diff options
Diffstat (limited to 'gfx/harfbuzz/src/hb-ot-var-common.hh')
-rw-r--r-- | gfx/harfbuzz/src/hb-ot-var-common.hh | 2248 |
1 files changed, 2248 insertions, 0 deletions
diff --git a/gfx/harfbuzz/src/hb-ot-var-common.hh b/gfx/harfbuzz/src/hb-ot-var-common.hh new file mode 100644 index 0000000000..eff6df380f --- /dev/null +++ b/gfx/harfbuzz/src/hb-ot-var-common.hh @@ -0,0 +1,2248 @@ +/* + * Copyright © 2021 Google, Inc. + * + * This is part of HarfBuzz, a text shaping library. + * + * Permission is hereby granted, without written agreement and without + * license or royalty fees, to use, copy, modify, and distribute this + * software and its documentation for any purpose, provided that the + * above copyright notice and the following two paragraphs appear in + * all copies of this software. + * + * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR + * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES + * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN + * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH + * DAMAGE. + * + * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, + * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND + * FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS + * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO + * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. + * + */ + +#ifndef HB_OT_VAR_COMMON_HH +#define HB_OT_VAR_COMMON_HH + +#include "hb-ot-layout-common.hh" +#include "hb-priority-queue.hh" + + +namespace OT { + +template <typename MapCountT> +struct DeltaSetIndexMapFormat01 +{ + friend struct DeltaSetIndexMap; + + unsigned get_size () const + { return min_size + mapCount * get_width (); } + + private: + DeltaSetIndexMapFormat01* copy (hb_serialize_context_t *c) const + { + TRACE_SERIALIZE (this); + return_trace (c->embed (this)); + } + + template <typename T> + bool serialize (hb_serialize_context_t *c, const T &plan) + { + unsigned int width = plan.get_width (); + unsigned int inner_bit_count = plan.get_inner_bit_count (); + const hb_array_t<const uint32_t> output_map = plan.get_output_map (); + + TRACE_SERIALIZE (this); + if (unlikely (output_map.length && ((((inner_bit_count-1)&~0xF)!=0) || (((width-1)&~0x3)!=0)))) + return_trace (false); + if (unlikely (!c->extend_min (this))) return_trace (false); + + entryFormat = ((width-1)<<4)|(inner_bit_count-1); + mapCount = output_map.length; + HBUINT8 *p = c->allocate_size<HBUINT8> (width * output_map.length); + if (unlikely (!p)) return_trace (false); + for (unsigned int i = 0; i < output_map.length; i++) + { + unsigned int v = output_map.arrayZ[i]; + if (v) + { + unsigned int outer = v >> 16; + unsigned int inner = v & 0xFFFF; + unsigned int u = (outer << inner_bit_count) | inner; + for (unsigned int w = width; w > 0;) + { + p[--w] = u; + u >>= 8; + } + } + p += width; + } + return_trace (true); + } + + uint32_t map (unsigned int v) const /* Returns 16.16 outer.inner. */ + { + /* If count is zero, pass value unchanged. This takes + * care of direct mapping for advance map. */ + if (!mapCount) + return v; + + if (v >= mapCount) + v = mapCount - 1; + + unsigned int u = 0; + { /* Fetch it. */ + unsigned int w = get_width (); + const HBUINT8 *p = mapDataZ.arrayZ + w * v; + for (; w; w--) + u = (u << 8) + *p++; + } + + { /* Repack it. */ + unsigned int n = get_inner_bit_count (); + unsigned int outer = u >> n; + unsigned int inner = u & ((1 << n) - 1); + u = (outer<<16) | inner; + } + + return u; + } + + unsigned get_map_count () const { return mapCount; } + unsigned get_width () const { return ((entryFormat >> 4) & 3) + 1; } + unsigned get_inner_bit_count () const { return (entryFormat & 0xF) + 1; } + + + bool sanitize (hb_sanitize_context_t *c) const + { + TRACE_SANITIZE (this); + return_trace (c->check_struct (this) && + hb_barrier () && + c->check_range (mapDataZ.arrayZ, + mapCount, + get_width ())); + } + + protected: + HBUINT8 format; /* Format identifier--format = 0 */ + HBUINT8 entryFormat; /* A packed field that describes the compressed + * representation of delta-set indices. */ + MapCountT mapCount; /* The number of mapping entries. */ + UnsizedArrayOf<HBUINT8> + mapDataZ; /* The delta-set index mapping data. */ + + public: + DEFINE_SIZE_ARRAY (2+MapCountT::static_size, mapDataZ); +}; + +struct DeltaSetIndexMap +{ + template <typename T> + bool serialize (hb_serialize_context_t *c, const T &plan) + { + TRACE_SERIALIZE (this); + unsigned length = plan.get_output_map ().length; + u.format = length <= 0xFFFF ? 0 : 1; + switch (u.format) { + case 0: return_trace (u.format0.serialize (c, plan)); + case 1: return_trace (u.format1.serialize (c, plan)); + default:return_trace (false); + } + } + + uint32_t map (unsigned v) const + { + switch (u.format) { + case 0: return (u.format0.map (v)); + case 1: return (u.format1.map (v)); + default:return v; + } + } + + unsigned get_map_count () const + { + switch (u.format) { + case 0: return u.format0.get_map_count (); + case 1: return u.format1.get_map_count (); + default:return 0; + } + } + + unsigned get_width () const + { + switch (u.format) { + case 0: return u.format0.get_width (); + case 1: return u.format1.get_width (); + default:return 0; + } + } + + unsigned get_inner_bit_count () const + { + switch (u.format) { + case 0: return u.format0.get_inner_bit_count (); + case 1: return u.format1.get_inner_bit_count (); + default:return 0; + } + } + + bool sanitize (hb_sanitize_context_t *c) const + { + TRACE_SANITIZE (this); + if (!u.format.sanitize (c)) return_trace (false); + hb_barrier (); + switch (u.format) { + case 0: return_trace (u.format0.sanitize (c)); + case 1: return_trace (u.format1.sanitize (c)); + default:return_trace (true); + } + } + + DeltaSetIndexMap* copy (hb_serialize_context_t *c) const + { + TRACE_SERIALIZE (this); + switch (u.format) { + case 0: return_trace (reinterpret_cast<DeltaSetIndexMap *> (u.format0.copy (c))); + case 1: return_trace (reinterpret_cast<DeltaSetIndexMap *> (u.format1.copy (c))); + default:return_trace (nullptr); + } + } + + protected: + union { + HBUINT8 format; /* Format identifier */ + DeltaSetIndexMapFormat01<HBUINT16> format0; + DeltaSetIndexMapFormat01<HBUINT32> format1; + } u; + public: + DEFINE_SIZE_UNION (1, format); +}; + + +struct VarStoreInstancer +{ + VarStoreInstancer (const VariationStore *varStore, + const DeltaSetIndexMap *varIdxMap, + hb_array_t<int> coords) : + varStore (varStore), varIdxMap (varIdxMap), coords (coords) {} + + operator bool () const { return varStore && bool (coords); } + + /* according to the spec, if colr table has varStore but does not have + * varIdxMap, then an implicit identity mapping is used */ + float operator() (uint32_t varIdx, unsigned short offset = 0) const + { return coords ? varStore->get_delta (varIdxMap ? varIdxMap->map (VarIdx::add (varIdx, offset)) : varIdx + offset, coords) : 0; } + + const VariationStore *varStore; + const DeltaSetIndexMap *varIdxMap; + hb_array_t<int> coords; +}; + +/* https://docs.microsoft.com/en-us/typography/opentype/spec/otvarcommonformats#tuplevariationheader */ +struct TupleVariationHeader +{ + friend struct tuple_delta_t; + unsigned get_size (unsigned axis_count) const + { return min_size + get_all_tuples (axis_count).get_size (); } + + unsigned get_data_size () const { return varDataSize; } + + const TupleVariationHeader &get_next (unsigned axis_count) const + { return StructAtOffset<TupleVariationHeader> (this, get_size (axis_count)); } + + bool unpack_axis_tuples (unsigned axis_count, + const hb_array_t<const F2DOT14> shared_tuples, + const hb_map_t *axes_old_index_tag_map, + hb_hashmap_t<hb_tag_t, Triple>& axis_tuples /* OUT */) const + { + const F2DOT14 *peak_tuple = nullptr; + if (has_peak ()) + peak_tuple = get_peak_tuple (axis_count).arrayZ; + else + { + unsigned int index = get_index (); + if (unlikely ((index + 1) * axis_count > shared_tuples.length)) + return false; + peak_tuple = shared_tuples.sub_array (axis_count * index, axis_count).arrayZ; + } + + const F2DOT14 *start_tuple = nullptr; + const F2DOT14 *end_tuple = nullptr; + bool has_interm = has_intermediate (); + + if (has_interm) + { + start_tuple = get_start_tuple (axis_count).arrayZ; + end_tuple = get_end_tuple (axis_count).arrayZ; + } + + for (unsigned i = 0; i < axis_count; i++) + { + float peak = peak_tuple[i].to_float (); + if (peak == 0.f) continue; + + hb_tag_t *axis_tag; + if (!axes_old_index_tag_map->has (i, &axis_tag)) + return false; + + float start, end; + if (has_interm) + { + start = start_tuple[i].to_float (); + end = end_tuple[i].to_float (); + } + else + { + start = hb_min (peak, 0.f); + end = hb_max (peak, 0.f); + } + axis_tuples.set (*axis_tag, Triple (start, peak, end)); + } + + return true; + } + + float calculate_scalar (hb_array_t<int> coords, unsigned int coord_count, + const hb_array_t<const F2DOT14> shared_tuples, + const hb_vector_t<hb_pair_t<int,int>> *shared_tuple_active_idx = nullptr) const + { + const F2DOT14 *peak_tuple; + + unsigned start_idx = 0; + unsigned end_idx = coord_count; + unsigned step = 1; + + if (has_peak ()) + peak_tuple = get_peak_tuple (coord_count).arrayZ; + else + { + unsigned int index = get_index (); + if (unlikely ((index + 1) * coord_count > shared_tuples.length)) + return 0.f; + peak_tuple = shared_tuples.sub_array (coord_count * index, coord_count).arrayZ; + + if (shared_tuple_active_idx) + { + if (unlikely (index >= shared_tuple_active_idx->length)) + return 0.f; + auto _ = (*shared_tuple_active_idx).arrayZ[index]; + if (_.second != -1) + { + start_idx = _.first; + end_idx = _.second + 1; + step = _.second - _.first; + } + else if (_.first != -1) + { + start_idx = _.first; + end_idx = start_idx + 1; + } + } + } + + const F2DOT14 *start_tuple = nullptr; + const F2DOT14 *end_tuple = nullptr; + bool has_interm = has_intermediate (); + if (has_interm) + { + start_tuple = get_start_tuple (coord_count).arrayZ; + end_tuple = get_end_tuple (coord_count).arrayZ; + } + + float scalar = 1.f; + for (unsigned int i = start_idx; i < end_idx; i += step) + { + int peak = peak_tuple[i].to_int (); + if (!peak) continue; + + int v = coords[i]; + if (v == peak) continue; + + if (has_interm) + { + int start = start_tuple[i].to_int (); + int end = end_tuple[i].to_int (); + if (unlikely (start > peak || peak > end || + (start < 0 && end > 0 && peak))) continue; + if (v < start || v > end) return 0.f; + if (v < peak) + { if (peak != start) scalar *= (float) (v - start) / (peak - start); } + else + { if (peak != end) scalar *= (float) (end - v) / (end - peak); } + } + else if (!v || v < hb_min (0, peak) || v > hb_max (0, peak)) return 0.f; + else + scalar *= (float) v / peak; + } + return scalar; + } + + bool has_peak () const { return tupleIndex & TuppleIndex::EmbeddedPeakTuple; } + bool has_intermediate () const { return tupleIndex & TuppleIndex::IntermediateRegion; } + bool has_private_points () const { return tupleIndex & TuppleIndex::PrivatePointNumbers; } + unsigned get_index () const { return tupleIndex & TuppleIndex::TupleIndexMask; } + + protected: + struct TuppleIndex : HBUINT16 + { + enum Flags { + EmbeddedPeakTuple = 0x8000u, + IntermediateRegion = 0x4000u, + PrivatePointNumbers = 0x2000u, + TupleIndexMask = 0x0FFFu + }; + + TuppleIndex& operator = (uint16_t i) { HBUINT16::operator= (i); return *this; } + DEFINE_SIZE_STATIC (2); + }; + + hb_array_t<const F2DOT14> get_all_tuples (unsigned axis_count) const + { return StructAfter<UnsizedArrayOf<F2DOT14>> (tupleIndex).as_array ((has_peak () + has_intermediate () * 2) * axis_count); } + hb_array_t<const F2DOT14> get_peak_tuple (unsigned axis_count) const + { return get_all_tuples (axis_count).sub_array (0, axis_count); } + hb_array_t<const F2DOT14> get_start_tuple (unsigned axis_count) const + { return get_all_tuples (axis_count).sub_array (has_peak () * axis_count, axis_count); } + hb_array_t<const F2DOT14> get_end_tuple (unsigned axis_count) const + { return get_all_tuples (axis_count).sub_array (has_peak () * axis_count + axis_count, axis_count); } + + HBUINT16 varDataSize; /* The size in bytes of the serialized + * data for this tuple variation table. */ + TuppleIndex tupleIndex; /* A packed field. The high 4 bits are flags (see below). + The low 12 bits are an index into a shared tuple + records array. */ + /* UnsizedArrayOf<F2DOT14> peakTuple - optional */ + /* Peak tuple record for this tuple variation table — optional, + * determined by flags in the tupleIndex value. + * + * Note that this must always be included in the 'cvar' table. */ + /* UnsizedArrayOf<F2DOT14> intermediateStartTuple - optional */ + /* Intermediate start tuple record for this tuple variation table — optional, + determined by flags in the tupleIndex value. */ + /* UnsizedArrayOf<F2DOT14> intermediateEndTuple - optional */ + /* Intermediate end tuple record for this tuple variation table — optional, + * determined by flags in the tupleIndex value. */ + public: + DEFINE_SIZE_MIN (4); +}; + +enum packed_delta_flag_t +{ + DELTAS_ARE_ZERO = 0x80, + DELTAS_ARE_WORDS = 0x40, + DELTA_RUN_COUNT_MASK = 0x3F +}; + +struct tuple_delta_t +{ + static constexpr bool realloc_move = true; // Watch out when adding new members! + + public: + hb_hashmap_t<hb_tag_t, Triple> axis_tuples; + + /* indices_length = point_count, indice[i] = 1 means point i is referenced */ + hb_vector_t<bool> indices; + + hb_vector_t<float> deltas_x; + /* empty for cvar tuples */ + hb_vector_t<float> deltas_y; + + /* compiled data: header and deltas + * compiled point data is saved in a hashmap within tuple_variations_t cause + * some point sets might be reused by different tuple variations */ + hb_vector_t<char> compiled_tuple_header; + hb_vector_t<char> compiled_deltas; + + /* compiled peak coords, empty for non-gvar tuples */ + hb_vector_t<char> compiled_peak_coords; + + tuple_delta_t () = default; + tuple_delta_t (const tuple_delta_t& o) = default; + + friend void swap (tuple_delta_t& a, tuple_delta_t& b) + { + hb_swap (a.axis_tuples, b.axis_tuples); + hb_swap (a.indices, b.indices); + hb_swap (a.deltas_x, b.deltas_x); + hb_swap (a.deltas_y, b.deltas_y); + hb_swap (a.compiled_tuple_header, b.compiled_tuple_header); + hb_swap (a.compiled_deltas, b.compiled_deltas); + hb_swap (a.compiled_peak_coords, b.compiled_peak_coords); + } + + tuple_delta_t (tuple_delta_t&& o) : tuple_delta_t () + { hb_swap (*this, o); } + + tuple_delta_t& operator = (tuple_delta_t&& o) + { + hb_swap (*this, o); + return *this; + } + + void remove_axis (hb_tag_t axis_tag) + { axis_tuples.del (axis_tag); } + + bool set_tent (hb_tag_t axis_tag, Triple tent) + { return axis_tuples.set (axis_tag, tent); } + + tuple_delta_t& operator += (const tuple_delta_t& o) + { + unsigned num = indices.length; + for (unsigned i = 0; i < num; i++) + { + if (indices.arrayZ[i]) + { + if (o.indices.arrayZ[i]) + { + deltas_x[i] += o.deltas_x[i]; + if (deltas_y && o.deltas_y) + deltas_y[i] += o.deltas_y[i]; + } + } + else + { + if (!o.indices.arrayZ[i]) continue; + indices.arrayZ[i] = true; + deltas_x[i] = o.deltas_x[i]; + if (deltas_y && o.deltas_y) + deltas_y[i] = o.deltas_y[i]; + } + } + return *this; + } + + tuple_delta_t& operator *= (float scalar) + { + if (scalar == 1.0f) + return *this; + + unsigned num = indices.length; + if (deltas_y) + for (unsigned i = 0; i < num; i++) + { + if (!indices.arrayZ[i]) continue; + deltas_x[i] *= scalar; + deltas_y[i] *= scalar; + } + else + for (unsigned i = 0; i < num; i++) + { + if (!indices.arrayZ[i]) continue; + deltas_x[i] *= scalar; + } + return *this; + } + + hb_vector_t<tuple_delta_t> change_tuple_var_axis_limit (hb_tag_t axis_tag, Triple axis_limit, + TripleDistances axis_triple_distances) const + { + hb_vector_t<tuple_delta_t> out; + Triple *tent; + if (!axis_tuples.has (axis_tag, &tent)) + { + out.push (*this); + return out; + } + + if ((tent->minimum < 0.f && tent->maximum > 0.f) || + !(tent->minimum <= tent->middle && tent->middle <= tent->maximum)) + return out; + + if (tent->middle == 0.f) + { + out.push (*this); + return out; + } + + result_t solutions = rebase_tent (*tent, axis_limit, axis_triple_distances); + for (auto t : solutions) + { + tuple_delta_t new_var = *this; + if (t.second == Triple ()) + new_var.remove_axis (axis_tag); + else + new_var.set_tent (axis_tag, t.second); + + new_var *= t.first; + out.push (std::move (new_var)); + } + + return out; + } + + bool compile_peak_coords (const hb_map_t& axes_index_map, + const hb_map_t& axes_old_index_tag_map) + { + unsigned axis_count = axes_index_map.get_population (); + if (unlikely (!compiled_peak_coords.alloc (axis_count * F2DOT14::static_size))) + return false; + + unsigned orig_axis_count = axes_old_index_tag_map.get_population (); + for (unsigned i = 0; i < orig_axis_count; i++) + { + if (!axes_index_map.has (i)) + continue; + + hb_tag_t axis_tag = axes_old_index_tag_map.get (i); + Triple *coords; + F2DOT14 peak_coord; + if (axis_tuples.has (axis_tag, &coords)) + peak_coord.set_float (coords->middle); + else + peak_coord.set_int (0); + + /* push F2DOT14 value into char vector */ + int16_t val = peak_coord.to_int (); + compiled_peak_coords.push (static_cast<char> (val >> 8)); + compiled_peak_coords.push (static_cast<char> (val & 0xFF)); + } + + return !compiled_peak_coords.in_error (); + } + + /* deltas should be compiled already before we compile tuple + * variation header cause we need to fill in the size of the + * serialized data for this tuple variation */ + bool compile_tuple_var_header (const hb_map_t& axes_index_map, + unsigned points_data_length, + const hb_map_t& axes_old_index_tag_map, + const hb_hashmap_t<const hb_vector_t<char>*, unsigned>* shared_tuples_idx_map) + { + if (!compiled_deltas) return false; + + unsigned cur_axis_count = axes_index_map.get_population (); + /* allocate enough memory: 1 peak + 2 intermediate coords + fixed header size */ + unsigned alloc_len = 3 * cur_axis_count * (F2DOT14::static_size) + 4; + if (unlikely (!compiled_tuple_header.resize (alloc_len))) return false; + + unsigned flag = 0; + /* skip the first 4 header bytes: variationDataSize+tupleIndex */ + F2DOT14* p = reinterpret_cast<F2DOT14 *> (compiled_tuple_header.begin () + 4); + F2DOT14* end = reinterpret_cast<F2DOT14 *> (compiled_tuple_header.end ()); + hb_array_t<F2DOT14> coords (p, end - p); + + /* encode peak coords */ + unsigned peak_count = 0; + unsigned *shared_tuple_idx; + if (shared_tuples_idx_map && + shared_tuples_idx_map->has (&compiled_peak_coords, &shared_tuple_idx)) + { + flag = *shared_tuple_idx; + } + else + { + peak_count = encode_peak_coords(coords, flag, axes_index_map, axes_old_index_tag_map); + if (!peak_count) return false; + } + + /* encode interim coords, it's optional so returned num could be 0 */ + unsigned interim_count = encode_interm_coords (coords.sub_array (peak_count), flag, axes_index_map, axes_old_index_tag_map); + + /* pointdata length = 0 implies "use shared points" */ + if (points_data_length) + flag |= TupleVariationHeader::TuppleIndex::PrivatePointNumbers; + + unsigned serialized_data_size = points_data_length + compiled_deltas.length; + TupleVariationHeader *o = reinterpret_cast<TupleVariationHeader *> (compiled_tuple_header.begin ()); + o->varDataSize = serialized_data_size; + o->tupleIndex = flag; + + unsigned total_header_len = 4 + (peak_count + interim_count) * (F2DOT14::static_size); + return compiled_tuple_header.resize (total_header_len); + } + + unsigned encode_peak_coords (hb_array_t<F2DOT14> peak_coords, + unsigned& flag, + const hb_map_t& axes_index_map, + const hb_map_t& axes_old_index_tag_map) const + { + unsigned orig_axis_count = axes_old_index_tag_map.get_population (); + auto it = peak_coords.iter (); + unsigned count = 0; + for (unsigned i = 0; i < orig_axis_count; i++) + { + if (!axes_index_map.has (i)) /* axis pinned */ + continue; + hb_tag_t axis_tag = axes_old_index_tag_map.get (i); + Triple *coords; + if (!axis_tuples.has (axis_tag, &coords)) + (*it).set_int (0); + else + (*it).set_float (coords->middle); + it++; + count++; + } + flag |= TupleVariationHeader::TuppleIndex::EmbeddedPeakTuple; + return count; + } + + /* if no need to encode intermediate coords, then just return p */ + unsigned encode_interm_coords (hb_array_t<F2DOT14> coords, + unsigned& flag, + const hb_map_t& axes_index_map, + const hb_map_t& axes_old_index_tag_map) const + { + unsigned orig_axis_count = axes_old_index_tag_map.get_population (); + unsigned cur_axis_count = axes_index_map.get_population (); + + auto start_coords_iter = coords.sub_array (0, cur_axis_count).iter (); + auto end_coords_iter = coords.sub_array (cur_axis_count).iter (); + bool encode_needed = false; + unsigned count = 0; + for (unsigned i = 0; i < orig_axis_count; i++) + { + if (!axes_index_map.has (i)) /* axis pinned */ + continue; + hb_tag_t axis_tag = axes_old_index_tag_map.get (i); + Triple *coords; + float min_val = 0.f, val = 0.f, max_val = 0.f; + if (axis_tuples.has (axis_tag, &coords)) + { + min_val = coords->minimum; + val = coords->middle; + max_val = coords->maximum; + } + + (*start_coords_iter).set_float (min_val); + (*end_coords_iter).set_float (max_val); + + start_coords_iter++; + end_coords_iter++; + count += 2; + if (min_val != hb_min (val, 0.f) || max_val != hb_max (val, 0.f)) + encode_needed = true; + } + + if (encode_needed) + { + flag |= TupleVariationHeader::TuppleIndex::IntermediateRegion; + return count; + } + return 0; + } + + bool compile_deltas () + { + hb_vector_t<int> rounded_deltas; + if (unlikely (!rounded_deltas.alloc (indices.length))) + return false; + + for (unsigned i = 0; i < indices.length; i++) + { + if (!indices[i]) continue; + int rounded_delta = (int) roundf (deltas_x[i]); + rounded_deltas.push (rounded_delta); + } + + if (!rounded_deltas) return false; + /* allocate enough memories 3 * num_deltas */ + unsigned alloc_len = 3 * rounded_deltas.length; + if (deltas_y) + alloc_len *= 2; + + if (unlikely (!compiled_deltas.resize (alloc_len))) return false; + + unsigned i = 0; + unsigned encoded_len = encode_delta_run (i, compiled_deltas.as_array (), rounded_deltas); + + if (deltas_y) + { + /* reuse the rounded_deltas vector, check that deltas_y have the same num of deltas as deltas_x */ + unsigned j = 0; + for (unsigned idx = 0; idx < indices.length; idx++) + { + if (!indices[idx]) continue; + int rounded_delta = (int) roundf (deltas_y[idx]); + + if (j >= rounded_deltas.length) return false; + + rounded_deltas[j++] = rounded_delta; + } + + if (j != rounded_deltas.length) return false; + /* reset i because we reuse rounded_deltas for deltas_y */ + i = 0; + encoded_len += encode_delta_run (i, compiled_deltas.as_array ().sub_array (encoded_len), rounded_deltas); + } + return compiled_deltas.resize (encoded_len); + } + + unsigned encode_delta_run (unsigned& i, + hb_array_t<char> encoded_bytes, + const hb_vector_t<int>& deltas) const + { + unsigned num_deltas = deltas.length; + unsigned encoded_len = 0; + while (i < num_deltas) + { + int val = deltas.arrayZ[i]; + if (val == 0) + encoded_len += encode_delta_run_as_zeroes (i, encoded_bytes.sub_array (encoded_len), deltas); + else if (val >= -128 && val <= 127) + encoded_len += encode_delta_run_as_bytes (i, encoded_bytes.sub_array (encoded_len), deltas); + else + encoded_len += encode_delta_run_as_words (i, encoded_bytes.sub_array (encoded_len), deltas); + } + return encoded_len; + } + + unsigned encode_delta_run_as_zeroes (unsigned& i, + hb_array_t<char> encoded_bytes, + const hb_vector_t<int>& deltas) const + { + unsigned num_deltas = deltas.length; + unsigned run_length = 0; + auto it = encoded_bytes.iter (); + unsigned encoded_len = 0; + while (i < num_deltas && deltas.arrayZ[i] == 0) + { + i++; + run_length++; + } + + while (run_length >= 64) + { + *it++ = char (DELTAS_ARE_ZERO | 63); + run_length -= 64; + encoded_len++; + } + + if (run_length) + { + *it++ = char (DELTAS_ARE_ZERO | (run_length - 1)); + encoded_len++; + } + return encoded_len; + } + + unsigned encode_delta_run_as_bytes (unsigned &i, + hb_array_t<char> encoded_bytes, + const hb_vector_t<int>& deltas) const + { + unsigned start = i; + unsigned num_deltas = deltas.length; + while (i < num_deltas) + { + int val = deltas.arrayZ[i]; + if (val > 127 || val < -128) + break; + + /* from fonttools: if there're 2 or more zeros in a sequence, + * it is better to start a new run to save bytes. */ + if (val == 0 && i + 1 < num_deltas && deltas.arrayZ[i+1] == 0) + break; + + i++; + } + unsigned run_length = i - start; + + unsigned encoded_len = 0; + auto it = encoded_bytes.iter (); + + while (run_length >= 64) + { + *it++ = 63; + encoded_len++; + + for (unsigned j = 0; j < 64; j++) + { + *it++ = static_cast<char> (deltas.arrayZ[start + j]); + encoded_len++; + } + + start += 64; + run_length -= 64; + } + + if (run_length) + { + *it++ = run_length - 1; + encoded_len++; + + while (start < i) + { + *it++ = static_cast<char> (deltas.arrayZ[start++]); + encoded_len++; + } + } + + return encoded_len; + } + + unsigned encode_delta_run_as_words (unsigned &i, + hb_array_t<char> encoded_bytes, + const hb_vector_t<int>& deltas) const + { + unsigned start = i; + unsigned num_deltas = deltas.length; + while (i < num_deltas) + { + int val = deltas.arrayZ[i]; + + /* start a new run for a single zero value*/ + if (val == 0) break; + + /* from fonttools: continue word-encoded run if there's only one + * single value in the range [-128, 127] because it is more compact. + * Only start a new run when there're 2 continuous such values. */ + if (val >= -128 && val <= 127 && + i + 1 < num_deltas && + deltas.arrayZ[i+1] >= -128 && deltas.arrayZ[i+1] <= 127) + break; + + i++; + } + + unsigned run_length = i - start; + auto it = encoded_bytes.iter (); + unsigned encoded_len = 0; + while (run_length >= 64) + { + *it++ = (DELTAS_ARE_WORDS | 63); + encoded_len++; + + for (unsigned j = 0; j < 64; j++) + { + int16_t delta_val = deltas.arrayZ[start + j]; + *it++ = static_cast<char> (delta_val >> 8); + *it++ = static_cast<char> (delta_val & 0xFF); + + encoded_len += 2; + } + + start += 64; + run_length -= 64; + } + + if (run_length) + { + *it++ = (DELTAS_ARE_WORDS | (run_length - 1)); + encoded_len++; + while (start < i) + { + int16_t delta_val = deltas.arrayZ[start++]; + *it++ = static_cast<char> (delta_val >> 8); + *it++ = static_cast<char> (delta_val & 0xFF); + + encoded_len += 2; + } + } + return encoded_len; + } + + bool calc_inferred_deltas (const contour_point_vector_t& orig_points) + { + unsigned point_count = orig_points.length; + if (point_count != indices.length) + return false; + + unsigned ref_count = 0; + hb_vector_t<unsigned> end_points; + + for (unsigned i = 0; i < point_count; i++) + { + if (indices.arrayZ[i]) + ref_count++; + if (orig_points.arrayZ[i].is_end_point) + end_points.push (i); + } + /* all points are referenced, nothing to do */ + if (ref_count == point_count) + return true; + if (unlikely (end_points.in_error ())) return false; + + hb_set_t inferred_idxes; + unsigned start_point = 0; + for (unsigned end_point : end_points) + { + /* Check the number of unreferenced points in a contour. If no unref points or no ref points, nothing to do. */ + unsigned unref_count = 0; + for (unsigned i = start_point; i < end_point + 1; i++) + unref_count += indices.arrayZ[i]; + unref_count = (end_point - start_point + 1) - unref_count; + + unsigned j = start_point; + if (unref_count == 0 || unref_count > end_point - start_point) + goto no_more_gaps; + for (;;) + { + /* Locate the next gap of unreferenced points between two referenced points prev and next. + * Note that a gap may wrap around at left (start_point) and/or at right (end_point). + */ + unsigned int prev, next, i; + for (;;) + { + i = j; + j = next_index (i, start_point, end_point); + if (indices.arrayZ[i] && !indices.arrayZ[j]) break; + } + prev = j = i; + for (;;) + { + i = j; + j = next_index (i, start_point, end_point); + if (!indices.arrayZ[i] && indices.arrayZ[j]) break; + } + next = j; + /* Infer deltas for all unref points in the gap between prev and next */ + i = prev; + for (;;) + { + i = next_index (i, start_point, end_point); + if (i == next) break; + deltas_x.arrayZ[i] = infer_delta (orig_points.arrayZ[i].x, orig_points.arrayZ[prev].x, orig_points.arrayZ[next].x, + deltas_x.arrayZ[prev], deltas_x.arrayZ[next]); + deltas_y.arrayZ[i] = infer_delta (orig_points.arrayZ[i].y, orig_points.arrayZ[prev].y, orig_points.arrayZ[next].y, + deltas_y.arrayZ[prev], deltas_y.arrayZ[next]); + inferred_idxes.add (i); + if (--unref_count == 0) goto no_more_gaps; + } + } + no_more_gaps: + start_point = end_point + 1; + } + + for (unsigned i = 0; i < point_count; i++) + { + /* if points are not referenced and deltas are not inferred, set to 0. + * reference all points for gvar */ + if ( !indices[i]) + { + if (!inferred_idxes.has (i)) + { + deltas_x.arrayZ[i] = 0.f; + deltas_y.arrayZ[i] = 0.f; + } + indices[i] = true; + } + } + return true; + } + + static float infer_delta (float target_val, float prev_val, float next_val, float prev_delta, float next_delta) + { + if (prev_val == next_val) + return (prev_delta == next_delta) ? prev_delta : 0.f; + else if (target_val <= hb_min (prev_val, next_val)) + return (prev_val < next_val) ? prev_delta : next_delta; + else if (target_val >= hb_max (prev_val, next_val)) + return (prev_val > next_val) ? prev_delta : next_delta; + + float r = (target_val - prev_val) / (next_val - prev_val); + return prev_delta + r * (next_delta - prev_delta); + } + + static unsigned int next_index (unsigned int i, unsigned int start, unsigned int end) + { return (i >= end) ? start : (i + 1); } +}; + +struct TupleVariationData +{ + bool sanitize (hb_sanitize_context_t *c) const + { + TRACE_SANITIZE (this); + // here check on min_size only, TupleVariationHeader and var data will be + // checked while accessing through iterator. + return_trace (c->check_struct (this)); + } + + unsigned get_size (unsigned axis_count) const + { + unsigned total_size = min_size; + unsigned count = tupleVarCount.get_count (); + const TupleVariationHeader *tuple_var_header = &(get_tuple_var_header()); + for (unsigned i = 0; i < count; i++) + { + total_size += tuple_var_header->get_size (axis_count) + tuple_var_header->get_data_size (); + tuple_var_header = &tuple_var_header->get_next (axis_count); + } + + return total_size; + } + + const TupleVariationHeader &get_tuple_var_header (void) const + { return StructAfter<TupleVariationHeader> (data); } + + struct tuple_iterator_t; + struct tuple_variations_t + { + hb_vector_t<tuple_delta_t> tuple_vars; + + private: + /* referenced point set->compiled point data map */ + hb_hashmap_t<const hb_vector_t<bool>*, hb_bytes_t> point_data_map; + /* referenced point set-> count map, used in finding shared points */ + hb_hashmap_t<const hb_vector_t<bool>*, unsigned> point_set_count_map; + + /* empty for non-gvar tuples. + * shared_points_bytes is just a copy of some value in the point_data_map, + * which will be freed during map destruction. Save it for serialization, so + * no need to do find_shared_points () again */ + hb_bytes_t shared_points_bytes; + + /* total compiled byte size as TupleVariationData format, initialized to its + * min_size: 4 */ + unsigned compiled_byte_size = 4; + + public: + tuple_variations_t () = default; + tuple_variations_t (const tuple_variations_t&) = delete; + tuple_variations_t& operator=(const tuple_variations_t&) = delete; + tuple_variations_t (tuple_variations_t&&) = default; + tuple_variations_t& operator=(tuple_variations_t&&) = default; + ~tuple_variations_t () { fini (); } + void fini () + { + for (auto _ : point_data_map.values ()) + _.fini (); + + point_set_count_map.fini (); + tuple_vars.fini (); + } + + explicit operator bool () const { return bool (tuple_vars); } + unsigned get_var_count () const + { + unsigned count = tuple_vars.length; + if (shared_points_bytes.length) + count |= TupleVarCount::SharedPointNumbers; + return count; + } + + unsigned get_compiled_byte_size () const + { return compiled_byte_size; } + + bool create_from_tuple_var_data (tuple_iterator_t iterator, + unsigned tuple_var_count, + unsigned point_count, + bool is_gvar, + const hb_map_t *axes_old_index_tag_map, + const hb_vector_t<unsigned> &shared_indices, + const hb_array_t<const F2DOT14> shared_tuples) + { + do + { + const HBUINT8 *p = iterator.get_serialized_data (); + unsigned int length = iterator.current_tuple->get_data_size (); + if (unlikely (!iterator.var_data_bytes.check_range (p, length))) + { fini (); return false; } + + hb_hashmap_t<hb_tag_t, Triple> axis_tuples; + if (!iterator.current_tuple->unpack_axis_tuples (iterator.get_axis_count (), shared_tuples, axes_old_index_tag_map, axis_tuples) + || axis_tuples.is_empty ()) + { fini (); return false; } + + hb_vector_t<unsigned> private_indices; + bool has_private_points = iterator.current_tuple->has_private_points (); + const HBUINT8 *end = p + length; + if (has_private_points && + !TupleVariationData::unpack_points (p, private_indices, end)) + { fini (); return false; } + + const hb_vector_t<unsigned> &indices = has_private_points ? private_indices : shared_indices; + bool apply_to_all = (indices.length == 0); + unsigned num_deltas = apply_to_all ? point_count : indices.length; + + hb_vector_t<int> deltas_x; + + if (unlikely (!deltas_x.resize (num_deltas, false) || + !TupleVariationData::unpack_deltas (p, deltas_x, end))) + { fini (); return false; } + + hb_vector_t<int> deltas_y; + if (is_gvar) + { + if (unlikely (!deltas_y.resize (num_deltas, false) || + !TupleVariationData::unpack_deltas (p, deltas_y, end))) + { fini (); return false; } + } + + tuple_delta_t var; + var.axis_tuples = std::move (axis_tuples); + if (unlikely (!var.indices.resize (point_count) || + !var.deltas_x.resize (point_count, false))) + { fini (); return false; } + + if (is_gvar && unlikely (!var.deltas_y.resize (point_count, false))) + { fini (); return false; } + + for (unsigned i = 0; i < num_deltas; i++) + { + unsigned idx = apply_to_all ? i : indices[i]; + if (idx >= point_count) continue; + var.indices[idx] = true; + var.deltas_x[idx] = static_cast<float> (deltas_x[i]); + if (is_gvar) + var.deltas_y[idx] = static_cast<float> (deltas_y[i]); + } + tuple_vars.push (std::move (var)); + } while (iterator.move_to_next ()); + return true; + } + + bool create_from_item_var_data (const VarData &var_data, + const hb_vector_t<hb_hashmap_t<hb_tag_t, Triple>>& regions, + const hb_map_t& axes_old_index_tag_map, + unsigned& item_count, + const hb_inc_bimap_t* inner_map = nullptr) + { + /* NULL offset, to keep original varidx valid, just return */ + if (&var_data == &Null (VarData)) + return true; + + unsigned num_regions = var_data.get_region_index_count (); + if (!tuple_vars.alloc (num_regions)) return false; + + item_count = inner_map ? inner_map->get_population () : var_data.get_item_count (); + if (!item_count) return true; + unsigned row_size = var_data.get_row_size (); + const HBUINT8 *delta_bytes = var_data.get_delta_bytes (); + + for (unsigned r = 0; r < num_regions; r++) + { + /* In VarData, deltas are organized in rows, convert them into + * column(region) based tuples, resize deltas_x first */ + tuple_delta_t tuple; + if (!tuple.deltas_x.resize (item_count, false) || + !tuple.indices.resize (item_count, false)) + return false; + + for (unsigned i = 0; i < item_count; i++) + { + tuple.indices.arrayZ[i] = true; + tuple.deltas_x.arrayZ[i] = var_data.get_item_delta_fast (inner_map ? inner_map->backward (i) : i, + r, delta_bytes, row_size); + } + + unsigned region_index = var_data.get_region_index (r); + if (region_index >= regions.length) return false; + tuple.axis_tuples = regions.arrayZ[region_index]; + + tuple_vars.push (std::move (tuple)); + } + return !tuple_vars.in_error (); + } + + private: + static int _cmp_axis_tag (const void *pa, const void *pb) + { + const hb_tag_t *a = (const hb_tag_t*) pa; + const hb_tag_t *b = (const hb_tag_t*) pb; + return (int)(*a) - (int)(*b); + } + + bool change_tuple_variations_axis_limits (const hb_hashmap_t<hb_tag_t, Triple>& normalized_axes_location, + const hb_hashmap_t<hb_tag_t, TripleDistances>& axes_triple_distances) + { + /* sort axis_tag/axis_limits, make result deterministic */ + hb_vector_t<hb_tag_t> axis_tags; + if (!axis_tags.alloc (normalized_axes_location.get_population ())) + return false; + for (auto t : normalized_axes_location.keys ()) + axis_tags.push (t); + + axis_tags.qsort (_cmp_axis_tag); + for (auto axis_tag : axis_tags) + { + Triple *axis_limit; + if (!normalized_axes_location.has (axis_tag, &axis_limit)) + return false; + TripleDistances axis_triple_distances{1.f, 1.f}; + if (axes_triple_distances.has (axis_tag)) + axis_triple_distances = axes_triple_distances.get (axis_tag); + + hb_vector_t<tuple_delta_t> new_vars; + for (const tuple_delta_t& var : tuple_vars) + { + hb_vector_t<tuple_delta_t> out = var.change_tuple_var_axis_limit (axis_tag, *axis_limit, axis_triple_distances); + if (!out) continue; + + unsigned new_len = new_vars.length + out.length; + + if (unlikely (!new_vars.alloc (new_len, false))) + { fini (); return false;} + + for (unsigned i = 0; i < out.length; i++) + new_vars.push (std::move (out[i])); + } + tuple_vars.fini (); + tuple_vars = std::move (new_vars); + } + return true; + } + + /* merge tuple variations with overlapping tents */ + void merge_tuple_variations () + { + hb_vector_t<tuple_delta_t> new_vars; + hb_hashmap_t<const hb_hashmap_t<hb_tag_t, Triple>*, unsigned> m; + unsigned i = 0; + for (const tuple_delta_t& var : tuple_vars) + { + /* if all axes are pinned, drop the tuple variation */ + if (var.axis_tuples.is_empty ()) continue; + + unsigned *idx; + if (m.has (&(var.axis_tuples), &idx)) + { + new_vars[*idx] += var; + } + else + { + new_vars.push (var); + m.set (&(var.axis_tuples), i); + i++; + } + } + tuple_vars.fini (); + tuple_vars = std::move (new_vars); + } + + hb_bytes_t compile_point_set (const hb_vector_t<bool> &point_indices) + { + unsigned num_points = 0; + for (bool i : point_indices) + if (i) num_points++; + + unsigned indices_length = point_indices.length; + /* If the points set consists of all points in the glyph, it's encoded with a + * single zero byte */ + if (num_points == indices_length) + { + char *p = (char *) hb_calloc (1, sizeof (char)); + if (unlikely (!p)) return hb_bytes_t (); + + return hb_bytes_t (p, 1); + } + + /* allocate enough memories: 2 bytes for count + 3 bytes for each point */ + unsigned num_bytes = 2 + 3 *num_points; + char *p = (char *) hb_calloc (num_bytes, sizeof (char)); + if (unlikely (!p)) return hb_bytes_t (); + + unsigned pos = 0; + /* binary data starts with the total number of reference points */ + if (num_points < 0x80) + p[pos++] = num_points; + else + { + p[pos++] = ((num_points >> 8) | 0x80); + p[pos++] = num_points & 0xFF; + } + + const unsigned max_run_length = 0x7F; + unsigned i = 0; + unsigned last_value = 0; + unsigned num_encoded = 0; + while (i < indices_length && num_encoded < num_points) + { + unsigned run_length = 0; + unsigned header_pos = pos; + p[pos++] = 0; + + bool use_byte_encoding = false; + bool new_run = true; + while (i < indices_length && num_encoded < num_points && + run_length <= max_run_length) + { + // find out next referenced point index + while (i < indices_length && !point_indices[i]) + i++; + + if (i >= indices_length) break; + + unsigned cur_value = i; + unsigned delta = cur_value - last_value; + + if (new_run) + { + use_byte_encoding = (delta <= 0xFF); + new_run = false; + } + + if (use_byte_encoding && delta > 0xFF) + break; + + if (use_byte_encoding) + p[pos++] = delta; + else + { + p[pos++] = delta >> 8; + p[pos++] = delta & 0xFF; + } + i++; + last_value = cur_value; + run_length++; + num_encoded++; + } + + if (use_byte_encoding) + p[header_pos] = run_length - 1; + else + p[header_pos] = (run_length - 1) | 0x80; + } + return hb_bytes_t (p, pos); + } + + /* compile all point set and store byte data in a point_set->hb_bytes_t hashmap, + * also update point_set->count map, which will be used in finding shared + * point set*/ + bool compile_all_point_sets () + { + for (const auto& tuple: tuple_vars) + { + const hb_vector_t<bool>* points_set = &(tuple.indices); + if (point_data_map.has (points_set)) + { + unsigned *count; + if (unlikely (!point_set_count_map.has (points_set, &count) || + !point_set_count_map.set (points_set, (*count) + 1))) + return false; + continue; + } + + hb_bytes_t compiled_data = compile_point_set (*points_set); + if (unlikely (compiled_data == hb_bytes_t ())) + return false; + + if (!point_data_map.set (points_set, compiled_data) || + !point_set_count_map.set (points_set, 1)) + return false; + } + return true; + } + + /* find shared points set which saves most bytes */ + hb_bytes_t find_shared_points () + { + unsigned max_saved_bytes = 0; + hb_bytes_t res{}; + + for (const auto& _ : point_data_map.iter ()) + { + const hb_vector_t<bool>* points_set = _.first; + unsigned data_length = _.second.length; + unsigned *count; + if (unlikely (!point_set_count_map.has (points_set, &count) || + *count <= 1)) + return hb_bytes_t (); + + unsigned saved_bytes = data_length * ((*count) -1); + if (saved_bytes > max_saved_bytes) + { + max_saved_bytes = saved_bytes; + res = _.second; + } + } + return res; + } + + bool calc_inferred_deltas (contour_point_vector_t& contour_points) + { + for (tuple_delta_t& var : tuple_vars) + if (!var.calc_inferred_deltas (contour_points)) + return false; + + return true; + } + + public: + bool instantiate (const hb_hashmap_t<hb_tag_t, Triple>& normalized_axes_location, + const hb_hashmap_t<hb_tag_t, TripleDistances>& axes_triple_distances, + contour_point_vector_t* contour_points = nullptr) + { + if (!tuple_vars) return true; + if (!change_tuple_variations_axis_limits (normalized_axes_location, axes_triple_distances)) + return false; + /* compute inferred deltas only for gvar */ + if (contour_points) + if (!calc_inferred_deltas (*contour_points)) + return false; + + merge_tuple_variations (); + return !tuple_vars.in_error (); + } + + bool compile_bytes (const hb_map_t& axes_index_map, + const hb_map_t& axes_old_index_tag_map, + bool use_shared_points, + const hb_hashmap_t<const hb_vector_t<char>*, unsigned>* shared_tuples_idx_map = nullptr) + { + // compile points set and store data in hashmap + if (!compile_all_point_sets ()) + return false; + + if (use_shared_points) + { + shared_points_bytes = find_shared_points (); + compiled_byte_size += shared_points_bytes.length; + } + // compile delta and tuple var header for each tuple variation + for (auto& tuple: tuple_vars) + { + const hb_vector_t<bool>* points_set = &(tuple.indices); + hb_bytes_t *points_data; + if (unlikely (!point_data_map.has (points_set, &points_data))) + return false; + + if (!tuple.compile_deltas ()) + return false; + + unsigned points_data_length = (*points_data != shared_points_bytes) ? points_data->length : 0; + if (!tuple.compile_tuple_var_header (axes_index_map, points_data_length, axes_old_index_tag_map, + shared_tuples_idx_map)) + return false; + compiled_byte_size += tuple.compiled_tuple_header.length + points_data_length + tuple.compiled_deltas.length; + } + return true; + } + + bool serialize_var_headers (hb_serialize_context_t *c, unsigned& total_header_len) const + { + TRACE_SERIALIZE (this); + for (const auto& tuple: tuple_vars) + { + tuple.compiled_tuple_header.as_array ().copy (c); + if (c->in_error ()) return_trace (false); + total_header_len += tuple.compiled_tuple_header.length; + } + return_trace (true); + } + + bool serialize_var_data (hb_serialize_context_t *c, bool is_gvar) const + { + TRACE_SERIALIZE (this); + if (is_gvar) + shared_points_bytes.copy (c); + + for (const auto& tuple: tuple_vars) + { + const hb_vector_t<bool>* points_set = &(tuple.indices); + hb_bytes_t *point_data; + if (!point_data_map.has (points_set, &point_data)) + return_trace (false); + + if (!is_gvar || *point_data != shared_points_bytes) + point_data->copy (c); + + tuple.compiled_deltas.as_array ().copy (c); + if (c->in_error ()) return_trace (false); + } + + /* padding for gvar */ + if (is_gvar && (compiled_byte_size % 2)) + { + HBUINT8 pad; + pad = 0; + if (!c->embed (pad)) return_trace (false); + } + return_trace (true); + } + }; + + struct tuple_iterator_t + { + unsigned get_axis_count () const { return axis_count; } + + void init (hb_bytes_t var_data_bytes_, unsigned int axis_count_, const void *table_base_) + { + var_data_bytes = var_data_bytes_; + var_data = var_data_bytes_.as<TupleVariationData> (); + index = 0; + axis_count = axis_count_; + current_tuple = &var_data->get_tuple_var_header (); + data_offset = 0; + table_base = table_base_; + } + + bool get_shared_indices (hb_vector_t<unsigned int> &shared_indices /* OUT */) + { + if (var_data->has_shared_point_numbers ()) + { + const HBUINT8 *base = &(table_base+var_data->data); + const HBUINT8 *p = base; + if (!unpack_points (p, shared_indices, (const HBUINT8 *) (var_data_bytes.arrayZ + var_data_bytes.length))) return false; + data_offset = p - base; + } + return true; + } + + bool is_valid () const + { + return (index < var_data->tupleVarCount.get_count ()) && + var_data_bytes.check_range (current_tuple, TupleVariationHeader::min_size) && + var_data_bytes.check_range (current_tuple, hb_max (current_tuple->get_data_size (), + current_tuple->get_size (axis_count))); + } + + bool move_to_next () + { + data_offset += current_tuple->get_data_size (); + current_tuple = ¤t_tuple->get_next (axis_count); + index++; + return is_valid (); + } + + const HBUINT8 *get_serialized_data () const + { return &(table_base+var_data->data) + data_offset; } + + private: + const TupleVariationData *var_data; + unsigned int index; + unsigned int axis_count; + unsigned int data_offset; + const void *table_base; + + public: + hb_bytes_t var_data_bytes; + const TupleVariationHeader *current_tuple; + }; + + static bool get_tuple_iterator (hb_bytes_t var_data_bytes, unsigned axis_count, + const void *table_base, + hb_vector_t<unsigned int> &shared_indices /* OUT */, + tuple_iterator_t *iterator /* OUT */) + { + iterator->init (var_data_bytes, axis_count, table_base); + if (!iterator->get_shared_indices (shared_indices)) + return false; + return iterator->is_valid (); + } + + bool has_shared_point_numbers () const { return tupleVarCount.has_shared_point_numbers (); } + + static bool unpack_points (const HBUINT8 *&p /* IN/OUT */, + hb_vector_t<unsigned int> &points /* OUT */, + const HBUINT8 *end) + { + enum packed_point_flag_t + { + POINTS_ARE_WORDS = 0x80, + POINT_RUN_COUNT_MASK = 0x7F + }; + + if (unlikely (p + 1 > end)) return false; + + unsigned count = *p++; + if (count & POINTS_ARE_WORDS) + { + if (unlikely (p + 1 > end)) return false; + count = ((count & POINT_RUN_COUNT_MASK) << 8) | *p++; + } + if (unlikely (!points.resize (count, false))) return false; + + unsigned n = 0; + unsigned i = 0; + while (i < count) + { + if (unlikely (p + 1 > end)) return false; + unsigned control = *p++; + unsigned run_count = (control & POINT_RUN_COUNT_MASK) + 1; + unsigned stop = i + run_count; + if (unlikely (stop > count)) return false; + if (control & POINTS_ARE_WORDS) + { + if (unlikely (p + run_count * HBUINT16::static_size > end)) return false; + for (; i < stop; i++) + { + n += *(const HBUINT16 *)p; + points.arrayZ[i] = n; + p += HBUINT16::static_size; + } + } + else + { + if (unlikely (p + run_count > end)) return false; + for (; i < stop; i++) + { + n += *p++; + points.arrayZ[i] = n; + } + } + } + return true; + } + + static bool unpack_deltas (const HBUINT8 *&p /* IN/OUT */, + hb_vector_t<int> &deltas /* IN/OUT */, + const HBUINT8 *end) + { + unsigned i = 0; + unsigned count = deltas.length; + while (i < count) + { + if (unlikely (p + 1 > end)) return false; + unsigned control = *p++; + unsigned run_count = (control & DELTA_RUN_COUNT_MASK) + 1; + unsigned stop = i + run_count; + if (unlikely (stop > count)) return false; + if (control & DELTAS_ARE_ZERO) + { + for (; i < stop; i++) + deltas.arrayZ[i] = 0; + } + else if (control & DELTAS_ARE_WORDS) + { + if (unlikely (p + run_count * HBUINT16::static_size > end)) return false; + for (; i < stop; i++) + { + deltas.arrayZ[i] = * (const HBINT16 *) p; + p += HBUINT16::static_size; + } + } + else + { + if (unlikely (p + run_count > end)) return false; + for (; i < stop; i++) + { + deltas.arrayZ[i] = * (const HBINT8 *) p++; + } + } + } + return true; + } + + bool has_data () const { return tupleVarCount; } + + bool decompile_tuple_variations (unsigned point_count, + bool is_gvar, + tuple_iterator_t iterator, + const hb_map_t *axes_old_index_tag_map, + const hb_vector_t<unsigned> &shared_indices, + const hb_array_t<const F2DOT14> shared_tuples, + tuple_variations_t& tuple_variations /* OUT */) const + { + return tuple_variations.create_from_tuple_var_data (iterator, tupleVarCount, + point_count, is_gvar, + axes_old_index_tag_map, + shared_indices, + shared_tuples); + } + + bool serialize (hb_serialize_context_t *c, + bool is_gvar, + const tuple_variations_t& tuple_variations) const + { + TRACE_SERIALIZE (this); + /* empty tuple variations, just return and skip serialization. */ + if (!tuple_variations) return_trace (true); + + auto *out = c->start_embed (this); + if (unlikely (!c->extend_min (out))) return_trace (false); + + if (!c->check_assign (out->tupleVarCount, tuple_variations.get_var_count (), + HB_SERIALIZE_ERROR_INT_OVERFLOW)) return_trace (false); + + unsigned total_header_len = 0; + + if (!tuple_variations.serialize_var_headers (c, total_header_len)) + return_trace (false); + + unsigned data_offset = min_size + total_header_len; + if (!is_gvar) data_offset += 4; + if (!c->check_assign (out->data, data_offset, HB_SERIALIZE_ERROR_INT_OVERFLOW)) return_trace (false); + + return tuple_variations.serialize_var_data (c, is_gvar); + } + + protected: + struct TupleVarCount : HBUINT16 + { + friend struct tuple_variations_t; + bool has_shared_point_numbers () const { return ((*this) & SharedPointNumbers); } + unsigned int get_count () const { return (*this) & CountMask; } + TupleVarCount& operator = (uint16_t i) { HBUINT16::operator= (i); return *this; } + explicit operator bool () const { return get_count (); } + + protected: + enum Flags + { + SharedPointNumbers= 0x8000u, + CountMask = 0x0FFFu + }; + public: + DEFINE_SIZE_STATIC (2); + }; + + TupleVarCount tupleVarCount; /* A packed field. The high 4 bits are flags, and the + * low 12 bits are the number of tuple variation tables + * for this glyph. The number of tuple variation tables + * can be any number between 1 and 4095. */ + Offset16To<HBUINT8> + data; /* Offset from the start of the base table + * to the serialized data. */ + /* TupleVariationHeader tupleVariationHeaders[] *//* Array of tuple variation headers. */ + public: + DEFINE_SIZE_MIN (4); +}; + +using tuple_variations_t = TupleVariationData::tuple_variations_t; +struct item_variations_t +{ + using region_t = const hb_hashmap_t<hb_tag_t, Triple>*; + private: + /* each subtable is decompiled into a tuple_variations_t, in which all tuples + * have the same num of deltas (rows) */ + hb_vector_t<tuple_variations_t> vars; + + /* num of retained rows for each subtable, there're 2 cases when var_data is empty: + * 1. retained item_count is zero + * 2. regions is empty and item_count is non-zero. + * when converting to tuples, both will be dropped because the tuple is empty, + * however, we need to retain 2. as all-zero rows to keep original varidx + * valid, so we need a way to remember the num of rows for each subtable */ + hb_vector_t<unsigned> var_data_num_rows; + + /* original region list, decompiled from item varstore, used when rebuilding + * region list after instantiation */ + hb_vector_t<hb_hashmap_t<hb_tag_t, Triple>> orig_region_list; + + /* region list: vector of Regions, maintain the original order for the regions + * that existed before instantiate (), append the new regions at the end. + * Regions are stored in each tuple already, save pointers only. + * When converting back to item varstore, unused regions will be pruned */ + hb_vector_t<region_t> region_list; + + /* region -> idx map after instantiation and pruning unused regions */ + hb_hashmap_t<region_t, unsigned> region_map; + + /* all delta rows after instantiation */ + hb_vector_t<hb_vector_t<int>> delta_rows; + /* final optimized vector of encoding objects used to assemble the varstore */ + hb_vector_t<delta_row_encoding_t> encodings; + + /* old varidxes -> new var_idxes map */ + hb_map_t varidx_map; + + /* has long words */ + bool has_long = false; + + public: + bool has_long_word () const + { return has_long; } + + const hb_vector_t<region_t>& get_region_list () const + { return region_list; } + + const hb_vector_t<delta_row_encoding_t>& get_vardata_encodings () const + { return encodings; } + + const hb_map_t& get_varidx_map () const + { return varidx_map; } + + bool instantiate (const VariationStore& varStore, + const hb_subset_plan_t *plan, + bool optimize=true, + bool use_no_variation_idx=true, + const hb_array_t <const hb_inc_bimap_t> inner_maps = hb_array_t<const hb_inc_bimap_t> ()) + { + if (!create_from_item_varstore (varStore, plan->axes_old_index_tag_map, inner_maps)) + return false; + if (!instantiate_tuple_vars (plan->axes_location, plan->axes_triple_distances)) + return false; + return as_item_varstore (optimize, use_no_variation_idx); + } + + /* keep below APIs public only for unit test: test-item-varstore */ + bool create_from_item_varstore (const VariationStore& varStore, + const hb_map_t& axes_old_index_tag_map, + const hb_array_t <const hb_inc_bimap_t> inner_maps = hb_array_t<const hb_inc_bimap_t> ()) + { + const VarRegionList& regionList = varStore.get_region_list (); + if (!regionList.get_var_regions (axes_old_index_tag_map, orig_region_list)) + return false; + + unsigned num_var_data = varStore.get_sub_table_count (); + if (inner_maps && inner_maps.length != num_var_data) return false; + if (!vars.alloc (num_var_data) || + !var_data_num_rows.alloc (num_var_data)) return false; + + for (unsigned i = 0; i < num_var_data; i++) + { + if (inner_maps && !inner_maps.arrayZ[i].get_population ()) + continue; + tuple_variations_t var_data_tuples; + unsigned item_count = 0; + if (!var_data_tuples.create_from_item_var_data (varStore.get_sub_table (i), + orig_region_list, + axes_old_index_tag_map, + item_count, + inner_maps ? &(inner_maps.arrayZ[i]) : nullptr)) + return false; + + var_data_num_rows.push (item_count); + vars.push (std::move (var_data_tuples)); + } + return !vars.in_error () && !var_data_num_rows.in_error () && vars.length == var_data_num_rows.length; + } + + bool instantiate_tuple_vars (const hb_hashmap_t<hb_tag_t, Triple>& normalized_axes_location, + const hb_hashmap_t<hb_tag_t, TripleDistances>& axes_triple_distances) + { + for (tuple_variations_t& tuple_vars : vars) + if (!tuple_vars.instantiate (normalized_axes_location, axes_triple_distances)) + return false; + + if (!build_region_list ()) return false; + return true; + } + + bool build_region_list () + { + /* scan all tuples and collect all unique regions, prune unused regions */ + hb_hashmap_t<region_t, unsigned> all_regions; + hb_hashmap_t<region_t, unsigned> used_regions; + + /* use a vector when inserting new regions, make result deterministic */ + hb_vector_t<region_t> all_unique_regions; + for (const tuple_variations_t& sub_table : vars) + { + for (const tuple_delta_t& tuple : sub_table.tuple_vars) + { + region_t r = &(tuple.axis_tuples); + if (!used_regions.has (r)) + { + bool all_zeros = true; + for (float d : tuple.deltas_x) + { + int delta = (int) roundf (d); + if (delta != 0) + { + all_zeros = false; + break; + } + } + if (!all_zeros) + { + if (!used_regions.set (r, 1)) + return false; + } + } + if (all_regions.has (r)) + continue; + if (!all_regions.set (r, 1)) + return false; + all_unique_regions.push (r); + } + } + + if (!all_regions || !all_unique_regions) return false; + if (!region_list.alloc (all_regions.get_population ())) + return false; + + unsigned idx = 0; + /* append the original regions that pre-existed */ + for (const auto& r : orig_region_list) + { + if (!all_regions.has (&r) || !used_regions.has (&r)) + continue; + + region_list.push (&r); + if (!region_map.set (&r, idx)) + return false; + all_regions.del (&r); + idx++; + } + + /* append the new regions at the end */ + for (const auto& r: all_unique_regions) + { + if (!all_regions.has (r) || !used_regions.has (r)) + continue; + region_list.push (r); + if (!region_map.set (r, idx)) + return false; + all_regions.del (r); + idx++; + } + return (!region_list.in_error ()) && (!region_map.in_error ()); + } + + /* main algorithm ported from fonttools VarStore_optimize() method, optimize + * varstore by default */ + + struct combined_gain_idx_tuple_t + { + int gain; + unsigned idx_1; + unsigned idx_2; + + combined_gain_idx_tuple_t () = default; + combined_gain_idx_tuple_t (int gain_, unsigned i, unsigned j) + :gain (gain_), idx_1 (i), idx_2 (j) {} + + bool operator < (const combined_gain_idx_tuple_t& o) + { + if (gain != o.gain) + return gain < o.gain; + + if (idx_1 != o.idx_1) + return idx_1 < o.idx_1; + + return idx_2 < o.idx_2; + } + + bool operator <= (const combined_gain_idx_tuple_t& o) + { + if (*this < o) return true; + return gain == o.gain && idx_1 == o.idx_1 && idx_2 == o.idx_2; + } + }; + + bool as_item_varstore (bool optimize=true, bool use_no_variation_idx=true) + { + if (!region_list) return false; + unsigned num_cols = region_list.length; + /* pre-alloc a 2D vector for all sub_table's VarData rows */ + unsigned total_rows = 0; + for (unsigned major = 0; major < var_data_num_rows.length; major++) + total_rows += var_data_num_rows[major]; + + if (!delta_rows.resize (total_rows)) return false; + /* init all rows to [0]*num_cols */ + for (unsigned i = 0; i < total_rows; i++) + if (!(delta_rows[i].resize (num_cols))) return false; + + /* old VarIdxes -> full encoding_row mapping */ + hb_hashmap_t<unsigned, const hb_vector_t<int>*> front_mapping; + unsigned start_row = 0; + hb_vector_t<delta_row_encoding_t> encoding_objs; + hb_hashmap_t<hb_vector_t<uint8_t>, unsigned> chars_idx_map; + + /* delta_rows map, used for filtering out duplicate rows */ + hb_hashmap_t<const hb_vector_t<int>*, unsigned> delta_rows_map; + for (unsigned major = 0; major < vars.length; major++) + { + /* deltas are stored in tuples(column based), convert them back into items + * (row based) delta */ + const tuple_variations_t& tuples = vars[major]; + unsigned num_rows = var_data_num_rows[major]; + for (const tuple_delta_t& tuple: tuples.tuple_vars) + { + if (tuple.deltas_x.length != num_rows) + return false; + + /* skip unused regions */ + unsigned *col_idx; + if (!region_map.has (&(tuple.axis_tuples), &col_idx)) + continue; + + for (unsigned i = 0; i < num_rows; i++) + { + int rounded_delta = roundf (tuple.deltas_x[i]); + delta_rows[start_row + i][*col_idx] += rounded_delta; + if ((!has_long) && (rounded_delta < -65536 || rounded_delta > 65535)) + has_long = true; + } + } + + if (!optimize) + { + /* assemble a delta_row_encoding_t for this subtable, skip optimization so + * chars is not initialized, we only need delta rows for serialization */ + delta_row_encoding_t obj; + for (unsigned r = start_row; r < start_row + num_rows; r++) + obj.add_row (&(delta_rows.arrayZ[r])); + + encodings.push (std::move (obj)); + start_row += num_rows; + continue; + } + + for (unsigned minor = 0; minor < num_rows; minor++) + { + const hb_vector_t<int>& row = delta_rows[start_row + minor]; + if (use_no_variation_idx) + { + bool all_zeros = true; + for (int delta : row) + { + if (delta != 0) + { + all_zeros = false; + break; + } + } + if (all_zeros) + continue; + } + + if (!front_mapping.set ((major<<16) + minor, &row)) + return false; + + hb_vector_t<uint8_t> chars = delta_row_encoding_t::get_row_chars (row); + if (!chars) return false; + + if (delta_rows_map.has (&row)) + continue; + + delta_rows_map.set (&row, 1); + unsigned *obj_idx; + if (chars_idx_map.has (chars, &obj_idx)) + { + delta_row_encoding_t& obj = encoding_objs[*obj_idx]; + if (!obj.add_row (&row)) + return false; + } + else + { + if (!chars_idx_map.set (chars, encoding_objs.length)) + return false; + delta_row_encoding_t obj (std::move (chars), &row); + encoding_objs.push (std::move (obj)); + } + } + + start_row += num_rows; + } + + /* return directly if no optimization, maintain original VariationIndex so + * varidx_map would be empty */ + if (!optimize) return !encodings.in_error (); + + /* sort encoding_objs */ + encoding_objs.qsort (); + + /* main algorithm: repeatedly pick 2 best encodings to combine, and combine + * them */ + hb_priority_queue_t<combined_gain_idx_tuple_t> queue; + unsigned num_todos = encoding_objs.length; + for (unsigned i = 0; i < num_todos; i++) + { + for (unsigned j = i + 1; j < num_todos; j++) + { + int combining_gain = encoding_objs.arrayZ[i].gain_from_merging (encoding_objs.arrayZ[j]); + if (combining_gain > 0) + queue.insert (combined_gain_idx_tuple_t (-combining_gain, i, j), 0); + } + } + + hb_set_t removed_todo_idxes; + while (queue) + { + auto t = queue.pop_minimum ().first; + unsigned i = t.idx_1; + unsigned j = t.idx_2; + + if (removed_todo_idxes.has (i) || removed_todo_idxes.has (j)) + continue; + + delta_row_encoding_t& encoding = encoding_objs.arrayZ[i]; + delta_row_encoding_t& other_encoding = encoding_objs.arrayZ[j]; + + removed_todo_idxes.add (i); + removed_todo_idxes.add (j); + + hb_vector_t<uint8_t> combined_chars; + if (!combined_chars.alloc (encoding.chars.length)) + return false; + + for (unsigned idx = 0; idx < encoding.chars.length; idx++) + { + uint8_t v = hb_max (encoding.chars.arrayZ[idx], other_encoding.chars.arrayZ[idx]); + combined_chars.push (v); + } + + delta_row_encoding_t combined_encoding_obj (std::move (combined_chars)); + for (const auto& row : hb_concat (encoding.items, other_encoding.items)) + combined_encoding_obj.add_row (row); + + for (unsigned idx = 0; idx < encoding_objs.length; idx++) + { + if (removed_todo_idxes.has (idx)) continue; + + const delta_row_encoding_t& obj = encoding_objs.arrayZ[idx]; + if (obj.chars == combined_chars) + { + for (const auto& row : obj.items) + combined_encoding_obj.add_row (row); + + removed_todo_idxes.add (idx); + continue; + } + + int combined_gain = combined_encoding_obj.gain_from_merging (obj); + if (combined_gain > 0) + queue.insert (combined_gain_idx_tuple_t (-combined_gain, idx, encoding_objs.length), 0); + } + + encoding_objs.push (std::move (combined_encoding_obj)); + } + + int num_final_encodings = (int) encoding_objs.length - (int) removed_todo_idxes.get_population (); + if (num_final_encodings <= 0) return false; + + if (!encodings.alloc (num_final_encodings)) return false; + for (unsigned i = 0; i < encoding_objs.length; i++) + { + if (removed_todo_idxes.has (i)) continue; + encodings.push (std::move (encoding_objs.arrayZ[i])); + } + + /* sort again based on width, make result deterministic */ + encodings.qsort (delta_row_encoding_t::cmp_width); + + return compile_varidx_map (front_mapping); + } + + private: + /* compile varidx_map for one VarData subtable (index specified by major) */ + bool compile_varidx_map (const hb_hashmap_t<unsigned, const hb_vector_t<int>*>& front_mapping) + { + /* full encoding_row -> new VarIdxes mapping */ + hb_hashmap_t<const hb_vector_t<int>*, unsigned> back_mapping; + + for (unsigned major = 0; major < encodings.length; major++) + { + delta_row_encoding_t& encoding = encodings[major]; + /* just sanity check, this shouldn't happen */ + if (encoding.is_empty ()) + return false; + + unsigned num_rows = encoding.items.length; + + /* sort rows, make result deterministic */ + encoding.items.qsort (_cmp_row); + + /* compile old to new var_idxes mapping */ + for (unsigned minor = 0; minor < num_rows; minor++) + { + unsigned new_varidx = (major << 16) + minor; + back_mapping.set (encoding.items.arrayZ[minor], new_varidx); + } + } + + for (auto _ : front_mapping.iter ()) + { + unsigned old_varidx = _.first; + unsigned *new_varidx; + if (back_mapping.has (_.second, &new_varidx)) + varidx_map.set (old_varidx, *new_varidx); + else + varidx_map.set (old_varidx, HB_OT_LAYOUT_NO_VARIATIONS_INDEX); + } + return !varidx_map.in_error (); + } + + static int _cmp_row (const void *pa, const void *pb) + { + /* compare pointers of vectors(const hb_vector_t<int>*) that represent a row */ + const hb_vector_t<int>** a = (const hb_vector_t<int>**) pa; + const hb_vector_t<int>** b = (const hb_vector_t<int>**) pb; + + for (unsigned i = 0; i < (*b)->length; i++) + { + int va = (*a)->arrayZ[i]; + int vb = (*b)->arrayZ[i]; + if (va != vb) + return va < vb ? -1 : 1; + } + return 0; + } +}; + +} /* namespace OT */ + + +#endif /* HB_OT_VAR_COMMON_HH */ |