summaryrefslogtreecommitdiffstats
path: root/gfx/skia/skia/include/core/SkScalar.h
diff options
context:
space:
mode:
Diffstat (limited to 'gfx/skia/skia/include/core/SkScalar.h')
-rw-r--r--gfx/skia/skia/include/core/SkScalar.h173
1 files changed, 173 insertions, 0 deletions
diff --git a/gfx/skia/skia/include/core/SkScalar.h b/gfx/skia/skia/include/core/SkScalar.h
new file mode 100644
index 0000000000..f3e11b34c2
--- /dev/null
+++ b/gfx/skia/skia/include/core/SkScalar.h
@@ -0,0 +1,173 @@
+/*
+ * Copyright 2006 The Android Open Source Project
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef SkScalar_DEFINED
+#define SkScalar_DEFINED
+
+#include "include/private/base/SkAssert.h"
+#include "include/private/base/SkFloatingPoint.h"
+
+typedef float SkScalar;
+
+#define SK_Scalar1 1.0f
+#define SK_ScalarHalf 0.5f
+#define SK_ScalarSqrt2 SK_FloatSqrt2
+#define SK_ScalarPI SK_FloatPI
+#define SK_ScalarTanPIOver8 0.414213562f
+#define SK_ScalarRoot2Over2 0.707106781f
+#define SK_ScalarMax 3.402823466e+38f
+#define SK_ScalarMin (-SK_ScalarMax)
+#define SK_ScalarInfinity SK_FloatInfinity
+#define SK_ScalarNegativeInfinity SK_FloatNegativeInfinity
+#define SK_ScalarNaN SK_FloatNaN
+
+#define SkScalarFloorToScalar(x) sk_float_floor(x)
+#define SkScalarCeilToScalar(x) sk_float_ceil(x)
+#define SkScalarRoundToScalar(x) sk_float_round(x)
+#define SkScalarTruncToScalar(x) sk_float_trunc(x)
+
+#define SkScalarFloorToInt(x) sk_float_floor2int(x)
+#define SkScalarCeilToInt(x) sk_float_ceil2int(x)
+#define SkScalarRoundToInt(x) sk_float_round2int(x)
+
+#define SkScalarAbs(x) sk_float_abs(x)
+#define SkScalarCopySign(x, y) sk_float_copysign(x, y)
+#define SkScalarMod(x, y) sk_float_mod(x,y)
+#define SkScalarSqrt(x) sk_float_sqrt(x)
+#define SkScalarPow(b, e) sk_float_pow(b, e)
+
+#define SkScalarSin(radians) (float)sk_float_sin(radians)
+#define SkScalarCos(radians) (float)sk_float_cos(radians)
+#define SkScalarTan(radians) (float)sk_float_tan(radians)
+#define SkScalarASin(val) (float)sk_float_asin(val)
+#define SkScalarACos(val) (float)sk_float_acos(val)
+#define SkScalarATan2(y, x) (float)sk_float_atan2(y,x)
+#define SkScalarExp(x) (float)sk_float_exp(x)
+#define SkScalarLog(x) (float)sk_float_log(x)
+#define SkScalarLog2(x) (float)sk_float_log2(x)
+
+//////////////////////////////////////////////////////////////////////////////////////////////////
+
+#define SkIntToScalar(x) static_cast<SkScalar>(x)
+#define SkIntToFloat(x) static_cast<float>(x)
+#define SkScalarTruncToInt(x) sk_float_saturate2int(x)
+
+#define SkScalarToFloat(x) static_cast<float>(x)
+#define SkFloatToScalar(x) static_cast<SkScalar>(x)
+#define SkScalarToDouble(x) static_cast<double>(x)
+#define SkDoubleToScalar(x) sk_double_to_float(x)
+
+static inline bool SkScalarIsNaN(SkScalar x) { return x != x; }
+
+/** Returns true if x is not NaN and not infinite
+ */
+static inline bool SkScalarIsFinite(SkScalar x) { return sk_float_isfinite(x); }
+
+static inline bool SkScalarsAreFinite(SkScalar a, SkScalar b) {
+ return sk_floats_are_finite(a, b);
+}
+
+static inline bool SkScalarsAreFinite(const SkScalar array[], int count) {
+ return sk_floats_are_finite(array, count);
+}
+
+/** Returns the fractional part of the scalar. */
+static inline SkScalar SkScalarFraction(SkScalar x) {
+ return x - SkScalarTruncToScalar(x);
+}
+
+static inline SkScalar SkScalarSquare(SkScalar x) { return x * x; }
+
+#define SkScalarInvert(x) sk_ieee_float_divide_TODO_IS_DIVIDE_BY_ZERO_SAFE_HERE(SK_Scalar1, (x))
+#define SkScalarAve(a, b) (((a) + (b)) * SK_ScalarHalf)
+#define SkScalarHalf(a) ((a) * SK_ScalarHalf)
+
+#define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180))
+#define SkRadiansToDegrees(radians) ((radians) * (180 / SK_ScalarPI))
+
+static inline bool SkScalarIsInt(SkScalar x) {
+ return x == SkScalarFloorToScalar(x);
+}
+
+/**
+ * Returns -1 || 0 || 1 depending on the sign of value:
+ * -1 if x < 0
+ * 0 if x == 0
+ * 1 if x > 0
+ */
+static inline int SkScalarSignAsInt(SkScalar x) {
+ return x < 0 ? -1 : (x > 0);
+}
+
+// Scalar result version of above
+static inline SkScalar SkScalarSignAsScalar(SkScalar x) {
+ return x < 0 ? -SK_Scalar1 : ((x > 0) ? SK_Scalar1 : 0);
+}
+
+#define SK_ScalarNearlyZero (SK_Scalar1 / (1 << 12))
+
+static inline bool SkScalarNearlyZero(SkScalar x,
+ SkScalar tolerance = SK_ScalarNearlyZero) {
+ SkASSERT(tolerance >= 0);
+ return SkScalarAbs(x) <= tolerance;
+}
+
+static inline bool SkScalarNearlyEqual(SkScalar x, SkScalar y,
+ SkScalar tolerance = SK_ScalarNearlyZero) {
+ SkASSERT(tolerance >= 0);
+ return SkScalarAbs(x-y) <= tolerance;
+}
+
+#define SK_ScalarSinCosNearlyZero (SK_Scalar1 / (1 << 16))
+
+static inline float SkScalarSinSnapToZero(SkScalar radians) {
+ float v = SkScalarSin(radians);
+ return SkScalarNearlyZero(v, SK_ScalarSinCosNearlyZero) ? 0.0f : v;
+}
+
+static inline float SkScalarCosSnapToZero(SkScalar radians) {
+ float v = SkScalarCos(radians);
+ return SkScalarNearlyZero(v, SK_ScalarSinCosNearlyZero) ? 0.0f : v;
+}
+
+/** Linearly interpolate between A and B, based on t.
+ If t is 0, return A
+ If t is 1, return B
+ else interpolate.
+ t must be [0..SK_Scalar1]
+*/
+static inline SkScalar SkScalarInterp(SkScalar A, SkScalar B, SkScalar t) {
+ SkASSERT(t >= 0 && t <= SK_Scalar1);
+ return A + (B - A) * t;
+}
+
+/** Interpolate along the function described by (keys[length], values[length])
+ for the passed searchKey. SearchKeys outside the range keys[0]-keys[Length]
+ clamp to the min or max value. This function assumes the number of pairs
+ (length) will be small and a linear search is used.
+
+ Repeated keys are allowed for discontinuous functions (so long as keys is
+ monotonically increasing). If key is the value of a repeated scalar in
+ keys the first one will be used.
+*/
+SkScalar SkScalarInterpFunc(SkScalar searchKey, const SkScalar keys[],
+ const SkScalar values[], int length);
+
+/*
+ * Helper to compare an array of scalars.
+ */
+static inline bool SkScalarsEqual(const SkScalar a[], const SkScalar b[], int n) {
+ SkASSERT(n >= 0);
+ for (int i = 0; i < n; ++i) {
+ if (a[i] != b[i]) {
+ return false;
+ }
+ }
+ return true;
+}
+
+#endif