summaryrefslogtreecommitdiffstats
path: root/gfx/skia/skia/src/pathops/SkPathOpsQuad.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gfx/skia/skia/src/pathops/SkPathOpsQuad.cpp')
-rw-r--r--gfx/skia/skia/src/pathops/SkPathOpsQuad.cpp423
1 files changed, 423 insertions, 0 deletions
diff --git a/gfx/skia/skia/src/pathops/SkPathOpsQuad.cpp b/gfx/skia/skia/src/pathops/SkPathOpsQuad.cpp
new file mode 100644
index 0000000000..74578734aa
--- /dev/null
+++ b/gfx/skia/skia/src/pathops/SkPathOpsQuad.cpp
@@ -0,0 +1,423 @@
+/*
+ * Copyright 2012 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+#include "src/pathops/SkPathOpsQuad.h"
+
+#include "src/pathops/SkIntersections.h"
+#include "src/pathops/SkLineParameters.h"
+#include "src/pathops/SkPathOpsConic.h"
+#include "src/pathops/SkPathOpsCubic.h"
+#include "src/pathops/SkPathOpsLine.h"
+#include "src/pathops/SkPathOpsRect.h"
+#include "src/pathops/SkPathOpsTypes.h"
+
+#include <algorithm>
+#include <cmath>
+
+// from blackpawn.com/texts/pointinpoly
+static bool pointInTriangle(const SkDPoint fPts[3], const SkDPoint& test) {
+ SkDVector v0 = fPts[2] - fPts[0];
+ SkDVector v1 = fPts[1] - fPts[0];
+ SkDVector v2 = test - fPts[0];
+ double dot00 = v0.dot(v0);
+ double dot01 = v0.dot(v1);
+ double dot02 = v0.dot(v2);
+ double dot11 = v1.dot(v1);
+ double dot12 = v1.dot(v2);
+ // Compute barycentric coordinates
+ double denom = dot00 * dot11 - dot01 * dot01;
+ double u = dot11 * dot02 - dot01 * dot12;
+ double v = dot00 * dot12 - dot01 * dot02;
+ // Check if point is in triangle
+ if (denom >= 0) {
+ return u >= 0 && v >= 0 && u + v < denom;
+ }
+ return u <= 0 && v <= 0 && u + v > denom;
+}
+
+static bool matchesEnd(const SkDPoint fPts[3], const SkDPoint& test) {
+ return fPts[0] == test || fPts[2] == test;
+}
+
+/* started with at_most_end_pts_in_common from SkDQuadIntersection.cpp */
+// Do a quick reject by rotating all points relative to a line formed by
+// a pair of one quad's points. If the 2nd quad's points
+// are on the line or on the opposite side from the 1st quad's 'odd man', the
+// curves at most intersect at the endpoints.
+/* if returning true, check contains true if quad's hull collapsed, making the cubic linear
+ if returning false, check contains true if the the quad pair have only the end point in common
+*/
+bool SkDQuad::hullIntersects(const SkDQuad& q2, bool* isLinear) const {
+ bool linear = true;
+ for (int oddMan = 0; oddMan < kPointCount; ++oddMan) {
+ const SkDPoint* endPt[2];
+ this->otherPts(oddMan, endPt);
+ double origX = endPt[0]->fX;
+ double origY = endPt[0]->fY;
+ double adj = endPt[1]->fX - origX;
+ double opp = endPt[1]->fY - origY;
+ double sign = (fPts[oddMan].fY - origY) * adj - (fPts[oddMan].fX - origX) * opp;
+ if (approximately_zero(sign)) {
+ continue;
+ }
+ linear = false;
+ bool foundOutlier = false;
+ for (int n = 0; n < kPointCount; ++n) {
+ double test = (q2[n].fY - origY) * adj - (q2[n].fX - origX) * opp;
+ if (test * sign > 0 && !precisely_zero(test)) {
+ foundOutlier = true;
+ break;
+ }
+ }
+ if (!foundOutlier) {
+ return false;
+ }
+ }
+ if (linear && !matchesEnd(fPts, q2.fPts[0]) && !matchesEnd(fPts, q2.fPts[2])) {
+ // if the end point of the opposite quad is inside the hull that is nearly a line,
+ // then representing the quad as a line may cause the intersection to be missed.
+ // Check to see if the endpoint is in the triangle.
+ if (pointInTriangle(fPts, q2.fPts[0]) || pointInTriangle(fPts, q2.fPts[2])) {
+ linear = false;
+ }
+ }
+ *isLinear = linear;
+ return true;
+}
+
+bool SkDQuad::hullIntersects(const SkDConic& conic, bool* isLinear) const {
+ return conic.hullIntersects(*this, isLinear);
+}
+
+bool SkDQuad::hullIntersects(const SkDCubic& cubic, bool* isLinear) const {
+ return cubic.hullIntersects(*this, isLinear);
+}
+
+/* bit twiddling for finding the off curve index (x&~m is the pair in [0,1,2] excluding oddMan)
+oddMan opp x=oddMan^opp x=x-oddMan m=x>>2 x&~m
+ 0 1 1 1 0 1
+ 2 2 2 0 2
+ 1 1 0 -1 -1 0
+ 2 3 2 0 2
+ 2 1 3 1 0 1
+ 2 0 -2 -1 0
+*/
+void SkDQuad::otherPts(int oddMan, const SkDPoint* endPt[2]) const {
+ for (int opp = 1; opp < kPointCount; ++opp) {
+ int end = (oddMan ^ opp) - oddMan; // choose a value not equal to oddMan
+ end &= ~(end >> 2); // if the value went negative, set it to zero
+ endPt[opp - 1] = &fPts[end];
+ }
+}
+
+int SkDQuad::AddValidTs(double s[], int realRoots, double* t) {
+ int foundRoots = 0;
+ for (int index = 0; index < realRoots; ++index) {
+ double tValue = s[index];
+ if (approximately_zero_or_more(tValue) && approximately_one_or_less(tValue)) {
+ if (approximately_less_than_zero(tValue)) {
+ tValue = 0;
+ } else if (approximately_greater_than_one(tValue)) {
+ tValue = 1;
+ }
+ for (int idx2 = 0; idx2 < foundRoots; ++idx2) {
+ if (approximately_equal(t[idx2], tValue)) {
+ goto nextRoot;
+ }
+ }
+ t[foundRoots++] = tValue;
+ }
+nextRoot:
+ {}
+ }
+ return foundRoots;
+}
+
+// note: caller expects multiple results to be sorted smaller first
+// note: http://en.wikipedia.org/wiki/Loss_of_significance has an interesting
+// analysis of the quadratic equation, suggesting why the following looks at
+// the sign of B -- and further suggesting that the greatest loss of precision
+// is in b squared less two a c
+int SkDQuad::RootsValidT(double A, double B, double C, double t[2]) {
+ double s[2];
+ int realRoots = RootsReal(A, B, C, s);
+ int foundRoots = AddValidTs(s, realRoots, t);
+ return foundRoots;
+}
+
+static int handle_zero(const double B, const double C, double s[2]) {
+ if (approximately_zero(B)) {
+ s[0] = 0;
+ return C == 0;
+ }
+ s[0] = -C / B;
+ return 1;
+}
+
+/*
+Numeric Solutions (5.6) suggests to solve the quadratic by computing
+ Q = -1/2(B + sgn(B)Sqrt(B^2 - 4 A C))
+and using the roots
+ t1 = Q / A
+ t2 = C / Q
+*/
+// this does not discard real roots <= 0 or >= 1
+// TODO(skbug.com/14063) Deduplicate with SkQuads::RootsReal
+int SkDQuad::RootsReal(const double A, const double B, const double C, double s[2]) {
+ if (!A) {
+ return handle_zero(B, C, s);
+ }
+ const double p = B / (2 * A);
+ const double q = C / A;
+ if (approximately_zero(A) && (approximately_zero_inverse(p) || approximately_zero_inverse(q))) {
+ return handle_zero(B, C, s);
+ }
+ /* normal form: x^2 + px + q = 0 */
+ const double p2 = p * p;
+ if (!AlmostDequalUlps(p2, q) && p2 < q) {
+ return 0;
+ }
+ double sqrt_D = 0;
+ if (p2 > q) {
+ sqrt_D = sqrt(p2 - q);
+ }
+ s[0] = sqrt_D - p;
+ s[1] = -sqrt_D - p;
+ return 1 + !AlmostDequalUlps(s[0], s[1]);
+}
+
+bool SkDQuad::isLinear(int startIndex, int endIndex) const {
+ SkLineParameters lineParameters;
+ lineParameters.quadEndPoints(*this, startIndex, endIndex);
+ // FIXME: maybe it's possible to avoid this and compare non-normalized
+ lineParameters.normalize();
+ double distance = lineParameters.controlPtDistance(*this);
+ double tiniest = std::min(std::min(std::min(std::min(std::min(fPts[0].fX, fPts[0].fY),
+ fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY);
+ double largest = std::max(std::max(std::max(std::max(std::max(fPts[0].fX, fPts[0].fY),
+ fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY);
+ largest = std::max(largest, -tiniest);
+ return approximately_zero_when_compared_to(distance, largest);
+}
+
+SkDVector SkDQuad::dxdyAtT(double t) const {
+ double a = t - 1;
+ double b = 1 - 2 * t;
+ double c = t;
+ SkDVector result = { a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX,
+ a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY };
+ if (result.fX == 0 && result.fY == 0) {
+ if (zero_or_one(t)) {
+ result = fPts[2] - fPts[0];
+ } else {
+ // incomplete
+ SkDebugf("!q");
+ }
+ }
+ return result;
+}
+
+// OPTIMIZE: assert if caller passes in t == 0 / t == 1 ?
+SkDPoint SkDQuad::ptAtT(double t) const {
+ if (0 == t) {
+ return fPts[0];
+ }
+ if (1 == t) {
+ return fPts[2];
+ }
+ double one_t = 1 - t;
+ double a = one_t * one_t;
+ double b = 2 * one_t * t;
+ double c = t * t;
+ SkDPoint result = { a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX,
+ a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY };
+ return result;
+}
+
+static double interp_quad_coords(const double* src, double t) {
+ if (0 == t) {
+ return src[0];
+ }
+ if (1 == t) {
+ return src[4];
+ }
+ double ab = SkDInterp(src[0], src[2], t);
+ double bc = SkDInterp(src[2], src[4], t);
+ double abc = SkDInterp(ab, bc, t);
+ return abc;
+}
+
+bool SkDQuad::monotonicInX() const {
+ return between(fPts[0].fX, fPts[1].fX, fPts[2].fX);
+}
+
+bool SkDQuad::monotonicInY() const {
+ return between(fPts[0].fY, fPts[1].fY, fPts[2].fY);
+}
+
+/*
+Given a quadratic q, t1, and t2, find a small quadratic segment.
+
+The new quadratic is defined by A, B, and C, where
+ A = c[0]*(1 - t1)*(1 - t1) + 2*c[1]*t1*(1 - t1) + c[2]*t1*t1
+ C = c[3]*(1 - t1)*(1 - t1) + 2*c[2]*t1*(1 - t1) + c[1]*t1*t1
+
+To find B, compute the point halfway between t1 and t2:
+
+q(at (t1 + t2)/2) == D
+
+Next, compute where D must be if we know the value of B:
+
+_12 = A/2 + B/2
+12_ = B/2 + C/2
+123 = A/4 + B/2 + C/4
+ = D
+
+Group the known values on one side:
+
+B = D*2 - A/2 - C/2
+*/
+
+// OPTIMIZE? : special case t1 = 1 && t2 = 0
+SkDQuad SkDQuad::subDivide(double t1, double t2) const {
+ if (0 == t1 && 1 == t2) {
+ return *this;
+ }
+ SkDQuad dst;
+ double ax = dst[0].fX = interp_quad_coords(&fPts[0].fX, t1);
+ double ay = dst[0].fY = interp_quad_coords(&fPts[0].fY, t1);
+ double dx = interp_quad_coords(&fPts[0].fX, (t1 + t2) / 2);
+ double dy = interp_quad_coords(&fPts[0].fY, (t1 + t2) / 2);
+ double cx = dst[2].fX = interp_quad_coords(&fPts[0].fX, t2);
+ double cy = dst[2].fY = interp_quad_coords(&fPts[0].fY, t2);
+ /* bx = */ dst[1].fX = 2 * dx - (ax + cx) / 2;
+ /* by = */ dst[1].fY = 2 * dy - (ay + cy) / 2;
+ return dst;
+}
+
+void SkDQuad::align(int endIndex, SkDPoint* dstPt) const {
+ if (fPts[endIndex].fX == fPts[1].fX) {
+ dstPt->fX = fPts[endIndex].fX;
+ }
+ if (fPts[endIndex].fY == fPts[1].fY) {
+ dstPt->fY = fPts[endIndex].fY;
+ }
+}
+
+SkDPoint SkDQuad::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2) const {
+ SkASSERT(t1 != t2);
+ SkDPoint b;
+ SkDQuad sub = subDivide(t1, t2);
+ SkDLine b0 = {{a, sub[1] + (a - sub[0])}};
+ SkDLine b1 = {{c, sub[1] + (c - sub[2])}};
+ SkIntersections i;
+ i.intersectRay(b0, b1);
+ if (i.used() == 1 && i[0][0] >= 0 && i[1][0] >= 0) {
+ b = i.pt(0);
+ } else {
+ SkASSERT(i.used() <= 2);
+ return SkDPoint::Mid(b0[1], b1[1]);
+ }
+ if (t1 == 0 || t2 == 0) {
+ align(0, &b);
+ }
+ if (t1 == 1 || t2 == 1) {
+ align(2, &b);
+ }
+ if (AlmostBequalUlps(b.fX, a.fX)) {
+ b.fX = a.fX;
+ } else if (AlmostBequalUlps(b.fX, c.fX)) {
+ b.fX = c.fX;
+ }
+ if (AlmostBequalUlps(b.fY, a.fY)) {
+ b.fY = a.fY;
+ } else if (AlmostBequalUlps(b.fY, c.fY)) {
+ b.fY = c.fY;
+ }
+ return b;
+}
+
+/* classic one t subdivision */
+static void interp_quad_coords(const double* src, double* dst, double t) {
+ double ab = SkDInterp(src[0], src[2], t);
+ double bc = SkDInterp(src[2], src[4], t);
+ dst[0] = src[0];
+ dst[2] = ab;
+ dst[4] = SkDInterp(ab, bc, t);
+ dst[6] = bc;
+ dst[8] = src[4];
+}
+
+SkDQuadPair SkDQuad::chopAt(double t) const
+{
+ SkDQuadPair dst;
+ interp_quad_coords(&fPts[0].fX, &dst.pts[0].fX, t);
+ interp_quad_coords(&fPts[0].fY, &dst.pts[0].fY, t);
+ return dst;
+}
+
+static int valid_unit_divide(double numer, double denom, double* ratio)
+{
+ if (numer < 0) {
+ numer = -numer;
+ denom = -denom;
+ }
+ if (denom == 0 || numer == 0 || numer >= denom) {
+ return 0;
+ }
+ double r = numer / denom;
+ if (r == 0) { // catch underflow if numer <<<< denom
+ return 0;
+ }
+ *ratio = r;
+ return 1;
+}
+
+/** Quad'(t) = At + B, where
+ A = 2(a - 2b + c)
+ B = 2(b - a)
+ Solve for t, only if it fits between 0 < t < 1
+*/
+int SkDQuad::FindExtrema(const double src[], double tValue[1]) {
+ /* At + B == 0
+ t = -B / A
+ */
+ double a = src[0];
+ double b = src[2];
+ double c = src[4];
+ return valid_unit_divide(a - b, a - b - b + c, tValue);
+}
+
+/* Parameterization form, given A*t*t + 2*B*t*(1-t) + C*(1-t)*(1-t)
+ *
+ * a = A - 2*B + C
+ * b = 2*B - 2*C
+ * c = C
+ */
+void SkDQuad::SetABC(const double* quad, double* a, double* b, double* c) {
+ *a = quad[0]; // a = A
+ *b = 2 * quad[2]; // b = 2*B
+ *c = quad[4]; // c = C
+ *b -= *c; // b = 2*B - C
+ *a -= *b; // a = A - 2*B + C
+ *b -= *c; // b = 2*B - 2*C
+}
+
+int SkTQuad::intersectRay(SkIntersections* i, const SkDLine& line) const {
+ return i->intersectRay(fQuad, line);
+}
+
+bool SkTQuad::hullIntersects(const SkDConic& conic, bool* isLinear) const {
+ return conic.hullIntersects(fQuad, isLinear);
+}
+
+bool SkTQuad::hullIntersects(const SkDCubic& cubic, bool* isLinear) const {
+ return cubic.hullIntersects(fQuad, isLinear);
+}
+
+void SkTQuad::setBounds(SkDRect* rect) const {
+ rect->setBounds(fQuad);
+}