summaryrefslogtreecommitdiffstats
path: root/gfx/skia/skia/src/core/SkRegion.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gfx/skia/skia/src/core/SkRegion.cpp')
-rw-r--r--gfx/skia/skia/src/core/SkRegion.cpp1584
1 files changed, 1584 insertions, 0 deletions
diff --git a/gfx/skia/skia/src/core/SkRegion.cpp b/gfx/skia/skia/src/core/SkRegion.cpp
new file mode 100644
index 0000000000..780a71c9ba
--- /dev/null
+++ b/gfx/skia/skia/src/core/SkRegion.cpp
@@ -0,0 +1,1584 @@
+/*
+ * Copyright 2006 The Android Open Source Project
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "include/core/SkRegion.h"
+
+#include "include/private/base/SkMacros.h"
+#include "include/private/base/SkTemplates.h"
+#include "include/private/base/SkTo.h"
+#include "src/base/SkSafeMath.h"
+#include "src/core/SkRegionPriv.h"
+
+#include <algorithm>
+#include <utility>
+
+using namespace skia_private;
+
+/* Region Layout
+ *
+ * TOP
+ *
+ * [ Bottom, X-Intervals, [Left, Right]..., X-Sentinel ]
+ * ...
+ *
+ * Y-Sentinel
+ */
+
+/////////////////////////////////////////////////////////////////////////////////////////////////
+
+#define SkRegion_gEmptyRunHeadPtr ((SkRegionPriv::RunHead*)-1)
+#define SkRegion_gRectRunHeadPtr nullptr
+
+constexpr int kRunArrayStackCount = 256;
+
+// This is a simple data structure which is like a SkSTArray<N,T,true>, except that:
+// - It does not initialize memory.
+// - It does not distinguish between reserved space and initialized space.
+// - resizeToAtLeast() instead of resize()
+// - Uses sk_realloc_throw()
+// - Can never be made smaller.
+// Measurement: for the `region_union_16` benchmark, this is 6% faster.
+class RunArray {
+public:
+ RunArray() { fPtr = fStack; }
+ #ifdef SK_DEBUG
+ int count() const { return fCount; }
+ #endif
+ SkRegionPriv::RunType& operator[](int i) {
+ SkASSERT((unsigned)i < (unsigned)fCount);
+ return fPtr[i];
+ }
+ /** Resize the array to a size greater-than-or-equal-to count. */
+ void resizeToAtLeast(int count) {
+ if (count > fCount) {
+ // leave at least 50% extra space for future growth.
+ count += count >> 1;
+ fMalloc.realloc(count);
+ if (fPtr == fStack) {
+ memcpy(fMalloc.get(), fStack, fCount * sizeof(SkRegionPriv::RunType));
+ }
+ fPtr = fMalloc.get();
+ fCount = count;
+ }
+ }
+private:
+ SkRegionPriv::RunType fStack[kRunArrayStackCount];
+ AutoTMalloc<SkRegionPriv::RunType> fMalloc;
+ int fCount = kRunArrayStackCount;
+ SkRegionPriv::RunType* fPtr; // non-owning pointer
+};
+
+/* Pass in the beginning with the intervals.
+ * We back up 1 to read the interval-count.
+ * Return the beginning of the next scanline (i.e. the next Y-value)
+ */
+static SkRegionPriv::RunType* skip_intervals(const SkRegionPriv::RunType runs[]) {
+ int intervals = runs[-1];
+#ifdef SK_DEBUG
+ if (intervals > 0) {
+ SkASSERT(runs[0] < runs[1]);
+ SkASSERT(runs[1] < SkRegion_kRunTypeSentinel);
+ } else {
+ SkASSERT(0 == intervals);
+ SkASSERT(SkRegion_kRunTypeSentinel == runs[0]);
+ }
+#endif
+ runs += intervals * 2 + 1;
+ return const_cast<SkRegionPriv::RunType*>(runs);
+}
+
+bool SkRegion::RunsAreARect(const SkRegion::RunType runs[], int count,
+ SkIRect* bounds) {
+ assert_sentinel(runs[0], false); // top
+ SkASSERT(count >= kRectRegionRuns);
+
+ if (count == kRectRegionRuns) {
+ assert_sentinel(runs[1], false); // bottom
+ SkASSERT(1 == runs[2]);
+ assert_sentinel(runs[3], false); // left
+ assert_sentinel(runs[4], false); // right
+ assert_sentinel(runs[5], true);
+ assert_sentinel(runs[6], true);
+
+ SkASSERT(runs[0] < runs[1]); // valid height
+ SkASSERT(runs[3] < runs[4]); // valid width
+
+ bounds->setLTRB(runs[3], runs[0], runs[4], runs[1]);
+ return true;
+ }
+ return false;
+}
+
+//////////////////////////////////////////////////////////////////////////
+
+SkRegion::SkRegion() {
+ fBounds.setEmpty();
+ fRunHead = SkRegion_gEmptyRunHeadPtr;
+}
+
+SkRegion::SkRegion(const SkRegion& src) {
+ fRunHead = SkRegion_gEmptyRunHeadPtr; // just need a value that won't trigger sk_free(fRunHead)
+ this->setRegion(src);
+}
+
+SkRegion::SkRegion(const SkIRect& rect) {
+ fRunHead = SkRegion_gEmptyRunHeadPtr; // just need a value that won't trigger sk_free(fRunHead)
+ this->setRect(rect);
+}
+
+SkRegion::~SkRegion() {
+ this->freeRuns();
+}
+
+void SkRegion::freeRuns() {
+ if (this->isComplex()) {
+ SkASSERT(fRunHead->fRefCnt >= 1);
+ if (--fRunHead->fRefCnt == 0) {
+ sk_free(fRunHead);
+ }
+ }
+}
+
+void SkRegion::allocateRuns(int count, int ySpanCount, int intervalCount) {
+ fRunHead = RunHead::Alloc(count, ySpanCount, intervalCount);
+}
+
+void SkRegion::allocateRuns(int count) {
+ fRunHead = RunHead::Alloc(count);
+}
+
+void SkRegion::allocateRuns(const RunHead& head) {
+ fRunHead = RunHead::Alloc(head.fRunCount,
+ head.getYSpanCount(),
+ head.getIntervalCount());
+}
+
+SkRegion& SkRegion::operator=(const SkRegion& src) {
+ (void)this->setRegion(src);
+ return *this;
+}
+
+void SkRegion::swap(SkRegion& other) {
+ using std::swap;
+ swap(fBounds, other.fBounds);
+ swap(fRunHead, other.fRunHead);
+}
+
+int SkRegion::computeRegionComplexity() const {
+ if (this->isEmpty()) {
+ return 0;
+ } else if (this->isRect()) {
+ return 1;
+ }
+ return fRunHead->getIntervalCount();
+}
+
+bool SkRegion::setEmpty() {
+ this->freeRuns();
+ fBounds.setEmpty();
+ fRunHead = SkRegion_gEmptyRunHeadPtr;
+ return false;
+}
+
+bool SkRegion::setRect(const SkIRect& r) {
+ if (r.isEmpty() ||
+ SkRegion_kRunTypeSentinel == r.right() ||
+ SkRegion_kRunTypeSentinel == r.bottom()) {
+ return this->setEmpty();
+ }
+ this->freeRuns();
+ fBounds = r;
+ fRunHead = SkRegion_gRectRunHeadPtr;
+ return true;
+}
+
+bool SkRegion::setRegion(const SkRegion& src) {
+ if (this != &src) {
+ this->freeRuns();
+
+ fBounds = src.fBounds;
+ fRunHead = src.fRunHead;
+ if (this->isComplex()) {
+ fRunHead->fRefCnt++;
+ }
+ }
+ return fRunHead != SkRegion_gEmptyRunHeadPtr;
+}
+
+bool SkRegion::op(const SkIRect& rect, const SkRegion& rgn, Op op) {
+ SkRegion tmp(rect);
+
+ return this->op(tmp, rgn, op);
+}
+
+bool SkRegion::op(const SkRegion& rgn, const SkIRect& rect, Op op) {
+ SkRegion tmp(rect);
+
+ return this->op(rgn, tmp, op);
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
+#include <stdio.h>
+char* SkRegion::toString() {
+ Iterator iter(*this);
+ int count = 0;
+ while (!iter.done()) {
+ count++;
+ iter.next();
+ }
+ // 4 ints, up to 10 digits each plus sign, 3 commas, '(', ')', SkRegion() and '\0'
+ const int max = (count*((11*4)+5))+11+1;
+ char* result = (char*)sk_malloc_throw(max);
+ if (result == nullptr) {
+ return nullptr;
+ }
+ count = snprintf(result, max, "SkRegion(");
+ iter.reset(*this);
+ while (!iter.done()) {
+ const SkIRect& r = iter.rect();
+ count += snprintf(result+count, max - count,
+ "(%d,%d,%d,%d)", r.fLeft, r.fTop, r.fRight, r.fBottom);
+ iter.next();
+ }
+ count += snprintf(result+count, max - count, ")");
+ return result;
+}
+#endif
+
+///////////////////////////////////////////////////////////////////////////////
+
+int SkRegion::count_runtype_values(int* itop, int* ibot) const {
+ int maxT;
+
+ if (this->isRect()) {
+ maxT = 2;
+ } else {
+ SkASSERT(this->isComplex());
+ maxT = fRunHead->getIntervalCount() * 2;
+ }
+ *itop = fBounds.fTop;
+ *ibot = fBounds.fBottom;
+ return maxT;
+}
+
+static bool isRunCountEmpty(int count) {
+ return count <= 2;
+}
+
+bool SkRegion::setRuns(RunType runs[], int count) {
+ SkDEBUGCODE(SkRegionPriv::Validate(*this));
+ SkASSERT(count > 0);
+
+ if (isRunCountEmpty(count)) {
+ // SkDEBUGF("setRuns: empty\n");
+ assert_sentinel(runs[count-1], true);
+ return this->setEmpty();
+ }
+
+ // trim off any empty spans from the top and bottom
+ // weird I should need this, perhaps op() could be smarter...
+ if (count > kRectRegionRuns) {
+ RunType* stop = runs + count;
+ assert_sentinel(runs[0], false); // top
+ assert_sentinel(runs[1], false); // bottom
+ // runs[2] is uncomputed intervalCount
+
+ if (runs[3] == SkRegion_kRunTypeSentinel) { // should be first left...
+ runs += 3; // skip empty initial span
+ runs[0] = runs[-2]; // set new top to prev bottom
+ assert_sentinel(runs[1], false); // bot: a sentinal would mean two in a row
+ assert_sentinel(runs[2], false); // intervalcount
+ assert_sentinel(runs[3], false); // left
+ assert_sentinel(runs[4], false); // right
+ }
+
+ assert_sentinel(stop[-1], true);
+ assert_sentinel(stop[-2], true);
+
+ // now check for a trailing empty span
+ if (stop[-5] == SkRegion_kRunTypeSentinel) { // eek, stop[-4] was a bottom with no x-runs
+ stop[-4] = SkRegion_kRunTypeSentinel; // kill empty last span
+ stop -= 3;
+ assert_sentinel(stop[-1], true); // last y-sentinel
+ assert_sentinel(stop[-2], true); // last x-sentinel
+ assert_sentinel(stop[-3], false); // last right
+ assert_sentinel(stop[-4], false); // last left
+ assert_sentinel(stop[-5], false); // last interval-count
+ assert_sentinel(stop[-6], false); // last bottom
+ }
+ count = (int)(stop - runs);
+ }
+
+ SkASSERT(count >= kRectRegionRuns);
+
+ if (SkRegion::RunsAreARect(runs, count, &fBounds)) {
+ return this->setRect(fBounds);
+ }
+
+ // if we get here, we need to become a complex region
+
+ if (!this->isComplex() || fRunHead->fRunCount != count) {
+ this->freeRuns();
+ this->allocateRuns(count);
+ SkASSERT(this->isComplex());
+ }
+
+ // must call this before we can write directly into runs()
+ // in case we are sharing the buffer with another region (copy on write)
+ fRunHead = fRunHead->ensureWritable();
+ memcpy(fRunHead->writable_runs(), runs, count * sizeof(RunType));
+ fRunHead->computeRunBounds(&fBounds);
+
+ // Our computed bounds might be too large, so we have to check here.
+ if (fBounds.isEmpty()) {
+ return this->setEmpty();
+ }
+
+ SkDEBUGCODE(SkRegionPriv::Validate(*this));
+
+ return true;
+}
+
+void SkRegion::BuildRectRuns(const SkIRect& bounds,
+ RunType runs[kRectRegionRuns]) {
+ runs[0] = bounds.fTop;
+ runs[1] = bounds.fBottom;
+ runs[2] = 1; // 1 interval for this scanline
+ runs[3] = bounds.fLeft;
+ runs[4] = bounds.fRight;
+ runs[5] = SkRegion_kRunTypeSentinel;
+ runs[6] = SkRegion_kRunTypeSentinel;
+}
+
+bool SkRegion::contains(int32_t x, int32_t y) const {
+ SkDEBUGCODE(SkRegionPriv::Validate(*this));
+
+ if (!fBounds.contains(x, y)) {
+ return false;
+ }
+ if (this->isRect()) {
+ return true;
+ }
+ SkASSERT(this->isComplex());
+
+ const RunType* runs = fRunHead->findScanline(y);
+
+ // Skip the Bottom and IntervalCount
+ runs += 2;
+
+ // Just walk this scanline, checking each interval. The X-sentinel will
+ // appear as a left-inteval (runs[0]) and should abort the search.
+ //
+ // We could do a bsearch, using interval-count (runs[1]), but need to time
+ // when that would be worthwhile.
+ //
+ for (;;) {
+ if (x < runs[0]) {
+ break;
+ }
+ if (x < runs[1]) {
+ return true;
+ }
+ runs += 2;
+ }
+ return false;
+}
+
+static SkRegionPriv::RunType scanline_bottom(const SkRegionPriv::RunType runs[]) {
+ return runs[0];
+}
+
+static const SkRegionPriv::RunType* scanline_next(const SkRegionPriv::RunType runs[]) {
+ // skip [B N [L R]... S]
+ return runs + 2 + runs[1] * 2 + 1;
+}
+
+static bool scanline_contains(const SkRegionPriv::RunType runs[],
+ SkRegionPriv::RunType L, SkRegionPriv::RunType R) {
+ runs += 2; // skip Bottom and IntervalCount
+ for (;;) {
+ if (L < runs[0]) {
+ break;
+ }
+ if (R <= runs[1]) {
+ return true;
+ }
+ runs += 2;
+ }
+ return false;
+}
+
+bool SkRegion::contains(const SkIRect& r) const {
+ SkDEBUGCODE(SkRegionPriv::Validate(*this));
+
+ if (!fBounds.contains(r)) {
+ return false;
+ }
+ if (this->isRect()) {
+ return true;
+ }
+ SkASSERT(this->isComplex());
+
+ const RunType* scanline = fRunHead->findScanline(r.fTop);
+ for (;;) {
+ if (!scanline_contains(scanline, r.fLeft, r.fRight)) {
+ return false;
+ }
+ if (r.fBottom <= scanline_bottom(scanline)) {
+ break;
+ }
+ scanline = scanline_next(scanline);
+ }
+ return true;
+}
+
+bool SkRegion::contains(const SkRegion& rgn) const {
+ SkDEBUGCODE(SkRegionPriv::Validate(*this));
+ SkDEBUGCODE(SkRegionPriv::Validate(rgn));
+
+ if (this->isEmpty() || rgn.isEmpty() || !fBounds.contains(rgn.fBounds)) {
+ return false;
+ }
+ if (this->isRect()) {
+ return true;
+ }
+ if (rgn.isRect()) {
+ return this->contains(rgn.getBounds());
+ }
+
+ /*
+ * A contains B is equivalent to
+ * B - A == 0
+ */
+ return !Oper(rgn, *this, kDifference_Op, nullptr);
+}
+
+const SkRegion::RunType* SkRegion::getRuns(RunType tmpStorage[],
+ int* intervals) const {
+ SkASSERT(tmpStorage && intervals);
+ const RunType* runs = tmpStorage;
+
+ if (this->isEmpty()) {
+ tmpStorage[0] = SkRegion_kRunTypeSentinel;
+ *intervals = 0;
+ } else if (this->isRect()) {
+ BuildRectRuns(fBounds, tmpStorage);
+ *intervals = 1;
+ } else {
+ runs = fRunHead->readonly_runs();
+ *intervals = fRunHead->getIntervalCount();
+ }
+ return runs;
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+static bool scanline_intersects(const SkRegionPriv::RunType runs[],
+ SkRegionPriv::RunType L, SkRegionPriv::RunType R) {
+ runs += 2; // skip Bottom and IntervalCount
+ for (;;) {
+ if (R <= runs[0]) {
+ break;
+ }
+ if (L < runs[1]) {
+ return true;
+ }
+ runs += 2;
+ }
+ return false;
+}
+
+bool SkRegion::intersects(const SkIRect& r) const {
+ SkDEBUGCODE(SkRegionPriv::Validate(*this));
+
+ if (this->isEmpty() || r.isEmpty()) {
+ return false;
+ }
+
+ SkIRect sect;
+ if (!sect.intersect(fBounds, r)) {
+ return false;
+ }
+ if (this->isRect()) {
+ return true;
+ }
+ SkASSERT(this->isComplex());
+
+ const RunType* scanline = fRunHead->findScanline(sect.fTop);
+ for (;;) {
+ if (scanline_intersects(scanline, sect.fLeft, sect.fRight)) {
+ return true;
+ }
+ if (sect.fBottom <= scanline_bottom(scanline)) {
+ break;
+ }
+ scanline = scanline_next(scanline);
+ }
+ return false;
+}
+
+bool SkRegion::intersects(const SkRegion& rgn) const {
+ if (this->isEmpty() || rgn.isEmpty()) {
+ return false;
+ }
+
+ if (!SkIRect::Intersects(fBounds, rgn.fBounds)) {
+ return false;
+ }
+
+ bool weAreARect = this->isRect();
+ bool theyAreARect = rgn.isRect();
+
+ if (weAreARect && theyAreARect) {
+ return true;
+ }
+ if (weAreARect) {
+ return rgn.intersects(this->getBounds());
+ }
+ if (theyAreARect) {
+ return this->intersects(rgn.getBounds());
+ }
+
+ // both of us are complex
+ return Oper(*this, rgn, kIntersect_Op, nullptr);
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+bool SkRegion::operator==(const SkRegion& b) const {
+ SkDEBUGCODE(SkRegionPriv::Validate(*this));
+ SkDEBUGCODE(SkRegionPriv::Validate(b));
+
+ if (this == &b) {
+ return true;
+ }
+ if (fBounds != b.fBounds) {
+ return false;
+ }
+
+ const SkRegion::RunHead* ah = fRunHead;
+ const SkRegion::RunHead* bh = b.fRunHead;
+
+ // this catches empties and rects being equal
+ if (ah == bh) {
+ return true;
+ }
+ // now we insist that both are complex (but different ptrs)
+ if (!this->isComplex() || !b.isComplex()) {
+ return false;
+ }
+ return ah->fRunCount == bh->fRunCount &&
+ !memcmp(ah->readonly_runs(), bh->readonly_runs(),
+ ah->fRunCount * sizeof(SkRegion::RunType));
+}
+
+// Return a (new) offset such that when applied (+=) to min and max, we don't overflow/underflow
+static int32_t pin_offset_s32(int32_t min, int32_t max, int32_t offset) {
+ SkASSERT(min <= max);
+ const int32_t lo = -SK_MaxS32-1,
+ hi = +SK_MaxS32;
+ if ((int64_t)min + offset < lo) { offset = lo - min; }
+ if ((int64_t)max + offset > hi) { offset = hi - max; }
+ return offset;
+}
+
+void SkRegion::translate(int dx, int dy, SkRegion* dst) const {
+ SkDEBUGCODE(SkRegionPriv::Validate(*this));
+
+ if (nullptr == dst) {
+ return;
+ }
+ if (this->isEmpty()) {
+ dst->setEmpty();
+ return;
+ }
+ // pin dx and dy so we don't overflow our existing bounds
+ dx = pin_offset_s32(fBounds.fLeft, fBounds.fRight, dx);
+ dy = pin_offset_s32(fBounds.fTop, fBounds.fBottom, dy);
+
+ if (this->isRect()) {
+ dst->setRect(fBounds.makeOffset(dx, dy));
+ } else {
+ if (this == dst) {
+ dst->fRunHead = dst->fRunHead->ensureWritable();
+ } else {
+ SkRegion tmp;
+ tmp.allocateRuns(*fRunHead);
+ SkASSERT(tmp.isComplex());
+ tmp.fBounds = fBounds;
+ dst->swap(tmp);
+ }
+
+ dst->fBounds.offset(dx, dy);
+
+ const RunType* sruns = fRunHead->readonly_runs();
+ RunType* druns = dst->fRunHead->writable_runs();
+
+ *druns++ = (SkRegion::RunType)(*sruns++ + dy); // top
+ for (;;) {
+ int bottom = *sruns++;
+ if (bottom == SkRegion_kRunTypeSentinel) {
+ break;
+ }
+ *druns++ = (SkRegion::RunType)(bottom + dy); // bottom;
+ *druns++ = *sruns++; // copy intervalCount;
+ for (;;) {
+ int x = *sruns++;
+ if (x == SkRegion_kRunTypeSentinel) {
+ break;
+ }
+ *druns++ = (SkRegion::RunType)(x + dx);
+ *druns++ = (SkRegion::RunType)(*sruns++ + dx);
+ }
+ *druns++ = SkRegion_kRunTypeSentinel; // x sentinel
+ }
+ *druns++ = SkRegion_kRunTypeSentinel; // y sentinel
+
+ SkASSERT(sruns - fRunHead->readonly_runs() == fRunHead->fRunCount);
+ SkASSERT(druns - dst->fRunHead->readonly_runs() == dst->fRunHead->fRunCount);
+ }
+
+ SkDEBUGCODE(SkRegionPriv::Validate(*this));
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+bool SkRegion::setRects(const SkIRect rects[], int count) {
+ if (0 == count) {
+ this->setEmpty();
+ } else {
+ this->setRect(rects[0]);
+ for (int i = 1; i < count; i++) {
+ this->op(rects[i], kUnion_Op);
+ }
+ }
+ return !this->isEmpty();
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+#if defined _WIN32 // disable warning : local variable used without having been initialized
+#pragma warning ( push )
+#pragma warning ( disable : 4701 )
+#endif
+
+#ifdef SK_DEBUG
+static void assert_valid_pair(int left, int rite)
+{
+ SkASSERT(left == SkRegion_kRunTypeSentinel || left < rite);
+}
+#else
+ #define assert_valid_pair(left, rite)
+#endif
+
+struct spanRec {
+ const SkRegionPriv::RunType* fA_runs;
+ const SkRegionPriv::RunType* fB_runs;
+ int fA_left, fA_rite, fB_left, fB_rite;
+ int fLeft, fRite, fInside;
+
+ void init(const SkRegionPriv::RunType a_runs[],
+ const SkRegionPriv::RunType b_runs[]) {
+ fA_left = *a_runs++;
+ fA_rite = *a_runs++;
+ fB_left = *b_runs++;
+ fB_rite = *b_runs++;
+
+ fA_runs = a_runs;
+ fB_runs = b_runs;
+ }
+
+ bool done() const {
+ SkASSERT(fA_left <= SkRegion_kRunTypeSentinel);
+ SkASSERT(fB_left <= SkRegion_kRunTypeSentinel);
+ return fA_left == SkRegion_kRunTypeSentinel &&
+ fB_left == SkRegion_kRunTypeSentinel;
+ }
+
+ void next() {
+ assert_valid_pair(fA_left, fA_rite);
+ assert_valid_pair(fB_left, fB_rite);
+
+ int inside, left, rite SK_INIT_TO_AVOID_WARNING;
+ bool a_flush = false;
+ bool b_flush = false;
+
+ int a_left = fA_left;
+ int a_rite = fA_rite;
+ int b_left = fB_left;
+ int b_rite = fB_rite;
+
+ if (a_left < b_left) {
+ inside = 1;
+ left = a_left;
+ if (a_rite <= b_left) { // [...] <...>
+ rite = a_rite;
+ a_flush = true;
+ } else { // [...<..]...> or [...<...>...]
+ rite = a_left = b_left;
+ }
+ } else if (b_left < a_left) {
+ inside = 2;
+ left = b_left;
+ if (b_rite <= a_left) { // [...] <...>
+ rite = b_rite;
+ b_flush = true;
+ } else { // [...<..]...> or [...<...>...]
+ rite = b_left = a_left;
+ }
+ } else { // a_left == b_left
+ inside = 3;
+ left = a_left; // or b_left
+ if (a_rite <= b_rite) {
+ rite = b_left = a_rite;
+ a_flush = true;
+ }
+ if (b_rite <= a_rite) {
+ rite = a_left = b_rite;
+ b_flush = true;
+ }
+ }
+
+ if (a_flush) {
+ a_left = *fA_runs++;
+ a_rite = *fA_runs++;
+ }
+ if (b_flush) {
+ b_left = *fB_runs++;
+ b_rite = *fB_runs++;
+ }
+
+ SkASSERT(left <= rite);
+
+ // now update our state
+ fA_left = a_left;
+ fA_rite = a_rite;
+ fB_left = b_left;
+ fB_rite = b_rite;
+
+ fLeft = left;
+ fRite = rite;
+ fInside = inside;
+ }
+};
+
+static int distance_to_sentinel(const SkRegionPriv::RunType* runs) {
+ const SkRegionPriv::RunType* ptr = runs;
+ while (*ptr != SkRegion_kRunTypeSentinel) { ptr += 2; }
+ return ptr - runs;
+}
+
+static int operate_on_span(const SkRegionPriv::RunType a_runs[],
+ const SkRegionPriv::RunType b_runs[],
+ RunArray* array, int dstOffset,
+ int min, int max) {
+ // This is a worst-case for this span plus two for TWO terminating sentinels.
+ array->resizeToAtLeast(
+ dstOffset + distance_to_sentinel(a_runs) + distance_to_sentinel(b_runs) + 2);
+ SkRegionPriv::RunType* dst = &(*array)[dstOffset]; // get pointer AFTER resizing.
+
+ spanRec rec;
+ bool firstInterval = true;
+
+ rec.init(a_runs, b_runs);
+
+ while (!rec.done()) {
+ rec.next();
+
+ int left = rec.fLeft;
+ int rite = rec.fRite;
+
+ // add left,rite to our dst buffer (checking for coincidence
+ if ((unsigned)(rec.fInside - min) <= (unsigned)(max - min) &&
+ left < rite) { // skip if equal
+ if (firstInterval || *(dst - 1) < left) {
+ *dst++ = (SkRegionPriv::RunType)(left);
+ *dst++ = (SkRegionPriv::RunType)(rite);
+ firstInterval = false;
+ } else {
+ // update the right edge
+ *(dst - 1) = (SkRegionPriv::RunType)(rite);
+ }
+ }
+ }
+ SkASSERT(dst < &(*array)[array->count() - 1]);
+ *dst++ = SkRegion_kRunTypeSentinel;
+ return dst - &(*array)[0];
+}
+
+#if defined _WIN32
+#pragma warning ( pop )
+#endif
+
+static const struct {
+ uint8_t fMin;
+ uint8_t fMax;
+} gOpMinMax[] = {
+ { 1, 1 }, // Difference
+ { 3, 3 }, // Intersection
+ { 1, 3 }, // Union
+ { 1, 2 } // XOR
+};
+// need to ensure that the op enum lines up with our minmax array
+static_assert(0 == SkRegion::kDifference_Op, "");
+static_assert(1 == SkRegion::kIntersect_Op, "");
+static_assert(2 == SkRegion::kUnion_Op, "");
+static_assert(3 == SkRegion::kXOR_Op, "");
+
+class RgnOper {
+public:
+ RgnOper(int top, RunArray* array, SkRegion::Op op)
+ : fMin(gOpMinMax[op].fMin)
+ , fMax(gOpMinMax[op].fMax)
+ , fArray(array)
+ , fTop((SkRegionPriv::RunType)top) // just a first guess, we might update this
+ { SkASSERT((unsigned)op <= 3); }
+
+ void addSpan(int bottom, const SkRegionPriv::RunType a_runs[],
+ const SkRegionPriv::RunType b_runs[]) {
+ // skip X values and slots for the next Y+intervalCount
+ int start = fPrevDst + fPrevLen + 2;
+ // start points to beginning of dst interval
+ int stop = operate_on_span(a_runs, b_runs, fArray, start, fMin, fMax);
+ size_t len = SkToSizeT(stop - start);
+ SkASSERT(len >= 1 && (len & 1) == 1);
+ SkASSERT(SkRegion_kRunTypeSentinel == (*fArray)[stop - 1]);
+
+ // Assert memcmp won't exceed fArray->count().
+ SkASSERT(fArray->count() >= SkToInt(start + len - 1));
+ if (fPrevLen == len &&
+ (1 == len || !memcmp(&(*fArray)[fPrevDst],
+ &(*fArray)[start],
+ (len - 1) * sizeof(SkRegionPriv::RunType)))) {
+ // update Y value
+ (*fArray)[fPrevDst - 2] = (SkRegionPriv::RunType)bottom;
+ } else { // accept the new span
+ if (len == 1 && fPrevLen == 0) {
+ fTop = (SkRegionPriv::RunType)bottom; // just update our bottom
+ } else {
+ (*fArray)[start - 2] = (SkRegionPriv::RunType)bottom;
+ (*fArray)[start - 1] = SkToS32(len >> 1);
+ fPrevDst = start;
+ fPrevLen = len;
+ }
+ }
+ }
+
+ int flush() {
+ (*fArray)[fStartDst] = fTop;
+ // Previously reserved enough for TWO sentinals.
+ SkASSERT(fArray->count() > SkToInt(fPrevDst + fPrevLen));
+ (*fArray)[fPrevDst + fPrevLen] = SkRegion_kRunTypeSentinel;
+ return (int)(fPrevDst - fStartDst + fPrevLen + 1);
+ }
+
+ bool isEmpty() const { return 0 == fPrevLen; }
+
+ uint8_t fMin, fMax;
+
+private:
+ RunArray* fArray;
+ int fStartDst = 0;
+ int fPrevDst = 1;
+ size_t fPrevLen = 0; // will never match a length from operate_on_span
+ SkRegionPriv::RunType fTop;
+};
+
+// want a unique value to signal that we exited due to quickExit
+#define QUICK_EXIT_TRUE_COUNT (-1)
+
+static int operate(const SkRegionPriv::RunType a_runs[],
+ const SkRegionPriv::RunType b_runs[],
+ RunArray* dst,
+ SkRegion::Op op,
+ bool quickExit) {
+ const SkRegionPriv::RunType gEmptyScanline[] = {
+ 0, // fake bottom value
+ 0, // zero intervals
+ SkRegion_kRunTypeSentinel,
+ // just need a 2nd value, since spanRec.init() reads 2 values, even
+ // though if the first value is the sentinel, it ignores the 2nd value.
+ // w/o the 2nd value here, we might read uninitialized memory.
+ // This happens when we are using gSentinel, which is pointing at
+ // our sentinel value.
+ 0
+ };
+ const SkRegionPriv::RunType* const gSentinel = &gEmptyScanline[2];
+
+ int a_top = *a_runs++;
+ int a_bot = *a_runs++;
+ int b_top = *b_runs++;
+ int b_bot = *b_runs++;
+
+ a_runs += 1; // skip the intervalCount;
+ b_runs += 1; // skip the intervalCount;
+
+ // Now a_runs and b_runs to their intervals (or sentinel)
+
+ assert_sentinel(a_top, false);
+ assert_sentinel(a_bot, false);
+ assert_sentinel(b_top, false);
+ assert_sentinel(b_bot, false);
+
+ RgnOper oper(std::min(a_top, b_top), dst, op);
+
+ int prevBot = SkRegion_kRunTypeSentinel; // so we fail the first test
+
+ while (a_bot < SkRegion_kRunTypeSentinel ||
+ b_bot < SkRegion_kRunTypeSentinel) {
+ int top, bot SK_INIT_TO_AVOID_WARNING;
+ const SkRegionPriv::RunType* run0 = gSentinel;
+ const SkRegionPriv::RunType* run1 = gSentinel;
+ bool a_flush = false;
+ bool b_flush = false;
+
+ if (a_top < b_top) {
+ top = a_top;
+ run0 = a_runs;
+ if (a_bot <= b_top) { // [...] <...>
+ bot = a_bot;
+ a_flush = true;
+ } else { // [...<..]...> or [...<...>...]
+ bot = a_top = b_top;
+ }
+ } else if (b_top < a_top) {
+ top = b_top;
+ run1 = b_runs;
+ if (b_bot <= a_top) { // [...] <...>
+ bot = b_bot;
+ b_flush = true;
+ } else { // [...<..]...> or [...<...>...]
+ bot = b_top = a_top;
+ }
+ } else { // a_top == b_top
+ top = a_top; // or b_top
+ run0 = a_runs;
+ run1 = b_runs;
+ if (a_bot <= b_bot) {
+ bot = b_top = a_bot;
+ a_flush = true;
+ }
+ if (b_bot <= a_bot) {
+ bot = a_top = b_bot;
+ b_flush = true;
+ }
+ }
+
+ if (top > prevBot) {
+ oper.addSpan(top, gSentinel, gSentinel);
+ }
+ oper.addSpan(bot, run0, run1);
+
+ if (quickExit && !oper.isEmpty()) {
+ return QUICK_EXIT_TRUE_COUNT;
+ }
+
+ if (a_flush) {
+ a_runs = skip_intervals(a_runs);
+ a_top = a_bot;
+ a_bot = *a_runs++;
+ a_runs += 1; // skip uninitialized intervalCount
+ if (a_bot == SkRegion_kRunTypeSentinel) {
+ a_top = a_bot;
+ }
+ }
+ if (b_flush) {
+ b_runs = skip_intervals(b_runs);
+ b_top = b_bot;
+ b_bot = *b_runs++;
+ b_runs += 1; // skip uninitialized intervalCount
+ if (b_bot == SkRegion_kRunTypeSentinel) {
+ b_top = b_bot;
+ }
+ }
+
+ prevBot = bot;
+ }
+ return oper.flush();
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+/* Given count RunTypes in a complex region, return the worst case number of
+ logical intervals that represents (i.e. number of rects that would be
+ returned from the iterator).
+
+ We could just return count/2, since there must be at least 2 values per
+ interval, but we can first trim off the const overhead of the initial TOP
+ value, plus the final BOTTOM + 2 sentinels.
+ */
+#if 0 // UNUSED
+static int count_to_intervals(int count) {
+ SkASSERT(count >= 6); // a single rect is 6 values
+ return (count - 4) >> 1;
+}
+#endif
+
+static bool setEmptyCheck(SkRegion* result) {
+ return result ? result->setEmpty() : false;
+}
+
+static bool setRectCheck(SkRegion* result, const SkIRect& rect) {
+ return result ? result->setRect(rect) : !rect.isEmpty();
+}
+
+static bool setRegionCheck(SkRegion* result, const SkRegion& rgn) {
+ return result ? result->setRegion(rgn) : !rgn.isEmpty();
+}
+
+bool SkRegion::Oper(const SkRegion& rgnaOrig, const SkRegion& rgnbOrig, Op op,
+ SkRegion* result) {
+ SkASSERT((unsigned)op < kOpCount);
+
+ if (kReplace_Op == op) {
+ return setRegionCheck(result, rgnbOrig);
+ }
+
+ // swith to using pointers, so we can swap them as needed
+ const SkRegion* rgna = &rgnaOrig;
+ const SkRegion* rgnb = &rgnbOrig;
+ // after this point, do not refer to rgnaOrig or rgnbOrig!!!
+
+ // collaps difference and reverse-difference into just difference
+ if (kReverseDifference_Op == op) {
+ using std::swap;
+ swap(rgna, rgnb);
+ op = kDifference_Op;
+ }
+
+ SkIRect bounds;
+ bool a_empty = rgna->isEmpty();
+ bool b_empty = rgnb->isEmpty();
+ bool a_rect = rgna->isRect();
+ bool b_rect = rgnb->isRect();
+
+ switch (op) {
+ case kDifference_Op:
+ if (a_empty) {
+ return setEmptyCheck(result);
+ }
+ if (b_empty || !SkIRect::Intersects(rgna->fBounds, rgnb->fBounds)) {
+ return setRegionCheck(result, *rgna);
+ }
+ if (b_rect && rgnb->fBounds.containsNoEmptyCheck(rgna->fBounds)) {
+ return setEmptyCheck(result);
+ }
+ break;
+
+ case kIntersect_Op:
+ if ((a_empty | b_empty)
+ || !bounds.intersect(rgna->fBounds, rgnb->fBounds)) {
+ return setEmptyCheck(result);
+ }
+ if (a_rect & b_rect) {
+ return setRectCheck(result, bounds);
+ }
+ if (a_rect && rgna->fBounds.contains(rgnb->fBounds)) {
+ return setRegionCheck(result, *rgnb);
+ }
+ if (b_rect && rgnb->fBounds.contains(rgna->fBounds)) {
+ return setRegionCheck(result, *rgna);
+ }
+ break;
+
+ case kUnion_Op:
+ if (a_empty) {
+ return setRegionCheck(result, *rgnb);
+ }
+ if (b_empty) {
+ return setRegionCheck(result, *rgna);
+ }
+ if (a_rect && rgna->fBounds.contains(rgnb->fBounds)) {
+ return setRegionCheck(result, *rgna);
+ }
+ if (b_rect && rgnb->fBounds.contains(rgna->fBounds)) {
+ return setRegionCheck(result, *rgnb);
+ }
+ break;
+
+ case kXOR_Op:
+ if (a_empty) {
+ return setRegionCheck(result, *rgnb);
+ }
+ if (b_empty) {
+ return setRegionCheck(result, *rgna);
+ }
+ break;
+ default:
+ SkDEBUGFAIL("unknown region op");
+ return false;
+ }
+
+ RunType tmpA[kRectRegionRuns];
+ RunType tmpB[kRectRegionRuns];
+
+ int a_intervals, b_intervals;
+ const RunType* a_runs = rgna->getRuns(tmpA, &a_intervals);
+ const RunType* b_runs = rgnb->getRuns(tmpB, &b_intervals);
+
+ RunArray array;
+ int count = operate(a_runs, b_runs, &array, op, nullptr == result);
+ SkASSERT(count <= array.count());
+
+ if (result) {
+ SkASSERT(count >= 0);
+ return result->setRuns(&array[0], count);
+ } else {
+ return (QUICK_EXIT_TRUE_COUNT == count) || !isRunCountEmpty(count);
+ }
+}
+
+bool SkRegion::op(const SkRegion& rgna, const SkRegion& rgnb, Op op) {
+ SkDEBUGCODE(SkRegionPriv::Validate(*this));
+ return SkRegion::Oper(rgna, rgnb, op, this);
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+#include "src/base/SkBuffer.h"
+
+size_t SkRegion::writeToMemory(void* storage) const {
+ if (nullptr == storage) {
+ size_t size = sizeof(int32_t); // -1 (empty), 0 (rect), runCount
+ if (!this->isEmpty()) {
+ size += sizeof(fBounds);
+ if (this->isComplex()) {
+ size += 2 * sizeof(int32_t); // ySpanCount + intervalCount
+ size += fRunHead->fRunCount * sizeof(RunType);
+ }
+ }
+ return size;
+ }
+
+ SkWBuffer buffer(storage);
+
+ if (this->isEmpty()) {
+ buffer.write32(-1);
+ } else {
+ bool isRect = this->isRect();
+
+ buffer.write32(isRect ? 0 : fRunHead->fRunCount);
+ buffer.write(&fBounds, sizeof(fBounds));
+
+ if (!isRect) {
+ buffer.write32(fRunHead->getYSpanCount());
+ buffer.write32(fRunHead->getIntervalCount());
+ buffer.write(fRunHead->readonly_runs(),
+ fRunHead->fRunCount * sizeof(RunType));
+ }
+ }
+ return buffer.pos();
+}
+
+static bool validate_run_count(int ySpanCount, int intervalCount, int runCount) {
+ // return 2 + 3 * ySpanCount + 2 * intervalCount;
+ if (ySpanCount < 1 || intervalCount < 2) {
+ return false;
+ }
+ SkSafeMath safeMath;
+ int sum = 2;
+ sum = safeMath.addInt(sum, ySpanCount);
+ sum = safeMath.addInt(sum, ySpanCount);
+ sum = safeMath.addInt(sum, ySpanCount);
+ sum = safeMath.addInt(sum, intervalCount);
+ sum = safeMath.addInt(sum, intervalCount);
+ return safeMath && sum == runCount;
+}
+
+// Validate that a memory sequence is a valid region.
+// Try to check all possible errors.
+// never read beyond &runs[runCount-1].
+static bool validate_run(const int32_t* runs,
+ int runCount,
+ const SkIRect& givenBounds,
+ int32_t ySpanCount,
+ int32_t intervalCount) {
+ // Region Layout:
+ // Top ( Bottom Span_Interval_Count ( Left Right )* Sentinel )+ Sentinel
+ if (!validate_run_count(SkToInt(ySpanCount), SkToInt(intervalCount), runCount)) {
+ return false;
+ }
+ SkASSERT(runCount >= 7); // 7==SkRegion::kRectRegionRuns
+ // quick safety check:
+ if (runs[runCount - 1] != SkRegion_kRunTypeSentinel ||
+ runs[runCount - 2] != SkRegion_kRunTypeSentinel) {
+ return false;
+ }
+ const int32_t* const end = runs + runCount;
+ SkIRect bounds = {0, 0, 0 ,0}; // calulated bounds
+ SkIRect rect = {0, 0, 0, 0}; // current rect
+ rect.fTop = *runs++;
+ if (rect.fTop == SkRegion_kRunTypeSentinel) {
+ return false; // no rect can contain SkRegion_kRunTypeSentinel
+ }
+ if (rect.fTop != givenBounds.fTop) {
+ return false; // Must not begin with empty span that does not contribute to bounds.
+ }
+ do {
+ --ySpanCount;
+ if (ySpanCount < 0) {
+ return false; // too many yspans
+ }
+ rect.fBottom = *runs++;
+ if (rect.fBottom == SkRegion_kRunTypeSentinel) {
+ return false;
+ }
+ if (rect.fBottom > givenBounds.fBottom) {
+ return false; // Must not end with empty span that does not contribute to bounds.
+ }
+ if (rect.fBottom <= rect.fTop) {
+ return false; // y-intervals must be ordered; rects must be non-empty.
+ }
+
+ int32_t xIntervals = *runs++;
+ SkASSERT(runs < end);
+ if (xIntervals < 0 || xIntervals > intervalCount || runs + 1 + 2 * xIntervals > end) {
+ return false;
+ }
+ intervalCount -= xIntervals;
+ bool firstInterval = true;
+ int32_t lastRight = 0; // check that x-intervals are distinct and ordered.
+ while (xIntervals-- > 0) {
+ rect.fLeft = *runs++;
+ rect.fRight = *runs++;
+ if (rect.fLeft == SkRegion_kRunTypeSentinel ||
+ rect.fRight == SkRegion_kRunTypeSentinel ||
+ rect.fLeft >= rect.fRight || // check non-empty rect
+ (!firstInterval && rect.fLeft <= lastRight)) {
+ return false;
+ }
+ lastRight = rect.fRight;
+ firstInterval = false;
+ bounds.join(rect);
+ }
+ if (*runs++ != SkRegion_kRunTypeSentinel) {
+ return false; // required check sentinal.
+ }
+ rect.fTop = rect.fBottom;
+ SkASSERT(runs < end);
+ } while (*runs != SkRegion_kRunTypeSentinel);
+ ++runs;
+ if (ySpanCount != 0 || intervalCount != 0 || givenBounds != bounds) {
+ return false;
+ }
+ SkASSERT(runs == end); // if ySpanCount && intervalCount are right, must be correct length.
+ return true;
+}
+size_t SkRegion::readFromMemory(const void* storage, size_t length) {
+ SkRBuffer buffer(storage, length);
+ SkRegion tmp;
+ int32_t count;
+
+ // Serialized Region Format:
+ // Empty:
+ // -1
+ // Simple Rect:
+ // 0 LEFT TOP RIGHT BOTTOM
+ // Complex Region:
+ // COUNT LEFT TOP RIGHT BOTTOM Y_SPAN_COUNT TOTAL_INTERVAL_COUNT [RUNS....]
+ if (!buffer.readS32(&count) || count < -1) {
+ return 0;
+ }
+ if (count >= 0) {
+ if (!buffer.read(&tmp.fBounds, sizeof(tmp.fBounds)) || tmp.fBounds.isEmpty()) {
+ return 0; // Short buffer or bad bounds for non-empty region; report failure.
+ }
+ if (count == 0) {
+ tmp.fRunHead = SkRegion_gRectRunHeadPtr;
+ } else {
+ int32_t ySpanCount, intervalCount;
+ if (!buffer.readS32(&ySpanCount) ||
+ !buffer.readS32(&intervalCount) ||
+ buffer.available() < count * sizeof(int32_t)) {
+ return 0;
+ }
+ if (!validate_run((const int32_t*)((const char*)storage + buffer.pos()), count,
+ tmp.fBounds, ySpanCount, intervalCount)) {
+ return 0; // invalid runs, don't even allocate
+ }
+ tmp.allocateRuns(count, ySpanCount, intervalCount);
+ SkASSERT(tmp.isComplex());
+ SkAssertResult(buffer.read(tmp.fRunHead->writable_runs(), count * sizeof(int32_t)));
+ }
+ }
+ SkASSERT(tmp.isValid());
+ SkASSERT(buffer.isValid());
+ this->swap(tmp);
+ return buffer.pos();
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+bool SkRegion::isValid() const {
+ if (this->isEmpty()) {
+ return fBounds == SkIRect{0, 0, 0, 0};
+ }
+ if (fBounds.isEmpty()) {
+ return false;
+ }
+ if (this->isRect()) {
+ return true;
+ }
+ return fRunHead && fRunHead->fRefCnt > 0 &&
+ validate_run(fRunHead->readonly_runs(), fRunHead->fRunCount, fBounds,
+ fRunHead->getYSpanCount(), fRunHead->getIntervalCount());
+}
+
+#ifdef SK_DEBUG
+void SkRegionPriv::Validate(const SkRegion& rgn) { SkASSERT(rgn.isValid()); }
+
+void SkRegion::dump() const {
+ if (this->isEmpty()) {
+ SkDebugf(" rgn: empty\n");
+ } else {
+ SkDebugf(" rgn: [%d %d %d %d]", fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom);
+ if (this->isComplex()) {
+ const RunType* runs = fRunHead->readonly_runs();
+ for (int i = 0; i < fRunHead->fRunCount; i++)
+ SkDebugf(" %d", runs[i]);
+ }
+ SkDebugf("\n");
+ }
+}
+
+#endif
+
+///////////////////////////////////////////////////////////////////////////////
+
+SkRegion::Iterator::Iterator(const SkRegion& rgn) {
+ this->reset(rgn);
+}
+
+bool SkRegion::Iterator::rewind() {
+ if (fRgn) {
+ this->reset(*fRgn);
+ return true;
+ }
+ return false;
+}
+
+void SkRegion::Iterator::reset(const SkRegion& rgn) {
+ fRgn = &rgn;
+ if (rgn.isEmpty()) {
+ fDone = true;
+ } else {
+ fDone = false;
+ if (rgn.isRect()) {
+ fRect = rgn.fBounds;
+ fRuns = nullptr;
+ } else {
+ fRuns = rgn.fRunHead->readonly_runs();
+ fRect.setLTRB(fRuns[3], fRuns[0], fRuns[4], fRuns[1]);
+ fRuns += 5;
+ // Now fRuns points to the 2nd interval (or x-sentinel)
+ }
+ }
+}
+
+void SkRegion::Iterator::next() {
+ if (fDone) {
+ return;
+ }
+
+ if (fRuns == nullptr) { // rect case
+ fDone = true;
+ return;
+ }
+
+ const RunType* runs = fRuns;
+
+ if (runs[0] < SkRegion_kRunTypeSentinel) { // valid X value
+ fRect.fLeft = runs[0];
+ fRect.fRight = runs[1];
+ runs += 2;
+ } else { // we're at the end of a line
+ runs += 1;
+ if (runs[0] < SkRegion_kRunTypeSentinel) { // valid Y value
+ int intervals = runs[1];
+ if (0 == intervals) { // empty line
+ fRect.fTop = runs[0];
+ runs += 3;
+ } else {
+ fRect.fTop = fRect.fBottom;
+ }
+
+ fRect.fBottom = runs[0];
+ assert_sentinel(runs[2], false);
+ assert_sentinel(runs[3], false);
+ fRect.fLeft = runs[2];
+ fRect.fRight = runs[3];
+ runs += 4;
+ } else { // end of rgn
+ fDone = true;
+ }
+ }
+ fRuns = runs;
+}
+
+SkRegion::Cliperator::Cliperator(const SkRegion& rgn, const SkIRect& clip)
+ : fIter(rgn), fClip(clip), fDone(true) {
+ const SkIRect& r = fIter.rect();
+
+ while (!fIter.done()) {
+ if (r.fTop >= clip.fBottom) {
+ break;
+ }
+ if (fRect.intersect(clip, r)) {
+ fDone = false;
+ break;
+ }
+ fIter.next();
+ }
+}
+
+void SkRegion::Cliperator::next() {
+ if (fDone) {
+ return;
+ }
+
+ const SkIRect& r = fIter.rect();
+
+ fDone = true;
+ fIter.next();
+ while (!fIter.done()) {
+ if (r.fTop >= fClip.fBottom) {
+ break;
+ }
+ if (fRect.intersect(fClip, r)) {
+ fDone = false;
+ break;
+ }
+ fIter.next();
+ }
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+SkRegion::Spanerator::Spanerator(const SkRegion& rgn, int y, int left,
+ int right) {
+ SkDEBUGCODE(SkRegionPriv::Validate(rgn));
+
+ const SkIRect& r = rgn.getBounds();
+
+ fDone = true;
+ if (!rgn.isEmpty() && y >= r.fTop && y < r.fBottom &&
+ right > r.fLeft && left < r.fRight) {
+ if (rgn.isRect()) {
+ if (left < r.fLeft) {
+ left = r.fLeft;
+ }
+ if (right > r.fRight) {
+ right = r.fRight;
+ }
+ fLeft = left;
+ fRight = right;
+ fRuns = nullptr; // means we're a rect, not a rgn
+ fDone = false;
+ } else {
+ const SkRegion::RunType* runs = rgn.fRunHead->findScanline(y);
+ runs += 2; // skip Bottom and IntervalCount
+ for (;;) {
+ // runs[0..1] is to the right of the span, so we're done
+ if (runs[0] >= right) {
+ break;
+ }
+ // runs[0..1] is to the left of the span, so continue
+ if (runs[1] <= left) {
+ runs += 2;
+ continue;
+ }
+ // runs[0..1] intersects the span
+ fRuns = runs;
+ fLeft = left;
+ fRight = right;
+ fDone = false;
+ break;
+ }
+ }
+ }
+}
+
+bool SkRegion::Spanerator::next(int* left, int* right) {
+ if (fDone) {
+ return false;
+ }
+
+ if (fRuns == nullptr) { // we're a rect
+ fDone = true; // ok, now we're done
+ if (left) {
+ *left = fLeft;
+ }
+ if (right) {
+ *right = fRight;
+ }
+ return true; // this interval is legal
+ }
+
+ const SkRegion::RunType* runs = fRuns;
+
+ if (runs[0] >= fRight) {
+ fDone = true;
+ return false;
+ }
+
+ SkASSERT(runs[1] > fLeft);
+
+ if (left) {
+ *left = std::max(fLeft, runs[0]);
+ }
+ if (right) {
+ *right = std::min(fRight, runs[1]);
+ }
+ fRuns = runs + 2;
+ return true;
+}
+
+///////////////////////////////////////////////////////////////////////////////////////////////////
+
+static void visit_pairs(int pairCount, int y, const int32_t pairs[],
+ const std::function<void(const SkIRect&)>& visitor) {
+ for (int i = 0; i < pairCount; ++i) {
+ visitor({ pairs[0], y, pairs[1], y + 1 });
+ pairs += 2;
+ }
+}
+
+void SkRegionPriv::VisitSpans(const SkRegion& rgn,
+ const std::function<void(const SkIRect&)>& visitor) {
+ if (rgn.isEmpty()) {
+ return;
+ }
+ if (rgn.isRect()) {
+ visitor(rgn.getBounds());
+ } else {
+ const int32_t* p = rgn.fRunHead->readonly_runs();
+ int32_t top = *p++;
+ int32_t bot = *p++;
+ do {
+ int pairCount = *p++;
+ if (pairCount == 1) {
+ visitor({ p[0], top, p[1], bot });
+ p += 2;
+ } else if (pairCount > 1) {
+ // we have to loop repeated in Y, sending each interval in Y -> X order
+ for (int y = top; y < bot; ++y) {
+ visit_pairs(pairCount, y, p, visitor);
+ }
+ p += pairCount * 2;
+ }
+ assert_sentinel(*p, true);
+ p += 1; // skip sentinel
+
+ // read next bottom or sentinel
+ top = bot;
+ bot = *p++;
+ } while (!SkRegionValueIsSentinel(bot));
+ }
+}
+