+ for (auto& link : vertices_[i].obj.all_links_writer ())
+ {
+ const uint32_t *v;
+ if (!id_map.has (link.objidx, &v)) continue;
+ if (only_wide && !(link.width == 4 && !link.is_signed)) continue;
+
+ reassign_link (link, i, *v);
+ }
+ }
+ }
+
+ /*
+ * Updates all objidx's in all links using the provided mapping.
+ */
+ bool remap_all_obj_indices (const hb_vector_t<unsigned>& id_map,
+ hb_vector_t<vertex_t>* sorted_graph) const
+ {
+ unsigned count = sorted_graph->length;
+ for (unsigned i = 0; i < count; i++)
+ {
+ if (!(*sorted_graph)[i].remap_parents (id_map))
+ return false;
+ for (auto& link : sorted_graph->arrayZ[i].obj.all_links_writer ())
+ {
+ link.objidx = id_map[link.objidx];
+ }
+ }
+ return true;
+ }
+
+ /*
+ * Finds all nodes in targets that are reachable from start_idx, nodes in visited will be skipped.
+ * For this search the graph is treated as being undirected.
+ *
+ * Connected targets will be added to connected and removed from targets. All visited nodes
+ * will be added to visited.
+ */
+ void find_connected_nodes (unsigned start_idx,
+ hb_set_t& targets,
+ hb_set_t& visited,
+ hb_set_t& connected)
+ {
+ if (unlikely (!check_success (!visited.in_error ()))) return;
+ if (visited.has (start_idx)) return;
+ visited.add (start_idx);
+
+ if (targets.has (start_idx))
+ {
+ targets.del (start_idx);
+ connected.add (start_idx);
+ }
+
+ const auto& v = vertices_[start_idx];
+
+ // Graph is treated as undirected so search children and parents of start_idx
+ for (const auto& l : v.obj.all_links ())
+ find_connected_nodes (l.objidx, targets, visited, connected);
+
+ for (unsigned p : v.parents_iter ())
+ find_connected_nodes (p, targets, visited, connected);
+ }
+
+ public:
+ // TODO(garretrieger): make private, will need to move most of offset overflow code into graph.
+ hb_vector_t<vertex_t> vertices_;
+ hb_vector_t<vertex_t> vertices_scratch_;
+ private:
+ bool parents_invalid;
+ bool distance_invalid;
+ bool positions_invalid;
+ bool successful;
+ hb_vector_t<unsigned> num_roots_for_space_;
+ hb_vector_t<char*> buffers;
+};
+
+}
+
+#endif // GRAPH_GRAPH_HH