diff options
Diffstat (limited to 'gfx/wr/webrender/src/util.rs')
-rw-r--r-- | gfx/wr/webrender/src/util.rs | 1650 |
1 files changed, 1650 insertions, 0 deletions
diff --git a/gfx/wr/webrender/src/util.rs b/gfx/wr/webrender/src/util.rs new file mode 100644 index 0000000000..9b16131327 --- /dev/null +++ b/gfx/wr/webrender/src/util.rs @@ -0,0 +1,1650 @@ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +use api::BorderRadius; +use api::units::*; +use euclid::{Point2D, Rect, Box2D, Size2D, Vector2D, point2, point3}; +use euclid::{default, Transform2D, Transform3D, Scale, approxeq::ApproxEq}; +use malloc_size_of::{MallocShallowSizeOf, MallocSizeOf, MallocSizeOfOps}; +use plane_split::{Clipper, Polygon}; +use std::{i32, f32, fmt, ptr}; +use std::borrow::Cow; +use std::num::NonZeroUsize; +use std::os::raw::c_void; +use std::sync::Arc; +use std::mem::replace; + + +// Matches the definition of SK_ScalarNearlyZero in Skia. +const NEARLY_ZERO: f32 = 1.0 / 4096.0; + +/// A typesafe helper that separates new value construction from +/// vector growing, allowing LLVM to ideally construct the element in place. +pub struct Allocation<'a, T: 'a> { + vec: &'a mut Vec<T>, + index: usize, +} + +impl<'a, T> Allocation<'a, T> { + // writing is safe because alloc() ensured enough capacity + // and `Allocation` holds a mutable borrow to prevent anyone else + // from breaking this invariant. + #[inline(always)] + pub fn init(self, value: T) -> usize { + unsafe { + ptr::write(self.vec.as_mut_ptr().add(self.index), value); + self.vec.set_len(self.index + 1); + } + self.index + } +} + +/// An entry into a vector, similar to `std::collections::hash_map::Entry`. +pub enum VecEntry<'a, T: 'a> { + Vacant(Allocation<'a, T>), + Occupied(&'a mut T), +} + +impl<'a, T> VecEntry<'a, T> { + #[inline(always)] + pub fn set(self, value: T) { + match self { + VecEntry::Vacant(alloc) => { alloc.init(value); } + VecEntry::Occupied(slot) => { *slot = value; } + } + } +} + +pub trait VecHelper<T> { + /// Growns the vector by a single entry, returning the allocation. + fn alloc(&mut self) -> Allocation<T>; + /// Either returns an existing elemenet, or grows the vector by one. + /// Doesn't expect indices to be higher than the current length. + fn entry(&mut self, index: usize) -> VecEntry<T>; + + /// Equivalent to `mem::replace(&mut vec, Vec::new())` + fn take(&mut self) -> Self; + + /// Call clear and return self (useful for chaining with calls that move the vector). + fn cleared(self) -> Self; + + /// Functionally equivalent to `mem::replace(&mut vec, Vec::new())` but tries + /// to keep the allocation in the caller if it is empty or replace it with a + /// pre-allocated vector. + fn take_and_preallocate(&mut self) -> Self; +} + +impl<T> VecHelper<T> for Vec<T> { + fn alloc(&mut self) -> Allocation<T> { + let index = self.len(); + if self.capacity() == index { + self.reserve(1); + } + Allocation { + vec: self, + index, + } + } + + fn entry(&mut self, index: usize) -> VecEntry<T> { + if index < self.len() { + VecEntry::Occupied(unsafe { + self.get_unchecked_mut(index) + }) + } else { + assert_eq!(index, self.len()); + VecEntry::Vacant(self.alloc()) + } + } + + fn take(&mut self) -> Self { + replace(self, Vec::new()) + } + + fn cleared(mut self) -> Self { + self.clear(); + + self + } + + fn take_and_preallocate(&mut self) -> Self { + let len = self.len(); + if len == 0 { + self.clear(); + return Vec::new(); + } + replace(self, Vec::with_capacity(len + 8)) + } +} + + +// Represents an optimized transform where there is only +// a scale and translation (which are guaranteed to maintain +// an axis align rectangle under transformation). The +// scaling is applied first, followed by the translation. +// TODO(gw): We should try and incorporate F <-> T units here, +// but it's a bit tricky to do that now with the +// way the current spatial tree works. +#[repr(C)] +#[derive(Debug, Clone, Copy, MallocSizeOf, PartialEq)] +#[cfg_attr(feature = "capture", derive(Serialize))] +#[cfg_attr(feature = "replay", derive(Deserialize))] +pub struct ScaleOffset { + pub scale: euclid::Vector2D<f32, euclid::UnknownUnit>, + pub offset: euclid::Vector2D<f32, euclid::UnknownUnit>, +} + +impl ScaleOffset { + pub fn new(sx: f32, sy: f32, tx: f32, ty: f32) -> Self { + ScaleOffset { + scale: Vector2D::new(sx, sy), + offset: Vector2D::new(tx, ty), + } + } + + pub fn identity() -> Self { + ScaleOffset { + scale: Vector2D::new(1.0, 1.0), + offset: Vector2D::zero(), + } + } + + // Construct a ScaleOffset from a transform. Returns + // None if the matrix is not a pure scale / translation. + pub fn from_transform<F, T>( + m: &Transform3D<f32, F, T>, + ) -> Option<ScaleOffset> { + + // To check that we have a pure scale / translation: + // Every field must match an identity matrix, except: + // - Any value present in tx,ty + // - Any value present in sx,sy + + if m.m12.abs() > NEARLY_ZERO || + m.m13.abs() > NEARLY_ZERO || + m.m14.abs() > NEARLY_ZERO || + m.m21.abs() > NEARLY_ZERO || + m.m23.abs() > NEARLY_ZERO || + m.m24.abs() > NEARLY_ZERO || + m.m31.abs() > NEARLY_ZERO || + m.m32.abs() > NEARLY_ZERO || + (m.m33 - 1.0).abs() > NEARLY_ZERO || + m.m34.abs() > NEARLY_ZERO || + m.m43.abs() > NEARLY_ZERO || + (m.m44 - 1.0).abs() > NEARLY_ZERO { + return None; + } + + Some(ScaleOffset { + scale: Vector2D::new(m.m11, m.m22), + offset: Vector2D::new(m.m41, m.m42), + }) + } + + pub fn from_offset(offset: default::Vector2D<f32>) -> Self { + ScaleOffset { + scale: Vector2D::new(1.0, 1.0), + offset, + } + } + + pub fn from_scale(scale: default::Vector2D<f32>) -> Self { + ScaleOffset { + scale, + offset: Vector2D::new(0.0, 0.0), + } + } + + pub fn inverse(&self) -> Self { + // If either of the scale factors is 0, inverse also has scale 0 + // TODO(gw): Consider making this return Option<Self> in future + // so that callers can detect and handle when inverse + // fails here. + if self.scale.x.approx_eq(&0.0) || self.scale.y.approx_eq(&0.0) { + return ScaleOffset::new(0.0, 0.0, 0.0, 0.0); + } + + ScaleOffset { + scale: Vector2D::new( + 1.0 / self.scale.x, + 1.0 / self.scale.y, + ), + offset: Vector2D::new( + -self.offset.x / self.scale.x, + -self.offset.y / self.scale.y, + ), + } + } + + pub fn offset(&self, offset: default::Vector2D<f32>) -> Self { + self.accumulate( + &ScaleOffset { + scale: Vector2D::new(1.0, 1.0), + offset, + } + ) + } + + pub fn scale(&self, scale: f32) -> Self { + self.accumulate( + &ScaleOffset { + scale: Vector2D::new(scale, scale), + offset: Vector2D::zero(), + } + ) + } + + /// Produce a ScaleOffset that includes both self and other. + /// The 'self' ScaleOffset is applied after other. + /// This is equivalent to `Transform3D::pre_transform`. + pub fn accumulate(&self, other: &ScaleOffset) -> Self { + ScaleOffset { + scale: Vector2D::new( + self.scale.x * other.scale.x, + self.scale.y * other.scale.y, + ), + offset: Vector2D::new( + self.offset.x + self.scale.x * other.offset.x, + self.offset.y + self.scale.y * other.offset.y, + ), + } + } + + pub fn map_rect<F, T>(&self, rect: &Box2D<f32, F>) -> Box2D<f32, T> { + // TODO(gw): The logic below can return an unexpected result if the supplied + // rect is invalid (has size < 0). Since Gecko currently supplied + // invalid rects in some cases, adding a max(0) here ensures that + // mapping an invalid rect retains the property that rect.is_empty() + // will return true (the mapped rect output will have size 0 instead + // of a negative size). In future we could catch / assert / fix + // these invalid rects earlier, and assert here instead. + + let w = rect.width().max(0.0); + let h = rect.height().max(0.0); + + let mut x0 = rect.min.x * self.scale.x + self.offset.x; + let mut y0 = rect.min.y * self.scale.y + self.offset.y; + + let mut sx = w * self.scale.x; + let mut sy = h * self.scale.y; + // Handle negative scale. Previously, branchless float math was used to find the + // min / max vertices and size. However, that sequence of operations was producind + // additional floating point accuracy on android emulator builds, causing one test + // to fail an assert. Instead, we retain the same math as previously, and adjust + // the origin / size if required. + + if self.scale.x < 0.0 { + x0 += sx; + sx = -sx; + } + if self.scale.y < 0.0 { + y0 += sy; + sy = -sy; + } + + Box2D::from_origin_and_size( + Point2D::new(x0, y0), + Size2D::new(sx, sy), + ) + } + + pub fn unmap_rect<F, T>(&self, rect: &Box2D<f32, F>) -> Box2D<f32, T> { + // TODO(gw): The logic below can return an unexpected result if the supplied + // rect is invalid (has size < 0). Since Gecko currently supplied + // invalid rects in some cases, adding a max(0) here ensures that + // mapping an invalid rect retains the property that rect.is_empty() + // will return true (the mapped rect output will have size 0 instead + // of a negative size). In future we could catch / assert / fix + // these invalid rects earlier, and assert here instead. + + let w = rect.width().max(0.0); + let h = rect.height().max(0.0); + + let mut x0 = (rect.min.x - self.offset.x) / self.scale.x; + let mut y0 = (rect.min.y - self.offset.y) / self.scale.y; + + let mut sx = w / self.scale.x; + let mut sy = h / self.scale.y; + + // Handle negative scale. Previously, branchless float math was used to find the + // min / max vertices and size. However, that sequence of operations was producind + // additional floating point accuracy on android emulator builds, causing one test + // to fail an assert. Instead, we retain the same math as previously, and adjust + // the origin / size if required. + + if self.scale.x < 0.0 { + x0 += sx; + sx = -sx; + } + if self.scale.y < 0.0 { + y0 += sy; + sy = -sy; + } + + Box2D::from_origin_and_size( + Point2D::new(x0, y0), + Size2D::new(sx, sy), + ) + } + + pub fn map_vector<F, T>(&self, vector: &Vector2D<f32, F>) -> Vector2D<f32, T> { + Vector2D::new( + vector.x * self.scale.x, + vector.y * self.scale.y, + ) + } + + pub fn unmap_vector<F, T>(&self, vector: &Vector2D<f32, F>) -> Vector2D<f32, T> { + Vector2D::new( + vector.x / self.scale.x, + vector.y / self.scale.y, + ) + } + + pub fn map_point<F, T>(&self, point: &Point2D<f32, F>) -> Point2D<f32, T> { + Point2D::new( + point.x * self.scale.x + self.offset.x, + point.y * self.scale.y + self.offset.y, + ) + } + + pub fn unmap_point<F, T>(&self, point: &Point2D<f32, F>) -> Point2D<f32, T> { + Point2D::new( + (point.x - self.offset.x) / self.scale.x, + (point.y - self.offset.y) / self.scale.y, + ) + } + + pub fn to_transform<F, T>(&self) -> Transform3D<f32, F, T> { + Transform3D::new( + self.scale.x, + 0.0, + 0.0, + 0.0, + + 0.0, + self.scale.y, + 0.0, + 0.0, + + 0.0, + 0.0, + 1.0, + 0.0, + + self.offset.x, + self.offset.y, + 0.0, + 1.0, + ) + } +} + +// TODO: Implement these in euclid! +pub trait MatrixHelpers<Src, Dst> { + /// A port of the preserves2dAxisAlignment function in Skia. + /// Defined in the SkMatrix44 class. + fn preserves_2d_axis_alignment(&self) -> bool; + fn has_perspective_component(&self) -> bool; + fn has_2d_inverse(&self) -> bool; + /// Check if the matrix post-scaling on either the X or Y axes could cause geometry + /// transformed by this matrix to have scaling exceeding the supplied limit. + fn exceeds_2d_scale(&self, limit: f64) -> bool; + fn inverse_project(&self, target: &Point2D<f32, Dst>) -> Option<Point2D<f32, Src>>; + fn inverse_rect_footprint(&self, rect: &Box2D<f32, Dst>) -> Option<Box2D<f32, Src>>; + fn transform_kind(&self) -> TransformedRectKind; + fn is_simple_translation(&self) -> bool; + fn is_simple_2d_translation(&self) -> bool; + fn is_2d_scale_translation(&self) -> bool; + /// Return the determinant of the 2D part of the matrix. + fn determinant_2d(&self) -> f32; + /// This function returns a point in the `Src` space that projects into zero XY. + /// It ignores the Z coordinate and is usable for "flattened" transformations, + /// since they are not generally inversible. + fn inverse_project_2d_origin(&self) -> Option<Point2D<f32, Src>>; + /// Turn Z transformation into identity. This is useful when crossing "flat" + /// transform styled stacking contexts upon traversing the coordinate systems. + fn flatten_z_output(&mut self); + + fn cast_unit<NewSrc, NewDst>(&self) -> Transform3D<f32, NewSrc, NewDst>; +} + +impl<Src, Dst> MatrixHelpers<Src, Dst> for Transform3D<f32, Src, Dst> { + fn preserves_2d_axis_alignment(&self) -> bool { + if self.m14 != 0.0 || self.m24 != 0.0 { + return false; + } + + let mut col0 = 0; + let mut col1 = 0; + let mut row0 = 0; + let mut row1 = 0; + + if self.m11.abs() > NEARLY_ZERO { + col0 += 1; + row0 += 1; + } + if self.m12.abs() > NEARLY_ZERO { + col1 += 1; + row0 += 1; + } + if self.m21.abs() > NEARLY_ZERO { + col0 += 1; + row1 += 1; + } + if self.m22.abs() > NEARLY_ZERO { + col1 += 1; + row1 += 1; + } + + col0 < 2 && col1 < 2 && row0 < 2 && row1 < 2 + } + + fn has_perspective_component(&self) -> bool { + self.m14.abs() > NEARLY_ZERO || + self.m24.abs() > NEARLY_ZERO || + self.m34.abs() > NEARLY_ZERO || + (self.m44 - 1.0).abs() > NEARLY_ZERO + } + + fn has_2d_inverse(&self) -> bool { + self.determinant_2d() != 0.0 + } + + fn exceeds_2d_scale(&self, limit: f64) -> bool { + let limit2 = (limit * limit) as f32; + self.m11 * self.m11 + self.m12 * self.m12 > limit2 || + self.m21 * self.m21 + self.m22 * self.m22 > limit2 + } + + /// Find out a point in `Src` that would be projected into the `target`. + fn inverse_project(&self, target: &Point2D<f32, Dst>) -> Option<Point2D<f32, Src>> { + // form the linear equation for the hyperplane intersection + let m = Transform2D::<f32, Src, Dst>::new( + self.m11 - target.x * self.m14, self.m12 - target.y * self.m14, + self.m21 - target.x * self.m24, self.m22 - target.y * self.m24, + self.m41 - target.x * self.m44, self.m42 - target.y * self.m44, + ); + let inv = m.inverse()?; + // we found the point, now check if it maps to the positive hemisphere + if inv.m31 * self.m14 + inv.m32 * self.m24 + self.m44 > 0.0 { + Some(Point2D::new(inv.m31, inv.m32)) + } else { + None + } + } + + fn inverse_rect_footprint(&self, rect: &Box2D<f32, Dst>) -> Option<Box2D<f32, Src>> { + Some(Box2D::from_points(&[ + self.inverse_project(&rect.top_left())?, + self.inverse_project(&rect.top_right())?, + self.inverse_project(&rect.bottom_left())?, + self.inverse_project(&rect.bottom_right())?, + ])) + } + + fn transform_kind(&self) -> TransformedRectKind { + if self.preserves_2d_axis_alignment() { + TransformedRectKind::AxisAligned + } else { + TransformedRectKind::Complex + } + } + + fn is_simple_translation(&self) -> bool { + if (self.m11 - 1.0).abs() > NEARLY_ZERO || + (self.m22 - 1.0).abs() > NEARLY_ZERO || + (self.m33 - 1.0).abs() > NEARLY_ZERO || + (self.m44 - 1.0).abs() > NEARLY_ZERO { + return false; + } + + self.m12.abs() < NEARLY_ZERO && self.m13.abs() < NEARLY_ZERO && + self.m14.abs() < NEARLY_ZERO && self.m21.abs() < NEARLY_ZERO && + self.m23.abs() < NEARLY_ZERO && self.m24.abs() < NEARLY_ZERO && + self.m31.abs() < NEARLY_ZERO && self.m32.abs() < NEARLY_ZERO && + self.m34.abs() < NEARLY_ZERO + } + + fn is_simple_2d_translation(&self) -> bool { + if !self.is_simple_translation() { + return false; + } + + self.m43.abs() < NEARLY_ZERO + } + + /* is this... + * X 0 0 0 + * 0 Y 0 0 + * 0 0 1 0 + * a b 0 1 + */ + fn is_2d_scale_translation(&self) -> bool { + (self.m33 - 1.0).abs() < NEARLY_ZERO && + (self.m44 - 1.0).abs() < NEARLY_ZERO && + self.m12.abs() < NEARLY_ZERO && self.m13.abs() < NEARLY_ZERO && self.m14.abs() < NEARLY_ZERO && + self.m21.abs() < NEARLY_ZERO && self.m23.abs() < NEARLY_ZERO && self.m24.abs() < NEARLY_ZERO && + self.m31.abs() < NEARLY_ZERO && self.m32.abs() < NEARLY_ZERO && self.m34.abs() < NEARLY_ZERO && + self.m43.abs() < NEARLY_ZERO + } + + fn determinant_2d(&self) -> f32 { + self.m11 * self.m22 - self.m12 * self.m21 + } + + fn inverse_project_2d_origin(&self) -> Option<Point2D<f32, Src>> { + let det = self.determinant_2d(); + if det != 0.0 { + let x = (self.m21 * self.m42 - self.m41 * self.m22) / det; + let y = (self.m12 * self.m41 - self.m11 * self.m42) / det; + Some(Point2D::new(x, y)) + } else { + None + } + } + + fn flatten_z_output(&mut self) { + self.m13 = 0.0; + self.m23 = 0.0; + self.m33 = 1.0; + self.m43 = 0.0; + //Note: we used to zero out m3? as well, see "reftests/flatten-all-flat.yaml" test + } + + fn cast_unit<NewSrc, NewDst>(&self) -> Transform3D<f32, NewSrc, NewDst> { + Transform3D::new( + self.m11, self.m12, self.m13, self.m14, + self.m21, self.m22, self.m23, self.m24, + self.m31, self.m32, self.m33, self.m34, + self.m41, self.m42, self.m43, self.m44, + ) + } +} + +pub trait PointHelpers<U> +where + Self: Sized, +{ + fn snap(&self) -> Self; +} + +impl<U> PointHelpers<U> for Point2D<f32, U> { + fn snap(&self) -> Self { + Point2D::new( + (self.x + 0.5).floor(), + (self.y + 0.5).floor(), + ) + } +} + +pub trait RectHelpers<U> +where + Self: Sized, +{ + fn from_floats(x0: f32, y0: f32, x1: f32, y1: f32) -> Self; + fn snap(&self) -> Self; +} + +impl<U> RectHelpers<U> for Rect<f32, U> { + fn from_floats(x0: f32, y0: f32, x1: f32, y1: f32) -> Self { + Rect::new( + Point2D::new(x0, y0), + Size2D::new(x1 - x0, y1 - y0), + ) + } + + fn snap(&self) -> Self { + let origin = Point2D::new( + (self.origin.x + 0.5).floor(), + (self.origin.y + 0.5).floor(), + ); + Rect::new( + origin, + Size2D::new( + (self.origin.x + self.size.width + 0.5).floor() - origin.x, + (self.origin.y + self.size.height + 0.5).floor() - origin.y, + ), + ) + } +} + +impl<U> RectHelpers<U> for Box2D<f32, U> { + fn from_floats(x0: f32, y0: f32, x1: f32, y1: f32) -> Self { + Box2D { + min: Point2D::new(x0, y0), + max: Point2D::new(x1, y1), + } + } + + fn snap(&self) -> Self { + self.round() + } +} + +pub trait VectorHelpers<U> +where + Self: Sized, +{ + fn snap(&self) -> Self; +} + +impl<U> VectorHelpers<U> for Vector2D<f32, U> { + fn snap(&self) -> Self { + Vector2D::new( + (self.x + 0.5).floor(), + (self.y + 0.5).floor(), + ) + } +} + +pub fn lerp(a: f32, b: f32, t: f32) -> f32 { + (b - a) * t + a +} + +#[repr(u32)] +#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)] +#[cfg_attr(feature = "capture", derive(Serialize))] +#[cfg_attr(feature = "replay", derive(Deserialize))] +pub enum TransformedRectKind { + AxisAligned = 0, + Complex = 1, +} + +#[inline(always)] +pub fn pack_as_float(value: u32) -> f32 { + value as f32 + 0.5 +} + +#[inline] +fn extract_inner_rect_impl<U>( + rect: &Box2D<f32, U>, + radii: &BorderRadius, + k: f32, +) -> Option<Box2D<f32, U>> { + // `k` defines how much border is taken into account + // We enforce the offsets to be rounded to pixel boundaries + // by `ceil`-ing and `floor`-ing them + + let xl = (k * radii.top_left.width.max(radii.bottom_left.width)).ceil(); + let xr = (rect.width() - k * radii.top_right.width.max(radii.bottom_right.width)).floor(); + let yt = (k * radii.top_left.height.max(radii.top_right.height)).ceil(); + let yb = + (rect.height() - k * radii.bottom_left.height.max(radii.bottom_right.height)).floor(); + + if xl <= xr && yt <= yb { + Some(Box2D::from_origin_and_size( + Point2D::new(rect.min.x + xl, rect.min.y + yt), + Size2D::new(xr - xl, yb - yt), + )) + } else { + None + } +} + +/// Return an aligned rectangle that is inside the clip region and doesn't intersect +/// any of the bounding rectangles of the rounded corners. +pub fn extract_inner_rect_safe<U>( + rect: &Box2D<f32, U>, + radii: &BorderRadius, +) -> Option<Box2D<f32, U>> { + // value of `k==1.0` is used for extraction of the corner rectangles + // see `SEGMENT_CORNER_*` in `clip_shared.glsl` + extract_inner_rect_impl(rect, radii, 1.0) +} + +#[cfg(test)] +use euclid::vec3; + +#[cfg(test)] +pub mod test { + use super::*; + use euclid::default::{Point2D, Size2D, Transform3D}; + use euclid::{Angle, approxeq::ApproxEq}; + use std::f32::consts::PI; + use crate::clip::{is_left_of_line, polygon_contains_point}; + use crate::prim_store::PolygonKey; + use api::FillRule; + + #[test] + fn inverse_project() { + let m0 = Transform3D::identity(); + let p0 = Point2D::new(1.0, 2.0); + // an identical transform doesn't need any inverse projection + assert_eq!(m0.inverse_project(&p0), Some(p0)); + let m1 = Transform3D::rotation(0.0, 1.0, 0.0, Angle::radians(-PI / 3.0)); + // rotation by 60 degrees would imply scaling of X component by a factor of 2 + assert_eq!(m1.inverse_project(&p0), Some(Point2D::new(2.0, 2.0))); + } + + #[test] + fn inverse_project_footprint() { + let m = Transform3D::new( + 0.477499992, 0.135000005, -1.0, 0.000624999986, + -0.642787635, 0.766044438, 0.0, 0.0, + 0.766044438, 0.642787635, 0.0, 0.0, + 1137.10986, 113.71286, 402.0, 0.748749971, + ); + let r = Box2D::from_size(Size2D::new(804.0, 804.0)); + { + let points = &[ + r.top_left(), + r.top_right(), + r.bottom_left(), + r.bottom_right(), + ]; + let mi = m.inverse().unwrap(); + // In this section, we do the forward and backward transformation + // to confirm that its bijective. + // We also do the inverse projection path, and confirm it functions the same way. + info!("Points:"); + for p in points { + let pp = m.transform_point2d_homogeneous(*p); + let p3 = pp.to_point3d().unwrap(); + let pi = mi.transform_point3d_homogeneous(p3); + let px = pi.to_point2d().unwrap(); + let py = m.inverse_project(&pp.to_point2d().unwrap()).unwrap(); + info!("\t{:?} -> {:?} -> {:?} -> ({:?} -> {:?}, {:?})", p, pp, p3, pi, px, py); + assert!(px.approx_eq_eps(p, &Point2D::new(0.001, 0.001))); + assert!(py.approx_eq_eps(p, &Point2D::new(0.001, 0.001))); + } + } + // project + let rp = project_rect(&m, &r, &Box2D::from_size(Size2D::new(1000.0, 1000.0))).unwrap(); + info!("Projected {:?}", rp); + // one of the points ends up in the negative hemisphere + assert_eq!(m.inverse_project(&rp.min), None); + // inverse + if let Some(ri) = m.inverse_rect_footprint(&rp) { + // inverse footprint should be larger, since it doesn't know the original Z + assert!(ri.contains_box(&r), "Inverse {:?}", ri); + } + } + + fn validate_convert(xref: &LayoutTransform) { + let so = ScaleOffset::from_transform(xref).unwrap(); + let xf = so.to_transform(); + assert!(xref.approx_eq(&xf)); + } + + #[test] + fn negative_scale_map_unmap() { + let xref = LayoutTransform::scale(1.0, -1.0, 1.0) + .pre_translate(LayoutVector3D::new(124.0, 38.0, 0.0)); + let so = ScaleOffset::from_transform(&xref).unwrap(); + let local_rect = Box2D { + min: LayoutPoint::new(50.0, -100.0), + max: LayoutPoint::new(250.0, 300.0), + }; + + let mapped_rect = so.map_rect::<LayoutPixel, DevicePixel>(&local_rect); + let xf_rect = project_rect( + &xref, + &local_rect, + &LayoutRect::max_rect(), + ).unwrap(); + + assert!(mapped_rect.min.x.approx_eq(&xf_rect.min.x)); + assert!(mapped_rect.min.y.approx_eq(&xf_rect.min.y)); + assert!(mapped_rect.max.x.approx_eq(&xf_rect.max.x)); + assert!(mapped_rect.max.y.approx_eq(&xf_rect.max.y)); + + let unmapped_rect = so.unmap_rect::<DevicePixel, LayoutPixel>(&mapped_rect); + assert!(unmapped_rect.min.x.approx_eq(&local_rect.min.x)); + assert!(unmapped_rect.min.y.approx_eq(&local_rect.min.y)); + assert!(unmapped_rect.max.x.approx_eq(&local_rect.max.x)); + assert!(unmapped_rect.max.y.approx_eq(&local_rect.max.y)); + } + + #[test] + fn scale_offset_convert() { + let xref = LayoutTransform::translation(130.0, 200.0, 0.0); + validate_convert(&xref); + + let xref = LayoutTransform::scale(13.0, 8.0, 1.0); + validate_convert(&xref); + + let xref = LayoutTransform::scale(0.5, 0.5, 1.0) + .pre_translate(LayoutVector3D::new(124.0, 38.0, 0.0)); + validate_convert(&xref); + + let xref = LayoutTransform::scale(30.0, 11.0, 1.0) + .then_translate(vec3(50.0, 240.0, 0.0)); + validate_convert(&xref); + } + + fn validate_inverse(xref: &LayoutTransform) { + let s0 = ScaleOffset::from_transform(xref).unwrap(); + let s1 = s0.inverse().accumulate(&s0); + assert!((s1.scale.x - 1.0).abs() < NEARLY_ZERO && + (s1.scale.y - 1.0).abs() < NEARLY_ZERO && + s1.offset.x.abs() < NEARLY_ZERO && + s1.offset.y.abs() < NEARLY_ZERO, + "{:?}", + s1); + } + + #[test] + fn scale_offset_inverse() { + let xref = LayoutTransform::translation(130.0, 200.0, 0.0); + validate_inverse(&xref); + + let xref = LayoutTransform::scale(13.0, 8.0, 1.0); + validate_inverse(&xref); + + let xref = LayoutTransform::translation(124.0, 38.0, 0.0). + then_scale(0.5, 0.5, 1.0); + + validate_inverse(&xref); + + let xref = LayoutTransform::scale(30.0, 11.0, 1.0) + .then_translate(vec3(50.0, 240.0, 0.0)); + validate_inverse(&xref); + } + + fn validate_accumulate(x0: &LayoutTransform, x1: &LayoutTransform) { + let x = x1.then(&x0); + + let s0 = ScaleOffset::from_transform(x0).unwrap(); + let s1 = ScaleOffset::from_transform(x1).unwrap(); + + let s = s0.accumulate(&s1).to_transform(); + + assert!(x.approx_eq(&s), "{:?}\n{:?}", x, s); + } + + #[test] + fn scale_offset_accumulate() { + let x0 = LayoutTransform::translation(130.0, 200.0, 0.0); + let x1 = LayoutTransform::scale(7.0, 3.0, 1.0); + + validate_accumulate(&x0, &x1); + } + + #[test] + fn scale_offset_invalid_scale() { + let s0 = ScaleOffset::new(0.0, 1.0, 10.0, 20.0); + let i0 = s0.inverse(); + assert_eq!(i0, ScaleOffset::new(0.0, 0.0, 0.0, 0.0)); + + let s1 = ScaleOffset::new(1.0, 0.0, 10.0, 20.0); + let i1 = s1.inverse(); + assert_eq!(i1, ScaleOffset::new(0.0, 0.0, 0.0, 0.0)); + } + + #[test] + fn inverse_project_2d_origin() { + let mut m = Transform3D::identity(); + assert_eq!(m.inverse_project_2d_origin(), Some(Point2D::zero())); + m.m11 = 0.0; + assert_eq!(m.inverse_project_2d_origin(), None); + m.m21 = -2.0; + m.m22 = 0.0; + m.m12 = -0.5; + m.m41 = 1.0; + m.m42 = 0.5; + let origin = m.inverse_project_2d_origin().unwrap(); + assert_eq!(origin, Point2D::new(1.0, 0.5)); + assert_eq!(m.transform_point2d(origin), Some(Point2D::zero())); + } + + #[test] + fn polygon_clip_is_left_of_point() { + // Define points of a line through (1, -3) and (-2, 6) to test against. + // If the triplet consisting of these two points and the test point + // form a counter-clockwise triangle, then the test point is on the + // left. The easiest way to visualize this is with an "ascending" + // line from low-Y to high-Y. + let p0_x = 1.0; + let p0_y = -3.0; + let p1_x = -2.0; + let p1_y = 6.0; + + // Test some points to the left of the line. + assert!(is_left_of_line(-9.0, 0.0, p0_x, p0_y, p1_x, p1_y) > 0.0); + assert!(is_left_of_line(-1.0, 1.0, p0_x, p0_y, p1_x, p1_y) > 0.0); + assert!(is_left_of_line(1.0, -4.0, p0_x, p0_y, p1_x, p1_y) > 0.0); + + // Test some points on the line. + assert!(is_left_of_line(-3.0, 9.0, p0_x, p0_y, p1_x, p1_y) == 0.0); + assert!(is_left_of_line(0.0, 0.0, p0_x, p0_y, p1_x, p1_y) == 0.0); + assert!(is_left_of_line(100.0, -300.0, p0_x, p0_y, p1_x, p1_y) == 0.0); + + // Test some points to the right of the line. + assert!(is_left_of_line(0.0, 1.0, p0_x, p0_y, p1_x, p1_y) < 0.0); + assert!(is_left_of_line(-4.0, 13.0, p0_x, p0_y, p1_x, p1_y) < 0.0); + assert!(is_left_of_line(5.0, -12.0, p0_x, p0_y, p1_x, p1_y) < 0.0); + } + + #[test] + fn polygon_clip_contains_point() { + // We define the points of a self-overlapping polygon, which we will + // use to create polygons with different windings and fill rules. + let p0 = LayoutPoint::new(4.0, 4.0); + let p1 = LayoutPoint::new(6.0, 4.0); + let p2 = LayoutPoint::new(4.0, 7.0); + let p3 = LayoutPoint::new(2.0, 1.0); + let p4 = LayoutPoint::new(8.0, 1.0); + let p5 = LayoutPoint::new(6.0, 7.0); + + let poly_clockwise_nonzero = PolygonKey::new( + &[p5, p4, p3, p2, p1, p0].to_vec(), FillRule::Nonzero + ); + let poly_clockwise_evenodd = PolygonKey::new( + &[p5, p4, p3, p2, p1, p0].to_vec(), FillRule::Evenodd + ); + let poly_counter_clockwise_nonzero = PolygonKey::new( + &[p0, p1, p2, p3, p4, p5].to_vec(), FillRule::Nonzero + ); + let poly_counter_clockwise_evenodd = PolygonKey::new( + &[p0, p1, p2, p3, p4, p5].to_vec(), FillRule::Evenodd + ); + + // We define a rect that provides a bounding clip area of + // the polygon. + let rect = LayoutRect::from_size(LayoutSize::new(10.0, 10.0)); + + // And we'll test three points of interest. + let p_inside_once = LayoutPoint::new(5.0, 3.0); + let p_inside_twice = LayoutPoint::new(5.0, 5.0); + let p_outside = LayoutPoint::new(9.0, 9.0); + + // We should get the same results for both clockwise and + // counter-clockwise polygons. + // For nonzero polygons, the inside twice point is considered inside. + for poly_nonzero in vec![poly_clockwise_nonzero, poly_counter_clockwise_nonzero].iter() { + assert_eq!(polygon_contains_point(&p_inside_once, &rect, &poly_nonzero), true); + assert_eq!(polygon_contains_point(&p_inside_twice, &rect, &poly_nonzero), true); + assert_eq!(polygon_contains_point(&p_outside, &rect, &poly_nonzero), false); + } + // For evenodd polygons, the inside twice point is considered outside. + for poly_evenodd in vec![poly_clockwise_evenodd, poly_counter_clockwise_evenodd].iter() { + assert_eq!(polygon_contains_point(&p_inside_once, &rect, &poly_evenodd), true); + assert_eq!(polygon_contains_point(&p_inside_twice, &rect, &poly_evenodd), false); + assert_eq!(polygon_contains_point(&p_outside, &rect, &poly_evenodd), false); + } + } +} + +pub trait MaxRect { + fn max_rect() -> Self; +} + +impl MaxRect for DeviceIntRect { + fn max_rect() -> Self { + DeviceIntRect::from_origin_and_size( + DeviceIntPoint::new(i32::MIN / 2, i32::MIN / 2), + DeviceIntSize::new(i32::MAX, i32::MAX), + ) + } +} + +impl<U> MaxRect for Rect<f32, U> { + fn max_rect() -> Self { + // Having an unlimited bounding box is fine up until we try + // to cast it to `i32`, where we get `-2147483648` for any + // values larger than or equal to 2^31. + // + // Note: clamping to i32::MIN and i32::MAX is not a solution, + // with explanation left as an exercise for the reader. + const MAX_COORD: f32 = 1.0e9; + + Rect::new( + Point2D::new(-MAX_COORD, -MAX_COORD), + Size2D::new(2.0 * MAX_COORD, 2.0 * MAX_COORD), + ) + } +} + +impl<U> MaxRect for Box2D<f32, U> { + fn max_rect() -> Self { + // Having an unlimited bounding box is fine up until we try + // to cast it to `i32`, where we get `-2147483648` for any + // values larger than or equal to 2^31. + // + // Note: clamping to i32::MIN and i32::MAX is not a solution, + // with explanation left as an exercise for the reader. + const MAX_COORD: f32 = 1.0e9; + + Box2D::new( + Point2D::new(-MAX_COORD, -MAX_COORD), + Point2D::new(MAX_COORD, MAX_COORD), + ) + } +} + +/// An enum that tries to avoid expensive transformation matrix calculations +/// when possible when dealing with non-perspective axis-aligned transformations. +#[derive(Debug, MallocSizeOf)] +#[cfg_attr(feature = "capture", derive(Serialize))] +#[cfg_attr(feature = "replay", derive(Deserialize))] +pub enum FastTransform<Src, Dst> { + /// A simple offset, which can be used without doing any matrix math. + Offset(Vector2D<f32, Src>), + + /// A 2D transformation with an inverse. + Transform { + transform: Transform3D<f32, Src, Dst>, + inverse: Option<Transform3D<f32, Dst, Src>>, + is_2d: bool, + }, +} + +impl<Src, Dst> Clone for FastTransform<Src, Dst> { + fn clone(&self) -> Self { + *self + } +} + +impl<Src, Dst> Copy for FastTransform<Src, Dst> { } + +impl<Src, Dst> FastTransform<Src, Dst> { + pub fn identity() -> Self { + FastTransform::Offset(Vector2D::zero()) + } + + pub fn with_vector(offset: Vector2D<f32, Src>) -> Self { + FastTransform::Offset(offset) + } + + pub fn with_scale_offset(scale_offset: ScaleOffset) -> Self { + if scale_offset.scale == Vector2D::new(1.0, 1.0) { + FastTransform::Offset(Vector2D::from_untyped(scale_offset.offset)) + } else { + FastTransform::Transform { + transform: scale_offset.to_transform(), + inverse: Some(scale_offset.inverse().to_transform()), + is_2d: true, + } + } + } + + #[inline(always)] + pub fn with_transform(transform: Transform3D<f32, Src, Dst>) -> Self { + if transform.is_simple_2d_translation() { + return FastTransform::Offset(Vector2D::new(transform.m41, transform.m42)); + } + let inverse = transform.inverse(); + let is_2d = transform.is_2d(); + FastTransform::Transform { transform, inverse, is_2d} + } + + pub fn to_transform(&self) -> Cow<Transform3D<f32, Src, Dst>> { + match *self { + FastTransform::Offset(offset) => Cow::Owned( + Transform3D::translation(offset.x, offset.y, 0.0) + ), + FastTransform::Transform { ref transform, .. } => Cow::Borrowed(transform), + } + } + + /// Return true if this is an identity transform + #[allow(unused)] + pub fn is_identity(&self)-> bool { + match *self { + FastTransform::Offset(offset) => { + offset == Vector2D::zero() + } + FastTransform::Transform { ref transform, .. } => { + *transform == Transform3D::identity() + } + } + } + + pub fn then<NewDst>(&self, other: &FastTransform<Dst, NewDst>) -> FastTransform<Src, NewDst> { + match *self { + FastTransform::Offset(offset) => match *other { + FastTransform::Offset(other_offset) => { + FastTransform::Offset(offset + other_offset * Scale::<_, _, Src>::new(1.0)) + } + FastTransform::Transform { transform: ref other_transform, .. } => { + FastTransform::with_transform( + other_transform + .with_source::<Src>() + .pre_translate(offset.to_3d()) + ) + } + } + FastTransform::Transform { ref transform, ref inverse, is_2d } => match *other { + FastTransform::Offset(other_offset) => { + FastTransform::with_transform( + transform + .then_translate(other_offset.to_3d()) + .with_destination::<NewDst>() + ) + } + FastTransform::Transform { transform: ref other_transform, inverse: ref other_inverse, is_2d: other_is_2d } => { + FastTransform::Transform { + transform: transform.then(other_transform), + inverse: inverse.as_ref().and_then(|self_inv| + other_inverse.as_ref().map(|other_inv| other_inv.then(self_inv)) + ), + is_2d: is_2d & other_is_2d, + } + } + } + } + } + + pub fn pre_transform<NewSrc>( + &self, + other: &FastTransform<NewSrc, Src> + ) -> FastTransform<NewSrc, Dst> { + other.then(self) + } + + pub fn pre_translate(&self, other_offset: Vector2D<f32, Src>) -> Self { + match *self { + FastTransform::Offset(offset) => + FastTransform::Offset(offset + other_offset), + FastTransform::Transform { transform, .. } => + FastTransform::with_transform(transform.pre_translate(other_offset.to_3d())) + } + } + + pub fn then_translate(&self, other_offset: Vector2D<f32, Dst>) -> Self { + match *self { + FastTransform::Offset(offset) => { + FastTransform::Offset(offset + other_offset * Scale::<_, _, Src>::new(1.0)) + } + FastTransform::Transform { ref transform, .. } => { + let transform = transform.then_translate(other_offset.to_3d()); + FastTransform::with_transform(transform) + } + } + } + + #[inline(always)] + pub fn is_backface_visible(&self) -> bool { + match *self { + FastTransform::Offset(..) => false, + FastTransform::Transform { inverse: None, .. } => false, + //TODO: fix this properly by taking "det|M33| * det|M34| > 0" + // see https://www.w3.org/Bugs/Public/show_bug.cgi?id=23014 + FastTransform::Transform { inverse: Some(ref inverse), .. } => inverse.m33 < 0.0, + } + } + + #[inline(always)] + pub fn transform_point2d(&self, point: Point2D<f32, Src>) -> Option<Point2D<f32, Dst>> { + match *self { + FastTransform::Offset(offset) => { + let new_point = point + offset; + Some(Point2D::from_untyped(new_point.to_untyped())) + } + FastTransform::Transform { ref transform, .. } => transform.transform_point2d(point), + } + } + + #[inline(always)] + pub fn project_point2d(&self, point: Point2D<f32, Src>) -> Option<Point2D<f32, Dst>> { + match* self { + FastTransform::Offset(..) => self.transform_point2d(point), + FastTransform::Transform{ref transform, ..} => { + // Find a value for z that will transform to 0. + + // The transformed value of z is computed as: + // z' = point.x * self.m13 + point.y * self.m23 + z * self.m33 + self.m43 + + // Solving for z when z' = 0 gives us: + let z = -(point.x * transform.m13 + point.y * transform.m23 + transform.m43) / transform.m33; + + transform.transform_point3d(point3(point.x, point.y, z)).map(| p3 | point2(p3.x, p3.y)) + } + } + } + + #[inline(always)] + pub fn inverse(&self) -> Option<FastTransform<Dst, Src>> { + match *self { + FastTransform::Offset(offset) => + Some(FastTransform::Offset(Vector2D::new(-offset.x, -offset.y))), + FastTransform::Transform { transform, inverse: Some(inverse), is_2d, } => + Some(FastTransform::Transform { + transform: inverse, + inverse: Some(transform), + is_2d + }), + FastTransform::Transform { inverse: None, .. } => None, + + } + } +} + +impl<Src, Dst> From<Transform3D<f32, Src, Dst>> for FastTransform<Src, Dst> { + fn from(transform: Transform3D<f32, Src, Dst>) -> Self { + FastTransform::with_transform(transform) + } +} + +impl<Src, Dst> From<Vector2D<f32, Src>> for FastTransform<Src, Dst> { + fn from(vector: Vector2D<f32, Src>) -> Self { + FastTransform::with_vector(vector) + } +} + +pub type LayoutFastTransform = FastTransform<LayoutPixel, LayoutPixel>; +pub type LayoutToWorldFastTransform = FastTransform<LayoutPixel, WorldPixel>; + +pub fn project_rect<F, T>( + transform: &Transform3D<f32, F, T>, + rect: &Box2D<f32, F>, + bounds: &Box2D<f32, T>, +) -> Option<Box2D<f32, T>> + where F: fmt::Debug +{ + let homogens = [ + transform.transform_point2d_homogeneous(rect.top_left()), + transform.transform_point2d_homogeneous(rect.top_right()), + transform.transform_point2d_homogeneous(rect.bottom_left()), + transform.transform_point2d_homogeneous(rect.bottom_right()), + ]; + + // Note: we only do the full frustum collision when the polygon approaches the camera plane. + // Otherwise, it will be clamped to the screen bounds anyway. + if homogens.iter().any(|h| h.w <= 0.0 || h.w.is_nan()) { + let mut clipper = Clipper::new(); + let polygon = Polygon::from_rect(rect.to_rect().cast().cast_unit(), 1); + + let planes = match Clipper::<usize>::frustum_planes( + &transform.cast_unit().cast(), + Some(bounds.to_rect().cast_unit().to_f64()), + ) { + Ok(planes) => planes, + Err(..) => return None, + }; + + for plane in planes { + clipper.add(plane); + } + + let results = clipper.clip(polygon); + if results.is_empty() { + return None + } + + Some(Box2D::from_points(results + .into_iter() + // filter out parts behind the view plane + .flat_map(|poly| &poly.points) + .map(|p| { + let mut homo = transform.transform_point2d_homogeneous(p.to_2d().to_f32().cast_unit()); + homo.w = homo.w.max(0.00000001); // avoid infinite values + homo.to_point2d().unwrap() + }) + )) + } else { + // we just checked for all the points to be in positive hemisphere, so `unwrap` is valid + Some(Box2D::from_points(&[ + homogens[0].to_point2d().unwrap(), + homogens[1].to_point2d().unwrap(), + homogens[2].to_point2d().unwrap(), + homogens[3].to_point2d().unwrap(), + ])) + } +} + +/// Run the first callback over all elements in the array. If the callback returns true, +/// the element is removed from the array and moved to a second callback. +/// +/// This is a simple implementation waiting for Vec::drain_filter to be stable. +/// When that happens, code like: +/// +/// let filter = |op| { +/// match *op { +/// Enum::Foo | Enum::Bar => true, +/// Enum::Baz => false, +/// } +/// }; +/// drain_filter( +/// &mut ops, +/// filter, +/// |op| { +/// match op { +/// Enum::Foo => { foo(); } +/// Enum::Bar => { bar(); } +/// Enum::Baz => { unreachable!(); } +/// } +/// }, +/// ); +/// +/// Can be rewritten as: +/// +/// let filter = |op| { +/// match *op { +/// Enum::Foo | Enum::Bar => true, +/// Enum::Baz => false, +/// } +/// }; +/// for op in ops.drain_filter(filter) { +/// match op { +/// Enum::Foo => { foo(); } +/// Enum::Bar => { bar(); } +/// Enum::Baz => { unreachable!(); } +/// } +/// } +/// +/// See https://doc.rust-lang.org/std/vec/struct.Vec.html#method.drain_filter +pub fn drain_filter<T, Filter, Action>( + vec: &mut Vec<T>, + mut filter: Filter, + mut action: Action, +) +where + Filter: FnMut(&mut T) -> bool, + Action: FnMut(T) +{ + let mut i = 0; + while i != vec.len() { + if filter(&mut vec[i]) { + action(vec.remove(i)); + } else { + i += 1; + } + } +} + + +#[derive(Debug)] +pub struct Recycler { + pub num_allocations: usize, +} + +impl Recycler { + /// Maximum extra capacity that a recycled vector is allowed to have. If the actual capacity + /// is larger, we re-allocate the vector storage with lower capacity. + const MAX_EXTRA_CAPACITY_PERCENT: usize = 200; + /// Minimum extra capacity to keep when re-allocating the vector storage. + const MIN_EXTRA_CAPACITY_PERCENT: usize = 20; + /// Minimum sensible vector length to consider for re-allocation. + const MIN_VECTOR_LENGTH: usize = 16; + + pub fn new() -> Self { + Recycler { + num_allocations: 0, + } + } + + /// Clear a vector for re-use, while retaining the backing memory buffer. May shrink the buffer + /// if it's currently much larger than was actually used. + pub fn recycle_vec<T>(&mut self, vec: &mut Vec<T>) { + let extra_capacity = (vec.capacity() - vec.len()) * 100 / vec.len().max(Self::MIN_VECTOR_LENGTH); + + if extra_capacity > Self::MAX_EXTRA_CAPACITY_PERCENT { + // Reduce capacity of the buffer if it is a lot larger than it needs to be. This prevents + // a frame with exceptionally large allocations to cause subsequent frames to retain + // more memory than they need. + //TODO: use `shrink_to` when it's stable + *vec = Vec::with_capacity(vec.len() + vec.len() * Self::MIN_EXTRA_CAPACITY_PERCENT / 100); + self.num_allocations += 1; + } else { + vec.clear(); + } + } +} + +/// Record the size of a data structure to preallocate a similar size +/// at the next frame and avoid growing it too many time. +#[derive(Copy, Clone, Debug)] +pub struct Preallocator { + size: usize, +} + +impl Preallocator { + pub fn new(initial_size: usize) -> Self { + Preallocator { + size: initial_size, + } + } + + /// Record the size of a vector to preallocate it the next frame. + pub fn record_vec<T>(&mut self, vec: &Vec<T>) { + let len = vec.len(); + if len > self.size { + self.size = len; + } else { + self.size = (self.size + len) / 2; + } + } + + /// The size that we'll preallocate the vector with. + pub fn preallocation_size(&self) -> usize { + // Round up to multiple of 16 to avoid small tiny + // variations causing reallocations. + (self.size + 15) & !15 + } + + /// Preallocate vector storage. + /// + /// The preallocated amount depends on the length recorded in the last + /// record_vec call. + pub fn preallocate_vec<T>(&self, vec: &mut Vec<T>) { + let len = vec.len(); + let cap = self.preallocation_size(); + if len < cap { + vec.reserve(cap - len); + } + } +} + +impl Default for Preallocator { + fn default() -> Self { + Self::new(0) + } +} + +/// Arc wrapper to support measurement via MallocSizeOf. +/// +/// Memory reporting for Arcs is tricky because of the risk of double-counting. +/// One way to measure them is to keep a table of pointers that have already been +/// traversed. The other way is to use knowledge of the program structure to +/// identify which Arc instances should be measured and which should be skipped to +/// avoid double-counting. +/// +/// This struct implements the second approach. It identifies the "main" pointer +/// to the Arc-ed resource, and measures the buffer as if it were an owned pointer. +/// The programmer should ensure that there is at most one PrimaryArc for a given +/// underlying ArcInner. +#[cfg_attr(feature = "capture", derive(Serialize))] +#[cfg_attr(feature = "replay", derive(Deserialize))] +#[derive(Clone, Debug, Hash, PartialEq, Eq)] +pub struct PrimaryArc<T>(pub Arc<T>); + +impl<T> ::std::ops::Deref for PrimaryArc<T> { + type Target = Arc<T>; + + #[inline] + fn deref(&self) -> &Arc<T> { + &self.0 + } +} + +impl<T> MallocShallowSizeOf for PrimaryArc<T> { + fn shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize { + unsafe { + // This is a bit sketchy, but std::sync::Arc doesn't expose the + // base pointer. + let raw_arc_ptr: *const Arc<T> = &self.0; + let raw_ptr_ptr: *const *const c_void = raw_arc_ptr as _; + let raw_ptr = *raw_ptr_ptr; + (ops.size_of_op)(raw_ptr) + } + } +} + +impl<T: MallocSizeOf> MallocSizeOf for PrimaryArc<T> { + fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize { + self.shallow_size_of(ops) + (**self).size_of(ops) + } +} + +/// Computes the scale factors of this matrix; that is, +/// the amounts each basis vector is scaled by. +/// +/// This code comes from gecko gfx/2d/Matrix.h with the following +/// modifications: +/// +/// * Removed `xMajor` parameter. +/// * All arithmetics is done with double precision. +pub fn scale_factors<Src, Dst>( + mat: &Transform3D<f32, Src, Dst> +) -> (f32, f32) { + let m11 = mat.m11 as f64; + let m12 = mat.m12 as f64; + // Determinant is just of the 2D component. + let det = m11 * mat.m22 as f64 - m12 * mat.m21 as f64; + if det == 0.0 { + return (0.0, 0.0); + } + + // ignore mirroring + let det = det.abs(); + + let major = (m11 * m11 + m12 * m12).sqrt(); + let minor = if major != 0.0 { det / major } else { 0.0 }; + + (major as f32, minor as f32) +} + +#[test] +fn scale_factors_large() { + // https://bugzilla.mozilla.org/show_bug.cgi?id=1748499 + let mat = Transform3D::<f32, (), ()>::new( + 1.6534229920333123e27, 3.673100922561787e27, 0.0, 0.0, + -3.673100922561787e27, 1.6534229920333123e27, 0.0, 0.0, + 0.0, 0.0, 1.0, 0.0, + -828140552192.0, -1771307401216.0, 0.0, 1.0, + ); + let (major, minor) = scale_factors(&mat); + assert!(major.is_normal() && minor.is_normal()); +} + +/// Clamp scaling factor to a power of two. +/// +/// This code comes from gecko gfx/thebes/gfxUtils.cpp with the following +/// modification: +/// +/// * logs are taken in base 2 instead of base e. +pub fn clamp_to_scale_factor(val: f32, round_down: bool) -> f32 { + // Arbitary scale factor limitation. We can increase this + // for better scaling performance at the cost of worse + // quality. + const SCALE_RESOLUTION: f32 = 2.0; + + // Negative scaling is just a flip and irrelevant to + // our resolution calculation. + let val = val.abs(); + + let (val, inverse) = if val < 1.0 { + (1.0 / val, true) + } else { + (val, false) + }; + + let power = val.log2() / SCALE_RESOLUTION.log2(); + + // If power is within 1e-5 of an integer, round to nearest to + // prevent floating point errors, otherwise round up to the + // next integer value. + let power = if (power - power.round()).abs() < 1e-5 { + power.round() + } else if inverse != round_down { + // Use floor when we are either inverted or rounding down, but + // not both. + power.floor() + } else { + // Otherwise, ceil when we are not inverted and not rounding + // down, or we are inverted and rounding down. + power.ceil() + }; + + let scale = SCALE_RESOLUTION.powf(power); + + if inverse { + 1.0 / scale + } else { + scale + } +} + +/// Rounds a value up to the nearest multiple of mul +pub fn round_up_to_multiple(val: usize, mul: NonZeroUsize) -> usize { + match val % mul.get() { + 0 => val, + rem => val - rem + mul.get(), + } +} + + +#[macro_export] +macro_rules! c_str { + ($lit:expr) => { + unsafe { + std::ffi::CStr::from_ptr(concat!($lit, "\0").as_ptr() + as *const std::os::raw::c_char) + } + } +} + +/// This is inspired by the `weak-table` crate. +/// It holds a Vec of weak pointers that are garbage collected as the Vec +pub struct WeakTable { + inner: Vec<std::sync::Weak<Vec<u8>>> +} + +impl WeakTable { + pub fn new() -> WeakTable { + WeakTable { inner: Vec::new() } + } + pub fn insert(&mut self, x: std::sync::Weak<Vec<u8>>) { + if self.inner.len() == self.inner.capacity() { + self.remove_expired(); + + // We want to make sure that we change capacity() + // even if remove_expired() removes some entries + // so that we don't repeatedly hit remove_expired() + if self.inner.len() * 3 < self.inner.capacity() { + // We use a different multiple for shrinking then + // expanding so that we we don't accidentally + // oscilate. + self.inner.shrink_to_fit(); + } else { + // Otherwise double our size + self.inner.reserve(self.inner.len()) + } + } + self.inner.push(x); + } + + fn remove_expired(&mut self) { + self.inner.retain(|x| x.strong_count() > 0) + } + + pub fn iter(&self) -> impl Iterator<Item = Arc<Vec<u8>>> + '_ { + self.inner.iter().filter_map(|x| x.upgrade()) + } +} + +#[test] +fn weak_table() { + let mut tbl = WeakTable::new(); + let mut things = Vec::new(); + let target_count = 50; + for _ in 0..target_count { + things.push(Arc::new(vec![4])); + } + for i in &things { + tbl.insert(Arc::downgrade(i)) + } + assert_eq!(tbl.inner.len(), target_count); + drop(things); + assert_eq!(tbl.iter().count(), 0); + + // make sure that we shrink the table if it gets too big + // by adding a bunch of dead items + for _ in 0..target_count*2 { + tbl.insert(Arc::downgrade(&Arc::new(vec![5]))) + } + assert!(tbl.inner.capacity() <= 4); +} |