summaryrefslogtreecommitdiffstats
path: root/gfx/skia/skia/src/utils/SkPatchUtils.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gfx/skia/skia/src/utils/SkPatchUtils.cpp')
-rw-r--r--gfx/skia/skia/src/utils/SkPatchUtils.cpp390
1 files changed, 390 insertions, 0 deletions
diff --git a/gfx/skia/skia/src/utils/SkPatchUtils.cpp b/gfx/skia/skia/src/utils/SkPatchUtils.cpp
new file mode 100644
index 0000000000..eee7bae4eb
--- /dev/null
+++ b/gfx/skia/skia/src/utils/SkPatchUtils.cpp
@@ -0,0 +1,390 @@
+/*
+ * Copyright 2014 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "src/utils/SkPatchUtils.h"
+
+#include "include/core/SkAlphaType.h"
+#include "include/core/SkColorSpace.h"
+#include "include/core/SkColorType.h"
+#include "include/core/SkImageInfo.h"
+#include "include/core/SkMatrix.h"
+#include "include/core/SkPoint.h"
+#include "include/core/SkScalar.h"
+#include "include/core/SkSize.h"
+#include "include/core/SkTypes.h"
+#include "include/core/SkVertices.h"
+#include "include/private/SkColorData.h"
+#include "include/private/base/SkFloatingPoint.h"
+#include "include/private/base/SkMath.h"
+#include "include/private/base/SkTPin.h"
+#include "include/private/base/SkTo.h"
+#include "src/base/SkArenaAlloc.h"
+#include "src/base/SkVx.h"
+#include "src/core/SkColorSpacePriv.h"
+#include "src/core/SkConvertPixels.h"
+#include "src/core/SkGeometry.h"
+
+#include <algorithm>
+#include <cstdint>
+#include <cstring>
+
+namespace {
+ enum CubicCtrlPts {
+ kTopP0_CubicCtrlPts = 0,
+ kTopP1_CubicCtrlPts = 1,
+ kTopP2_CubicCtrlPts = 2,
+ kTopP3_CubicCtrlPts = 3,
+
+ kRightP0_CubicCtrlPts = 3,
+ kRightP1_CubicCtrlPts = 4,
+ kRightP2_CubicCtrlPts = 5,
+ kRightP3_CubicCtrlPts = 6,
+
+ kBottomP0_CubicCtrlPts = 9,
+ kBottomP1_CubicCtrlPts = 8,
+ kBottomP2_CubicCtrlPts = 7,
+ kBottomP3_CubicCtrlPts = 6,
+
+ kLeftP0_CubicCtrlPts = 0,
+ kLeftP1_CubicCtrlPts = 11,
+ kLeftP2_CubicCtrlPts = 10,
+ kLeftP3_CubicCtrlPts = 9,
+ };
+
+ // Enum for corner also clockwise.
+ enum Corner {
+ kTopLeft_Corner = 0,
+ kTopRight_Corner,
+ kBottomRight_Corner,
+ kBottomLeft_Corner
+ };
+} // namespace
+
+/**
+ * Evaluator to sample the values of a cubic bezier using forward differences.
+ * Forward differences is a method for evaluating a nth degree polynomial at a uniform step by only
+ * adding precalculated values.
+ * For a linear example we have the function f(t) = m*t+b, then the value of that function at t+h
+ * would be f(t+h) = m*(t+h)+b. If we want to know the uniform step that we must add to the first
+ * evaluation f(t) then we need to substract f(t+h) - f(t) = m*t + m*h + b - m*t + b = mh. After
+ * obtaining this value (mh) we could just add this constant step to our first sampled point
+ * to compute the next one.
+ *
+ * For the cubic case the first difference gives as a result a quadratic polynomial to which we can
+ * apply again forward differences and get linear function to which we can apply again forward
+ * differences to get a constant difference. This is why we keep an array of size 4, the 0th
+ * position keeps the sampled value while the next ones keep the quadratic, linear and constant
+ * difference values.
+ */
+
+class FwDCubicEvaluator {
+
+public:
+
+ /**
+ * Receives the 4 control points of the cubic bezier.
+ */
+
+ explicit FwDCubicEvaluator(const SkPoint points[4])
+ : fCoefs(points) {
+ memcpy(fPoints, points, 4 * sizeof(SkPoint));
+
+ this->restart(1);
+ }
+
+ /**
+ * Restarts the forward differences evaluator to the first value of t = 0.
+ */
+ void restart(int divisions) {
+ fDivisions = divisions;
+ fCurrent = 0;
+ fMax = fDivisions + 1;
+ skvx::float2 h = 1.f / fDivisions;
+ skvx::float2 h2 = h * h;
+ skvx::float2 h3 = h2 * h;
+ skvx::float2 fwDiff3 = 6 * fCoefs.fA * h3;
+ fFwDiff[3] = to_point(fwDiff3);
+ fFwDiff[2] = to_point(fwDiff3 + times_2(fCoefs.fB) * h2);
+ fFwDiff[1] = to_point(fCoefs.fA * h3 + fCoefs.fB * h2 + fCoefs.fC * h);
+ fFwDiff[0] = to_point(fCoefs.fD);
+ }
+
+ /**
+ * Check if the evaluator is still within the range of 0<=t<=1
+ */
+ bool done() const {
+ return fCurrent > fMax;
+ }
+
+ /**
+ * Call next to obtain the SkPoint sampled and move to the next one.
+ */
+ SkPoint next() {
+ SkPoint point = fFwDiff[0];
+ fFwDiff[0] += fFwDiff[1];
+ fFwDiff[1] += fFwDiff[2];
+ fFwDiff[2] += fFwDiff[3];
+ fCurrent++;
+ return point;
+ }
+
+ const SkPoint* getCtrlPoints() const {
+ return fPoints;
+ }
+
+private:
+ SkCubicCoeff fCoefs;
+ int fMax, fCurrent, fDivisions;
+ SkPoint fFwDiff[4], fPoints[4];
+};
+
+////////////////////////////////////////////////////////////////////////////////
+
+// size in pixels of each partition per axis, adjust this knob
+static const int kPartitionSize = 10;
+
+/**
+ * Calculate the approximate arc length given a bezier curve's control points.
+ * Returns -1 if bad calc (i.e. non-finite)
+ */
+static SkScalar approx_arc_length(const SkPoint points[], int count) {
+ if (count < 2) {
+ return 0;
+ }
+ SkScalar arcLength = 0;
+ for (int i = 0; i < count - 1; i++) {
+ arcLength += SkPoint::Distance(points[i], points[i + 1]);
+ }
+ return SkScalarIsFinite(arcLength) ? arcLength : -1;
+}
+
+static SkScalar bilerp(SkScalar tx, SkScalar ty, SkScalar c00, SkScalar c10, SkScalar c01,
+ SkScalar c11) {
+ SkScalar a = c00 * (1.f - tx) + c10 * tx;
+ SkScalar b = c01 * (1.f - tx) + c11 * tx;
+ return a * (1.f - ty) + b * ty;
+}
+
+static skvx::float4 bilerp(SkScalar tx, SkScalar ty,
+ const skvx::float4& c00,
+ const skvx::float4& c10,
+ const skvx::float4& c01,
+ const skvx::float4& c11) {
+ auto a = c00 * (1.f - tx) + c10 * tx;
+ auto b = c01 * (1.f - tx) + c11 * tx;
+ return a * (1.f - ty) + b * ty;
+}
+
+SkISize SkPatchUtils::GetLevelOfDetail(const SkPoint cubics[12], const SkMatrix* matrix) {
+ // Approximate length of each cubic.
+ SkPoint pts[kNumPtsCubic];
+ SkPatchUtils::GetTopCubic(cubics, pts);
+ matrix->mapPoints(pts, kNumPtsCubic);
+ SkScalar topLength = approx_arc_length(pts, kNumPtsCubic);
+
+ SkPatchUtils::GetBottomCubic(cubics, pts);
+ matrix->mapPoints(pts, kNumPtsCubic);
+ SkScalar bottomLength = approx_arc_length(pts, kNumPtsCubic);
+
+ SkPatchUtils::GetLeftCubic(cubics, pts);
+ matrix->mapPoints(pts, kNumPtsCubic);
+ SkScalar leftLength = approx_arc_length(pts, kNumPtsCubic);
+
+ SkPatchUtils::GetRightCubic(cubics, pts);
+ matrix->mapPoints(pts, kNumPtsCubic);
+ SkScalar rightLength = approx_arc_length(pts, kNumPtsCubic);
+
+ if (topLength < 0 || bottomLength < 0 || leftLength < 0 || rightLength < 0) {
+ return {0, 0}; // negative length is a sentinel for bad length (i.e. non-finite)
+ }
+
+ // Level of detail per axis, based on the larger side between top and bottom or left and right
+ int lodX = static_cast<int>(std::max(topLength, bottomLength) / kPartitionSize);
+ int lodY = static_cast<int>(std::max(leftLength, rightLength) / kPartitionSize);
+
+ return SkISize::Make(std::max(8, lodX), std::max(8, lodY));
+}
+
+void SkPatchUtils::GetTopCubic(const SkPoint cubics[12], SkPoint points[4]) {
+ points[0] = cubics[kTopP0_CubicCtrlPts];
+ points[1] = cubics[kTopP1_CubicCtrlPts];
+ points[2] = cubics[kTopP2_CubicCtrlPts];
+ points[3] = cubics[kTopP3_CubicCtrlPts];
+}
+
+void SkPatchUtils::GetBottomCubic(const SkPoint cubics[12], SkPoint points[4]) {
+ points[0] = cubics[kBottomP0_CubicCtrlPts];
+ points[1] = cubics[kBottomP1_CubicCtrlPts];
+ points[2] = cubics[kBottomP2_CubicCtrlPts];
+ points[3] = cubics[kBottomP3_CubicCtrlPts];
+}
+
+void SkPatchUtils::GetLeftCubic(const SkPoint cubics[12], SkPoint points[4]) {
+ points[0] = cubics[kLeftP0_CubicCtrlPts];
+ points[1] = cubics[kLeftP1_CubicCtrlPts];
+ points[2] = cubics[kLeftP2_CubicCtrlPts];
+ points[3] = cubics[kLeftP3_CubicCtrlPts];
+}
+
+void SkPatchUtils::GetRightCubic(const SkPoint cubics[12], SkPoint points[4]) {
+ points[0] = cubics[kRightP0_CubicCtrlPts];
+ points[1] = cubics[kRightP1_CubicCtrlPts];
+ points[2] = cubics[kRightP2_CubicCtrlPts];
+ points[3] = cubics[kRightP3_CubicCtrlPts];
+}
+
+static void skcolor_to_float(SkPMColor4f* dst, const SkColor* src, int count, SkColorSpace* dstCS) {
+ SkImageInfo srcInfo = SkImageInfo::Make(count, 1, kBGRA_8888_SkColorType,
+ kUnpremul_SkAlphaType, SkColorSpace::MakeSRGB());
+ SkImageInfo dstInfo = SkImageInfo::Make(count, 1, kRGBA_F32_SkColorType,
+ kPremul_SkAlphaType, sk_ref_sp(dstCS));
+ SkAssertResult(SkConvertPixels(dstInfo, dst, 0, srcInfo, src, 0));
+}
+
+static void float_to_skcolor(SkColor* dst, const SkPMColor4f* src, int count, SkColorSpace* srcCS) {
+ SkImageInfo srcInfo = SkImageInfo::Make(count, 1, kRGBA_F32_SkColorType,
+ kPremul_SkAlphaType, sk_ref_sp(srcCS));
+ SkImageInfo dstInfo = SkImageInfo::Make(count, 1, kBGRA_8888_SkColorType,
+ kUnpremul_SkAlphaType, SkColorSpace::MakeSRGB());
+ SkAssertResult(SkConvertPixels(dstInfo, dst, 0, srcInfo, src, 0));
+}
+
+sk_sp<SkVertices> SkPatchUtils::MakeVertices(const SkPoint cubics[12], const SkColor srcColors[4],
+ const SkPoint srcTexCoords[4], int lodX, int lodY,
+ SkColorSpace* colorSpace) {
+ if (lodX < 1 || lodY < 1 || nullptr == cubics) {
+ return nullptr;
+ }
+
+ // check for overflow in multiplication
+ const int64_t lodX64 = (lodX + 1),
+ lodY64 = (lodY + 1),
+ mult64 = lodX64 * lodY64;
+ if (mult64 > SK_MaxS32) {
+ return nullptr;
+ }
+
+ // Treat null interpolation space as sRGB.
+ if (!colorSpace) {
+ colorSpace = sk_srgb_singleton();
+ }
+
+ int vertexCount = SkToS32(mult64);
+ // it is recommended to generate draw calls of no more than 65536 indices, so we never generate
+ // more than 60000 indices. To accomplish that we resize the LOD and vertex count
+ if (vertexCount > 10000 || lodX > 200 || lodY > 200) {
+ float weightX = static_cast<float>(lodX) / (lodX + lodY);
+ float weightY = static_cast<float>(lodY) / (lodX + lodY);
+
+ // 200 comes from the 100 * 2 which is the max value of vertices because of the limit of
+ // 60000 indices ( sqrt(60000 / 6) that comes from data->fIndexCount = lodX * lodY * 6)
+ // Need a min of 1 since we later divide by lod
+ lodX = std::max(1, sk_float_floor2int_no_saturate(weightX * 200));
+ lodY = std::max(1, sk_float_floor2int_no_saturate(weightY * 200));
+ vertexCount = (lodX + 1) * (lodY + 1);
+ }
+ const int indexCount = lodX * lodY * 6;
+ uint32_t flags = 0;
+ if (srcTexCoords) {
+ flags |= SkVertices::kHasTexCoords_BuilderFlag;
+ }
+ if (srcColors) {
+ flags |= SkVertices::kHasColors_BuilderFlag;
+ }
+
+ SkSTArenaAlloc<2048> alloc;
+ SkPMColor4f* cornerColors = srcColors ? alloc.makeArray<SkPMColor4f>(4) : nullptr;
+ SkPMColor4f* tmpColors = srcColors ? alloc.makeArray<SkPMColor4f>(vertexCount) : nullptr;
+
+ SkVertices::Builder builder(SkVertices::kTriangles_VertexMode, vertexCount, indexCount, flags);
+ SkPoint* pos = builder.positions();
+ SkPoint* texs = builder.texCoords();
+ uint16_t* indices = builder.indices();
+
+ if (cornerColors) {
+ skcolor_to_float(cornerColors, srcColors, kNumCorners, colorSpace);
+ }
+
+ SkPoint pts[kNumPtsCubic];
+ SkPatchUtils::GetBottomCubic(cubics, pts);
+ FwDCubicEvaluator fBottom(pts);
+ SkPatchUtils::GetTopCubic(cubics, pts);
+ FwDCubicEvaluator fTop(pts);
+ SkPatchUtils::GetLeftCubic(cubics, pts);
+ FwDCubicEvaluator fLeft(pts);
+ SkPatchUtils::GetRightCubic(cubics, pts);
+ FwDCubicEvaluator fRight(pts);
+
+ fBottom.restart(lodX);
+ fTop.restart(lodX);
+
+ SkScalar u = 0.0f;
+ int stride = lodY + 1;
+ for (int x = 0; x <= lodX; x++) {
+ SkPoint bottom = fBottom.next(), top = fTop.next();
+ fLeft.restart(lodY);
+ fRight.restart(lodY);
+ SkScalar v = 0.f;
+ for (int y = 0; y <= lodY; y++) {
+ int dataIndex = x * (lodY + 1) + y;
+
+ SkPoint left = fLeft.next(), right = fRight.next();
+
+ SkPoint s0 = SkPoint::Make((1.0f - v) * top.x() + v * bottom.x(),
+ (1.0f - v) * top.y() + v * bottom.y());
+ SkPoint s1 = SkPoint::Make((1.0f - u) * left.x() + u * right.x(),
+ (1.0f - u) * left.y() + u * right.y());
+ SkPoint s2 = SkPoint::Make(
+ (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].x()
+ + u * fTop.getCtrlPoints()[3].x())
+ + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].x()
+ + u * fBottom.getCtrlPoints()[3].x()),
+ (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].y()
+ + u * fTop.getCtrlPoints()[3].y())
+ + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].y()
+ + u * fBottom.getCtrlPoints()[3].y()));
+ pos[dataIndex] = s0 + s1 - s2;
+
+ if (cornerColors) {
+ bilerp(u, v, skvx::float4::Load(cornerColors[kTopLeft_Corner].vec()),
+ skvx::float4::Load(cornerColors[kTopRight_Corner].vec()),
+ skvx::float4::Load(cornerColors[kBottomLeft_Corner].vec()),
+ skvx::float4::Load(cornerColors[kBottomRight_Corner].vec()))
+ .store(tmpColors[dataIndex].vec());
+ }
+
+ if (texs) {
+ texs[dataIndex] = SkPoint::Make(bilerp(u, v, srcTexCoords[kTopLeft_Corner].x(),
+ srcTexCoords[kTopRight_Corner].x(),
+ srcTexCoords[kBottomLeft_Corner].x(),
+ srcTexCoords[kBottomRight_Corner].x()),
+ bilerp(u, v, srcTexCoords[kTopLeft_Corner].y(),
+ srcTexCoords[kTopRight_Corner].y(),
+ srcTexCoords[kBottomLeft_Corner].y(),
+ srcTexCoords[kBottomRight_Corner].y()));
+
+ }
+
+ if(x < lodX && y < lodY) {
+ int i = 6 * (x * lodY + y);
+ indices[i] = x * stride + y;
+ indices[i + 1] = x * stride + 1 + y;
+ indices[i + 2] = (x + 1) * stride + 1 + y;
+ indices[i + 3] = indices[i];
+ indices[i + 4] = indices[i + 2];
+ indices[i + 5] = (x + 1) * stride + y;
+ }
+ v = SkTPin(v + 1.f / lodY, 0.0f, 1.0f);
+ }
+ u = SkTPin(u + 1.f / lodX, 0.0f, 1.0f);
+ }
+
+ if (tmpColors) {
+ float_to_skcolor(builder.colors(), tmpColors, vertexCount, colorSpace);
+ }
+ return builder.detach();
+}