diff options
Diffstat (limited to 'gfx/layers/apz/src/AndroidVelocityTracker.cpp')
-rw-r--r-- | gfx/layers/apz/src/AndroidVelocityTracker.cpp | 288 |
1 files changed, 288 insertions, 0 deletions
diff --git a/gfx/layers/apz/src/AndroidVelocityTracker.cpp b/gfx/layers/apz/src/AndroidVelocityTracker.cpp new file mode 100644 index 0000000000..a355811a00 --- /dev/null +++ b/gfx/layers/apz/src/AndroidVelocityTracker.cpp @@ -0,0 +1,288 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=8 sts=2 et sw=2 tw=80: */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "AndroidVelocityTracker.h" + +#include "mozilla/StaticPrefs_apz.h" + +namespace mozilla { +namespace layers { + +// This velocity tracker implementation was adapted from Chromium's +// second-order unweighted least-squares velocity tracker strategy +// (https://cs.chromium.org/chromium/src/ui/events/gesture_detection/velocity_tracker.cc?l=101&rcl=9ea9a086d4f54c702ec9a38e55fb3eb8bbc2401b). + +// Threshold between position updates for determining that a pointer has +// stopped moving. Some input devices do not send move events in the +// case where a pointer has stopped. We need to detect this case so that we can +// accurately predict the velocity after the pointer starts moving again. +static const TimeDuration kAssumePointerMoveStoppedTime = + TimeDuration::FromMilliseconds(40); + +// The degree of the approximation. +static const uint8_t kDegree = 2; + +// The degree of the polynomial used in SolveLeastSquares(). +// This should be the degree of the approximation plus one. +static const uint8_t kPolyDegree = kDegree + 1; + +// Maximum size of position history. +static const uint8_t kHistorySize = 20; + +AndroidVelocityTracker::AndroidVelocityTracker() {} + +void AndroidVelocityTracker::StartTracking(ParentLayerCoord aPos, + TimeStamp aTimestamp) { + Clear(); + mHistory.AppendElement(std::make_pair(aTimestamp, aPos)); + mLastEventTime = aTimestamp; +} + +Maybe<float> AndroidVelocityTracker::AddPosition(ParentLayerCoord aPos, + TimeStamp aTimestamp) { + if ((aTimestamp - mLastEventTime) >= kAssumePointerMoveStoppedTime) { + Clear(); + } + + if ((aTimestamp - mLastEventTime).ToMilliseconds() < 1.0) { + // If we get a sample within a millisecond of the previous one, + // just update its position. Two samples in the history with the + // same timestamp can lead to things like infinite velocities. + if (mHistory.Length() > 0) { + mHistory[mHistory.Length() - 1].second = aPos; + } + } else { + mHistory.AppendElement(std::make_pair(aTimestamp, aPos)); + if (mHistory.Length() > kHistorySize) { + mHistory.RemoveElementAt(0); + } + } + + mLastEventTime = aTimestamp; + + if (mHistory.Length() < 2) { + return Nothing(); + } + + auto start = mHistory[mHistory.Length() - 2]; + auto end = mHistory[mHistory.Length() - 1]; + auto velocity = + (end.second - start.second) / (end.first - start.first).ToMilliseconds(); + // The velocity needs to be negated because the positions represent + // touch positions, and the direction of scrolling is opposite to the + // direction of the finger's movement. + return Some(-velocity); +} + +static float VectorDot(const float* a, const float* b, uint32_t m) { + float r = 0; + while (m--) { + r += *(a++) * *(b++); + } + return r; +} + +static float VectorNorm(const float* a, uint32_t m) { + float r = 0; + while (m--) { + float t = *(a++); + r += t * t; + } + return sqrtf(r); +} + +/** + * Solves a linear least squares problem to obtain a N degree polynomial that + * fits the specified input data as nearly as possible. + * + * Returns true if a solution is found, false otherwise. + * + * The input consists of two vectors of data points X and Y with indices 0..m-1 + * along with a weight vector W of the same size. + * + * The output is a vector B with indices 0..n that describes a polynomial + * that fits the data, such the sum of W[i] * W[i] * abs(Y[i] - (B[0] + B[1] + * X[i] * + B[2] X[i]^2 ... B[n] X[i]^n)) for all i between 0 and m-1 is + * minimized. + * + * Accordingly, the weight vector W should be initialized by the caller with the + * reciprocal square root of the variance of the error in each input data point. + * In other words, an ideal choice for W would be W[i] = 1 / var(Y[i]) = 1 / + * stddev(Y[i]). + * The weights express the relative importance of each data point. If the + * weights are* all 1, then the data points are considered to be of equal + * importance when fitting the polynomial. It is a good idea to choose weights + * that diminish the importance of data points that may have higher than usual + * error margins. + * + * Errors among data points are assumed to be independent. W is represented + * here as a vector although in the literature it is typically taken to be a + * diagonal matrix. + * + * That is to say, the function that generated the input data can be + * approximated by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n. + * + * The coefficient of determination (R^2) is also returned to describe the + * goodness of fit of the model for the given data. It is a value between 0 + * and 1, where 1 indicates perfect correspondence. + * + * This function first expands the X vector to a m by n matrix A such that + * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n, then + * multiplies it by w[i]. + * + * Then it calculates the QR decomposition of A yielding an m by m orthonormal + * matrix Q and an m by n upper triangular matrix R. Because R is upper + * triangular (lower part is all zeroes), we can simplify the decomposition into + * an m by n matrix Q1 and a n by n matrix R1 such that A = Q1 R1. + * + * Finally we solve the system of linear equations given by + * R1 B = (Qtranspose W Y) to find B. + * + * For efficiency, we lay out A and Q column-wise in memory because we + * frequently operate on the column vectors. Conversely, we lay out R row-wise. + * + * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares + * http://en.wikipedia.org/wiki/Gram-Schmidt + */ +static bool SolveLeastSquares(const float* x, const float* y, const float* w, + uint32_t m, uint32_t n, float* out_b) { + // MSVC does not support variable-length arrays (used by the original Android + // implementation of this function). +#if defined(COMPILER_MSVC) + const uint32_t M_ARRAY_LENGTH = VelocityTracker::kHistorySize; + const uint32_t N_ARRAY_LENGTH = VelocityTracker::kPolyDegree; + DCHECK_LE(m, M_ARRAY_LENGTH); + DCHECK_LE(n, N_ARRAY_LENGTH); +#else + const uint32_t M_ARRAY_LENGTH = m; + const uint32_t N_ARRAY_LENGTH = n; +#endif + + // Expand the X vector to a matrix A, pre-multiplied by the weights. + float a[N_ARRAY_LENGTH][M_ARRAY_LENGTH]; // column-major order + for (uint32_t h = 0; h < m; h++) { + a[0][h] = w[h]; + for (uint32_t i = 1; i < n; i++) { + a[i][h] = a[i - 1][h] * x[h]; + } + } + + // Apply the Gram-Schmidt process to A to obtain its QR decomposition. + + // Orthonormal basis, column-major order. + float q[N_ARRAY_LENGTH][M_ARRAY_LENGTH]; + // Upper triangular matrix, row-major order. + float r[N_ARRAY_LENGTH][N_ARRAY_LENGTH]; + for (uint32_t j = 0; j < n; j++) { + for (uint32_t h = 0; h < m; h++) { + q[j][h] = a[j][h]; + } + for (uint32_t i = 0; i < j; i++) { + float dot = VectorDot(&q[j][0], &q[i][0], m); + for (uint32_t h = 0; h < m; h++) { + q[j][h] -= dot * q[i][h]; + } + } + + float norm = VectorNorm(&q[j][0], m); + if (norm < 0.000001f) { + // vectors are linearly dependent or zero so no solution + return false; + } + + float invNorm = 1.0f / norm; + for (uint32_t h = 0; h < m; h++) { + q[j][h] *= invNorm; + } + for (uint32_t i = 0; i < n; i++) { + r[j][i] = i < j ? 0 : VectorDot(&q[j][0], &a[i][0], m); + } + } + + // Solve R B = Qt W Y to find B. This is easy because R is upper triangular. + // We just work from bottom-right to top-left calculating B's coefficients. + float wy[M_ARRAY_LENGTH]; + for (uint32_t h = 0; h < m; h++) { + wy[h] = y[h] * w[h]; + } + for (uint32_t i = n; i-- != 0;) { + out_b[i] = VectorDot(&q[i][0], wy, m); + for (uint32_t j = n - 1; j > i; j--) { + out_b[i] -= r[i][j] * out_b[j]; + } + out_b[i] /= r[i][i]; + } + + return true; +} + +Maybe<float> AndroidVelocityTracker::ComputeVelocity(TimeStamp aTimestamp) { + if (mHistory.IsEmpty()) { + return Nothing{}; + } + + // Polynomial coefficients describing motion along the axis. + float xcoeff[kPolyDegree + 1]; + for (size_t i = 0; i <= kPolyDegree; i++) { + xcoeff[i] = 0; + } + + // Iterate over movement samples in reverse time order and collect samples. + float pos[kHistorySize]; + float w[kHistorySize]; + float time[kHistorySize]; + uint32_t m = 0; + int index = mHistory.Length() - 1; + const TimeDuration horizon = TimeDuration::FromMilliseconds( + StaticPrefs::apz_velocity_relevance_time_ms()); + const auto& newest_movement = mHistory[index]; + + do { + const auto& movement = mHistory[index]; + TimeDuration age = newest_movement.first - movement.first; + if (age > horizon) break; + + ParentLayerCoord position = movement.second; + pos[m] = position; + w[m] = 1.0f; + time[m] = + -static_cast<float>(age.ToMilliseconds()) / 1000.0f; // in seconds + index--; + m++; + } while (index >= 0); + + if (m == 0) { + return Nothing{}; // no data + } + + // Calculate a least squares polynomial fit. + + // Polynomial degree (number of coefficients), or zero if no information is + // available. + uint32_t degree = kDegree; + if (degree > m - 1) { + degree = m - 1; + } + + if (degree >= 1) { // otherwise, no velocity data available + uint32_t n = degree + 1; + if (SolveLeastSquares(time, pos, w, m, n, xcoeff)) { + float velocity = xcoeff[1]; + + // The velocity needs to be negated because the positions represent + // touch positions, and the direction of scrolling is opposite to the + // direction of the finger's movement. + return Some(-velocity / 1000.0f); // convert to pixels per millisecond + } + } + + return Nothing{}; +} + +void AndroidVelocityTracker::Clear() { mHistory.Clear(); } + +} // namespace layers +} // namespace mozilla |