summaryrefslogtreecommitdiffstats
path: root/js/src/jit/CodeGenerator.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'js/src/jit/CodeGenerator.cpp')
-rw-r--r--js/src/jit/CodeGenerator.cpp20763
1 files changed, 20763 insertions, 0 deletions
diff --git a/js/src/jit/CodeGenerator.cpp b/js/src/jit/CodeGenerator.cpp
new file mode 100644
index 0000000000..2c41acc736
--- /dev/null
+++ b/js/src/jit/CodeGenerator.cpp
@@ -0,0 +1,20763 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
+ * vim: set ts=8 sts=2 et sw=2 tw=80:
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "jit/CodeGenerator.h"
+
+#include "mozilla/Assertions.h"
+#include "mozilla/Casting.h"
+#include "mozilla/DebugOnly.h"
+#include "mozilla/EndianUtils.h"
+#include "mozilla/EnumeratedArray.h"
+#include "mozilla/EnumeratedRange.h"
+#include "mozilla/EnumSet.h"
+#include "mozilla/IntegerTypeTraits.h"
+#include "mozilla/Latin1.h"
+#include "mozilla/MathAlgorithms.h"
+#include "mozilla/ScopeExit.h"
+#include "mozilla/SIMD.h"
+
+#include <limits>
+#include <type_traits>
+#include <utility>
+
+#include "jslibmath.h"
+#include "jsmath.h"
+#include "jsnum.h"
+
+#include "builtin/MapObject.h"
+#include "builtin/RegExp.h"
+#include "builtin/String.h"
+#include "irregexp/RegExpTypes.h"
+#include "jit/ABIArgGenerator.h"
+#include "jit/CompileInfo.h"
+#include "jit/InlineScriptTree.h"
+#include "jit/Invalidation.h"
+#include "jit/IonGenericCallStub.h"
+#include "jit/IonIC.h"
+#include "jit/IonScript.h"
+#include "jit/JitcodeMap.h"
+#include "jit/JitFrames.h"
+#include "jit/JitRuntime.h"
+#include "jit/JitSpewer.h"
+#include "jit/JitZone.h"
+#include "jit/Linker.h"
+#include "jit/MIRGenerator.h"
+#include "jit/MoveEmitter.h"
+#include "jit/RangeAnalysis.h"
+#include "jit/RegExpStubConstants.h"
+#include "jit/SafepointIndex.h"
+#include "jit/SharedICHelpers.h"
+#include "jit/SharedICRegisters.h"
+#include "jit/VMFunctions.h"
+#include "jit/WarpSnapshot.h"
+#include "js/ColumnNumber.h" // JS::LimitedColumnNumberOneOrigin
+#include "js/experimental/JitInfo.h" // JSJit{Getter,Setter}CallArgs, JSJitMethodCallArgsTraits, JSJitInfo
+#include "js/friend/DOMProxy.h" // JS::ExpandoAndGeneration
+#include "js/RegExpFlags.h" // JS::RegExpFlag
+#include "js/ScalarType.h" // js::Scalar::Type
+#include "proxy/DOMProxy.h"
+#include "proxy/ScriptedProxyHandler.h"
+#include "util/CheckedArithmetic.h"
+#include "util/Unicode.h"
+#include "vm/ArrayBufferViewObject.h"
+#include "vm/AsyncFunction.h"
+#include "vm/AsyncIteration.h"
+#include "vm/BuiltinObjectKind.h"
+#include "vm/FunctionFlags.h" // js::FunctionFlags
+#include "vm/Interpreter.h"
+#include "vm/JSAtomUtils.h" // AtomizeString
+#include "vm/MatchPairs.h"
+#include "vm/RegExpObject.h"
+#include "vm/RegExpStatics.h"
+#include "vm/StaticStrings.h"
+#include "vm/StringObject.h"
+#include "vm/StringType.h"
+#include "vm/TypedArrayObject.h"
+#include "wasm/WasmCodegenConstants.h"
+#include "wasm/WasmValType.h"
+#ifdef MOZ_VTUNE
+# include "vtune/VTuneWrapper.h"
+#endif
+#include "wasm/WasmBinary.h"
+#include "wasm/WasmGC.h"
+#include "wasm/WasmGcObject.h"
+#include "wasm/WasmStubs.h"
+
+#include "builtin/Boolean-inl.h"
+#include "jit/MacroAssembler-inl.h"
+#include "jit/shared/CodeGenerator-shared-inl.h"
+#include "jit/TemplateObject-inl.h"
+#include "jit/VMFunctionList-inl.h"
+#include "vm/JSScript-inl.h"
+#include "wasm/WasmInstance-inl.h"
+
+using namespace js;
+using namespace js::jit;
+
+using JS::GenericNaN;
+using mozilla::AssertedCast;
+using mozilla::CheckedUint32;
+using mozilla::DebugOnly;
+using mozilla::FloatingPoint;
+using mozilla::Maybe;
+using mozilla::NegativeInfinity;
+using mozilla::PositiveInfinity;
+
+using JS::ExpandoAndGeneration;
+
+namespace js {
+namespace jit {
+
+#ifdef CHECK_OSIPOINT_REGISTERS
+template <class Op>
+static void HandleRegisterDump(Op op, MacroAssembler& masm,
+ LiveRegisterSet liveRegs, Register activation,
+ Register scratch) {
+ const size_t baseOffset = JitActivation::offsetOfRegs();
+
+ // Handle live GPRs.
+ for (GeneralRegisterIterator iter(liveRegs.gprs()); iter.more(); ++iter) {
+ Register reg = *iter;
+ Address dump(activation, baseOffset + RegisterDump::offsetOfRegister(reg));
+
+ if (reg == activation) {
+ // To use the original value of the activation register (that's
+ // now on top of the stack), we need the scratch register.
+ masm.push(scratch);
+ masm.loadPtr(Address(masm.getStackPointer(), sizeof(uintptr_t)), scratch);
+ op(scratch, dump);
+ masm.pop(scratch);
+ } else {
+ op(reg, dump);
+ }
+ }
+
+ // Handle live FPRs.
+ for (FloatRegisterIterator iter(liveRegs.fpus()); iter.more(); ++iter) {
+ FloatRegister reg = *iter;
+ Address dump(activation, baseOffset + RegisterDump::offsetOfRegister(reg));
+ op(reg, dump);
+ }
+}
+
+class StoreOp {
+ MacroAssembler& masm;
+
+ public:
+ explicit StoreOp(MacroAssembler& masm) : masm(masm) {}
+
+ void operator()(Register reg, Address dump) { masm.storePtr(reg, dump); }
+ void operator()(FloatRegister reg, Address dump) {
+ if (reg.isDouble()) {
+ masm.storeDouble(reg, dump);
+ } else if (reg.isSingle()) {
+ masm.storeFloat32(reg, dump);
+ } else if (reg.isSimd128()) {
+ MOZ_CRASH("Unexpected case for SIMD");
+ } else {
+ MOZ_CRASH("Unexpected register type.");
+ }
+ }
+};
+
+class VerifyOp {
+ MacroAssembler& masm;
+ Label* failure_;
+
+ public:
+ VerifyOp(MacroAssembler& masm, Label* failure)
+ : masm(masm), failure_(failure) {}
+
+ void operator()(Register reg, Address dump) {
+ masm.branchPtr(Assembler::NotEqual, dump, reg, failure_);
+ }
+ void operator()(FloatRegister reg, Address dump) {
+ if (reg.isDouble()) {
+ ScratchDoubleScope scratch(masm);
+ masm.loadDouble(dump, scratch);
+ masm.branchDouble(Assembler::DoubleNotEqual, scratch, reg, failure_);
+ } else if (reg.isSingle()) {
+ ScratchFloat32Scope scratch(masm);
+ masm.loadFloat32(dump, scratch);
+ masm.branchFloat(Assembler::DoubleNotEqual, scratch, reg, failure_);
+ } else if (reg.isSimd128()) {
+ MOZ_CRASH("Unexpected case for SIMD");
+ } else {
+ MOZ_CRASH("Unexpected register type.");
+ }
+ }
+};
+
+void CodeGenerator::verifyOsiPointRegs(LSafepoint* safepoint) {
+ // Ensure the live registers stored by callVM did not change between
+ // the call and this OsiPoint. Try-catch relies on this invariant.
+
+ // Load pointer to the JitActivation in a scratch register.
+ AllocatableGeneralRegisterSet allRegs(GeneralRegisterSet::All());
+ Register scratch = allRegs.takeAny();
+ masm.push(scratch);
+ masm.loadJitActivation(scratch);
+
+ // If we should not check registers (because the instruction did not call
+ // into the VM, or a GC happened), we're done.
+ Label failure, done;
+ Address checkRegs(scratch, JitActivation::offsetOfCheckRegs());
+ masm.branch32(Assembler::Equal, checkRegs, Imm32(0), &done);
+
+ // Having more than one VM function call made in one visit function at
+ // runtime is a sec-ciritcal error, because if we conservatively assume that
+ // one of the function call can re-enter Ion, then the invalidation process
+ // will potentially add a call at a random location, by patching the code
+ // before the return address.
+ masm.branch32(Assembler::NotEqual, checkRegs, Imm32(1), &failure);
+
+ // Set checkRegs to 0, so that we don't try to verify registers after we
+ // return from this script to the caller.
+ masm.store32(Imm32(0), checkRegs);
+
+ // Ignore clobbered registers. Some instructions (like LValueToInt32) modify
+ // temps after calling into the VM. This is fine because no other
+ // instructions (including this OsiPoint) will depend on them. Also
+ // backtracking can also use the same register for an input and an output.
+ // These are marked as clobbered and shouldn't get checked.
+ LiveRegisterSet liveRegs;
+ liveRegs.set() = RegisterSet::Intersect(
+ safepoint->liveRegs().set(),
+ RegisterSet::Not(safepoint->clobberedRegs().set()));
+
+ VerifyOp op(masm, &failure);
+ HandleRegisterDump<VerifyOp>(op, masm, liveRegs, scratch, allRegs.getAny());
+
+ masm.jump(&done);
+
+ // Do not profile the callWithABI that occurs below. This is to avoid a
+ // rare corner case that occurs when profiling interacts with itself:
+ //
+ // When slow profiling assertions are turned on, FunctionBoundary ops
+ // (which update the profiler pseudo-stack) may emit a callVM, which
+ // forces them to have an osi point associated with them. The
+ // FunctionBoundary for inline function entry is added to the caller's
+ // graph with a PC from the caller's code, but during codegen it modifies
+ // Gecko Profiler instrumentation to add the callee as the current top-most
+ // script. When codegen gets to the OSIPoint, and the callWithABI below is
+ // emitted, the codegen thinks that the current frame is the callee, but
+ // the PC it's using from the OSIPoint refers to the caller. This causes
+ // the profiler instrumentation of the callWithABI below to ASSERT, since
+ // the script and pc are mismatched. To avoid this, we simply omit
+ // instrumentation for these callWithABIs.
+
+ // Any live register captured by a safepoint (other than temp registers)
+ // must remain unchanged between the call and the OsiPoint instruction.
+ masm.bind(&failure);
+ masm.assumeUnreachable("Modified registers between VM call and OsiPoint");
+
+ masm.bind(&done);
+ masm.pop(scratch);
+}
+
+bool CodeGenerator::shouldVerifyOsiPointRegs(LSafepoint* safepoint) {
+ if (!checkOsiPointRegisters) {
+ return false;
+ }
+
+ if (safepoint->liveRegs().emptyGeneral() &&
+ safepoint->liveRegs().emptyFloat()) {
+ return false; // No registers to check.
+ }
+
+ return true;
+}
+
+void CodeGenerator::resetOsiPointRegs(LSafepoint* safepoint) {
+ if (!shouldVerifyOsiPointRegs(safepoint)) {
+ return;
+ }
+
+ // Set checkRegs to 0. If we perform a VM call, the instruction
+ // will set it to 1.
+ AllocatableGeneralRegisterSet allRegs(GeneralRegisterSet::All());
+ Register scratch = allRegs.takeAny();
+ masm.push(scratch);
+ masm.loadJitActivation(scratch);
+ Address checkRegs(scratch, JitActivation::offsetOfCheckRegs());
+ masm.store32(Imm32(0), checkRegs);
+ masm.pop(scratch);
+}
+
+static void StoreAllLiveRegs(MacroAssembler& masm, LiveRegisterSet liveRegs) {
+ // Store a copy of all live registers before performing the call.
+ // When we reach the OsiPoint, we can use this to check nothing
+ // modified them in the meantime.
+
+ // Load pointer to the JitActivation in a scratch register.
+ AllocatableGeneralRegisterSet allRegs(GeneralRegisterSet::All());
+ Register scratch = allRegs.takeAny();
+ masm.push(scratch);
+ masm.loadJitActivation(scratch);
+
+ Address checkRegs(scratch, JitActivation::offsetOfCheckRegs());
+ masm.add32(Imm32(1), checkRegs);
+
+ StoreOp op(masm);
+ HandleRegisterDump<StoreOp>(op, masm, liveRegs, scratch, allRegs.getAny());
+
+ masm.pop(scratch);
+}
+#endif // CHECK_OSIPOINT_REGISTERS
+
+// Before doing any call to Cpp, you should ensure that volatile
+// registers are evicted by the register allocator.
+void CodeGenerator::callVMInternal(VMFunctionId id, LInstruction* ins) {
+ TrampolinePtr code = gen->jitRuntime()->getVMWrapper(id);
+ const VMFunctionData& fun = GetVMFunction(id);
+
+ // Stack is:
+ // ... frame ...
+ // [args]
+#ifdef DEBUG
+ MOZ_ASSERT(pushedArgs_ == fun.explicitArgs);
+ pushedArgs_ = 0;
+#endif
+
+#ifdef CHECK_OSIPOINT_REGISTERS
+ if (shouldVerifyOsiPointRegs(ins->safepoint())) {
+ StoreAllLiveRegs(masm, ins->safepoint()->liveRegs());
+ }
+#endif
+
+#ifdef DEBUG
+ if (ins->mirRaw()) {
+ MOZ_ASSERT(ins->mirRaw()->isInstruction());
+ MInstruction* mir = ins->mirRaw()->toInstruction();
+ MOZ_ASSERT_IF(mir->needsResumePoint(), mir->resumePoint());
+
+ // If this MIR instruction has an overridden AliasSet, set the JitRuntime's
+ // disallowArbitraryCode_ flag so we can assert this VMFunction doesn't call
+ // RunScript. Whitelist MInterruptCheck and MCheckOverRecursed because
+ // interrupt callbacks can call JS (chrome JS or shell testing functions).
+ bool isWhitelisted = mir->isInterruptCheck() || mir->isCheckOverRecursed();
+ if (!mir->hasDefaultAliasSet() && !isWhitelisted) {
+ const void* addr = gen->jitRuntime()->addressOfDisallowArbitraryCode();
+ masm.move32(Imm32(1), ReturnReg);
+ masm.store32(ReturnReg, AbsoluteAddress(addr));
+ }
+ }
+#endif
+
+ // Push an exit frame descriptor.
+ masm.PushFrameDescriptor(FrameType::IonJS);
+
+ // Call the wrapper function. The wrapper is in charge to unwind the stack
+ // when returning from the call. Failures are handled with exceptions based
+ // on the return value of the C functions. To guard the outcome of the
+ // returned value, use another LIR instruction.
+ ensureOsiSpace();
+ uint32_t callOffset = masm.callJit(code);
+ markSafepointAt(callOffset, ins);
+
+#ifdef DEBUG
+ // Reset the disallowArbitraryCode flag after the call.
+ {
+ const void* addr = gen->jitRuntime()->addressOfDisallowArbitraryCode();
+ masm.push(ReturnReg);
+ masm.move32(Imm32(0), ReturnReg);
+ masm.store32(ReturnReg, AbsoluteAddress(addr));
+ masm.pop(ReturnReg);
+ }
+#endif
+
+ // Pop rest of the exit frame and the arguments left on the stack.
+ int framePop =
+ sizeof(ExitFrameLayout) - ExitFrameLayout::bytesPoppedAfterCall();
+ masm.implicitPop(fun.explicitStackSlots() * sizeof(void*) + framePop);
+
+ // Stack is:
+ // ... frame ...
+}
+
+template <typename Fn, Fn fn>
+void CodeGenerator::callVM(LInstruction* ins) {
+ VMFunctionId id = VMFunctionToId<Fn, fn>::id;
+ callVMInternal(id, ins);
+}
+
+// ArgSeq store arguments for OutOfLineCallVM.
+//
+// OutOfLineCallVM are created with "oolCallVM" function. The third argument of
+// this function is an instance of a class which provides a "generate" in charge
+// of pushing the argument, with "pushArg", for a VMFunction.
+//
+// Such list of arguments can be created by using the "ArgList" function which
+// creates one instance of "ArgSeq", where the type of the arguments are
+// inferred from the type of the arguments.
+//
+// The list of arguments must be written in the same order as if you were
+// calling the function in C++.
+//
+// Example:
+// ArgList(ToRegister(lir->lhs()), ToRegister(lir->rhs()))
+
+template <typename... ArgTypes>
+class ArgSeq {
+ std::tuple<std::remove_reference_t<ArgTypes>...> args_;
+
+ template <std::size_t... ISeq>
+ inline void generate(CodeGenerator* codegen,
+ std::index_sequence<ISeq...>) const {
+ // Arguments are pushed in reverse order, from last argument to first
+ // argument.
+ (codegen->pushArg(std::get<sizeof...(ISeq) - 1 - ISeq>(args_)), ...);
+ }
+
+ public:
+ explicit ArgSeq(ArgTypes&&... args)
+ : args_(std::forward<ArgTypes>(args)...) {}
+
+ inline void generate(CodeGenerator* codegen) const {
+ generate(codegen, std::index_sequence_for<ArgTypes...>{});
+ }
+
+#ifdef DEBUG
+ static constexpr size_t numArgs = sizeof...(ArgTypes);
+#endif
+};
+
+template <typename... ArgTypes>
+inline ArgSeq<ArgTypes...> ArgList(ArgTypes&&... args) {
+ return ArgSeq<ArgTypes...>(std::forward<ArgTypes>(args)...);
+}
+
+// Store wrappers, to generate the right move of data after the VM call.
+
+struct StoreNothing {
+ inline void generate(CodeGenerator* codegen) const {}
+ inline LiveRegisterSet clobbered() const {
+ return LiveRegisterSet(); // No register gets clobbered
+ }
+};
+
+class StoreRegisterTo {
+ private:
+ Register out_;
+
+ public:
+ explicit StoreRegisterTo(Register out) : out_(out) {}
+
+ inline void generate(CodeGenerator* codegen) const {
+ // It's okay to use storePointerResultTo here - the VMFunction wrapper
+ // ensures the upper bytes are zero for bool/int32 return values.
+ codegen->storePointerResultTo(out_);
+ }
+ inline LiveRegisterSet clobbered() const {
+ LiveRegisterSet set;
+ set.add(out_);
+ return set;
+ }
+};
+
+class StoreFloatRegisterTo {
+ private:
+ FloatRegister out_;
+
+ public:
+ explicit StoreFloatRegisterTo(FloatRegister out) : out_(out) {}
+
+ inline void generate(CodeGenerator* codegen) const {
+ codegen->storeFloatResultTo(out_);
+ }
+ inline LiveRegisterSet clobbered() const {
+ LiveRegisterSet set;
+ set.add(out_);
+ return set;
+ }
+};
+
+template <typename Output>
+class StoreValueTo_ {
+ private:
+ Output out_;
+
+ public:
+ explicit StoreValueTo_(const Output& out) : out_(out) {}
+
+ inline void generate(CodeGenerator* codegen) const {
+ codegen->storeResultValueTo(out_);
+ }
+ inline LiveRegisterSet clobbered() const {
+ LiveRegisterSet set;
+ set.add(out_);
+ return set;
+ }
+};
+
+template <typename Output>
+StoreValueTo_<Output> StoreValueTo(const Output& out) {
+ return StoreValueTo_<Output>(out);
+}
+
+template <typename Fn, Fn fn, class ArgSeq, class StoreOutputTo>
+class OutOfLineCallVM : public OutOfLineCodeBase<CodeGenerator> {
+ private:
+ LInstruction* lir_;
+ ArgSeq args_;
+ StoreOutputTo out_;
+
+ public:
+ OutOfLineCallVM(LInstruction* lir, const ArgSeq& args,
+ const StoreOutputTo& out)
+ : lir_(lir), args_(args), out_(out) {}
+
+ void accept(CodeGenerator* codegen) override {
+ codegen->visitOutOfLineCallVM(this);
+ }
+
+ LInstruction* lir() const { return lir_; }
+ const ArgSeq& args() const { return args_; }
+ const StoreOutputTo& out() const { return out_; }
+};
+
+template <typename Fn, Fn fn, class ArgSeq, class StoreOutputTo>
+OutOfLineCode* CodeGenerator::oolCallVM(LInstruction* lir, const ArgSeq& args,
+ const StoreOutputTo& out) {
+ MOZ_ASSERT(lir->mirRaw());
+ MOZ_ASSERT(lir->mirRaw()->isInstruction());
+
+#ifdef DEBUG
+ VMFunctionId id = VMFunctionToId<Fn, fn>::id;
+ const VMFunctionData& fun = GetVMFunction(id);
+ MOZ_ASSERT(fun.explicitArgs == args.numArgs);
+ MOZ_ASSERT(fun.returnsData() !=
+ (std::is_same_v<StoreOutputTo, StoreNothing>));
+#endif
+
+ OutOfLineCode* ool = new (alloc())
+ OutOfLineCallVM<Fn, fn, ArgSeq, StoreOutputTo>(lir, args, out);
+ addOutOfLineCode(ool, lir->mirRaw()->toInstruction());
+ return ool;
+}
+
+template <typename Fn, Fn fn, class ArgSeq, class StoreOutputTo>
+void CodeGenerator::visitOutOfLineCallVM(
+ OutOfLineCallVM<Fn, fn, ArgSeq, StoreOutputTo>* ool) {
+ LInstruction* lir = ool->lir();
+
+#ifdef JS_JITSPEW
+ JitSpewStart(JitSpew_Codegen, " # LIR=%s",
+ lir->opName());
+ if (const char* extra = lir->getExtraName()) {
+ JitSpewCont(JitSpew_Codegen, ":%s", extra);
+ }
+ JitSpewFin(JitSpew_Codegen);
+#endif
+ perfSpewer_.recordInstruction(masm, lir);
+ saveLive(lir);
+ ool->args().generate(this);
+ callVM<Fn, fn>(lir);
+ ool->out().generate(this);
+ restoreLiveIgnore(lir, ool->out().clobbered());
+ masm.jump(ool->rejoin());
+}
+
+class OutOfLineICFallback : public OutOfLineCodeBase<CodeGenerator> {
+ private:
+ LInstruction* lir_;
+ size_t cacheIndex_;
+ size_t cacheInfoIndex_;
+
+ public:
+ OutOfLineICFallback(LInstruction* lir, size_t cacheIndex,
+ size_t cacheInfoIndex)
+ : lir_(lir), cacheIndex_(cacheIndex), cacheInfoIndex_(cacheInfoIndex) {}
+
+ void bind(MacroAssembler* masm) override {
+ // The binding of the initial jump is done in
+ // CodeGenerator::visitOutOfLineICFallback.
+ }
+
+ size_t cacheIndex() const { return cacheIndex_; }
+ size_t cacheInfoIndex() const { return cacheInfoIndex_; }
+ LInstruction* lir() const { return lir_; }
+
+ void accept(CodeGenerator* codegen) override {
+ codegen->visitOutOfLineICFallback(this);
+ }
+};
+
+void CodeGeneratorShared::addIC(LInstruction* lir, size_t cacheIndex) {
+ if (cacheIndex == SIZE_MAX) {
+ masm.setOOM();
+ return;
+ }
+
+ DataPtr<IonIC> cache(this, cacheIndex);
+ MInstruction* mir = lir->mirRaw()->toInstruction();
+ cache->setScriptedLocation(mir->block()->info().script(),
+ mir->resumePoint()->pc());
+
+ Register temp = cache->scratchRegisterForEntryJump();
+ icInfo_.back().icOffsetForJump = masm.movWithPatch(ImmWord(-1), temp);
+ masm.jump(Address(temp, 0));
+
+ MOZ_ASSERT(!icInfo_.empty());
+
+ OutOfLineICFallback* ool =
+ new (alloc()) OutOfLineICFallback(lir, cacheIndex, icInfo_.length() - 1);
+ addOutOfLineCode(ool, mir);
+
+ masm.bind(ool->rejoin());
+ cache->setRejoinOffset(CodeOffset(ool->rejoin()->offset()));
+}
+
+void CodeGenerator::visitOutOfLineICFallback(OutOfLineICFallback* ool) {
+ LInstruction* lir = ool->lir();
+ size_t cacheIndex = ool->cacheIndex();
+ size_t cacheInfoIndex = ool->cacheInfoIndex();
+
+ DataPtr<IonIC> ic(this, cacheIndex);
+
+ // Register the location of the OOL path in the IC.
+ ic->setFallbackOffset(CodeOffset(masm.currentOffset()));
+
+ switch (ic->kind()) {
+ case CacheKind::GetProp:
+ case CacheKind::GetElem: {
+ IonGetPropertyIC* getPropIC = ic->asGetPropertyIC();
+
+ saveLive(lir);
+
+ pushArg(getPropIC->id());
+ pushArg(getPropIC->value());
+ icInfo_[cacheInfoIndex].icOffsetForPush = pushArgWithPatch(ImmWord(-1));
+ pushArg(ImmGCPtr(gen->outerInfo().script()));
+
+ using Fn = bool (*)(JSContext*, HandleScript, IonGetPropertyIC*,
+ HandleValue, HandleValue, MutableHandleValue);
+ callVM<Fn, IonGetPropertyIC::update>(lir);
+
+ StoreValueTo(getPropIC->output()).generate(this);
+ restoreLiveIgnore(lir, StoreValueTo(getPropIC->output()).clobbered());
+
+ masm.jump(ool->rejoin());
+ return;
+ }
+ case CacheKind::GetPropSuper:
+ case CacheKind::GetElemSuper: {
+ IonGetPropSuperIC* getPropSuperIC = ic->asGetPropSuperIC();
+
+ saveLive(lir);
+
+ pushArg(getPropSuperIC->id());
+ pushArg(getPropSuperIC->receiver());
+ pushArg(getPropSuperIC->object());
+ icInfo_[cacheInfoIndex].icOffsetForPush = pushArgWithPatch(ImmWord(-1));
+ pushArg(ImmGCPtr(gen->outerInfo().script()));
+
+ using Fn =
+ bool (*)(JSContext*, HandleScript, IonGetPropSuperIC*, HandleObject,
+ HandleValue, HandleValue, MutableHandleValue);
+ callVM<Fn, IonGetPropSuperIC::update>(lir);
+
+ StoreValueTo(getPropSuperIC->output()).generate(this);
+ restoreLiveIgnore(lir,
+ StoreValueTo(getPropSuperIC->output()).clobbered());
+
+ masm.jump(ool->rejoin());
+ return;
+ }
+ case CacheKind::SetProp:
+ case CacheKind::SetElem: {
+ IonSetPropertyIC* setPropIC = ic->asSetPropertyIC();
+
+ saveLive(lir);
+
+ pushArg(setPropIC->rhs());
+ pushArg(setPropIC->id());
+ pushArg(setPropIC->object());
+ icInfo_[cacheInfoIndex].icOffsetForPush = pushArgWithPatch(ImmWord(-1));
+ pushArg(ImmGCPtr(gen->outerInfo().script()));
+
+ using Fn = bool (*)(JSContext*, HandleScript, IonSetPropertyIC*,
+ HandleObject, HandleValue, HandleValue);
+ callVM<Fn, IonSetPropertyIC::update>(lir);
+
+ restoreLive(lir);
+
+ masm.jump(ool->rejoin());
+ return;
+ }
+ case CacheKind::GetName: {
+ IonGetNameIC* getNameIC = ic->asGetNameIC();
+
+ saveLive(lir);
+
+ pushArg(getNameIC->environment());
+ icInfo_[cacheInfoIndex].icOffsetForPush = pushArgWithPatch(ImmWord(-1));
+ pushArg(ImmGCPtr(gen->outerInfo().script()));
+
+ using Fn = bool (*)(JSContext*, HandleScript, IonGetNameIC*, HandleObject,
+ MutableHandleValue);
+ callVM<Fn, IonGetNameIC::update>(lir);
+
+ StoreValueTo(getNameIC->output()).generate(this);
+ restoreLiveIgnore(lir, StoreValueTo(getNameIC->output()).clobbered());
+
+ masm.jump(ool->rejoin());
+ return;
+ }
+ case CacheKind::BindName: {
+ IonBindNameIC* bindNameIC = ic->asBindNameIC();
+
+ saveLive(lir);
+
+ pushArg(bindNameIC->environment());
+ icInfo_[cacheInfoIndex].icOffsetForPush = pushArgWithPatch(ImmWord(-1));
+ pushArg(ImmGCPtr(gen->outerInfo().script()));
+
+ using Fn =
+ JSObject* (*)(JSContext*, HandleScript, IonBindNameIC*, HandleObject);
+ callVM<Fn, IonBindNameIC::update>(lir);
+
+ StoreRegisterTo(bindNameIC->output()).generate(this);
+ restoreLiveIgnore(lir, StoreRegisterTo(bindNameIC->output()).clobbered());
+
+ masm.jump(ool->rejoin());
+ return;
+ }
+ case CacheKind::GetIterator: {
+ IonGetIteratorIC* getIteratorIC = ic->asGetIteratorIC();
+
+ saveLive(lir);
+
+ pushArg(getIteratorIC->value());
+ icInfo_[cacheInfoIndex].icOffsetForPush = pushArgWithPatch(ImmWord(-1));
+ pushArg(ImmGCPtr(gen->outerInfo().script()));
+
+ using Fn = JSObject* (*)(JSContext*, HandleScript, IonGetIteratorIC*,
+ HandleValue);
+ callVM<Fn, IonGetIteratorIC::update>(lir);
+
+ StoreRegisterTo(getIteratorIC->output()).generate(this);
+ restoreLiveIgnore(lir,
+ StoreRegisterTo(getIteratorIC->output()).clobbered());
+
+ masm.jump(ool->rejoin());
+ return;
+ }
+ case CacheKind::OptimizeSpreadCall: {
+ auto* optimizeSpreadCallIC = ic->asOptimizeSpreadCallIC();
+
+ saveLive(lir);
+
+ pushArg(optimizeSpreadCallIC->value());
+ icInfo_[cacheInfoIndex].icOffsetForPush = pushArgWithPatch(ImmWord(-1));
+ pushArg(ImmGCPtr(gen->outerInfo().script()));
+
+ using Fn = bool (*)(JSContext*, HandleScript, IonOptimizeSpreadCallIC*,
+ HandleValue, MutableHandleValue);
+ callVM<Fn, IonOptimizeSpreadCallIC::update>(lir);
+
+ StoreValueTo(optimizeSpreadCallIC->output()).generate(this);
+ restoreLiveIgnore(
+ lir, StoreValueTo(optimizeSpreadCallIC->output()).clobbered());
+
+ masm.jump(ool->rejoin());
+ return;
+ }
+ case CacheKind::In: {
+ IonInIC* inIC = ic->asInIC();
+
+ saveLive(lir);
+
+ pushArg(inIC->object());
+ pushArg(inIC->key());
+ icInfo_[cacheInfoIndex].icOffsetForPush = pushArgWithPatch(ImmWord(-1));
+ pushArg(ImmGCPtr(gen->outerInfo().script()));
+
+ using Fn = bool (*)(JSContext*, HandleScript, IonInIC*, HandleValue,
+ HandleObject, bool*);
+ callVM<Fn, IonInIC::update>(lir);
+
+ StoreRegisterTo(inIC->output()).generate(this);
+ restoreLiveIgnore(lir, StoreRegisterTo(inIC->output()).clobbered());
+
+ masm.jump(ool->rejoin());
+ return;
+ }
+ case CacheKind::HasOwn: {
+ IonHasOwnIC* hasOwnIC = ic->asHasOwnIC();
+
+ saveLive(lir);
+
+ pushArg(hasOwnIC->id());
+ pushArg(hasOwnIC->value());
+ icInfo_[cacheInfoIndex].icOffsetForPush = pushArgWithPatch(ImmWord(-1));
+ pushArg(ImmGCPtr(gen->outerInfo().script()));
+
+ using Fn = bool (*)(JSContext*, HandleScript, IonHasOwnIC*, HandleValue,
+ HandleValue, int32_t*);
+ callVM<Fn, IonHasOwnIC::update>(lir);
+
+ StoreRegisterTo(hasOwnIC->output()).generate(this);
+ restoreLiveIgnore(lir, StoreRegisterTo(hasOwnIC->output()).clobbered());
+
+ masm.jump(ool->rejoin());
+ return;
+ }
+ case CacheKind::CheckPrivateField: {
+ IonCheckPrivateFieldIC* checkPrivateFieldIC = ic->asCheckPrivateFieldIC();
+
+ saveLive(lir);
+
+ pushArg(checkPrivateFieldIC->id());
+ pushArg(checkPrivateFieldIC->value());
+
+ icInfo_[cacheInfoIndex].icOffsetForPush = pushArgWithPatch(ImmWord(-1));
+ pushArg(ImmGCPtr(gen->outerInfo().script()));
+
+ using Fn = bool (*)(JSContext*, HandleScript, IonCheckPrivateFieldIC*,
+ HandleValue, HandleValue, bool*);
+ callVM<Fn, IonCheckPrivateFieldIC::update>(lir);
+
+ StoreRegisterTo(checkPrivateFieldIC->output()).generate(this);
+ restoreLiveIgnore(
+ lir, StoreRegisterTo(checkPrivateFieldIC->output()).clobbered());
+
+ masm.jump(ool->rejoin());
+ return;
+ }
+ case CacheKind::InstanceOf: {
+ IonInstanceOfIC* hasInstanceOfIC = ic->asInstanceOfIC();
+
+ saveLive(lir);
+
+ pushArg(hasInstanceOfIC->rhs());
+ pushArg(hasInstanceOfIC->lhs());
+ icInfo_[cacheInfoIndex].icOffsetForPush = pushArgWithPatch(ImmWord(-1));
+ pushArg(ImmGCPtr(gen->outerInfo().script()));
+
+ using Fn = bool (*)(JSContext*, HandleScript, IonInstanceOfIC*,
+ HandleValue lhs, HandleObject rhs, bool* res);
+ callVM<Fn, IonInstanceOfIC::update>(lir);
+
+ StoreRegisterTo(hasInstanceOfIC->output()).generate(this);
+ restoreLiveIgnore(lir,
+ StoreRegisterTo(hasInstanceOfIC->output()).clobbered());
+
+ masm.jump(ool->rejoin());
+ return;
+ }
+ case CacheKind::UnaryArith: {
+ IonUnaryArithIC* unaryArithIC = ic->asUnaryArithIC();
+
+ saveLive(lir);
+
+ pushArg(unaryArithIC->input());
+ icInfo_[cacheInfoIndex].icOffsetForPush = pushArgWithPatch(ImmWord(-1));
+ pushArg(ImmGCPtr(gen->outerInfo().script()));
+
+ using Fn = bool (*)(JSContext* cx, HandleScript outerScript,
+ IonUnaryArithIC* stub, HandleValue val,
+ MutableHandleValue res);
+ callVM<Fn, IonUnaryArithIC::update>(lir);
+
+ StoreValueTo(unaryArithIC->output()).generate(this);
+ restoreLiveIgnore(lir, StoreValueTo(unaryArithIC->output()).clobbered());
+
+ masm.jump(ool->rejoin());
+ return;
+ }
+ case CacheKind::ToPropertyKey: {
+ IonToPropertyKeyIC* toPropertyKeyIC = ic->asToPropertyKeyIC();
+
+ saveLive(lir);
+
+ pushArg(toPropertyKeyIC->input());
+ icInfo_[cacheInfoIndex].icOffsetForPush = pushArgWithPatch(ImmWord(-1));
+ pushArg(ImmGCPtr(gen->outerInfo().script()));
+
+ using Fn = bool (*)(JSContext* cx, HandleScript outerScript,
+ IonToPropertyKeyIC* ic, HandleValue val,
+ MutableHandleValue res);
+ callVM<Fn, IonToPropertyKeyIC::update>(lir);
+
+ StoreValueTo(toPropertyKeyIC->output()).generate(this);
+ restoreLiveIgnore(lir,
+ StoreValueTo(toPropertyKeyIC->output()).clobbered());
+
+ masm.jump(ool->rejoin());
+ return;
+ }
+ case CacheKind::BinaryArith: {
+ IonBinaryArithIC* binaryArithIC = ic->asBinaryArithIC();
+
+ saveLive(lir);
+
+ pushArg(binaryArithIC->rhs());
+ pushArg(binaryArithIC->lhs());
+ icInfo_[cacheInfoIndex].icOffsetForPush = pushArgWithPatch(ImmWord(-1));
+ pushArg(ImmGCPtr(gen->outerInfo().script()));
+
+ using Fn = bool (*)(JSContext* cx, HandleScript outerScript,
+ IonBinaryArithIC* stub, HandleValue lhs,
+ HandleValue rhs, MutableHandleValue res);
+ callVM<Fn, IonBinaryArithIC::update>(lir);
+
+ StoreValueTo(binaryArithIC->output()).generate(this);
+ restoreLiveIgnore(lir, StoreValueTo(binaryArithIC->output()).clobbered());
+
+ masm.jump(ool->rejoin());
+ return;
+ }
+ case CacheKind::Compare: {
+ IonCompareIC* compareIC = ic->asCompareIC();
+
+ saveLive(lir);
+
+ pushArg(compareIC->rhs());
+ pushArg(compareIC->lhs());
+ icInfo_[cacheInfoIndex].icOffsetForPush = pushArgWithPatch(ImmWord(-1));
+ pushArg(ImmGCPtr(gen->outerInfo().script()));
+
+ using Fn =
+ bool (*)(JSContext* cx, HandleScript outerScript, IonCompareIC* stub,
+ HandleValue lhs, HandleValue rhs, bool* res);
+ callVM<Fn, IonCompareIC::update>(lir);
+
+ StoreRegisterTo(compareIC->output()).generate(this);
+ restoreLiveIgnore(lir, StoreRegisterTo(compareIC->output()).clobbered());
+
+ masm.jump(ool->rejoin());
+ return;
+ }
+ case CacheKind::CloseIter: {
+ IonCloseIterIC* closeIterIC = ic->asCloseIterIC();
+
+ saveLive(lir);
+
+ pushArg(closeIterIC->iter());
+ icInfo_[cacheInfoIndex].icOffsetForPush = pushArgWithPatch(ImmWord(-1));
+ pushArg(ImmGCPtr(gen->outerInfo().script()));
+
+ using Fn =
+ bool (*)(JSContext*, HandleScript, IonCloseIterIC*, HandleObject);
+ callVM<Fn, IonCloseIterIC::update>(lir);
+
+ restoreLive(lir);
+
+ masm.jump(ool->rejoin());
+ return;
+ }
+ case CacheKind::OptimizeGetIterator: {
+ auto* optimizeGetIteratorIC = ic->asOptimizeGetIteratorIC();
+
+ saveLive(lir);
+
+ pushArg(optimizeGetIteratorIC->value());
+ icInfo_[cacheInfoIndex].icOffsetForPush = pushArgWithPatch(ImmWord(-1));
+ pushArg(ImmGCPtr(gen->outerInfo().script()));
+
+ using Fn = bool (*)(JSContext*, HandleScript, IonOptimizeGetIteratorIC*,
+ HandleValue, bool* res);
+ callVM<Fn, IonOptimizeGetIteratorIC::update>(lir);
+
+ StoreRegisterTo(optimizeGetIteratorIC->output()).generate(this);
+ restoreLiveIgnore(
+ lir, StoreRegisterTo(optimizeGetIteratorIC->output()).clobbered());
+
+ masm.jump(ool->rejoin());
+ return;
+ }
+ case CacheKind::Call:
+ case CacheKind::TypeOf:
+ case CacheKind::ToBool:
+ case CacheKind::GetIntrinsic:
+ case CacheKind::NewArray:
+ case CacheKind::NewObject:
+ MOZ_CRASH("Unsupported IC");
+ }
+ MOZ_CRASH();
+}
+
+StringObject* MNewStringObject::templateObj() const {
+ return &templateObj_->as<StringObject>();
+}
+
+CodeGenerator::CodeGenerator(MIRGenerator* gen, LIRGraph* graph,
+ MacroAssembler* masm)
+ : CodeGeneratorSpecific(gen, graph, masm),
+ ionScriptLabels_(gen->alloc()),
+ ionNurseryObjectLabels_(gen->alloc()),
+ scriptCounts_(nullptr),
+ zoneStubsToReadBarrier_(0) {}
+
+CodeGenerator::~CodeGenerator() { js_delete(scriptCounts_); }
+
+void CodeGenerator::visitValueToInt32(LValueToInt32* lir) {
+ ValueOperand operand = ToValue(lir, LValueToInt32::Input);
+ Register output = ToRegister(lir->output());
+ FloatRegister temp = ToFloatRegister(lir->tempFloat());
+
+ Label fails;
+ if (lir->mode() == LValueToInt32::TRUNCATE) {
+ OutOfLineCode* oolDouble = oolTruncateDouble(temp, output, lir->mir());
+
+ // We can only handle strings in truncation contexts, like bitwise
+ // operations.
+ Register stringReg = ToRegister(lir->temp());
+ using Fn = bool (*)(JSContext*, JSString*, double*);
+ auto* oolString = oolCallVM<Fn, StringToNumber>(lir, ArgList(stringReg),
+ StoreFloatRegisterTo(temp));
+ Label* stringEntry = oolString->entry();
+ Label* stringRejoin = oolString->rejoin();
+
+ masm.truncateValueToInt32(operand, stringEntry, stringRejoin,
+ oolDouble->entry(), stringReg, temp, output,
+ &fails);
+ masm.bind(oolDouble->rejoin());
+ } else {
+ MOZ_ASSERT(lir->mode() == LValueToInt32::NORMAL);
+ masm.convertValueToInt32(operand, temp, output, &fails,
+ lir->mirNormal()->needsNegativeZeroCheck(),
+ lir->mirNormal()->conversion());
+ }
+
+ bailoutFrom(&fails, lir->snapshot());
+}
+
+void CodeGenerator::visitValueToDouble(LValueToDouble* lir) {
+ ValueOperand operand = ToValue(lir, LValueToDouble::InputIndex);
+ FloatRegister output = ToFloatRegister(lir->output());
+
+ // Set if we can handle other primitives beside strings, as long as they're
+ // guaranteed to never throw. This rules out symbols and BigInts, but allows
+ // booleans, undefined, and null.
+ bool hasNonStringPrimitives =
+ lir->mir()->conversion() == MToFPInstruction::NonStringPrimitives;
+
+ Label isDouble, isInt32, isBool, isNull, isUndefined, done;
+
+ {
+ ScratchTagScope tag(masm, operand);
+ masm.splitTagForTest(operand, tag);
+
+ masm.branchTestDouble(Assembler::Equal, tag, &isDouble);
+ masm.branchTestInt32(Assembler::Equal, tag, &isInt32);
+
+ if (hasNonStringPrimitives) {
+ masm.branchTestBoolean(Assembler::Equal, tag, &isBool);
+ masm.branchTestUndefined(Assembler::Equal, tag, &isUndefined);
+ masm.branchTestNull(Assembler::Equal, tag, &isNull);
+ }
+ }
+
+ bailout(lir->snapshot());
+
+ if (hasNonStringPrimitives) {
+ masm.bind(&isNull);
+ masm.loadConstantDouble(0.0, output);
+ masm.jump(&done);
+ }
+
+ if (hasNonStringPrimitives) {
+ masm.bind(&isUndefined);
+ masm.loadConstantDouble(GenericNaN(), output);
+ masm.jump(&done);
+ }
+
+ if (hasNonStringPrimitives) {
+ masm.bind(&isBool);
+ masm.boolValueToDouble(operand, output);
+ masm.jump(&done);
+ }
+
+ masm.bind(&isInt32);
+ masm.int32ValueToDouble(operand, output);
+ masm.jump(&done);
+
+ masm.bind(&isDouble);
+ masm.unboxDouble(operand, output);
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitValueToFloat32(LValueToFloat32* lir) {
+ ValueOperand operand = ToValue(lir, LValueToFloat32::InputIndex);
+ FloatRegister output = ToFloatRegister(lir->output());
+
+ // Set if we can handle other primitives beside strings, as long as they're
+ // guaranteed to never throw. This rules out symbols and BigInts, but allows
+ // booleans, undefined, and null.
+ bool hasNonStringPrimitives =
+ lir->mir()->conversion() == MToFPInstruction::NonStringPrimitives;
+
+ Label isDouble, isInt32, isBool, isNull, isUndefined, done;
+
+ {
+ ScratchTagScope tag(masm, operand);
+ masm.splitTagForTest(operand, tag);
+
+ masm.branchTestDouble(Assembler::Equal, tag, &isDouble);
+ masm.branchTestInt32(Assembler::Equal, tag, &isInt32);
+
+ if (hasNonStringPrimitives) {
+ masm.branchTestBoolean(Assembler::Equal, tag, &isBool);
+ masm.branchTestUndefined(Assembler::Equal, tag, &isUndefined);
+ masm.branchTestNull(Assembler::Equal, tag, &isNull);
+ }
+ }
+
+ bailout(lir->snapshot());
+
+ if (hasNonStringPrimitives) {
+ masm.bind(&isNull);
+ masm.loadConstantFloat32(0.0f, output);
+ masm.jump(&done);
+ }
+
+ if (hasNonStringPrimitives) {
+ masm.bind(&isUndefined);
+ masm.loadConstantFloat32(float(GenericNaN()), output);
+ masm.jump(&done);
+ }
+
+ if (hasNonStringPrimitives) {
+ masm.bind(&isBool);
+ masm.boolValueToFloat32(operand, output);
+ masm.jump(&done);
+ }
+
+ masm.bind(&isInt32);
+ masm.int32ValueToFloat32(operand, output);
+ masm.jump(&done);
+
+ masm.bind(&isDouble);
+ // ARM and MIPS may not have a double register available if we've
+ // allocated output as a float32.
+#if defined(JS_CODEGEN_ARM) || defined(JS_CODEGEN_MIPS32)
+ ScratchDoubleScope fpscratch(masm);
+ masm.unboxDouble(operand, fpscratch);
+ masm.convertDoubleToFloat32(fpscratch, output);
+#else
+ masm.unboxDouble(operand, output);
+ masm.convertDoubleToFloat32(output, output);
+#endif
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitValueToBigInt(LValueToBigInt* lir) {
+ ValueOperand operand = ToValue(lir, LValueToBigInt::InputIndex);
+ Register output = ToRegister(lir->output());
+
+ using Fn = BigInt* (*)(JSContext*, HandleValue);
+ auto* ool =
+ oolCallVM<Fn, ToBigInt>(lir, ArgList(operand), StoreRegisterTo(output));
+
+ Register tag = masm.extractTag(operand, output);
+
+ Label notBigInt, done;
+ masm.branchTestBigInt(Assembler::NotEqual, tag, &notBigInt);
+ masm.unboxBigInt(operand, output);
+ masm.jump(&done);
+ masm.bind(&notBigInt);
+
+ masm.branchTestBoolean(Assembler::Equal, tag, ool->entry());
+ masm.branchTestString(Assembler::Equal, tag, ool->entry());
+
+ // ToBigInt(object) can have side-effects; all other types throw a TypeError.
+ bailout(lir->snapshot());
+
+ masm.bind(ool->rejoin());
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitInt32ToDouble(LInt32ToDouble* lir) {
+ masm.convertInt32ToDouble(ToRegister(lir->input()),
+ ToFloatRegister(lir->output()));
+}
+
+void CodeGenerator::visitFloat32ToDouble(LFloat32ToDouble* lir) {
+ masm.convertFloat32ToDouble(ToFloatRegister(lir->input()),
+ ToFloatRegister(lir->output()));
+}
+
+void CodeGenerator::visitDoubleToFloat32(LDoubleToFloat32* lir) {
+ masm.convertDoubleToFloat32(ToFloatRegister(lir->input()),
+ ToFloatRegister(lir->output()));
+}
+
+void CodeGenerator::visitInt32ToFloat32(LInt32ToFloat32* lir) {
+ masm.convertInt32ToFloat32(ToRegister(lir->input()),
+ ToFloatRegister(lir->output()));
+}
+
+void CodeGenerator::visitDoubleToInt32(LDoubleToInt32* lir) {
+ Label fail;
+ FloatRegister input = ToFloatRegister(lir->input());
+ Register output = ToRegister(lir->output());
+ masm.convertDoubleToInt32(input, output, &fail,
+ lir->mir()->needsNegativeZeroCheck());
+ bailoutFrom(&fail, lir->snapshot());
+}
+
+void CodeGenerator::visitFloat32ToInt32(LFloat32ToInt32* lir) {
+ Label fail;
+ FloatRegister input = ToFloatRegister(lir->input());
+ Register output = ToRegister(lir->output());
+ masm.convertFloat32ToInt32(input, output, &fail,
+ lir->mir()->needsNegativeZeroCheck());
+ bailoutFrom(&fail, lir->snapshot());
+}
+
+void CodeGenerator::visitInt32ToIntPtr(LInt32ToIntPtr* lir) {
+#ifdef JS_64BIT
+ // This LIR instruction is only used if the input can be negative.
+ MOZ_ASSERT(lir->mir()->canBeNegative());
+
+ Register output = ToRegister(lir->output());
+ const LAllocation* input = lir->input();
+ if (input->isRegister()) {
+ masm.move32SignExtendToPtr(ToRegister(input), output);
+ } else {
+ masm.load32SignExtendToPtr(ToAddress(input), output);
+ }
+#else
+ MOZ_CRASH("Not used on 32-bit platforms");
+#endif
+}
+
+void CodeGenerator::visitNonNegativeIntPtrToInt32(
+ LNonNegativeIntPtrToInt32* lir) {
+#ifdef JS_64BIT
+ Register output = ToRegister(lir->output());
+ MOZ_ASSERT(ToRegister(lir->input()) == output);
+
+ Label bail;
+ masm.guardNonNegativeIntPtrToInt32(output, &bail);
+ bailoutFrom(&bail, lir->snapshot());
+#else
+ MOZ_CRASH("Not used on 32-bit platforms");
+#endif
+}
+
+void CodeGenerator::visitIntPtrToDouble(LIntPtrToDouble* lir) {
+ Register input = ToRegister(lir->input());
+ FloatRegister output = ToFloatRegister(lir->output());
+ masm.convertIntPtrToDouble(input, output);
+}
+
+void CodeGenerator::visitAdjustDataViewLength(LAdjustDataViewLength* lir) {
+ Register output = ToRegister(lir->output());
+ MOZ_ASSERT(ToRegister(lir->input()) == output);
+
+ uint32_t byteSize = lir->mir()->byteSize();
+
+#ifdef DEBUG
+ Label ok;
+ masm.branchTestPtr(Assembler::NotSigned, output, output, &ok);
+ masm.assumeUnreachable("Unexpected negative value in LAdjustDataViewLength");
+ masm.bind(&ok);
+#endif
+
+ Label bail;
+ masm.branchSubPtr(Assembler::Signed, Imm32(byteSize - 1), output, &bail);
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+void CodeGenerator::emitOOLTestObject(Register objreg,
+ Label* ifEmulatesUndefined,
+ Label* ifDoesntEmulateUndefined,
+ Register scratch) {
+ saveVolatile(scratch);
+#if defined(DEBUG) || defined(FUZZING)
+ masm.loadPtr(AbsoluteAddress(
+ gen->runtime->addressOfHasSeenObjectEmulateUndefinedFuse()),
+ scratch);
+ using Fn = bool (*)(JSObject* obj, size_t fuseValue);
+ masm.setupAlignedABICall();
+ masm.passABIArg(objreg);
+ masm.passABIArg(scratch);
+ masm.callWithABI<Fn, js::EmulatesUndefinedCheckFuse>();
+#else
+ using Fn = bool (*)(JSObject* obj);
+ masm.setupAlignedABICall();
+ masm.passABIArg(objreg);
+ masm.callWithABI<Fn, js::EmulatesUndefined>();
+#endif
+ masm.storeCallPointerResult(scratch);
+ restoreVolatile(scratch);
+
+ masm.branchIfTrueBool(scratch, ifEmulatesUndefined);
+ masm.jump(ifDoesntEmulateUndefined);
+}
+
+// Base out-of-line code generator for all tests of the truthiness of an
+// object, where the object might not be truthy. (Recall that per spec all
+// objects are truthy, but we implement the JSCLASS_EMULATES_UNDEFINED class
+// flag to permit objects to look like |undefined| in certain contexts,
+// including in object truthiness testing.) We check truthiness inline except
+// when we're testing it on a proxy, in which case out-of-line code will call
+// EmulatesUndefined for a conclusive answer.
+class OutOfLineTestObject : public OutOfLineCodeBase<CodeGenerator> {
+ Register objreg_;
+ Register scratch_;
+
+ Label* ifEmulatesUndefined_;
+ Label* ifDoesntEmulateUndefined_;
+
+#ifdef DEBUG
+ bool initialized() { return ifEmulatesUndefined_ != nullptr; }
+#endif
+
+ public:
+ OutOfLineTestObject()
+ : ifEmulatesUndefined_(nullptr), ifDoesntEmulateUndefined_(nullptr) {}
+
+ void accept(CodeGenerator* codegen) final {
+ MOZ_ASSERT(initialized());
+ codegen->emitOOLTestObject(objreg_, ifEmulatesUndefined_,
+ ifDoesntEmulateUndefined_, scratch_);
+ }
+
+ // Specify the register where the object to be tested is found, labels to
+ // jump to if the object is truthy or falsy, and a scratch register for
+ // use in the out-of-line path.
+ void setInputAndTargets(Register objreg, Label* ifEmulatesUndefined,
+ Label* ifDoesntEmulateUndefined, Register scratch) {
+ MOZ_ASSERT(!initialized());
+ MOZ_ASSERT(ifEmulatesUndefined);
+ objreg_ = objreg;
+ scratch_ = scratch;
+ ifEmulatesUndefined_ = ifEmulatesUndefined;
+ ifDoesntEmulateUndefined_ = ifDoesntEmulateUndefined;
+ }
+};
+
+// A subclass of OutOfLineTestObject containing two extra labels, for use when
+// the ifTruthy/ifFalsy labels are needed in inline code as well as out-of-line
+// code. The user should bind these labels in inline code, and specify them as
+// targets via setInputAndTargets, as appropriate.
+class OutOfLineTestObjectWithLabels : public OutOfLineTestObject {
+ Label label1_;
+ Label label2_;
+
+ public:
+ OutOfLineTestObjectWithLabels() = default;
+
+ Label* label1() { return &label1_; }
+ Label* label2() { return &label2_; }
+};
+
+void CodeGenerator::testObjectEmulatesUndefinedKernel(
+ Register objreg, Label* ifEmulatesUndefined,
+ Label* ifDoesntEmulateUndefined, Register scratch,
+ OutOfLineTestObject* ool) {
+ ool->setInputAndTargets(objreg, ifEmulatesUndefined, ifDoesntEmulateUndefined,
+ scratch);
+
+ // Perform a fast-path check of the object's class flags if the object's
+ // not a proxy. Let out-of-line code handle the slow cases that require
+ // saving registers, making a function call, and restoring registers.
+ masm.branchIfObjectEmulatesUndefined(objreg, scratch, ool->entry(),
+ ifEmulatesUndefined);
+}
+
+void CodeGenerator::branchTestObjectEmulatesUndefined(
+ Register objreg, Label* ifEmulatesUndefined,
+ Label* ifDoesntEmulateUndefined, Register scratch,
+ OutOfLineTestObject* ool) {
+ MOZ_ASSERT(!ifDoesntEmulateUndefined->bound(),
+ "ifDoesntEmulateUndefined will be bound to the fallthrough path");
+
+ testObjectEmulatesUndefinedKernel(objreg, ifEmulatesUndefined,
+ ifDoesntEmulateUndefined, scratch, ool);
+ masm.bind(ifDoesntEmulateUndefined);
+}
+
+void CodeGenerator::testObjectEmulatesUndefined(Register objreg,
+ Label* ifEmulatesUndefined,
+ Label* ifDoesntEmulateUndefined,
+ Register scratch,
+ OutOfLineTestObject* ool) {
+ testObjectEmulatesUndefinedKernel(objreg, ifEmulatesUndefined,
+ ifDoesntEmulateUndefined, scratch, ool);
+ masm.jump(ifDoesntEmulateUndefined);
+}
+
+void CodeGenerator::testValueTruthyForType(
+ JSValueType type, ScratchTagScope& tag, const ValueOperand& value,
+ Register tempToUnbox, Register temp, FloatRegister floatTemp,
+ Label* ifTruthy, Label* ifFalsy, OutOfLineTestObject* ool,
+ bool skipTypeTest) {
+#ifdef DEBUG
+ if (skipTypeTest) {
+ Label expected;
+ masm.branchTestType(Assembler::Equal, tag, type, &expected);
+ masm.assumeUnreachable("Unexpected Value type in testValueTruthyForType");
+ masm.bind(&expected);
+ }
+#endif
+
+ // Handle irregular types first.
+ switch (type) {
+ case JSVAL_TYPE_UNDEFINED:
+ case JSVAL_TYPE_NULL:
+ // Undefined and null are falsy.
+ if (!skipTypeTest) {
+ masm.branchTestType(Assembler::Equal, tag, type, ifFalsy);
+ } else {
+ masm.jump(ifFalsy);
+ }
+ return;
+ case JSVAL_TYPE_SYMBOL:
+ // Symbols are truthy.
+ if (!skipTypeTest) {
+ masm.branchTestSymbol(Assembler::Equal, tag, ifTruthy);
+ } else {
+ masm.jump(ifTruthy);
+ }
+ return;
+ case JSVAL_TYPE_OBJECT: {
+ Label notObject;
+ if (!skipTypeTest) {
+ masm.branchTestObject(Assembler::NotEqual, tag, &notObject);
+ }
+ ScratchTagScopeRelease _(&tag);
+ Register objreg = masm.extractObject(value, tempToUnbox);
+ testObjectEmulatesUndefined(objreg, ifFalsy, ifTruthy, temp, ool);
+ masm.bind(&notObject);
+ return;
+ }
+ default:
+ break;
+ }
+
+ // Check the type of the value (unless this is the last possible type).
+ Label differentType;
+ if (!skipTypeTest) {
+ masm.branchTestType(Assembler::NotEqual, tag, type, &differentType);
+ }
+
+ // Branch if the value is falsy.
+ ScratchTagScopeRelease _(&tag);
+ switch (type) {
+ case JSVAL_TYPE_BOOLEAN: {
+ masm.branchTestBooleanTruthy(false, value, ifFalsy);
+ break;
+ }
+ case JSVAL_TYPE_INT32: {
+ masm.branchTestInt32Truthy(false, value, ifFalsy);
+ break;
+ }
+ case JSVAL_TYPE_STRING: {
+ masm.branchTestStringTruthy(false, value, ifFalsy);
+ break;
+ }
+ case JSVAL_TYPE_BIGINT: {
+ masm.branchTestBigIntTruthy(false, value, ifFalsy);
+ break;
+ }
+ case JSVAL_TYPE_DOUBLE: {
+ masm.unboxDouble(value, floatTemp);
+ masm.branchTestDoubleTruthy(false, floatTemp, ifFalsy);
+ break;
+ }
+ default:
+ MOZ_CRASH("Unexpected value type");
+ }
+
+ // If we reach this point, the value is truthy. We fall through for
+ // truthy on the last test; otherwise, branch.
+ if (!skipTypeTest) {
+ masm.jump(ifTruthy);
+ }
+
+ masm.bind(&differentType);
+}
+
+void CodeGenerator::testValueTruthy(const ValueOperand& value,
+ Register tempToUnbox, Register temp,
+ FloatRegister floatTemp,
+ const TypeDataList& observedTypes,
+ Label* ifTruthy, Label* ifFalsy,
+ OutOfLineTestObject* ool) {
+ ScratchTagScope tag(masm, value);
+ masm.splitTagForTest(value, tag);
+
+ const std::initializer_list<JSValueType> defaultOrder = {
+ JSVAL_TYPE_UNDEFINED, JSVAL_TYPE_NULL, JSVAL_TYPE_BOOLEAN,
+ JSVAL_TYPE_INT32, JSVAL_TYPE_OBJECT, JSVAL_TYPE_STRING,
+ JSVAL_TYPE_DOUBLE, JSVAL_TYPE_SYMBOL, JSVAL_TYPE_BIGINT};
+
+ mozilla::EnumSet<JSValueType, uint32_t> remaining(defaultOrder);
+
+ // Generate tests for previously observed types first.
+ // The TypeDataList is sorted by descending frequency.
+ for (auto& observed : observedTypes) {
+ JSValueType type = observed.type();
+ remaining -= type;
+
+ testValueTruthyForType(type, tag, value, tempToUnbox, temp, floatTemp,
+ ifTruthy, ifFalsy, ool, /*skipTypeTest*/ false);
+ }
+
+ // Generate tests for remaining types.
+ for (auto type : defaultOrder) {
+ if (!remaining.contains(type)) {
+ continue;
+ }
+ remaining -= type;
+
+ // We don't need a type test for the last possible type.
+ bool skipTypeTest = remaining.isEmpty();
+ testValueTruthyForType(type, tag, value, tempToUnbox, temp, floatTemp,
+ ifTruthy, ifFalsy, ool, skipTypeTest);
+ }
+ MOZ_ASSERT(remaining.isEmpty());
+
+ // We fall through if the final test is truthy.
+}
+
+void CodeGenerator::visitTestBIAndBranch(LTestBIAndBranch* lir) {
+ Label* ifTrueLabel = getJumpLabelForBranch(lir->ifTrue());
+ Label* ifFalseLabel = getJumpLabelForBranch(lir->ifFalse());
+ Register input = ToRegister(lir->input());
+
+ if (isNextBlock(lir->ifFalse()->lir())) {
+ masm.branchIfBigIntIsNonZero(input, ifTrueLabel);
+ } else if (isNextBlock(lir->ifTrue()->lir())) {
+ masm.branchIfBigIntIsZero(input, ifFalseLabel);
+ } else {
+ masm.branchIfBigIntIsZero(input, ifFalseLabel);
+ jumpToBlock(lir->ifTrue());
+ }
+}
+
+void CodeGenerator::assertObjectDoesNotEmulateUndefined(
+ Register input, Register temp, const MInstruction* mir) {
+#if defined(DEBUG) || defined(FUZZING)
+ // Validate that the object indeed doesn't have the emulates undefined flag.
+ auto* ool = new (alloc()) OutOfLineTestObjectWithLabels();
+ addOutOfLineCode(ool, mir);
+
+ Label* doesNotEmulateUndefined = ool->label1();
+ Label* emulatesUndefined = ool->label2();
+
+ testObjectEmulatesUndefined(input, emulatesUndefined, doesNotEmulateUndefined,
+ temp, ool);
+ masm.bind(emulatesUndefined);
+ masm.assumeUnreachable(
+ "Found an object emulating undefined while the fuse is intact");
+ masm.bind(doesNotEmulateUndefined);
+#endif
+}
+
+void CodeGenerator::visitTestOAndBranch(LTestOAndBranch* lir) {
+ Label* truthy = getJumpLabelForBranch(lir->ifTruthy());
+ Label* falsy = getJumpLabelForBranch(lir->ifFalsy());
+ Register input = ToRegister(lir->input());
+
+ bool intact = hasSeenObjectEmulateUndefinedFuseIntactAndDependencyNoted();
+ if (intact) {
+ assertObjectDoesNotEmulateUndefined(input, ToRegister(lir->temp()),
+ lir->mir());
+ // Bug 1874905: It would be fantastic if this could be optimized out
+ masm.jump(truthy);
+ } else {
+ auto* ool = new (alloc()) OutOfLineTestObject();
+ addOutOfLineCode(ool, lir->mir());
+
+ testObjectEmulatesUndefined(input, falsy, truthy, ToRegister(lir->temp()),
+ ool);
+ }
+}
+
+void CodeGenerator::visitTestVAndBranch(LTestVAndBranch* lir) {
+ auto* ool = new (alloc()) OutOfLineTestObject();
+ addOutOfLineCode(ool, lir->mir());
+
+ Label* truthy = getJumpLabelForBranch(lir->ifTruthy());
+ Label* falsy = getJumpLabelForBranch(lir->ifFalsy());
+
+ ValueOperand input = ToValue(lir, LTestVAndBranch::Input);
+ Register tempToUnbox = ToTempUnboxRegister(lir->temp1());
+ Register temp = ToRegister(lir->temp2());
+ FloatRegister floatTemp = ToFloatRegister(lir->tempFloat());
+ const TypeDataList& observedTypes = lir->mir()->observedTypes();
+
+ testValueTruthy(input, tempToUnbox, temp, floatTemp, observedTypes, truthy,
+ falsy, ool);
+ masm.jump(truthy);
+}
+
+void CodeGenerator::visitBooleanToString(LBooleanToString* lir) {
+ Register input = ToRegister(lir->input());
+ Register output = ToRegister(lir->output());
+ const JSAtomState& names = gen->runtime->names();
+ Label true_, done;
+
+ masm.branchTest32(Assembler::NonZero, input, input, &true_);
+ masm.movePtr(ImmGCPtr(names.false_), output);
+ masm.jump(&done);
+
+ masm.bind(&true_);
+ masm.movePtr(ImmGCPtr(names.true_), output);
+
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitIntToString(LIntToString* lir) {
+ Register input = ToRegister(lir->input());
+ Register output = ToRegister(lir->output());
+
+ using Fn = JSLinearString* (*)(JSContext*, int);
+ OutOfLineCode* ool = oolCallVM<Fn, Int32ToString<CanGC>>(
+ lir, ArgList(input), StoreRegisterTo(output));
+
+ masm.lookupStaticIntString(input, output, gen->runtime->staticStrings(),
+ ool->entry());
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitDoubleToString(LDoubleToString* lir) {
+ FloatRegister input = ToFloatRegister(lir->input());
+ Register temp = ToRegister(lir->temp0());
+ Register output = ToRegister(lir->output());
+
+ using Fn = JSString* (*)(JSContext*, double);
+ OutOfLineCode* ool = oolCallVM<Fn, NumberToString<CanGC>>(
+ lir, ArgList(input), StoreRegisterTo(output));
+
+ // Try double to integer conversion and run integer to string code.
+ masm.convertDoubleToInt32(input, temp, ool->entry(), false);
+ masm.lookupStaticIntString(temp, output, gen->runtime->staticStrings(),
+ ool->entry());
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitValueToString(LValueToString* lir) {
+ ValueOperand input = ToValue(lir, LValueToString::InputIndex);
+ Register output = ToRegister(lir->output());
+
+ using Fn = JSString* (*)(JSContext*, HandleValue);
+ OutOfLineCode* ool = oolCallVM<Fn, ToStringSlow<CanGC>>(
+ lir, ArgList(input), StoreRegisterTo(output));
+
+ Label done;
+ Register tag = masm.extractTag(input, output);
+ const JSAtomState& names = gen->runtime->names();
+
+ // String
+ {
+ Label notString;
+ masm.branchTestString(Assembler::NotEqual, tag, &notString);
+ masm.unboxString(input, output);
+ masm.jump(&done);
+ masm.bind(&notString);
+ }
+
+ // Integer
+ {
+ Label notInteger;
+ masm.branchTestInt32(Assembler::NotEqual, tag, &notInteger);
+ Register unboxed = ToTempUnboxRegister(lir->temp0());
+ unboxed = masm.extractInt32(input, unboxed);
+ masm.lookupStaticIntString(unboxed, output, gen->runtime->staticStrings(),
+ ool->entry());
+ masm.jump(&done);
+ masm.bind(&notInteger);
+ }
+
+ // Double
+ {
+ // Note: no fastpath. Need two extra registers and can only convert doubles
+ // that fit integers and are smaller than StaticStrings::INT_STATIC_LIMIT.
+ masm.branchTestDouble(Assembler::Equal, tag, ool->entry());
+ }
+
+ // Undefined
+ {
+ Label notUndefined;
+ masm.branchTestUndefined(Assembler::NotEqual, tag, &notUndefined);
+ masm.movePtr(ImmGCPtr(names.undefined), output);
+ masm.jump(&done);
+ masm.bind(&notUndefined);
+ }
+
+ // Null
+ {
+ Label notNull;
+ masm.branchTestNull(Assembler::NotEqual, tag, &notNull);
+ masm.movePtr(ImmGCPtr(names.null), output);
+ masm.jump(&done);
+ masm.bind(&notNull);
+ }
+
+ // Boolean
+ {
+ Label notBoolean, true_;
+ masm.branchTestBoolean(Assembler::NotEqual, tag, &notBoolean);
+ masm.branchTestBooleanTruthy(true, input, &true_);
+ masm.movePtr(ImmGCPtr(names.false_), output);
+ masm.jump(&done);
+ masm.bind(&true_);
+ masm.movePtr(ImmGCPtr(names.true_), output);
+ masm.jump(&done);
+ masm.bind(&notBoolean);
+ }
+
+ // Objects/symbols are only possible when |mir->mightHaveSideEffects()|.
+ if (lir->mir()->mightHaveSideEffects()) {
+ // Object
+ if (lir->mir()->supportSideEffects()) {
+ masm.branchTestObject(Assembler::Equal, tag, ool->entry());
+ } else {
+ // Bail.
+ MOZ_ASSERT(lir->mir()->needsSnapshot());
+ Label bail;
+ masm.branchTestObject(Assembler::Equal, tag, &bail);
+ bailoutFrom(&bail, lir->snapshot());
+ }
+
+ // Symbol
+ if (lir->mir()->supportSideEffects()) {
+ masm.branchTestSymbol(Assembler::Equal, tag, ool->entry());
+ } else {
+ // Bail.
+ MOZ_ASSERT(lir->mir()->needsSnapshot());
+ Label bail;
+ masm.branchTestSymbol(Assembler::Equal, tag, &bail);
+ bailoutFrom(&bail, lir->snapshot());
+ }
+ }
+
+ // BigInt
+ {
+ // No fastpath currently implemented.
+ masm.branchTestBigInt(Assembler::Equal, tag, ool->entry());
+ }
+
+ masm.assumeUnreachable("Unexpected type for LValueToString.");
+
+ masm.bind(&done);
+ masm.bind(ool->rejoin());
+}
+
+using StoreBufferMutationFn = void (*)(js::gc::StoreBuffer*, js::gc::Cell**);
+
+static void EmitStoreBufferMutation(MacroAssembler& masm, Register holder,
+ size_t offset, Register buffer,
+ LiveGeneralRegisterSet& liveVolatiles,
+ StoreBufferMutationFn fun) {
+ Label callVM;
+ Label exit;
+
+ // Call into the VM to barrier the write. The only registers that need to
+ // be preserved are those in liveVolatiles, so once they are saved on the
+ // stack all volatile registers are available for use.
+ masm.bind(&callVM);
+ masm.PushRegsInMask(liveVolatiles);
+
+ AllocatableGeneralRegisterSet regs(GeneralRegisterSet::Volatile());
+ regs.takeUnchecked(buffer);
+ regs.takeUnchecked(holder);
+ Register addrReg = regs.takeAny();
+
+ masm.computeEffectiveAddress(Address(holder, offset), addrReg);
+
+ bool needExtraReg = !regs.hasAny<GeneralRegisterSet::DefaultType>();
+ if (needExtraReg) {
+ masm.push(holder);
+ masm.setupUnalignedABICall(holder);
+ } else {
+ masm.setupUnalignedABICall(regs.takeAny());
+ }
+ masm.passABIArg(buffer);
+ masm.passABIArg(addrReg);
+ masm.callWithABI(DynamicFunction<StoreBufferMutationFn>(fun),
+ ABIType::General, CheckUnsafeCallWithABI::DontCheckOther);
+
+ if (needExtraReg) {
+ masm.pop(holder);
+ }
+ masm.PopRegsInMask(liveVolatiles);
+ masm.bind(&exit);
+}
+
+// Warning: this function modifies prev and next.
+static void EmitPostWriteBarrierS(MacroAssembler& masm, Register holder,
+ size_t offset, Register prev, Register next,
+ LiveGeneralRegisterSet& liveVolatiles) {
+ Label exit;
+ Label checkRemove, putCell;
+
+ // if (next && (buffer = next->storeBuffer()))
+ // but we never pass in nullptr for next.
+ Register storebuffer = next;
+ masm.loadStoreBuffer(next, storebuffer);
+ masm.branchPtr(Assembler::Equal, storebuffer, ImmWord(0), &checkRemove);
+
+ // if (prev && prev->storeBuffer())
+ masm.branchPtr(Assembler::Equal, prev, ImmWord(0), &putCell);
+ masm.loadStoreBuffer(prev, prev);
+ masm.branchPtr(Assembler::NotEqual, prev, ImmWord(0), &exit);
+
+ // buffer->putCell(cellp)
+ masm.bind(&putCell);
+ EmitStoreBufferMutation(masm, holder, offset, storebuffer, liveVolatiles,
+ JSString::addCellAddressToStoreBuffer);
+ masm.jump(&exit);
+
+ // if (prev && (buffer = prev->storeBuffer()))
+ masm.bind(&checkRemove);
+ masm.branchPtr(Assembler::Equal, prev, ImmWord(0), &exit);
+ masm.loadStoreBuffer(prev, storebuffer);
+ masm.branchPtr(Assembler::Equal, storebuffer, ImmWord(0), &exit);
+ EmitStoreBufferMutation(masm, holder, offset, storebuffer, liveVolatiles,
+ JSString::removeCellAddressFromStoreBuffer);
+
+ masm.bind(&exit);
+}
+
+void CodeGenerator::visitRegExp(LRegExp* lir) {
+ Register output = ToRegister(lir->output());
+ Register temp = ToRegister(lir->temp0());
+ JSObject* source = lir->mir()->source();
+
+ using Fn = JSObject* (*)(JSContext*, Handle<RegExpObject*>);
+ OutOfLineCode* ool = oolCallVM<Fn, CloneRegExpObject>(
+ lir, ArgList(ImmGCPtr(source)), StoreRegisterTo(output));
+ if (lir->mir()->hasShared()) {
+ TemplateObject templateObject(source);
+ masm.createGCObject(output, temp, templateObject, gc::Heap::Default,
+ ool->entry());
+ } else {
+ masm.jump(ool->entry());
+ }
+ masm.bind(ool->rejoin());
+}
+
+static constexpr int32_t RegExpPairsVectorStartOffset(
+ int32_t inputOutputDataStartOffset) {
+ return inputOutputDataStartOffset + int32_t(InputOutputDataSize) +
+ int32_t(sizeof(MatchPairs));
+}
+
+static Address RegExpPairCountAddress(MacroAssembler& masm,
+ int32_t inputOutputDataStartOffset) {
+ return Address(FramePointer, inputOutputDataStartOffset +
+ int32_t(InputOutputDataSize) +
+ MatchPairs::offsetOfPairCount());
+}
+
+static void UpdateRegExpStatics(MacroAssembler& masm, Register regexp,
+ Register input, Register lastIndex,
+ Register staticsReg, Register temp1,
+ Register temp2, gc::Heap initialStringHeap,
+ LiveGeneralRegisterSet& volatileRegs) {
+ Address pendingInputAddress(staticsReg,
+ RegExpStatics::offsetOfPendingInput());
+ Address matchesInputAddress(staticsReg,
+ RegExpStatics::offsetOfMatchesInput());
+ Address lazySourceAddress(staticsReg, RegExpStatics::offsetOfLazySource());
+ Address lazyIndexAddress(staticsReg, RegExpStatics::offsetOfLazyIndex());
+
+ masm.guardedCallPreBarrier(pendingInputAddress, MIRType::String);
+ masm.guardedCallPreBarrier(matchesInputAddress, MIRType::String);
+ masm.guardedCallPreBarrier(lazySourceAddress, MIRType::String);
+
+ if (initialStringHeap == gc::Heap::Default) {
+ // Writing into RegExpStatics tenured memory; must post-barrier.
+ if (staticsReg.volatile_()) {
+ volatileRegs.add(staticsReg);
+ }
+
+ masm.loadPtr(pendingInputAddress, temp1);
+ masm.storePtr(input, pendingInputAddress);
+ masm.movePtr(input, temp2);
+ EmitPostWriteBarrierS(masm, staticsReg,
+ RegExpStatics::offsetOfPendingInput(),
+ temp1 /* prev */, temp2 /* next */, volatileRegs);
+
+ masm.loadPtr(matchesInputAddress, temp1);
+ masm.storePtr(input, matchesInputAddress);
+ masm.movePtr(input, temp2);
+ EmitPostWriteBarrierS(masm, staticsReg,
+ RegExpStatics::offsetOfMatchesInput(),
+ temp1 /* prev */, temp2 /* next */, volatileRegs);
+ } else {
+ masm.debugAssertGCThingIsTenured(input, temp1);
+ masm.storePtr(input, pendingInputAddress);
+ masm.storePtr(input, matchesInputAddress);
+ }
+
+ masm.storePtr(lastIndex,
+ Address(staticsReg, RegExpStatics::offsetOfLazyIndex()));
+ masm.store32(
+ Imm32(1),
+ Address(staticsReg, RegExpStatics::offsetOfPendingLazyEvaluation()));
+
+ masm.unboxNonDouble(Address(regexp, NativeObject::getFixedSlotOffset(
+ RegExpObject::SHARED_SLOT)),
+ temp1, JSVAL_TYPE_PRIVATE_GCTHING);
+ masm.loadPtr(Address(temp1, RegExpShared::offsetOfSource()), temp2);
+ masm.storePtr(temp2, lazySourceAddress);
+ static_assert(sizeof(JS::RegExpFlags) == 1, "load size must match flag size");
+ masm.load8ZeroExtend(Address(temp1, RegExpShared::offsetOfFlags()), temp2);
+ masm.store8(temp2, Address(staticsReg, RegExpStatics::offsetOfLazyFlags()));
+}
+
+// Prepare an InputOutputData and optional MatchPairs which space has been
+// allocated for on the stack, and try to execute a RegExp on a string input.
+// If the RegExp was successfully executed and matched the input, fallthrough.
+// Otherwise, jump to notFound or failure.
+//
+// inputOutputDataStartOffset is the offset relative to the frame pointer
+// register. This offset is negative for the RegExpExecTest stub.
+static bool PrepareAndExecuteRegExp(MacroAssembler& masm, Register regexp,
+ Register input, Register lastIndex,
+ Register temp1, Register temp2,
+ Register temp3,
+ int32_t inputOutputDataStartOffset,
+ gc::Heap initialStringHeap, Label* notFound,
+ Label* failure) {
+ JitSpew(JitSpew_Codegen, "# Emitting PrepareAndExecuteRegExp");
+
+ using irregexp::InputOutputData;
+
+ /*
+ * [SMDOC] Stack layout for PrepareAndExecuteRegExp
+ *
+ * Before this function is called, the caller is responsible for
+ * allocating enough stack space for the following data:
+ *
+ * inputOutputDataStartOffset +-----> +---------------+
+ * |InputOutputData|
+ * inputStartAddress +----------> inputStart|
+ * inputEndAddress +----------> inputEnd|
+ * startIndexAddress +----------> startIndex|
+ * matchesAddress +----------> matches|-----+
+ * +---------------+ |
+ * matchPairs(Address|Offset) +-----> +---------------+ <--+
+ * | MatchPairs |
+ * pairCountAddress +----------> count |
+ * pairsPointerAddress +----------> pairs |-----+
+ * +---------------+ |
+ * pairsArray(Address|Offset) +-----> +---------------+ <--+
+ * | MatchPair |
+ * firstMatchStartAddress +----------> start | <--+
+ * | limit | |
+ * +---------------+ |
+ * . |
+ * . Reserved space for
+ * . RegExpObject::MaxPairCount
+ * . MatchPair objects
+ * . |
+ * +---------------+ |
+ * | MatchPair | |
+ * | start | |
+ * | limit | <--+
+ * +---------------+
+ */
+
+ int32_t ioOffset = inputOutputDataStartOffset;
+ int32_t matchPairsOffset = ioOffset + int32_t(sizeof(InputOutputData));
+ int32_t pairsArrayOffset = matchPairsOffset + int32_t(sizeof(MatchPairs));
+
+ Address inputStartAddress(FramePointer,
+ ioOffset + InputOutputData::offsetOfInputStart());
+ Address inputEndAddress(FramePointer,
+ ioOffset + InputOutputData::offsetOfInputEnd());
+ Address startIndexAddress(FramePointer,
+ ioOffset + InputOutputData::offsetOfStartIndex());
+ Address matchesAddress(FramePointer,
+ ioOffset + InputOutputData::offsetOfMatches());
+
+ Address matchPairsAddress(FramePointer, matchPairsOffset);
+ Address pairCountAddress(FramePointer,
+ matchPairsOffset + MatchPairs::offsetOfPairCount());
+ Address pairsPointerAddress(FramePointer,
+ matchPairsOffset + MatchPairs::offsetOfPairs());
+
+ Address pairsArrayAddress(FramePointer, pairsArrayOffset);
+ Address firstMatchStartAddress(FramePointer,
+ pairsArrayOffset + MatchPair::offsetOfStart());
+
+ // First, fill in a skeletal MatchPairs instance on the stack. This will be
+ // passed to the OOL stub in the caller if we aren't able to execute the
+ // RegExp inline, and that stub needs to be able to determine whether the
+ // execution finished successfully.
+
+ // Initialize MatchPairs::pairCount to 1. The correct value can only
+ // be determined after loading the RegExpShared. If the RegExpShared
+ // has Kind::Atom, this is the correct pairCount.
+ masm.store32(Imm32(1), pairCountAddress);
+
+ // Initialize MatchPairs::pairs pointer
+ masm.computeEffectiveAddress(pairsArrayAddress, temp1);
+ masm.storePtr(temp1, pairsPointerAddress);
+
+ // Initialize MatchPairs::pairs[0]::start to MatchPair::NoMatch
+ masm.store32(Imm32(MatchPair::NoMatch), firstMatchStartAddress);
+
+ // Determine the set of volatile inputs to save when calling into C++ or
+ // regexp code.
+ LiveGeneralRegisterSet volatileRegs;
+ if (lastIndex.volatile_()) {
+ volatileRegs.add(lastIndex);
+ }
+ if (input.volatile_()) {
+ volatileRegs.add(input);
+ }
+ if (regexp.volatile_()) {
+ volatileRegs.add(regexp);
+ }
+
+ // Ensure the input string is not a rope.
+ Label isLinear;
+ masm.branchIfNotRope(input, &isLinear);
+ {
+ masm.PushRegsInMask(volatileRegs);
+
+ using Fn = JSLinearString* (*)(JSString*);
+ masm.setupUnalignedABICall(temp1);
+ masm.passABIArg(input);
+ masm.callWithABI<Fn, js::jit::LinearizeForCharAccessPure>();
+
+ MOZ_ASSERT(!volatileRegs.has(temp1));
+ masm.storeCallPointerResult(temp1);
+ masm.PopRegsInMask(volatileRegs);
+
+ masm.branchTestPtr(Assembler::Zero, temp1, temp1, failure);
+ }
+ masm.bind(&isLinear);
+
+ // Load the RegExpShared.
+ Register regexpReg = temp1;
+ Address sharedSlot = Address(
+ regexp, NativeObject::getFixedSlotOffset(RegExpObject::SHARED_SLOT));
+ masm.branchTestUndefined(Assembler::Equal, sharedSlot, failure);
+ masm.unboxNonDouble(sharedSlot, regexpReg, JSVAL_TYPE_PRIVATE_GCTHING);
+
+ // Handle Atom matches
+ Label notAtom, checkSuccess;
+ masm.branchPtr(Assembler::Equal,
+ Address(regexpReg, RegExpShared::offsetOfPatternAtom()),
+ ImmWord(0), &notAtom);
+ {
+ masm.computeEffectiveAddress(matchPairsAddress, temp3);
+
+ masm.PushRegsInMask(volatileRegs);
+ using Fn = RegExpRunStatus (*)(RegExpShared* re, JSLinearString* input,
+ size_t start, MatchPairs* matchPairs);
+ masm.setupUnalignedABICall(temp2);
+ masm.passABIArg(regexpReg);
+ masm.passABIArg(input);
+ masm.passABIArg(lastIndex);
+ masm.passABIArg(temp3);
+ masm.callWithABI<Fn, js::ExecuteRegExpAtomRaw>();
+
+ MOZ_ASSERT(!volatileRegs.has(temp1));
+ masm.storeCallInt32Result(temp1);
+ masm.PopRegsInMask(volatileRegs);
+
+ masm.jump(&checkSuccess);
+ }
+ masm.bind(&notAtom);
+
+ // Don't handle regexps with too many capture pairs.
+ masm.load32(Address(regexpReg, RegExpShared::offsetOfPairCount()), temp2);
+ masm.branch32(Assembler::Above, temp2, Imm32(RegExpObject::MaxPairCount),
+ failure);
+
+ // Fill in the pair count in the MatchPairs on the stack.
+ masm.store32(temp2, pairCountAddress);
+
+ // Load code pointer and length of input (in bytes).
+ // Store the input start in the InputOutputData.
+ Register codePointer = temp1; // Note: temp1 was previously regexpReg.
+ Register byteLength = temp3;
+ {
+ Label isLatin1, done;
+ masm.loadStringLength(input, byteLength);
+
+ masm.branchLatin1String(input, &isLatin1);
+
+ // Two-byte input
+ masm.loadStringChars(input, temp2, CharEncoding::TwoByte);
+ masm.storePtr(temp2, inputStartAddress);
+ masm.loadPtr(
+ Address(regexpReg, RegExpShared::offsetOfJitCode(/*latin1 =*/false)),
+ codePointer);
+ masm.lshiftPtr(Imm32(1), byteLength);
+ masm.jump(&done);
+
+ // Latin1 input
+ masm.bind(&isLatin1);
+ masm.loadStringChars(input, temp2, CharEncoding::Latin1);
+ masm.storePtr(temp2, inputStartAddress);
+ masm.loadPtr(
+ Address(regexpReg, RegExpShared::offsetOfJitCode(/*latin1 =*/true)),
+ codePointer);
+
+ masm.bind(&done);
+
+ // Store end pointer
+ masm.addPtr(byteLength, temp2);
+ masm.storePtr(temp2, inputEndAddress);
+ }
+
+ // Guard that the RegExpShared has been compiled for this type of input.
+ // If it has not been compiled, we fall back to the OOL case, which will
+ // do a VM call into the interpreter.
+ // TODO: add an interpreter trampoline?
+ masm.branchPtr(Assembler::Equal, codePointer, ImmWord(0), failure);
+ masm.loadPtr(Address(codePointer, JitCode::offsetOfCode()), codePointer);
+
+ // Finish filling in the InputOutputData instance on the stack
+ masm.computeEffectiveAddress(matchPairsAddress, temp2);
+ masm.storePtr(temp2, matchesAddress);
+ masm.storePtr(lastIndex, startIndexAddress);
+
+ // Execute the RegExp.
+ masm.computeEffectiveAddress(
+ Address(FramePointer, inputOutputDataStartOffset), temp2);
+ masm.PushRegsInMask(volatileRegs);
+ masm.setupUnalignedABICall(temp3);
+ masm.passABIArg(temp2);
+ masm.callWithABI(codePointer);
+ masm.storeCallInt32Result(temp1);
+ masm.PopRegsInMask(volatileRegs);
+
+ masm.bind(&checkSuccess);
+ masm.branch32(Assembler::Equal, temp1,
+ Imm32(int32_t(RegExpRunStatus::Success_NotFound)), notFound);
+ masm.branch32(Assembler::Equal, temp1, Imm32(int32_t(RegExpRunStatus::Error)),
+ failure);
+
+ // Lazily update the RegExpStatics.
+ size_t offset = GlobalObjectData::offsetOfRegExpRealm() +
+ RegExpRealm::offsetOfRegExpStatics();
+ masm.loadGlobalObjectData(temp1);
+ masm.loadPtr(Address(temp1, offset), temp1);
+ UpdateRegExpStatics(masm, regexp, input, lastIndex, temp1, temp2, temp3,
+ initialStringHeap, volatileRegs);
+
+ return true;
+}
+
+static void CopyStringChars(MacroAssembler& masm, Register to, Register from,
+ Register len, Register byteOpScratch,
+ CharEncoding encoding,
+ size_t maximumLength = SIZE_MAX);
+
+class CreateDependentString {
+ CharEncoding encoding_;
+ Register string_;
+ Register temp1_;
+ Register temp2_;
+ Label* failure_;
+
+ enum class FallbackKind : uint8_t {
+ InlineString,
+ FatInlineString,
+ NotInlineString,
+ Count
+ };
+ mozilla::EnumeratedArray<FallbackKind, FallbackKind::Count, Label> fallbacks_,
+ joins_;
+
+ public:
+ CreateDependentString(CharEncoding encoding, Register string, Register temp1,
+ Register temp2, Label* failure)
+ : encoding_(encoding),
+ string_(string),
+ temp1_(temp1),
+ temp2_(temp2),
+ failure_(failure) {}
+
+ Register string() const { return string_; }
+ CharEncoding encoding() const { return encoding_; }
+
+ // Generate code that creates DependentString.
+ // Caller should call generateFallback after masm.ret(), to generate
+ // fallback path.
+ void generate(MacroAssembler& masm, const JSAtomState& names,
+ CompileRuntime* runtime, Register base,
+ BaseIndex startIndexAddress, BaseIndex limitIndexAddress,
+ gc::Heap initialStringHeap);
+
+ // Generate fallback path for creating DependentString.
+ void generateFallback(MacroAssembler& masm);
+};
+
+void CreateDependentString::generate(MacroAssembler& masm,
+ const JSAtomState& names,
+ CompileRuntime* runtime, Register base,
+ BaseIndex startIndexAddress,
+ BaseIndex limitIndexAddress,
+ gc::Heap initialStringHeap) {
+ JitSpew(JitSpew_Codegen, "# Emitting CreateDependentString (encoding=%s)",
+ (encoding_ == CharEncoding::Latin1 ? "Latin-1" : "Two-Byte"));
+
+ auto newGCString = [&](FallbackKind kind) {
+ uint32_t flags = kind == FallbackKind::InlineString
+ ? JSString::INIT_THIN_INLINE_FLAGS
+ : kind == FallbackKind::FatInlineString
+ ? JSString::INIT_FAT_INLINE_FLAGS
+ : JSString::INIT_DEPENDENT_FLAGS;
+ if (encoding_ == CharEncoding::Latin1) {
+ flags |= JSString::LATIN1_CHARS_BIT;
+ }
+
+ if (kind != FallbackKind::FatInlineString) {
+ masm.newGCString(string_, temp2_, initialStringHeap, &fallbacks_[kind]);
+ } else {
+ masm.newGCFatInlineString(string_, temp2_, initialStringHeap,
+ &fallbacks_[kind]);
+ }
+ masm.bind(&joins_[kind]);
+ masm.store32(Imm32(flags), Address(string_, JSString::offsetOfFlags()));
+ };
+
+ // Compute the string length.
+ masm.load32(startIndexAddress, temp2_);
+ masm.load32(limitIndexAddress, temp1_);
+ masm.sub32(temp2_, temp1_);
+
+ Label done, nonEmpty;
+
+ // Zero length matches use the empty string.
+ masm.branchTest32(Assembler::NonZero, temp1_, temp1_, &nonEmpty);
+ masm.movePtr(ImmGCPtr(names.empty_), string_);
+ masm.jump(&done);
+
+ masm.bind(&nonEmpty);
+
+ // Complete matches use the base string.
+ Label nonBaseStringMatch;
+ masm.branchTest32(Assembler::NonZero, temp2_, temp2_, &nonBaseStringMatch);
+ masm.branch32(Assembler::NotEqual, Address(base, JSString::offsetOfLength()),
+ temp1_, &nonBaseStringMatch);
+ masm.movePtr(base, string_);
+ masm.jump(&done);
+
+ masm.bind(&nonBaseStringMatch);
+
+ Label notInline;
+
+ int32_t maxInlineLength = encoding_ == CharEncoding::Latin1
+ ? JSFatInlineString::MAX_LENGTH_LATIN1
+ : JSFatInlineString::MAX_LENGTH_TWO_BYTE;
+ masm.branch32(Assembler::Above, temp1_, Imm32(maxInlineLength), &notInline);
+ {
+ // Make a thin or fat inline string.
+ Label stringAllocated, fatInline;
+
+ int32_t maxThinInlineLength = encoding_ == CharEncoding::Latin1
+ ? JSThinInlineString::MAX_LENGTH_LATIN1
+ : JSThinInlineString::MAX_LENGTH_TWO_BYTE;
+ masm.branch32(Assembler::Above, temp1_, Imm32(maxThinInlineLength),
+ &fatInline);
+ if (encoding_ == CharEncoding::Latin1) {
+ // One character Latin-1 strings can be loaded directly from the
+ // static strings table.
+ Label thinInline;
+ masm.branch32(Assembler::Above, temp1_, Imm32(1), &thinInline);
+ {
+ static_assert(
+ StaticStrings::UNIT_STATIC_LIMIT - 1 == JSString::MAX_LATIN1_CHAR,
+ "Latin-1 strings can be loaded from static strings");
+
+ masm.loadStringChars(base, temp1_, encoding_);
+ masm.loadChar(temp1_, temp2_, temp1_, encoding_);
+
+ masm.lookupStaticString(temp1_, string_, runtime->staticStrings());
+
+ masm.jump(&done);
+ }
+ masm.bind(&thinInline);
+ }
+ {
+ newGCString(FallbackKind::InlineString);
+ masm.jump(&stringAllocated);
+ }
+ masm.bind(&fatInline);
+ { newGCString(FallbackKind::FatInlineString); }
+ masm.bind(&stringAllocated);
+
+ masm.store32(temp1_, Address(string_, JSString::offsetOfLength()));
+
+ masm.push(string_);
+ masm.push(base);
+
+ MOZ_ASSERT(startIndexAddress.base == FramePointer,
+ "startIndexAddress is still valid after stack pushes");
+
+ // Load chars pointer for the new string.
+ masm.loadInlineStringCharsForStore(string_, string_);
+
+ // Load the source characters pointer.
+ masm.loadStringChars(base, temp2_, encoding_);
+ masm.load32(startIndexAddress, base);
+ masm.addToCharPtr(temp2_, base, encoding_);
+
+ CopyStringChars(masm, string_, temp2_, temp1_, base, encoding_);
+
+ masm.pop(base);
+ masm.pop(string_);
+
+ masm.jump(&done);
+ }
+
+ masm.bind(&notInline);
+
+ {
+ // Make a dependent string.
+ // Warning: string may be tenured (if the fallback case is hit), so
+ // stores into it must be post barriered.
+ newGCString(FallbackKind::NotInlineString);
+
+ masm.store32(temp1_, Address(string_, JSString::offsetOfLength()));
+
+ masm.loadNonInlineStringChars(base, temp1_, encoding_);
+ masm.load32(startIndexAddress, temp2_);
+ masm.addToCharPtr(temp1_, temp2_, encoding_);
+ masm.storeNonInlineStringChars(temp1_, string_);
+ masm.storeDependentStringBase(base, string_);
+ masm.movePtr(base, temp1_);
+
+ // Follow any base pointer if the input is itself a dependent string.
+ // Watch for undepended strings, which have a base pointer but don't
+ // actually share their characters with it.
+ Label noBase;
+ masm.load32(Address(base, JSString::offsetOfFlags()), temp2_);
+ masm.and32(Imm32(JSString::TYPE_FLAGS_MASK), temp2_);
+ masm.branchTest32(Assembler::Zero, temp2_, Imm32(JSString::DEPENDENT_BIT),
+ &noBase);
+ masm.loadDependentStringBase(base, temp1_);
+ masm.storeDependentStringBase(temp1_, string_);
+ masm.bind(&noBase);
+
+ // Post-barrier the base store, whether it was the direct or indirect
+ // base (both will end up in temp1 here).
+ masm.branchPtrInNurseryChunk(Assembler::Equal, string_, temp2_, &done);
+ masm.branchPtrInNurseryChunk(Assembler::NotEqual, temp1_, temp2_, &done);
+
+ LiveRegisterSet regsToSave(RegisterSet::Volatile());
+ regsToSave.takeUnchecked(temp1_);
+ regsToSave.takeUnchecked(temp2_);
+
+ masm.PushRegsInMask(regsToSave);
+
+ masm.mov(ImmPtr(runtime), temp1_);
+
+ using Fn = void (*)(JSRuntime* rt, js::gc::Cell* cell);
+ masm.setupUnalignedABICall(temp2_);
+ masm.passABIArg(temp1_);
+ masm.passABIArg(string_);
+ masm.callWithABI<Fn, PostWriteBarrier>();
+
+ masm.PopRegsInMask(regsToSave);
+ }
+
+ masm.bind(&done);
+}
+
+void CreateDependentString::generateFallback(MacroAssembler& masm) {
+ JitSpew(JitSpew_Codegen,
+ "# Emitting CreateDependentString fallback (encoding=%s)",
+ (encoding_ == CharEncoding::Latin1 ? "Latin-1" : "Two-Byte"));
+
+ LiveRegisterSet regsToSave(RegisterSet::Volatile());
+ regsToSave.takeUnchecked(string_);
+ regsToSave.takeUnchecked(temp2_);
+
+ for (FallbackKind kind : mozilla::MakeEnumeratedRange(FallbackKind::Count)) {
+ masm.bind(&fallbacks_[kind]);
+
+ masm.PushRegsInMask(regsToSave);
+
+ using Fn = void* (*)(JSContext* cx);
+ masm.setupUnalignedABICall(string_);
+ masm.loadJSContext(string_);
+ masm.passABIArg(string_);
+ if (kind == FallbackKind::FatInlineString) {
+ masm.callWithABI<Fn, AllocateFatInlineString>();
+ } else {
+ masm.callWithABI<Fn, AllocateDependentString>();
+ }
+ masm.storeCallPointerResult(string_);
+
+ masm.PopRegsInMask(regsToSave);
+
+ masm.branchPtr(Assembler::Equal, string_, ImmWord(0), failure_);
+
+ masm.jump(&joins_[kind]);
+ }
+}
+
+// Generate the RegExpMatcher and RegExpExecMatch stubs. These are very similar,
+// but RegExpExecMatch also has to load and update .lastIndex for global/sticky
+// regular expressions.
+static JitCode* GenerateRegExpMatchStubShared(JSContext* cx,
+ gc::Heap initialStringHeap,
+ bool isExecMatch) {
+ if (isExecMatch) {
+ JitSpew(JitSpew_Codegen, "# Emitting RegExpExecMatch stub");
+ } else {
+ JitSpew(JitSpew_Codegen, "# Emitting RegExpMatcher stub");
+ }
+
+ // |initialStringHeap| could be stale after a GC.
+ JS::AutoCheckCannotGC nogc(cx);
+
+ Register regexp = RegExpMatcherRegExpReg;
+ Register input = RegExpMatcherStringReg;
+ Register lastIndex = RegExpMatcherLastIndexReg;
+ ValueOperand result = JSReturnOperand;
+
+ // We are free to clobber all registers, as LRegExpMatcher is a call
+ // instruction.
+ AllocatableGeneralRegisterSet regs(GeneralRegisterSet::All());
+ regs.take(input);
+ regs.take(regexp);
+ regs.take(lastIndex);
+
+ Register temp1 = regs.takeAny();
+ Register temp2 = regs.takeAny();
+ Register temp3 = regs.takeAny();
+ Register maybeTemp4 = InvalidReg;
+ if (!regs.empty()) {
+ // There are not enough registers on x86.
+ maybeTemp4 = regs.takeAny();
+ }
+ Register maybeTemp5 = InvalidReg;
+ if (!regs.empty()) {
+ // There are not enough registers on x86.
+ maybeTemp5 = regs.takeAny();
+ }
+
+ Address flagsSlot(regexp, RegExpObject::offsetOfFlags());
+ Address lastIndexSlot(regexp, RegExpObject::offsetOfLastIndex());
+
+ TempAllocator temp(&cx->tempLifoAlloc());
+ JitContext jcx(cx);
+ StackMacroAssembler masm(cx, temp);
+ AutoCreatedBy acb(masm, "GenerateRegExpMatchStubShared");
+
+#ifdef JS_USE_LINK_REGISTER
+ masm.pushReturnAddress();
+#endif
+ masm.push(FramePointer);
+ masm.moveStackPtrTo(FramePointer);
+
+ Label notFoundZeroLastIndex;
+ if (isExecMatch) {
+ masm.loadRegExpLastIndex(regexp, input, lastIndex, &notFoundZeroLastIndex);
+ }
+
+ // The InputOutputData is placed above the frame pointer and return address on
+ // the stack.
+ int32_t inputOutputDataStartOffset = 2 * sizeof(void*);
+
+ Label notFound, oolEntry;
+ if (!PrepareAndExecuteRegExp(masm, regexp, input, lastIndex, temp1, temp2,
+ temp3, inputOutputDataStartOffset,
+ initialStringHeap, &notFound, &oolEntry)) {
+ return nullptr;
+ }
+
+ // If a regexp has named captures, fall back to the OOL stub, which
+ // will end up calling CreateRegExpMatchResults.
+ Register shared = temp2;
+ masm.unboxNonDouble(Address(regexp, NativeObject::getFixedSlotOffset(
+ RegExpObject::SHARED_SLOT)),
+ shared, JSVAL_TYPE_PRIVATE_GCTHING);
+ masm.branchPtr(Assembler::NotEqual,
+ Address(shared, RegExpShared::offsetOfGroupsTemplate()),
+ ImmWord(0), &oolEntry);
+
+ // Similarly, if the |hasIndices| flag is set, fall back to the OOL stub.
+ masm.branchTest32(Assembler::NonZero,
+ Address(shared, RegExpShared::offsetOfFlags()),
+ Imm32(int32_t(JS::RegExpFlag::HasIndices)), &oolEntry);
+
+ Address pairCountAddress =
+ RegExpPairCountAddress(masm, inputOutputDataStartOffset);
+
+ // Construct the result.
+ Register object = temp1;
+ {
+ // In most cases, the array will have just 1-2 elements, so we optimize for
+ // that by emitting separate code paths for capacity 2/6/14 (= 4/8/16 slots
+ // because two slots are used for the elements header).
+
+ // Load the array length in temp2 and the shape in temp3.
+ Label allocated;
+ masm.load32(pairCountAddress, temp2);
+ size_t offset = GlobalObjectData::offsetOfRegExpRealm() +
+ RegExpRealm::offsetOfNormalMatchResultShape();
+ masm.loadGlobalObjectData(temp3);
+ masm.loadPtr(Address(temp3, offset), temp3);
+
+ auto emitAllocObject = [&](size_t elementCapacity) {
+ gc::AllocKind kind = GuessArrayGCKind(elementCapacity);
+ MOZ_ASSERT(CanChangeToBackgroundAllocKind(kind, &ArrayObject::class_));
+ kind = ForegroundToBackgroundAllocKind(kind);
+
+#ifdef DEBUG
+ // Assert all of the available slots are used for |elementCapacity|
+ // elements.
+ size_t usedSlots = ObjectElements::VALUES_PER_HEADER + elementCapacity;
+ MOZ_ASSERT(usedSlots == GetGCKindSlots(kind));
+#endif
+
+ constexpr size_t numUsedDynamicSlots =
+ RegExpRealm::MatchResultObjectSlotSpan;
+ constexpr size_t numDynamicSlots =
+ RegExpRealm::MatchResultObjectNumDynamicSlots;
+ constexpr size_t arrayLength = 1;
+ masm.createArrayWithFixedElements(object, temp3, temp2, temp3,
+ arrayLength, elementCapacity,
+ numUsedDynamicSlots, numDynamicSlots,
+ kind, gc::Heap::Default, &oolEntry);
+ };
+
+ Label moreThan2;
+ masm.branch32(Assembler::Above, temp2, Imm32(2), &moreThan2);
+ emitAllocObject(2);
+ masm.jump(&allocated);
+
+ Label moreThan6;
+ masm.bind(&moreThan2);
+ masm.branch32(Assembler::Above, temp2, Imm32(6), &moreThan6);
+ emitAllocObject(6);
+ masm.jump(&allocated);
+
+ masm.bind(&moreThan6);
+ static_assert(RegExpObject::MaxPairCount == 14);
+ emitAllocObject(RegExpObject::MaxPairCount);
+
+ masm.bind(&allocated);
+ }
+
+ // clang-format off
+ /*
+ * [SMDOC] Stack layout for the RegExpMatcher stub
+ *
+ * +---------------+
+ * FramePointer +-----> |Caller-FramePtr|
+ * +---------------+
+ * |Return-Address |
+ * +---------------+
+ * inputOutputDataStartOffset +-----> +---------------+
+ * |InputOutputData|
+ * +---------------+
+ * +---------------+
+ * | MatchPairs |
+ * pairsCountAddress +-----------> count |
+ * | pairs |
+ * | |
+ * +---------------+
+ * pairsVectorStartOffset +-----> +---------------+
+ * | MatchPair |
+ * matchPairStart +------------> start | <-------+
+ * matchPairLimit +------------> limit | | Reserved space for
+ * +---------------+ | `RegExpObject::MaxPairCount`
+ * . | MatchPair objects.
+ * . |
+ * . | `count` objects will be
+ * +---------------+ | initialized and can be
+ * | MatchPair | | accessed below.
+ * | start | <-------+
+ * | limit |
+ * +---------------+
+ */
+ // clang-format on
+
+ static_assert(sizeof(MatchPair) == 2 * sizeof(int32_t),
+ "MatchPair consists of two int32 values representing the start"
+ "and the end offset of the match");
+
+ int32_t pairsVectorStartOffset =
+ RegExpPairsVectorStartOffset(inputOutputDataStartOffset);
+
+ // Incremented by one below for each match pair.
+ Register matchIndex = temp2;
+ masm.move32(Imm32(0), matchIndex);
+
+ // The element in which to store the result of the current match.
+ size_t elementsOffset = NativeObject::offsetOfFixedElements();
+ BaseObjectElementIndex objectMatchElement(object, matchIndex, elementsOffset);
+
+ // The current match pair's "start" and "limit" member.
+ BaseIndex matchPairStart(FramePointer, matchIndex, TimesEight,
+ pairsVectorStartOffset + MatchPair::offsetOfStart());
+ BaseIndex matchPairLimit(FramePointer, matchIndex, TimesEight,
+ pairsVectorStartOffset + MatchPair::offsetOfLimit());
+
+ Label* depStrFailure = &oolEntry;
+ Label restoreRegExpAndLastIndex;
+
+ Register temp4;
+ if (maybeTemp4 == InvalidReg) {
+ depStrFailure = &restoreRegExpAndLastIndex;
+
+ // We don't have enough registers for a fourth temporary. Reuse |regexp|
+ // as a temporary. We restore its value at |restoreRegExpAndLastIndex|.
+ masm.push(regexp);
+ temp4 = regexp;
+ } else {
+ temp4 = maybeTemp4;
+ }
+
+ Register temp5;
+ if (maybeTemp5 == InvalidReg) {
+ depStrFailure = &restoreRegExpAndLastIndex;
+
+ // We don't have enough registers for a fifth temporary. Reuse |lastIndex|
+ // as a temporary. We restore its value at |restoreRegExpAndLastIndex|.
+ masm.push(lastIndex);
+ temp5 = lastIndex;
+ } else {
+ temp5 = maybeTemp5;
+ }
+
+ auto maybeRestoreRegExpAndLastIndex = [&]() {
+ if (maybeTemp5 == InvalidReg) {
+ masm.pop(lastIndex);
+ }
+ if (maybeTemp4 == InvalidReg) {
+ masm.pop(regexp);
+ }
+ };
+
+ // Loop to construct the match strings. There are two different loops,
+ // depending on whether the input is a Two-Byte or a Latin-1 string.
+ CreateDependentString depStrs[]{
+ {CharEncoding::TwoByte, temp3, temp4, temp5, depStrFailure},
+ {CharEncoding::Latin1, temp3, temp4, temp5, depStrFailure},
+ };
+
+ {
+ Label isLatin1, done;
+ masm.branchLatin1String(input, &isLatin1);
+
+ for (auto& depStr : depStrs) {
+ if (depStr.encoding() == CharEncoding::Latin1) {
+ masm.bind(&isLatin1);
+ }
+
+ Label matchLoop;
+ masm.bind(&matchLoop);
+
+ static_assert(MatchPair::NoMatch == -1,
+ "MatchPair::start is negative if no match was found");
+
+ Label isUndefined, storeDone;
+ masm.branch32(Assembler::LessThan, matchPairStart, Imm32(0),
+ &isUndefined);
+ {
+ depStr.generate(masm, cx->names(), CompileRuntime::get(cx->runtime()),
+ input, matchPairStart, matchPairLimit,
+ initialStringHeap);
+
+ // Storing into nursery-allocated results object's elements; no post
+ // barrier.
+ masm.storeValue(JSVAL_TYPE_STRING, depStr.string(), objectMatchElement);
+ masm.jump(&storeDone);
+ }
+ masm.bind(&isUndefined);
+ { masm.storeValue(UndefinedValue(), objectMatchElement); }
+ masm.bind(&storeDone);
+
+ masm.add32(Imm32(1), matchIndex);
+ masm.branch32(Assembler::LessThanOrEqual, pairCountAddress, matchIndex,
+ &done);
+ masm.jump(&matchLoop);
+ }
+
+#ifdef DEBUG
+ masm.assumeUnreachable("The match string loop doesn't fall through.");
+#endif
+
+ masm.bind(&done);
+ }
+
+ maybeRestoreRegExpAndLastIndex();
+
+ // Fill in the rest of the output object.
+ masm.store32(
+ matchIndex,
+ Address(object,
+ elementsOffset + ObjectElements::offsetOfInitializedLength()));
+ masm.store32(
+ matchIndex,
+ Address(object, elementsOffset + ObjectElements::offsetOfLength()));
+
+ Address firstMatchPairStartAddress(
+ FramePointer, pairsVectorStartOffset + MatchPair::offsetOfStart());
+ Address firstMatchPairLimitAddress(
+ FramePointer, pairsVectorStartOffset + MatchPair::offsetOfLimit());
+
+ static_assert(RegExpRealm::MatchResultObjectIndexSlot == 0,
+ "First slot holds the 'index' property");
+ static_assert(RegExpRealm::MatchResultObjectInputSlot == 1,
+ "Second slot holds the 'input' property");
+
+ masm.loadPtr(Address(object, NativeObject::offsetOfSlots()), temp2);
+
+ masm.load32(firstMatchPairStartAddress, temp3);
+ masm.storeValue(JSVAL_TYPE_INT32, temp3, Address(temp2, 0));
+
+ // No post barrier needed (address is within nursery object.)
+ masm.storeValue(JSVAL_TYPE_STRING, input, Address(temp2, sizeof(Value)));
+
+ // For the ExecMatch stub, if the regular expression is global or sticky, we
+ // have to update its .lastIndex slot.
+ if (isExecMatch) {
+ MOZ_ASSERT(object != lastIndex);
+ Label notGlobalOrSticky;
+ masm.branchTest32(Assembler::Zero, flagsSlot,
+ Imm32(JS::RegExpFlag::Global | JS::RegExpFlag::Sticky),
+ &notGlobalOrSticky);
+ masm.load32(firstMatchPairLimitAddress, lastIndex);
+ masm.storeValue(JSVAL_TYPE_INT32, lastIndex, lastIndexSlot);
+ masm.bind(&notGlobalOrSticky);
+ }
+
+ // All done!
+ masm.tagValue(JSVAL_TYPE_OBJECT, object, result);
+ masm.pop(FramePointer);
+ masm.ret();
+
+ masm.bind(&notFound);
+ if (isExecMatch) {
+ Label notGlobalOrSticky;
+ masm.branchTest32(Assembler::Zero, flagsSlot,
+ Imm32(JS::RegExpFlag::Global | JS::RegExpFlag::Sticky),
+ &notGlobalOrSticky);
+ masm.bind(&notFoundZeroLastIndex);
+ masm.storeValue(Int32Value(0), lastIndexSlot);
+ masm.bind(&notGlobalOrSticky);
+ }
+ masm.moveValue(NullValue(), result);
+ masm.pop(FramePointer);
+ masm.ret();
+
+ // Fallback paths for CreateDependentString.
+ for (auto& depStr : depStrs) {
+ depStr.generateFallback(masm);
+ }
+
+ // Fall-through to the ool entry after restoring the registers.
+ masm.bind(&restoreRegExpAndLastIndex);
+ maybeRestoreRegExpAndLastIndex();
+
+ // Use an undefined value to signal to the caller that the OOL stub needs to
+ // be called.
+ masm.bind(&oolEntry);
+ masm.moveValue(UndefinedValue(), result);
+ masm.pop(FramePointer);
+ masm.ret();
+
+ Linker linker(masm);
+ JitCode* code = linker.newCode(cx, CodeKind::Other);
+ if (!code) {
+ return nullptr;
+ }
+
+ const char* name = isExecMatch ? "RegExpExecMatchStub" : "RegExpMatcherStub";
+ CollectPerfSpewerJitCodeProfile(code, name);
+#ifdef MOZ_VTUNE
+ vtune::MarkStub(code, name);
+#endif
+
+ return code;
+}
+
+JitCode* JitZone::generateRegExpMatcherStub(JSContext* cx) {
+ return GenerateRegExpMatchStubShared(cx, initialStringHeap,
+ /* isExecMatch = */ false);
+}
+
+JitCode* JitZone::generateRegExpExecMatchStub(JSContext* cx) {
+ return GenerateRegExpMatchStubShared(cx, initialStringHeap,
+ /* isExecMatch = */ true);
+}
+
+class OutOfLineRegExpMatcher : public OutOfLineCodeBase<CodeGenerator> {
+ LRegExpMatcher* lir_;
+
+ public:
+ explicit OutOfLineRegExpMatcher(LRegExpMatcher* lir) : lir_(lir) {}
+
+ void accept(CodeGenerator* codegen) override {
+ codegen->visitOutOfLineRegExpMatcher(this);
+ }
+
+ LRegExpMatcher* lir() const { return lir_; }
+};
+
+void CodeGenerator::visitOutOfLineRegExpMatcher(OutOfLineRegExpMatcher* ool) {
+ LRegExpMatcher* lir = ool->lir();
+ Register lastIndex = ToRegister(lir->lastIndex());
+ Register input = ToRegister(lir->string());
+ Register regexp = ToRegister(lir->regexp());
+
+ AllocatableGeneralRegisterSet regs(GeneralRegisterSet::All());
+ regs.take(lastIndex);
+ regs.take(input);
+ regs.take(regexp);
+ Register temp = regs.takeAny();
+
+ masm.computeEffectiveAddress(
+ Address(masm.getStackPointer(), InputOutputDataSize), temp);
+
+ pushArg(temp);
+ pushArg(lastIndex);
+ pushArg(input);
+ pushArg(regexp);
+
+ // We are not using oolCallVM because we are in a Call, and that live
+ // registers are already saved by the the register allocator.
+ using Fn =
+ bool (*)(JSContext*, HandleObject regexp, HandleString input,
+ int32_t lastIndex, MatchPairs* pairs, MutableHandleValue output);
+ callVM<Fn, RegExpMatcherRaw>(lir);
+
+ masm.jump(ool->rejoin());
+}
+
+void CodeGenerator::visitRegExpMatcher(LRegExpMatcher* lir) {
+ MOZ_ASSERT(ToRegister(lir->regexp()) == RegExpMatcherRegExpReg);
+ MOZ_ASSERT(ToRegister(lir->string()) == RegExpMatcherStringReg);
+ MOZ_ASSERT(ToRegister(lir->lastIndex()) == RegExpMatcherLastIndexReg);
+ MOZ_ASSERT(ToOutValue(lir) == JSReturnOperand);
+
+#if defined(JS_NUNBOX32)
+ static_assert(RegExpMatcherRegExpReg != JSReturnReg_Type);
+ static_assert(RegExpMatcherRegExpReg != JSReturnReg_Data);
+ static_assert(RegExpMatcherStringReg != JSReturnReg_Type);
+ static_assert(RegExpMatcherStringReg != JSReturnReg_Data);
+ static_assert(RegExpMatcherLastIndexReg != JSReturnReg_Type);
+ static_assert(RegExpMatcherLastIndexReg != JSReturnReg_Data);
+#elif defined(JS_PUNBOX64)
+ static_assert(RegExpMatcherRegExpReg != JSReturnReg);
+ static_assert(RegExpMatcherStringReg != JSReturnReg);
+ static_assert(RegExpMatcherLastIndexReg != JSReturnReg);
+#endif
+
+ masm.reserveStack(RegExpReservedStack);
+
+ OutOfLineRegExpMatcher* ool = new (alloc()) OutOfLineRegExpMatcher(lir);
+ addOutOfLineCode(ool, lir->mir());
+
+ const JitZone* jitZone = gen->realm->zone()->jitZone();
+ JitCode* regExpMatcherStub =
+ jitZone->regExpMatcherStubNoBarrier(&zoneStubsToReadBarrier_);
+ masm.call(regExpMatcherStub);
+ masm.branchTestUndefined(Assembler::Equal, JSReturnOperand, ool->entry());
+ masm.bind(ool->rejoin());
+
+ masm.freeStack(RegExpReservedStack);
+}
+
+class OutOfLineRegExpExecMatch : public OutOfLineCodeBase<CodeGenerator> {
+ LRegExpExecMatch* lir_;
+
+ public:
+ explicit OutOfLineRegExpExecMatch(LRegExpExecMatch* lir) : lir_(lir) {}
+
+ void accept(CodeGenerator* codegen) override {
+ codegen->visitOutOfLineRegExpExecMatch(this);
+ }
+
+ LRegExpExecMatch* lir() const { return lir_; }
+};
+
+void CodeGenerator::visitOutOfLineRegExpExecMatch(
+ OutOfLineRegExpExecMatch* ool) {
+ LRegExpExecMatch* lir = ool->lir();
+ Register input = ToRegister(lir->string());
+ Register regexp = ToRegister(lir->regexp());
+
+ AllocatableGeneralRegisterSet regs(GeneralRegisterSet::All());
+ regs.take(input);
+ regs.take(regexp);
+ Register temp = regs.takeAny();
+
+ masm.computeEffectiveAddress(
+ Address(masm.getStackPointer(), InputOutputDataSize), temp);
+
+ pushArg(temp);
+ pushArg(input);
+ pushArg(regexp);
+
+ // We are not using oolCallVM because we are in a Call and live registers have
+ // already been saved by the register allocator.
+ using Fn =
+ bool (*)(JSContext*, Handle<RegExpObject*> regexp, HandleString input,
+ MatchPairs* pairs, MutableHandleValue output);
+ callVM<Fn, RegExpBuiltinExecMatchFromJit>(lir);
+ masm.jump(ool->rejoin());
+}
+
+void CodeGenerator::visitRegExpExecMatch(LRegExpExecMatch* lir) {
+ MOZ_ASSERT(ToRegister(lir->regexp()) == RegExpMatcherRegExpReg);
+ MOZ_ASSERT(ToRegister(lir->string()) == RegExpMatcherStringReg);
+ MOZ_ASSERT(ToOutValue(lir) == JSReturnOperand);
+
+#if defined(JS_NUNBOX32)
+ static_assert(RegExpMatcherRegExpReg != JSReturnReg_Type);
+ static_assert(RegExpMatcherRegExpReg != JSReturnReg_Data);
+ static_assert(RegExpMatcherStringReg != JSReturnReg_Type);
+ static_assert(RegExpMatcherStringReg != JSReturnReg_Data);
+#elif defined(JS_PUNBOX64)
+ static_assert(RegExpMatcherRegExpReg != JSReturnReg);
+ static_assert(RegExpMatcherStringReg != JSReturnReg);
+#endif
+
+ masm.reserveStack(RegExpReservedStack);
+
+ auto* ool = new (alloc()) OutOfLineRegExpExecMatch(lir);
+ addOutOfLineCode(ool, lir->mir());
+
+ const JitZone* jitZone = gen->realm->zone()->jitZone();
+ JitCode* regExpExecMatchStub =
+ jitZone->regExpExecMatchStubNoBarrier(&zoneStubsToReadBarrier_);
+ masm.call(regExpExecMatchStub);
+ masm.branchTestUndefined(Assembler::Equal, JSReturnOperand, ool->entry());
+
+ masm.bind(ool->rejoin());
+ masm.freeStack(RegExpReservedStack);
+}
+
+JitCode* JitZone::generateRegExpSearcherStub(JSContext* cx) {
+ JitSpew(JitSpew_Codegen, "# Emitting RegExpSearcher stub");
+
+ Register regexp = RegExpSearcherRegExpReg;
+ Register input = RegExpSearcherStringReg;
+ Register lastIndex = RegExpSearcherLastIndexReg;
+ Register result = ReturnReg;
+
+ // We are free to clobber all registers, as LRegExpSearcher is a call
+ // instruction.
+ AllocatableGeneralRegisterSet regs(GeneralRegisterSet::All());
+ regs.take(input);
+ regs.take(regexp);
+ regs.take(lastIndex);
+
+ Register temp1 = regs.takeAny();
+ Register temp2 = regs.takeAny();
+ Register temp3 = regs.takeAny();
+
+ TempAllocator temp(&cx->tempLifoAlloc());
+ JitContext jcx(cx);
+ StackMacroAssembler masm(cx, temp);
+ AutoCreatedBy acb(masm, "JitZone::generateRegExpSearcherStub");
+
+#ifdef JS_USE_LINK_REGISTER
+ masm.pushReturnAddress();
+#endif
+ masm.push(FramePointer);
+ masm.moveStackPtrTo(FramePointer);
+
+#ifdef DEBUG
+ // Store sentinel value to cx->regExpSearcherLastLimit.
+ // See comment in RegExpSearcherImpl.
+ masm.loadJSContext(temp1);
+ masm.store32(Imm32(RegExpSearcherLastLimitSentinel),
+ Address(temp1, JSContext::offsetOfRegExpSearcherLastLimit()));
+#endif
+
+ // The InputOutputData is placed above the frame pointer and return address on
+ // the stack.
+ int32_t inputOutputDataStartOffset = 2 * sizeof(void*);
+
+ Label notFound, oolEntry;
+ if (!PrepareAndExecuteRegExp(masm, regexp, input, lastIndex, temp1, temp2,
+ temp3, inputOutputDataStartOffset,
+ initialStringHeap, &notFound, &oolEntry)) {
+ return nullptr;
+ }
+
+ // clang-format off
+ /*
+ * [SMDOC] Stack layout for the RegExpSearcher stub
+ *
+ * +---------------+
+ * FramePointer +-----> |Caller-FramePtr|
+ * +---------------+
+ * |Return-Address |
+ * +---------------+
+ * inputOutputDataStartOffset +-----> +---------------+
+ * |InputOutputData|
+ * +---------------+
+ * +---------------+
+ * | MatchPairs |
+ * | count |
+ * | pairs |
+ * | |
+ * +---------------+
+ * pairsVectorStartOffset +-----> +---------------+
+ * | MatchPair |
+ * matchPairStart +------------> start | <-------+
+ * matchPairLimit +------------> limit | | Reserved space for
+ * +---------------+ | `RegExpObject::MaxPairCount`
+ * . | MatchPair objects.
+ * . |
+ * . | Only a single object will
+ * +---------------+ | be initialized and can be
+ * | MatchPair | | accessed below.
+ * | start | <-------+
+ * | limit |
+ * +---------------+
+ */
+ // clang-format on
+
+ int32_t pairsVectorStartOffset =
+ RegExpPairsVectorStartOffset(inputOutputDataStartOffset);
+ Address matchPairStart(FramePointer,
+ pairsVectorStartOffset + MatchPair::offsetOfStart());
+ Address matchPairLimit(FramePointer,
+ pairsVectorStartOffset + MatchPair::offsetOfLimit());
+
+ // Store match limit to cx->regExpSearcherLastLimit and return the index.
+ masm.load32(matchPairLimit, result);
+ masm.loadJSContext(input);
+ masm.store32(result,
+ Address(input, JSContext::offsetOfRegExpSearcherLastLimit()));
+ masm.load32(matchPairStart, result);
+ masm.pop(FramePointer);
+ masm.ret();
+
+ masm.bind(&notFound);
+ masm.move32(Imm32(RegExpSearcherResultNotFound), result);
+ masm.pop(FramePointer);
+ masm.ret();
+
+ masm.bind(&oolEntry);
+ masm.move32(Imm32(RegExpSearcherResultFailed), result);
+ masm.pop(FramePointer);
+ masm.ret();
+
+ Linker linker(masm);
+ JitCode* code = linker.newCode(cx, CodeKind::Other);
+ if (!code) {
+ return nullptr;
+ }
+
+ CollectPerfSpewerJitCodeProfile(code, "RegExpSearcherStub");
+#ifdef MOZ_VTUNE
+ vtune::MarkStub(code, "RegExpSearcherStub");
+#endif
+
+ return code;
+}
+
+class OutOfLineRegExpSearcher : public OutOfLineCodeBase<CodeGenerator> {
+ LRegExpSearcher* lir_;
+
+ public:
+ explicit OutOfLineRegExpSearcher(LRegExpSearcher* lir) : lir_(lir) {}
+
+ void accept(CodeGenerator* codegen) override {
+ codegen->visitOutOfLineRegExpSearcher(this);
+ }
+
+ LRegExpSearcher* lir() const { return lir_; }
+};
+
+void CodeGenerator::visitOutOfLineRegExpSearcher(OutOfLineRegExpSearcher* ool) {
+ LRegExpSearcher* lir = ool->lir();
+ Register lastIndex = ToRegister(lir->lastIndex());
+ Register input = ToRegister(lir->string());
+ Register regexp = ToRegister(lir->regexp());
+
+ AllocatableGeneralRegisterSet regs(GeneralRegisterSet::All());
+ regs.take(lastIndex);
+ regs.take(input);
+ regs.take(regexp);
+ Register temp = regs.takeAny();
+
+ masm.computeEffectiveAddress(
+ Address(masm.getStackPointer(), InputOutputDataSize), temp);
+
+ pushArg(temp);
+ pushArg(lastIndex);
+ pushArg(input);
+ pushArg(regexp);
+
+ // We are not using oolCallVM because we are in a Call, and that live
+ // registers are already saved by the the register allocator.
+ using Fn = bool (*)(JSContext* cx, HandleObject regexp, HandleString input,
+ int32_t lastIndex, MatchPairs* pairs, int32_t* result);
+ callVM<Fn, RegExpSearcherRaw>(lir);
+
+ masm.jump(ool->rejoin());
+}
+
+void CodeGenerator::visitRegExpSearcher(LRegExpSearcher* lir) {
+ MOZ_ASSERT(ToRegister(lir->regexp()) == RegExpSearcherRegExpReg);
+ MOZ_ASSERT(ToRegister(lir->string()) == RegExpSearcherStringReg);
+ MOZ_ASSERT(ToRegister(lir->lastIndex()) == RegExpSearcherLastIndexReg);
+ MOZ_ASSERT(ToRegister(lir->output()) == ReturnReg);
+
+ static_assert(RegExpSearcherRegExpReg != ReturnReg);
+ static_assert(RegExpSearcherStringReg != ReturnReg);
+ static_assert(RegExpSearcherLastIndexReg != ReturnReg);
+
+ masm.reserveStack(RegExpReservedStack);
+
+ OutOfLineRegExpSearcher* ool = new (alloc()) OutOfLineRegExpSearcher(lir);
+ addOutOfLineCode(ool, lir->mir());
+
+ const JitZone* jitZone = gen->realm->zone()->jitZone();
+ JitCode* regExpSearcherStub =
+ jitZone->regExpSearcherStubNoBarrier(&zoneStubsToReadBarrier_);
+ masm.call(regExpSearcherStub);
+ masm.branch32(Assembler::Equal, ReturnReg, Imm32(RegExpSearcherResultFailed),
+ ool->entry());
+ masm.bind(ool->rejoin());
+
+ masm.freeStack(RegExpReservedStack);
+}
+
+void CodeGenerator::visitRegExpSearcherLastLimit(
+ LRegExpSearcherLastLimit* lir) {
+ Register result = ToRegister(lir->output());
+ Register scratch = ToRegister(lir->temp0());
+
+ masm.loadAndClearRegExpSearcherLastLimit(result, scratch);
+}
+
+JitCode* JitZone::generateRegExpExecTestStub(JSContext* cx) {
+ JitSpew(JitSpew_Codegen, "# Emitting RegExpExecTest stub");
+
+ Register regexp = RegExpExecTestRegExpReg;
+ Register input = RegExpExecTestStringReg;
+ Register result = ReturnReg;
+
+ TempAllocator temp(&cx->tempLifoAlloc());
+ JitContext jcx(cx);
+ StackMacroAssembler masm(cx, temp);
+ AutoCreatedBy acb(masm, "JitZone::generateRegExpExecTestStub");
+
+#ifdef JS_USE_LINK_REGISTER
+ masm.pushReturnAddress();
+#endif
+ masm.push(FramePointer);
+ masm.moveStackPtrTo(FramePointer);
+
+ // We are free to clobber all registers, as LRegExpExecTest is a call
+ // instruction.
+ AllocatableGeneralRegisterSet regs(GeneralRegisterSet::All());
+ regs.take(input);
+ regs.take(regexp);
+
+ // Ensure lastIndex != result.
+ regs.take(result);
+ Register lastIndex = regs.takeAny();
+ regs.add(result);
+ Register temp1 = regs.takeAny();
+ Register temp2 = regs.takeAny();
+ Register temp3 = regs.takeAny();
+
+ Address flagsSlot(regexp, RegExpObject::offsetOfFlags());
+ Address lastIndexSlot(regexp, RegExpObject::offsetOfLastIndex());
+
+ masm.reserveStack(RegExpReservedStack);
+
+ // Load lastIndex and skip RegExp execution if needed.
+ Label notFoundZeroLastIndex;
+ masm.loadRegExpLastIndex(regexp, input, lastIndex, &notFoundZeroLastIndex);
+
+ // In visitRegExpMatcher and visitRegExpSearcher, we reserve stack space
+ // before calling the stub. For RegExpExecTest we call the stub before
+ // reserving stack space, so the offset of the InputOutputData relative to the
+ // frame pointer is negative.
+ constexpr int32_t inputOutputDataStartOffset = -int32_t(RegExpReservedStack);
+
+ // On ARM64, load/store instructions can encode an immediate offset in the
+ // range [-256, 4095]. If we ever fail this assertion, it would be more
+ // efficient to store the data above the frame pointer similar to
+ // RegExpMatcher and RegExpSearcher.
+ static_assert(inputOutputDataStartOffset >= -256);
+
+ Label notFound, oolEntry;
+ if (!PrepareAndExecuteRegExp(masm, regexp, input, lastIndex, temp1, temp2,
+ temp3, inputOutputDataStartOffset,
+ initialStringHeap, &notFound, &oolEntry)) {
+ return nullptr;
+ }
+
+ // Set `result` to true/false to indicate found/not-found, or to
+ // RegExpExecTestResultFailed if we have to retry in C++. If the regular
+ // expression is global or sticky, we also have to update its .lastIndex slot.
+
+ Label done;
+ int32_t pairsVectorStartOffset =
+ RegExpPairsVectorStartOffset(inputOutputDataStartOffset);
+ Address matchPairLimit(FramePointer,
+ pairsVectorStartOffset + MatchPair::offsetOfLimit());
+
+ masm.move32(Imm32(1), result);
+ masm.branchTest32(Assembler::Zero, flagsSlot,
+ Imm32(JS::RegExpFlag::Global | JS::RegExpFlag::Sticky),
+ &done);
+ masm.load32(matchPairLimit, lastIndex);
+ masm.storeValue(JSVAL_TYPE_INT32, lastIndex, lastIndexSlot);
+ masm.jump(&done);
+
+ masm.bind(&notFound);
+ masm.move32(Imm32(0), result);
+ masm.branchTest32(Assembler::Zero, flagsSlot,
+ Imm32(JS::RegExpFlag::Global | JS::RegExpFlag::Sticky),
+ &done);
+ masm.storeValue(Int32Value(0), lastIndexSlot);
+ masm.jump(&done);
+
+ masm.bind(&notFoundZeroLastIndex);
+ masm.move32(Imm32(0), result);
+ masm.storeValue(Int32Value(0), lastIndexSlot);
+ masm.jump(&done);
+
+ masm.bind(&oolEntry);
+ masm.move32(Imm32(RegExpExecTestResultFailed), result);
+
+ masm.bind(&done);
+ masm.freeStack(RegExpReservedStack);
+ masm.pop(FramePointer);
+ masm.ret();
+
+ Linker linker(masm);
+ JitCode* code = linker.newCode(cx, CodeKind::Other);
+ if (!code) {
+ return nullptr;
+ }
+
+ CollectPerfSpewerJitCodeProfile(code, "RegExpExecTestStub");
+#ifdef MOZ_VTUNE
+ vtune::MarkStub(code, "RegExpExecTestStub");
+#endif
+
+ return code;
+}
+
+class OutOfLineRegExpExecTest : public OutOfLineCodeBase<CodeGenerator> {
+ LRegExpExecTest* lir_;
+
+ public:
+ explicit OutOfLineRegExpExecTest(LRegExpExecTest* lir) : lir_(lir) {}
+
+ void accept(CodeGenerator* codegen) override {
+ codegen->visitOutOfLineRegExpExecTest(this);
+ }
+
+ LRegExpExecTest* lir() const { return lir_; }
+};
+
+void CodeGenerator::visitOutOfLineRegExpExecTest(OutOfLineRegExpExecTest* ool) {
+ LRegExpExecTest* lir = ool->lir();
+ Register input = ToRegister(lir->string());
+ Register regexp = ToRegister(lir->regexp());
+
+ pushArg(input);
+ pushArg(regexp);
+
+ // We are not using oolCallVM because we are in a Call and live registers have
+ // already been saved by the register allocator.
+ using Fn = bool (*)(JSContext* cx, Handle<RegExpObject*> regexp,
+ HandleString input, bool* result);
+ callVM<Fn, RegExpBuiltinExecTestFromJit>(lir);
+
+ masm.jump(ool->rejoin());
+}
+
+void CodeGenerator::visitRegExpExecTest(LRegExpExecTest* lir) {
+ MOZ_ASSERT(ToRegister(lir->regexp()) == RegExpExecTestRegExpReg);
+ MOZ_ASSERT(ToRegister(lir->string()) == RegExpExecTestStringReg);
+ MOZ_ASSERT(ToRegister(lir->output()) == ReturnReg);
+
+ static_assert(RegExpExecTestRegExpReg != ReturnReg);
+ static_assert(RegExpExecTestStringReg != ReturnReg);
+
+ auto* ool = new (alloc()) OutOfLineRegExpExecTest(lir);
+ addOutOfLineCode(ool, lir->mir());
+
+ const JitZone* jitZone = gen->realm->zone()->jitZone();
+ JitCode* regExpExecTestStub =
+ jitZone->regExpExecTestStubNoBarrier(&zoneStubsToReadBarrier_);
+ masm.call(regExpExecTestStub);
+
+ masm.branch32(Assembler::Equal, ReturnReg, Imm32(RegExpExecTestResultFailed),
+ ool->entry());
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitRegExpHasCaptureGroups(LRegExpHasCaptureGroups* ins) {
+ Register regexp = ToRegister(ins->regexp());
+ Register input = ToRegister(ins->input());
+ Register output = ToRegister(ins->output());
+
+ using Fn =
+ bool (*)(JSContext*, Handle<RegExpObject*>, Handle<JSString*>, bool*);
+ auto* ool = oolCallVM<Fn, js::RegExpHasCaptureGroups>(
+ ins, ArgList(regexp, input), StoreRegisterTo(output));
+
+ // Load RegExpShared in |output|.
+ Label vmCall;
+ masm.loadParsedRegExpShared(regexp, output, ool->entry());
+
+ // Return true iff pairCount > 1.
+ Label returnTrue;
+ masm.branch32(Assembler::Above,
+ Address(output, RegExpShared::offsetOfPairCount()), Imm32(1),
+ &returnTrue);
+ masm.move32(Imm32(0), output);
+ masm.jump(ool->rejoin());
+
+ masm.bind(&returnTrue);
+ masm.move32(Imm32(1), output);
+
+ masm.bind(ool->rejoin());
+}
+
+class OutOfLineRegExpPrototypeOptimizable
+ : public OutOfLineCodeBase<CodeGenerator> {
+ LRegExpPrototypeOptimizable* ins_;
+
+ public:
+ explicit OutOfLineRegExpPrototypeOptimizable(LRegExpPrototypeOptimizable* ins)
+ : ins_(ins) {}
+
+ void accept(CodeGenerator* codegen) override {
+ codegen->visitOutOfLineRegExpPrototypeOptimizable(this);
+ }
+ LRegExpPrototypeOptimizable* ins() const { return ins_; }
+};
+
+void CodeGenerator::visitRegExpPrototypeOptimizable(
+ LRegExpPrototypeOptimizable* ins) {
+ Register object = ToRegister(ins->object());
+ Register output = ToRegister(ins->output());
+ Register temp = ToRegister(ins->temp0());
+
+ OutOfLineRegExpPrototypeOptimizable* ool =
+ new (alloc()) OutOfLineRegExpPrototypeOptimizable(ins);
+ addOutOfLineCode(ool, ins->mir());
+
+ const GlobalObject* global = gen->realm->maybeGlobal();
+ MOZ_ASSERT(global);
+ masm.branchIfNotRegExpPrototypeOptimizable(object, temp, global,
+ ool->entry());
+ masm.move32(Imm32(0x1), output);
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitOutOfLineRegExpPrototypeOptimizable(
+ OutOfLineRegExpPrototypeOptimizable* ool) {
+ LRegExpPrototypeOptimizable* ins = ool->ins();
+ Register object = ToRegister(ins->object());
+ Register output = ToRegister(ins->output());
+
+ saveVolatile(output);
+
+ using Fn = bool (*)(JSContext* cx, JSObject* proto);
+ masm.setupAlignedABICall();
+ masm.loadJSContext(output);
+ masm.passABIArg(output);
+ masm.passABIArg(object);
+ masm.callWithABI<Fn, RegExpPrototypeOptimizableRaw>();
+ masm.storeCallBoolResult(output);
+
+ restoreVolatile(output);
+
+ masm.jump(ool->rejoin());
+}
+
+class OutOfLineRegExpInstanceOptimizable
+ : public OutOfLineCodeBase<CodeGenerator> {
+ LRegExpInstanceOptimizable* ins_;
+
+ public:
+ explicit OutOfLineRegExpInstanceOptimizable(LRegExpInstanceOptimizable* ins)
+ : ins_(ins) {}
+
+ void accept(CodeGenerator* codegen) override {
+ codegen->visitOutOfLineRegExpInstanceOptimizable(this);
+ }
+ LRegExpInstanceOptimizable* ins() const { return ins_; }
+};
+
+void CodeGenerator::visitRegExpInstanceOptimizable(
+ LRegExpInstanceOptimizable* ins) {
+ Register object = ToRegister(ins->object());
+ Register output = ToRegister(ins->output());
+ Register temp = ToRegister(ins->temp0());
+
+ OutOfLineRegExpInstanceOptimizable* ool =
+ new (alloc()) OutOfLineRegExpInstanceOptimizable(ins);
+ addOutOfLineCode(ool, ins->mir());
+
+ const GlobalObject* global = gen->realm->maybeGlobal();
+ MOZ_ASSERT(global);
+ masm.branchIfNotRegExpInstanceOptimizable(object, temp, global, ool->entry());
+ masm.move32(Imm32(0x1), output);
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitOutOfLineRegExpInstanceOptimizable(
+ OutOfLineRegExpInstanceOptimizable* ool) {
+ LRegExpInstanceOptimizable* ins = ool->ins();
+ Register object = ToRegister(ins->object());
+ Register proto = ToRegister(ins->proto());
+ Register output = ToRegister(ins->output());
+
+ saveVolatile(output);
+
+ using Fn = bool (*)(JSContext* cx, JSObject* obj, JSObject* proto);
+ masm.setupAlignedABICall();
+ masm.loadJSContext(output);
+ masm.passABIArg(output);
+ masm.passABIArg(object);
+ masm.passABIArg(proto);
+ masm.callWithABI<Fn, RegExpInstanceOptimizableRaw>();
+ masm.storeCallBoolResult(output);
+
+ restoreVolatile(output);
+
+ masm.jump(ool->rejoin());
+}
+
+static void FindFirstDollarIndex(MacroAssembler& masm, Register str,
+ Register len, Register temp0, Register temp1,
+ Register output, CharEncoding encoding) {
+#ifdef DEBUG
+ Label ok;
+ masm.branch32(Assembler::GreaterThan, len, Imm32(0), &ok);
+ masm.assumeUnreachable("Length should be greater than 0.");
+ masm.bind(&ok);
+#endif
+
+ Register chars = temp0;
+ masm.loadStringChars(str, chars, encoding);
+
+ masm.move32(Imm32(0), output);
+
+ Label start, done;
+ masm.bind(&start);
+
+ Register currentChar = temp1;
+ masm.loadChar(chars, output, currentChar, encoding);
+ masm.branch32(Assembler::Equal, currentChar, Imm32('$'), &done);
+
+ masm.add32(Imm32(1), output);
+ masm.branch32(Assembler::NotEqual, output, len, &start);
+
+ masm.move32(Imm32(-1), output);
+
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitGetFirstDollarIndex(LGetFirstDollarIndex* ins) {
+ Register str = ToRegister(ins->str());
+ Register output = ToRegister(ins->output());
+ Register temp0 = ToRegister(ins->temp0());
+ Register temp1 = ToRegister(ins->temp1());
+ Register len = ToRegister(ins->temp2());
+
+ using Fn = bool (*)(JSContext*, JSString*, int32_t*);
+ OutOfLineCode* ool = oolCallVM<Fn, GetFirstDollarIndexRaw>(
+ ins, ArgList(str), StoreRegisterTo(output));
+
+ masm.branchIfRope(str, ool->entry());
+ masm.loadStringLength(str, len);
+
+ Label isLatin1, done;
+ masm.branchLatin1String(str, &isLatin1);
+ {
+ FindFirstDollarIndex(masm, str, len, temp0, temp1, output,
+ CharEncoding::TwoByte);
+ masm.jump(&done);
+ }
+ masm.bind(&isLatin1);
+ {
+ FindFirstDollarIndex(masm, str, len, temp0, temp1, output,
+ CharEncoding::Latin1);
+ }
+ masm.bind(&done);
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitStringReplace(LStringReplace* lir) {
+ if (lir->replacement()->isConstant()) {
+ pushArg(ImmGCPtr(lir->replacement()->toConstant()->toString()));
+ } else {
+ pushArg(ToRegister(lir->replacement()));
+ }
+
+ if (lir->pattern()->isConstant()) {
+ pushArg(ImmGCPtr(lir->pattern()->toConstant()->toString()));
+ } else {
+ pushArg(ToRegister(lir->pattern()));
+ }
+
+ if (lir->string()->isConstant()) {
+ pushArg(ImmGCPtr(lir->string()->toConstant()->toString()));
+ } else {
+ pushArg(ToRegister(lir->string()));
+ }
+
+ using Fn =
+ JSString* (*)(JSContext*, HandleString, HandleString, HandleString);
+ if (lir->mir()->isFlatReplacement()) {
+ callVM<Fn, StringFlatReplaceString>(lir);
+ } else {
+ callVM<Fn, StringReplace>(lir);
+ }
+}
+
+void CodeGenerator::visitBinaryValueCache(LBinaryValueCache* lir) {
+ LiveRegisterSet liveRegs = lir->safepoint()->liveRegs();
+ TypedOrValueRegister lhs =
+ TypedOrValueRegister(ToValue(lir, LBinaryValueCache::LhsIndex));
+ TypedOrValueRegister rhs =
+ TypedOrValueRegister(ToValue(lir, LBinaryValueCache::RhsIndex));
+ ValueOperand output = ToOutValue(lir);
+
+ JSOp jsop = JSOp(*lir->mirRaw()->toInstruction()->resumePoint()->pc());
+
+ switch (jsop) {
+ case JSOp::Add:
+ case JSOp::Sub:
+ case JSOp::Mul:
+ case JSOp::Div:
+ case JSOp::Mod:
+ case JSOp::Pow:
+ case JSOp::BitAnd:
+ case JSOp::BitOr:
+ case JSOp::BitXor:
+ case JSOp::Lsh:
+ case JSOp::Rsh:
+ case JSOp::Ursh: {
+ IonBinaryArithIC ic(liveRegs, lhs, rhs, output);
+ addIC(lir, allocateIC(ic));
+ return;
+ }
+ default:
+ MOZ_CRASH("Unsupported jsop in MBinaryValueCache");
+ }
+}
+
+void CodeGenerator::visitBinaryBoolCache(LBinaryBoolCache* lir) {
+ LiveRegisterSet liveRegs = lir->safepoint()->liveRegs();
+ TypedOrValueRegister lhs =
+ TypedOrValueRegister(ToValue(lir, LBinaryBoolCache::LhsIndex));
+ TypedOrValueRegister rhs =
+ TypedOrValueRegister(ToValue(lir, LBinaryBoolCache::RhsIndex));
+ Register output = ToRegister(lir->output());
+
+ JSOp jsop = JSOp(*lir->mirRaw()->toInstruction()->resumePoint()->pc());
+
+ switch (jsop) {
+ case JSOp::Lt:
+ case JSOp::Le:
+ case JSOp::Gt:
+ case JSOp::Ge:
+ case JSOp::Eq:
+ case JSOp::Ne:
+ case JSOp::StrictEq:
+ case JSOp::StrictNe: {
+ IonCompareIC ic(liveRegs, lhs, rhs, output);
+ addIC(lir, allocateIC(ic));
+ return;
+ }
+ default:
+ MOZ_CRASH("Unsupported jsop in MBinaryBoolCache");
+ }
+}
+
+void CodeGenerator::visitUnaryCache(LUnaryCache* lir) {
+ LiveRegisterSet liveRegs = lir->safepoint()->liveRegs();
+ TypedOrValueRegister input =
+ TypedOrValueRegister(ToValue(lir, LUnaryCache::InputIndex));
+ ValueOperand output = ToOutValue(lir);
+
+ IonUnaryArithIC ic(liveRegs, input, output);
+ addIC(lir, allocateIC(ic));
+}
+
+void CodeGenerator::visitModuleMetadata(LModuleMetadata* lir) {
+ pushArg(ImmPtr(lir->mir()->module()));
+
+ using Fn = JSObject* (*)(JSContext*, HandleObject);
+ callVM<Fn, js::GetOrCreateModuleMetaObject>(lir);
+}
+
+void CodeGenerator::visitDynamicImport(LDynamicImport* lir) {
+ pushArg(ToValue(lir, LDynamicImport::OptionsIndex));
+ pushArg(ToValue(lir, LDynamicImport::SpecifierIndex));
+ pushArg(ImmGCPtr(current->mir()->info().script()));
+
+ using Fn = JSObject* (*)(JSContext*, HandleScript, HandleValue, HandleValue);
+ callVM<Fn, js::StartDynamicModuleImport>(lir);
+}
+
+void CodeGenerator::visitLambda(LLambda* lir) {
+ Register envChain = ToRegister(lir->environmentChain());
+ Register output = ToRegister(lir->output());
+ Register tempReg = ToRegister(lir->temp0());
+
+ JSFunction* fun = lir->mir()->templateFunction();
+
+ using Fn = JSObject* (*)(JSContext*, HandleFunction, HandleObject);
+ OutOfLineCode* ool = oolCallVM<Fn, js::Lambda>(
+ lir, ArgList(ImmGCPtr(fun), envChain), StoreRegisterTo(output));
+
+ TemplateObject templateObject(fun);
+ masm.createGCObject(output, tempReg, templateObject, gc::Heap::Default,
+ ool->entry());
+
+ masm.storeValue(JSVAL_TYPE_OBJECT, envChain,
+ Address(output, JSFunction::offsetOfEnvironment()));
+ // No post barrier needed because output is guaranteed to be allocated in
+ // the nursery.
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitFunctionWithProto(LFunctionWithProto* lir) {
+ Register envChain = ToRegister(lir->envChain());
+ Register prototype = ToRegister(lir->prototype());
+
+ pushArg(prototype);
+ pushArg(envChain);
+ pushArg(ImmGCPtr(lir->mir()->function()));
+
+ using Fn =
+ JSObject* (*)(JSContext*, HandleFunction, HandleObject, HandleObject);
+ callVM<Fn, js::FunWithProtoOperation>(lir);
+}
+
+void CodeGenerator::visitSetFunName(LSetFunName* lir) {
+ pushArg(Imm32(lir->mir()->prefixKind()));
+ pushArg(ToValue(lir, LSetFunName::NameIndex));
+ pushArg(ToRegister(lir->fun()));
+
+ using Fn =
+ bool (*)(JSContext*, HandleFunction, HandleValue, FunctionPrefixKind);
+ callVM<Fn, js::SetFunctionName>(lir);
+}
+
+void CodeGenerator::visitOsiPoint(LOsiPoint* lir) {
+ // Note: markOsiPoint ensures enough space exists between the last
+ // LOsiPoint and this one to patch adjacent call instructions.
+
+ MOZ_ASSERT(masm.framePushed() == frameSize());
+
+ uint32_t osiCallPointOffset = markOsiPoint(lir);
+
+ LSafepoint* safepoint = lir->associatedSafepoint();
+ MOZ_ASSERT(!safepoint->osiCallPointOffset());
+ safepoint->setOsiCallPointOffset(osiCallPointOffset);
+
+#ifdef DEBUG
+ // There should be no movegroups or other instructions between
+ // an instruction and its OsiPoint. This is necessary because
+ // we use the OsiPoint's snapshot from within VM calls.
+ for (LInstructionReverseIterator iter(current->rbegin(lir));
+ iter != current->rend(); iter++) {
+ if (*iter == lir) {
+ continue;
+ }
+ MOZ_ASSERT(!iter->isMoveGroup());
+ MOZ_ASSERT(iter->safepoint() == safepoint);
+ break;
+ }
+#endif
+
+#ifdef CHECK_OSIPOINT_REGISTERS
+ if (shouldVerifyOsiPointRegs(safepoint)) {
+ verifyOsiPointRegs(safepoint);
+ }
+#endif
+}
+
+void CodeGenerator::visitPhi(LPhi* lir) {
+ MOZ_CRASH("Unexpected LPhi in CodeGenerator");
+}
+
+void CodeGenerator::visitGoto(LGoto* lir) { jumpToBlock(lir->target()); }
+
+void CodeGenerator::visitTableSwitch(LTableSwitch* ins) {
+ MTableSwitch* mir = ins->mir();
+ Label* defaultcase = skipTrivialBlocks(mir->getDefault())->lir()->label();
+ const LAllocation* temp;
+
+ if (mir->getOperand(0)->type() != MIRType::Int32) {
+ temp = ins->tempInt()->output();
+
+ // The input is a double, so try and convert it to an integer.
+ // If it does not fit in an integer, take the default case.
+ masm.convertDoubleToInt32(ToFloatRegister(ins->index()), ToRegister(temp),
+ defaultcase, false);
+ } else {
+ temp = ins->index();
+ }
+
+ emitTableSwitchDispatch(mir, ToRegister(temp),
+ ToRegisterOrInvalid(ins->tempPointer()));
+}
+
+void CodeGenerator::visitTableSwitchV(LTableSwitchV* ins) {
+ MTableSwitch* mir = ins->mir();
+ Label* defaultcase = skipTrivialBlocks(mir->getDefault())->lir()->label();
+
+ Register index = ToRegister(ins->tempInt());
+ ValueOperand value = ToValue(ins, LTableSwitchV::InputValue);
+ Register tag = masm.extractTag(value, index);
+ masm.branchTestNumber(Assembler::NotEqual, tag, defaultcase);
+
+ Label unboxInt, isInt;
+ masm.branchTestInt32(Assembler::Equal, tag, &unboxInt);
+ {
+ FloatRegister floatIndex = ToFloatRegister(ins->tempFloat());
+ masm.unboxDouble(value, floatIndex);
+ masm.convertDoubleToInt32(floatIndex, index, defaultcase, false);
+ masm.jump(&isInt);
+ }
+
+ masm.bind(&unboxInt);
+ masm.unboxInt32(value, index);
+
+ masm.bind(&isInt);
+
+ emitTableSwitchDispatch(mir, index, ToRegisterOrInvalid(ins->tempPointer()));
+}
+
+void CodeGenerator::visitParameter(LParameter* lir) {}
+
+void CodeGenerator::visitCallee(LCallee* lir) {
+ Register callee = ToRegister(lir->output());
+ Address ptr(FramePointer, JitFrameLayout::offsetOfCalleeToken());
+
+ masm.loadFunctionFromCalleeToken(ptr, callee);
+}
+
+void CodeGenerator::visitIsConstructing(LIsConstructing* lir) {
+ Register output = ToRegister(lir->output());
+ Address calleeToken(FramePointer, JitFrameLayout::offsetOfCalleeToken());
+ masm.loadPtr(calleeToken, output);
+
+ // We must be inside a function.
+ MOZ_ASSERT(current->mir()->info().script()->function());
+
+ // The low bit indicates whether this call is constructing, just clear the
+ // other bits.
+ static_assert(CalleeToken_Function == 0x0,
+ "CalleeTokenTag value should match");
+ static_assert(CalleeToken_FunctionConstructing == 0x1,
+ "CalleeTokenTag value should match");
+ masm.andPtr(Imm32(0x1), output);
+}
+
+void CodeGenerator::visitReturn(LReturn* lir) {
+#if defined(JS_NUNBOX32)
+ DebugOnly<LAllocation*> type = lir->getOperand(TYPE_INDEX);
+ DebugOnly<LAllocation*> payload = lir->getOperand(PAYLOAD_INDEX);
+ MOZ_ASSERT(ToRegister(type) == JSReturnReg_Type);
+ MOZ_ASSERT(ToRegister(payload) == JSReturnReg_Data);
+#elif defined(JS_PUNBOX64)
+ DebugOnly<LAllocation*> result = lir->getOperand(0);
+ MOZ_ASSERT(ToRegister(result) == JSReturnReg);
+#endif
+ // Don't emit a jump to the return label if this is the last block, as
+ // it'll fall through to the epilogue.
+ //
+ // This is -not- true however for a Generator-return, which may appear in the
+ // middle of the last block, so we should always emit the jump there.
+ if (current->mir() != *gen->graph().poBegin() || lir->isGenerator()) {
+ masm.jump(&returnLabel_);
+ }
+}
+
+void CodeGenerator::visitOsrEntry(LOsrEntry* lir) {
+ Register temp = ToRegister(lir->temp());
+
+ // Remember the OSR entry offset into the code buffer.
+ masm.flushBuffer();
+ setOsrEntryOffset(masm.size());
+
+ // Allocate the full frame for this function
+ // Note we have a new entry here. So we reset MacroAssembler::framePushed()
+ // to 0, before reserving the stack.
+ MOZ_ASSERT(masm.framePushed() == frameSize());
+ masm.setFramePushed(0);
+
+ // The Baseline code ensured both the frame pointer and stack pointer point to
+ // the JitFrameLayout on the stack.
+
+ // If profiling, save the current frame pointer to a per-thread global field.
+ if (isProfilerInstrumentationEnabled()) {
+ masm.profilerEnterFrame(FramePointer, temp);
+ }
+
+ masm.reserveStack(frameSize());
+ MOZ_ASSERT(masm.framePushed() == frameSize());
+
+ // Ensure that the Ion frames is properly aligned.
+ masm.assertStackAlignment(JitStackAlignment, 0);
+}
+
+void CodeGenerator::visitOsrEnvironmentChain(LOsrEnvironmentChain* lir) {
+ const LAllocation* frame = lir->getOperand(0);
+ const LDefinition* object = lir->getDef(0);
+
+ const ptrdiff_t frameOffset =
+ BaselineFrame::reverseOffsetOfEnvironmentChain();
+
+ masm.loadPtr(Address(ToRegister(frame), frameOffset), ToRegister(object));
+}
+
+void CodeGenerator::visitOsrArgumentsObject(LOsrArgumentsObject* lir) {
+ const LAllocation* frame = lir->getOperand(0);
+ const LDefinition* object = lir->getDef(0);
+
+ const ptrdiff_t frameOffset = BaselineFrame::reverseOffsetOfArgsObj();
+
+ masm.loadPtr(Address(ToRegister(frame), frameOffset), ToRegister(object));
+}
+
+void CodeGenerator::visitOsrValue(LOsrValue* value) {
+ const LAllocation* frame = value->getOperand(0);
+ const ValueOperand out = ToOutValue(value);
+
+ const ptrdiff_t frameOffset = value->mir()->frameOffset();
+
+ masm.loadValue(Address(ToRegister(frame), frameOffset), out);
+}
+
+void CodeGenerator::visitOsrReturnValue(LOsrReturnValue* lir) {
+ const LAllocation* frame = lir->getOperand(0);
+ const ValueOperand out = ToOutValue(lir);
+
+ Address flags =
+ Address(ToRegister(frame), BaselineFrame::reverseOffsetOfFlags());
+ Address retval =
+ Address(ToRegister(frame), BaselineFrame::reverseOffsetOfReturnValue());
+
+ masm.moveValue(UndefinedValue(), out);
+
+ Label done;
+ masm.branchTest32(Assembler::Zero, flags, Imm32(BaselineFrame::HAS_RVAL),
+ &done);
+ masm.loadValue(retval, out);
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitStackArgT(LStackArgT* lir) {
+ const LAllocation* arg = lir->arg();
+ MIRType argType = lir->type();
+ uint32_t argslot = lir->argslot();
+ MOZ_ASSERT(argslot - 1u < graph.argumentSlotCount());
+
+ Address dest = AddressOfPassedArg(argslot);
+
+ if (arg->isFloatReg()) {
+ masm.boxDouble(ToFloatRegister(arg), dest);
+ } else if (arg->isRegister()) {
+ masm.storeValue(ValueTypeFromMIRType(argType), ToRegister(arg), dest);
+ } else {
+ masm.storeValue(arg->toConstant()->toJSValue(), dest);
+ }
+}
+
+void CodeGenerator::visitStackArgV(LStackArgV* lir) {
+ ValueOperand val = ToValue(lir, 0);
+ uint32_t argslot = lir->argslot();
+ MOZ_ASSERT(argslot - 1u < graph.argumentSlotCount());
+
+ masm.storeValue(val, AddressOfPassedArg(argslot));
+}
+
+void CodeGenerator::visitMoveGroup(LMoveGroup* group) {
+ if (!group->numMoves()) {
+ return;
+ }
+
+ MoveResolver& resolver = masm.moveResolver();
+
+ for (size_t i = 0; i < group->numMoves(); i++) {
+ const LMove& move = group->getMove(i);
+
+ LAllocation from = move.from();
+ LAllocation to = move.to();
+ LDefinition::Type type = move.type();
+
+ // No bogus moves.
+ MOZ_ASSERT(from != to);
+ MOZ_ASSERT(!from.isConstant());
+ MoveOp::Type moveType;
+ switch (type) {
+ case LDefinition::OBJECT:
+ case LDefinition::SLOTS:
+ case LDefinition::WASM_ANYREF:
+#ifdef JS_NUNBOX32
+ case LDefinition::TYPE:
+ case LDefinition::PAYLOAD:
+#else
+ case LDefinition::BOX:
+#endif
+ case LDefinition::GENERAL:
+ case LDefinition::STACKRESULTS:
+ moveType = MoveOp::GENERAL;
+ break;
+ case LDefinition::INT32:
+ moveType = MoveOp::INT32;
+ break;
+ case LDefinition::FLOAT32:
+ moveType = MoveOp::FLOAT32;
+ break;
+ case LDefinition::DOUBLE:
+ moveType = MoveOp::DOUBLE;
+ break;
+ case LDefinition::SIMD128:
+ moveType = MoveOp::SIMD128;
+ break;
+ default:
+ MOZ_CRASH("Unexpected move type");
+ }
+
+ masm.propagateOOM(
+ resolver.addMove(toMoveOperand(from), toMoveOperand(to), moveType));
+ }
+
+ masm.propagateOOM(resolver.resolve());
+ if (masm.oom()) {
+ return;
+ }
+
+ MoveEmitter emitter(masm);
+
+#ifdef JS_CODEGEN_X86
+ if (group->maybeScratchRegister().isGeneralReg()) {
+ emitter.setScratchRegister(
+ group->maybeScratchRegister().toGeneralReg()->reg());
+ } else {
+ resolver.sortMemoryToMemoryMoves();
+ }
+#endif
+
+ emitter.emit(resolver);
+ emitter.finish();
+}
+
+void CodeGenerator::visitInteger(LInteger* lir) {
+ masm.move32(Imm32(lir->i32()), ToRegister(lir->output()));
+}
+
+void CodeGenerator::visitInteger64(LInteger64* lir) {
+ masm.move64(Imm64(lir->i64()), ToOutRegister64(lir));
+}
+
+void CodeGenerator::visitPointer(LPointer* lir) {
+ masm.movePtr(ImmGCPtr(lir->gcptr()), ToRegister(lir->output()));
+}
+
+void CodeGenerator::visitNurseryObject(LNurseryObject* lir) {
+ Register output = ToRegister(lir->output());
+ uint32_t nurseryIndex = lir->mir()->nurseryIndex();
+
+ // Load a pointer to the entry in IonScript's nursery objects list.
+ CodeOffset label = masm.movWithPatch(ImmWord(uintptr_t(-1)), output);
+ masm.propagateOOM(ionNurseryObjectLabels_.emplaceBack(label, nurseryIndex));
+
+ // Load the JSObject*.
+ masm.loadPtr(Address(output, 0), output);
+}
+
+void CodeGenerator::visitKeepAliveObject(LKeepAliveObject* lir) {
+ // No-op.
+}
+
+void CodeGenerator::visitDebugEnterGCUnsafeRegion(
+ LDebugEnterGCUnsafeRegion* lir) {
+ Register temp = ToRegister(lir->temp0());
+
+ masm.loadJSContext(temp);
+
+ Address inUnsafeRegion(temp, JSContext::offsetOfInUnsafeRegion());
+ masm.add32(Imm32(1), inUnsafeRegion);
+
+ Label ok;
+ masm.branch32(Assembler::GreaterThan, inUnsafeRegion, Imm32(0), &ok);
+ masm.assumeUnreachable("unbalanced enter/leave GC unsafe region");
+ masm.bind(&ok);
+}
+
+void CodeGenerator::visitDebugLeaveGCUnsafeRegion(
+ LDebugLeaveGCUnsafeRegion* lir) {
+ Register temp = ToRegister(lir->temp0());
+
+ masm.loadJSContext(temp);
+
+ Address inUnsafeRegion(temp, JSContext::offsetOfInUnsafeRegion());
+ masm.add32(Imm32(-1), inUnsafeRegion);
+
+ Label ok;
+ masm.branch32(Assembler::GreaterThanOrEqual, inUnsafeRegion, Imm32(0), &ok);
+ masm.assumeUnreachable("unbalanced enter/leave GC unsafe region");
+ masm.bind(&ok);
+}
+
+void CodeGenerator::visitSlots(LSlots* lir) {
+ Address slots(ToRegister(lir->object()), NativeObject::offsetOfSlots());
+ masm.loadPtr(slots, ToRegister(lir->output()));
+}
+
+void CodeGenerator::visitLoadDynamicSlotV(LLoadDynamicSlotV* lir) {
+ ValueOperand dest = ToOutValue(lir);
+ Register base = ToRegister(lir->input());
+ int32_t offset = lir->mir()->slot() * sizeof(js::Value);
+
+ masm.loadValue(Address(base, offset), dest);
+}
+
+static ConstantOrRegister ToConstantOrRegister(const LAllocation* value,
+ MIRType valueType) {
+ if (value->isConstant()) {
+ return ConstantOrRegister(value->toConstant()->toJSValue());
+ }
+ return TypedOrValueRegister(valueType, ToAnyRegister(value));
+}
+
+void CodeGenerator::visitStoreDynamicSlotT(LStoreDynamicSlotT* lir) {
+ Register base = ToRegister(lir->slots());
+ int32_t offset = lir->mir()->slot() * sizeof(js::Value);
+ Address dest(base, offset);
+
+ if (lir->mir()->needsBarrier()) {
+ emitPreBarrier(dest);
+ }
+
+ MIRType valueType = lir->mir()->value()->type();
+ ConstantOrRegister value = ToConstantOrRegister(lir->value(), valueType);
+ masm.storeUnboxedValue(value, valueType, dest);
+}
+
+void CodeGenerator::visitStoreDynamicSlotV(LStoreDynamicSlotV* lir) {
+ Register base = ToRegister(lir->slots());
+ int32_t offset = lir->mir()->slot() * sizeof(Value);
+
+ const ValueOperand value = ToValue(lir, LStoreDynamicSlotV::ValueIndex);
+
+ if (lir->mir()->needsBarrier()) {
+ emitPreBarrier(Address(base, offset));
+ }
+
+ masm.storeValue(value, Address(base, offset));
+}
+
+void CodeGenerator::visitElements(LElements* lir) {
+ Address elements(ToRegister(lir->object()), NativeObject::offsetOfElements());
+ masm.loadPtr(elements, ToRegister(lir->output()));
+}
+
+void CodeGenerator::visitFunctionEnvironment(LFunctionEnvironment* lir) {
+ Address environment(ToRegister(lir->function()),
+ JSFunction::offsetOfEnvironment());
+ masm.unboxObject(environment, ToRegister(lir->output()));
+}
+
+void CodeGenerator::visitHomeObject(LHomeObject* lir) {
+ Register func = ToRegister(lir->function());
+ Address homeObject(func, FunctionExtended::offsetOfMethodHomeObjectSlot());
+
+ masm.assertFunctionIsExtended(func);
+#ifdef DEBUG
+ Label isObject;
+ masm.branchTestObject(Assembler::Equal, homeObject, &isObject);
+ masm.assumeUnreachable("[[HomeObject]] must be Object");
+ masm.bind(&isObject);
+#endif
+
+ masm.unboxObject(homeObject, ToRegister(lir->output()));
+}
+
+void CodeGenerator::visitHomeObjectSuperBase(LHomeObjectSuperBase* lir) {
+ Register homeObject = ToRegister(lir->homeObject());
+ ValueOperand output = ToOutValue(lir);
+ Register temp = output.scratchReg();
+
+ masm.loadObjProto(homeObject, temp);
+
+#ifdef DEBUG
+ // We won't encounter a lazy proto, because the prototype is guaranteed to
+ // either be a JSFunction or a PlainObject, and only proxy objects can have a
+ // lazy proto.
+ MOZ_ASSERT(uintptr_t(TaggedProto::LazyProto) == 1);
+
+ Label proxyCheckDone;
+ masm.branchPtr(Assembler::NotEqual, temp, ImmWord(1), &proxyCheckDone);
+ masm.assumeUnreachable("Unexpected lazy proto in JSOp::SuperBase");
+ masm.bind(&proxyCheckDone);
+#endif
+
+ Label nullProto, done;
+ masm.branchPtr(Assembler::Equal, temp, ImmWord(0), &nullProto);
+
+ // Box prototype and return
+ masm.tagValue(JSVAL_TYPE_OBJECT, temp, output);
+ masm.jump(&done);
+
+ masm.bind(&nullProto);
+ masm.moveValue(NullValue(), output);
+
+ masm.bind(&done);
+}
+
+template <class T>
+static T* ToConstantObject(MDefinition* def) {
+ MOZ_ASSERT(def->isConstant());
+ return &def->toConstant()->toObject().as<T>();
+}
+
+void CodeGenerator::visitNewLexicalEnvironmentObject(
+ LNewLexicalEnvironmentObject* lir) {
+ Register output = ToRegister(lir->output());
+ Register temp = ToRegister(lir->temp0());
+
+ auto* templateObj = ToConstantObject<BlockLexicalEnvironmentObject>(
+ lir->mir()->templateObj());
+ auto* scope = &templateObj->scope();
+ gc::Heap initialHeap = gc::Heap::Default;
+
+ using Fn =
+ BlockLexicalEnvironmentObject* (*)(JSContext*, Handle<LexicalScope*>);
+ auto* ool =
+ oolCallVM<Fn, BlockLexicalEnvironmentObject::createWithoutEnclosing>(
+ lir, ArgList(ImmGCPtr(scope)), StoreRegisterTo(output));
+
+ TemplateObject templateObject(templateObj);
+ masm.createGCObject(output, temp, templateObject, initialHeap, ool->entry());
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitNewClassBodyEnvironmentObject(
+ LNewClassBodyEnvironmentObject* lir) {
+ Register output = ToRegister(lir->output());
+ Register temp = ToRegister(lir->temp0());
+
+ auto* templateObj = ToConstantObject<ClassBodyLexicalEnvironmentObject>(
+ lir->mir()->templateObj());
+ auto* scope = &templateObj->scope();
+ gc::Heap initialHeap = gc::Heap::Default;
+
+ using Fn = ClassBodyLexicalEnvironmentObject* (*)(JSContext*,
+ Handle<ClassBodyScope*>);
+ auto* ool =
+ oolCallVM<Fn, ClassBodyLexicalEnvironmentObject::createWithoutEnclosing>(
+ lir, ArgList(ImmGCPtr(scope)), StoreRegisterTo(output));
+
+ TemplateObject templateObject(templateObj);
+ masm.createGCObject(output, temp, templateObject, initialHeap, ool->entry());
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitNewVarEnvironmentObject(
+ LNewVarEnvironmentObject* lir) {
+ Register output = ToRegister(lir->output());
+ Register temp = ToRegister(lir->temp0());
+
+ auto* templateObj =
+ ToConstantObject<VarEnvironmentObject>(lir->mir()->templateObj());
+ auto* scope = &templateObj->scope().as<VarScope>();
+ gc::Heap initialHeap = gc::Heap::Default;
+
+ using Fn = VarEnvironmentObject* (*)(JSContext*, Handle<VarScope*>);
+ auto* ool = oolCallVM<Fn, VarEnvironmentObject::createWithoutEnclosing>(
+ lir, ArgList(ImmGCPtr(scope)), StoreRegisterTo(output));
+
+ TemplateObject templateObject(templateObj);
+ masm.createGCObject(output, temp, templateObject, initialHeap, ool->entry());
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitGuardShape(LGuardShape* guard) {
+ Register obj = ToRegister(guard->input());
+ Register temp = ToTempRegisterOrInvalid(guard->temp0());
+ Label bail;
+ masm.branchTestObjShape(Assembler::NotEqual, obj, guard->mir()->shape(), temp,
+ obj, &bail);
+ bailoutFrom(&bail, guard->snapshot());
+}
+
+void CodeGenerator::visitGuardFuse(LGuardFuse* guard) {
+ Register temp = ToRegister(guard->temp0());
+ Label bail;
+
+ // Bake specific fuse address for Ion code, because we won't share this code
+ // across realms.
+ GuardFuse* fuse =
+ mirGen().realm->realmFuses().getFuseByIndex(guard->mir()->fuseIndex());
+ masm.loadPtr(AbsoluteAddress(fuse->fuseRef()), temp);
+ masm.branchPtr(Assembler::NotEqual, temp, ImmPtr(nullptr), &bail);
+
+ bailoutFrom(&bail, guard->snapshot());
+}
+
+void CodeGenerator::visitGuardMultipleShapes(LGuardMultipleShapes* guard) {
+ Register obj = ToRegister(guard->object());
+ Register shapeList = ToRegister(guard->shapeList());
+ Register temp = ToRegister(guard->temp0());
+ Register temp2 = ToRegister(guard->temp1());
+ Register temp3 = ToRegister(guard->temp2());
+ Register spectre = ToTempRegisterOrInvalid(guard->temp3());
+
+ Label bail;
+ masm.loadPtr(Address(shapeList, NativeObject::offsetOfElements()), temp);
+ masm.branchTestObjShapeList(Assembler::NotEqual, obj, temp, temp2, temp3,
+ spectre, &bail);
+ bailoutFrom(&bail, guard->snapshot());
+}
+
+void CodeGenerator::visitGuardProto(LGuardProto* guard) {
+ Register obj = ToRegister(guard->object());
+ Register expected = ToRegister(guard->expected());
+ Register temp = ToRegister(guard->temp0());
+
+ masm.loadObjProto(obj, temp);
+
+ Label bail;
+ masm.branchPtr(Assembler::NotEqual, temp, expected, &bail);
+ bailoutFrom(&bail, guard->snapshot());
+}
+
+void CodeGenerator::visitGuardNullProto(LGuardNullProto* guard) {
+ Register obj = ToRegister(guard->input());
+ Register temp = ToRegister(guard->temp0());
+
+ masm.loadObjProto(obj, temp);
+
+ Label bail;
+ masm.branchTestPtr(Assembler::NonZero, temp, temp, &bail);
+ bailoutFrom(&bail, guard->snapshot());
+}
+
+void CodeGenerator::visitGuardIsNativeObject(LGuardIsNativeObject* guard) {
+ Register obj = ToRegister(guard->input());
+ Register temp = ToRegister(guard->temp0());
+
+ Label bail;
+ masm.branchIfNonNativeObj(obj, temp, &bail);
+ bailoutFrom(&bail, guard->snapshot());
+}
+
+void CodeGenerator::visitGuardGlobalGeneration(LGuardGlobalGeneration* guard) {
+ Register temp = ToRegister(guard->temp0());
+ Label bail;
+
+ masm.load32(AbsoluteAddress(guard->mir()->generationAddr()), temp);
+ masm.branch32(Assembler::NotEqual, temp, Imm32(guard->mir()->expected()),
+ &bail);
+ bailoutFrom(&bail, guard->snapshot());
+}
+
+void CodeGenerator::visitGuardIsProxy(LGuardIsProxy* guard) {
+ Register obj = ToRegister(guard->input());
+ Register temp = ToRegister(guard->temp0());
+
+ Label bail;
+ masm.branchTestObjectIsProxy(false, obj, temp, &bail);
+ bailoutFrom(&bail, guard->snapshot());
+}
+
+void CodeGenerator::visitGuardIsNotProxy(LGuardIsNotProxy* guard) {
+ Register obj = ToRegister(guard->input());
+ Register temp = ToRegister(guard->temp0());
+
+ Label bail;
+ masm.branchTestObjectIsProxy(true, obj, temp, &bail);
+ bailoutFrom(&bail, guard->snapshot());
+}
+
+void CodeGenerator::visitGuardIsNotDOMProxy(LGuardIsNotDOMProxy* guard) {
+ Register proxy = ToRegister(guard->proxy());
+ Register temp = ToRegister(guard->temp0());
+
+ Label bail;
+ masm.branchTestProxyHandlerFamily(Assembler::Equal, proxy, temp,
+ GetDOMProxyHandlerFamily(), &bail);
+ bailoutFrom(&bail, guard->snapshot());
+}
+
+void CodeGenerator::visitProxyGet(LProxyGet* lir) {
+ Register proxy = ToRegister(lir->proxy());
+ Register temp = ToRegister(lir->temp0());
+
+ pushArg(lir->mir()->id(), temp);
+ pushArg(proxy);
+
+ using Fn = bool (*)(JSContext*, HandleObject, HandleId, MutableHandleValue);
+ callVM<Fn, ProxyGetProperty>(lir);
+}
+
+void CodeGenerator::visitProxyGetByValue(LProxyGetByValue* lir) {
+ Register proxy = ToRegister(lir->proxy());
+ ValueOperand idVal = ToValue(lir, LProxyGetByValue::IdIndex);
+
+ pushArg(idVal);
+ pushArg(proxy);
+
+ using Fn =
+ bool (*)(JSContext*, HandleObject, HandleValue, MutableHandleValue);
+ callVM<Fn, ProxyGetPropertyByValue>(lir);
+}
+
+void CodeGenerator::visitProxyHasProp(LProxyHasProp* lir) {
+ Register proxy = ToRegister(lir->proxy());
+ ValueOperand idVal = ToValue(lir, LProxyHasProp::IdIndex);
+
+ pushArg(idVal);
+ pushArg(proxy);
+
+ using Fn = bool (*)(JSContext*, HandleObject, HandleValue, bool*);
+ if (lir->mir()->hasOwn()) {
+ callVM<Fn, ProxyHasOwn>(lir);
+ } else {
+ callVM<Fn, ProxyHas>(lir);
+ }
+}
+
+void CodeGenerator::visitProxySet(LProxySet* lir) {
+ Register proxy = ToRegister(lir->proxy());
+ ValueOperand rhs = ToValue(lir, LProxySet::RhsIndex);
+ Register temp = ToRegister(lir->temp0());
+
+ pushArg(Imm32(lir->mir()->strict()));
+ pushArg(rhs);
+ pushArg(lir->mir()->id(), temp);
+ pushArg(proxy);
+
+ using Fn = bool (*)(JSContext*, HandleObject, HandleId, HandleValue, bool);
+ callVM<Fn, ProxySetProperty>(lir);
+}
+
+void CodeGenerator::visitProxySetByValue(LProxySetByValue* lir) {
+ Register proxy = ToRegister(lir->proxy());
+ ValueOperand idVal = ToValue(lir, LProxySetByValue::IdIndex);
+ ValueOperand rhs = ToValue(lir, LProxySetByValue::RhsIndex);
+
+ pushArg(Imm32(lir->mir()->strict()));
+ pushArg(rhs);
+ pushArg(idVal);
+ pushArg(proxy);
+
+ using Fn = bool (*)(JSContext*, HandleObject, HandleValue, HandleValue, bool);
+ callVM<Fn, ProxySetPropertyByValue>(lir);
+}
+
+void CodeGenerator::visitCallSetArrayLength(LCallSetArrayLength* lir) {
+ Register obj = ToRegister(lir->obj());
+ ValueOperand rhs = ToValue(lir, LCallSetArrayLength::RhsIndex);
+
+ pushArg(Imm32(lir->mir()->strict()));
+ pushArg(rhs);
+ pushArg(obj);
+
+ using Fn = bool (*)(JSContext*, HandleObject, HandleValue, bool);
+ callVM<Fn, jit::SetArrayLength>(lir);
+}
+
+void CodeGenerator::visitMegamorphicLoadSlot(LMegamorphicLoadSlot* lir) {
+ Register obj = ToRegister(lir->object());
+ Register temp0 = ToRegister(lir->temp0());
+ Register temp1 = ToRegister(lir->temp1());
+ Register temp2 = ToRegister(lir->temp2());
+ Register temp3 = ToRegister(lir->temp3());
+ ValueOperand output = ToOutValue(lir);
+
+ Label bail, cacheHit;
+ masm.emitMegamorphicCacheLookup(lir->mir()->name(), obj, temp0, temp1, temp2,
+ output, &cacheHit);
+
+ masm.branchIfNonNativeObj(obj, temp0, &bail);
+
+ masm.Push(UndefinedValue());
+ masm.moveStackPtrTo(temp3);
+
+ using Fn = bool (*)(JSContext* cx, JSObject* obj, PropertyKey id,
+ MegamorphicCache::Entry* cacheEntry, Value* vp);
+ masm.setupAlignedABICall();
+ masm.loadJSContext(temp0);
+ masm.passABIArg(temp0);
+ masm.passABIArg(obj);
+ masm.movePropertyKey(lir->mir()->name(), temp1);
+ masm.passABIArg(temp1);
+ masm.passABIArg(temp2);
+ masm.passABIArg(temp3);
+
+ masm.callWithABI<Fn, GetNativeDataPropertyPure>();
+
+ MOZ_ASSERT(!output.aliases(ReturnReg));
+ masm.Pop(output);
+
+ masm.branchIfFalseBool(ReturnReg, &bail);
+
+ masm.bind(&cacheHit);
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+void CodeGenerator::visitMegamorphicLoadSlotByValue(
+ LMegamorphicLoadSlotByValue* lir) {
+ Register obj = ToRegister(lir->object());
+ ValueOperand idVal = ToValue(lir, LMegamorphicLoadSlotByValue::IdIndex);
+ Register temp0 = ToRegister(lir->temp0());
+ Register temp1 = ToRegister(lir->temp1());
+ Register temp2 = ToRegister(lir->temp2());
+ ValueOperand output = ToOutValue(lir);
+
+ Label bail, cacheHit;
+ masm.emitMegamorphicCacheLookupByValue(idVal, obj, temp0, temp1, temp2,
+ output, &cacheHit);
+
+ masm.branchIfNonNativeObj(obj, temp0, &bail);
+
+ // idVal will be in vp[0], result will be stored in vp[1].
+ masm.reserveStack(sizeof(Value));
+ masm.Push(idVal);
+ masm.moveStackPtrTo(temp0);
+
+ using Fn = bool (*)(JSContext* cx, JSObject* obj,
+ MegamorphicCache::Entry* cacheEntry, Value* vp);
+ masm.setupAlignedABICall();
+ masm.loadJSContext(temp1);
+ masm.passABIArg(temp1);
+ masm.passABIArg(obj);
+ masm.passABIArg(temp2);
+ masm.passABIArg(temp0);
+ masm.callWithABI<Fn, GetNativeDataPropertyByValuePure>();
+
+ MOZ_ASSERT(!idVal.aliases(temp0));
+ masm.storeCallPointerResult(temp0);
+ masm.Pop(idVal);
+
+ uint32_t framePushed = masm.framePushed();
+ Label ok;
+ masm.branchIfTrueBool(temp0, &ok);
+ masm.freeStack(sizeof(Value)); // Discard result Value.
+ masm.jump(&bail);
+
+ masm.bind(&ok);
+ masm.setFramePushed(framePushed);
+ masm.Pop(output);
+
+ masm.bind(&cacheHit);
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+void CodeGenerator::visitMegamorphicStoreSlot(LMegamorphicStoreSlot* lir) {
+ Register obj = ToRegister(lir->object());
+ ValueOperand value = ToValue(lir, LMegamorphicStoreSlot::RhsIndex);
+
+ Register temp0 = ToRegister(lir->temp0());
+#ifndef JS_CODEGEN_X86
+ Register temp1 = ToRegister(lir->temp1());
+ Register temp2 = ToRegister(lir->temp2());
+#endif
+
+ Label cacheHit, done;
+#ifdef JS_CODEGEN_X86
+ masm.emitMegamorphicCachedSetSlot(
+ lir->mir()->name(), obj, temp0, value, &cacheHit,
+ [](MacroAssembler& masm, const Address& addr, MIRType mirType) {
+ EmitPreBarrier(masm, addr, mirType);
+ });
+#else
+ masm.emitMegamorphicCachedSetSlot(
+ lir->mir()->name(), obj, temp0, temp1, temp2, value, &cacheHit,
+ [](MacroAssembler& masm, const Address& addr, MIRType mirType) {
+ EmitPreBarrier(masm, addr, mirType);
+ });
+#endif
+
+ pushArg(Imm32(lir->mir()->strict()));
+ pushArg(value);
+ pushArg(lir->mir()->name(), temp0);
+ pushArg(obj);
+
+ using Fn = bool (*)(JSContext*, HandleObject, HandleId, HandleValue, bool);
+ callVM<Fn, SetPropertyMegamorphic<true>>(lir);
+
+ masm.jump(&done);
+ masm.bind(&cacheHit);
+
+ masm.branchPtrInNurseryChunk(Assembler::Equal, obj, temp0, &done);
+ masm.branchValueIsNurseryCell(Assembler::NotEqual, value, temp0, &done);
+
+ saveVolatile(temp0);
+ emitPostWriteBarrier(obj);
+ restoreVolatile(temp0);
+
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitMegamorphicHasProp(LMegamorphicHasProp* lir) {
+ Register obj = ToRegister(lir->object());
+ ValueOperand idVal = ToValue(lir, LMegamorphicHasProp::IdIndex);
+ Register temp0 = ToRegister(lir->temp0());
+ Register temp1 = ToRegister(lir->temp1());
+ Register temp2 = ToRegister(lir->temp2());
+ Register output = ToRegister(lir->output());
+
+ Label bail, cacheHit;
+ masm.emitMegamorphicCacheLookupExists(idVal, obj, temp0, temp1, temp2, output,
+ &cacheHit, lir->mir()->hasOwn());
+
+ masm.branchIfNonNativeObj(obj, temp0, &bail);
+
+ // idVal will be in vp[0], result will be stored in vp[1].
+ masm.reserveStack(sizeof(Value));
+ masm.Push(idVal);
+ masm.moveStackPtrTo(temp0);
+
+ using Fn = bool (*)(JSContext* cx, JSObject* obj,
+ MegamorphicCache::Entry* cacheEntry, Value* vp);
+ masm.setupAlignedABICall();
+ masm.loadJSContext(temp1);
+ masm.passABIArg(temp1);
+ masm.passABIArg(obj);
+ masm.passABIArg(temp2);
+ masm.passABIArg(temp0);
+ if (lir->mir()->hasOwn()) {
+ masm.callWithABI<Fn, HasNativeDataPropertyPure<true>>();
+ } else {
+ masm.callWithABI<Fn, HasNativeDataPropertyPure<false>>();
+ }
+
+ MOZ_ASSERT(!idVal.aliases(temp0));
+ masm.storeCallPointerResult(temp0);
+ masm.Pop(idVal);
+
+ uint32_t framePushed = masm.framePushed();
+ Label ok;
+ masm.branchIfTrueBool(temp0, &ok);
+ masm.freeStack(sizeof(Value)); // Discard result Value.
+ masm.jump(&bail);
+
+ masm.bind(&ok);
+ masm.setFramePushed(framePushed);
+ masm.unboxBoolean(Address(masm.getStackPointer(), 0), output);
+ masm.freeStack(sizeof(Value));
+ masm.bind(&cacheHit);
+
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+void CodeGenerator::visitSmallObjectVariableKeyHasProp(
+ LSmallObjectVariableKeyHasProp* lir) {
+ Register id = ToRegister(lir->id());
+ Register output = ToRegister(lir->output());
+
+#ifdef DEBUG
+ Label isAtom;
+ masm.branchTest32(Assembler::NonZero, Address(id, JSString::offsetOfFlags()),
+ Imm32(JSString::ATOM_BIT), &isAtom);
+ masm.assumeUnreachable("Expected atom input");
+ masm.bind(&isAtom);
+#endif
+
+ SharedShape* shape = &lir->mir()->shape()->asShared();
+
+ Label done, success;
+ for (SharedShapePropertyIter<NoGC> iter(shape); !iter.done(); iter++) {
+ masm.branchPtr(Assembler::Equal, id, ImmGCPtr(iter->key().toAtom()),
+ &success);
+ }
+ masm.move32(Imm32(0), output);
+ masm.jump(&done);
+ masm.bind(&success);
+ masm.move32(Imm32(1), output);
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitGuardIsNotArrayBufferMaybeShared(
+ LGuardIsNotArrayBufferMaybeShared* guard) {
+ Register obj = ToRegister(guard->input());
+ Register temp = ToRegister(guard->temp0());
+
+ Label bail;
+ masm.loadObjClassUnsafe(obj, temp);
+ masm.branchPtr(Assembler::Equal, temp,
+ ImmPtr(&FixedLengthArrayBufferObject::class_), &bail);
+ masm.branchPtr(Assembler::Equal, temp,
+ ImmPtr(&FixedLengthSharedArrayBufferObject::class_), &bail);
+ masm.branchPtr(Assembler::Equal, temp,
+ ImmPtr(&ResizableArrayBufferObject::class_), &bail);
+ masm.branchPtr(Assembler::Equal, temp,
+ ImmPtr(&GrowableSharedArrayBufferObject::class_), &bail);
+ bailoutFrom(&bail, guard->snapshot());
+}
+
+void CodeGenerator::visitGuardIsTypedArray(LGuardIsTypedArray* guard) {
+ Register obj = ToRegister(guard->input());
+ Register temp = ToRegister(guard->temp0());
+
+ Label bail;
+ masm.loadObjClassUnsafe(obj, temp);
+ masm.branchIfClassIsNotTypedArray(temp, &bail);
+ bailoutFrom(&bail, guard->snapshot());
+}
+
+void CodeGenerator::visitGuardIsFixedLengthTypedArray(
+ LGuardIsFixedLengthTypedArray* guard) {
+ Register obj = ToRegister(guard->input());
+ Register temp = ToRegister(guard->temp0());
+
+ Label bail;
+ masm.loadObjClassUnsafe(obj, temp);
+ masm.branchIfClassIsNotFixedLengthTypedArray(temp, &bail);
+ bailoutFrom(&bail, guard->snapshot());
+}
+
+void CodeGenerator::visitGuardHasProxyHandler(LGuardHasProxyHandler* guard) {
+ Register obj = ToRegister(guard->input());
+
+ Label bail;
+
+ Address handlerAddr(obj, ProxyObject::offsetOfHandler());
+ masm.branchPtr(Assembler::NotEqual, handlerAddr,
+ ImmPtr(guard->mir()->handler()), &bail);
+
+ bailoutFrom(&bail, guard->snapshot());
+}
+
+void CodeGenerator::visitGuardObjectIdentity(LGuardObjectIdentity* guard) {
+ Register input = ToRegister(guard->input());
+ Register expected = ToRegister(guard->expected());
+
+ Assembler::Condition cond =
+ guard->mir()->bailOnEquality() ? Assembler::Equal : Assembler::NotEqual;
+ bailoutCmpPtr(cond, input, expected, guard->snapshot());
+}
+
+void CodeGenerator::visitGuardSpecificFunction(LGuardSpecificFunction* guard) {
+ Register input = ToRegister(guard->input());
+ Register expected = ToRegister(guard->expected());
+
+ bailoutCmpPtr(Assembler::NotEqual, input, expected, guard->snapshot());
+}
+
+void CodeGenerator::visitGuardSpecificAtom(LGuardSpecificAtom* guard) {
+ Register str = ToRegister(guard->str());
+ Register scratch = ToRegister(guard->temp0());
+
+ LiveRegisterSet volatileRegs = liveVolatileRegs(guard);
+ volatileRegs.takeUnchecked(scratch);
+
+ Label bail;
+ masm.guardSpecificAtom(str, guard->mir()->atom(), scratch, volatileRegs,
+ &bail);
+ bailoutFrom(&bail, guard->snapshot());
+}
+
+void CodeGenerator::visitGuardSpecificSymbol(LGuardSpecificSymbol* guard) {
+ Register symbol = ToRegister(guard->symbol());
+
+ bailoutCmpPtr(Assembler::NotEqual, symbol, ImmGCPtr(guard->mir()->expected()),
+ guard->snapshot());
+}
+
+void CodeGenerator::visitGuardSpecificInt32(LGuardSpecificInt32* guard) {
+ Register num = ToRegister(guard->num());
+
+ bailoutCmp32(Assembler::NotEqual, num, Imm32(guard->mir()->expected()),
+ guard->snapshot());
+}
+
+void CodeGenerator::visitGuardStringToIndex(LGuardStringToIndex* lir) {
+ Register str = ToRegister(lir->string());
+ Register output = ToRegister(lir->output());
+
+ Label vmCall, done;
+ masm.loadStringIndexValue(str, output, &vmCall);
+ masm.jump(&done);
+
+ {
+ masm.bind(&vmCall);
+
+ LiveRegisterSet volatileRegs = liveVolatileRegs(lir);
+ volatileRegs.takeUnchecked(output);
+ masm.PushRegsInMask(volatileRegs);
+
+ using Fn = int32_t (*)(JSString* str);
+ masm.setupAlignedABICall();
+ masm.passABIArg(str);
+ masm.callWithABI<Fn, GetIndexFromString>();
+ masm.storeCallInt32Result(output);
+
+ masm.PopRegsInMask(volatileRegs);
+
+ // GetIndexFromString returns a negative value on failure.
+ bailoutTest32(Assembler::Signed, output, output, lir->snapshot());
+ }
+
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitGuardStringToInt32(LGuardStringToInt32* lir) {
+ Register str = ToRegister(lir->string());
+ Register output = ToRegister(lir->output());
+ Register temp = ToRegister(lir->temp0());
+
+ LiveRegisterSet volatileRegs = liveVolatileRegs(lir);
+
+ Label bail;
+ masm.guardStringToInt32(str, output, temp, volatileRegs, &bail);
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+void CodeGenerator::visitGuardStringToDouble(LGuardStringToDouble* lir) {
+ Register str = ToRegister(lir->string());
+ FloatRegister output = ToFloatRegister(lir->output());
+ Register temp0 = ToRegister(lir->temp0());
+ Register temp1 = ToRegister(lir->temp1());
+
+ Label vmCall, done;
+ // Use indexed value as fast path if possible.
+ masm.loadStringIndexValue(str, temp0, &vmCall);
+ masm.convertInt32ToDouble(temp0, output);
+ masm.jump(&done);
+ {
+ masm.bind(&vmCall);
+
+ // Reserve stack for holding the result value of the call.
+ masm.reserveStack(sizeof(double));
+ masm.moveStackPtrTo(temp0);
+
+ LiveRegisterSet volatileRegs = liveVolatileRegs(lir);
+ volatileRegs.takeUnchecked(temp0);
+ volatileRegs.takeUnchecked(temp1);
+ masm.PushRegsInMask(volatileRegs);
+
+ using Fn = bool (*)(JSContext* cx, JSString* str, double* result);
+ masm.setupAlignedABICall();
+ masm.loadJSContext(temp1);
+ masm.passABIArg(temp1);
+ masm.passABIArg(str);
+ masm.passABIArg(temp0);
+ masm.callWithABI<Fn, StringToNumberPure>();
+ masm.storeCallPointerResult(temp0);
+
+ masm.PopRegsInMask(volatileRegs);
+
+ Label ok;
+ masm.branchIfTrueBool(temp0, &ok);
+ {
+ // OOM path, recovered by StringToNumberPure.
+ //
+ // Use addToStackPtr instead of freeStack as freeStack tracks stack height
+ // flow-insensitively, and using it here would confuse the stack height
+ // tracking.
+ masm.addToStackPtr(Imm32(sizeof(double)));
+ bailout(lir->snapshot());
+ }
+ masm.bind(&ok);
+ masm.Pop(output);
+ }
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitGuardNoDenseElements(LGuardNoDenseElements* guard) {
+ Register obj = ToRegister(guard->input());
+ Register temp = ToRegister(guard->temp0());
+
+ // Load obj->elements.
+ masm.loadPtr(Address(obj, NativeObject::offsetOfElements()), temp);
+
+ // Make sure there are no dense elements.
+ Address initLength(temp, ObjectElements::offsetOfInitializedLength());
+ bailoutCmp32(Assembler::NotEqual, initLength, Imm32(0), guard->snapshot());
+}
+
+void CodeGenerator::visitBooleanToInt64(LBooleanToInt64* lir) {
+ Register input = ToRegister(lir->input());
+ Register64 output = ToOutRegister64(lir);
+
+ masm.move32To64ZeroExtend(input, output);
+}
+
+void CodeGenerator::emitStringToInt64(LInstruction* lir, Register input,
+ Register64 output) {
+ Register temp = output.scratchReg();
+
+ saveLive(lir);
+
+ masm.reserveStack(sizeof(uint64_t));
+ masm.moveStackPtrTo(temp);
+ pushArg(temp);
+ pushArg(input);
+
+ using Fn = bool (*)(JSContext*, HandleString, uint64_t*);
+ callVM<Fn, DoStringToInt64>(lir);
+
+ masm.load64(Address(masm.getStackPointer(), 0), output);
+ masm.freeStack(sizeof(uint64_t));
+
+ restoreLiveIgnore(lir, StoreValueTo(output).clobbered());
+}
+
+void CodeGenerator::visitStringToInt64(LStringToInt64* lir) {
+ Register input = ToRegister(lir->input());
+ Register64 output = ToOutRegister64(lir);
+
+ emitStringToInt64(lir, input, output);
+}
+
+void CodeGenerator::visitValueToInt64(LValueToInt64* lir) {
+ ValueOperand input = ToValue(lir, LValueToInt64::InputIndex);
+ Register temp = ToRegister(lir->temp0());
+ Register64 output = ToOutRegister64(lir);
+
+ int checks = 3;
+
+ Label fail, done;
+ // Jump to fail if this is the last check and we fail it,
+ // otherwise to the next test.
+ auto emitTestAndUnbox = [&](auto testAndUnbox) {
+ MOZ_ASSERT(checks > 0);
+
+ checks--;
+ Label notType;
+ Label* target = checks ? &notType : &fail;
+
+ testAndUnbox(target);
+
+ if (checks) {
+ masm.jump(&done);
+ masm.bind(&notType);
+ }
+ };
+
+ Register tag = masm.extractTag(input, temp);
+
+ // BigInt.
+ emitTestAndUnbox([&](Label* target) {
+ masm.branchTestBigInt(Assembler::NotEqual, tag, target);
+ masm.unboxBigInt(input, temp);
+ masm.loadBigInt64(temp, output);
+ });
+
+ // Boolean
+ emitTestAndUnbox([&](Label* target) {
+ masm.branchTestBoolean(Assembler::NotEqual, tag, target);
+ masm.unboxBoolean(input, temp);
+ masm.move32To64ZeroExtend(temp, output);
+ });
+
+ // String
+ emitTestAndUnbox([&](Label* target) {
+ masm.branchTestString(Assembler::NotEqual, tag, target);
+ masm.unboxString(input, temp);
+ emitStringToInt64(lir, temp, output);
+ });
+
+ MOZ_ASSERT(checks == 0);
+
+ bailoutFrom(&fail, lir->snapshot());
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitTruncateBigIntToInt64(LTruncateBigIntToInt64* lir) {
+ Register operand = ToRegister(lir->input());
+ Register64 output = ToOutRegister64(lir);
+
+ masm.loadBigInt64(operand, output);
+}
+
+OutOfLineCode* CodeGenerator::createBigIntOutOfLine(LInstruction* lir,
+ Scalar::Type type,
+ Register64 input,
+ Register output) {
+#if JS_BITS_PER_WORD == 32
+ using Fn = BigInt* (*)(JSContext*, uint32_t, uint32_t);
+ auto args = ArgList(input.low, input.high);
+#else
+ using Fn = BigInt* (*)(JSContext*, uint64_t);
+ auto args = ArgList(input);
+#endif
+
+ if (type == Scalar::BigInt64) {
+ return oolCallVM<Fn, jit::CreateBigIntFromInt64>(lir, args,
+ StoreRegisterTo(output));
+ }
+ MOZ_ASSERT(type == Scalar::BigUint64);
+ return oolCallVM<Fn, jit::CreateBigIntFromUint64>(lir, args,
+ StoreRegisterTo(output));
+}
+
+void CodeGenerator::emitCreateBigInt(LInstruction* lir, Scalar::Type type,
+ Register64 input, Register output,
+ Register maybeTemp) {
+ OutOfLineCode* ool = createBigIntOutOfLine(lir, type, input, output);
+
+ if (maybeTemp != InvalidReg) {
+ masm.newGCBigInt(output, maybeTemp, initialBigIntHeap(), ool->entry());
+ } else {
+ AllocatableGeneralRegisterSet regs(GeneralRegisterSet::All());
+ regs.take(input);
+ regs.take(output);
+
+ Register temp = regs.takeAny();
+
+ masm.push(temp);
+
+ Label fail, ok;
+ masm.newGCBigInt(output, temp, initialBigIntHeap(), &fail);
+ masm.pop(temp);
+ masm.jump(&ok);
+ masm.bind(&fail);
+ masm.pop(temp);
+ masm.jump(ool->entry());
+ masm.bind(&ok);
+ }
+ masm.initializeBigInt64(type, output, input);
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitInt64ToBigInt(LInt64ToBigInt* lir) {
+ Register64 input = ToRegister64(lir->input());
+ Register temp = ToRegister(lir->temp0());
+ Register output = ToRegister(lir->output());
+
+ emitCreateBigInt(lir, Scalar::BigInt64, input, output, temp);
+}
+
+void CodeGenerator::visitGuardValue(LGuardValue* lir) {
+ ValueOperand input = ToValue(lir, LGuardValue::InputIndex);
+ Value expected = lir->mir()->expected();
+ Label bail;
+ masm.branchTestValue(Assembler::NotEqual, input, expected, &bail);
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+void CodeGenerator::visitGuardNullOrUndefined(LGuardNullOrUndefined* lir) {
+ ValueOperand input = ToValue(lir, LGuardNullOrUndefined::InputIndex);
+
+ ScratchTagScope tag(masm, input);
+ masm.splitTagForTest(input, tag);
+
+ Label done;
+ masm.branchTestNull(Assembler::Equal, tag, &done);
+
+ Label bail;
+ masm.branchTestUndefined(Assembler::NotEqual, tag, &bail);
+ bailoutFrom(&bail, lir->snapshot());
+
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitGuardIsNotObject(LGuardIsNotObject* lir) {
+ ValueOperand input = ToValue(lir, LGuardIsNotObject::InputIndex);
+
+ Label bail;
+ masm.branchTestObject(Assembler::Equal, input, &bail);
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+void CodeGenerator::visitGuardFunctionFlags(LGuardFunctionFlags* lir) {
+ Register function = ToRegister(lir->function());
+
+ Label bail;
+ if (uint16_t flags = lir->mir()->expectedFlags()) {
+ masm.branchTestFunctionFlags(function, flags, Assembler::Zero, &bail);
+ }
+ if (uint16_t flags = lir->mir()->unexpectedFlags()) {
+ masm.branchTestFunctionFlags(function, flags, Assembler::NonZero, &bail);
+ }
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+void CodeGenerator::visitGuardFunctionIsNonBuiltinCtor(
+ LGuardFunctionIsNonBuiltinCtor* lir) {
+ Register function = ToRegister(lir->function());
+ Register temp = ToRegister(lir->temp0());
+
+ Label bail;
+ masm.branchIfNotFunctionIsNonBuiltinCtor(function, temp, &bail);
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+void CodeGenerator::visitGuardFunctionKind(LGuardFunctionKind* lir) {
+ Register function = ToRegister(lir->function());
+ Register temp = ToRegister(lir->temp0());
+
+ Assembler::Condition cond =
+ lir->mir()->bailOnEquality() ? Assembler::Equal : Assembler::NotEqual;
+
+ Label bail;
+ masm.branchFunctionKind(cond, lir->mir()->expected(), function, temp, &bail);
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+void CodeGenerator::visitGuardFunctionScript(LGuardFunctionScript* lir) {
+ Register function = ToRegister(lir->function());
+
+ Address scriptAddr(function, JSFunction::offsetOfJitInfoOrScript());
+ bailoutCmpPtr(Assembler::NotEqual, scriptAddr,
+ ImmGCPtr(lir->mir()->expected()), lir->snapshot());
+}
+
+// Out-of-line path to update the store buffer.
+class OutOfLineCallPostWriteBarrier : public OutOfLineCodeBase<CodeGenerator> {
+ LInstruction* lir_;
+ const LAllocation* object_;
+
+ public:
+ OutOfLineCallPostWriteBarrier(LInstruction* lir, const LAllocation* object)
+ : lir_(lir), object_(object) {}
+
+ void accept(CodeGenerator* codegen) override {
+ codegen->visitOutOfLineCallPostWriteBarrier(this);
+ }
+
+ LInstruction* lir() const { return lir_; }
+ const LAllocation* object() const { return object_; }
+};
+
+static void EmitStoreBufferCheckForConstant(MacroAssembler& masm,
+ const gc::TenuredCell* cell,
+ AllocatableGeneralRegisterSet& regs,
+ Label* exit, Label* callVM) {
+ Register temp = regs.takeAny();
+
+ gc::Arena* arena = cell->arena();
+
+ Register cells = temp;
+ masm.loadPtr(AbsoluteAddress(&arena->bufferedCells()), cells);
+
+ size_t index = gc::ArenaCellSet::getCellIndex(cell);
+ size_t word;
+ uint32_t mask;
+ gc::ArenaCellSet::getWordIndexAndMask(index, &word, &mask);
+ size_t offset = gc::ArenaCellSet::offsetOfBits() + word * sizeof(uint32_t);
+
+ masm.branchTest32(Assembler::NonZero, Address(cells, offset), Imm32(mask),
+ exit);
+
+ // Check whether this is the sentinel set and if so call the VM to allocate
+ // one for this arena.
+ masm.branchPtr(Assembler::Equal,
+ Address(cells, gc::ArenaCellSet::offsetOfArena()),
+ ImmPtr(nullptr), callVM);
+
+ // Add the cell to the set.
+ masm.or32(Imm32(mask), Address(cells, offset));
+ masm.jump(exit);
+
+ regs.add(temp);
+}
+
+static void EmitPostWriteBarrier(MacroAssembler& masm, CompileRuntime* runtime,
+ Register objreg, JSObject* maybeConstant,
+ bool isGlobal,
+ AllocatableGeneralRegisterSet& regs) {
+ MOZ_ASSERT_IF(isGlobal, maybeConstant);
+
+ Label callVM;
+ Label exit;
+
+ Register temp = regs.takeAny();
+
+ // We already have a fast path to check whether a global is in the store
+ // buffer.
+ if (!isGlobal) {
+ if (maybeConstant) {
+ // Check store buffer bitmap directly for known object.
+ EmitStoreBufferCheckForConstant(masm, &maybeConstant->asTenured(), regs,
+ &exit, &callVM);
+ } else {
+ // Check one element cache to avoid VM call.
+ masm.branchPtr(Assembler::Equal,
+ AbsoluteAddress(runtime->addressOfLastBufferedWholeCell()),
+ objreg, &exit);
+ }
+ }
+
+ // Call into the VM to barrier the write.
+ masm.bind(&callVM);
+
+ Register runtimereg = temp;
+ masm.mov(ImmPtr(runtime), runtimereg);
+
+ masm.setupAlignedABICall();
+ masm.passABIArg(runtimereg);
+ masm.passABIArg(objreg);
+ if (isGlobal) {
+ using Fn = void (*)(JSRuntime* rt, GlobalObject* obj);
+ masm.callWithABI<Fn, PostGlobalWriteBarrier>();
+ } else {
+ using Fn = void (*)(JSRuntime* rt, js::gc::Cell* obj);
+ masm.callWithABI<Fn, PostWriteBarrier>();
+ }
+
+ masm.bind(&exit);
+}
+
+void CodeGenerator::emitPostWriteBarrier(const LAllocation* obj) {
+ AllocatableGeneralRegisterSet regs(GeneralRegisterSet::Volatile());
+
+ Register objreg;
+ JSObject* object = nullptr;
+ bool isGlobal = false;
+ if (obj->isConstant()) {
+ object = &obj->toConstant()->toObject();
+ isGlobal = isGlobalObject(object);
+ objreg = regs.takeAny();
+ masm.movePtr(ImmGCPtr(object), objreg);
+ } else {
+ objreg = ToRegister(obj);
+ regs.takeUnchecked(objreg);
+ }
+
+ EmitPostWriteBarrier(masm, gen->runtime, objreg, object, isGlobal, regs);
+}
+
+// Returns true if `def` might be allocated in the nursery.
+static bool ValueNeedsPostBarrier(MDefinition* def) {
+ if (def->isBox()) {
+ def = def->toBox()->input();
+ }
+ if (def->type() == MIRType::Value) {
+ return true;
+ }
+ return NeedsPostBarrier(def->type());
+}
+
+class OutOfLineElementPostWriteBarrier
+ : public OutOfLineCodeBase<CodeGenerator> {
+ LiveRegisterSet liveVolatileRegs_;
+ const LAllocation* index_;
+ int32_t indexDiff_;
+ Register obj_;
+ Register scratch_;
+
+ public:
+ OutOfLineElementPostWriteBarrier(const LiveRegisterSet& liveVolatileRegs,
+ Register obj, const LAllocation* index,
+ Register scratch, int32_t indexDiff)
+ : liveVolatileRegs_(liveVolatileRegs),
+ index_(index),
+ indexDiff_(indexDiff),
+ obj_(obj),
+ scratch_(scratch) {}
+
+ void accept(CodeGenerator* codegen) override {
+ codegen->visitOutOfLineElementPostWriteBarrier(this);
+ }
+
+ const LiveRegisterSet& liveVolatileRegs() const { return liveVolatileRegs_; }
+ const LAllocation* index() const { return index_; }
+ int32_t indexDiff() const { return indexDiff_; }
+
+ Register object() const { return obj_; }
+ Register scratch() const { return scratch_; }
+};
+
+void CodeGenerator::emitElementPostWriteBarrier(
+ MInstruction* mir, const LiveRegisterSet& liveVolatileRegs, Register obj,
+ const LAllocation* index, Register scratch, const ConstantOrRegister& val,
+ int32_t indexDiff) {
+ if (val.constant()) {
+ MOZ_ASSERT_IF(val.value().isGCThing(),
+ !IsInsideNursery(val.value().toGCThing()));
+ return;
+ }
+
+ TypedOrValueRegister reg = val.reg();
+ if (reg.hasTyped() && !NeedsPostBarrier(reg.type())) {
+ return;
+ }
+
+ auto* ool = new (alloc()) OutOfLineElementPostWriteBarrier(
+ liveVolatileRegs, obj, index, scratch, indexDiff);
+ addOutOfLineCode(ool, mir);
+
+ masm.branchPtrInNurseryChunk(Assembler::Equal, obj, scratch, ool->rejoin());
+
+ if (reg.hasValue()) {
+ masm.branchValueIsNurseryCell(Assembler::Equal, reg.valueReg(), scratch,
+ ool->entry());
+ } else {
+ masm.branchPtrInNurseryChunk(Assembler::Equal, reg.typedReg().gpr(),
+ scratch, ool->entry());
+ }
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitOutOfLineElementPostWriteBarrier(
+ OutOfLineElementPostWriteBarrier* ool) {
+ Register obj = ool->object();
+ Register scratch = ool->scratch();
+ const LAllocation* index = ool->index();
+ int32_t indexDiff = ool->indexDiff();
+
+ masm.PushRegsInMask(ool->liveVolatileRegs());
+
+ AllocatableGeneralRegisterSet regs(GeneralRegisterSet::Volatile());
+ regs.takeUnchecked(obj);
+ regs.takeUnchecked(scratch);
+
+ Register indexReg;
+ if (index->isConstant()) {
+ indexReg = regs.takeAny();
+ masm.move32(Imm32(ToInt32(index) + indexDiff), indexReg);
+ } else {
+ indexReg = ToRegister(index);
+ regs.takeUnchecked(indexReg);
+ if (indexDiff != 0) {
+ masm.add32(Imm32(indexDiff), indexReg);
+ }
+ }
+
+ masm.setupUnalignedABICall(scratch);
+ masm.movePtr(ImmPtr(gen->runtime), scratch);
+ masm.passABIArg(scratch);
+ masm.passABIArg(obj);
+ masm.passABIArg(indexReg);
+ using Fn = void (*)(JSRuntime* rt, JSObject* obj, int32_t index);
+ masm.callWithABI<Fn, PostWriteElementBarrier>();
+
+ // We don't need a sub32 here because indexReg must be in liveVolatileRegs
+ // if indexDiff is not zero, so it will be restored below.
+ MOZ_ASSERT_IF(indexDiff != 0, ool->liveVolatileRegs().has(indexReg));
+
+ masm.PopRegsInMask(ool->liveVolatileRegs());
+
+ masm.jump(ool->rejoin());
+}
+
+void CodeGenerator::emitPostWriteBarrier(Register objreg) {
+ AllocatableGeneralRegisterSet regs(GeneralRegisterSet::Volatile());
+ regs.takeUnchecked(objreg);
+ EmitPostWriteBarrier(masm, gen->runtime, objreg, nullptr, false, regs);
+}
+
+void CodeGenerator::visitOutOfLineCallPostWriteBarrier(
+ OutOfLineCallPostWriteBarrier* ool) {
+ saveLiveVolatile(ool->lir());
+ const LAllocation* obj = ool->object();
+ emitPostWriteBarrier(obj);
+ restoreLiveVolatile(ool->lir());
+
+ masm.jump(ool->rejoin());
+}
+
+void CodeGenerator::maybeEmitGlobalBarrierCheck(const LAllocation* maybeGlobal,
+ OutOfLineCode* ool) {
+ // Check whether an object is a global that we have already barriered before
+ // calling into the VM.
+ //
+ // We only check for the script's global, not other globals within the same
+ // compartment, because we bake in a pointer to realm->globalWriteBarriered
+ // and doing that would be invalid for other realms because they could be
+ // collected before the Ion code is discarded.
+
+ if (!maybeGlobal->isConstant()) {
+ return;
+ }
+
+ JSObject* obj = &maybeGlobal->toConstant()->toObject();
+ if (gen->realm->maybeGlobal() != obj) {
+ return;
+ }
+
+ const uint32_t* addr = gen->realm->addressOfGlobalWriteBarriered();
+ masm.branch32(Assembler::NotEqual, AbsoluteAddress(addr), Imm32(0),
+ ool->rejoin());
+}
+
+template <class LPostBarrierType, MIRType nurseryType>
+void CodeGenerator::visitPostWriteBarrierCommon(LPostBarrierType* lir,
+ OutOfLineCode* ool) {
+ static_assert(NeedsPostBarrier(nurseryType));
+
+ addOutOfLineCode(ool, lir->mir());
+
+ Register temp = ToTempRegisterOrInvalid(lir->temp0());
+
+ if (lir->object()->isConstant()) {
+ // Constant nursery objects cannot appear here, see
+ // LIRGenerator::visitPostWriteElementBarrier.
+ MOZ_ASSERT(!IsInsideNursery(&lir->object()->toConstant()->toObject()));
+ } else {
+ masm.branchPtrInNurseryChunk(Assembler::Equal, ToRegister(lir->object()),
+ temp, ool->rejoin());
+ }
+
+ maybeEmitGlobalBarrierCheck(lir->object(), ool);
+
+ Register value = ToRegister(lir->value());
+ if constexpr (nurseryType == MIRType::Object) {
+ MOZ_ASSERT(lir->mir()->value()->type() == MIRType::Object);
+ } else if constexpr (nurseryType == MIRType::String) {
+ MOZ_ASSERT(lir->mir()->value()->type() == MIRType::String);
+ } else {
+ static_assert(nurseryType == MIRType::BigInt);
+ MOZ_ASSERT(lir->mir()->value()->type() == MIRType::BigInt);
+ }
+ masm.branchPtrInNurseryChunk(Assembler::Equal, value, temp, ool->entry());
+
+ masm.bind(ool->rejoin());
+}
+
+template <class LPostBarrierType>
+void CodeGenerator::visitPostWriteBarrierCommonV(LPostBarrierType* lir,
+ OutOfLineCode* ool) {
+ addOutOfLineCode(ool, lir->mir());
+
+ Register temp = ToTempRegisterOrInvalid(lir->temp0());
+
+ if (lir->object()->isConstant()) {
+ // Constant nursery objects cannot appear here, see
+ // LIRGenerator::visitPostWriteElementBarrier.
+ MOZ_ASSERT(!IsInsideNursery(&lir->object()->toConstant()->toObject()));
+ } else {
+ masm.branchPtrInNurseryChunk(Assembler::Equal, ToRegister(lir->object()),
+ temp, ool->rejoin());
+ }
+
+ maybeEmitGlobalBarrierCheck(lir->object(), ool);
+
+ ValueOperand value = ToValue(lir, LPostBarrierType::ValueIndex);
+ masm.branchValueIsNurseryCell(Assembler::Equal, value, temp, ool->entry());
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitPostWriteBarrierO(LPostWriteBarrierO* lir) {
+ auto ool = new (alloc()) OutOfLineCallPostWriteBarrier(lir, lir->object());
+ visitPostWriteBarrierCommon<LPostWriteBarrierO, MIRType::Object>(lir, ool);
+}
+
+void CodeGenerator::visitPostWriteBarrierS(LPostWriteBarrierS* lir) {
+ auto ool = new (alloc()) OutOfLineCallPostWriteBarrier(lir, lir->object());
+ visitPostWriteBarrierCommon<LPostWriteBarrierS, MIRType::String>(lir, ool);
+}
+
+void CodeGenerator::visitPostWriteBarrierBI(LPostWriteBarrierBI* lir) {
+ auto ool = new (alloc()) OutOfLineCallPostWriteBarrier(lir, lir->object());
+ visitPostWriteBarrierCommon<LPostWriteBarrierBI, MIRType::BigInt>(lir, ool);
+}
+
+void CodeGenerator::visitPostWriteBarrierV(LPostWriteBarrierV* lir) {
+ auto ool = new (alloc()) OutOfLineCallPostWriteBarrier(lir, lir->object());
+ visitPostWriteBarrierCommonV(lir, ool);
+}
+
+// Out-of-line path to update the store buffer.
+class OutOfLineCallPostWriteElementBarrier
+ : public OutOfLineCodeBase<CodeGenerator> {
+ LInstruction* lir_;
+ const LAllocation* object_;
+ const LAllocation* index_;
+
+ public:
+ OutOfLineCallPostWriteElementBarrier(LInstruction* lir,
+ const LAllocation* object,
+ const LAllocation* index)
+ : lir_(lir), object_(object), index_(index) {}
+
+ void accept(CodeGenerator* codegen) override {
+ codegen->visitOutOfLineCallPostWriteElementBarrier(this);
+ }
+
+ LInstruction* lir() const { return lir_; }
+
+ const LAllocation* object() const { return object_; }
+
+ const LAllocation* index() const { return index_; }
+};
+
+void CodeGenerator::visitOutOfLineCallPostWriteElementBarrier(
+ OutOfLineCallPostWriteElementBarrier* ool) {
+ saveLiveVolatile(ool->lir());
+
+ const LAllocation* obj = ool->object();
+ const LAllocation* index = ool->index();
+
+ Register objreg = obj->isConstant() ? InvalidReg : ToRegister(obj);
+ Register indexreg = ToRegister(index);
+
+ AllocatableGeneralRegisterSet regs(GeneralRegisterSet::Volatile());
+ regs.takeUnchecked(indexreg);
+
+ if (obj->isConstant()) {
+ objreg = regs.takeAny();
+ masm.movePtr(ImmGCPtr(&obj->toConstant()->toObject()), objreg);
+ } else {
+ regs.takeUnchecked(objreg);
+ }
+
+ Register runtimereg = regs.takeAny();
+ using Fn = void (*)(JSRuntime* rt, JSObject* obj, int32_t index);
+ masm.setupAlignedABICall();
+ masm.mov(ImmPtr(gen->runtime), runtimereg);
+ masm.passABIArg(runtimereg);
+ masm.passABIArg(objreg);
+ masm.passABIArg(indexreg);
+ masm.callWithABI<Fn, PostWriteElementBarrier>();
+
+ restoreLiveVolatile(ool->lir());
+
+ masm.jump(ool->rejoin());
+}
+
+void CodeGenerator::visitPostWriteElementBarrierO(
+ LPostWriteElementBarrierO* lir) {
+ auto ool = new (alloc())
+ OutOfLineCallPostWriteElementBarrier(lir, lir->object(), lir->index());
+ visitPostWriteBarrierCommon<LPostWriteElementBarrierO, MIRType::Object>(lir,
+ ool);
+}
+
+void CodeGenerator::visitPostWriteElementBarrierS(
+ LPostWriteElementBarrierS* lir) {
+ auto ool = new (alloc())
+ OutOfLineCallPostWriteElementBarrier(lir, lir->object(), lir->index());
+ visitPostWriteBarrierCommon<LPostWriteElementBarrierS, MIRType::String>(lir,
+ ool);
+}
+
+void CodeGenerator::visitPostWriteElementBarrierBI(
+ LPostWriteElementBarrierBI* lir) {
+ auto ool = new (alloc())
+ OutOfLineCallPostWriteElementBarrier(lir, lir->object(), lir->index());
+ visitPostWriteBarrierCommon<LPostWriteElementBarrierBI, MIRType::BigInt>(lir,
+ ool);
+}
+
+void CodeGenerator::visitPostWriteElementBarrierV(
+ LPostWriteElementBarrierV* lir) {
+ auto ool = new (alloc())
+ OutOfLineCallPostWriteElementBarrier(lir, lir->object(), lir->index());
+ visitPostWriteBarrierCommonV(lir, ool);
+}
+
+void CodeGenerator::visitAssertCanElidePostWriteBarrier(
+ LAssertCanElidePostWriteBarrier* lir) {
+ Register object = ToRegister(lir->object());
+ ValueOperand value =
+ ToValue(lir, LAssertCanElidePostWriteBarrier::ValueIndex);
+ Register temp = ToRegister(lir->temp0());
+
+ Label ok;
+ masm.branchPtrInNurseryChunk(Assembler::Equal, object, temp, &ok);
+ masm.branchValueIsNurseryCell(Assembler::NotEqual, value, temp, &ok);
+
+ masm.assumeUnreachable("Unexpected missing post write barrier");
+
+ masm.bind(&ok);
+}
+
+template <typename LCallIns>
+void CodeGenerator::emitCallNative(LCallIns* call, JSNative native) {
+ MCallBase* mir = call->mir();
+
+ uint32_t unusedStack = UnusedStackBytesForCall(mir->paddedNumStackArgs());
+
+ // Registers used for callWithABI() argument-passing.
+ const Register argContextReg = ToRegister(call->getArgContextReg());
+ const Register argUintNReg = ToRegister(call->getArgUintNReg());
+ const Register argVpReg = ToRegister(call->getArgVpReg());
+
+ // Misc. temporary registers.
+ const Register tempReg = ToRegister(call->getTempReg());
+
+ DebugOnly<uint32_t> initialStack = masm.framePushed();
+
+ masm.checkStackAlignment();
+
+ // Native functions have the signature:
+ // bool (*)(JSContext*, unsigned, Value* vp)
+ // Where vp[0] is space for an outparam, vp[1] is |this|, and vp[2] onward
+ // are the function arguments.
+
+ // Allocate space for the outparam, moving the StackPointer to what will be
+ // &vp[1].
+ masm.adjustStack(unusedStack);
+
+ // Push a Value containing the callee object: natives are allowed to access
+ // their callee before setting the return value. The StackPointer is moved
+ // to &vp[0].
+ if constexpr (std::is_same_v<LCallIns, LCallClassHook>) {
+ Register calleeReg = ToRegister(call->getCallee());
+ masm.Push(TypedOrValueRegister(MIRType::Object, AnyRegister(calleeReg)));
+
+ if (call->mir()->maybeCrossRealm()) {
+ masm.switchToObjectRealm(calleeReg, tempReg);
+ }
+ } else {
+ WrappedFunction* target = call->getSingleTarget();
+ masm.Push(ObjectValue(*target->rawNativeJSFunction()));
+
+ if (call->mir()->maybeCrossRealm()) {
+ masm.movePtr(ImmGCPtr(target->rawNativeJSFunction()), tempReg);
+ masm.switchToObjectRealm(tempReg, tempReg);
+ }
+ }
+
+ // Preload arguments into registers.
+ masm.loadJSContext(argContextReg);
+ masm.move32(Imm32(call->mir()->numActualArgs()), argUintNReg);
+ masm.moveStackPtrTo(argVpReg);
+
+ masm.Push(argUintNReg);
+
+ // Construct native exit frame.
+ uint32_t safepointOffset = masm.buildFakeExitFrame(tempReg);
+ masm.enterFakeExitFrameForNative(argContextReg, tempReg,
+ call->mir()->isConstructing());
+
+ markSafepointAt(safepointOffset, call);
+
+ // Construct and execute call.
+ masm.setupAlignedABICall();
+ masm.passABIArg(argContextReg);
+ masm.passABIArg(argUintNReg);
+ masm.passABIArg(argVpReg);
+
+ ensureOsiSpace();
+ // If we're using a simulator build, `native` will already point to the
+ // simulator's call-redirection code for LCallClassHook. Load the address in
+ // a register first so that we don't try to redirect it a second time.
+ bool emittedCall = false;
+#ifdef JS_SIMULATOR
+ if constexpr (std::is_same_v<LCallIns, LCallClassHook>) {
+ masm.movePtr(ImmPtr(native), tempReg);
+ masm.callWithABI(tempReg);
+ emittedCall = true;
+ }
+#endif
+ if (!emittedCall) {
+ masm.callWithABI(DynamicFunction<JSNative>(native), ABIType::General,
+ CheckUnsafeCallWithABI::DontCheckHasExitFrame);
+ }
+
+ // Test for failure.
+ masm.branchIfFalseBool(ReturnReg, masm.failureLabel());
+
+ if (call->mir()->maybeCrossRealm()) {
+ masm.switchToRealm(gen->realm->realmPtr(), ReturnReg);
+ }
+
+ // Load the outparam vp[0] into output register(s).
+ masm.loadValue(
+ Address(masm.getStackPointer(), NativeExitFrameLayout::offsetOfResult()),
+ JSReturnOperand);
+
+ // Until C++ code is instrumented against Spectre, prevent speculative
+ // execution from returning any private data.
+ if (JitOptions.spectreJitToCxxCalls && !call->mir()->ignoresReturnValue() &&
+ mir->hasLiveDefUses()) {
+ masm.speculationBarrier();
+ }
+
+ // The next instruction is removing the footer of the exit frame, so there
+ // is no need for leaveFakeExitFrame.
+
+ // Move the StackPointer back to its original location, unwinding the native
+ // exit frame.
+ masm.adjustStack(NativeExitFrameLayout::Size() - unusedStack);
+ MOZ_ASSERT(masm.framePushed() == initialStack);
+}
+
+void CodeGenerator::visitCallNative(LCallNative* call) {
+ WrappedFunction* target = call->getSingleTarget();
+ MOZ_ASSERT(target);
+ MOZ_ASSERT(target->isNativeWithoutJitEntry());
+
+ JSNative native = target->native();
+ if (call->ignoresReturnValue() && target->hasJitInfo()) {
+ const JSJitInfo* jitInfo = target->jitInfo();
+ if (jitInfo->type() == JSJitInfo::IgnoresReturnValueNative) {
+ native = jitInfo->ignoresReturnValueMethod;
+ }
+ }
+ emitCallNative(call, native);
+}
+
+void CodeGenerator::visitCallClassHook(LCallClassHook* call) {
+ emitCallNative(call, call->mir()->target());
+}
+
+static void LoadDOMPrivate(MacroAssembler& masm, Register obj, Register priv,
+ DOMObjectKind kind) {
+ // Load the value in DOM_OBJECT_SLOT for a native or proxy DOM object. This
+ // will be in the first slot but may be fixed or non-fixed.
+ MOZ_ASSERT(obj != priv);
+
+ switch (kind) {
+ case DOMObjectKind::Native:
+ // If it's a native object, the value must be in a fixed slot.
+ // See CanAttachDOMCall in CacheIR.cpp.
+ masm.debugAssertObjHasFixedSlots(obj, priv);
+ masm.loadPrivate(Address(obj, NativeObject::getFixedSlotOffset(0)), priv);
+ break;
+ case DOMObjectKind::Proxy: {
+#ifdef DEBUG
+ // Sanity check: it must be a DOM proxy.
+ Label isDOMProxy;
+ masm.branchTestProxyHandlerFamily(
+ Assembler::Equal, obj, priv, GetDOMProxyHandlerFamily(), &isDOMProxy);
+ masm.assumeUnreachable("Expected a DOM proxy");
+ masm.bind(&isDOMProxy);
+#endif
+ masm.loadPtr(Address(obj, ProxyObject::offsetOfReservedSlots()), priv);
+ masm.loadPrivate(
+ Address(priv, js::detail::ProxyReservedSlots::offsetOfSlot(0)), priv);
+ break;
+ }
+ }
+}
+
+void CodeGenerator::visitCallDOMNative(LCallDOMNative* call) {
+ WrappedFunction* target = call->getSingleTarget();
+ MOZ_ASSERT(target);
+ MOZ_ASSERT(target->isNativeWithoutJitEntry());
+ MOZ_ASSERT(target->hasJitInfo());
+ MOZ_ASSERT(call->mir()->isCallDOMNative());
+
+ int unusedStack = UnusedStackBytesForCall(call->mir()->paddedNumStackArgs());
+
+ // Registers used for callWithABI() argument-passing.
+ const Register argJSContext = ToRegister(call->getArgJSContext());
+ const Register argObj = ToRegister(call->getArgObj());
+ const Register argPrivate = ToRegister(call->getArgPrivate());
+ const Register argArgs = ToRegister(call->getArgArgs());
+
+ DebugOnly<uint32_t> initialStack = masm.framePushed();
+
+ masm.checkStackAlignment();
+
+ // DOM methods have the signature:
+ // bool (*)(JSContext*, HandleObject, void* private, const
+ // JSJitMethodCallArgs& args)
+ // Where args is initialized from an argc and a vp, vp[0] is space for an
+ // outparam and the callee, vp[1] is |this|, and vp[2] onward are the
+ // function arguments. Note that args stores the argv, not the vp, and
+ // argv == vp + 2.
+
+ // Nestle the stack up against the pushed arguments, leaving StackPointer at
+ // &vp[1]
+ masm.adjustStack(unusedStack);
+ // argObj is filled with the extracted object, then returned.
+ Register obj = masm.extractObject(Address(masm.getStackPointer(), 0), argObj);
+ MOZ_ASSERT(obj == argObj);
+
+ // Push a Value containing the callee object: natives are allowed to access
+ // their callee before setting the return value. After this the StackPointer
+ // points to &vp[0].
+ masm.Push(ObjectValue(*target->rawNativeJSFunction()));
+
+ // Now compute the argv value. Since StackPointer is pointing to &vp[0] and
+ // argv is &vp[2] we just need to add 2*sizeof(Value) to the current
+ // StackPointer.
+ static_assert(JSJitMethodCallArgsTraits::offsetOfArgv == 0);
+ static_assert(JSJitMethodCallArgsTraits::offsetOfArgc ==
+ IonDOMMethodExitFrameLayoutTraits::offsetOfArgcFromArgv);
+ masm.computeEffectiveAddress(
+ Address(masm.getStackPointer(), 2 * sizeof(Value)), argArgs);
+
+ LoadDOMPrivate(masm, obj, argPrivate,
+ static_cast<MCallDOMNative*>(call->mir())->objectKind());
+
+ // Push argc from the call instruction into what will become the IonExitFrame
+ masm.Push(Imm32(call->numActualArgs()));
+
+ // Push our argv onto the stack
+ masm.Push(argArgs);
+ // And store our JSJitMethodCallArgs* in argArgs.
+ masm.moveStackPtrTo(argArgs);
+
+ // Push |this| object for passing HandleObject. We push after argc to
+ // maintain the same sp-relative location of the object pointer with other
+ // DOMExitFrames.
+ masm.Push(argObj);
+ masm.moveStackPtrTo(argObj);
+
+ if (call->mir()->maybeCrossRealm()) {
+ // We use argJSContext as scratch register here.
+ masm.movePtr(ImmGCPtr(target->rawNativeJSFunction()), argJSContext);
+ masm.switchToObjectRealm(argJSContext, argJSContext);
+ }
+
+ // Construct native exit frame.
+ uint32_t safepointOffset = masm.buildFakeExitFrame(argJSContext);
+ masm.loadJSContext(argJSContext);
+ masm.enterFakeExitFrame(argJSContext, argJSContext,
+ ExitFrameType::IonDOMMethod);
+
+ markSafepointAt(safepointOffset, call);
+
+ // Construct and execute call.
+ masm.setupAlignedABICall();
+ masm.loadJSContext(argJSContext);
+ masm.passABIArg(argJSContext);
+ masm.passABIArg(argObj);
+ masm.passABIArg(argPrivate);
+ masm.passABIArg(argArgs);
+ ensureOsiSpace();
+ masm.callWithABI(DynamicFunction<JSJitMethodOp>(target->jitInfo()->method),
+ ABIType::General,
+ CheckUnsafeCallWithABI::DontCheckHasExitFrame);
+
+ if (target->jitInfo()->isInfallible) {
+ masm.loadValue(Address(masm.getStackPointer(),
+ IonDOMMethodExitFrameLayout::offsetOfResult()),
+ JSReturnOperand);
+ } else {
+ // Test for failure.
+ masm.branchIfFalseBool(ReturnReg, masm.exceptionLabel());
+
+ // Load the outparam vp[0] into output register(s).
+ masm.loadValue(Address(masm.getStackPointer(),
+ IonDOMMethodExitFrameLayout::offsetOfResult()),
+ JSReturnOperand);
+ }
+
+ // Switch back to the current realm if needed. Note: if the DOM method threw
+ // an exception, the exception handler will do this.
+ if (call->mir()->maybeCrossRealm()) {
+ static_assert(!JSReturnOperand.aliases(ReturnReg),
+ "Clobbering ReturnReg should not affect the return value");
+ masm.switchToRealm(gen->realm->realmPtr(), ReturnReg);
+ }
+
+ // Until C++ code is instrumented against Spectre, prevent speculative
+ // execution from returning any private data.
+ if (JitOptions.spectreJitToCxxCalls && call->mir()->hasLiveDefUses()) {
+ masm.speculationBarrier();
+ }
+
+ // The next instruction is removing the footer of the exit frame, so there
+ // is no need for leaveFakeExitFrame.
+
+ // Move the StackPointer back to its original location, unwinding the native
+ // exit frame.
+ masm.adjustStack(IonDOMMethodExitFrameLayout::Size() - unusedStack);
+ MOZ_ASSERT(masm.framePushed() == initialStack);
+}
+
+void CodeGenerator::visitCallGetIntrinsicValue(LCallGetIntrinsicValue* lir) {
+ pushArg(ImmGCPtr(lir->mir()->name()));
+
+ using Fn = bool (*)(JSContext* cx, Handle<PropertyName*>, MutableHandleValue);
+ callVM<Fn, GetIntrinsicValue>(lir);
+}
+
+void CodeGenerator::emitCallInvokeFunction(
+ LInstruction* call, Register calleereg, bool constructing,
+ bool ignoresReturnValue, uint32_t argc, uint32_t unusedStack) {
+ // Nestle %esp up to the argument vector.
+ // Each path must account for framePushed_ separately, for callVM to be valid.
+ masm.freeStack(unusedStack);
+
+ pushArg(masm.getStackPointer()); // argv.
+ pushArg(Imm32(argc)); // argc.
+ pushArg(Imm32(ignoresReturnValue));
+ pushArg(Imm32(constructing)); // constructing.
+ pushArg(calleereg); // JSFunction*.
+
+ using Fn = bool (*)(JSContext*, HandleObject, bool, bool, uint32_t, Value*,
+ MutableHandleValue);
+ callVM<Fn, jit::InvokeFunction>(call);
+
+ // Un-nestle %esp from the argument vector. No prefix was pushed.
+ masm.reserveStack(unusedStack);
+}
+
+void CodeGenerator::visitCallGeneric(LCallGeneric* call) {
+ // The callee is passed straight through to the trampoline.
+ MOZ_ASSERT(ToRegister(call->getCallee()) == IonGenericCallCalleeReg);
+
+ Register argcReg = ToRegister(call->getArgc());
+ uint32_t unusedStack =
+ UnusedStackBytesForCall(call->mir()->paddedNumStackArgs());
+
+ // Known-target case is handled by LCallKnown.
+ MOZ_ASSERT(!call->hasSingleTarget());
+
+ masm.checkStackAlignment();
+
+ masm.move32(Imm32(call->numActualArgs()), argcReg);
+
+ // Nestle the StackPointer up to the argument vector.
+ masm.freeStack(unusedStack);
+ ensureOsiSpace();
+
+ auto kind = call->mir()->isConstructing() ? IonGenericCallKind::Construct
+ : IonGenericCallKind::Call;
+
+ TrampolinePtr genericCallStub =
+ gen->jitRuntime()->getIonGenericCallStub(kind);
+ uint32_t callOffset = masm.callJit(genericCallStub);
+ markSafepointAt(callOffset, call);
+
+ if (call->mir()->maybeCrossRealm()) {
+ static_assert(!JSReturnOperand.aliases(ReturnReg),
+ "ReturnReg available as scratch after scripted calls");
+ masm.switchToRealm(gen->realm->realmPtr(), ReturnReg);
+ }
+
+ // Restore stack pointer.
+ masm.setFramePushed(frameSize());
+ emitRestoreStackPointerFromFP();
+
+ // If the return value of the constructing function is Primitive,
+ // replace the return value with the Object from CreateThis.
+ if (call->mir()->isConstructing()) {
+ Label notPrimitive;
+ masm.branchTestPrimitive(Assembler::NotEqual, JSReturnOperand,
+ &notPrimitive);
+ masm.loadValue(Address(masm.getStackPointer(), unusedStack),
+ JSReturnOperand);
+#ifdef DEBUG
+ masm.branchTestPrimitive(Assembler::NotEqual, JSReturnOperand,
+ &notPrimitive);
+ masm.assumeUnreachable("CreateThis creates an object");
+#endif
+ masm.bind(&notPrimitive);
+ }
+}
+
+void JitRuntime::generateIonGenericCallArgumentsShift(
+ MacroAssembler& masm, Register argc, Register curr, Register end,
+ Register scratch, Label* done) {
+ static_assert(sizeof(Value) == 8);
+ // There are |argc| Values on the stack. Shift them all down by 8 bytes,
+ // overwriting the first value.
+
+ // Initialize `curr` to the destination of the first copy, and `end` to the
+ // final value of curr.
+ masm.moveStackPtrTo(curr);
+ masm.computeEffectiveAddress(BaseValueIndex(curr, argc), end);
+
+ Label loop;
+ masm.bind(&loop);
+ masm.branchPtr(Assembler::Equal, curr, end, done);
+ masm.loadPtr(Address(curr, 8), scratch);
+ masm.storePtr(scratch, Address(curr, 0));
+ masm.addPtr(Imm32(sizeof(uintptr_t)), curr);
+ masm.jump(&loop);
+}
+
+void JitRuntime::generateIonGenericCallStub(MacroAssembler& masm,
+ IonGenericCallKind kind) {
+ AutoCreatedBy acb(masm, "JitRuntime::generateIonGenericCallStub");
+ ionGenericCallStubOffset_[kind] = startTrampolineCode(masm);
+
+ // This code is tightly coupled with visitCallGeneric.
+ //
+ // Upon entry:
+ // IonGenericCallCalleeReg contains a pointer to the callee object.
+ // IonGenericCallArgcReg contains the number of actual args.
+ // The arguments have been pushed onto the stack:
+ // [newTarget] (iff isConstructing)
+ // [argN]
+ // ...
+ // [arg1]
+ // [arg0]
+ // [this]
+ // <return address> (if not JS_USE_LINK_REGISTER)
+ //
+ // This trampoline is responsible for entering the callee's realm,
+ // massaging the stack into the right shape, and then performing a
+ // tail call. We will return directly to the Ion code from the
+ // callee.
+ //
+ // To do a tail call, we keep the return address in a register, even
+ // on platforms that don't normally use a link register, and push it
+ // just before jumping to the callee, after we are done setting up
+ // the stack.
+ //
+ // The caller is responsible for switching back to the caller's
+ // realm and cleaning up the stack.
+
+ Register calleeReg = IonGenericCallCalleeReg;
+ Register argcReg = IonGenericCallArgcReg;
+ Register scratch = IonGenericCallScratch;
+ Register scratch2 = IonGenericCallScratch2;
+
+#ifndef JS_USE_LINK_REGISTER
+ Register returnAddrReg = IonGenericCallReturnAddrReg;
+ masm.pop(returnAddrReg);
+#endif
+
+#ifdef JS_CODEGEN_ARM
+ // The default second scratch register on arm is lr, which we need
+ // preserved for tail calls.
+ AutoNonDefaultSecondScratchRegister andssr(masm, IonGenericSecondScratchReg);
+#endif
+
+ bool isConstructing = kind == IonGenericCallKind::Construct;
+
+ Label entry, notFunction, noJitEntry, vmCall;
+ masm.bind(&entry);
+
+ // Guard that the callee is actually a function.
+ masm.branchTestObjIsFunction(Assembler::NotEqual, calleeReg, scratch,
+ calleeReg, &notFunction);
+
+ // Guard that the callee supports the [[Call]] or [[Construct]] operation.
+ // If these tests fail, we will call into the VM to throw an exception.
+ if (isConstructing) {
+ masm.branchTestFunctionFlags(calleeReg, FunctionFlags::CONSTRUCTOR,
+ Assembler::Zero, &vmCall);
+ } else {
+ masm.branchFunctionKind(Assembler::Equal, FunctionFlags::ClassConstructor,
+ calleeReg, scratch, &vmCall);
+ }
+
+ if (isConstructing) {
+ // Use the slow path if CreateThis was unable to create the |this| object.
+ Address thisAddr(masm.getStackPointer(), 0);
+ masm.branchTestNull(Assembler::Equal, thisAddr, &vmCall);
+ }
+
+ masm.switchToObjectRealm(calleeReg, scratch);
+
+ // Load jitCodeRaw for callee if it exists.
+ masm.branchIfFunctionHasNoJitEntry(calleeReg, isConstructing, &noJitEntry);
+
+ // ****************************
+ // * Functions with jit entry *
+ // ****************************
+ masm.loadJitCodeRaw(calleeReg, scratch2);
+
+ // Construct the JitFrameLayout.
+ masm.PushCalleeToken(calleeReg, isConstructing);
+ masm.PushFrameDescriptorForJitCall(FrameType::IonJS, argcReg, scratch);
+#ifndef JS_USE_LINK_REGISTER
+ masm.push(returnAddrReg);
+#endif
+
+ // Check whether we need a rectifier frame.
+ Label noRectifier;
+ masm.loadFunctionArgCount(calleeReg, scratch);
+ masm.branch32(Assembler::BelowOrEqual, scratch, argcReg, &noRectifier);
+ {
+ // Tail-call the arguments rectifier.
+ // Because all trampolines are created at the same time,
+ // we can't create a TrampolinePtr for the arguments rectifier,
+ // because it hasn't been linked yet. We can, however, directly
+ // encode its offset.
+ Label rectifier;
+ bindLabelToOffset(&rectifier, argumentsRectifierOffset_);
+
+ masm.jump(&rectifier);
+ }
+
+ // Tail call the jit entry.
+ masm.bind(&noRectifier);
+ masm.jump(scratch2);
+
+ // ********************
+ // * Native functions *
+ // ********************
+ masm.bind(&noJitEntry);
+ if (!isConstructing) {
+ generateIonGenericCallFunCall(masm, &entry, &vmCall);
+ }
+ generateIonGenericCallNativeFunction(masm, isConstructing);
+
+ // *******************
+ // * Bound functions *
+ // *******************
+ // TODO: support class hooks?
+ masm.bind(&notFunction);
+ if (!isConstructing) {
+ // TODO: support generic bound constructors?
+ generateIonGenericCallBoundFunction(masm, &entry, &vmCall);
+ }
+
+ // ********************
+ // * Fallback VM call *
+ // ********************
+ masm.bind(&vmCall);
+
+ masm.push(masm.getStackPointer()); // argv
+ masm.push(argcReg); // argc
+ masm.push(Imm32(false)); // ignores return value
+ masm.push(Imm32(isConstructing)); // constructing
+ masm.push(calleeReg); // callee
+
+ using Fn = bool (*)(JSContext*, HandleObject, bool, bool, uint32_t, Value*,
+ MutableHandleValue);
+ VMFunctionId id = VMFunctionToId<Fn, jit::InvokeFunction>::id;
+ uint32_t invokeFunctionOffset = functionWrapperOffsets_[size_t(id)];
+ Label invokeFunctionVMEntry;
+ bindLabelToOffset(&invokeFunctionVMEntry, invokeFunctionOffset);
+
+ masm.pushFrameDescriptor(FrameType::IonJS);
+#ifndef JS_USE_LINK_REGISTER
+ masm.push(returnAddrReg);
+#endif
+ masm.jump(&invokeFunctionVMEntry);
+}
+
+void JitRuntime::generateIonGenericCallNativeFunction(MacroAssembler& masm,
+ bool isConstructing) {
+ Register calleeReg = IonGenericCallCalleeReg;
+ Register argcReg = IonGenericCallArgcReg;
+ Register scratch = IonGenericCallScratch;
+ Register scratch2 = IonGenericCallScratch2;
+ Register contextReg = IonGenericCallScratch3;
+#ifndef JS_USE_LINK_REGISTER
+ Register returnAddrReg = IonGenericCallReturnAddrReg;
+#endif
+
+ // Push a value containing the callee, which will become argv[0].
+ masm.pushValue(JSVAL_TYPE_OBJECT, calleeReg);
+
+ // Load the callee address into calleeReg.
+#ifdef JS_SIMULATOR
+ masm.movePtr(ImmPtr(RedirectedCallAnyNative()), calleeReg);
+#else
+ masm.loadPrivate(Address(calleeReg, JSFunction::offsetOfNativeOrEnv()),
+ calleeReg);
+#endif
+
+ // Load argv into scratch2.
+ masm.moveStackPtrTo(scratch2);
+
+ // Push argc.
+ masm.push(argcReg);
+
+ masm.loadJSContext(contextReg);
+
+ // Construct native exit frame. Note that unlike other cases in this
+ // trampoline, this code does not use a tail call.
+ masm.pushFrameDescriptor(FrameType::IonJS);
+#ifdef JS_USE_LINK_REGISTER
+ masm.pushReturnAddress();
+#else
+ masm.push(returnAddrReg);
+#endif
+
+ masm.push(FramePointer);
+ masm.moveStackPtrTo(FramePointer);
+ masm.enterFakeExitFrameForNative(contextReg, scratch, isConstructing);
+
+ masm.setupUnalignedABICall(scratch);
+ masm.passABIArg(contextReg); // cx
+ masm.passABIArg(argcReg); // argc
+ masm.passABIArg(scratch2); // argv
+
+ masm.callWithABI(calleeReg);
+
+ // Test for failure.
+ masm.branchIfFalseBool(ReturnReg, masm.exceptionLabel());
+
+ masm.loadValue(
+ Address(masm.getStackPointer(), NativeExitFrameLayout::offsetOfResult()),
+ JSReturnOperand);
+
+ // Leave the exit frame.
+ masm.moveToStackPtr(FramePointer);
+ masm.pop(FramePointer);
+
+ // Return.
+ masm.ret();
+}
+
+void JitRuntime::generateIonGenericCallFunCall(MacroAssembler& masm,
+ Label* entry, Label* vmCall) {
+ Register calleeReg = IonGenericCallCalleeReg;
+ Register argcReg = IonGenericCallArgcReg;
+ Register scratch = IonGenericCallScratch;
+ Register scratch2 = IonGenericCallScratch2;
+ Register scratch3 = IonGenericCallScratch3;
+
+ Label notFunCall;
+ masm.branchPtr(Assembler::NotEqual,
+ Address(calleeReg, JSFunction::offsetOfNativeOrEnv()),
+ ImmPtr(js::fun_call), &notFunCall);
+
+ // In general, we can implement fun_call by replacing calleeReg with
+ // |this|, sliding all the other arguments down, and decrementing argc.
+ //
+ // *BEFORE* *AFTER*
+ // [argN] argc = N+1 <padding>
+ // ... [argN] argc = N
+ // [arg1] ...
+ // [arg0] [arg1] <- now arg0
+ // [this] <- top of stack (aligned) [arg0] <- now this
+ //
+ // The only exception is when argc is already 0, in which case instead
+ // of shifting arguments down we replace [this] with UndefinedValue():
+ //
+ // *BEFORE* *AFTER*
+ // [this] argc = 0 [undef] argc = 0
+ //
+ // After making this transformation, we can jump back to the beginning
+ // of this trampoline to handle the inner call.
+
+ // Guard that |this| is an object. If it is, replace calleeReg.
+ masm.fallibleUnboxObject(Address(masm.getStackPointer(), 0), scratch, vmCall);
+ masm.movePtr(scratch, calleeReg);
+
+ Label hasArgs;
+ masm.branch32(Assembler::NotEqual, argcReg, Imm32(0), &hasArgs);
+
+ // No arguments. Replace |this| with |undefined| and start from the top.
+ masm.storeValue(UndefinedValue(), Address(masm.getStackPointer(), 0));
+ masm.jump(entry);
+
+ masm.bind(&hasArgs);
+
+ Label doneSliding;
+ generateIonGenericCallArgumentsShift(masm, argcReg, scratch, scratch2,
+ scratch3, &doneSliding);
+ masm.bind(&doneSliding);
+ masm.sub32(Imm32(1), argcReg);
+
+ masm.jump(entry);
+
+ masm.bind(&notFunCall);
+}
+
+void JitRuntime::generateIonGenericCallBoundFunction(MacroAssembler& masm,
+ Label* entry,
+ Label* vmCall) {
+ Register calleeReg = IonGenericCallCalleeReg;
+ Register argcReg = IonGenericCallArgcReg;
+ Register scratch = IonGenericCallScratch;
+ Register scratch2 = IonGenericCallScratch2;
+ Register scratch3 = IonGenericCallScratch3;
+
+ masm.branchTestObjClass(Assembler::NotEqual, calleeReg,
+ &BoundFunctionObject::class_, scratch, calleeReg,
+ vmCall);
+
+ Address targetSlot(calleeReg, BoundFunctionObject::offsetOfTargetSlot());
+ Address flagsSlot(calleeReg, BoundFunctionObject::offsetOfFlagsSlot());
+ Address thisSlot(calleeReg, BoundFunctionObject::offsetOfBoundThisSlot());
+ Address firstInlineArgSlot(
+ calleeReg, BoundFunctionObject::offsetOfFirstInlineBoundArg());
+
+ // Check that we won't be pushing too many arguments.
+ masm.load32(flagsSlot, scratch);
+ masm.rshift32(Imm32(BoundFunctionObject::NumBoundArgsShift), scratch);
+ masm.add32(argcReg, scratch);
+ masm.branch32(Assembler::Above, scratch, Imm32(JIT_ARGS_LENGTH_MAX), vmCall);
+
+ // The stack is currently correctly aligned for a jit call. We will
+ // be updating the `this` value and potentially adding additional
+ // arguments. On platforms with 16-byte alignment, if the number of
+ // bound arguments is odd, we have to move the arguments that are
+ // currently on the stack. For example, with one bound argument:
+ //
+ // *BEFORE* *AFTER*
+ // [argN] <padding>
+ // ... [argN] |
+ // [arg1] ... | These arguments have been
+ // [arg0] [arg1] | shifted down 8 bytes.
+ // [this] <- top of stack (aligned) [arg0] v
+ // [bound0] <- one bound argument (odd)
+ // [boundThis] <- top of stack (aligned)
+ //
+ Label poppedThis;
+ if (JitStackValueAlignment > 1) {
+ Label alreadyAligned;
+ masm.branchTest32(Assembler::Zero, flagsSlot,
+ Imm32(1 << BoundFunctionObject::NumBoundArgsShift),
+ &alreadyAligned);
+
+ // We have an odd number of bound arguments. Shift the existing arguments
+ // down by 8 bytes.
+ generateIonGenericCallArgumentsShift(masm, argcReg, scratch, scratch2,
+ scratch3, &poppedThis);
+ masm.bind(&alreadyAligned);
+ }
+
+ // Pop the current `this`. It will be replaced with the bound `this`.
+ masm.freeStack(sizeof(Value));
+ masm.bind(&poppedThis);
+
+ // Load the number of bound arguments in scratch
+ masm.load32(flagsSlot, scratch);
+ masm.rshift32(Imm32(BoundFunctionObject::NumBoundArgsShift), scratch);
+
+ Label donePushingBoundArguments;
+ masm.branch32(Assembler::Equal, scratch, Imm32(0),
+ &donePushingBoundArguments);
+
+ // Update argc to include bound arguments.
+ masm.add32(scratch, argcReg);
+
+ // Load &boundArgs[0] in scratch2.
+ Label outOfLineBoundArguments, haveBoundArguments;
+ masm.branch32(Assembler::Above, scratch,
+ Imm32(BoundFunctionObject::MaxInlineBoundArgs),
+ &outOfLineBoundArguments);
+ masm.computeEffectiveAddress(firstInlineArgSlot, scratch2);
+ masm.jump(&haveBoundArguments);
+
+ masm.bind(&outOfLineBoundArguments);
+ masm.unboxObject(firstInlineArgSlot, scratch2);
+ masm.loadPtr(Address(scratch2, NativeObject::offsetOfElements()), scratch2);
+
+ masm.bind(&haveBoundArguments);
+
+ // Load &boundArgs[numBoundArgs] in scratch.
+ BaseObjectElementIndex lastBoundArg(scratch2, scratch);
+ masm.computeEffectiveAddress(lastBoundArg, scratch);
+
+ // Push the bound arguments, starting with the last one.
+ // Copying pre-decrements scratch until scratch2 is reached.
+ Label boundArgumentsLoop;
+ masm.bind(&boundArgumentsLoop);
+ masm.subPtr(Imm32(sizeof(Value)), scratch);
+ masm.pushValue(Address(scratch, 0));
+ masm.branchPtr(Assembler::Above, scratch, scratch2, &boundArgumentsLoop);
+ masm.bind(&donePushingBoundArguments);
+
+ // Push the bound `this`.
+ masm.pushValue(thisSlot);
+
+ // Load the target in calleeReg.
+ masm.unboxObject(targetSlot, calleeReg);
+
+ // At this point, all preconditions for entering the trampoline are met:
+ // - calleeReg contains a pointer to the callee object
+ // - argcReg contains the number of actual args (now including bound args)
+ // - the arguments are on the stack with the correct alignment.
+ // Instead of generating more code, we can jump back to the entry point
+ // of the trampoline to call the bound target.
+ masm.jump(entry);
+}
+
+void CodeGenerator::visitCallKnown(LCallKnown* call) {
+ Register calleereg = ToRegister(call->getFunction());
+ Register objreg = ToRegister(call->getTempObject());
+ uint32_t unusedStack =
+ UnusedStackBytesForCall(call->mir()->paddedNumStackArgs());
+ WrappedFunction* target = call->getSingleTarget();
+
+ // Native single targets (except wasm) are handled by LCallNative.
+ MOZ_ASSERT(target->hasJitEntry());
+
+ // Missing arguments must have been explicitly appended by WarpBuilder.
+ DebugOnly<unsigned> numNonArgsOnStack = 1 + call->isConstructing();
+ MOZ_ASSERT(target->nargs() <=
+ call->mir()->numStackArgs() - numNonArgsOnStack);
+
+ MOZ_ASSERT_IF(call->isConstructing(), target->isConstructor());
+
+ masm.checkStackAlignment();
+
+ if (target->isClassConstructor() && !call->isConstructing()) {
+ emitCallInvokeFunction(call, calleereg, call->isConstructing(),
+ call->ignoresReturnValue(), call->numActualArgs(),
+ unusedStack);
+ return;
+ }
+
+ MOZ_ASSERT_IF(target->isClassConstructor(), call->isConstructing());
+
+ MOZ_ASSERT(!call->mir()->needsThisCheck());
+
+ if (call->mir()->maybeCrossRealm()) {
+ masm.switchToObjectRealm(calleereg, objreg);
+ }
+
+ masm.loadJitCodeRaw(calleereg, objreg);
+
+ // Nestle the StackPointer up to the argument vector.
+ masm.freeStack(unusedStack);
+
+ // Construct the JitFrameLayout.
+ masm.PushCalleeToken(calleereg, call->mir()->isConstructing());
+ masm.PushFrameDescriptorForJitCall(FrameType::IonJS, call->numActualArgs());
+
+ // Finally call the function in objreg.
+ ensureOsiSpace();
+ uint32_t callOffset = masm.callJit(objreg);
+ markSafepointAt(callOffset, call);
+
+ if (call->mir()->maybeCrossRealm()) {
+ static_assert(!JSReturnOperand.aliases(ReturnReg),
+ "ReturnReg available as scratch after scripted calls");
+ masm.switchToRealm(gen->realm->realmPtr(), ReturnReg);
+ }
+
+ // Restore stack pointer: pop JitFrameLayout fields still left on the stack
+ // and undo the earlier |freeStack(unusedStack)|.
+ int prefixGarbage =
+ sizeof(JitFrameLayout) - JitFrameLayout::bytesPoppedAfterCall();
+ masm.adjustStack(prefixGarbage - unusedStack);
+
+ // If the return value of the constructing function is Primitive,
+ // replace the return value with the Object from CreateThis.
+ if (call->mir()->isConstructing()) {
+ Label notPrimitive;
+ masm.branchTestPrimitive(Assembler::NotEqual, JSReturnOperand,
+ &notPrimitive);
+ masm.loadValue(Address(masm.getStackPointer(), unusedStack),
+ JSReturnOperand);
+#ifdef DEBUG
+ masm.branchTestPrimitive(Assembler::NotEqual, JSReturnOperand,
+ &notPrimitive);
+ masm.assumeUnreachable("CreateThis creates an object");
+#endif
+ masm.bind(&notPrimitive);
+ }
+}
+
+template <typename T>
+void CodeGenerator::emitCallInvokeFunction(T* apply) {
+ Register objreg = ToRegister(apply->getTempObject());
+
+ // Push the space used by the arguments.
+ masm.moveStackPtrTo(objreg);
+
+ pushArg(objreg); // argv.
+ pushArg(ToRegister(apply->getArgc())); // argc.
+ pushArg(Imm32(apply->mir()->ignoresReturnValue())); // ignoresReturnValue.
+ pushArg(Imm32(apply->mir()->isConstructing())); // isConstructing.
+ pushArg(ToRegister(apply->getFunction())); // JSFunction*.
+
+ using Fn = bool (*)(JSContext*, HandleObject, bool, bool, uint32_t, Value*,
+ MutableHandleValue);
+ callVM<Fn, jit::InvokeFunction>(apply);
+}
+
+// Do not bailout after the execution of this function since the stack no longer
+// correspond to what is expected by the snapshots.
+void CodeGenerator::emitAllocateSpaceForApply(Register argcreg,
+ Register scratch) {
+ // Use scratch register to calculate stack space (including padding).
+ masm.movePtr(argcreg, scratch);
+
+ // Align the JitFrameLayout on the JitStackAlignment.
+ if (JitStackValueAlignment > 1) {
+ MOZ_ASSERT(frameSize() % JitStackAlignment == 0,
+ "Stack padding assumes that the frameSize is correct");
+ MOZ_ASSERT(JitStackValueAlignment == 2);
+ Label noPaddingNeeded;
+ // if the number of arguments is odd, then we do not need any padding.
+ masm.branchTestPtr(Assembler::NonZero, argcreg, Imm32(1), &noPaddingNeeded);
+ masm.addPtr(Imm32(1), scratch);
+ masm.bind(&noPaddingNeeded);
+ }
+
+ // Reserve space for copying the arguments.
+ NativeObject::elementsSizeMustNotOverflow();
+ masm.lshiftPtr(Imm32(ValueShift), scratch);
+ masm.subFromStackPtr(scratch);
+
+#ifdef DEBUG
+ // Put a magic value in the space reserved for padding. Note, this code
+ // cannot be merged with the previous test, as not all architectures can
+ // write below their stack pointers.
+ if (JitStackValueAlignment > 1) {
+ MOZ_ASSERT(JitStackValueAlignment == 2);
+ Label noPaddingNeeded;
+ // if the number of arguments is odd, then we do not need any padding.
+ masm.branchTestPtr(Assembler::NonZero, argcreg, Imm32(1), &noPaddingNeeded);
+ BaseValueIndex dstPtr(masm.getStackPointer(), argcreg);
+ masm.storeValue(MagicValue(JS_ARG_POISON), dstPtr);
+ masm.bind(&noPaddingNeeded);
+ }
+#endif
+}
+
+// Do not bailout after the execution of this function since the stack no longer
+// correspond to what is expected by the snapshots.
+void CodeGenerator::emitAllocateSpaceForConstructAndPushNewTarget(
+ Register argcreg, Register newTargetAndScratch) {
+ // Align the JitFrameLayout on the JitStackAlignment. Contrary to
+ // |emitAllocateSpaceForApply()|, we're always pushing a magic value, because
+ // we can't write to |newTargetAndScratch| before |new.target| has
+ // been pushed onto the stack.
+ if (JitStackValueAlignment > 1) {
+ MOZ_ASSERT(frameSize() % JitStackAlignment == 0,
+ "Stack padding assumes that the frameSize is correct");
+ MOZ_ASSERT(JitStackValueAlignment == 2);
+
+ Label noPaddingNeeded;
+ // If the number of arguments is even, then we do not need any padding.
+ masm.branchTestPtr(Assembler::Zero, argcreg, Imm32(1), &noPaddingNeeded);
+ masm.pushValue(MagicValue(JS_ARG_POISON));
+ masm.bind(&noPaddingNeeded);
+ }
+
+ // Push |new.target| after the padding value, but before any arguments.
+ masm.pushValue(JSVAL_TYPE_OBJECT, newTargetAndScratch);
+
+ // Use newTargetAndScratch to calculate stack space (including padding).
+ masm.movePtr(argcreg, newTargetAndScratch);
+
+ // Reserve space for copying the arguments.
+ NativeObject::elementsSizeMustNotOverflow();
+ masm.lshiftPtr(Imm32(ValueShift), newTargetAndScratch);
+ masm.subFromStackPtr(newTargetAndScratch);
+}
+
+// Destroys argvIndex and copyreg.
+void CodeGenerator::emitCopyValuesForApply(Register argvSrcBase,
+ Register argvIndex, Register copyreg,
+ size_t argvSrcOffset,
+ size_t argvDstOffset) {
+ Label loop;
+ masm.bind(&loop);
+
+ // As argvIndex is off by 1, and we use the decBranchPtr instruction
+ // to loop back, we have to substract the size of the word which are
+ // copied.
+ BaseValueIndex srcPtr(argvSrcBase, argvIndex,
+ int32_t(argvSrcOffset) - sizeof(void*));
+ BaseValueIndex dstPtr(masm.getStackPointer(), argvIndex,
+ int32_t(argvDstOffset) - sizeof(void*));
+ masm.loadPtr(srcPtr, copyreg);
+ masm.storePtr(copyreg, dstPtr);
+
+ // Handle 32 bits architectures.
+ if (sizeof(Value) == 2 * sizeof(void*)) {
+ BaseValueIndex srcPtrLow(argvSrcBase, argvIndex,
+ int32_t(argvSrcOffset) - 2 * sizeof(void*));
+ BaseValueIndex dstPtrLow(masm.getStackPointer(), argvIndex,
+ int32_t(argvDstOffset) - 2 * sizeof(void*));
+ masm.loadPtr(srcPtrLow, copyreg);
+ masm.storePtr(copyreg, dstPtrLow);
+ }
+
+ masm.decBranchPtr(Assembler::NonZero, argvIndex, Imm32(1), &loop);
+}
+
+void CodeGenerator::emitRestoreStackPointerFromFP() {
+ // This is used to restore the stack pointer after a call with a dynamic
+ // number of arguments.
+
+ MOZ_ASSERT(masm.framePushed() == frameSize());
+
+ int32_t offset = -int32_t(frameSize());
+ masm.computeEffectiveAddress(Address(FramePointer, offset),
+ masm.getStackPointer());
+}
+
+void CodeGenerator::emitPushArguments(Register argcreg, Register scratch,
+ Register copyreg, uint32_t extraFormals) {
+ Label end;
+
+ // Skip the copy of arguments if there are none.
+ masm.branchTestPtr(Assembler::Zero, argcreg, argcreg, &end);
+
+ // clang-format off
+ //
+ // We are making a copy of the arguments which are above the JitFrameLayout
+ // of the current Ion frame.
+ //
+ // [arg1] [arg0] <- src [this] [JitFrameLayout] [.. frameSize ..] [pad] [arg1] [arg0] <- dst
+ //
+ // clang-format on
+
+ // Compute the source and destination offsets into the stack.
+ Register argvSrcBase = FramePointer;
+ size_t argvSrcOffset =
+ JitFrameLayout::offsetOfActualArgs() + extraFormals * sizeof(JS::Value);
+ size_t argvDstOffset = 0;
+
+ Register argvIndex = scratch;
+ masm.move32(argcreg, argvIndex);
+
+ // Copy arguments.
+ emitCopyValuesForApply(argvSrcBase, argvIndex, copyreg, argvSrcOffset,
+ argvDstOffset);
+
+ // Join with all arguments copied and the extra stack usage computed.
+ masm.bind(&end);
+}
+
+void CodeGenerator::emitPushArguments(LApplyArgsGeneric* apply,
+ Register scratch) {
+ // Holds the function nargs. Initially the number of args to the caller.
+ Register argcreg = ToRegister(apply->getArgc());
+ Register copyreg = ToRegister(apply->getTempObject());
+ uint32_t extraFormals = apply->numExtraFormals();
+
+ emitAllocateSpaceForApply(argcreg, scratch);
+
+ emitPushArguments(argcreg, scratch, copyreg, extraFormals);
+
+ // Push |this|.
+ masm.pushValue(ToValue(apply, LApplyArgsGeneric::ThisIndex));
+}
+
+void CodeGenerator::emitPushArguments(LApplyArgsObj* apply, Register scratch) {
+ // argc and argsObj are mapped to the same calltemp register.
+ MOZ_ASSERT(apply->getArgsObj() == apply->getArgc());
+
+ Register tmpArgc = ToRegister(apply->getTempObject());
+ Register argsObj = ToRegister(apply->getArgsObj());
+
+ // Load argc into tmpArgc.
+ Address lengthAddr(argsObj, ArgumentsObject::getInitialLengthSlotOffset());
+ masm.unboxInt32(lengthAddr, tmpArgc);
+ masm.rshift32(Imm32(ArgumentsObject::PACKED_BITS_COUNT), tmpArgc);
+
+ // Allocate space on the stack for arguments. This modifies scratch.
+ emitAllocateSpaceForApply(tmpArgc, scratch);
+
+ // Load arguments data
+ masm.loadPrivate(Address(argsObj, ArgumentsObject::getDataSlotOffset()),
+ argsObj);
+ size_t argsSrcOffset = ArgumentsData::offsetOfArgs();
+
+ // This is the end of the lifetime of argsObj.
+ // After this call, the argsObj register holds the argument count instead.
+ emitPushArrayAsArguments(tmpArgc, argsObj, scratch, argsSrcOffset);
+
+ masm.pushValue(ToValue(apply, LApplyArgsObj::ThisIndex));
+}
+
+void CodeGenerator::emitPushArrayAsArguments(Register tmpArgc,
+ Register srcBaseAndArgc,
+ Register scratch,
+ size_t argvSrcOffset) {
+ // Preconditions:
+ // 1. |tmpArgc| * sizeof(Value) bytes have been allocated at the top of
+ // the stack to hold arguments.
+ // 2. |srcBaseAndArgc| + |srcOffset| points to an array of |tmpArgc| values.
+ //
+ // Postconditions:
+ // 1. The arguments at |srcBaseAndArgc| + |srcOffset| have been copied into
+ // the allocated space.
+ // 2. |srcBaseAndArgc| now contains the original value of |tmpArgc|.
+ //
+ // |scratch| is used as a temp register within this function and clobbered.
+
+ Label noCopy, epilogue;
+
+ // Skip the copy of arguments if there are none.
+ masm.branchTestPtr(Assembler::Zero, tmpArgc, tmpArgc, &noCopy);
+
+ // Copy the values. This code is skipped entirely if there are
+ // no values.
+ size_t argvDstOffset = 0;
+
+ Register argvSrcBase = srcBaseAndArgc;
+ Register copyreg = scratch;
+
+ masm.push(tmpArgc);
+ Register argvIndex = tmpArgc;
+ argvDstOffset += sizeof(void*);
+
+ // Copy
+ emitCopyValuesForApply(argvSrcBase, argvIndex, copyreg, argvSrcOffset,
+ argvDstOffset);
+
+ // Restore.
+ masm.pop(srcBaseAndArgc); // srcBaseAndArgc now contains argc.
+ masm.jump(&epilogue);
+
+ // Clear argc if we skipped the copy step.
+ masm.bind(&noCopy);
+ masm.movePtr(ImmWord(0), srcBaseAndArgc);
+
+ // Join with all arguments copied and the extra stack usage computed.
+ // Note, "srcBase" has become "argc".
+ masm.bind(&epilogue);
+}
+
+void CodeGenerator::emitPushArguments(LApplyArrayGeneric* apply,
+ Register scratch) {
+ Register tmpArgc = ToRegister(apply->getTempObject());
+ Register elementsAndArgc = ToRegister(apply->getElements());
+
+ // Invariants guarded in the caller:
+ // - the array is not too long
+ // - the array length equals its initialized length
+
+ // The array length is our argc for the purposes of allocating space.
+ Address length(ToRegister(apply->getElements()),
+ ObjectElements::offsetOfLength());
+ masm.load32(length, tmpArgc);
+
+ // Allocate space for the values.
+ emitAllocateSpaceForApply(tmpArgc, scratch);
+
+ // After this call "elements" has become "argc".
+ size_t elementsOffset = 0;
+ emitPushArrayAsArguments(tmpArgc, elementsAndArgc, scratch, elementsOffset);
+
+ // Push |this|.
+ masm.pushValue(ToValue(apply, LApplyArrayGeneric::ThisIndex));
+}
+
+void CodeGenerator::emitPushArguments(LConstructArgsGeneric* construct,
+ Register scratch) {
+ MOZ_ASSERT(scratch == ToRegister(construct->getNewTarget()));
+
+ // Holds the function nargs. Initially the number of args to the caller.
+ Register argcreg = ToRegister(construct->getArgc());
+ Register copyreg = ToRegister(construct->getTempObject());
+ uint32_t extraFormals = construct->numExtraFormals();
+
+ // Allocate space for the values.
+ // After this call "newTarget" has become "scratch".
+ emitAllocateSpaceForConstructAndPushNewTarget(argcreg, scratch);
+
+ emitPushArguments(argcreg, scratch, copyreg, extraFormals);
+
+ // Push |this|.
+ masm.pushValue(ToValue(construct, LConstructArgsGeneric::ThisIndex));
+}
+
+void CodeGenerator::emitPushArguments(LConstructArrayGeneric* construct,
+ Register scratch) {
+ MOZ_ASSERT(scratch == ToRegister(construct->getNewTarget()));
+
+ Register tmpArgc = ToRegister(construct->getTempObject());
+ Register elementsAndArgc = ToRegister(construct->getElements());
+
+ // Invariants guarded in the caller:
+ // - the array is not too long
+ // - the array length equals its initialized length
+
+ // The array length is our argc for the purposes of allocating space.
+ Address length(ToRegister(construct->getElements()),
+ ObjectElements::offsetOfLength());
+ masm.load32(length, tmpArgc);
+
+ // Allocate space for the values.
+ emitAllocateSpaceForConstructAndPushNewTarget(tmpArgc, scratch);
+
+ // After this call "elements" has become "argc" and "newTarget" has become
+ // "scratch".
+ size_t elementsOffset = 0;
+ emitPushArrayAsArguments(tmpArgc, elementsAndArgc, scratch, elementsOffset);
+
+ // Push |this|.
+ masm.pushValue(ToValue(construct, LConstructArrayGeneric::ThisIndex));
+}
+
+template <typename T>
+void CodeGenerator::emitApplyGeneric(T* apply) {
+ // Holds the function object.
+ Register calleereg = ToRegister(apply->getFunction());
+
+ // Temporary register for modifying the function object.
+ Register objreg = ToRegister(apply->getTempObject());
+ Register scratch = ToRegister(apply->getTempForArgCopy());
+
+ // Holds the function nargs, computed in the invoker or (for ApplyArray,
+ // ConstructArray, or ApplyArgsObj) in the argument pusher.
+ Register argcreg = ToRegister(apply->getArgc());
+
+ // Copy the arguments of the current function.
+ //
+ // In the case of ApplyArray, ConstructArray, or ApplyArgsObj, also
+ // compute argc. The argc register and the elements/argsObj register
+ // are the same; argc must not be referenced before the call to
+ // emitPushArguments() and elements/argsObj must not be referenced
+ // after it returns.
+ //
+ // In the case of ConstructArray or ConstructArgs, also overwrite newTarget
+ // with scratch; newTarget must not be referenced after this point.
+ //
+ // objreg is dead across this call.
+ emitPushArguments(apply, scratch);
+
+ masm.checkStackAlignment();
+
+ bool constructing = apply->mir()->isConstructing();
+
+ // If the function is native, only emit the call to InvokeFunction.
+ if (apply->hasSingleTarget() &&
+ apply->getSingleTarget()->isNativeWithoutJitEntry()) {
+ emitCallInvokeFunction(apply);
+
+#ifdef DEBUG
+ // Native constructors are guaranteed to return an Object value, so we never
+ // have to replace a primitive result with the previously allocated Object
+ // from CreateThis.
+ if (constructing) {
+ Label notPrimitive;
+ masm.branchTestPrimitive(Assembler::NotEqual, JSReturnOperand,
+ &notPrimitive);
+ masm.assumeUnreachable("native constructors don't return primitives");
+ masm.bind(&notPrimitive);
+ }
+#endif
+
+ emitRestoreStackPointerFromFP();
+ return;
+ }
+
+ Label end, invoke;
+
+ // Unless already known, guard that calleereg is actually a function object.
+ if (!apply->hasSingleTarget()) {
+ masm.branchTestObjIsFunction(Assembler::NotEqual, calleereg, objreg,
+ calleereg, &invoke);
+ }
+
+ // Guard that calleereg is an interpreted function with a JSScript.
+ masm.branchIfFunctionHasNoJitEntry(calleereg, constructing, &invoke);
+
+ // Guard that callee allows the [[Call]] or [[Construct]] operation required.
+ if (constructing) {
+ masm.branchTestFunctionFlags(calleereg, FunctionFlags::CONSTRUCTOR,
+ Assembler::Zero, &invoke);
+ } else {
+ masm.branchFunctionKind(Assembler::Equal, FunctionFlags::ClassConstructor,
+ calleereg, objreg, &invoke);
+ }
+
+ // Use the slow path if CreateThis was unable to create the |this| object.
+ if (constructing) {
+ Address thisAddr(masm.getStackPointer(), 0);
+ masm.branchTestNull(Assembler::Equal, thisAddr, &invoke);
+ }
+
+ // Call with an Ion frame or a rectifier frame.
+ {
+ if (apply->mir()->maybeCrossRealm()) {
+ masm.switchToObjectRealm(calleereg, objreg);
+ }
+
+ // Knowing that calleereg is a non-native function, load jitcode.
+ masm.loadJitCodeRaw(calleereg, objreg);
+
+ masm.PushCalleeToken(calleereg, constructing);
+ masm.PushFrameDescriptorForJitCall(FrameType::IonJS, argcreg, scratch);
+
+ Label underflow, rejoin;
+
+ // Check whether the provided arguments satisfy target argc.
+ if (!apply->hasSingleTarget()) {
+ Register nformals = scratch;
+ masm.loadFunctionArgCount(calleereg, nformals);
+ masm.branch32(Assembler::Below, argcreg, nformals, &underflow);
+ } else {
+ masm.branch32(Assembler::Below, argcreg,
+ Imm32(apply->getSingleTarget()->nargs()), &underflow);
+ }
+
+ // Skip the construction of the rectifier frame because we have no
+ // underflow.
+ masm.jump(&rejoin);
+
+ // Argument fixup needed. Get ready to call the argumentsRectifier.
+ {
+ masm.bind(&underflow);
+
+ // Hardcode the address of the argumentsRectifier code.
+ TrampolinePtr argumentsRectifier =
+ gen->jitRuntime()->getArgumentsRectifier();
+ masm.movePtr(argumentsRectifier, objreg);
+ }
+
+ masm.bind(&rejoin);
+
+ // Finally call the function in objreg, as assigned by one of the paths
+ // above.
+ ensureOsiSpace();
+ uint32_t callOffset = masm.callJit(objreg);
+ markSafepointAt(callOffset, apply);
+
+ if (apply->mir()->maybeCrossRealm()) {
+ static_assert(!JSReturnOperand.aliases(ReturnReg),
+ "ReturnReg available as scratch after scripted calls");
+ masm.switchToRealm(gen->realm->realmPtr(), ReturnReg);
+ }
+
+ // Discard JitFrameLayout fields still left on the stack.
+ masm.freeStack(sizeof(JitFrameLayout) -
+ JitFrameLayout::bytesPoppedAfterCall());
+ masm.jump(&end);
+ }
+
+ // Handle uncompiled or native functions.
+ {
+ masm.bind(&invoke);
+ emitCallInvokeFunction(apply);
+ }
+
+ masm.bind(&end);
+
+ // If the return value of the constructing function is Primitive,
+ // replace the return value with the Object from CreateThis.
+ if (constructing) {
+ Label notPrimitive;
+ masm.branchTestPrimitive(Assembler::NotEqual, JSReturnOperand,
+ &notPrimitive);
+ masm.loadValue(Address(masm.getStackPointer(), 0), JSReturnOperand);
+
+#ifdef DEBUG
+ masm.branchTestPrimitive(Assembler::NotEqual, JSReturnOperand,
+ &notPrimitive);
+ masm.assumeUnreachable("CreateThis creates an object");
+#endif
+
+ masm.bind(&notPrimitive);
+ }
+
+ // Pop arguments and continue.
+ emitRestoreStackPointerFromFP();
+}
+
+void CodeGenerator::visitApplyArgsGeneric(LApplyArgsGeneric* apply) {
+ LSnapshot* snapshot = apply->snapshot();
+ Register argcreg = ToRegister(apply->getArgc());
+
+ // Ensure that we have a reasonable number of arguments.
+ bailoutCmp32(Assembler::Above, argcreg, Imm32(JIT_ARGS_LENGTH_MAX), snapshot);
+
+ emitApplyGeneric(apply);
+}
+
+void CodeGenerator::visitApplyArgsObj(LApplyArgsObj* apply) {
+ Register argsObj = ToRegister(apply->getArgsObj());
+ Register temp = ToRegister(apply->getTempObject());
+
+ Label bail;
+ masm.loadArgumentsObjectLength(argsObj, temp, &bail);
+ masm.branch32(Assembler::Above, temp, Imm32(JIT_ARGS_LENGTH_MAX), &bail);
+ bailoutFrom(&bail, apply->snapshot());
+
+ emitApplyGeneric(apply);
+}
+
+void CodeGenerator::visitApplyArrayGeneric(LApplyArrayGeneric* apply) {
+ LSnapshot* snapshot = apply->snapshot();
+ Register tmp = ToRegister(apply->getTempObject());
+
+ Address length(ToRegister(apply->getElements()),
+ ObjectElements::offsetOfLength());
+ masm.load32(length, tmp);
+
+ // Ensure that we have a reasonable number of arguments.
+ bailoutCmp32(Assembler::Above, tmp, Imm32(JIT_ARGS_LENGTH_MAX), snapshot);
+
+ // Ensure that the array does not contain an uninitialized tail.
+
+ Address initializedLength(ToRegister(apply->getElements()),
+ ObjectElements::offsetOfInitializedLength());
+ masm.sub32(initializedLength, tmp);
+ bailoutCmp32(Assembler::NotEqual, tmp, Imm32(0), snapshot);
+
+ emitApplyGeneric(apply);
+}
+
+void CodeGenerator::visitConstructArgsGeneric(LConstructArgsGeneric* lir) {
+ LSnapshot* snapshot = lir->snapshot();
+ Register argcreg = ToRegister(lir->getArgc());
+
+ // Ensure that we have a reasonable number of arguments.
+ bailoutCmp32(Assembler::Above, argcreg, Imm32(JIT_ARGS_LENGTH_MAX), snapshot);
+
+ emitApplyGeneric(lir);
+}
+
+void CodeGenerator::visitConstructArrayGeneric(LConstructArrayGeneric* lir) {
+ LSnapshot* snapshot = lir->snapshot();
+ Register tmp = ToRegister(lir->getTempObject());
+
+ Address length(ToRegister(lir->getElements()),
+ ObjectElements::offsetOfLength());
+ masm.load32(length, tmp);
+
+ // Ensure that we have a reasonable number of arguments.
+ bailoutCmp32(Assembler::Above, tmp, Imm32(JIT_ARGS_LENGTH_MAX), snapshot);
+
+ // Ensure that the array does not contain an uninitialized tail.
+
+ Address initializedLength(ToRegister(lir->getElements()),
+ ObjectElements::offsetOfInitializedLength());
+ masm.sub32(initializedLength, tmp);
+ bailoutCmp32(Assembler::NotEqual, tmp, Imm32(0), snapshot);
+
+ emitApplyGeneric(lir);
+}
+
+void CodeGenerator::visitBail(LBail* lir) { bailout(lir->snapshot()); }
+
+void CodeGenerator::visitUnreachable(LUnreachable* lir) {
+ masm.assumeUnreachable("end-of-block assumed unreachable");
+}
+
+void CodeGenerator::visitEncodeSnapshot(LEncodeSnapshot* lir) {
+ encode(lir->snapshot());
+}
+
+void CodeGenerator::visitUnreachableResultV(LUnreachableResultV* lir) {
+ masm.assumeUnreachable("must be unreachable");
+}
+
+void CodeGenerator::visitUnreachableResultT(LUnreachableResultT* lir) {
+ masm.assumeUnreachable("must be unreachable");
+}
+
+// Out-of-line path to report over-recursed error and fail.
+class CheckOverRecursedFailure : public OutOfLineCodeBase<CodeGenerator> {
+ LInstruction* lir_;
+
+ public:
+ explicit CheckOverRecursedFailure(LInstruction* lir) : lir_(lir) {}
+
+ void accept(CodeGenerator* codegen) override {
+ codegen->visitCheckOverRecursedFailure(this);
+ }
+
+ LInstruction* lir() const { return lir_; }
+};
+
+void CodeGenerator::visitCheckOverRecursed(LCheckOverRecursed* lir) {
+ // If we don't push anything on the stack, skip the check.
+ if (omitOverRecursedCheck()) {
+ return;
+ }
+
+ // Ensure that this frame will not cross the stack limit.
+ // This is a weak check, justified by Ion using the C stack: we must always
+ // be some distance away from the actual limit, since if the limit is
+ // crossed, an error must be thrown, which requires more frames.
+ //
+ // It must always be possible to trespass past the stack limit.
+ // Ion may legally place frames very close to the limit. Calling additional
+ // C functions may then violate the limit without any checking.
+ //
+ // Since Ion frames exist on the C stack, the stack limit may be
+ // dynamically set by JS_SetThreadStackLimit() and JS_SetNativeStackQuota().
+
+ CheckOverRecursedFailure* ool = new (alloc()) CheckOverRecursedFailure(lir);
+ addOutOfLineCode(ool, lir->mir());
+
+ // Conditional forward (unlikely) branch to failure.
+ const void* limitAddr = gen->runtime->addressOfJitStackLimit();
+ masm.branchStackPtrRhs(Assembler::AboveOrEqual, AbsoluteAddress(limitAddr),
+ ool->entry());
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitCheckOverRecursedFailure(
+ CheckOverRecursedFailure* ool) {
+ // The OOL path is hit if the recursion depth has been exceeded.
+ // Throw an InternalError for over-recursion.
+
+ // LFunctionEnvironment can appear before LCheckOverRecursed, so we have
+ // to save all live registers to avoid crashes if CheckOverRecursed triggers
+ // a GC.
+ saveLive(ool->lir());
+
+ using Fn = bool (*)(JSContext*);
+ callVM<Fn, CheckOverRecursed>(ool->lir());
+
+ restoreLive(ool->lir());
+ masm.jump(ool->rejoin());
+}
+
+IonScriptCounts* CodeGenerator::maybeCreateScriptCounts() {
+ // If scripts are being profiled, create a new IonScriptCounts for the
+ // profiling data, which will be attached to the associated JSScript or
+ // wasm module after code generation finishes.
+ if (!gen->hasProfilingScripts()) {
+ return nullptr;
+ }
+
+ // This test inhibits IonScriptCount creation for wasm code which is
+ // currently incompatible with wasm codegen for two reasons: (1) wasm code
+ // must be serializable and script count codegen bakes in absolute
+ // addresses, (2) wasm code does not have a JSScript with which to associate
+ // code coverage data.
+ JSScript* script = gen->outerInfo().script();
+ if (!script) {
+ return nullptr;
+ }
+
+ auto counts = MakeUnique<IonScriptCounts>();
+ if (!counts || !counts->init(graph.numBlocks())) {
+ return nullptr;
+ }
+
+ for (size_t i = 0; i < graph.numBlocks(); i++) {
+ MBasicBlock* block = graph.getBlock(i)->mir();
+
+ uint32_t offset = 0;
+ char* description = nullptr;
+ if (MResumePoint* resume = block->entryResumePoint()) {
+ // Find a PC offset in the outermost script to use. If this
+ // block is from an inlined script, find a location in the
+ // outer script to associate information about the inlining
+ // with.
+ while (resume->caller()) {
+ resume = resume->caller();
+ }
+ offset = script->pcToOffset(resume->pc());
+
+ if (block->entryResumePoint()->caller()) {
+ // Get the filename and line number of the inner script.
+ JSScript* innerScript = block->info().script();
+ description = js_pod_calloc<char>(200);
+ if (description) {
+ snprintf(description, 200, "%s:%u", innerScript->filename(),
+ innerScript->lineno());
+ }
+ }
+ }
+
+ if (!counts->block(i).init(block->id(), offset, description,
+ block->numSuccessors())) {
+ return nullptr;
+ }
+
+ for (size_t j = 0; j < block->numSuccessors(); j++) {
+ counts->block(i).setSuccessor(
+ j, skipTrivialBlocks(block->getSuccessor(j))->id());
+ }
+ }
+
+ scriptCounts_ = counts.release();
+ return scriptCounts_;
+}
+
+// Structure for managing the state tracked for a block by script counters.
+struct ScriptCountBlockState {
+ IonBlockCounts& block;
+ MacroAssembler& masm;
+
+ Sprinter printer;
+
+ public:
+ ScriptCountBlockState(IonBlockCounts* block, MacroAssembler* masm)
+ : block(*block), masm(*masm), printer(GetJitContext()->cx, false) {}
+
+ bool init() {
+ if (!printer.init()) {
+ return false;
+ }
+
+ // Bump the hit count for the block at the start. This code is not
+ // included in either the text for the block or the instruction byte
+ // counts.
+ masm.inc64(AbsoluteAddress(block.addressOfHitCount()));
+
+ // Collect human readable assembly for the code generated in the block.
+ masm.setPrinter(&printer);
+
+ return true;
+ }
+
+ void visitInstruction(LInstruction* ins) {
+#ifdef JS_JITSPEW
+ // Prefix stream of assembly instructions with their LIR instruction
+ // name and any associated high level info.
+ if (const char* extra = ins->getExtraName()) {
+ printer.printf("[%s:%s]\n", ins->opName(), extra);
+ } else {
+ printer.printf("[%s]\n", ins->opName());
+ }
+#endif
+ }
+
+ ~ScriptCountBlockState() {
+ masm.setPrinter(nullptr);
+
+ if (JS::UniqueChars str = printer.release()) {
+ block.setCode(str.get());
+ }
+ }
+};
+
+void CodeGenerator::branchIfInvalidated(Register temp, Label* invalidated) {
+ CodeOffset label = masm.movWithPatch(ImmWord(uintptr_t(-1)), temp);
+ masm.propagateOOM(ionScriptLabels_.append(label));
+
+ // If IonScript::invalidationCount_ != 0, the script has been invalidated.
+ masm.branch32(Assembler::NotEqual,
+ Address(temp, IonScript::offsetOfInvalidationCount()), Imm32(0),
+ invalidated);
+}
+
+#ifdef DEBUG
+void CodeGenerator::emitAssertGCThingResult(Register input,
+ const MDefinition* mir) {
+ MIRType type = mir->type();
+ MOZ_ASSERT(type == MIRType::Object || type == MIRType::String ||
+ type == MIRType::Symbol || type == MIRType::BigInt);
+
+ AllocatableGeneralRegisterSet regs(GeneralRegisterSet::All());
+ regs.take(input);
+
+ Register temp = regs.takeAny();
+ masm.push(temp);
+
+ // Don't check if the script has been invalidated. In that case invalid
+ // types are expected (until we reach the OsiPoint and bailout).
+ Label done;
+ branchIfInvalidated(temp, &done);
+
+# ifndef JS_SIMULATOR
+ // Check that we have a valid GC pointer.
+ // Disable for wasm because we don't have a context on wasm compilation
+ // threads and this needs a context.
+ // Also disable for simulator builds because the C++ call is a lot slower
+ // there than on actual hardware.
+ if (JitOptions.fullDebugChecks && !IsCompilingWasm()) {
+ saveVolatile();
+ masm.setupUnalignedABICall(temp);
+ masm.loadJSContext(temp);
+ masm.passABIArg(temp);
+ masm.passABIArg(input);
+
+ switch (type) {
+ case MIRType::Object: {
+ using Fn = void (*)(JSContext* cx, JSObject* obj);
+ masm.callWithABI<Fn, AssertValidObjectPtr>();
+ break;
+ }
+ case MIRType::String: {
+ using Fn = void (*)(JSContext* cx, JSString* str);
+ masm.callWithABI<Fn, AssertValidStringPtr>();
+ break;
+ }
+ case MIRType::Symbol: {
+ using Fn = void (*)(JSContext* cx, JS::Symbol* sym);
+ masm.callWithABI<Fn, AssertValidSymbolPtr>();
+ break;
+ }
+ case MIRType::BigInt: {
+ using Fn = void (*)(JSContext* cx, JS::BigInt* bi);
+ masm.callWithABI<Fn, AssertValidBigIntPtr>();
+ break;
+ }
+ default:
+ MOZ_CRASH();
+ }
+
+ restoreVolatile();
+ }
+# endif
+
+ masm.bind(&done);
+ masm.pop(temp);
+}
+
+void CodeGenerator::emitAssertResultV(const ValueOperand input,
+ const MDefinition* mir) {
+ AllocatableGeneralRegisterSet regs(GeneralRegisterSet::All());
+ regs.take(input);
+
+ Register temp1 = regs.takeAny();
+ Register temp2 = regs.takeAny();
+ masm.push(temp1);
+ masm.push(temp2);
+
+ // Don't check if the script has been invalidated. In that case invalid
+ // types are expected (until we reach the OsiPoint and bailout).
+ Label done;
+ branchIfInvalidated(temp1, &done);
+
+ // Check that we have a valid GC pointer.
+ if (JitOptions.fullDebugChecks) {
+ saveVolatile();
+
+ masm.pushValue(input);
+ masm.moveStackPtrTo(temp1);
+
+ using Fn = void (*)(JSContext* cx, Value* v);
+ masm.setupUnalignedABICall(temp2);
+ masm.loadJSContext(temp2);
+ masm.passABIArg(temp2);
+ masm.passABIArg(temp1);
+ masm.callWithABI<Fn, AssertValidValue>();
+ masm.popValue(input);
+ restoreVolatile();
+ }
+
+ masm.bind(&done);
+ masm.pop(temp2);
+ masm.pop(temp1);
+}
+
+void CodeGenerator::emitGCThingResultChecks(LInstruction* lir,
+ MDefinition* mir) {
+ if (lir->numDefs() == 0) {
+ return;
+ }
+
+ MOZ_ASSERT(lir->numDefs() == 1);
+ if (lir->getDef(0)->isBogusTemp()) {
+ return;
+ }
+
+ Register output = ToRegister(lir->getDef(0));
+ emitAssertGCThingResult(output, mir);
+}
+
+void CodeGenerator::emitValueResultChecks(LInstruction* lir, MDefinition* mir) {
+ if (lir->numDefs() == 0) {
+ return;
+ }
+
+ MOZ_ASSERT(lir->numDefs() == BOX_PIECES);
+ if (!lir->getDef(0)->output()->isRegister()) {
+ return;
+ }
+
+ ValueOperand output = ToOutValue(lir);
+
+ emitAssertResultV(output, mir);
+}
+
+void CodeGenerator::emitDebugResultChecks(LInstruction* ins) {
+ // In debug builds, check that LIR instructions return valid values.
+
+ MDefinition* mir = ins->mirRaw();
+ if (!mir) {
+ return;
+ }
+
+ switch (mir->type()) {
+ case MIRType::Object:
+ case MIRType::String:
+ case MIRType::Symbol:
+ case MIRType::BigInt:
+ emitGCThingResultChecks(ins, mir);
+ break;
+ case MIRType::Value:
+ emitValueResultChecks(ins, mir);
+ break;
+ default:
+ break;
+ }
+}
+
+void CodeGenerator::emitDebugForceBailing(LInstruction* lir) {
+ if (MOZ_LIKELY(!gen->options.ionBailAfterEnabled())) {
+ return;
+ }
+ if (!lir->snapshot()) {
+ return;
+ }
+ if (lir->isOsiPoint()) {
+ return;
+ }
+
+ masm.comment("emitDebugForceBailing");
+ const void* bailAfterCounterAddr =
+ gen->runtime->addressOfIonBailAfterCounter();
+
+ AllocatableGeneralRegisterSet regs(GeneralRegisterSet::All());
+
+ Label done, notBail;
+ masm.branch32(Assembler::Equal, AbsoluteAddress(bailAfterCounterAddr),
+ Imm32(0), &done);
+ {
+ Register temp = regs.takeAny();
+
+ masm.push(temp);
+ masm.load32(AbsoluteAddress(bailAfterCounterAddr), temp);
+ masm.sub32(Imm32(1), temp);
+ masm.store32(temp, AbsoluteAddress(bailAfterCounterAddr));
+
+ masm.branch32(Assembler::NotEqual, temp, Imm32(0), &notBail);
+ {
+ masm.pop(temp);
+ bailout(lir->snapshot());
+ }
+ masm.bind(&notBail);
+ masm.pop(temp);
+ }
+ masm.bind(&done);
+}
+#endif
+
+bool CodeGenerator::generateBody() {
+ JitSpewCont(JitSpew_Codegen, "\n");
+ AutoCreatedBy acb(masm, "CodeGenerator::generateBody");
+
+ JitSpew(JitSpew_Codegen, "==== BEGIN CodeGenerator::generateBody ====");
+ IonScriptCounts* counts = maybeCreateScriptCounts();
+
+ const bool compilingWasm = gen->compilingWasm();
+
+ for (size_t i = 0; i < graph.numBlocks(); i++) {
+ current = graph.getBlock(i);
+
+ // Don't emit any code for trivial blocks, containing just a goto. Such
+ // blocks are created to split critical edges, and if we didn't end up
+ // putting any instructions in them, we can skip them.
+ if (current->isTrivial()) {
+ continue;
+ }
+
+#ifdef JS_JITSPEW
+ const char* filename = nullptr;
+ size_t lineNumber = 0;
+ JS::LimitedColumnNumberOneOrigin columnNumber;
+ if (current->mir()->info().script()) {
+ filename = current->mir()->info().script()->filename();
+ if (current->mir()->pc()) {
+ lineNumber = PCToLineNumber(current->mir()->info().script(),
+ current->mir()->pc(), &columnNumber);
+ }
+ }
+ JitSpew(JitSpew_Codegen, "--------------------------------");
+ JitSpew(JitSpew_Codegen, "# block%zu %s:%zu:%u%s:", i,
+ filename ? filename : "?", lineNumber,
+ columnNumber.oneOriginValue(),
+ current->mir()->isLoopHeader() ? " (loop header)" : "");
+#endif
+
+ if (current->mir()->isLoopHeader() && compilingWasm) {
+ masm.nopAlign(CodeAlignment);
+ }
+
+ masm.bind(current->label());
+
+ mozilla::Maybe<ScriptCountBlockState> blockCounts;
+ if (counts) {
+ blockCounts.emplace(&counts->block(i), &masm);
+ if (!blockCounts->init()) {
+ return false;
+ }
+ }
+
+ for (LInstructionIterator iter = current->begin(); iter != current->end();
+ iter++) {
+ if (!alloc().ensureBallast()) {
+ return false;
+ }
+
+ perfSpewer_.recordInstruction(masm, *iter);
+#ifdef JS_JITSPEW
+ JitSpewStart(JitSpew_Codegen, " # LIR=%s",
+ iter->opName());
+ if (const char* extra = iter->getExtraName()) {
+ JitSpewCont(JitSpew_Codegen, ":%s", extra);
+ }
+ JitSpewFin(JitSpew_Codegen);
+#endif
+
+ if (counts) {
+ blockCounts->visitInstruction(*iter);
+ }
+
+#ifdef CHECK_OSIPOINT_REGISTERS
+ if (iter->safepoint() && !compilingWasm) {
+ resetOsiPointRegs(iter->safepoint());
+ }
+#endif
+
+ if (!compilingWasm) {
+ if (MDefinition* mir = iter->mirRaw()) {
+ if (!addNativeToBytecodeEntry(mir->trackedSite())) {
+ return false;
+ }
+ }
+ }
+
+ setElement(*iter); // needed to encode correct snapshot location.
+
+#ifdef DEBUG
+ emitDebugForceBailing(*iter);
+#endif
+
+ switch (iter->op()) {
+#ifndef JS_CODEGEN_NONE
+# define LIROP(op) \
+ case LNode::Opcode::op: \
+ visit##op(iter->to##op()); \
+ break;
+ LIR_OPCODE_LIST(LIROP)
+# undef LIROP
+#endif
+ case LNode::Opcode::Invalid:
+ default:
+ MOZ_CRASH("Invalid LIR op");
+ }
+
+#ifdef DEBUG
+ if (!counts) {
+ emitDebugResultChecks(*iter);
+ }
+#endif
+ }
+ if (masm.oom()) {
+ return false;
+ }
+ }
+
+ JitSpew(JitSpew_Codegen, "==== END CodeGenerator::generateBody ====\n");
+ return true;
+}
+
+// Out-of-line object allocation for LNewArray.
+class OutOfLineNewArray : public OutOfLineCodeBase<CodeGenerator> {
+ LNewArray* lir_;
+
+ public:
+ explicit OutOfLineNewArray(LNewArray* lir) : lir_(lir) {}
+
+ void accept(CodeGenerator* codegen) override {
+ codegen->visitOutOfLineNewArray(this);
+ }
+
+ LNewArray* lir() const { return lir_; }
+};
+
+void CodeGenerator::visitNewArrayCallVM(LNewArray* lir) {
+ Register objReg = ToRegister(lir->output());
+
+ MOZ_ASSERT(!lir->isCall());
+ saveLive(lir);
+
+ JSObject* templateObject = lir->mir()->templateObject();
+
+ if (templateObject) {
+ pushArg(ImmGCPtr(templateObject->shape()));
+ pushArg(Imm32(lir->mir()->length()));
+
+ using Fn = ArrayObject* (*)(JSContext*, uint32_t, Handle<Shape*>);
+ callVM<Fn, NewArrayWithShape>(lir);
+ } else {
+ pushArg(Imm32(GenericObject));
+ pushArg(Imm32(lir->mir()->length()));
+
+ using Fn = ArrayObject* (*)(JSContext*, uint32_t, NewObjectKind);
+ callVM<Fn, NewArrayOperation>(lir);
+ }
+
+ masm.storeCallPointerResult(objReg);
+
+ MOZ_ASSERT(!lir->safepoint()->liveRegs().has(objReg));
+ restoreLive(lir);
+}
+
+void CodeGenerator::visitAtan2D(LAtan2D* lir) {
+ FloatRegister y = ToFloatRegister(lir->y());
+ FloatRegister x = ToFloatRegister(lir->x());
+
+ using Fn = double (*)(double x, double y);
+ masm.setupAlignedABICall();
+ masm.passABIArg(y, ABIType::Float64);
+ masm.passABIArg(x, ABIType::Float64);
+ masm.callWithABI<Fn, ecmaAtan2>(ABIType::Float64);
+
+ MOZ_ASSERT(ToFloatRegister(lir->output()) == ReturnDoubleReg);
+}
+
+void CodeGenerator::visitHypot(LHypot* lir) {
+ uint32_t numArgs = lir->numArgs();
+ masm.setupAlignedABICall();
+
+ for (uint32_t i = 0; i < numArgs; ++i) {
+ masm.passABIArg(ToFloatRegister(lir->getOperand(i)), ABIType::Float64);
+ }
+
+ switch (numArgs) {
+ case 2: {
+ using Fn = double (*)(double x, double y);
+ masm.callWithABI<Fn, ecmaHypot>(ABIType::Float64);
+ break;
+ }
+ case 3: {
+ using Fn = double (*)(double x, double y, double z);
+ masm.callWithABI<Fn, hypot3>(ABIType::Float64);
+ break;
+ }
+ case 4: {
+ using Fn = double (*)(double x, double y, double z, double w);
+ masm.callWithABI<Fn, hypot4>(ABIType::Float64);
+ break;
+ }
+ default:
+ MOZ_CRASH("Unexpected number of arguments to hypot function.");
+ }
+ MOZ_ASSERT(ToFloatRegister(lir->output()) == ReturnDoubleReg);
+}
+
+void CodeGenerator::visitNewArray(LNewArray* lir) {
+ Register objReg = ToRegister(lir->output());
+ Register tempReg = ToRegister(lir->temp());
+ DebugOnly<uint32_t> length = lir->mir()->length();
+
+ MOZ_ASSERT(length <= NativeObject::MAX_DENSE_ELEMENTS_COUNT);
+
+ if (lir->mir()->isVMCall()) {
+ visitNewArrayCallVM(lir);
+ return;
+ }
+
+ OutOfLineNewArray* ool = new (alloc()) OutOfLineNewArray(lir);
+ addOutOfLineCode(ool, lir->mir());
+
+ TemplateObject templateObject(lir->mir()->templateObject());
+#ifdef DEBUG
+ size_t numInlineElements = gc::GetGCKindSlots(templateObject.getAllocKind()) -
+ ObjectElements::VALUES_PER_HEADER;
+ MOZ_ASSERT(length <= numInlineElements,
+ "Inline allocation only supports inline elements");
+#endif
+ masm.createGCObject(objReg, tempReg, templateObject,
+ lir->mir()->initialHeap(), ool->entry());
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitOutOfLineNewArray(OutOfLineNewArray* ool) {
+ visitNewArrayCallVM(ool->lir());
+ masm.jump(ool->rejoin());
+}
+
+void CodeGenerator::visitNewArrayDynamicLength(LNewArrayDynamicLength* lir) {
+ Register lengthReg = ToRegister(lir->length());
+ Register objReg = ToRegister(lir->output());
+ Register tempReg = ToRegister(lir->temp0());
+
+ JSObject* templateObject = lir->mir()->templateObject();
+ gc::Heap initialHeap = lir->mir()->initialHeap();
+
+ using Fn = ArrayObject* (*)(JSContext*, Handle<ArrayObject*>, int32_t length);
+ OutOfLineCode* ool = oolCallVM<Fn, ArrayConstructorOneArg>(
+ lir, ArgList(ImmGCPtr(templateObject), lengthReg),
+ StoreRegisterTo(objReg));
+
+ bool canInline = true;
+ size_t inlineLength = 0;
+ if (templateObject->as<ArrayObject>().hasFixedElements()) {
+ size_t numSlots =
+ gc::GetGCKindSlots(templateObject->asTenured().getAllocKind());
+ inlineLength = numSlots - ObjectElements::VALUES_PER_HEADER;
+ } else {
+ canInline = false;
+ }
+
+ if (canInline) {
+ // Try to do the allocation inline if the template object is big enough
+ // for the length in lengthReg. If the length is bigger we could still
+ // use the template object and not allocate the elements, but it's more
+ // efficient to do a single big allocation than (repeatedly) reallocating
+ // the array later on when filling it.
+ masm.branch32(Assembler::Above, lengthReg, Imm32(inlineLength),
+ ool->entry());
+
+ TemplateObject templateObj(templateObject);
+ masm.createGCObject(objReg, tempReg, templateObj, initialHeap,
+ ool->entry());
+
+ size_t lengthOffset = NativeObject::offsetOfFixedElements() +
+ ObjectElements::offsetOfLength();
+ masm.store32(lengthReg, Address(objReg, lengthOffset));
+ } else {
+ masm.jump(ool->entry());
+ }
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitNewIterator(LNewIterator* lir) {
+ Register objReg = ToRegister(lir->output());
+ Register tempReg = ToRegister(lir->temp0());
+
+ OutOfLineCode* ool;
+ switch (lir->mir()->type()) {
+ case MNewIterator::ArrayIterator: {
+ using Fn = ArrayIteratorObject* (*)(JSContext*);
+ ool = oolCallVM<Fn, NewArrayIterator>(lir, ArgList(),
+ StoreRegisterTo(objReg));
+ break;
+ }
+ case MNewIterator::StringIterator: {
+ using Fn = StringIteratorObject* (*)(JSContext*);
+ ool = oolCallVM<Fn, NewStringIterator>(lir, ArgList(),
+ StoreRegisterTo(objReg));
+ break;
+ }
+ case MNewIterator::RegExpStringIterator: {
+ using Fn = RegExpStringIteratorObject* (*)(JSContext*);
+ ool = oolCallVM<Fn, NewRegExpStringIterator>(lir, ArgList(),
+ StoreRegisterTo(objReg));
+ break;
+ }
+ default:
+ MOZ_CRASH("unexpected iterator type");
+ }
+
+ TemplateObject templateObject(lir->mir()->templateObject());
+ masm.createGCObject(objReg, tempReg, templateObject, gc::Heap::Default,
+ ool->entry());
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitNewTypedArray(LNewTypedArray* lir) {
+ Register objReg = ToRegister(lir->output());
+ Register tempReg = ToRegister(lir->temp0());
+ Register lengthReg = ToRegister(lir->temp1());
+ LiveRegisterSet liveRegs = liveVolatileRegs(lir);
+
+ JSObject* templateObject = lir->mir()->templateObject();
+ gc::Heap initialHeap = lir->mir()->initialHeap();
+
+ auto* ttemplate = &templateObject->as<FixedLengthTypedArrayObject>();
+
+ size_t n = ttemplate->length();
+ MOZ_ASSERT(n <= INT32_MAX,
+ "Template objects are only created for int32 lengths");
+
+ using Fn = TypedArrayObject* (*)(JSContext*, HandleObject, int32_t length);
+ OutOfLineCode* ool = oolCallVM<Fn, NewTypedArrayWithTemplateAndLength>(
+ lir, ArgList(ImmGCPtr(templateObject), Imm32(n)),
+ StoreRegisterTo(objReg));
+
+ TemplateObject templateObj(templateObject);
+ masm.createGCObject(objReg, tempReg, templateObj, initialHeap, ool->entry());
+
+ masm.initTypedArraySlots(objReg, tempReg, lengthReg, liveRegs, ool->entry(),
+ ttemplate, MacroAssembler::TypedArrayLength::Fixed);
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitNewTypedArrayDynamicLength(
+ LNewTypedArrayDynamicLength* lir) {
+ Register lengthReg = ToRegister(lir->length());
+ Register objReg = ToRegister(lir->output());
+ Register tempReg = ToRegister(lir->temp0());
+ LiveRegisterSet liveRegs = liveVolatileRegs(lir);
+
+ JSObject* templateObject = lir->mir()->templateObject();
+ gc::Heap initialHeap = lir->mir()->initialHeap();
+
+ auto* ttemplate = &templateObject->as<FixedLengthTypedArrayObject>();
+
+ using Fn = TypedArrayObject* (*)(JSContext*, HandleObject, int32_t length);
+ OutOfLineCode* ool = oolCallVM<Fn, NewTypedArrayWithTemplateAndLength>(
+ lir, ArgList(ImmGCPtr(templateObject), lengthReg),
+ StoreRegisterTo(objReg));
+
+ // Volatile |lengthReg| is saved across the ABI call in |initTypedArraySlots|.
+ MOZ_ASSERT_IF(lengthReg.volatile_(), liveRegs.has(lengthReg));
+
+ TemplateObject templateObj(templateObject);
+ masm.createGCObject(objReg, tempReg, templateObj, initialHeap, ool->entry());
+
+ masm.initTypedArraySlots(objReg, tempReg, lengthReg, liveRegs, ool->entry(),
+ ttemplate,
+ MacroAssembler::TypedArrayLength::Dynamic);
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitNewTypedArrayFromArray(LNewTypedArrayFromArray* lir) {
+ pushArg(ToRegister(lir->array()));
+ pushArg(ImmGCPtr(lir->mir()->templateObject()));
+
+ using Fn = TypedArrayObject* (*)(JSContext*, HandleObject, HandleObject);
+ callVM<Fn, js::NewTypedArrayWithTemplateAndArray>(lir);
+}
+
+void CodeGenerator::visitNewTypedArrayFromArrayBuffer(
+ LNewTypedArrayFromArrayBuffer* lir) {
+ pushArg(ToValue(lir, LNewTypedArrayFromArrayBuffer::LengthIndex));
+ pushArg(ToValue(lir, LNewTypedArrayFromArrayBuffer::ByteOffsetIndex));
+ pushArg(ToRegister(lir->arrayBuffer()));
+ pushArg(ImmGCPtr(lir->mir()->templateObject()));
+
+ using Fn = TypedArrayObject* (*)(JSContext*, HandleObject, HandleObject,
+ HandleValue, HandleValue);
+ callVM<Fn, js::NewTypedArrayWithTemplateAndBuffer>(lir);
+}
+
+void CodeGenerator::visitBindFunction(LBindFunction* lir) {
+ Register target = ToRegister(lir->target());
+ Register temp1 = ToRegister(lir->temp0());
+ Register temp2 = ToRegister(lir->temp1());
+
+ // Try to allocate a new BoundFunctionObject we can pass to the VM function.
+ // If this fails, we set temp1 to nullptr so we do the allocation in C++.
+ TemplateObject templateObject(lir->mir()->templateObject());
+ Label allocOk, allocFailed;
+ masm.createGCObject(temp1, temp2, templateObject, gc::Heap::Default,
+ &allocFailed);
+ masm.jump(&allocOk);
+
+ masm.bind(&allocFailed);
+ masm.movePtr(ImmWord(0), temp1);
+
+ masm.bind(&allocOk);
+
+ // Set temp2 to the address of the first argument on the stack.
+ // Note that the Value slots used for arguments are currently aligned for a
+ // JIT call, even though that's not strictly necessary for calling into C++.
+ uint32_t argc = lir->mir()->numStackArgs();
+ if (JitStackValueAlignment > 1) {
+ argc = AlignBytes(argc, JitStackValueAlignment);
+ }
+ uint32_t unusedStack = UnusedStackBytesForCall(argc);
+ masm.computeEffectiveAddress(Address(masm.getStackPointer(), unusedStack),
+ temp2);
+
+ pushArg(temp1);
+ pushArg(Imm32(lir->mir()->numStackArgs()));
+ pushArg(temp2);
+ pushArg(target);
+
+ using Fn = BoundFunctionObject* (*)(JSContext*, Handle<JSObject*>, Value*,
+ uint32_t, Handle<BoundFunctionObject*>);
+ callVM<Fn, js::BoundFunctionObject::functionBindImpl>(lir);
+}
+
+void CodeGenerator::visitNewBoundFunction(LNewBoundFunction* lir) {
+ Register output = ToRegister(lir->output());
+ Register temp = ToRegister(lir->temp0());
+
+ JSObject* templateObj = lir->mir()->templateObj();
+
+ using Fn = BoundFunctionObject* (*)(JSContext*, Handle<BoundFunctionObject*>);
+ OutOfLineCode* ool = oolCallVM<Fn, BoundFunctionObject::createWithTemplate>(
+ lir, ArgList(ImmGCPtr(templateObj)), StoreRegisterTo(output));
+
+ TemplateObject templateObject(templateObj);
+ masm.createGCObject(output, temp, templateObject, gc::Heap::Default,
+ ool->entry());
+
+ masm.bind(ool->rejoin());
+}
+
+// Out-of-line object allocation for JSOp::NewObject.
+class OutOfLineNewObject : public OutOfLineCodeBase<CodeGenerator> {
+ LNewObject* lir_;
+
+ public:
+ explicit OutOfLineNewObject(LNewObject* lir) : lir_(lir) {}
+
+ void accept(CodeGenerator* codegen) override {
+ codegen->visitOutOfLineNewObject(this);
+ }
+
+ LNewObject* lir() const { return lir_; }
+};
+
+void CodeGenerator::visitNewObjectVMCall(LNewObject* lir) {
+ Register objReg = ToRegister(lir->output());
+
+ MOZ_ASSERT(!lir->isCall());
+ saveLive(lir);
+
+ JSObject* templateObject = lir->mir()->templateObject();
+
+ // If we're making a new object with a class prototype (that is, an object
+ // that derives its class from its prototype instead of being
+ // PlainObject::class_'d) from self-hosted code, we need a different init
+ // function.
+ switch (lir->mir()->mode()) {
+ case MNewObject::ObjectLiteral: {
+ MOZ_ASSERT(!templateObject);
+ pushArg(ImmPtr(lir->mir()->resumePoint()->pc()));
+ pushArg(ImmGCPtr(lir->mir()->block()->info().script()));
+
+ using Fn = JSObject* (*)(JSContext*, HandleScript, const jsbytecode* pc);
+ callVM<Fn, NewObjectOperation>(lir);
+ break;
+ }
+ case MNewObject::ObjectCreate: {
+ pushArg(ImmGCPtr(templateObject));
+
+ using Fn = PlainObject* (*)(JSContext*, Handle<PlainObject*>);
+ callVM<Fn, ObjectCreateWithTemplate>(lir);
+ break;
+ }
+ }
+
+ masm.storeCallPointerResult(objReg);
+
+ MOZ_ASSERT(!lir->safepoint()->liveRegs().has(objReg));
+ restoreLive(lir);
+}
+
+static bool ShouldInitFixedSlots(LNewPlainObject* lir, const Shape* shape,
+ uint32_t nfixed) {
+ // Look for StoreFixedSlot instructions following an object allocation
+ // that write to this object before a GC is triggered or this object is
+ // passed to a VM call. If all fixed slots will be initialized, the
+ // allocation code doesn't need to set the slots to |undefined|.
+
+ if (nfixed == 0) {
+ return false;
+ }
+
+ // Keep track of the fixed slots that are initialized. initializedSlots is
+ // a bit mask with a bit for each slot.
+ MOZ_ASSERT(nfixed <= NativeObject::MAX_FIXED_SLOTS);
+ static_assert(NativeObject::MAX_FIXED_SLOTS <= 32,
+ "Slot bits must fit in 32 bits");
+ uint32_t initializedSlots = 0;
+ uint32_t numInitialized = 0;
+
+ MInstruction* allocMir = lir->mir();
+ MBasicBlock* block = allocMir->block();
+
+ // Skip the allocation instruction.
+ MInstructionIterator iter = block->begin(allocMir);
+ MOZ_ASSERT(*iter == allocMir);
+ iter++;
+
+ // Handle the leading shape guard, if present.
+ for (; iter != block->end(); iter++) {
+ if (iter->isConstant()) {
+ // This instruction won't trigger a GC or read object slots.
+ continue;
+ }
+ if (iter->isGuardShape()) {
+ auto* guard = iter->toGuardShape();
+ if (guard->object() != allocMir || guard->shape() != shape) {
+ return true;
+ }
+ allocMir = guard;
+ iter++;
+ }
+ break;
+ }
+
+ for (; iter != block->end(); iter++) {
+ if (iter->isConstant() || iter->isPostWriteBarrier()) {
+ // These instructions won't trigger a GC or read object slots.
+ continue;
+ }
+
+ if (iter->isStoreFixedSlot()) {
+ MStoreFixedSlot* store = iter->toStoreFixedSlot();
+ if (store->object() != allocMir) {
+ return true;
+ }
+
+ // We may not initialize this object slot on allocation, so the
+ // pre-barrier could read uninitialized memory. Simply disable
+ // the barrier for this store: the object was just initialized
+ // so the barrier is not necessary.
+ store->setNeedsBarrier(false);
+
+ uint32_t slot = store->slot();
+ MOZ_ASSERT(slot < nfixed);
+ if ((initializedSlots & (1 << slot)) == 0) {
+ numInitialized++;
+ initializedSlots |= (1 << slot);
+
+ if (numInitialized == nfixed) {
+ // All fixed slots will be initialized.
+ MOZ_ASSERT(mozilla::CountPopulation32(initializedSlots) == nfixed);
+ return false;
+ }
+ }
+ continue;
+ }
+
+ // Unhandled instruction, assume it bails or reads object slots.
+ return true;
+ }
+
+ MOZ_CRASH("Shouldn't get here");
+}
+
+void CodeGenerator::visitNewObject(LNewObject* lir) {
+ Register objReg = ToRegister(lir->output());
+ Register tempReg = ToRegister(lir->temp());
+
+ if (lir->mir()->isVMCall()) {
+ visitNewObjectVMCall(lir);
+ return;
+ }
+
+ OutOfLineNewObject* ool = new (alloc()) OutOfLineNewObject(lir);
+ addOutOfLineCode(ool, lir->mir());
+
+ TemplateObject templateObject(lir->mir()->templateObject());
+
+ masm.createGCObject(objReg, tempReg, templateObject,
+ lir->mir()->initialHeap(), ool->entry());
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitOutOfLineNewObject(OutOfLineNewObject* ool) {
+ visitNewObjectVMCall(ool->lir());
+ masm.jump(ool->rejoin());
+}
+
+void CodeGenerator::visitNewPlainObject(LNewPlainObject* lir) {
+ Register objReg = ToRegister(lir->output());
+ Register temp0Reg = ToRegister(lir->temp0());
+ Register temp1Reg = ToRegister(lir->temp1());
+ Register shapeReg = ToRegister(lir->temp2());
+
+ auto* mir = lir->mir();
+ const Shape* shape = mir->shape();
+ gc::Heap initialHeap = mir->initialHeap();
+ gc::AllocKind allocKind = mir->allocKind();
+
+ using Fn =
+ JSObject* (*)(JSContext*, Handle<SharedShape*>, gc::AllocKind, gc::Heap);
+ OutOfLineCode* ool = oolCallVM<Fn, NewPlainObjectOptimizedFallback>(
+ lir,
+ ArgList(ImmGCPtr(shape), Imm32(int32_t(allocKind)),
+ Imm32(int32_t(initialHeap))),
+ StoreRegisterTo(objReg));
+
+ bool initContents = ShouldInitFixedSlots(lir, shape, mir->numFixedSlots());
+
+ masm.movePtr(ImmGCPtr(shape), shapeReg);
+ masm.createPlainGCObject(
+ objReg, shapeReg, temp0Reg, temp1Reg, mir->numFixedSlots(),
+ mir->numDynamicSlots(), allocKind, initialHeap, ool->entry(),
+ AllocSiteInput(gc::CatchAllAllocSite::Optimized), initContents);
+
+#ifdef DEBUG
+ // ShouldInitFixedSlots expects that the leading GuardShape will never fail,
+ // so ensure the newly created object has the correct shape. Should the guard
+ // ever fail, we may end up with uninitialized fixed slots, which can confuse
+ // the GC.
+ Label ok;
+ masm.branchTestObjShape(Assembler::Equal, objReg, shape, temp0Reg, objReg,
+ &ok);
+ masm.assumeUnreachable("Newly created object has the correct shape");
+ masm.bind(&ok);
+#endif
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitNewArrayObject(LNewArrayObject* lir) {
+ Register objReg = ToRegister(lir->output());
+ Register temp0Reg = ToRegister(lir->temp0());
+ Register shapeReg = ToRegister(lir->temp1());
+
+ auto* mir = lir->mir();
+ uint32_t arrayLength = mir->length();
+
+ gc::AllocKind allocKind = GuessArrayGCKind(arrayLength);
+ MOZ_ASSERT(CanChangeToBackgroundAllocKind(allocKind, &ArrayObject::class_));
+ allocKind = ForegroundToBackgroundAllocKind(allocKind);
+
+ uint32_t slotCount = GetGCKindSlots(allocKind);
+ MOZ_ASSERT(slotCount >= ObjectElements::VALUES_PER_HEADER);
+ uint32_t arrayCapacity = slotCount - ObjectElements::VALUES_PER_HEADER;
+
+ const Shape* shape = mir->shape();
+
+ NewObjectKind objectKind =
+ mir->initialHeap() == gc::Heap::Tenured ? TenuredObject : GenericObject;
+
+ using Fn =
+ ArrayObject* (*)(JSContext*, uint32_t, gc::AllocKind, NewObjectKind);
+ OutOfLineCode* ool = oolCallVM<Fn, NewArrayObjectOptimizedFallback>(
+ lir,
+ ArgList(Imm32(arrayLength), Imm32(int32_t(allocKind)), Imm32(objectKind)),
+ StoreRegisterTo(objReg));
+
+ masm.movePtr(ImmPtr(shape), shapeReg);
+ masm.createArrayWithFixedElements(
+ objReg, shapeReg, temp0Reg, InvalidReg, arrayLength, arrayCapacity, 0, 0,
+ allocKind, mir->initialHeap(), ool->entry(),
+ AllocSiteInput(gc::CatchAllAllocSite::Optimized));
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitNewNamedLambdaObject(LNewNamedLambdaObject* lir) {
+ Register objReg = ToRegister(lir->output());
+ Register tempReg = ToRegister(lir->temp0());
+ const CompileInfo& info = lir->mir()->block()->info();
+
+ using Fn = js::NamedLambdaObject* (*)(JSContext*, HandleFunction);
+ OutOfLineCode* ool = oolCallVM<Fn, NamedLambdaObject::createWithoutEnclosing>(
+ lir, ArgList(info.funMaybeLazy()), StoreRegisterTo(objReg));
+
+ TemplateObject templateObject(lir->mir()->templateObj());
+
+ masm.createGCObject(objReg, tempReg, templateObject, gc::Heap::Default,
+ ool->entry());
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitNewCallObject(LNewCallObject* lir) {
+ Register objReg = ToRegister(lir->output());
+ Register tempReg = ToRegister(lir->temp0());
+
+ CallObject* templateObj = lir->mir()->templateObject();
+
+ using Fn = CallObject* (*)(JSContext*, Handle<SharedShape*>);
+ OutOfLineCode* ool = oolCallVM<Fn, CallObject::createWithShape>(
+ lir, ArgList(ImmGCPtr(templateObj->sharedShape())),
+ StoreRegisterTo(objReg));
+
+ // Inline call object creation, using the OOL path only for tricky cases.
+ TemplateObject templateObject(templateObj);
+ masm.createGCObject(objReg, tempReg, templateObject, gc::Heap::Default,
+ ool->entry());
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitNewStringObject(LNewStringObject* lir) {
+ Register input = ToRegister(lir->input());
+ Register output = ToRegister(lir->output());
+ Register temp = ToRegister(lir->temp0());
+
+ StringObject* templateObj = lir->mir()->templateObj();
+
+ using Fn = JSObject* (*)(JSContext*, HandleString);
+ OutOfLineCode* ool = oolCallVM<Fn, NewStringObject>(lir, ArgList(input),
+ StoreRegisterTo(output));
+
+ TemplateObject templateObject(templateObj);
+ masm.createGCObject(output, temp, templateObject, gc::Heap::Default,
+ ool->entry());
+
+ masm.loadStringLength(input, temp);
+
+ masm.storeValue(JSVAL_TYPE_STRING, input,
+ Address(output, StringObject::offsetOfPrimitiveValue()));
+ masm.storeValue(JSVAL_TYPE_INT32, temp,
+ Address(output, StringObject::offsetOfLength()));
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitInitElemGetterSetter(LInitElemGetterSetter* lir) {
+ Register obj = ToRegister(lir->object());
+ Register value = ToRegister(lir->value());
+
+ pushArg(value);
+ pushArg(ToValue(lir, LInitElemGetterSetter::IdIndex));
+ pushArg(obj);
+ pushArg(ImmPtr(lir->mir()->resumePoint()->pc()));
+
+ using Fn = bool (*)(JSContext*, jsbytecode*, HandleObject, HandleValue,
+ HandleObject);
+ callVM<Fn, InitElemGetterSetterOperation>(lir);
+}
+
+void CodeGenerator::visitMutateProto(LMutateProto* lir) {
+ Register objReg = ToRegister(lir->object());
+
+ pushArg(ToValue(lir, LMutateProto::ValueIndex));
+ pushArg(objReg);
+
+ using Fn =
+ bool (*)(JSContext* cx, Handle<PlainObject*> obj, HandleValue value);
+ callVM<Fn, MutatePrototype>(lir);
+}
+
+void CodeGenerator::visitInitPropGetterSetter(LInitPropGetterSetter* lir) {
+ Register obj = ToRegister(lir->object());
+ Register value = ToRegister(lir->value());
+
+ pushArg(value);
+ pushArg(ImmGCPtr(lir->mir()->name()));
+ pushArg(obj);
+ pushArg(ImmPtr(lir->mir()->resumePoint()->pc()));
+
+ using Fn = bool (*)(JSContext*, jsbytecode*, HandleObject,
+ Handle<PropertyName*>, HandleObject);
+ callVM<Fn, InitPropGetterSetterOperation>(lir);
+}
+
+void CodeGenerator::visitCreateThis(LCreateThis* lir) {
+ const LAllocation* callee = lir->callee();
+ const LAllocation* newTarget = lir->newTarget();
+
+ if (newTarget->isConstant()) {
+ pushArg(ImmGCPtr(&newTarget->toConstant()->toObject()));
+ } else {
+ pushArg(ToRegister(newTarget));
+ }
+
+ if (callee->isConstant()) {
+ pushArg(ImmGCPtr(&callee->toConstant()->toObject()));
+ } else {
+ pushArg(ToRegister(callee));
+ }
+
+ using Fn = bool (*)(JSContext* cx, HandleObject callee,
+ HandleObject newTarget, MutableHandleValue rval);
+ callVM<Fn, jit::CreateThisFromIon>(lir);
+}
+
+void CodeGenerator::visitCreateArgumentsObject(LCreateArgumentsObject* lir) {
+ // This should be getting constructed in the first block only, and not any OSR
+ // entry blocks.
+ MOZ_ASSERT(lir->mir()->block()->id() == 0);
+
+ Register callObj = ToRegister(lir->callObject());
+ Register temp0 = ToRegister(lir->temp0());
+ Label done;
+
+ if (ArgumentsObject* templateObj = lir->mir()->templateObject()) {
+ Register objTemp = ToRegister(lir->temp1());
+ Register cxTemp = ToRegister(lir->temp2());
+
+ masm.Push(callObj);
+
+ // Try to allocate an arguments object. This will leave the reserved
+ // slots uninitialized, so it's important we don't GC until we
+ // initialize these slots in ArgumentsObject::finishForIonPure.
+ Label failure;
+ TemplateObject templateObject(templateObj);
+ masm.createGCObject(objTemp, temp0, templateObject, gc::Heap::Default,
+ &failure,
+ /* initContents = */ false);
+
+ masm.moveStackPtrTo(temp0);
+ masm.addPtr(Imm32(masm.framePushed()), temp0);
+
+ using Fn = ArgumentsObject* (*)(JSContext* cx, jit::JitFrameLayout* frame,
+ JSObject* scopeChain, ArgumentsObject* obj);
+ masm.setupAlignedABICall();
+ masm.loadJSContext(cxTemp);
+ masm.passABIArg(cxTemp);
+ masm.passABIArg(temp0);
+ masm.passABIArg(callObj);
+ masm.passABIArg(objTemp);
+
+ masm.callWithABI<Fn, ArgumentsObject::finishForIonPure>();
+ masm.branchTestPtr(Assembler::Zero, ReturnReg, ReturnReg, &failure);
+
+ // Discard saved callObj on the stack.
+ masm.addToStackPtr(Imm32(sizeof(uintptr_t)));
+ masm.jump(&done);
+
+ masm.bind(&failure);
+ masm.Pop(callObj);
+ }
+
+ masm.moveStackPtrTo(temp0);
+ masm.addPtr(Imm32(frameSize()), temp0);
+
+ pushArg(callObj);
+ pushArg(temp0);
+
+ using Fn = ArgumentsObject* (*)(JSContext*, JitFrameLayout*, HandleObject);
+ callVM<Fn, ArgumentsObject::createForIon>(lir);
+
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitCreateInlinedArgumentsObject(
+ LCreateInlinedArgumentsObject* lir) {
+ Register callObj = ToRegister(lir->getCallObject());
+ Register callee = ToRegister(lir->getCallee());
+ Register argsAddress = ToRegister(lir->temp1());
+ Register argsObj = ToRegister(lir->temp2());
+
+ // TODO: Do we have to worry about alignment here?
+
+ // Create a contiguous array of values for ArgumentsObject::create
+ // by pushing the arguments onto the stack in reverse order.
+ uint32_t argc = lir->mir()->numActuals();
+ for (uint32_t i = 0; i < argc; i++) {
+ uint32_t argNum = argc - i - 1;
+ uint32_t index = LCreateInlinedArgumentsObject::ArgIndex(argNum);
+ ConstantOrRegister arg =
+ toConstantOrRegister(lir, index, lir->mir()->getArg(argNum)->type());
+ masm.Push(arg);
+ }
+ masm.moveStackPtrTo(argsAddress);
+
+ Label done;
+ if (ArgumentsObject* templateObj = lir->mir()->templateObject()) {
+ LiveRegisterSet liveRegs;
+ liveRegs.add(callObj);
+ liveRegs.add(callee);
+
+ masm.PushRegsInMask(liveRegs);
+
+ // We are free to clobber all registers, as LCreateInlinedArgumentsObject is
+ // a call instruction.
+ AllocatableGeneralRegisterSet allRegs(GeneralRegisterSet::All());
+ allRegs.take(callObj);
+ allRegs.take(callee);
+ allRegs.take(argsObj);
+ allRegs.take(argsAddress);
+
+ Register temp3 = allRegs.takeAny();
+ Register temp4 = allRegs.takeAny();
+
+ // Try to allocate an arguments object. This will leave the reserved slots
+ // uninitialized, so it's important we don't GC until we initialize these
+ // slots in ArgumentsObject::finishForIonPure.
+ Label failure;
+ TemplateObject templateObject(templateObj);
+ masm.createGCObject(argsObj, temp3, templateObject, gc::Heap::Default,
+ &failure,
+ /* initContents = */ false);
+
+ Register numActuals = temp3;
+ masm.move32(Imm32(argc), numActuals);
+
+ using Fn = ArgumentsObject* (*)(JSContext*, JSObject*, JSFunction*, Value*,
+ uint32_t, ArgumentsObject*);
+ masm.setupAlignedABICall();
+ masm.loadJSContext(temp4);
+ masm.passABIArg(temp4);
+ masm.passABIArg(callObj);
+ masm.passABIArg(callee);
+ masm.passABIArg(argsAddress);
+ masm.passABIArg(numActuals);
+ masm.passABIArg(argsObj);
+
+ masm.callWithABI<Fn, ArgumentsObject::finishInlineForIonPure>();
+ masm.branchTestPtr(Assembler::Zero, ReturnReg, ReturnReg, &failure);
+
+ // Discard saved callObj, callee, and values array on the stack.
+ masm.addToStackPtr(
+ Imm32(MacroAssembler::PushRegsInMaskSizeInBytes(liveRegs) +
+ argc * sizeof(Value)));
+ masm.jump(&done);
+
+ masm.bind(&failure);
+ masm.PopRegsInMask(liveRegs);
+
+ // Reload argsAddress because it may have been overridden.
+ masm.moveStackPtrTo(argsAddress);
+ }
+
+ pushArg(Imm32(argc));
+ pushArg(callObj);
+ pushArg(callee);
+ pushArg(argsAddress);
+
+ using Fn = ArgumentsObject* (*)(JSContext*, Value*, HandleFunction,
+ HandleObject, uint32_t);
+ callVM<Fn, ArgumentsObject::createForInlinedIon>(lir);
+
+ // Discard the array of values.
+ masm.freeStack(argc * sizeof(Value));
+
+ masm.bind(&done);
+}
+
+template <class GetInlinedArgument>
+void CodeGenerator::emitGetInlinedArgument(GetInlinedArgument* lir,
+ Register index,
+ ValueOperand output) {
+ uint32_t numActuals = lir->mir()->numActuals();
+ MOZ_ASSERT(numActuals <= ArgumentsObject::MaxInlinedArgs);
+
+ // The index has already been bounds-checked, so the code we
+ // generate here should be unreachable. We can end up in this
+ // situation in self-hosted code using GetArgument(), or in a
+ // monomorphically inlined function if we've inlined some CacheIR
+ // that was created for a different caller.
+ if (numActuals == 0) {
+ masm.assumeUnreachable("LGetInlinedArgument: invalid index");
+ return;
+ }
+
+ // Check the first n-1 possible indices.
+ Label done;
+ for (uint32_t i = 0; i < numActuals - 1; i++) {
+ Label skip;
+ ConstantOrRegister arg = toConstantOrRegister(
+ lir, GetInlinedArgument::ArgIndex(i), lir->mir()->getArg(i)->type());
+ masm.branch32(Assembler::NotEqual, index, Imm32(i), &skip);
+ masm.moveValue(arg, output);
+
+ masm.jump(&done);
+ masm.bind(&skip);
+ }
+
+#ifdef DEBUG
+ Label skip;
+ masm.branch32(Assembler::Equal, index, Imm32(numActuals - 1), &skip);
+ masm.assumeUnreachable("LGetInlinedArgument: invalid index");
+ masm.bind(&skip);
+#endif
+
+ // The index has already been bounds-checked, so load the last argument.
+ uint32_t lastIdx = numActuals - 1;
+ ConstantOrRegister arg =
+ toConstantOrRegister(lir, GetInlinedArgument::ArgIndex(lastIdx),
+ lir->mir()->getArg(lastIdx)->type());
+ masm.moveValue(arg, output);
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitGetInlinedArgument(LGetInlinedArgument* lir) {
+ Register index = ToRegister(lir->getIndex());
+ ValueOperand output = ToOutValue(lir);
+
+ emitGetInlinedArgument(lir, index, output);
+}
+
+void CodeGenerator::visitGetInlinedArgumentHole(LGetInlinedArgumentHole* lir) {
+ Register index = ToRegister(lir->getIndex());
+ ValueOperand output = ToOutValue(lir);
+
+ uint32_t numActuals = lir->mir()->numActuals();
+
+ if (numActuals == 0) {
+ bailoutCmp32(Assembler::LessThan, index, Imm32(0), lir->snapshot());
+ masm.moveValue(UndefinedValue(), output);
+ return;
+ }
+
+ Label outOfBounds, done;
+ masm.branch32(Assembler::AboveOrEqual, index, Imm32(numActuals),
+ &outOfBounds);
+
+ emitGetInlinedArgument(lir, index, output);
+ masm.jump(&done);
+
+ masm.bind(&outOfBounds);
+ bailoutCmp32(Assembler::LessThan, index, Imm32(0), lir->snapshot());
+ masm.moveValue(UndefinedValue(), output);
+
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitGetArgumentsObjectArg(LGetArgumentsObjectArg* lir) {
+ Register temp = ToRegister(lir->temp0());
+ Register argsObj = ToRegister(lir->argsObject());
+ ValueOperand out = ToOutValue(lir);
+
+ masm.loadPrivate(Address(argsObj, ArgumentsObject::getDataSlotOffset()),
+ temp);
+ Address argAddr(temp, ArgumentsData::offsetOfArgs() +
+ lir->mir()->argno() * sizeof(Value));
+ masm.loadValue(argAddr, out);
+#ifdef DEBUG
+ Label success;
+ masm.branchTestMagic(Assembler::NotEqual, out, &success);
+ masm.assumeUnreachable(
+ "Result from ArgumentObject shouldn't be JSVAL_TYPE_MAGIC.");
+ masm.bind(&success);
+#endif
+}
+
+void CodeGenerator::visitSetArgumentsObjectArg(LSetArgumentsObjectArg* lir) {
+ Register temp = ToRegister(lir->getTemp(0));
+ Register argsObj = ToRegister(lir->argsObject());
+ ValueOperand value = ToValue(lir, LSetArgumentsObjectArg::ValueIndex);
+
+ masm.loadPrivate(Address(argsObj, ArgumentsObject::getDataSlotOffset()),
+ temp);
+ Address argAddr(temp, ArgumentsData::offsetOfArgs() +
+ lir->mir()->argno() * sizeof(Value));
+ emitPreBarrier(argAddr);
+#ifdef DEBUG
+ Label success;
+ masm.branchTestMagic(Assembler::NotEqual, argAddr, &success);
+ masm.assumeUnreachable(
+ "Result in ArgumentObject shouldn't be JSVAL_TYPE_MAGIC.");
+ masm.bind(&success);
+#endif
+ masm.storeValue(value, argAddr);
+}
+
+void CodeGenerator::visitLoadArgumentsObjectArg(LLoadArgumentsObjectArg* lir) {
+ Register temp = ToRegister(lir->temp0());
+ Register argsObj = ToRegister(lir->argsObject());
+ Register index = ToRegister(lir->index());
+ ValueOperand out = ToOutValue(lir);
+
+ Label bail;
+ masm.loadArgumentsObjectElement(argsObj, index, out, temp, &bail);
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+void CodeGenerator::visitLoadArgumentsObjectArgHole(
+ LLoadArgumentsObjectArgHole* lir) {
+ Register temp = ToRegister(lir->temp0());
+ Register argsObj = ToRegister(lir->argsObject());
+ Register index = ToRegister(lir->index());
+ ValueOperand out = ToOutValue(lir);
+
+ Label bail;
+ masm.loadArgumentsObjectElementHole(argsObj, index, out, temp, &bail);
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+void CodeGenerator::visitInArgumentsObjectArg(LInArgumentsObjectArg* lir) {
+ Register temp = ToRegister(lir->temp0());
+ Register argsObj = ToRegister(lir->argsObject());
+ Register index = ToRegister(lir->index());
+ Register out = ToRegister(lir->output());
+
+ Label bail;
+ masm.loadArgumentsObjectElementExists(argsObj, index, out, temp, &bail);
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+void CodeGenerator::visitArgumentsObjectLength(LArgumentsObjectLength* lir) {
+ Register argsObj = ToRegister(lir->argsObject());
+ Register out = ToRegister(lir->output());
+
+ Label bail;
+ masm.loadArgumentsObjectLength(argsObj, out, &bail);
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+void CodeGenerator::visitArrayFromArgumentsObject(
+ LArrayFromArgumentsObject* lir) {
+ pushArg(ToRegister(lir->argsObject()));
+
+ using Fn = ArrayObject* (*)(JSContext*, Handle<ArgumentsObject*>);
+ callVM<Fn, js::ArrayFromArgumentsObject>(lir);
+}
+
+void CodeGenerator::visitGuardArgumentsObjectFlags(
+ LGuardArgumentsObjectFlags* lir) {
+ Register argsObj = ToRegister(lir->argsObject());
+ Register temp = ToRegister(lir->temp0());
+
+ Label bail;
+ masm.branchTestArgumentsObjectFlags(argsObj, temp, lir->mir()->flags(),
+ Assembler::NonZero, &bail);
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+void CodeGenerator::visitBoundFunctionNumArgs(LBoundFunctionNumArgs* lir) {
+ Register obj = ToRegister(lir->object());
+ Register output = ToRegister(lir->output());
+
+ masm.unboxInt32(Address(obj, BoundFunctionObject::offsetOfFlagsSlot()),
+ output);
+ masm.rshift32(Imm32(BoundFunctionObject::NumBoundArgsShift), output);
+}
+
+void CodeGenerator::visitGuardBoundFunctionIsConstructor(
+ LGuardBoundFunctionIsConstructor* lir) {
+ Register obj = ToRegister(lir->object());
+
+ Label bail;
+ Address flagsSlot(obj, BoundFunctionObject::offsetOfFlagsSlot());
+ masm.branchTest32(Assembler::Zero, flagsSlot,
+ Imm32(BoundFunctionObject::IsConstructorFlag), &bail);
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+void CodeGenerator::visitReturnFromCtor(LReturnFromCtor* lir) {
+ ValueOperand value = ToValue(lir, LReturnFromCtor::ValueIndex);
+ Register obj = ToRegister(lir->object());
+ Register output = ToRegister(lir->output());
+
+ Label valueIsObject, end;
+
+ masm.branchTestObject(Assembler::Equal, value, &valueIsObject);
+
+ // Value is not an object. Return that other object.
+ masm.movePtr(obj, output);
+ masm.jump(&end);
+
+ // Value is an object. Return unbox(Value).
+ masm.bind(&valueIsObject);
+ Register payload = masm.extractObject(value, output);
+ if (payload != output) {
+ masm.movePtr(payload, output);
+ }
+
+ masm.bind(&end);
+}
+
+class OutOfLineBoxNonStrictThis : public OutOfLineCodeBase<CodeGenerator> {
+ LBoxNonStrictThis* ins_;
+
+ public:
+ explicit OutOfLineBoxNonStrictThis(LBoxNonStrictThis* ins) : ins_(ins) {}
+ void accept(CodeGenerator* codegen) override {
+ codegen->visitOutOfLineBoxNonStrictThis(this);
+ }
+ LBoxNonStrictThis* ins() const { return ins_; }
+};
+
+void CodeGenerator::visitBoxNonStrictThis(LBoxNonStrictThis* lir) {
+ ValueOperand value = ToValue(lir, LBoxNonStrictThis::ValueIndex);
+ Register output = ToRegister(lir->output());
+
+ auto* ool = new (alloc()) OutOfLineBoxNonStrictThis(lir);
+ addOutOfLineCode(ool, lir->mir());
+
+ masm.fallibleUnboxObject(value, output, ool->entry());
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitOutOfLineBoxNonStrictThis(
+ OutOfLineBoxNonStrictThis* ool) {
+ LBoxNonStrictThis* lir = ool->ins();
+
+ ValueOperand value = ToValue(lir, LBoxNonStrictThis::ValueIndex);
+ Register output = ToRegister(lir->output());
+
+ Label notNullOrUndefined;
+ {
+ Label isNullOrUndefined;
+ ScratchTagScope tag(masm, value);
+ masm.splitTagForTest(value, tag);
+ masm.branchTestUndefined(Assembler::Equal, tag, &isNullOrUndefined);
+ masm.branchTestNull(Assembler::NotEqual, tag, &notNullOrUndefined);
+ masm.bind(&isNullOrUndefined);
+ masm.movePtr(ImmGCPtr(lir->mir()->globalThis()), output);
+ masm.jump(ool->rejoin());
+ }
+
+ masm.bind(&notNullOrUndefined);
+
+ saveLive(lir);
+
+ pushArg(value);
+ using Fn = JSObject* (*)(JSContext*, HandleValue);
+ callVM<Fn, BoxNonStrictThis>(lir);
+
+ StoreRegisterTo(output).generate(this);
+ restoreLiveIgnore(lir, StoreRegisterTo(output).clobbered());
+
+ masm.jump(ool->rejoin());
+}
+
+void CodeGenerator::visitImplicitThis(LImplicitThis* lir) {
+ pushArg(ImmGCPtr(lir->mir()->name()));
+ pushArg(ToRegister(lir->env()));
+
+ using Fn = bool (*)(JSContext*, HandleObject, Handle<PropertyName*>,
+ MutableHandleValue);
+ callVM<Fn, ImplicitThisOperation>(lir);
+}
+
+void CodeGenerator::visitArrayLength(LArrayLength* lir) {
+ Register elements = ToRegister(lir->elements());
+ Register output = ToRegister(lir->output());
+
+ Address length(elements, ObjectElements::offsetOfLength());
+ masm.load32(length, output);
+
+ // Bail out if the length doesn't fit in int32.
+ bailoutTest32(Assembler::Signed, output, output, lir->snapshot());
+}
+
+static void SetLengthFromIndex(MacroAssembler& masm, const LAllocation* index,
+ const Address& length) {
+ if (index->isConstant()) {
+ masm.store32(Imm32(ToInt32(index) + 1), length);
+ } else {
+ Register newLength = ToRegister(index);
+ masm.add32(Imm32(1), newLength);
+ masm.store32(newLength, length);
+ masm.sub32(Imm32(1), newLength);
+ }
+}
+
+void CodeGenerator::visitSetArrayLength(LSetArrayLength* lir) {
+ Address length(ToRegister(lir->elements()), ObjectElements::offsetOfLength());
+ SetLengthFromIndex(masm, lir->index(), length);
+}
+
+void CodeGenerator::visitFunctionLength(LFunctionLength* lir) {
+ Register function = ToRegister(lir->function());
+ Register output = ToRegister(lir->output());
+
+ Label bail;
+
+ // Get the JSFunction flags.
+ masm.load32(Address(function, JSFunction::offsetOfFlagsAndArgCount()),
+ output);
+
+ // Functions with a SelfHostedLazyScript must be compiled with the slow-path
+ // before the function length is known. If the length was previously resolved,
+ // the length property may be shadowed.
+ masm.branchTest32(
+ Assembler::NonZero, output,
+ Imm32(FunctionFlags::SELFHOSTLAZY | FunctionFlags::RESOLVED_LENGTH),
+ &bail);
+
+ masm.loadFunctionLength(function, output, output, &bail);
+
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+void CodeGenerator::visitFunctionName(LFunctionName* lir) {
+ Register function = ToRegister(lir->function());
+ Register output = ToRegister(lir->output());
+
+ Label bail;
+
+ const JSAtomState& names = gen->runtime->names();
+ masm.loadFunctionName(function, output, ImmGCPtr(names.empty_), &bail);
+
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+template <class OrderedHashTable>
+static void RangeFront(MacroAssembler&, Register, Register, Register);
+
+template <>
+void RangeFront<ValueMap>(MacroAssembler& masm, Register range, Register i,
+ Register front) {
+ masm.loadPtr(Address(range, ValueMap::Range::offsetOfHashTable()), front);
+ masm.loadPtr(Address(front, ValueMap::offsetOfImplData()), front);
+
+ MOZ_ASSERT(ValueMap::offsetOfImplDataElement() == 0,
+ "offsetof(Data, element) is 0");
+ static_assert(ValueMap::sizeofImplData() == 24, "sizeof(Data) is 24");
+ masm.mulBy3(i, i);
+ masm.lshiftPtr(Imm32(3), i);
+ masm.addPtr(i, front);
+}
+
+template <>
+void RangeFront<ValueSet>(MacroAssembler& masm, Register range, Register i,
+ Register front) {
+ masm.loadPtr(Address(range, ValueSet::Range::offsetOfHashTable()), front);
+ masm.loadPtr(Address(front, ValueSet::offsetOfImplData()), front);
+
+ MOZ_ASSERT(ValueSet::offsetOfImplDataElement() == 0,
+ "offsetof(Data, element) is 0");
+ static_assert(ValueSet::sizeofImplData() == 16, "sizeof(Data) is 16");
+ masm.lshiftPtr(Imm32(4), i);
+ masm.addPtr(i, front);
+}
+
+template <class OrderedHashTable>
+static void RangePopFront(MacroAssembler& masm, Register range, Register front,
+ Register dataLength, Register temp) {
+ Register i = temp;
+
+ masm.add32(Imm32(1),
+ Address(range, OrderedHashTable::Range::offsetOfCount()));
+
+ masm.load32(Address(range, OrderedHashTable::Range::offsetOfI()), i);
+
+ Label done, seek;
+ masm.bind(&seek);
+ masm.add32(Imm32(1), i);
+ masm.branch32(Assembler::AboveOrEqual, i, dataLength, &done);
+
+ // We can add sizeof(Data) to |front| to select the next element, because
+ // |front| and |range.ht.data[i]| point to the same location.
+ MOZ_ASSERT(OrderedHashTable::offsetOfImplDataElement() == 0,
+ "offsetof(Data, element) is 0");
+ masm.addPtr(Imm32(OrderedHashTable::sizeofImplData()), front);
+
+ masm.branchTestMagic(Assembler::Equal,
+ Address(front, OrderedHashTable::offsetOfEntryKey()),
+ JS_HASH_KEY_EMPTY, &seek);
+
+ masm.bind(&done);
+ masm.store32(i, Address(range, OrderedHashTable::Range::offsetOfI()));
+}
+
+template <class OrderedHashTable>
+static inline void RangeDestruct(MacroAssembler& masm, Register iter,
+ Register range, Register temp0,
+ Register temp1) {
+ Register next = temp0;
+ Register prevp = temp1;
+
+ masm.loadPtr(Address(range, OrderedHashTable::Range::offsetOfNext()), next);
+ masm.loadPtr(Address(range, OrderedHashTable::Range::offsetOfPrevP()), prevp);
+ masm.storePtr(next, Address(prevp, 0));
+
+ Label hasNoNext;
+ masm.branchTestPtr(Assembler::Zero, next, next, &hasNoNext);
+
+ masm.storePtr(prevp, Address(next, OrderedHashTable::Range::offsetOfPrevP()));
+
+ masm.bind(&hasNoNext);
+
+ Label nurseryAllocated;
+ masm.branchPtrInNurseryChunk(Assembler::Equal, iter, temp0,
+ &nurseryAllocated);
+
+ masm.callFreeStub(range);
+
+ masm.bind(&nurseryAllocated);
+}
+
+template <>
+void CodeGenerator::emitLoadIteratorValues<ValueMap>(Register result,
+ Register temp,
+ Register front) {
+ size_t elementsOffset = NativeObject::offsetOfFixedElements();
+
+ Address keyAddress(front, ValueMap::Entry::offsetOfKey());
+ Address valueAddress(front, ValueMap::Entry::offsetOfValue());
+ Address keyElemAddress(result, elementsOffset);
+ Address valueElemAddress(result, elementsOffset + sizeof(Value));
+ masm.guardedCallPreBarrier(keyElemAddress, MIRType::Value);
+ masm.guardedCallPreBarrier(valueElemAddress, MIRType::Value);
+ masm.storeValue(keyAddress, keyElemAddress, temp);
+ masm.storeValue(valueAddress, valueElemAddress, temp);
+
+ Label emitBarrier, skipBarrier;
+ masm.branchValueIsNurseryCell(Assembler::Equal, keyAddress, temp,
+ &emitBarrier);
+ masm.branchValueIsNurseryCell(Assembler::NotEqual, valueAddress, temp,
+ &skipBarrier);
+ {
+ masm.bind(&emitBarrier);
+ saveVolatile(temp);
+ emitPostWriteBarrier(result);
+ restoreVolatile(temp);
+ }
+ masm.bind(&skipBarrier);
+}
+
+template <>
+void CodeGenerator::emitLoadIteratorValues<ValueSet>(Register result,
+ Register temp,
+ Register front) {
+ size_t elementsOffset = NativeObject::offsetOfFixedElements();
+
+ Address keyAddress(front, ValueSet::offsetOfEntryKey());
+ Address keyElemAddress(result, elementsOffset);
+ masm.guardedCallPreBarrier(keyElemAddress, MIRType::Value);
+ masm.storeValue(keyAddress, keyElemAddress, temp);
+
+ Label skipBarrier;
+ masm.branchValueIsNurseryCell(Assembler::NotEqual, keyAddress, temp,
+ &skipBarrier);
+ {
+ saveVolatile(temp);
+ emitPostWriteBarrier(result);
+ restoreVolatile(temp);
+ }
+ masm.bind(&skipBarrier);
+}
+
+template <class IteratorObject, class OrderedHashTable>
+void CodeGenerator::emitGetNextEntryForIterator(LGetNextEntryForIterator* lir) {
+ Register iter = ToRegister(lir->iter());
+ Register result = ToRegister(lir->result());
+ Register temp = ToRegister(lir->temp0());
+ Register dataLength = ToRegister(lir->temp1());
+ Register range = ToRegister(lir->temp2());
+ Register output = ToRegister(lir->output());
+
+#ifdef DEBUG
+ // Self-hosted code is responsible for ensuring GetNextEntryForIterator is
+ // only called with the correct iterator class. Assert here all self-
+ // hosted callers of GetNextEntryForIterator perform this class check.
+ // No Spectre mitigations are needed because this is DEBUG-only code.
+ Label success;
+ masm.branchTestObjClassNoSpectreMitigations(
+ Assembler::Equal, iter, &IteratorObject::class_, temp, &success);
+ masm.assumeUnreachable("Iterator object should have the correct class.");
+ masm.bind(&success);
+#endif
+
+ masm.loadPrivate(Address(iter, NativeObject::getFixedSlotOffset(
+ IteratorObject::RangeSlot)),
+ range);
+
+ Label iterAlreadyDone, iterDone, done;
+ masm.branchTestPtr(Assembler::Zero, range, range, &iterAlreadyDone);
+
+ masm.load32(Address(range, OrderedHashTable::Range::offsetOfI()), temp);
+ masm.loadPtr(Address(range, OrderedHashTable::Range::offsetOfHashTable()),
+ dataLength);
+ masm.load32(Address(dataLength, OrderedHashTable::offsetOfImplDataLength()),
+ dataLength);
+ masm.branch32(Assembler::AboveOrEqual, temp, dataLength, &iterDone);
+ {
+ masm.Push(iter);
+
+ Register front = iter;
+ RangeFront<OrderedHashTable>(masm, range, temp, front);
+
+ emitLoadIteratorValues<OrderedHashTable>(result, temp, front);
+
+ RangePopFront<OrderedHashTable>(masm, range, front, dataLength, temp);
+
+ masm.Pop(iter);
+ masm.move32(Imm32(0), output);
+ }
+ masm.jump(&done);
+ {
+ masm.bind(&iterDone);
+
+ RangeDestruct<OrderedHashTable>(masm, iter, range, temp, dataLength);
+
+ masm.storeValue(PrivateValue(nullptr),
+ Address(iter, NativeObject::getFixedSlotOffset(
+ IteratorObject::RangeSlot)));
+
+ masm.bind(&iterAlreadyDone);
+
+ masm.move32(Imm32(1), output);
+ }
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitGetNextEntryForIterator(
+ LGetNextEntryForIterator* lir) {
+ if (lir->mir()->mode() == MGetNextEntryForIterator::Map) {
+ emitGetNextEntryForIterator<MapIteratorObject, ValueMap>(lir);
+ } else {
+ MOZ_ASSERT(lir->mir()->mode() == MGetNextEntryForIterator::Set);
+ emitGetNextEntryForIterator<SetIteratorObject, ValueSet>(lir);
+ }
+}
+
+// The point of these is to inform Ion of where these values already are; they
+// don't normally generate (much) code.
+void CodeGenerator::visitWasmRegisterPairResult(LWasmRegisterPairResult* lir) {}
+void CodeGenerator::visitWasmStackResult(LWasmStackResult* lir) {}
+void CodeGenerator::visitWasmStackResult64(LWasmStackResult64* lir) {}
+
+void CodeGenerator::visitWasmStackResultArea(LWasmStackResultArea* lir) {
+ LAllocation* output = lir->getDef(0)->output();
+ MOZ_ASSERT(output->isStackArea());
+ bool tempInit = false;
+ for (auto iter = output->toStackArea()->results(); iter; iter.next()) {
+ // Zero out ref stack results.
+ if (iter.isWasmAnyRef()) {
+ Register temp = ToRegister(lir->temp0());
+ if (!tempInit) {
+ masm.xorPtr(temp, temp);
+ tempInit = true;
+ }
+ masm.storePtr(temp, ToAddress(iter.alloc()));
+ }
+ }
+}
+
+void CodeGenerator::visitWasmRegisterResult(LWasmRegisterResult* lir) {
+#ifdef JS_64BIT
+ if (MWasmRegisterResult* mir = lir->mir()) {
+ if (mir->type() == MIRType::Int32) {
+ masm.widenInt32(ToRegister(lir->output()));
+ }
+ }
+#endif
+}
+
+void CodeGenerator::visitWasmCall(LWasmCall* lir) {
+ const MWasmCallBase* callBase = lir->callBase();
+ bool isReturnCall = lir->isReturnCall();
+
+ // If this call is in Wasm try code block, initialise a wasm::TryNote for this
+ // call.
+ bool inTry = callBase->inTry();
+ if (inTry) {
+ size_t tryNoteIndex = callBase->tryNoteIndex();
+ wasm::TryNoteVector& tryNotes = masm.tryNotes();
+ wasm::TryNote& tryNote = tryNotes[tryNoteIndex];
+ tryNote.setTryBodyBegin(masm.currentOffset());
+ }
+
+ MOZ_ASSERT((sizeof(wasm::Frame) + masm.framePushed()) % WasmStackAlignment ==
+ 0);
+ static_assert(
+ WasmStackAlignment >= ABIStackAlignment &&
+ WasmStackAlignment % ABIStackAlignment == 0,
+ "The wasm stack alignment should subsume the ABI-required alignment");
+
+#ifdef DEBUG
+ Label ok;
+ masm.branchTestStackPtr(Assembler::Zero, Imm32(WasmStackAlignment - 1), &ok);
+ masm.breakpoint();
+ masm.bind(&ok);
+#endif
+
+ // LWasmCallBase::isCallPreserved() assumes that all MWasmCalls preserve the
+ // instance and pinned regs. The only case where where we don't have to
+ // reload the instance and pinned regs is when the callee preserves them.
+ bool reloadRegs = true;
+ bool switchRealm = true;
+
+ const wasm::CallSiteDesc& desc = callBase->desc();
+ const wasm::CalleeDesc& callee = callBase->callee();
+ CodeOffset retOffset;
+ CodeOffset secondRetOffset;
+ switch (callee.which()) {
+ case wasm::CalleeDesc::Func:
+#ifdef ENABLE_WASM_TAIL_CALLS
+ if (isReturnCall) {
+ ReturnCallAdjustmentInfo retCallInfo(
+ callBase->stackArgAreaSizeUnaligned(), inboundStackArgBytes_);
+ masm.wasmReturnCall(desc, callee.funcIndex(), retCallInfo);
+ // The rest of the method is unnecessary for a return call.
+ return;
+ }
+#endif
+ MOZ_ASSERT(!isReturnCall);
+ retOffset = masm.call(desc, callee.funcIndex());
+ reloadRegs = false;
+ switchRealm = false;
+ break;
+ case wasm::CalleeDesc::Import:
+#ifdef ENABLE_WASM_TAIL_CALLS
+ if (isReturnCall) {
+ ReturnCallAdjustmentInfo retCallInfo(
+ callBase->stackArgAreaSizeUnaligned(), inboundStackArgBytes_);
+ masm.wasmReturnCallImport(desc, callee, retCallInfo);
+ // The rest of the method is unnecessary for a return call.
+ return;
+ }
+#endif
+ MOZ_ASSERT(!isReturnCall);
+ retOffset = masm.wasmCallImport(desc, callee);
+ break;
+ case wasm::CalleeDesc::AsmJSTable:
+ retOffset = masm.asmCallIndirect(desc, callee);
+ break;
+ case wasm::CalleeDesc::WasmTable: {
+ Label* boundsCheckFailed = nullptr;
+ if (lir->needsBoundsCheck()) {
+ OutOfLineAbortingWasmTrap* ool =
+ new (alloc()) OutOfLineAbortingWasmTrap(
+ wasm::BytecodeOffset(desc.lineOrBytecode()),
+ wasm::Trap::OutOfBounds);
+ if (lir->isCatchable()) {
+ addOutOfLineCode(ool, lir->mirCatchable());
+ } else if (isReturnCall) {
+#ifdef ENABLE_WASM_TAIL_CALLS
+ addOutOfLineCode(ool, lir->mirReturnCall());
+#else
+ MOZ_CRASH("Return calls are disabled.");
+#endif
+ } else {
+ addOutOfLineCode(ool, lir->mirUncatchable());
+ }
+ boundsCheckFailed = ool->entry();
+ }
+ Label* nullCheckFailed = nullptr;
+#ifndef WASM_HAS_HEAPREG
+ {
+ OutOfLineAbortingWasmTrap* ool =
+ new (alloc()) OutOfLineAbortingWasmTrap(
+ wasm::BytecodeOffset(desc.lineOrBytecode()),
+ wasm::Trap::IndirectCallToNull);
+ if (lir->isCatchable()) {
+ addOutOfLineCode(ool, lir->mirCatchable());
+ } else if (isReturnCall) {
+# ifdef ENABLE_WASM_TAIL_CALLS
+ addOutOfLineCode(ool, lir->mirReturnCall());
+# else
+ MOZ_CRASH("Return calls are disabled.");
+# endif
+ } else {
+ addOutOfLineCode(ool, lir->mirUncatchable());
+ }
+ nullCheckFailed = ool->entry();
+ }
+#endif
+#ifdef ENABLE_WASM_TAIL_CALLS
+ if (isReturnCall) {
+ ReturnCallAdjustmentInfo retCallInfo(
+ callBase->stackArgAreaSizeUnaligned(), inboundStackArgBytes_);
+ masm.wasmReturnCallIndirect(desc, callee, boundsCheckFailed,
+ nullCheckFailed, mozilla::Nothing(),
+ retCallInfo);
+ // The rest of the method is unnecessary for a return call.
+ return;
+ }
+#endif
+ MOZ_ASSERT(!isReturnCall);
+ masm.wasmCallIndirect(desc, callee, boundsCheckFailed, nullCheckFailed,
+ lir->tableSize(), &retOffset, &secondRetOffset);
+ // Register reloading and realm switching are handled dynamically inside
+ // wasmCallIndirect. There are two return offsets, one for each call
+ // instruction (fast path and slow path).
+ reloadRegs = false;
+ switchRealm = false;
+ break;
+ }
+ case wasm::CalleeDesc::Builtin:
+ retOffset = masm.call(desc, callee.builtin());
+ reloadRegs = false;
+ switchRealm = false;
+ break;
+ case wasm::CalleeDesc::BuiltinInstanceMethod:
+ retOffset = masm.wasmCallBuiltinInstanceMethod(
+ desc, callBase->instanceArg(), callee.builtin(),
+ callBase->builtinMethodFailureMode());
+ switchRealm = false;
+ break;
+ case wasm::CalleeDesc::FuncRef:
+#ifdef ENABLE_WASM_TAIL_CALLS
+ if (isReturnCall) {
+ ReturnCallAdjustmentInfo retCallInfo(
+ callBase->stackArgAreaSizeUnaligned(), inboundStackArgBytes_);
+ masm.wasmReturnCallRef(desc, callee, retCallInfo);
+ // The rest of the method is unnecessary for a return call.
+ return;
+ }
+#endif
+ MOZ_ASSERT(!isReturnCall);
+ // Register reloading and realm switching are handled dynamically inside
+ // wasmCallRef. There are two return offsets, one for each call
+ // instruction (fast path and slow path).
+ masm.wasmCallRef(desc, callee, &retOffset, &secondRetOffset);
+ reloadRegs = false;
+ switchRealm = false;
+ break;
+ }
+
+ // Note the assembler offset for the associated LSafePoint.
+ MOZ_ASSERT(!isReturnCall);
+ markSafepointAt(retOffset.offset(), lir);
+
+ // Now that all the outbound in-memory args are on the stack, note the
+ // required lower boundary point of the associated StackMap.
+ uint32_t framePushedAtStackMapBase =
+ masm.framePushed() -
+ wasm::AlignStackArgAreaSize(callBase->stackArgAreaSizeUnaligned());
+ lir->safepoint()->setFramePushedAtStackMapBase(framePushedAtStackMapBase);
+ MOZ_ASSERT(lir->safepoint()->wasmSafepointKind() ==
+ WasmSafepointKind::LirCall);
+
+ // Note the assembler offset and framePushed for use by the adjunct
+ // LSafePoint, see visitor for LWasmCallIndirectAdjunctSafepoint below.
+ if (callee.which() == wasm::CalleeDesc::WasmTable) {
+ lir->adjunctSafepoint()->recordSafepointInfo(secondRetOffset,
+ framePushedAtStackMapBase);
+ }
+
+ if (reloadRegs) {
+ masm.loadPtr(
+ Address(masm.getStackPointer(), WasmCallerInstanceOffsetBeforeCall),
+ InstanceReg);
+ masm.loadWasmPinnedRegsFromInstance();
+ if (switchRealm) {
+ masm.switchToWasmInstanceRealm(ABINonArgReturnReg0, ABINonArgReturnReg1);
+ }
+ } else {
+ MOZ_ASSERT(!switchRealm);
+ }
+
+#ifdef ENABLE_WASM_TAIL_CALLS
+ switch (callee.which()) {
+ case wasm::CalleeDesc::Func:
+ case wasm::CalleeDesc::Import:
+ case wasm::CalleeDesc::WasmTable:
+ case wasm::CalleeDesc::FuncRef:
+ // Stack allocation could change during Wasm (return) calls,
+ // recover pre-call state.
+ masm.freeStackTo(masm.framePushed());
+ break;
+ default:
+ break;
+ }
+#endif // ENABLE_WASM_TAIL_CALLS
+
+ if (inTry) {
+ // Set the end of the try note range
+ size_t tryNoteIndex = callBase->tryNoteIndex();
+ wasm::TryNoteVector& tryNotes = masm.tryNotes();
+ wasm::TryNote& tryNote = tryNotes[tryNoteIndex];
+
+ // Don't set the end of the try note if we've OOM'ed, as the above
+ // instructions may not have been emitted, which will trigger an assert
+ // about zero-length try-notes. This is okay as this compilation will be
+ // thrown away.
+ if (!masm.oom()) {
+ tryNote.setTryBodyEnd(masm.currentOffset());
+ }
+
+ // This instruction or the adjunct safepoint must be the last instruction
+ // in the block. No other instructions may be inserted.
+ LBlock* block = lir->block();
+ MOZ_RELEASE_ASSERT(*block->rbegin() == lir ||
+ (block->rbegin()->isWasmCallIndirectAdjunctSafepoint() &&
+ *(++block->rbegin()) == lir));
+
+ // Jump to the fallthrough block
+ jumpToBlock(lir->mirCatchable()->getSuccessor(
+ MWasmCallCatchable::FallthroughBranchIndex));
+ }
+}
+
+void CodeGenerator::visitWasmCallLandingPrePad(LWasmCallLandingPrePad* lir) {
+ LBlock* block = lir->block();
+ MWasmCallLandingPrePad* mir = lir->mir();
+ MBasicBlock* mirBlock = mir->block();
+ MBasicBlock* callMirBlock = mir->callBlock();
+
+ // This block must be the pre-pad successor of the call block. No blocks may
+ // be inserted between us, such as for critical edge splitting.
+ MOZ_RELEASE_ASSERT(mirBlock == callMirBlock->getSuccessor(
+ MWasmCallCatchable::PrePadBranchIndex));
+
+ // This instruction or a move group must be the first instruction in the
+ // block. No other instructions may be inserted.
+ MOZ_RELEASE_ASSERT(*block->begin() == lir || (block->begin()->isMoveGroup() &&
+ *(++block->begin()) == lir));
+
+ wasm::TryNoteVector& tryNotes = masm.tryNotes();
+ wasm::TryNote& tryNote = tryNotes[mir->tryNoteIndex()];
+ // Set the entry point for the call try note to be the beginning of this
+ // block. The above assertions (and assertions in visitWasmCall) guarantee
+ // that we are not skipping over instructions that should be executed.
+ tryNote.setLandingPad(block->label()->offset(), masm.framePushed());
+}
+
+void CodeGenerator::visitWasmCallIndirectAdjunctSafepoint(
+ LWasmCallIndirectAdjunctSafepoint* lir) {
+ markSafepointAt(lir->safepointLocation().offset(), lir);
+ lir->safepoint()->setFramePushedAtStackMapBase(
+ lir->framePushedAtStackMapBase());
+}
+
+template <typename InstructionWithMaybeTrapSite>
+void EmitSignalNullCheckTrapSite(MacroAssembler& masm,
+ InstructionWithMaybeTrapSite* ins,
+ FaultingCodeOffset fco,
+ wasm::TrapMachineInsn tmi) {
+ if (!ins->maybeTrap()) {
+ return;
+ }
+ wasm::BytecodeOffset trapOffset(ins->maybeTrap()->offset);
+ masm.append(wasm::Trap::NullPointerDereference,
+ wasm::TrapSite(tmi, fco, trapOffset));
+}
+
+template <typename InstructionWithMaybeTrapSite, class AddressOrBaseIndex>
+void CodeGenerator::emitWasmValueLoad(InstructionWithMaybeTrapSite* ins,
+ MIRType type, MWideningOp wideningOp,
+ AddressOrBaseIndex addr,
+ AnyRegister dst) {
+ FaultingCodeOffset fco;
+ switch (type) {
+ case MIRType::Int32:
+ switch (wideningOp) {
+ case MWideningOp::None:
+ fco = masm.load32(addr, dst.gpr());
+ EmitSignalNullCheckTrapSite(masm, ins, fco,
+ wasm::TrapMachineInsn::Load32);
+ break;
+ case MWideningOp::FromU16:
+ fco = masm.load16ZeroExtend(addr, dst.gpr());
+ EmitSignalNullCheckTrapSite(masm, ins, fco,
+ wasm::TrapMachineInsn::Load16);
+ break;
+ case MWideningOp::FromS16:
+ fco = masm.load16SignExtend(addr, dst.gpr());
+ EmitSignalNullCheckTrapSite(masm, ins, fco,
+ wasm::TrapMachineInsn::Load16);
+ break;
+ case MWideningOp::FromU8:
+ fco = masm.load8ZeroExtend(addr, dst.gpr());
+ EmitSignalNullCheckTrapSite(masm, ins, fco,
+ wasm::TrapMachineInsn::Load8);
+ break;
+ case MWideningOp::FromS8:
+ fco = masm.load8SignExtend(addr, dst.gpr());
+ EmitSignalNullCheckTrapSite(masm, ins, fco,
+ wasm::TrapMachineInsn::Load8);
+ break;
+ default:
+ MOZ_CRASH("unexpected widening op in ::visitWasmLoadElement");
+ }
+ break;
+ case MIRType::Float32:
+ MOZ_ASSERT(wideningOp == MWideningOp::None);
+ fco = masm.loadFloat32(addr, dst.fpu());
+ EmitSignalNullCheckTrapSite(masm, ins, fco,
+ wasm::TrapMachineInsn::Load32);
+ break;
+ case MIRType::Double:
+ MOZ_ASSERT(wideningOp == MWideningOp::None);
+ fco = masm.loadDouble(addr, dst.fpu());
+ EmitSignalNullCheckTrapSite(masm, ins, fco,
+ wasm::TrapMachineInsn::Load64);
+ break;
+ case MIRType::Pointer:
+ case MIRType::WasmAnyRef:
+ case MIRType::WasmArrayData:
+ MOZ_ASSERT(wideningOp == MWideningOp::None);
+ fco = masm.loadPtr(addr, dst.gpr());
+ EmitSignalNullCheckTrapSite(masm, ins, fco,
+ wasm::TrapMachineInsnForLoadWord());
+ break;
+ default:
+ MOZ_CRASH("unexpected type in ::emitWasmValueLoad");
+ }
+}
+
+template <typename InstructionWithMaybeTrapSite, class AddressOrBaseIndex>
+void CodeGenerator::emitWasmValueStore(InstructionWithMaybeTrapSite* ins,
+ MIRType type, MNarrowingOp narrowingOp,
+ AnyRegister src,
+ AddressOrBaseIndex addr) {
+ FaultingCodeOffset fco;
+ switch (type) {
+ case MIRType::Int32:
+ switch (narrowingOp) {
+ case MNarrowingOp::None:
+ fco = masm.store32(src.gpr(), addr);
+ EmitSignalNullCheckTrapSite(masm, ins, fco,
+ wasm::TrapMachineInsn::Store32);
+ break;
+ case MNarrowingOp::To16:
+ fco = masm.store16(src.gpr(), addr);
+ EmitSignalNullCheckTrapSite(masm, ins, fco,
+ wasm::TrapMachineInsn::Store16);
+ break;
+ case MNarrowingOp::To8:
+ fco = masm.store8(src.gpr(), addr);
+ EmitSignalNullCheckTrapSite(masm, ins, fco,
+ wasm::TrapMachineInsn::Store8);
+ break;
+ default:
+ MOZ_CRASH();
+ }
+ break;
+ case MIRType::Float32:
+ fco = masm.storeFloat32(src.fpu(), addr);
+ EmitSignalNullCheckTrapSite(masm, ins, fco,
+ wasm::TrapMachineInsn::Store32);
+ break;
+ case MIRType::Double:
+ fco = masm.storeDouble(src.fpu(), addr);
+ EmitSignalNullCheckTrapSite(masm, ins, fco,
+ wasm::TrapMachineInsn::Store64);
+ break;
+ case MIRType::Pointer:
+ // This could be correct, but it would be a new usage, so check carefully.
+ MOZ_CRASH("Unexpected type in ::emitWasmValueStore.");
+ case MIRType::WasmAnyRef:
+ MOZ_CRASH("Bad type in ::emitWasmValueStore. Use LWasmStoreElementRef.");
+ default:
+ MOZ_CRASH("unexpected type in ::emitWasmValueStore");
+ }
+}
+
+void CodeGenerator::visitWasmLoadSlot(LWasmLoadSlot* ins) {
+ MIRType type = ins->type();
+ MWideningOp wideningOp = ins->wideningOp();
+ Register container = ToRegister(ins->containerRef());
+ Address addr(container, ins->offset());
+ AnyRegister dst = ToAnyRegister(ins->output());
+
+#ifdef ENABLE_WASM_SIMD
+ if (type == MIRType::Simd128) {
+ MOZ_ASSERT(wideningOp == MWideningOp::None);
+ FaultingCodeOffset fco = masm.loadUnalignedSimd128(addr, dst.fpu());
+ EmitSignalNullCheckTrapSite(masm, ins, fco, wasm::TrapMachineInsn::Load128);
+ return;
+ }
+#endif
+ emitWasmValueLoad(ins, type, wideningOp, addr, dst);
+}
+
+void CodeGenerator::visitWasmLoadElement(LWasmLoadElement* ins) {
+ MIRType type = ins->type();
+ MWideningOp wideningOp = ins->wideningOp();
+ Scale scale = ins->scale();
+ Register base = ToRegister(ins->base());
+ Register index = ToRegister(ins->index());
+ AnyRegister dst = ToAnyRegister(ins->output());
+
+#ifdef ENABLE_WASM_SIMD
+ if (type == MIRType::Simd128) {
+ MOZ_ASSERT(wideningOp == MWideningOp::None);
+ FaultingCodeOffset fco;
+ Register temp = ToRegister(ins->temp0());
+ masm.movePtr(index, temp);
+ masm.lshiftPtr(Imm32(4), temp);
+ fco = masm.loadUnalignedSimd128(BaseIndex(base, temp, Scale::TimesOne),
+ dst.fpu());
+ EmitSignalNullCheckTrapSite(masm, ins, fco, wasm::TrapMachineInsn::Load128);
+ return;
+ }
+#endif
+ emitWasmValueLoad(ins, type, wideningOp, BaseIndex(base, index, scale), dst);
+}
+
+void CodeGenerator::visitWasmStoreSlot(LWasmStoreSlot* ins) {
+ MIRType type = ins->type();
+ MNarrowingOp narrowingOp = ins->narrowingOp();
+ Register container = ToRegister(ins->containerRef());
+ Address addr(container, ins->offset());
+ AnyRegister src = ToAnyRegister(ins->value());
+ if (type != MIRType::Int32) {
+ MOZ_RELEASE_ASSERT(narrowingOp == MNarrowingOp::None);
+ }
+
+#ifdef ENABLE_WASM_SIMD
+ if (type == MIRType::Simd128) {
+ FaultingCodeOffset fco = masm.storeUnalignedSimd128(src.fpu(), addr);
+ EmitSignalNullCheckTrapSite(masm, ins, fco,
+ wasm::TrapMachineInsn::Store128);
+ return;
+ }
+#endif
+ emitWasmValueStore(ins, type, narrowingOp, src, addr);
+}
+
+void CodeGenerator::visitWasmStoreElement(LWasmStoreElement* ins) {
+ MIRType type = ins->type();
+ MNarrowingOp narrowingOp = ins->narrowingOp();
+ Scale scale = ins->scale();
+ Register base = ToRegister(ins->base());
+ Register index = ToRegister(ins->index());
+ AnyRegister src = ToAnyRegister(ins->value());
+ if (type != MIRType::Int32) {
+ MOZ_RELEASE_ASSERT(narrowingOp == MNarrowingOp::None);
+ }
+
+#ifdef ENABLE_WASM_SIMD
+ if (type == MIRType::Simd128) {
+ Register temp = ToRegister(ins->temp0());
+ masm.movePtr(index, temp);
+ masm.lshiftPtr(Imm32(4), temp);
+ FaultingCodeOffset fco = masm.storeUnalignedSimd128(
+ src.fpu(), BaseIndex(base, temp, Scale::TimesOne));
+ EmitSignalNullCheckTrapSite(masm, ins, fco,
+ wasm::TrapMachineInsn::Store128);
+ return;
+ }
+#endif
+ emitWasmValueStore(ins, type, narrowingOp, src,
+ BaseIndex(base, index, scale));
+}
+
+void CodeGenerator::visitWasmLoadTableElement(LWasmLoadTableElement* ins) {
+ Register elements = ToRegister(ins->elements());
+ Register index = ToRegister(ins->index());
+ Register output = ToRegister(ins->output());
+ masm.loadPtr(BaseIndex(elements, index, ScalePointer), output);
+}
+
+void CodeGenerator::visitWasmDerivedPointer(LWasmDerivedPointer* ins) {
+ masm.movePtr(ToRegister(ins->base()), ToRegister(ins->output()));
+ masm.addPtr(Imm32(int32_t(ins->offset())), ToRegister(ins->output()));
+}
+
+void CodeGenerator::visitWasmDerivedIndexPointer(
+ LWasmDerivedIndexPointer* ins) {
+ Register base = ToRegister(ins->base());
+ Register index = ToRegister(ins->index());
+ Register output = ToRegister(ins->output());
+ masm.computeEffectiveAddress(BaseIndex(base, index, ins->scale()), output);
+}
+
+void CodeGenerator::visitWasmStoreRef(LWasmStoreRef* ins) {
+ Register instance = ToRegister(ins->instance());
+ Register valueBase = ToRegister(ins->valueBase());
+ size_t offset = ins->offset();
+ Register value = ToRegister(ins->value());
+ Register temp = ToRegister(ins->temp0());
+
+ if (ins->preBarrierKind() == WasmPreBarrierKind::Normal) {
+ Label skipPreBarrier;
+ wasm::EmitWasmPreBarrierGuard(
+ masm, instance, temp, Address(valueBase, offset), &skipPreBarrier,
+ ins->maybeTrap() ? &ins->maybeTrap()->offset : nullptr);
+ wasm::EmitWasmPreBarrierCallImmediate(masm, instance, temp, valueBase,
+ offset);
+ masm.bind(&skipPreBarrier);
+ }
+
+ FaultingCodeOffset fco = masm.storePtr(value, Address(valueBase, offset));
+ EmitSignalNullCheckTrapSite(masm, ins, fco,
+ wasm::TrapMachineInsnForStoreWord());
+ // The postbarrier is handled separately.
+}
+
+void CodeGenerator::visitWasmStoreElementRef(LWasmStoreElementRef* ins) {
+ Register instance = ToRegister(ins->instance());
+ Register base = ToRegister(ins->base());
+ Register index = ToRegister(ins->index());
+ Register value = ToRegister(ins->value());
+ Register temp0 = ToTempRegisterOrInvalid(ins->temp0());
+ Register temp1 = ToTempRegisterOrInvalid(ins->temp1());
+
+ BaseIndex addr(base, index, ScalePointer);
+
+ if (ins->preBarrierKind() == WasmPreBarrierKind::Normal) {
+ Label skipPreBarrier;
+ wasm::EmitWasmPreBarrierGuard(
+ masm, instance, temp0, addr, &skipPreBarrier,
+ ins->maybeTrap() ? &ins->maybeTrap()->offset : nullptr);
+ wasm::EmitWasmPreBarrierCallIndex(masm, instance, temp0, temp1, addr);
+ masm.bind(&skipPreBarrier);
+ }
+
+ FaultingCodeOffset fco = masm.storePtr(value, addr);
+ EmitSignalNullCheckTrapSite(masm, ins, fco,
+ wasm::TrapMachineInsnForStoreWord());
+ // The postbarrier is handled separately.
+}
+
+// Out-of-line path to update the store buffer for wasm references.
+class OutOfLineWasmCallPostWriteBarrierImmediate
+ : public OutOfLineCodeBase<CodeGenerator> {
+ LInstruction* lir_;
+ Register valueBase_;
+ Register temp_;
+ uint32_t valueOffset_;
+
+ public:
+ OutOfLineWasmCallPostWriteBarrierImmediate(LInstruction* lir,
+ Register valueBase, Register temp,
+ uint32_t valueOffset)
+ : lir_(lir),
+ valueBase_(valueBase),
+ temp_(temp),
+ valueOffset_(valueOffset) {}
+
+ void accept(CodeGenerator* codegen) override {
+ codegen->visitOutOfLineWasmCallPostWriteBarrierImmediate(this);
+ }
+
+ LInstruction* lir() const { return lir_; }
+ Register valueBase() const { return valueBase_; }
+ Register temp() const { return temp_; }
+ uint32_t valueOffset() const { return valueOffset_; }
+};
+
+void CodeGenerator::visitOutOfLineWasmCallPostWriteBarrierImmediate(
+ OutOfLineWasmCallPostWriteBarrierImmediate* ool) {
+ saveLiveVolatile(ool->lir());
+ masm.Push(InstanceReg);
+ int32_t framePushedAfterInstance = masm.framePushed();
+
+ // Fold the value offset into the value base
+ Register valueAddr = ool->valueBase();
+ Register temp = ool->temp();
+ masm.computeEffectiveAddress(Address(valueAddr, ool->valueOffset()), temp);
+
+ // Call Instance::postBarrier
+ masm.setupWasmABICall();
+ masm.passABIArg(InstanceReg);
+ masm.passABIArg(temp);
+ int32_t instanceOffset = masm.framePushed() - framePushedAfterInstance;
+ masm.callWithABI(wasm::BytecodeOffset(0), wasm::SymbolicAddress::PostBarrier,
+ mozilla::Some(instanceOffset), ABIType::General);
+
+ masm.Pop(InstanceReg);
+ restoreLiveVolatile(ool->lir());
+
+ masm.jump(ool->rejoin());
+}
+
+void CodeGenerator::visitWasmPostWriteBarrierImmediate(
+ LWasmPostWriteBarrierImmediate* lir) {
+ Register object = ToRegister(lir->object());
+ Register value = ToRegister(lir->value());
+ Register valueBase = ToRegister(lir->valueBase());
+ Register temp = ToRegister(lir->temp0());
+ MOZ_ASSERT(ToRegister(lir->instance()) == InstanceReg);
+ auto* ool = new (alloc()) OutOfLineWasmCallPostWriteBarrierImmediate(
+ lir, valueBase, temp, lir->valueOffset());
+ addOutOfLineCode(ool, lir->mir());
+
+ wasm::EmitWasmPostBarrierGuard(masm, mozilla::Some(object), temp, value,
+ ool->rejoin());
+ masm.jump(ool->entry());
+ masm.bind(ool->rejoin());
+}
+
+// Out-of-line path to update the store buffer for wasm references.
+class OutOfLineWasmCallPostWriteBarrierIndex
+ : public OutOfLineCodeBase<CodeGenerator> {
+ LInstruction* lir_;
+ Register valueBase_;
+ Register index_;
+ Register temp_;
+ uint32_t elemSize_;
+
+ public:
+ OutOfLineWasmCallPostWriteBarrierIndex(LInstruction* lir, Register valueBase,
+ Register index, Register temp,
+ uint32_t elemSize)
+ : lir_(lir),
+ valueBase_(valueBase),
+ index_(index),
+ temp_(temp),
+ elemSize_(elemSize) {
+ MOZ_ASSERT(elemSize == 1 || elemSize == 2 || elemSize == 4 ||
+ elemSize == 8 || elemSize == 16);
+ }
+
+ void accept(CodeGenerator* codegen) override {
+ codegen->visitOutOfLineWasmCallPostWriteBarrierIndex(this);
+ }
+
+ LInstruction* lir() const { return lir_; }
+ Register valueBase() const { return valueBase_; }
+ Register index() const { return index_; }
+ Register temp() const { return temp_; }
+ uint32_t elemSize() const { return elemSize_; }
+};
+
+void CodeGenerator::visitOutOfLineWasmCallPostWriteBarrierIndex(
+ OutOfLineWasmCallPostWriteBarrierIndex* ool) {
+ saveLiveVolatile(ool->lir());
+ masm.Push(InstanceReg);
+ int32_t framePushedAfterInstance = masm.framePushed();
+
+ // Fold the value offset into the value base
+ Register temp = ool->temp();
+ if (ool->elemSize() == 16) {
+ masm.movePtr(ool->index(), temp);
+ masm.lshiftPtr(Imm32(4), temp);
+ masm.addPtr(ool->valueBase(), temp);
+ } else {
+ masm.computeEffectiveAddress(BaseIndex(ool->valueBase(), ool->index(),
+ ScaleFromElemWidth(ool->elemSize())),
+ temp);
+ }
+
+ // Call Instance::postBarrier
+ masm.setupWasmABICall();
+ masm.passABIArg(InstanceReg);
+ masm.passABIArg(temp);
+ int32_t instanceOffset = masm.framePushed() - framePushedAfterInstance;
+ masm.callWithABI(wasm::BytecodeOffset(0), wasm::SymbolicAddress::PostBarrier,
+ mozilla::Some(instanceOffset), ABIType::General);
+
+ masm.Pop(InstanceReg);
+ restoreLiveVolatile(ool->lir());
+
+ masm.jump(ool->rejoin());
+}
+
+void CodeGenerator::visitWasmPostWriteBarrierIndex(
+ LWasmPostWriteBarrierIndex* lir) {
+ Register object = ToRegister(lir->object());
+ Register value = ToRegister(lir->value());
+ Register valueBase = ToRegister(lir->valueBase());
+ Register index = ToRegister(lir->index());
+ Register temp = ToRegister(lir->temp0());
+ MOZ_ASSERT(ToRegister(lir->instance()) == InstanceReg);
+ auto* ool = new (alloc()) OutOfLineWasmCallPostWriteBarrierIndex(
+ lir, valueBase, index, temp, lir->elemSize());
+ addOutOfLineCode(ool, lir->mir());
+
+ wasm::EmitWasmPostBarrierGuard(masm, mozilla::Some(object), temp, value,
+ ool->rejoin());
+ masm.jump(ool->entry());
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitWasmLoadSlotI64(LWasmLoadSlotI64* ins) {
+ Register container = ToRegister(ins->containerRef());
+ Address addr(container, ins->offset());
+ Register64 output = ToOutRegister64(ins);
+ // Either 1 or 2 words. On a 32-bit target, it is hard to argue that one
+ // transaction will always trap before the other, so it seems safest to
+ // register both of them as potentially trapping.
+#ifdef JS_64BIT
+ FaultingCodeOffset fco = masm.load64(addr, output);
+ EmitSignalNullCheckTrapSite(masm, ins, fco, wasm::TrapMachineInsn::Load64);
+#else
+ FaultingCodeOffsetPair fcop = masm.load64(addr, output);
+ EmitSignalNullCheckTrapSite(masm, ins, fcop.first,
+ wasm::TrapMachineInsn::Load32);
+ EmitSignalNullCheckTrapSite(masm, ins, fcop.second,
+ wasm::TrapMachineInsn::Load32);
+#endif
+}
+
+void CodeGenerator::visitWasmLoadElementI64(LWasmLoadElementI64* ins) {
+ Register base = ToRegister(ins->base());
+ Register index = ToRegister(ins->index());
+ BaseIndex addr(base, index, Scale::TimesEight);
+ Register64 output = ToOutRegister64(ins);
+ // Either 1 or 2 words. On a 32-bit target, it is hard to argue that one
+ // transaction will always trap before the other, so it seems safest to
+ // register both of them as potentially trapping.
+#ifdef JS_64BIT
+ FaultingCodeOffset fco = masm.load64(addr, output);
+ EmitSignalNullCheckTrapSite(masm, ins, fco, wasm::TrapMachineInsn::Load64);
+#else
+ FaultingCodeOffsetPair fcop = masm.load64(addr, output);
+ EmitSignalNullCheckTrapSite(masm, ins, fcop.first,
+ wasm::TrapMachineInsn::Load32);
+ EmitSignalNullCheckTrapSite(masm, ins, fcop.second,
+ wasm::TrapMachineInsn::Load32);
+#endif
+}
+
+void CodeGenerator::visitWasmStoreSlotI64(LWasmStoreSlotI64* ins) {
+ Register container = ToRegister(ins->containerRef());
+ Address addr(container, ins->offset());
+ Register64 value = ToRegister64(ins->value());
+ // Either 1 or 2 words. As above we register both transactions in the
+ // 2-word case.
+#ifdef JS_64BIT
+ FaultingCodeOffset fco = masm.store64(value, addr);
+ EmitSignalNullCheckTrapSite(masm, ins, fco, wasm::TrapMachineInsn::Store64);
+#else
+ FaultingCodeOffsetPair fcop = masm.store64(value, addr);
+ EmitSignalNullCheckTrapSite(masm, ins, fcop.first,
+ wasm::TrapMachineInsn::Store32);
+ EmitSignalNullCheckTrapSite(masm, ins, fcop.second,
+ wasm::TrapMachineInsn::Store32);
+#endif
+}
+
+void CodeGenerator::visitWasmStoreElementI64(LWasmStoreElementI64* ins) {
+ Register base = ToRegister(ins->base());
+ Register index = ToRegister(ins->index());
+ BaseIndex addr(base, index, Scale::TimesEight);
+ Register64 value = ToRegister64(ins->value());
+ // Either 1 or 2 words. As above we register both transactions in the
+ // 2-word case.
+#ifdef JS_64BIT
+ FaultingCodeOffset fco = masm.store64(value, addr);
+ EmitSignalNullCheckTrapSite(masm, ins, fco, wasm::TrapMachineInsn::Store64);
+#else
+ FaultingCodeOffsetPair fcop = masm.store64(value, addr);
+ EmitSignalNullCheckTrapSite(masm, ins, fcop.first,
+ wasm::TrapMachineInsn::Store32);
+ EmitSignalNullCheckTrapSite(masm, ins, fcop.second,
+ wasm::TrapMachineInsn::Store32);
+#endif
+}
+
+void CodeGenerator::visitArrayBufferByteLength(LArrayBufferByteLength* lir) {
+ Register obj = ToRegister(lir->object());
+ Register out = ToRegister(lir->output());
+ masm.loadArrayBufferByteLengthIntPtr(obj, out);
+}
+
+void CodeGenerator::visitArrayBufferViewLength(LArrayBufferViewLength* lir) {
+ Register obj = ToRegister(lir->object());
+ Register out = ToRegister(lir->output());
+ masm.loadArrayBufferViewLengthIntPtr(obj, out);
+}
+
+void CodeGenerator::visitArrayBufferViewByteOffset(
+ LArrayBufferViewByteOffset* lir) {
+ Register obj = ToRegister(lir->object());
+ Register out = ToRegister(lir->output());
+ masm.loadArrayBufferViewByteOffsetIntPtr(obj, out);
+}
+
+void CodeGenerator::visitArrayBufferViewElements(
+ LArrayBufferViewElements* lir) {
+ Register obj = ToRegister(lir->object());
+ Register out = ToRegister(lir->output());
+ masm.loadPtr(Address(obj, ArrayBufferViewObject::dataOffset()), out);
+}
+
+void CodeGenerator::visitTypedArrayElementSize(LTypedArrayElementSize* lir) {
+ Register obj = ToRegister(lir->object());
+ Register out = ToRegister(lir->output());
+
+ masm.typedArrayElementSize(obj, out);
+}
+
+void CodeGenerator::visitGuardHasAttachedArrayBuffer(
+ LGuardHasAttachedArrayBuffer* lir) {
+ Register obj = ToRegister(lir->object());
+ Register temp = ToRegister(lir->temp0());
+
+ Label bail;
+ masm.branchIfHasDetachedArrayBuffer(obj, temp, &bail);
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+class OutOfLineGuardNumberToIntPtrIndex
+ : public OutOfLineCodeBase<CodeGenerator> {
+ LGuardNumberToIntPtrIndex* lir_;
+
+ public:
+ explicit OutOfLineGuardNumberToIntPtrIndex(LGuardNumberToIntPtrIndex* lir)
+ : lir_(lir) {}
+
+ void accept(CodeGenerator* codegen) override {
+ codegen->visitOutOfLineGuardNumberToIntPtrIndex(this);
+ }
+ LGuardNumberToIntPtrIndex* lir() const { return lir_; }
+};
+
+void CodeGenerator::visitGuardNumberToIntPtrIndex(
+ LGuardNumberToIntPtrIndex* lir) {
+ FloatRegister input = ToFloatRegister(lir->input());
+ Register output = ToRegister(lir->output());
+
+ if (!lir->mir()->supportOOB()) {
+ Label bail;
+ masm.convertDoubleToPtr(input, output, &bail, false);
+ bailoutFrom(&bail, lir->snapshot());
+ return;
+ }
+
+ auto* ool = new (alloc()) OutOfLineGuardNumberToIntPtrIndex(lir);
+ addOutOfLineCode(ool, lir->mir());
+
+ masm.convertDoubleToPtr(input, output, ool->entry(), false);
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitOutOfLineGuardNumberToIntPtrIndex(
+ OutOfLineGuardNumberToIntPtrIndex* ool) {
+ // Substitute the invalid index with an arbitrary out-of-bounds index.
+ masm.movePtr(ImmWord(-1), ToRegister(ool->lir()->output()));
+ masm.jump(ool->rejoin());
+}
+
+void CodeGenerator::visitStringLength(LStringLength* lir) {
+ Register input = ToRegister(lir->string());
+ Register output = ToRegister(lir->output());
+
+ masm.loadStringLength(input, output);
+}
+
+void CodeGenerator::visitMinMaxI(LMinMaxI* ins) {
+ Register first = ToRegister(ins->first());
+ Register output = ToRegister(ins->output());
+
+ MOZ_ASSERT(first == output);
+
+ Assembler::Condition cond =
+ ins->mir()->isMax() ? Assembler::GreaterThan : Assembler::LessThan;
+
+ if (ins->second()->isConstant()) {
+ Label done;
+ masm.branch32(cond, first, Imm32(ToInt32(ins->second())), &done);
+ masm.move32(Imm32(ToInt32(ins->second())), output);
+ masm.bind(&done);
+ } else {
+ Register second = ToRegister(ins->second());
+ masm.cmp32Move32(cond, second, first, second, output);
+ }
+}
+
+void CodeGenerator::visitMinMaxArrayI(LMinMaxArrayI* ins) {
+ Register array = ToRegister(ins->array());
+ Register output = ToRegister(ins->output());
+ Register temp1 = ToRegister(ins->temp1());
+ Register temp2 = ToRegister(ins->temp2());
+ Register temp3 = ToRegister(ins->temp3());
+ bool isMax = ins->isMax();
+
+ Label bail;
+ masm.minMaxArrayInt32(array, output, temp1, temp2, temp3, isMax, &bail);
+ bailoutFrom(&bail, ins->snapshot());
+}
+
+void CodeGenerator::visitMinMaxArrayD(LMinMaxArrayD* ins) {
+ Register array = ToRegister(ins->array());
+ FloatRegister output = ToFloatRegister(ins->output());
+ Register temp1 = ToRegister(ins->temp1());
+ Register temp2 = ToRegister(ins->temp2());
+ FloatRegister floatTemp = ToFloatRegister(ins->floatTemp());
+ bool isMax = ins->isMax();
+
+ Label bail;
+ masm.minMaxArrayNumber(array, output, floatTemp, temp1, temp2, isMax, &bail);
+ bailoutFrom(&bail, ins->snapshot());
+}
+
+// For Abs*, lowering will have tied input to output on platforms where that is
+// sensible, and otherwise left them untied.
+
+void CodeGenerator::visitAbsI(LAbsI* ins) {
+ Register input = ToRegister(ins->input());
+ Register output = ToRegister(ins->output());
+
+ if (ins->mir()->fallible()) {
+ Label positive;
+ if (input != output) {
+ masm.move32(input, output);
+ }
+ masm.branchTest32(Assembler::NotSigned, output, output, &positive);
+ Label bail;
+ masm.branchNeg32(Assembler::Overflow, output, &bail);
+ bailoutFrom(&bail, ins->snapshot());
+ masm.bind(&positive);
+ } else {
+ masm.abs32(input, output);
+ }
+}
+
+void CodeGenerator::visitAbsD(LAbsD* ins) {
+ masm.absDouble(ToFloatRegister(ins->input()), ToFloatRegister(ins->output()));
+}
+
+void CodeGenerator::visitAbsF(LAbsF* ins) {
+ masm.absFloat32(ToFloatRegister(ins->input()),
+ ToFloatRegister(ins->output()));
+}
+
+void CodeGenerator::visitPowII(LPowII* ins) {
+ Register value = ToRegister(ins->value());
+ Register power = ToRegister(ins->power());
+ Register output = ToRegister(ins->output());
+ Register temp0 = ToRegister(ins->temp0());
+ Register temp1 = ToRegister(ins->temp1());
+
+ Label bailout;
+ masm.pow32(value, power, output, temp0, temp1, &bailout);
+ bailoutFrom(&bailout, ins->snapshot());
+}
+
+void CodeGenerator::visitPowI(LPowI* ins) {
+ FloatRegister value = ToFloatRegister(ins->value());
+ Register power = ToRegister(ins->power());
+
+ using Fn = double (*)(double x, int32_t y);
+ masm.setupAlignedABICall();
+ masm.passABIArg(value, ABIType::Float64);
+ masm.passABIArg(power);
+
+ masm.callWithABI<Fn, js::powi>(ABIType::Float64);
+ MOZ_ASSERT(ToFloatRegister(ins->output()) == ReturnDoubleReg);
+}
+
+void CodeGenerator::visitPowD(LPowD* ins) {
+ FloatRegister value = ToFloatRegister(ins->value());
+ FloatRegister power = ToFloatRegister(ins->power());
+
+ using Fn = double (*)(double x, double y);
+ masm.setupAlignedABICall();
+ masm.passABIArg(value, ABIType::Float64);
+ masm.passABIArg(power, ABIType::Float64);
+ masm.callWithABI<Fn, ecmaPow>(ABIType::Float64);
+
+ MOZ_ASSERT(ToFloatRegister(ins->output()) == ReturnDoubleReg);
+}
+
+void CodeGenerator::visitPowOfTwoI(LPowOfTwoI* ins) {
+ Register power = ToRegister(ins->power());
+ Register output = ToRegister(ins->output());
+
+ uint32_t base = ins->base();
+ MOZ_ASSERT(mozilla::IsPowerOfTwo(base));
+
+ uint32_t n = mozilla::FloorLog2(base);
+ MOZ_ASSERT(n != 0);
+
+ // Hacker's Delight, 2nd edition, theorem D2.
+ auto ceilingDiv = [](uint32_t x, uint32_t y) { return (x + y - 1) / y; };
+
+ // Take bailout if |power| is greater-or-equals |log_y(2^31)| or is negative.
+ // |2^(n*y) < 2^31| must hold, hence |n*y < 31| resp. |y < 31/n|.
+ //
+ // Note: it's important for this condition to match the code in CacheIR.cpp
+ // (CanAttachInt32Pow) to prevent failure loops.
+ bailoutCmp32(Assembler::AboveOrEqual, power, Imm32(ceilingDiv(31, n)),
+ ins->snapshot());
+
+ // Compute (2^n)^y as 2^(n*y) using repeated shifts. We could directly scale
+ // |power| and perform a single shift, but due to the lack of necessary
+ // MacroAssembler functionality, like multiplying a register with an
+ // immediate, we restrict the number of generated shift instructions when
+ // lowering this operation.
+ masm.move32(Imm32(1), output);
+ do {
+ masm.lshift32(power, output);
+ n--;
+ } while (n > 0);
+}
+
+void CodeGenerator::visitSqrtD(LSqrtD* ins) {
+ FloatRegister input = ToFloatRegister(ins->input());
+ FloatRegister output = ToFloatRegister(ins->output());
+ masm.sqrtDouble(input, output);
+}
+
+void CodeGenerator::visitSqrtF(LSqrtF* ins) {
+ FloatRegister input = ToFloatRegister(ins->input());
+ FloatRegister output = ToFloatRegister(ins->output());
+ masm.sqrtFloat32(input, output);
+}
+
+void CodeGenerator::visitSignI(LSignI* ins) {
+ Register input = ToRegister(ins->input());
+ Register output = ToRegister(ins->output());
+ masm.signInt32(input, output);
+}
+
+void CodeGenerator::visitSignD(LSignD* ins) {
+ FloatRegister input = ToFloatRegister(ins->input());
+ FloatRegister output = ToFloatRegister(ins->output());
+ masm.signDouble(input, output);
+}
+
+void CodeGenerator::visitSignDI(LSignDI* ins) {
+ FloatRegister input = ToFloatRegister(ins->input());
+ FloatRegister temp = ToFloatRegister(ins->temp0());
+ Register output = ToRegister(ins->output());
+
+ Label bail;
+ masm.signDoubleToInt32(input, output, temp, &bail);
+ bailoutFrom(&bail, ins->snapshot());
+}
+
+void CodeGenerator::visitMathFunctionD(LMathFunctionD* ins) {
+ FloatRegister input = ToFloatRegister(ins->input());
+ MOZ_ASSERT(ToFloatRegister(ins->output()) == ReturnDoubleReg);
+
+ UnaryMathFunction fun = ins->mir()->function();
+ UnaryMathFunctionType funPtr = GetUnaryMathFunctionPtr(fun);
+
+ masm.setupAlignedABICall();
+
+ masm.passABIArg(input, ABIType::Float64);
+ masm.callWithABI(DynamicFunction<UnaryMathFunctionType>(funPtr),
+ ABIType::Float64);
+}
+
+void CodeGenerator::visitMathFunctionF(LMathFunctionF* ins) {
+ FloatRegister input = ToFloatRegister(ins->input());
+ MOZ_ASSERT(ToFloatRegister(ins->output()) == ReturnFloat32Reg);
+
+ masm.setupAlignedABICall();
+ masm.passABIArg(input, ABIType::Float32);
+
+ using Fn = float (*)(float x);
+ Fn funptr = nullptr;
+ CheckUnsafeCallWithABI check = CheckUnsafeCallWithABI::Check;
+ switch (ins->mir()->function()) {
+ case UnaryMathFunction::Floor:
+ funptr = floorf;
+ check = CheckUnsafeCallWithABI::DontCheckOther;
+ break;
+ case UnaryMathFunction::Round:
+ funptr = math_roundf_impl;
+ break;
+ case UnaryMathFunction::Trunc:
+ funptr = math_truncf_impl;
+ break;
+ case UnaryMathFunction::Ceil:
+ funptr = ceilf;
+ check = CheckUnsafeCallWithABI::DontCheckOther;
+ break;
+ default:
+ MOZ_CRASH("Unknown or unsupported float32 math function");
+ }
+
+ masm.callWithABI(DynamicFunction<Fn>(funptr), ABIType::Float32, check);
+}
+
+void CodeGenerator::visitModD(LModD* ins) {
+ MOZ_ASSERT(!gen->compilingWasm());
+
+ FloatRegister lhs = ToFloatRegister(ins->lhs());
+ FloatRegister rhs = ToFloatRegister(ins->rhs());
+
+ MOZ_ASSERT(ToFloatRegister(ins->output()) == ReturnDoubleReg);
+
+ using Fn = double (*)(double a, double b);
+ masm.setupAlignedABICall();
+ masm.passABIArg(lhs, ABIType::Float64);
+ masm.passABIArg(rhs, ABIType::Float64);
+ masm.callWithABI<Fn, NumberMod>(ABIType::Float64);
+}
+
+void CodeGenerator::visitModPowTwoD(LModPowTwoD* ins) {
+ FloatRegister lhs = ToFloatRegister(ins->lhs());
+ uint32_t divisor = ins->divisor();
+ MOZ_ASSERT(mozilla::IsPowerOfTwo(divisor));
+
+ FloatRegister output = ToFloatRegister(ins->output());
+
+ // Compute |n % d| using |copysign(n - (d * trunc(n / d)), n)|.
+ //
+ // This doesn't work if |d| isn't a power of two, because we may lose too much
+ // precision. For example |Number.MAX_VALUE % 3 == 2|, but
+ // |3 * trunc(Number.MAX_VALUE / 3) == Infinity|.
+
+ Label done;
+ {
+ ScratchDoubleScope scratch(masm);
+
+ // Subnormals can lead to performance degradation, which can make calling
+ // |fmod| faster than this inline implementation. Work around this issue by
+ // directly returning the input for any value in the interval ]-1, +1[.
+ Label notSubnormal;
+ masm.loadConstantDouble(1.0, scratch);
+ masm.loadConstantDouble(-1.0, output);
+ masm.branchDouble(Assembler::DoubleGreaterThanOrEqual, lhs, scratch,
+ &notSubnormal);
+ masm.branchDouble(Assembler::DoubleLessThanOrEqual, lhs, output,
+ &notSubnormal);
+
+ masm.moveDouble(lhs, output);
+ masm.jump(&done);
+
+ masm.bind(&notSubnormal);
+
+ if (divisor == 1) {
+ // The pattern |n % 1 == 0| is used to detect integer numbers. We can skip
+ // the multiplication by one in this case.
+ masm.moveDouble(lhs, output);
+ masm.nearbyIntDouble(RoundingMode::TowardsZero, output, scratch);
+ masm.subDouble(scratch, output);
+ } else {
+ masm.loadConstantDouble(1.0 / double(divisor), scratch);
+ masm.loadConstantDouble(double(divisor), output);
+
+ masm.mulDouble(lhs, scratch);
+ masm.nearbyIntDouble(RoundingMode::TowardsZero, scratch, scratch);
+ masm.mulDouble(output, scratch);
+
+ masm.moveDouble(lhs, output);
+ masm.subDouble(scratch, output);
+ }
+ }
+
+ masm.copySignDouble(output, lhs, output);
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitWasmBuiltinModD(LWasmBuiltinModD* ins) {
+ masm.Push(InstanceReg);
+ int32_t framePushedAfterInstance = masm.framePushed();
+
+ FloatRegister lhs = ToFloatRegister(ins->lhs());
+ FloatRegister rhs = ToFloatRegister(ins->rhs());
+
+ MOZ_ASSERT(ToFloatRegister(ins->output()) == ReturnDoubleReg);
+
+ masm.setupWasmABICall();
+ masm.passABIArg(lhs, ABIType::Float64);
+ masm.passABIArg(rhs, ABIType::Float64);
+
+ int32_t instanceOffset = masm.framePushed() - framePushedAfterInstance;
+ masm.callWithABI(ins->mir()->bytecodeOffset(), wasm::SymbolicAddress::ModD,
+ mozilla::Some(instanceOffset), ABIType::Float64);
+
+ masm.Pop(InstanceReg);
+}
+
+void CodeGenerator::visitBigIntAdd(LBigIntAdd* ins) {
+ Register lhs = ToRegister(ins->lhs());
+ Register rhs = ToRegister(ins->rhs());
+ Register temp1 = ToRegister(ins->temp1());
+ Register temp2 = ToRegister(ins->temp2());
+ Register output = ToRegister(ins->output());
+
+ using Fn = BigInt* (*)(JSContext*, HandleBigInt, HandleBigInt);
+ auto* ool = oolCallVM<Fn, BigInt::add>(ins, ArgList(lhs, rhs),
+ StoreRegisterTo(output));
+
+ // 0n + x == x
+ Label lhsNonZero;
+ masm.branchIfBigIntIsNonZero(lhs, &lhsNonZero);
+ masm.movePtr(rhs, output);
+ masm.jump(ool->rejoin());
+ masm.bind(&lhsNonZero);
+
+ // x + 0n == x
+ Label rhsNonZero;
+ masm.branchIfBigIntIsNonZero(rhs, &rhsNonZero);
+ masm.movePtr(lhs, output);
+ masm.jump(ool->rejoin());
+ masm.bind(&rhsNonZero);
+
+ // Call into the VM when either operand can't be loaded into a pointer-sized
+ // register.
+ masm.loadBigIntNonZero(lhs, temp1, ool->entry());
+ masm.loadBigIntNonZero(rhs, temp2, ool->entry());
+
+ masm.branchAddPtr(Assembler::Overflow, temp2, temp1, ool->entry());
+
+ // Create and return the result.
+ masm.newGCBigInt(output, temp2, initialBigIntHeap(), ool->entry());
+ masm.initializeBigInt(output, temp1);
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitBigIntSub(LBigIntSub* ins) {
+ Register lhs = ToRegister(ins->lhs());
+ Register rhs = ToRegister(ins->rhs());
+ Register temp1 = ToRegister(ins->temp1());
+ Register temp2 = ToRegister(ins->temp2());
+ Register output = ToRegister(ins->output());
+
+ using Fn = BigInt* (*)(JSContext*, HandleBigInt, HandleBigInt);
+ auto* ool = oolCallVM<Fn, BigInt::sub>(ins, ArgList(lhs, rhs),
+ StoreRegisterTo(output));
+
+ // x - 0n == x
+ Label rhsNonZero;
+ masm.branchIfBigIntIsNonZero(rhs, &rhsNonZero);
+ masm.movePtr(lhs, output);
+ masm.jump(ool->rejoin());
+ masm.bind(&rhsNonZero);
+
+ // Call into the VM when either operand can't be loaded into a pointer-sized
+ // register.
+ masm.loadBigInt(lhs, temp1, ool->entry());
+ masm.loadBigIntNonZero(rhs, temp2, ool->entry());
+
+ masm.branchSubPtr(Assembler::Overflow, temp2, temp1, ool->entry());
+
+ // Create and return the result.
+ masm.newGCBigInt(output, temp2, initialBigIntHeap(), ool->entry());
+ masm.initializeBigInt(output, temp1);
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitBigIntMul(LBigIntMul* ins) {
+ Register lhs = ToRegister(ins->lhs());
+ Register rhs = ToRegister(ins->rhs());
+ Register temp1 = ToRegister(ins->temp1());
+ Register temp2 = ToRegister(ins->temp2());
+ Register output = ToRegister(ins->output());
+
+ using Fn = BigInt* (*)(JSContext*, HandleBigInt, HandleBigInt);
+ auto* ool = oolCallVM<Fn, BigInt::mul>(ins, ArgList(lhs, rhs),
+ StoreRegisterTo(output));
+
+ // 0n * x == 0n
+ Label lhsNonZero;
+ masm.branchIfBigIntIsNonZero(lhs, &lhsNonZero);
+ masm.movePtr(lhs, output);
+ masm.jump(ool->rejoin());
+ masm.bind(&lhsNonZero);
+
+ // x * 0n == 0n
+ Label rhsNonZero;
+ masm.branchIfBigIntIsNonZero(rhs, &rhsNonZero);
+ masm.movePtr(rhs, output);
+ masm.jump(ool->rejoin());
+ masm.bind(&rhsNonZero);
+
+ // Call into the VM when either operand can't be loaded into a pointer-sized
+ // register.
+ masm.loadBigIntNonZero(lhs, temp1, ool->entry());
+ masm.loadBigIntNonZero(rhs, temp2, ool->entry());
+
+ masm.branchMulPtr(Assembler::Overflow, temp2, temp1, ool->entry());
+
+ // Create and return the result.
+ masm.newGCBigInt(output, temp2, initialBigIntHeap(), ool->entry());
+ masm.initializeBigInt(output, temp1);
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitBigIntDiv(LBigIntDiv* ins) {
+ Register lhs = ToRegister(ins->lhs());
+ Register rhs = ToRegister(ins->rhs());
+ Register temp1 = ToRegister(ins->temp1());
+ Register temp2 = ToRegister(ins->temp2());
+ Register output = ToRegister(ins->output());
+
+ using Fn = BigInt* (*)(JSContext*, HandleBigInt, HandleBigInt);
+ auto* ool = oolCallVM<Fn, BigInt::div>(ins, ArgList(lhs, rhs),
+ StoreRegisterTo(output));
+
+ // x / 0 throws an error.
+ if (ins->mir()->canBeDivideByZero()) {
+ masm.branchIfBigIntIsZero(rhs, ool->entry());
+ }
+
+ // 0n / x == 0n
+ Label lhsNonZero;
+ masm.branchIfBigIntIsNonZero(lhs, &lhsNonZero);
+ masm.movePtr(lhs, output);
+ masm.jump(ool->rejoin());
+ masm.bind(&lhsNonZero);
+
+ // Call into the VM when either operand can't be loaded into a pointer-sized
+ // register.
+ masm.loadBigIntNonZero(lhs, temp1, ool->entry());
+ masm.loadBigIntNonZero(rhs, temp2, ool->entry());
+
+ // |BigInt::div()| returns |lhs| for |lhs / 1n|, which means there's no
+ // allocation which might trigger a minor GC to free up nursery space. This
+ // requires us to apply the same optimization here, otherwise we'd end up with
+ // always entering the OOL call, because the nursery is never evicted.
+ Label notOne;
+ masm.branchPtr(Assembler::NotEqual, temp2, ImmWord(1), &notOne);
+ masm.movePtr(lhs, output);
+ masm.jump(ool->rejoin());
+ masm.bind(&notOne);
+
+ static constexpr auto DigitMin = std::numeric_limits<
+ mozilla::SignedStdintTypeForSize<sizeof(BigInt::Digit)>::Type>::min();
+
+ // Handle an integer overflow from INT{32,64}_MIN / -1.
+ Label notOverflow;
+ masm.branchPtr(Assembler::NotEqual, temp1, ImmWord(DigitMin), &notOverflow);
+ masm.branchPtr(Assembler::Equal, temp2, ImmWord(-1), ool->entry());
+ masm.bind(&notOverflow);
+
+ emitBigIntDiv(ins, temp1, temp2, output, ool->entry());
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitBigIntMod(LBigIntMod* ins) {
+ Register lhs = ToRegister(ins->lhs());
+ Register rhs = ToRegister(ins->rhs());
+ Register temp1 = ToRegister(ins->temp1());
+ Register temp2 = ToRegister(ins->temp2());
+ Register output = ToRegister(ins->output());
+
+ using Fn = BigInt* (*)(JSContext*, HandleBigInt, HandleBigInt);
+ auto* ool = oolCallVM<Fn, BigInt::mod>(ins, ArgList(lhs, rhs),
+ StoreRegisterTo(output));
+
+ // x % 0 throws an error.
+ if (ins->mir()->canBeDivideByZero()) {
+ masm.branchIfBigIntIsZero(rhs, ool->entry());
+ }
+
+ // 0n % x == 0n
+ Label lhsNonZero;
+ masm.branchIfBigIntIsNonZero(lhs, &lhsNonZero);
+ masm.movePtr(lhs, output);
+ masm.jump(ool->rejoin());
+ masm.bind(&lhsNonZero);
+
+ // Call into the VM when either operand can't be loaded into a pointer-sized
+ // register.
+ masm.loadBigIntAbsolute(lhs, temp1, ool->entry());
+ masm.loadBigIntAbsolute(rhs, temp2, ool->entry());
+
+ // Similar to the case for BigInt division, we must apply the same allocation
+ // optimizations as performed in |BigInt::mod()|.
+ Label notBelow;
+ masm.branchPtr(Assembler::AboveOrEqual, temp1, temp2, &notBelow);
+ masm.movePtr(lhs, output);
+ masm.jump(ool->rejoin());
+ masm.bind(&notBelow);
+
+ // Convert both digits to signed pointer-sized values.
+ masm.bigIntDigitToSignedPtr(lhs, temp1, ool->entry());
+ masm.bigIntDigitToSignedPtr(rhs, temp2, ool->entry());
+
+ static constexpr auto DigitMin = std::numeric_limits<
+ mozilla::SignedStdintTypeForSize<sizeof(BigInt::Digit)>::Type>::min();
+
+ // Handle an integer overflow from INT{32,64}_MIN / -1.
+ Label notOverflow;
+ masm.branchPtr(Assembler::NotEqual, temp1, ImmWord(DigitMin), &notOverflow);
+ masm.branchPtr(Assembler::NotEqual, temp2, ImmWord(-1), &notOverflow);
+ masm.movePtr(ImmWord(0), temp1);
+ masm.bind(&notOverflow);
+
+ emitBigIntMod(ins, temp1, temp2, output, ool->entry());
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitBigIntPow(LBigIntPow* ins) {
+ Register lhs = ToRegister(ins->lhs());
+ Register rhs = ToRegister(ins->rhs());
+ Register temp1 = ToRegister(ins->temp1());
+ Register temp2 = ToRegister(ins->temp2());
+ Register output = ToRegister(ins->output());
+
+ using Fn = BigInt* (*)(JSContext*, HandleBigInt, HandleBigInt);
+ auto* ool = oolCallVM<Fn, BigInt::pow>(ins, ArgList(lhs, rhs),
+ StoreRegisterTo(output));
+
+ // x ** -y throws an error.
+ if (ins->mir()->canBeNegativeExponent()) {
+ masm.branchIfBigIntIsNegative(rhs, ool->entry());
+ }
+
+ Register dest = temp1;
+ Register base = temp2;
+ Register exponent = output;
+
+ Label done;
+ masm.movePtr(ImmWord(1), dest); // p = 1
+
+ // 1n ** y == 1n
+ // -1n ** y == 1n when y is even
+ // -1n ** y == -1n when y is odd
+ Label lhsNotOne;
+ masm.branch32(Assembler::Above, Address(lhs, BigInt::offsetOfLength()),
+ Imm32(1), &lhsNotOne);
+ masm.loadFirstBigIntDigitOrZero(lhs, base);
+ masm.branchPtr(Assembler::NotEqual, base, Imm32(1), &lhsNotOne);
+ {
+ masm.loadFirstBigIntDigitOrZero(rhs, exponent);
+
+ Label lhsNonNegative;
+ masm.branchIfBigIntIsNonNegative(lhs, &lhsNonNegative);
+ masm.branchTestPtr(Assembler::Zero, exponent, Imm32(1), &done);
+ masm.bind(&lhsNonNegative);
+ masm.movePtr(lhs, output);
+ masm.jump(ool->rejoin());
+ }
+ masm.bind(&lhsNotOne);
+
+ // x ** 0n == 1n
+ masm.branchIfBigIntIsZero(rhs, &done);
+
+ // 0n ** y == 0n with y != 0n
+ Label lhsNonZero;
+ masm.branchIfBigIntIsNonZero(lhs, &lhsNonZero);
+ {
+ masm.movePtr(lhs, output);
+ masm.jump(ool->rejoin());
+ }
+ masm.bind(&lhsNonZero);
+
+ // Call into the VM when the exponent can't be loaded into a pointer-sized
+ // register.
+ masm.loadBigIntAbsolute(rhs, exponent, ool->entry());
+
+ // x ** y with x > 1 and y >= DigitBits can't be pointer-sized.
+ masm.branchPtr(Assembler::AboveOrEqual, exponent, Imm32(BigInt::DigitBits),
+ ool->entry());
+
+ // x ** 1n == x
+ Label rhsNotOne;
+ masm.branch32(Assembler::NotEqual, exponent, Imm32(1), &rhsNotOne);
+ {
+ masm.movePtr(lhs, output);
+ masm.jump(ool->rejoin());
+ }
+ masm.bind(&rhsNotOne);
+
+ // Call into the VM when the base operand can't be loaded into a pointer-sized
+ // register.
+ masm.loadBigIntNonZero(lhs, base, ool->entry());
+
+ // MacroAssembler::pow32() adjusted to work on pointer-sized registers.
+ {
+ // m = base
+ // n = exponent
+
+ Label start, loop;
+ masm.jump(&start);
+ masm.bind(&loop);
+
+ // m *= m
+ masm.branchMulPtr(Assembler::Overflow, base, base, ool->entry());
+
+ masm.bind(&start);
+
+ // if ((n & 1) != 0) p *= m
+ Label even;
+ masm.branchTest32(Assembler::Zero, exponent, Imm32(1), &even);
+ masm.branchMulPtr(Assembler::Overflow, base, dest, ool->entry());
+ masm.bind(&even);
+
+ // n >>= 1
+ // if (n == 0) return p
+ masm.branchRshift32(Assembler::NonZero, Imm32(1), exponent, &loop);
+ }
+
+ MOZ_ASSERT(temp1 == dest);
+
+ // Create and return the result.
+ masm.bind(&done);
+ masm.newGCBigInt(output, temp2, initialBigIntHeap(), ool->entry());
+ masm.initializeBigInt(output, temp1);
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitBigIntBitAnd(LBigIntBitAnd* ins) {
+ Register lhs = ToRegister(ins->lhs());
+ Register rhs = ToRegister(ins->rhs());
+ Register temp1 = ToRegister(ins->temp1());
+ Register temp2 = ToRegister(ins->temp2());
+ Register output = ToRegister(ins->output());
+
+ using Fn = BigInt* (*)(JSContext*, HandleBigInt, HandleBigInt);
+ auto* ool = oolCallVM<Fn, BigInt::bitAnd>(ins, ArgList(lhs, rhs),
+ StoreRegisterTo(output));
+
+ // 0n & x == 0n
+ Label lhsNonZero;
+ masm.branchIfBigIntIsNonZero(lhs, &lhsNonZero);
+ masm.movePtr(lhs, output);
+ masm.jump(ool->rejoin());
+ masm.bind(&lhsNonZero);
+
+ // x & 0n == 0n
+ Label rhsNonZero;
+ masm.branchIfBigIntIsNonZero(rhs, &rhsNonZero);
+ masm.movePtr(rhs, output);
+ masm.jump(ool->rejoin());
+ masm.bind(&rhsNonZero);
+
+ // Call into the VM when either operand can't be loaded into a pointer-sized
+ // register.
+ masm.loadBigIntNonZero(lhs, temp1, ool->entry());
+ masm.loadBigIntNonZero(rhs, temp2, ool->entry());
+
+ masm.andPtr(temp2, temp1);
+
+ // Create and return the result.
+ masm.newGCBigInt(output, temp2, initialBigIntHeap(), ool->entry());
+ masm.initializeBigInt(output, temp1);
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitBigIntBitOr(LBigIntBitOr* ins) {
+ Register lhs = ToRegister(ins->lhs());
+ Register rhs = ToRegister(ins->rhs());
+ Register temp1 = ToRegister(ins->temp1());
+ Register temp2 = ToRegister(ins->temp2());
+ Register output = ToRegister(ins->output());
+
+ using Fn = BigInt* (*)(JSContext*, HandleBigInt, HandleBigInt);
+ auto* ool = oolCallVM<Fn, BigInt::bitOr>(ins, ArgList(lhs, rhs),
+ StoreRegisterTo(output));
+
+ // 0n | x == x
+ Label lhsNonZero;
+ masm.branchIfBigIntIsNonZero(lhs, &lhsNonZero);
+ masm.movePtr(rhs, output);
+ masm.jump(ool->rejoin());
+ masm.bind(&lhsNonZero);
+
+ // x | 0n == x
+ Label rhsNonZero;
+ masm.branchIfBigIntIsNonZero(rhs, &rhsNonZero);
+ masm.movePtr(lhs, output);
+ masm.jump(ool->rejoin());
+ masm.bind(&rhsNonZero);
+
+ // Call into the VM when either operand can't be loaded into a pointer-sized
+ // register.
+ masm.loadBigIntNonZero(lhs, temp1, ool->entry());
+ masm.loadBigIntNonZero(rhs, temp2, ool->entry());
+
+ masm.orPtr(temp2, temp1);
+
+ // Create and return the result.
+ masm.newGCBigInt(output, temp2, initialBigIntHeap(), ool->entry());
+ masm.initializeBigInt(output, temp1);
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitBigIntBitXor(LBigIntBitXor* ins) {
+ Register lhs = ToRegister(ins->lhs());
+ Register rhs = ToRegister(ins->rhs());
+ Register temp1 = ToRegister(ins->temp1());
+ Register temp2 = ToRegister(ins->temp2());
+ Register output = ToRegister(ins->output());
+
+ using Fn = BigInt* (*)(JSContext*, HandleBigInt, HandleBigInt);
+ auto* ool = oolCallVM<Fn, BigInt::bitXor>(ins, ArgList(lhs, rhs),
+ StoreRegisterTo(output));
+
+ // 0n ^ x == x
+ Label lhsNonZero;
+ masm.branchIfBigIntIsNonZero(lhs, &lhsNonZero);
+ masm.movePtr(rhs, output);
+ masm.jump(ool->rejoin());
+ masm.bind(&lhsNonZero);
+
+ // x ^ 0n == x
+ Label rhsNonZero;
+ masm.branchIfBigIntIsNonZero(rhs, &rhsNonZero);
+ masm.movePtr(lhs, output);
+ masm.jump(ool->rejoin());
+ masm.bind(&rhsNonZero);
+
+ // Call into the VM when either operand can't be loaded into a pointer-sized
+ // register.
+ masm.loadBigIntNonZero(lhs, temp1, ool->entry());
+ masm.loadBigIntNonZero(rhs, temp2, ool->entry());
+
+ masm.xorPtr(temp2, temp1);
+
+ // Create and return the result.
+ masm.newGCBigInt(output, temp2, initialBigIntHeap(), ool->entry());
+ masm.initializeBigInt(output, temp1);
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitBigIntLsh(LBigIntLsh* ins) {
+ Register lhs = ToRegister(ins->lhs());
+ Register rhs = ToRegister(ins->rhs());
+ Register temp1 = ToRegister(ins->temp1());
+ Register temp2 = ToRegister(ins->temp2());
+ Register temp3 = ToRegister(ins->temp3());
+ Register output = ToRegister(ins->output());
+
+ using Fn = BigInt* (*)(JSContext*, HandleBigInt, HandleBigInt);
+ auto* ool = oolCallVM<Fn, BigInt::lsh>(ins, ArgList(lhs, rhs),
+ StoreRegisterTo(output));
+
+ // 0n << x == 0n
+ Label lhsNonZero;
+ masm.branchIfBigIntIsNonZero(lhs, &lhsNonZero);
+ masm.movePtr(lhs, output);
+ masm.jump(ool->rejoin());
+ masm.bind(&lhsNonZero);
+
+ // x << 0n == x
+ Label rhsNonZero;
+ masm.branchIfBigIntIsNonZero(rhs, &rhsNonZero);
+ masm.movePtr(lhs, output);
+ masm.jump(ool->rejoin());
+ masm.bind(&rhsNonZero);
+
+ // Inline |BigInt::lsh| for the case when |lhs| contains a single digit.
+
+ Label rhsTooLarge;
+ masm.loadBigIntAbsolute(rhs, temp2, &rhsTooLarge);
+
+ // Call into the VM when the left-hand side operand can't be loaded into a
+ // pointer-sized register.
+ masm.loadBigIntAbsolute(lhs, temp1, ool->entry());
+
+ // Handle shifts exceeding |BigInt::DigitBits| first.
+ Label shift, create;
+ masm.branchPtr(Assembler::Below, temp2, Imm32(BigInt::DigitBits), &shift);
+ {
+ masm.bind(&rhsTooLarge);
+
+ // x << DigitBits with x != 0n always exceeds pointer-sized storage.
+ masm.branchIfBigIntIsNonNegative(rhs, ool->entry());
+
+ // x << -DigitBits == x >> DigitBits, which is either 0n or -1n.
+ masm.move32(Imm32(0), temp1);
+ masm.branchIfBigIntIsNonNegative(lhs, &create);
+ masm.move32(Imm32(1), temp1);
+ masm.jump(&create);
+ }
+ masm.bind(&shift);
+
+ Label nonNegative;
+ masm.branchIfBigIntIsNonNegative(rhs, &nonNegative);
+ {
+ masm.movePtr(temp1, temp3);
+
+ // |x << -y| is computed as |x >> y|.
+ masm.rshiftPtr(temp2, temp1);
+
+ // For negative numbers, round down if any bit was shifted out.
+ masm.branchIfBigIntIsNonNegative(lhs, &create);
+
+ // Compute |mask = (static_cast<Digit>(1) << shift) - 1|.
+ masm.movePtr(ImmWord(-1), output);
+ masm.lshiftPtr(temp2, output);
+ masm.notPtr(output);
+
+ // Add plus one when |(lhs.digit(0) & mask) != 0|.
+ masm.branchTestPtr(Assembler::Zero, output, temp3, &create);
+ masm.addPtr(ImmWord(1), temp1);
+ masm.jump(&create);
+ }
+ masm.bind(&nonNegative);
+ {
+ masm.movePtr(temp2, temp3);
+
+ // Compute |grow = lhs.digit(0) >> (DigitBits - shift)|.
+ masm.negPtr(temp2);
+ masm.addPtr(Imm32(BigInt::DigitBits), temp2);
+ masm.movePtr(temp1, output);
+ masm.rshiftPtr(temp2, output);
+
+ // Call into the VM when any bit will be shifted out.
+ masm.branchTestPtr(Assembler::NonZero, output, output, ool->entry());
+
+ masm.movePtr(temp3, temp2);
+ masm.lshiftPtr(temp2, temp1);
+ }
+ masm.bind(&create);
+
+ // Create and return the result.
+ masm.newGCBigInt(output, temp2, initialBigIntHeap(), ool->entry());
+ masm.initializeBigIntAbsolute(output, temp1);
+
+ // Set the sign bit when the left-hand side is negative.
+ masm.branchIfBigIntIsNonNegative(lhs, ool->rejoin());
+ masm.or32(Imm32(BigInt::signBitMask()),
+ Address(output, BigInt::offsetOfFlags()));
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitBigIntRsh(LBigIntRsh* ins) {
+ Register lhs = ToRegister(ins->lhs());
+ Register rhs = ToRegister(ins->rhs());
+ Register temp1 = ToRegister(ins->temp1());
+ Register temp2 = ToRegister(ins->temp2());
+ Register temp3 = ToRegister(ins->temp3());
+ Register output = ToRegister(ins->output());
+
+ using Fn = BigInt* (*)(JSContext*, HandleBigInt, HandleBigInt);
+ auto* ool = oolCallVM<Fn, BigInt::rsh>(ins, ArgList(lhs, rhs),
+ StoreRegisterTo(output));
+
+ // 0n >> x == 0n
+ Label lhsNonZero;
+ masm.branchIfBigIntIsNonZero(lhs, &lhsNonZero);
+ masm.movePtr(lhs, output);
+ masm.jump(ool->rejoin());
+ masm.bind(&lhsNonZero);
+
+ // x >> 0n == x
+ Label rhsNonZero;
+ masm.branchIfBigIntIsNonZero(rhs, &rhsNonZero);
+ masm.movePtr(lhs, output);
+ masm.jump(ool->rejoin());
+ masm.bind(&rhsNonZero);
+
+ // Inline |BigInt::rsh| for the case when |lhs| contains a single digit.
+
+ Label rhsTooLarge;
+ masm.loadBigIntAbsolute(rhs, temp2, &rhsTooLarge);
+
+ // Call into the VM when the left-hand side operand can't be loaded into a
+ // pointer-sized register.
+ masm.loadBigIntAbsolute(lhs, temp1, ool->entry());
+
+ // Handle shifts exceeding |BigInt::DigitBits| first.
+ Label shift, create;
+ masm.branchPtr(Assembler::Below, temp2, Imm32(BigInt::DigitBits), &shift);
+ {
+ masm.bind(&rhsTooLarge);
+
+ // x >> -DigitBits == x << DigitBits, which exceeds pointer-sized storage.
+ masm.branchIfBigIntIsNegative(rhs, ool->entry());
+
+ // x >> DigitBits is either 0n or -1n.
+ masm.move32(Imm32(0), temp1);
+ masm.branchIfBigIntIsNonNegative(lhs, &create);
+ masm.move32(Imm32(1), temp1);
+ masm.jump(&create);
+ }
+ masm.bind(&shift);
+
+ Label nonNegative;
+ masm.branchIfBigIntIsNonNegative(rhs, &nonNegative);
+ {
+ masm.movePtr(temp2, temp3);
+
+ // Compute |grow = lhs.digit(0) >> (DigitBits - shift)|.
+ masm.negPtr(temp2);
+ masm.addPtr(Imm32(BigInt::DigitBits), temp2);
+ masm.movePtr(temp1, output);
+ masm.rshiftPtr(temp2, output);
+
+ // Call into the VM when any bit will be shifted out.
+ masm.branchTestPtr(Assembler::NonZero, output, output, ool->entry());
+
+ // |x >> -y| is computed as |x << y|.
+ masm.movePtr(temp3, temp2);
+ masm.lshiftPtr(temp2, temp1);
+ masm.jump(&create);
+ }
+ masm.bind(&nonNegative);
+ {
+ masm.movePtr(temp1, temp3);
+
+ masm.rshiftPtr(temp2, temp1);
+
+ // For negative numbers, round down if any bit was shifted out.
+ masm.branchIfBigIntIsNonNegative(lhs, &create);
+
+ // Compute |mask = (static_cast<Digit>(1) << shift) - 1|.
+ masm.movePtr(ImmWord(-1), output);
+ masm.lshiftPtr(temp2, output);
+ masm.notPtr(output);
+
+ // Add plus one when |(lhs.digit(0) & mask) != 0|.
+ masm.branchTestPtr(Assembler::Zero, output, temp3, &create);
+ masm.addPtr(ImmWord(1), temp1);
+ }
+ masm.bind(&create);
+
+ // Create and return the result.
+ masm.newGCBigInt(output, temp2, initialBigIntHeap(), ool->entry());
+ masm.initializeBigIntAbsolute(output, temp1);
+
+ // Set the sign bit when the left-hand side is negative.
+ masm.branchIfBigIntIsNonNegative(lhs, ool->rejoin());
+ masm.or32(Imm32(BigInt::signBitMask()),
+ Address(output, BigInt::offsetOfFlags()));
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitBigIntIncrement(LBigIntIncrement* ins) {
+ Register input = ToRegister(ins->input());
+ Register temp1 = ToRegister(ins->temp1());
+ Register temp2 = ToRegister(ins->temp2());
+ Register output = ToRegister(ins->output());
+
+ using Fn = BigInt* (*)(JSContext*, HandleBigInt);
+ auto* ool =
+ oolCallVM<Fn, BigInt::inc>(ins, ArgList(input), StoreRegisterTo(output));
+
+ // Call into the VM when the input can't be loaded into a pointer-sized
+ // register.
+ masm.loadBigInt(input, temp1, ool->entry());
+ masm.movePtr(ImmWord(1), temp2);
+
+ masm.branchAddPtr(Assembler::Overflow, temp2, temp1, ool->entry());
+
+ // Create and return the result.
+ masm.newGCBigInt(output, temp2, initialBigIntHeap(), ool->entry());
+ masm.initializeBigInt(output, temp1);
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitBigIntDecrement(LBigIntDecrement* ins) {
+ Register input = ToRegister(ins->input());
+ Register temp1 = ToRegister(ins->temp1());
+ Register temp2 = ToRegister(ins->temp2());
+ Register output = ToRegister(ins->output());
+
+ using Fn = BigInt* (*)(JSContext*, HandleBigInt);
+ auto* ool =
+ oolCallVM<Fn, BigInt::dec>(ins, ArgList(input), StoreRegisterTo(output));
+
+ // Call into the VM when the input can't be loaded into a pointer-sized
+ // register.
+ masm.loadBigInt(input, temp1, ool->entry());
+ masm.movePtr(ImmWord(1), temp2);
+
+ masm.branchSubPtr(Assembler::Overflow, temp2, temp1, ool->entry());
+
+ // Create and return the result.
+ masm.newGCBigInt(output, temp2, initialBigIntHeap(), ool->entry());
+ masm.initializeBigInt(output, temp1);
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitBigIntNegate(LBigIntNegate* ins) {
+ Register input = ToRegister(ins->input());
+ Register temp = ToRegister(ins->temp());
+ Register output = ToRegister(ins->output());
+
+ using Fn = BigInt* (*)(JSContext*, HandleBigInt);
+ auto* ool =
+ oolCallVM<Fn, BigInt::neg>(ins, ArgList(input), StoreRegisterTo(output));
+
+ // -0n == 0n
+ Label lhsNonZero;
+ masm.branchIfBigIntIsNonZero(input, &lhsNonZero);
+ masm.movePtr(input, output);
+ masm.jump(ool->rejoin());
+ masm.bind(&lhsNonZero);
+
+ // Call into the VM when the input uses heap digits.
+ masm.copyBigIntWithInlineDigits(input, output, temp, initialBigIntHeap(),
+ ool->entry());
+
+ // Flip the sign bit.
+ masm.xor32(Imm32(BigInt::signBitMask()),
+ Address(output, BigInt::offsetOfFlags()));
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitBigIntBitNot(LBigIntBitNot* ins) {
+ Register input = ToRegister(ins->input());
+ Register temp1 = ToRegister(ins->temp1());
+ Register temp2 = ToRegister(ins->temp2());
+ Register output = ToRegister(ins->output());
+
+ using Fn = BigInt* (*)(JSContext*, HandleBigInt);
+ auto* ool = oolCallVM<Fn, BigInt::bitNot>(ins, ArgList(input),
+ StoreRegisterTo(output));
+
+ masm.loadBigIntAbsolute(input, temp1, ool->entry());
+
+ // This follows the C++ implementation because it let's us support the full
+ // range [-2^64, 2^64 - 1] on 64-bit resp. [-2^32, 2^32 - 1] on 32-bit.
+ Label nonNegative, done;
+ masm.branchIfBigIntIsNonNegative(input, &nonNegative);
+ {
+ // ~(-x) == ~(~(x-1)) == x-1
+ masm.subPtr(Imm32(1), temp1);
+ masm.jump(&done);
+ }
+ masm.bind(&nonNegative);
+ {
+ // ~x == -x-1 == -(x+1)
+ masm.movePtr(ImmWord(1), temp2);
+ masm.branchAddPtr(Assembler::CarrySet, temp2, temp1, ool->entry());
+ }
+ masm.bind(&done);
+
+ // Create and return the result.
+ masm.newGCBigInt(output, temp2, initialBigIntHeap(), ool->entry());
+ masm.initializeBigIntAbsolute(output, temp1);
+
+ // Set the sign bit when the input is positive.
+ masm.branchIfBigIntIsNegative(input, ool->rejoin());
+ masm.or32(Imm32(BigInt::signBitMask()),
+ Address(output, BigInt::offsetOfFlags()));
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitInt32ToStringWithBase(LInt32ToStringWithBase* lir) {
+ Register input = ToRegister(lir->input());
+ RegisterOrInt32 base = ToRegisterOrInt32(lir->base());
+ Register output = ToRegister(lir->output());
+ Register temp0 = ToRegister(lir->temp0());
+ Register temp1 = ToRegister(lir->temp1());
+
+ bool lowerCase = lir->mir()->lowerCase();
+
+ using Fn = JSString* (*)(JSContext*, int32_t, int32_t, bool);
+ if (base.is<Register>()) {
+ auto* ool = oolCallVM<Fn, js::Int32ToStringWithBase>(
+ lir, ArgList(input, base.as<Register>(), Imm32(lowerCase)),
+ StoreRegisterTo(output));
+
+ LiveRegisterSet liveRegs = liveVolatileRegs(lir);
+ masm.loadInt32ToStringWithBase(input, base.as<Register>(), output, temp0,
+ temp1, gen->runtime->staticStrings(),
+ liveRegs, lowerCase, ool->entry());
+ masm.bind(ool->rejoin());
+ } else {
+ auto* ool = oolCallVM<Fn, js::Int32ToStringWithBase>(
+ lir, ArgList(input, Imm32(base.as<int32_t>()), Imm32(lowerCase)),
+ StoreRegisterTo(output));
+
+ masm.loadInt32ToStringWithBase(input, base.as<int32_t>(), output, temp0,
+ temp1, gen->runtime->staticStrings(),
+ lowerCase, ool->entry());
+ masm.bind(ool->rejoin());
+ }
+}
+
+void CodeGenerator::visitNumberParseInt(LNumberParseInt* lir) {
+ Register string = ToRegister(lir->string());
+ Register radix = ToRegister(lir->radix());
+ ValueOperand output = ToOutValue(lir);
+ Register temp = ToRegister(lir->temp0());
+
+#ifdef DEBUG
+ Label ok;
+ masm.branch32(Assembler::Equal, radix, Imm32(0), &ok);
+ masm.branch32(Assembler::Equal, radix, Imm32(10), &ok);
+ masm.assumeUnreachable("radix must be 0 or 10 for indexed value fast path");
+ masm.bind(&ok);
+#endif
+
+ // Use indexed value as fast path if possible.
+ Label vmCall, done;
+ masm.loadStringIndexValue(string, temp, &vmCall);
+ masm.tagValue(JSVAL_TYPE_INT32, temp, output);
+ masm.jump(&done);
+ {
+ masm.bind(&vmCall);
+
+ pushArg(radix);
+ pushArg(string);
+
+ using Fn = bool (*)(JSContext*, HandleString, int32_t, MutableHandleValue);
+ callVM<Fn, js::NumberParseInt>(lir);
+ }
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitDoubleParseInt(LDoubleParseInt* lir) {
+ FloatRegister number = ToFloatRegister(lir->number());
+ Register output = ToRegister(lir->output());
+ FloatRegister temp = ToFloatRegister(lir->temp0());
+
+ Label bail;
+ masm.branchDouble(Assembler::DoubleUnordered, number, number, &bail);
+ masm.branchTruncateDoubleToInt32(number, output, &bail);
+
+ Label ok;
+ masm.branch32(Assembler::NotEqual, output, Imm32(0), &ok);
+ {
+ // Accept both +0 and -0 and return 0.
+ masm.loadConstantDouble(0.0, temp);
+ masm.branchDouble(Assembler::DoubleEqual, number, temp, &ok);
+
+ // Fail if a non-zero input is in the exclusive range (-1, 1.0e-6).
+ masm.loadConstantDouble(DOUBLE_DECIMAL_IN_SHORTEST_LOW, temp);
+ masm.branchDouble(Assembler::DoubleLessThan, number, temp, &bail);
+ }
+ masm.bind(&ok);
+
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+void CodeGenerator::visitFloor(LFloor* lir) {
+ FloatRegister input = ToFloatRegister(lir->input());
+ Register output = ToRegister(lir->output());
+
+ Label bail;
+ masm.floorDoubleToInt32(input, output, &bail);
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+void CodeGenerator::visitFloorF(LFloorF* lir) {
+ FloatRegister input = ToFloatRegister(lir->input());
+ Register output = ToRegister(lir->output());
+
+ Label bail;
+ masm.floorFloat32ToInt32(input, output, &bail);
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+void CodeGenerator::visitCeil(LCeil* lir) {
+ FloatRegister input = ToFloatRegister(lir->input());
+ Register output = ToRegister(lir->output());
+
+ Label bail;
+ masm.ceilDoubleToInt32(input, output, &bail);
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+void CodeGenerator::visitCeilF(LCeilF* lir) {
+ FloatRegister input = ToFloatRegister(lir->input());
+ Register output = ToRegister(lir->output());
+
+ Label bail;
+ masm.ceilFloat32ToInt32(input, output, &bail);
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+void CodeGenerator::visitRound(LRound* lir) {
+ FloatRegister input = ToFloatRegister(lir->input());
+ FloatRegister temp = ToFloatRegister(lir->temp0());
+ Register output = ToRegister(lir->output());
+
+ Label bail;
+ masm.roundDoubleToInt32(input, output, temp, &bail);
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+void CodeGenerator::visitRoundF(LRoundF* lir) {
+ FloatRegister input = ToFloatRegister(lir->input());
+ FloatRegister temp = ToFloatRegister(lir->temp0());
+ Register output = ToRegister(lir->output());
+
+ Label bail;
+ masm.roundFloat32ToInt32(input, output, temp, &bail);
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+void CodeGenerator::visitTrunc(LTrunc* lir) {
+ FloatRegister input = ToFloatRegister(lir->input());
+ Register output = ToRegister(lir->output());
+
+ Label bail;
+ masm.truncDoubleToInt32(input, output, &bail);
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+void CodeGenerator::visitTruncF(LTruncF* lir) {
+ FloatRegister input = ToFloatRegister(lir->input());
+ Register output = ToRegister(lir->output());
+
+ Label bail;
+ masm.truncFloat32ToInt32(input, output, &bail);
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+void CodeGenerator::visitCompareS(LCompareS* lir) {
+ JSOp op = lir->mir()->jsop();
+ Register left = ToRegister(lir->left());
+ Register right = ToRegister(lir->right());
+ Register output = ToRegister(lir->output());
+
+ OutOfLineCode* ool = nullptr;
+
+ using Fn = bool (*)(JSContext*, HandleString, HandleString, bool*);
+ if (op == JSOp::Eq || op == JSOp::StrictEq) {
+ ool = oolCallVM<Fn, jit::StringsEqual<EqualityKind::Equal>>(
+ lir, ArgList(left, right), StoreRegisterTo(output));
+ } else if (op == JSOp::Ne || op == JSOp::StrictNe) {
+ ool = oolCallVM<Fn, jit::StringsEqual<EqualityKind::NotEqual>>(
+ lir, ArgList(left, right), StoreRegisterTo(output));
+ } else if (op == JSOp::Lt) {
+ ool = oolCallVM<Fn, jit::StringsCompare<ComparisonKind::LessThan>>(
+ lir, ArgList(left, right), StoreRegisterTo(output));
+ } else if (op == JSOp::Le) {
+ // Push the operands in reverse order for JSOp::Le:
+ // - |left <= right| is implemented as |right >= left|.
+ ool =
+ oolCallVM<Fn, jit::StringsCompare<ComparisonKind::GreaterThanOrEqual>>(
+ lir, ArgList(right, left), StoreRegisterTo(output));
+ } else if (op == JSOp::Gt) {
+ // Push the operands in reverse order for JSOp::Gt:
+ // - |left > right| is implemented as |right < left|.
+ ool = oolCallVM<Fn, jit::StringsCompare<ComparisonKind::LessThan>>(
+ lir, ArgList(right, left), StoreRegisterTo(output));
+ } else {
+ MOZ_ASSERT(op == JSOp::Ge);
+ ool =
+ oolCallVM<Fn, jit::StringsCompare<ComparisonKind::GreaterThanOrEqual>>(
+ lir, ArgList(left, right), StoreRegisterTo(output));
+ }
+
+ masm.compareStrings(op, left, right, output, ool->entry());
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitCompareSInline(LCompareSInline* lir) {
+ JSOp op = lir->mir()->jsop();
+ MOZ_ASSERT(IsEqualityOp(op));
+
+ Register input = ToRegister(lir->input());
+ Register output = ToRegister(lir->output());
+
+ const JSLinearString* str = lir->constant();
+ MOZ_ASSERT(str->length() > 0);
+
+ OutOfLineCode* ool = nullptr;
+
+ using Fn = bool (*)(JSContext*, HandleString, HandleString, bool*);
+ if (op == JSOp::Eq || op == JSOp::StrictEq) {
+ ool = oolCallVM<Fn, jit::StringsEqual<EqualityKind::Equal>>(
+ lir, ArgList(ImmGCPtr(str), input), StoreRegisterTo(output));
+ } else {
+ MOZ_ASSERT(op == JSOp::Ne || op == JSOp::StrictNe);
+ ool = oolCallVM<Fn, jit::StringsEqual<EqualityKind::NotEqual>>(
+ lir, ArgList(ImmGCPtr(str), input), StoreRegisterTo(output));
+ }
+
+ Label compareChars;
+ {
+ Label notPointerEqual;
+
+ // If operands point to the same instance, the strings are trivially equal.
+ masm.branchPtr(Assembler::NotEqual, input, ImmGCPtr(str), &notPointerEqual);
+ masm.move32(Imm32(op == JSOp::Eq || op == JSOp::StrictEq), output);
+ masm.jump(ool->rejoin());
+
+ masm.bind(&notPointerEqual);
+
+ Label setNotEqualResult;
+ if (str->isAtom()) {
+ // Atoms cannot be equal to each other if they point to different strings.
+ Imm32 atomBit(JSString::ATOM_BIT);
+ masm.branchTest32(Assembler::NonZero,
+ Address(input, JSString::offsetOfFlags()), atomBit,
+ &setNotEqualResult);
+ }
+
+ if (str->hasTwoByteChars()) {
+ // Pure two-byte strings can't be equal to Latin-1 strings.
+ JS::AutoCheckCannotGC nogc;
+ if (!mozilla::IsUtf16Latin1(str->twoByteRange(nogc))) {
+ masm.branchLatin1String(input, &setNotEqualResult);
+ }
+ }
+
+ // Strings of different length can never be equal.
+ masm.branch32(Assembler::Equal, Address(input, JSString::offsetOfLength()),
+ Imm32(str->length()), &compareChars);
+
+ masm.bind(&setNotEqualResult);
+ masm.move32(Imm32(op == JSOp::Ne || op == JSOp::StrictNe), output);
+ masm.jump(ool->rejoin());
+ }
+
+ masm.bind(&compareChars);
+
+ // Load the input string's characters.
+ Register stringChars = output;
+ masm.loadStringCharsForCompare(input, str, stringChars, ool->entry());
+
+ // Start comparing character by character.
+ masm.compareStringChars(op, stringChars, str, output);
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitCompareSSingle(LCompareSSingle* lir) {
+ JSOp op = lir->jsop();
+ MOZ_ASSERT(IsRelationalOp(op));
+
+ Register input = ToRegister(lir->input());
+ Register output = ToRegister(lir->output());
+ Register temp = ToRegister(lir->temp0());
+
+ const JSLinearString* str = lir->constant();
+ MOZ_ASSERT(str->length() == 1);
+
+ char16_t ch = str->latin1OrTwoByteChar(0);
+
+ masm.movePtr(input, temp);
+
+ // Check if the string is empty.
+ Label compareLength;
+ masm.branch32(Assembler::Equal, Address(temp, JSString::offsetOfLength()),
+ Imm32(0), &compareLength);
+
+ // The first character is in the left-most rope child.
+ Label notRope;
+ masm.branchIfNotRope(temp, &notRope);
+ {
+ // Unwind ropes at the start if possible.
+ Label unwindRope;
+ masm.bind(&unwindRope);
+ masm.loadRopeLeftChild(temp, output);
+ masm.movePtr(output, temp);
+
+#ifdef DEBUG
+ Label notEmpty;
+ masm.branch32(Assembler::NotEqual,
+ Address(temp, JSString::offsetOfLength()), Imm32(0),
+ &notEmpty);
+ masm.assumeUnreachable("rope children are non-empty");
+ masm.bind(&notEmpty);
+#endif
+
+ // Otherwise keep unwinding ropes.
+ masm.branchIfRope(temp, &unwindRope);
+ }
+ masm.bind(&notRope);
+
+ // Load the first character into |output|.
+ auto loadFirstChar = [&](auto encoding) {
+ masm.loadStringChars(temp, output, encoding);
+ masm.loadChar(Address(output, 0), output, encoding);
+ };
+
+ Label done;
+ if (ch <= JSString::MAX_LATIN1_CHAR) {
+ // Handle both encodings when the search character is Latin-1.
+ Label twoByte, compare;
+ masm.branchTwoByteString(temp, &twoByte);
+
+ loadFirstChar(CharEncoding::Latin1);
+ masm.jump(&compare);
+
+ masm.bind(&twoByte);
+ loadFirstChar(CharEncoding::TwoByte);
+
+ masm.bind(&compare);
+ } else {
+ // The search character is a two-byte character, so it can't be equal to any
+ // character of a Latin-1 string.
+ masm.move32(Imm32(int32_t(op == JSOp::Lt || op == JSOp::Le)), output);
+ masm.branchLatin1String(temp, &done);
+
+ loadFirstChar(CharEncoding::TwoByte);
+ }
+
+ // Compare the string length when the search character is equal to the
+ // input's first character.
+ masm.branch32(Assembler::Equal, output, Imm32(ch), &compareLength);
+
+ // Otherwise compute the result and jump to the end.
+ masm.cmp32Set(JSOpToCondition(op, /* isSigned = */ false), output, Imm32(ch),
+ output);
+ masm.jump(&done);
+
+ // Compare the string length to compute the overall result.
+ masm.bind(&compareLength);
+ masm.cmp32Set(JSOpToCondition(op, /* isSigned = */ false),
+ Address(temp, JSString::offsetOfLength()), Imm32(1), output);
+
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitCompareBigInt(LCompareBigInt* lir) {
+ JSOp op = lir->mir()->jsop();
+ Register left = ToRegister(lir->left());
+ Register right = ToRegister(lir->right());
+ Register temp0 = ToRegister(lir->temp0());
+ Register temp1 = ToRegister(lir->temp1());
+ Register temp2 = ToRegister(lir->temp2());
+ Register output = ToRegister(lir->output());
+
+ Label notSame;
+ Label compareSign;
+ Label compareLength;
+ Label compareDigit;
+
+ Label* notSameSign;
+ Label* notSameLength;
+ Label* notSameDigit;
+ if (IsEqualityOp(op)) {
+ notSameSign = &notSame;
+ notSameLength = &notSame;
+ notSameDigit = &notSame;
+ } else {
+ notSameSign = &compareSign;
+ notSameLength = &compareLength;
+ notSameDigit = &compareDigit;
+ }
+
+ masm.equalBigInts(left, right, temp0, temp1, temp2, output, notSameSign,
+ notSameLength, notSameDigit);
+
+ Label done;
+ masm.move32(Imm32(op == JSOp::Eq || op == JSOp::StrictEq || op == JSOp::Le ||
+ op == JSOp::Ge),
+ output);
+ masm.jump(&done);
+
+ if (IsEqualityOp(op)) {
+ masm.bind(&notSame);
+ masm.move32(Imm32(op == JSOp::Ne || op == JSOp::StrictNe), output);
+ } else {
+ Label invertWhenNegative;
+
+ // There are two cases when sign(left) != sign(right):
+ // 1. sign(left) = positive and sign(right) = negative,
+ // 2. or the dual case with reversed signs.
+ //
+ // For case 1, |left| <cmp> |right| is true for cmp=Gt or cmp=Ge and false
+ // for cmp=Lt or cmp=Le. Initialize the result for case 1 and handle case 2
+ // with |invertWhenNegative|.
+ masm.bind(&compareSign);
+ masm.move32(Imm32(op == JSOp::Gt || op == JSOp::Ge), output);
+ masm.jump(&invertWhenNegative);
+
+ // For sign(left) = sign(right) and len(digits(left)) != len(digits(right)),
+ // we have to consider the two cases:
+ // 1. len(digits(left)) < len(digits(right))
+ // 2. len(digits(left)) > len(digits(right))
+ //
+ // For |left| <cmp> |right| with cmp=Lt:
+ // Assume both BigInts are positive, then |left < right| is true for case 1
+ // and false for case 2. When both are negative, the result is reversed.
+ //
+ // The other comparison operators can be handled similarly.
+ //
+ // |temp0| holds the digits length of the right-hand side operand.
+ masm.bind(&compareLength);
+ masm.cmp32Set(JSOpToCondition(op, /* isSigned = */ false),
+ Address(left, BigInt::offsetOfLength()), temp0, output);
+ masm.jump(&invertWhenNegative);
+
+ // Similar to the case above, compare the current digit to determine the
+ // overall comparison result.
+ //
+ // |temp1| points to the current digit of the left-hand side operand.
+ // |output| holds the current digit of the right-hand side operand.
+ masm.bind(&compareDigit);
+ masm.cmpPtrSet(JSOpToCondition(op, /* isSigned = */ false),
+ Address(temp1, 0), output, output);
+
+ Label nonNegative;
+ masm.bind(&invertWhenNegative);
+ masm.branchIfBigIntIsNonNegative(left, &nonNegative);
+ masm.xor32(Imm32(1), output);
+ masm.bind(&nonNegative);
+ }
+
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitCompareBigIntInt32(LCompareBigIntInt32* lir) {
+ JSOp op = lir->mir()->jsop();
+ Register left = ToRegister(lir->left());
+ Register right = ToRegister(lir->right());
+ Register temp0 = ToRegister(lir->temp0());
+ Register temp1 = ToRegister(lir->temp1());
+ Register output = ToRegister(lir->output());
+
+ Label ifTrue, ifFalse;
+ masm.compareBigIntAndInt32(op, left, right, temp0, temp1, &ifTrue, &ifFalse);
+
+ Label done;
+ masm.bind(&ifFalse);
+ masm.move32(Imm32(0), output);
+ masm.jump(&done);
+ masm.bind(&ifTrue);
+ masm.move32(Imm32(1), output);
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitCompareBigIntDouble(LCompareBigIntDouble* lir) {
+ JSOp op = lir->mir()->jsop();
+ Register left = ToRegister(lir->left());
+ FloatRegister right = ToFloatRegister(lir->right());
+ Register output = ToRegister(lir->output());
+
+ masm.setupAlignedABICall();
+
+ // Push the operands in reverse order for JSOp::Le and JSOp::Gt:
+ // - |left <= right| is implemented as |right >= left|.
+ // - |left > right| is implemented as |right < left|.
+ if (op == JSOp::Le || op == JSOp::Gt) {
+ masm.passABIArg(right, ABIType::Float64);
+ masm.passABIArg(left);
+ } else {
+ masm.passABIArg(left);
+ masm.passABIArg(right, ABIType::Float64);
+ }
+
+ using FnBigIntNumber = bool (*)(BigInt*, double);
+ using FnNumberBigInt = bool (*)(double, BigInt*);
+ switch (op) {
+ case JSOp::Eq: {
+ masm.callWithABI<FnBigIntNumber,
+ jit::BigIntNumberEqual<EqualityKind::Equal>>();
+ break;
+ }
+ case JSOp::Ne: {
+ masm.callWithABI<FnBigIntNumber,
+ jit::BigIntNumberEqual<EqualityKind::NotEqual>>();
+ break;
+ }
+ case JSOp::Lt: {
+ masm.callWithABI<FnBigIntNumber,
+ jit::BigIntNumberCompare<ComparisonKind::LessThan>>();
+ break;
+ }
+ case JSOp::Gt: {
+ masm.callWithABI<FnNumberBigInt,
+ jit::NumberBigIntCompare<ComparisonKind::LessThan>>();
+ break;
+ }
+ case JSOp::Le: {
+ masm.callWithABI<
+ FnNumberBigInt,
+ jit::NumberBigIntCompare<ComparisonKind::GreaterThanOrEqual>>();
+ break;
+ }
+ case JSOp::Ge: {
+ masm.callWithABI<
+ FnBigIntNumber,
+ jit::BigIntNumberCompare<ComparisonKind::GreaterThanOrEqual>>();
+ break;
+ }
+ default:
+ MOZ_CRASH("unhandled op");
+ }
+
+ masm.storeCallBoolResult(output);
+}
+
+void CodeGenerator::visitCompareBigIntString(LCompareBigIntString* lir) {
+ JSOp op = lir->mir()->jsop();
+ Register left = ToRegister(lir->left());
+ Register right = ToRegister(lir->right());
+
+ // Push the operands in reverse order for JSOp::Le and JSOp::Gt:
+ // - |left <= right| is implemented as |right >= left|.
+ // - |left > right| is implemented as |right < left|.
+ if (op == JSOp::Le || op == JSOp::Gt) {
+ pushArg(left);
+ pushArg(right);
+ } else {
+ pushArg(right);
+ pushArg(left);
+ }
+
+ using FnBigIntString =
+ bool (*)(JSContext*, HandleBigInt, HandleString, bool*);
+ using FnStringBigInt =
+ bool (*)(JSContext*, HandleString, HandleBigInt, bool*);
+
+ switch (op) {
+ case JSOp::Eq: {
+ constexpr auto Equal = EqualityKind::Equal;
+ callVM<FnBigIntString, BigIntStringEqual<Equal>>(lir);
+ break;
+ }
+ case JSOp::Ne: {
+ constexpr auto NotEqual = EqualityKind::NotEqual;
+ callVM<FnBigIntString, BigIntStringEqual<NotEqual>>(lir);
+ break;
+ }
+ case JSOp::Lt: {
+ constexpr auto LessThan = ComparisonKind::LessThan;
+ callVM<FnBigIntString, BigIntStringCompare<LessThan>>(lir);
+ break;
+ }
+ case JSOp::Gt: {
+ constexpr auto LessThan = ComparisonKind::LessThan;
+ callVM<FnStringBigInt, StringBigIntCompare<LessThan>>(lir);
+ break;
+ }
+ case JSOp::Le: {
+ constexpr auto GreaterThanOrEqual = ComparisonKind::GreaterThanOrEqual;
+ callVM<FnStringBigInt, StringBigIntCompare<GreaterThanOrEqual>>(lir);
+ break;
+ }
+ case JSOp::Ge: {
+ constexpr auto GreaterThanOrEqual = ComparisonKind::GreaterThanOrEqual;
+ callVM<FnBigIntString, BigIntStringCompare<GreaterThanOrEqual>>(lir);
+ break;
+ }
+ default:
+ MOZ_CRASH("Unexpected compare op");
+ }
+}
+
+void CodeGenerator::visitIsNullOrLikeUndefinedV(LIsNullOrLikeUndefinedV* lir) {
+ MOZ_ASSERT(lir->mir()->compareType() == MCompare::Compare_Undefined ||
+ lir->mir()->compareType() == MCompare::Compare_Null);
+
+ JSOp op = lir->mir()->jsop();
+ MOZ_ASSERT(IsLooseEqualityOp(op));
+
+ const ValueOperand value = ToValue(lir, LIsNullOrLikeUndefinedV::ValueIndex);
+ Register output = ToRegister(lir->output());
+
+ bool intact = hasSeenObjectEmulateUndefinedFuseIntactAndDependencyNoted();
+ if (!intact) {
+ auto* ool = new (alloc()) OutOfLineTestObjectWithLabels();
+ addOutOfLineCode(ool, lir->mir());
+
+ Label* nullOrLikeUndefined = ool->label1();
+ Label* notNullOrLikeUndefined = ool->label2();
+
+ {
+ ScratchTagScope tag(masm, value);
+ masm.splitTagForTest(value, tag);
+
+ masm.branchTestNull(Assembler::Equal, tag, nullOrLikeUndefined);
+ masm.branchTestUndefined(Assembler::Equal, tag, nullOrLikeUndefined);
+
+ // Check whether it's a truthy object or a falsy object that emulates
+ // undefined.
+ masm.branchTestObject(Assembler::NotEqual, tag, notNullOrLikeUndefined);
+ }
+
+ Register objreg =
+ masm.extractObject(value, ToTempUnboxRegister(lir->temp0()));
+ branchTestObjectEmulatesUndefined(objreg, nullOrLikeUndefined,
+ notNullOrLikeUndefined, output, ool);
+ // fall through
+
+ Label done;
+
+ // It's not null or undefined, and if it's an object it doesn't
+ // emulate undefined, so it's not like undefined.
+ masm.move32(Imm32(op == JSOp::Ne), output);
+ masm.jump(&done);
+
+ masm.bind(nullOrLikeUndefined);
+ masm.move32(Imm32(op == JSOp::Eq), output);
+
+ // Both branches meet here.
+ masm.bind(&done);
+ } else {
+ Label nullOrUndefined, notNullOrLikeUndefined;
+#if defined(DEBUG) || defined(FUZZING)
+ Register objreg = Register::Invalid();
+#endif
+ {
+ ScratchTagScope tag(masm, value);
+ masm.splitTagForTest(value, tag);
+
+ masm.branchTestNull(Assembler::Equal, tag, &nullOrUndefined);
+ masm.branchTestUndefined(Assembler::Equal, tag, &nullOrUndefined);
+
+#if defined(DEBUG) || defined(FUZZING)
+ // Check whether it's a truthy object or a falsy object that emulates
+ // undefined.
+ masm.branchTestObject(Assembler::NotEqual, tag, &notNullOrLikeUndefined);
+ objreg = masm.extractObject(value, ToTempUnboxRegister(lir->temp0()));
+#endif
+ }
+
+#if defined(DEBUG) || defined(FUZZING)
+ assertObjectDoesNotEmulateUndefined(objreg, output, lir->mir());
+ masm.bind(&notNullOrLikeUndefined);
+#endif
+
+ Label done;
+
+ // It's not null or undefined, and if it's an object it doesn't
+ // emulate undefined.
+ masm.move32(Imm32(op == JSOp::Ne), output);
+ masm.jump(&done);
+
+ masm.bind(&nullOrUndefined);
+ masm.move32(Imm32(op == JSOp::Eq), output);
+
+ // Both branches meet here.
+ masm.bind(&done);
+ }
+}
+
+void CodeGenerator::visitIsNullOrLikeUndefinedAndBranchV(
+ LIsNullOrLikeUndefinedAndBranchV* lir) {
+ MOZ_ASSERT(lir->cmpMir()->compareType() == MCompare::Compare_Undefined ||
+ lir->cmpMir()->compareType() == MCompare::Compare_Null);
+
+ JSOp op = lir->cmpMir()->jsop();
+ MOZ_ASSERT(IsLooseEqualityOp(op));
+
+ const ValueOperand value =
+ ToValue(lir, LIsNullOrLikeUndefinedAndBranchV::Value);
+
+ MBasicBlock* ifTrue = lir->ifTrue();
+ MBasicBlock* ifFalse = lir->ifFalse();
+
+ if (op == JSOp::Ne) {
+ // Swap branches.
+ std::swap(ifTrue, ifFalse);
+ }
+
+ bool intact = hasSeenObjectEmulateUndefinedFuseIntactAndDependencyNoted();
+
+ Label* ifTrueLabel = getJumpLabelForBranch(ifTrue);
+ Label* ifFalseLabel = getJumpLabelForBranch(ifFalse);
+
+ {
+ ScratchTagScope tag(masm, value);
+ masm.splitTagForTest(value, tag);
+
+ masm.branchTestNull(Assembler::Equal, tag, ifTrueLabel);
+ masm.branchTestUndefined(Assembler::Equal, tag, ifTrueLabel);
+
+ masm.branchTestObject(Assembler::NotEqual, tag, ifFalseLabel);
+ }
+
+ bool extractObject = !intact;
+#if defined(DEBUG) || defined(FUZZING)
+ // always extract objreg if we're in debug and
+ // assertObjectDoesNotEmulateUndefined;
+ extractObject = true;
+#endif
+
+ Register objreg = Register::Invalid();
+ Register scratch = ToRegister(lir->temp());
+ if (extractObject) {
+ objreg = masm.extractObject(value, ToTempUnboxRegister(lir->tempToUnbox()));
+ }
+ if (!intact) {
+ // Objects that emulate undefined are loosely equal to null/undefined.
+ OutOfLineTestObject* ool = new (alloc()) OutOfLineTestObject();
+ addOutOfLineCode(ool, lir->cmpMir());
+ testObjectEmulatesUndefined(objreg, ifTrueLabel, ifFalseLabel, scratch,
+ ool);
+ } else {
+ assertObjectDoesNotEmulateUndefined(objreg, scratch, lir->cmpMir());
+ // Bug 1874905. This would be nice to optimize out at the MIR level.
+ masm.jump(ifFalseLabel);
+ }
+}
+
+void CodeGenerator::visitIsNullOrLikeUndefinedT(LIsNullOrLikeUndefinedT* lir) {
+ MOZ_ASSERT(lir->mir()->compareType() == MCompare::Compare_Undefined ||
+ lir->mir()->compareType() == MCompare::Compare_Null);
+ MOZ_ASSERT(lir->mir()->lhs()->type() == MIRType::Object);
+
+ bool intact = hasSeenObjectEmulateUndefinedFuseIntactAndDependencyNoted();
+ JSOp op = lir->mir()->jsop();
+ Register output = ToRegister(lir->output());
+ Register objreg = ToRegister(lir->input());
+ if (!intact) {
+ MOZ_ASSERT(IsLooseEqualityOp(op),
+ "Strict equality should have been folded");
+
+ auto* ool = new (alloc()) OutOfLineTestObjectWithLabels();
+ addOutOfLineCode(ool, lir->mir());
+
+ Label* emulatesUndefined = ool->label1();
+ Label* doesntEmulateUndefined = ool->label2();
+
+ branchTestObjectEmulatesUndefined(objreg, emulatesUndefined,
+ doesntEmulateUndefined, output, ool);
+
+ Label done;
+
+ masm.move32(Imm32(op == JSOp::Ne), output);
+ masm.jump(&done);
+
+ masm.bind(emulatesUndefined);
+ masm.move32(Imm32(op == JSOp::Eq), output);
+ masm.bind(&done);
+ } else {
+ assertObjectDoesNotEmulateUndefined(objreg, output, lir->mir());
+ masm.move32(Imm32(op == JSOp::Ne), output);
+ }
+}
+
+void CodeGenerator::visitIsNullOrLikeUndefinedAndBranchT(
+ LIsNullOrLikeUndefinedAndBranchT* lir) {
+ MOZ_ASSERT(lir->cmpMir()->compareType() == MCompare::Compare_Undefined ||
+ lir->cmpMir()->compareType() == MCompare::Compare_Null);
+ MOZ_ASSERT(lir->cmpMir()->lhs()->type() == MIRType::Object);
+
+ bool intact = hasSeenObjectEmulateUndefinedFuseIntactAndDependencyNoted();
+
+ JSOp op = lir->cmpMir()->jsop();
+ MOZ_ASSERT(IsLooseEqualityOp(op), "Strict equality should have been folded");
+
+ MBasicBlock* ifTrue = lir->ifTrue();
+ MBasicBlock* ifFalse = lir->ifFalse();
+
+ if (op == JSOp::Ne) {
+ // Swap branches.
+ std::swap(ifTrue, ifFalse);
+ }
+
+ Register input = ToRegister(lir->getOperand(0));
+ Register scratch = ToRegister(lir->temp());
+ Label* ifTrueLabel = getJumpLabelForBranch(ifTrue);
+ Label* ifFalseLabel = getJumpLabelForBranch(ifFalse);
+
+ if (intact) {
+ // Bug 1874905. Ideally branches like this would be optimized out.
+ assertObjectDoesNotEmulateUndefined(input, scratch, lir->mir());
+ masm.jump(ifFalseLabel);
+ } else {
+ auto* ool = new (alloc()) OutOfLineTestObject();
+ addOutOfLineCode(ool, lir->cmpMir());
+
+ // Objects that emulate undefined are loosely equal to null/undefined.
+ testObjectEmulatesUndefined(input, ifTrueLabel, ifFalseLabel, scratch, ool);
+ }
+}
+
+void CodeGenerator::visitIsNull(LIsNull* lir) {
+ MCompare::CompareType compareType = lir->mir()->compareType();
+ MOZ_ASSERT(compareType == MCompare::Compare_Null);
+
+ JSOp op = lir->mir()->jsop();
+ MOZ_ASSERT(IsStrictEqualityOp(op));
+
+ const ValueOperand value = ToValue(lir, LIsNull::ValueIndex);
+ Register output = ToRegister(lir->output());
+
+ Assembler::Condition cond = JSOpToCondition(compareType, op);
+ masm.testNullSet(cond, value, output);
+}
+
+void CodeGenerator::visitIsUndefined(LIsUndefined* lir) {
+ MCompare::CompareType compareType = lir->mir()->compareType();
+ MOZ_ASSERT(compareType == MCompare::Compare_Undefined);
+
+ JSOp op = lir->mir()->jsop();
+ MOZ_ASSERT(IsStrictEqualityOp(op));
+
+ const ValueOperand value = ToValue(lir, LIsUndefined::ValueIndex);
+ Register output = ToRegister(lir->output());
+
+ Assembler::Condition cond = JSOpToCondition(compareType, op);
+ masm.testUndefinedSet(cond, value, output);
+}
+
+void CodeGenerator::visitIsNullAndBranch(LIsNullAndBranch* lir) {
+ MCompare::CompareType compareType = lir->cmpMir()->compareType();
+ MOZ_ASSERT(compareType == MCompare::Compare_Null);
+
+ JSOp op = lir->cmpMir()->jsop();
+ MOZ_ASSERT(IsStrictEqualityOp(op));
+
+ const ValueOperand value = ToValue(lir, LIsNullAndBranch::Value);
+
+ Assembler::Condition cond = JSOpToCondition(compareType, op);
+ testNullEmitBranch(cond, value, lir->ifTrue(), lir->ifFalse());
+}
+
+void CodeGenerator::visitIsUndefinedAndBranch(LIsUndefinedAndBranch* lir) {
+ MCompare::CompareType compareType = lir->cmpMir()->compareType();
+ MOZ_ASSERT(compareType == MCompare::Compare_Undefined);
+
+ JSOp op = lir->cmpMir()->jsop();
+ MOZ_ASSERT(IsStrictEqualityOp(op));
+
+ const ValueOperand value = ToValue(lir, LIsUndefinedAndBranch::Value);
+
+ Assembler::Condition cond = JSOpToCondition(compareType, op);
+ testUndefinedEmitBranch(cond, value, lir->ifTrue(), lir->ifFalse());
+}
+
+void CodeGenerator::visitSameValueDouble(LSameValueDouble* lir) {
+ FloatRegister left = ToFloatRegister(lir->left());
+ FloatRegister right = ToFloatRegister(lir->right());
+ FloatRegister temp = ToFloatRegister(lir->temp0());
+ Register output = ToRegister(lir->output());
+
+ masm.sameValueDouble(left, right, temp, output);
+}
+
+void CodeGenerator::visitSameValue(LSameValue* lir) {
+ ValueOperand lhs = ToValue(lir, LSameValue::LhsIndex);
+ ValueOperand rhs = ToValue(lir, LSameValue::RhsIndex);
+ Register output = ToRegister(lir->output());
+
+ using Fn = bool (*)(JSContext*, HandleValue, HandleValue, bool*);
+ OutOfLineCode* ool =
+ oolCallVM<Fn, SameValue>(lir, ArgList(lhs, rhs), StoreRegisterTo(output));
+
+ // First check to see if the values have identical bits.
+ // This is correct for SameValue because SameValue(NaN,NaN) is true,
+ // and SameValue(0,-0) is false.
+ masm.branch64(Assembler::NotEqual, lhs.toRegister64(), rhs.toRegister64(),
+ ool->entry());
+ masm.move32(Imm32(1), output);
+
+ // If this fails, call SameValue.
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::emitConcat(LInstruction* lir, Register lhs, Register rhs,
+ Register output) {
+ using Fn =
+ JSString* (*)(JSContext*, HandleString, HandleString, js::gc::Heap);
+ OutOfLineCode* ool = oolCallVM<Fn, ConcatStrings<CanGC>>(
+ lir, ArgList(lhs, rhs, static_cast<Imm32>(int32_t(gc::Heap::Default))),
+ StoreRegisterTo(output));
+
+ const JitZone* jitZone = gen->realm->zone()->jitZone();
+ JitCode* stringConcatStub =
+ jitZone->stringConcatStubNoBarrier(&zoneStubsToReadBarrier_);
+ masm.call(stringConcatStub);
+ masm.branchTestPtr(Assembler::Zero, output, output, ool->entry());
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitConcat(LConcat* lir) {
+ Register lhs = ToRegister(lir->lhs());
+ Register rhs = ToRegister(lir->rhs());
+
+ Register output = ToRegister(lir->output());
+
+ MOZ_ASSERT(lhs == CallTempReg0);
+ MOZ_ASSERT(rhs == CallTempReg1);
+ MOZ_ASSERT(ToRegister(lir->temp0()) == CallTempReg0);
+ MOZ_ASSERT(ToRegister(lir->temp1()) == CallTempReg1);
+ MOZ_ASSERT(ToRegister(lir->temp2()) == CallTempReg2);
+ MOZ_ASSERT(ToRegister(lir->temp3()) == CallTempReg3);
+ MOZ_ASSERT(ToRegister(lir->temp4()) == CallTempReg4);
+ MOZ_ASSERT(output == CallTempReg5);
+
+ emitConcat(lir, lhs, rhs, output);
+}
+
+static void CopyStringChars(MacroAssembler& masm, Register to, Register from,
+ Register len, Register byteOpScratch,
+ CharEncoding fromEncoding, CharEncoding toEncoding,
+ size_t maximumLength = SIZE_MAX) {
+ // Copy |len| char16_t code units from |from| to |to|. Assumes len > 0
+ // (checked below in debug builds), and when done |to| must point to the
+ // next available char.
+
+#ifdef DEBUG
+ Label ok;
+ masm.branch32(Assembler::GreaterThan, len, Imm32(0), &ok);
+ masm.assumeUnreachable("Length should be greater than 0.");
+ masm.bind(&ok);
+
+ if (maximumLength != SIZE_MAX) {
+ MOZ_ASSERT(maximumLength <= INT32_MAX, "maximum length fits into int32");
+
+ Label ok;
+ masm.branchPtr(Assembler::BelowOrEqual, len, Imm32(maximumLength), &ok);
+ masm.assumeUnreachable("Length should not exceed maximum length.");
+ masm.bind(&ok);
+ }
+#endif
+
+ MOZ_ASSERT_IF(toEncoding == CharEncoding::Latin1,
+ fromEncoding == CharEncoding::Latin1);
+
+ size_t fromWidth =
+ fromEncoding == CharEncoding::Latin1 ? sizeof(char) : sizeof(char16_t);
+ size_t toWidth =
+ toEncoding == CharEncoding::Latin1 ? sizeof(char) : sizeof(char16_t);
+
+ // Try to copy multiple characters at once when both encoding are equal.
+ if (fromEncoding == toEncoding) {
+ constexpr size_t ptrWidth = sizeof(uintptr_t);
+
+ // Copy |width| bytes and then adjust |from| and |to|.
+ auto copyCharacters = [&](size_t width) {
+ static_assert(ptrWidth <= 8, "switch handles only up to eight bytes");
+
+ switch (width) {
+ case 1:
+ masm.load8ZeroExtend(Address(from, 0), byteOpScratch);
+ masm.store8(byteOpScratch, Address(to, 0));
+ break;
+ case 2:
+ masm.load16ZeroExtend(Address(from, 0), byteOpScratch);
+ masm.store16(byteOpScratch, Address(to, 0));
+ break;
+ case 4:
+ masm.load32(Address(from, 0), byteOpScratch);
+ masm.store32(byteOpScratch, Address(to, 0));
+ break;
+ case 8:
+ MOZ_ASSERT(width == ptrWidth);
+ masm.loadPtr(Address(from, 0), byteOpScratch);
+ masm.storePtr(byteOpScratch, Address(to, 0));
+ break;
+ }
+
+ masm.addPtr(Imm32(width), from);
+ masm.addPtr(Imm32(width), to);
+ };
+
+ // First align |len| to pointer width.
+ Label done;
+ for (size_t width = fromWidth; width < ptrWidth; width *= 2) {
+ // Number of characters which fit into |width| bytes.
+ size_t charsPerWidth = width / fromWidth;
+
+ if (charsPerWidth < maximumLength) {
+ Label next;
+ masm.branchTest32(Assembler::Zero, len, Imm32(charsPerWidth), &next);
+
+ copyCharacters(width);
+
+ masm.branchSub32(Assembler::Zero, Imm32(charsPerWidth), len, &done);
+ masm.bind(&next);
+ } else if (charsPerWidth == maximumLength) {
+ copyCharacters(width);
+ masm.sub32(Imm32(charsPerWidth), len);
+ }
+ }
+
+ size_t maxInlineLength;
+ if (fromEncoding == CharEncoding::Latin1) {
+ maxInlineLength = JSFatInlineString::MAX_LENGTH_LATIN1;
+ } else {
+ maxInlineLength = JSFatInlineString::MAX_LENGTH_TWO_BYTE;
+ }
+
+ // Number of characters which fit into a single register.
+ size_t charsPerPtr = ptrWidth / fromWidth;
+
+ // Unroll small loops.
+ constexpr size_t unrollLoopLimit = 3;
+ size_t loopCount = std::min(maxInlineLength, maximumLength) / charsPerPtr;
+
+#ifdef JS_64BIT
+ static constexpr size_t latin1MaxInlineByteLength =
+ JSFatInlineString::MAX_LENGTH_LATIN1 * sizeof(char);
+ static constexpr size_t twoByteMaxInlineByteLength =
+ JSFatInlineString::MAX_LENGTH_TWO_BYTE * sizeof(char16_t);
+
+ // |unrollLoopLimit| should be large enough to allow loop unrolling on
+ // 64-bit targets.
+ static_assert(latin1MaxInlineByteLength / ptrWidth == unrollLoopLimit,
+ "Latin-1 loops are unrolled on 64-bit");
+ static_assert(twoByteMaxInlineByteLength / ptrWidth == unrollLoopLimit,
+ "Two-byte loops are unrolled on 64-bit");
+#endif
+
+ if (loopCount <= unrollLoopLimit) {
+ Label labels[unrollLoopLimit];
+
+ // Check up front how many characters can be copied.
+ for (size_t i = 1; i < loopCount; i++) {
+ masm.branch32(Assembler::Below, len, Imm32((i + 1) * charsPerPtr),
+ &labels[i]);
+ }
+
+ // Generate the unrolled loop body.
+ for (size_t i = loopCount; i > 0; i--) {
+ copyCharacters(ptrWidth);
+ masm.sub32(Imm32(charsPerPtr), len);
+
+ // Jump target for the previous length check.
+ if (i != 1) {
+ masm.bind(&labels[i - 1]);
+ }
+ }
+ } else {
+ Label start;
+ masm.bind(&start);
+ copyCharacters(ptrWidth);
+ masm.branchSub32(Assembler::NonZero, Imm32(charsPerPtr), len, &start);
+ }
+
+ masm.bind(&done);
+ } else {
+ Label start;
+ masm.bind(&start);
+ masm.loadChar(Address(from, 0), byteOpScratch, fromEncoding);
+ masm.storeChar(byteOpScratch, Address(to, 0), toEncoding);
+ masm.addPtr(Imm32(fromWidth), from);
+ masm.addPtr(Imm32(toWidth), to);
+ masm.branchSub32(Assembler::NonZero, Imm32(1), len, &start);
+ }
+}
+
+static void CopyStringChars(MacroAssembler& masm, Register to, Register from,
+ Register len, Register byteOpScratch,
+ CharEncoding encoding, size_t maximumLength) {
+ CopyStringChars(masm, to, from, len, byteOpScratch, encoding, encoding,
+ maximumLength);
+}
+
+static void CopyStringCharsMaybeInflate(MacroAssembler& masm, Register input,
+ Register destChars, Register temp1,
+ Register temp2) {
+ // destChars is TwoByte and input is a Latin1 or TwoByte string, so we may
+ // have to inflate.
+
+ Label isLatin1, done;
+ masm.loadStringLength(input, temp1);
+ masm.branchLatin1String(input, &isLatin1);
+ {
+ masm.loadStringChars(input, temp2, CharEncoding::TwoByte);
+ masm.movePtr(temp2, input);
+ CopyStringChars(masm, destChars, input, temp1, temp2,
+ CharEncoding::TwoByte);
+ masm.jump(&done);
+ }
+ masm.bind(&isLatin1);
+ {
+ masm.loadStringChars(input, temp2, CharEncoding::Latin1);
+ masm.movePtr(temp2, input);
+ CopyStringChars(masm, destChars, input, temp1, temp2, CharEncoding::Latin1,
+ CharEncoding::TwoByte);
+ }
+ masm.bind(&done);
+}
+
+static void AllocateThinOrFatInlineString(MacroAssembler& masm, Register output,
+ Register length, Register temp,
+ gc::Heap initialStringHeap,
+ Label* failure,
+ CharEncoding encoding) {
+#ifdef DEBUG
+ size_t maxInlineLength;
+ if (encoding == CharEncoding::Latin1) {
+ maxInlineLength = JSFatInlineString::MAX_LENGTH_LATIN1;
+ } else {
+ maxInlineLength = JSFatInlineString::MAX_LENGTH_TWO_BYTE;
+ }
+
+ Label ok;
+ masm.branch32(Assembler::BelowOrEqual, length, Imm32(maxInlineLength), &ok);
+ masm.assumeUnreachable("string length too large to be allocated as inline");
+ masm.bind(&ok);
+#endif
+
+ size_t maxThinInlineLength;
+ if (encoding == CharEncoding::Latin1) {
+ maxThinInlineLength = JSThinInlineString::MAX_LENGTH_LATIN1;
+ } else {
+ maxThinInlineLength = JSThinInlineString::MAX_LENGTH_TWO_BYTE;
+ }
+
+ Label isFat, allocDone;
+ masm.branch32(Assembler::Above, length, Imm32(maxThinInlineLength), &isFat);
+ {
+ uint32_t flags = JSString::INIT_THIN_INLINE_FLAGS;
+ if (encoding == CharEncoding::Latin1) {
+ flags |= JSString::LATIN1_CHARS_BIT;
+ }
+ masm.newGCString(output, temp, initialStringHeap, failure);
+ masm.store32(Imm32(flags), Address(output, JSString::offsetOfFlags()));
+ masm.jump(&allocDone);
+ }
+ masm.bind(&isFat);
+ {
+ uint32_t flags = JSString::INIT_FAT_INLINE_FLAGS;
+ if (encoding == CharEncoding::Latin1) {
+ flags |= JSString::LATIN1_CHARS_BIT;
+ }
+ masm.newGCFatInlineString(output, temp, initialStringHeap, failure);
+ masm.store32(Imm32(flags), Address(output, JSString::offsetOfFlags()));
+ }
+ masm.bind(&allocDone);
+
+ // Store length.
+ masm.store32(length, Address(output, JSString::offsetOfLength()));
+}
+
+static void ConcatInlineString(MacroAssembler& masm, Register lhs, Register rhs,
+ Register output, Register temp1, Register temp2,
+ Register temp3, gc::Heap initialStringHeap,
+ Label* failure, CharEncoding encoding) {
+ JitSpew(JitSpew_Codegen, "# Emitting ConcatInlineString (encoding=%s)",
+ (encoding == CharEncoding::Latin1 ? "Latin-1" : "Two-Byte"));
+
+ // State: result length in temp2.
+
+ // Ensure both strings are linear.
+ masm.branchIfRope(lhs, failure);
+ masm.branchIfRope(rhs, failure);
+
+ // Allocate a JSThinInlineString or JSFatInlineString.
+ AllocateThinOrFatInlineString(masm, output, temp2, temp1, initialStringHeap,
+ failure, encoding);
+
+ // Load chars pointer in temp2.
+ masm.loadInlineStringCharsForStore(output, temp2);
+
+ auto copyChars = [&](Register src) {
+ if (encoding == CharEncoding::TwoByte) {
+ CopyStringCharsMaybeInflate(masm, src, temp2, temp1, temp3);
+ } else {
+ masm.loadStringLength(src, temp3);
+ masm.loadStringChars(src, temp1, CharEncoding::Latin1);
+ masm.movePtr(temp1, src);
+ CopyStringChars(masm, temp2, src, temp3, temp1, CharEncoding::Latin1);
+ }
+ };
+
+ // Copy lhs chars. Note that this advances temp2 to point to the next
+ // char. This also clobbers the lhs register.
+ copyChars(lhs);
+
+ // Copy rhs chars. Clobbers the rhs register.
+ copyChars(rhs);
+}
+
+void CodeGenerator::visitSubstr(LSubstr* lir) {
+ Register string = ToRegister(lir->string());
+ Register begin = ToRegister(lir->begin());
+ Register length = ToRegister(lir->length());
+ Register output = ToRegister(lir->output());
+ Register temp0 = ToRegister(lir->temp0());
+ Register temp2 = ToRegister(lir->temp2());
+
+ // On x86 there are not enough registers. In that case reuse the string
+ // register as temporary.
+ Register temp1 =
+ lir->temp1()->isBogusTemp() ? string : ToRegister(lir->temp1());
+
+ size_t maximumLength = SIZE_MAX;
+
+ Range* range = lir->mir()->length()->range();
+ if (range && range->hasInt32UpperBound()) {
+ MOZ_ASSERT(range->upper() >= 0);
+ maximumLength = size_t(range->upper());
+ }
+
+ static_assert(JSThinInlineString::MAX_LENGTH_TWO_BYTE <=
+ JSThinInlineString::MAX_LENGTH_LATIN1);
+
+ static_assert(JSFatInlineString::MAX_LENGTH_TWO_BYTE <=
+ JSFatInlineString::MAX_LENGTH_LATIN1);
+
+ bool tryFatInlineOrDependent =
+ maximumLength > JSThinInlineString::MAX_LENGTH_TWO_BYTE;
+ bool tryDependent = maximumLength > JSFatInlineString::MAX_LENGTH_TWO_BYTE;
+
+#ifdef DEBUG
+ if (maximumLength != SIZE_MAX) {
+ Label ok;
+ masm.branch32(Assembler::BelowOrEqual, length, Imm32(maximumLength), &ok);
+ masm.assumeUnreachable("length should not exceed maximum length");
+ masm.bind(&ok);
+ }
+#endif
+
+ Label nonZero, nonInput;
+
+ // For every edge case use the C++ variant.
+ // Note: we also use this upon allocation failure in newGCString and
+ // newGCFatInlineString. To squeeze out even more performance those failures
+ // can be handled by allocate in ool code and returning to jit code to fill
+ // in all data.
+ using Fn = JSString* (*)(JSContext* cx, HandleString str, int32_t begin,
+ int32_t len);
+ OutOfLineCode* ool = oolCallVM<Fn, SubstringKernel>(
+ lir, ArgList(string, begin, length), StoreRegisterTo(output));
+ Label* slowPath = ool->entry();
+ Label* done = ool->rejoin();
+
+ // Zero length, return emptystring.
+ masm.branchTest32(Assembler::NonZero, length, length, &nonZero);
+ const JSAtomState& names = gen->runtime->names();
+ masm.movePtr(ImmGCPtr(names.empty_), output);
+ masm.jump(done);
+
+ // Substring from 0..|str.length|, return str.
+ masm.bind(&nonZero);
+ masm.branch32(Assembler::NotEqual,
+ Address(string, JSString::offsetOfLength()), length, &nonInput);
+#ifdef DEBUG
+ {
+ Label ok;
+ masm.branchTest32(Assembler::Zero, begin, begin, &ok);
+ masm.assumeUnreachable("length == str.length implies begin == 0");
+ masm.bind(&ok);
+ }
+#endif
+ masm.movePtr(string, output);
+ masm.jump(done);
+
+ // Use slow path for ropes.
+ masm.bind(&nonInput);
+ masm.branchIfRope(string, slowPath);
+
+ // Optimize one and two character strings.
+ Label nonStatic;
+ masm.branch32(Assembler::Above, length, Imm32(2), &nonStatic);
+ {
+ Label loadLengthOne, loadLengthTwo;
+
+ auto loadChars = [&](CharEncoding encoding, bool fallthru) {
+ size_t size = encoding == CharEncoding::Latin1 ? sizeof(JS::Latin1Char)
+ : sizeof(char16_t);
+
+ masm.loadStringChars(string, temp0, encoding);
+ masm.loadChar(temp0, begin, temp2, encoding);
+ masm.branch32(Assembler::Equal, length, Imm32(1), &loadLengthOne);
+ masm.loadChar(temp0, begin, temp0, encoding, int32_t(size));
+ if (!fallthru) {
+ masm.jump(&loadLengthTwo);
+ }
+ };
+
+ Label isLatin1;
+ masm.branchLatin1String(string, &isLatin1);
+ loadChars(CharEncoding::TwoByte, /* fallthru = */ false);
+
+ masm.bind(&isLatin1);
+ loadChars(CharEncoding::Latin1, /* fallthru = */ true);
+
+ // Try to load a length-two static string.
+ masm.bind(&loadLengthTwo);
+ masm.lookupStaticString(temp2, temp0, output, gen->runtime->staticStrings(),
+ &nonStatic);
+ masm.jump(done);
+
+ // Try to load a length-one static string.
+ masm.bind(&loadLengthOne);
+ masm.lookupStaticString(temp2, output, gen->runtime->staticStrings(),
+ &nonStatic);
+ masm.jump(done);
+ }
+ masm.bind(&nonStatic);
+
+ // Allocate either a JSThinInlineString or JSFatInlineString, or jump to
+ // notInline if we need a dependent string.
+ Label notInline;
+ {
+ static_assert(JSThinInlineString::MAX_LENGTH_LATIN1 <
+ JSFatInlineString::MAX_LENGTH_LATIN1);
+ static_assert(JSThinInlineString::MAX_LENGTH_TWO_BYTE <
+ JSFatInlineString::MAX_LENGTH_TWO_BYTE);
+
+ // Use temp2 to store the JS(Thin|Fat)InlineString flags. This avoids having
+ // duplicate newGCString/newGCFatInlineString codegen for Latin1 vs TwoByte
+ // strings.
+
+ Label allocFat, allocDone;
+ if (tryFatInlineOrDependent) {
+ Label isLatin1, allocThin;
+ masm.branchLatin1String(string, &isLatin1);
+ {
+ if (tryDependent) {
+ masm.branch32(Assembler::Above, length,
+ Imm32(JSFatInlineString::MAX_LENGTH_TWO_BYTE),
+ &notInline);
+ }
+ masm.move32(Imm32(0), temp2);
+ masm.branch32(Assembler::Above, length,
+ Imm32(JSThinInlineString::MAX_LENGTH_TWO_BYTE),
+ &allocFat);
+ masm.jump(&allocThin);
+ }
+
+ masm.bind(&isLatin1);
+ {
+ if (tryDependent) {
+ masm.branch32(Assembler::Above, length,
+ Imm32(JSFatInlineString::MAX_LENGTH_LATIN1),
+ &notInline);
+ }
+ masm.move32(Imm32(JSString::LATIN1_CHARS_BIT), temp2);
+ masm.branch32(Assembler::Above, length,
+ Imm32(JSThinInlineString::MAX_LENGTH_LATIN1), &allocFat);
+ }
+
+ masm.bind(&allocThin);
+ } else {
+ masm.load32(Address(string, JSString::offsetOfFlags()), temp2);
+ masm.and32(Imm32(JSString::LATIN1_CHARS_BIT), temp2);
+ }
+
+ {
+ masm.newGCString(output, temp0, initialStringHeap(), slowPath);
+ masm.or32(Imm32(JSString::INIT_THIN_INLINE_FLAGS), temp2);
+ }
+
+ if (tryFatInlineOrDependent) {
+ masm.jump(&allocDone);
+
+ masm.bind(&allocFat);
+ {
+ masm.newGCFatInlineString(output, temp0, initialStringHeap(), slowPath);
+ masm.or32(Imm32(JSString::INIT_FAT_INLINE_FLAGS), temp2);
+ }
+
+ masm.bind(&allocDone);
+ }
+
+ masm.store32(temp2, Address(output, JSString::offsetOfFlags()));
+ masm.store32(length, Address(output, JSString::offsetOfLength()));
+
+ auto initializeInlineString = [&](CharEncoding encoding) {
+ masm.loadStringChars(string, temp0, encoding);
+ masm.addToCharPtr(temp0, begin, encoding);
+ if (temp1 == string) {
+ masm.push(string);
+ }
+ masm.loadInlineStringCharsForStore(output, temp1);
+ CopyStringChars(masm, temp1, temp0, length, temp2, encoding,
+ maximumLength);
+ masm.loadStringLength(output, length);
+ if (temp1 == string) {
+ masm.pop(string);
+ }
+ };
+
+ Label isInlineLatin1;
+ masm.branchTest32(Assembler::NonZero, temp2,
+ Imm32(JSString::LATIN1_CHARS_BIT), &isInlineLatin1);
+ initializeInlineString(CharEncoding::TwoByte);
+ masm.jump(done);
+
+ masm.bind(&isInlineLatin1);
+ initializeInlineString(CharEncoding::Latin1);
+ }
+
+ // Handle other cases with a DependentString.
+ if (tryDependent) {
+ masm.jump(done);
+
+ masm.bind(&notInline);
+ masm.newGCString(output, temp0, gen->initialStringHeap(), slowPath);
+ masm.store32(length, Address(output, JSString::offsetOfLength()));
+ masm.storeDependentStringBase(string, output);
+
+ auto initializeDependentString = [&](CharEncoding encoding) {
+ uint32_t flags = JSString::INIT_DEPENDENT_FLAGS;
+ if (encoding == CharEncoding::Latin1) {
+ flags |= JSString::LATIN1_CHARS_BIT;
+ }
+
+ masm.store32(Imm32(flags), Address(output, JSString::offsetOfFlags()));
+ masm.loadNonInlineStringChars(string, temp0, encoding);
+ masm.addToCharPtr(temp0, begin, encoding);
+ masm.storeNonInlineStringChars(temp0, output);
+ };
+
+ Label isLatin1;
+ masm.branchLatin1String(string, &isLatin1);
+ initializeDependentString(CharEncoding::TwoByte);
+ masm.jump(done);
+
+ masm.bind(&isLatin1);
+ initializeDependentString(CharEncoding::Latin1);
+ }
+
+ masm.bind(done);
+}
+
+JitCode* JitZone::generateStringConcatStub(JSContext* cx) {
+ JitSpew(JitSpew_Codegen, "# Emitting StringConcat stub");
+
+ TempAllocator temp(&cx->tempLifoAlloc());
+ JitContext jcx(cx);
+ StackMacroAssembler masm(cx, temp);
+ AutoCreatedBy acb(masm, "JitZone::generateStringConcatStub");
+
+ Register lhs = CallTempReg0;
+ Register rhs = CallTempReg1;
+ Register temp1 = CallTempReg2;
+ Register temp2 = CallTempReg3;
+ Register temp3 = CallTempReg4;
+ Register output = CallTempReg5;
+
+ Label failure;
+#ifdef JS_USE_LINK_REGISTER
+ masm.pushReturnAddress();
+#endif
+ masm.Push(FramePointer);
+ masm.moveStackPtrTo(FramePointer);
+
+ // If lhs is empty, return rhs.
+ Label leftEmpty;
+ masm.loadStringLength(lhs, temp1);
+ masm.branchTest32(Assembler::Zero, temp1, temp1, &leftEmpty);
+
+ // If rhs is empty, return lhs.
+ Label rightEmpty;
+ masm.loadStringLength(rhs, temp2);
+ masm.branchTest32(Assembler::Zero, temp2, temp2, &rightEmpty);
+
+ masm.add32(temp1, temp2);
+
+ // Check if we can use a JSInlineString. The result is a Latin1 string if
+ // lhs and rhs are both Latin1, so we AND the flags.
+ Label isInlineTwoByte, isInlineLatin1;
+ masm.load32(Address(lhs, JSString::offsetOfFlags()), temp1);
+ masm.and32(Address(rhs, JSString::offsetOfFlags()), temp1);
+
+ Label isLatin1, notInline;
+ masm.branchTest32(Assembler::NonZero, temp1,
+ Imm32(JSString::LATIN1_CHARS_BIT), &isLatin1);
+ {
+ masm.branch32(Assembler::BelowOrEqual, temp2,
+ Imm32(JSFatInlineString::MAX_LENGTH_TWO_BYTE),
+ &isInlineTwoByte);
+ masm.jump(&notInline);
+ }
+ masm.bind(&isLatin1);
+ {
+ masm.branch32(Assembler::BelowOrEqual, temp2,
+ Imm32(JSFatInlineString::MAX_LENGTH_LATIN1), &isInlineLatin1);
+ }
+ masm.bind(&notInline);
+
+ // Keep AND'ed flags in temp1.
+
+ // Ensure result length <= JSString::MAX_LENGTH.
+ masm.branch32(Assembler::Above, temp2, Imm32(JSString::MAX_LENGTH), &failure);
+
+ // Allocate a new rope, guaranteed to be in the nursery if initialStringHeap
+ // == gc::Heap::Default. (As a result, no post barriers are needed below.)
+ masm.newGCString(output, temp3, initialStringHeap, &failure);
+
+ // Store rope length and flags. temp1 still holds the result of AND'ing the
+ // lhs and rhs flags, so we just have to clear the other flags to get our rope
+ // flags (Latin1 if both lhs and rhs are Latin1).
+ static_assert(JSString::INIT_ROPE_FLAGS == 0,
+ "Rope type flags must have no bits set");
+ masm.and32(Imm32(JSString::LATIN1_CHARS_BIT), temp1);
+ masm.store32(temp1, Address(output, JSString::offsetOfFlags()));
+ masm.store32(temp2, Address(output, JSString::offsetOfLength()));
+
+ // Store left and right nodes.
+ masm.storeRopeChildren(lhs, rhs, output);
+ masm.pop(FramePointer);
+ masm.ret();
+
+ masm.bind(&leftEmpty);
+ masm.mov(rhs, output);
+ masm.pop(FramePointer);
+ masm.ret();
+
+ masm.bind(&rightEmpty);
+ masm.mov(lhs, output);
+ masm.pop(FramePointer);
+ masm.ret();
+
+ masm.bind(&isInlineTwoByte);
+ ConcatInlineString(masm, lhs, rhs, output, temp1, temp2, temp3,
+ initialStringHeap, &failure, CharEncoding::TwoByte);
+ masm.pop(FramePointer);
+ masm.ret();
+
+ masm.bind(&isInlineLatin1);
+ ConcatInlineString(masm, lhs, rhs, output, temp1, temp2, temp3,
+ initialStringHeap, &failure, CharEncoding::Latin1);
+ masm.pop(FramePointer);
+ masm.ret();
+
+ masm.bind(&failure);
+ masm.movePtr(ImmPtr(nullptr), output);
+ masm.pop(FramePointer);
+ masm.ret();
+
+ Linker linker(masm);
+ JitCode* code = linker.newCode(cx, CodeKind::Other);
+
+ CollectPerfSpewerJitCodeProfile(code, "StringConcatStub");
+#ifdef MOZ_VTUNE
+ vtune::MarkStub(code, "StringConcatStub");
+#endif
+
+ return code;
+}
+
+void JitRuntime::generateFreeStub(MacroAssembler& masm) {
+ AutoCreatedBy acb(masm, "JitRuntime::generateFreeStub");
+
+ const Register regSlots = CallTempReg0;
+
+ freeStubOffset_ = startTrampolineCode(masm);
+
+#ifdef JS_USE_LINK_REGISTER
+ masm.pushReturnAddress();
+#endif
+ AllocatableRegisterSet regs(RegisterSet::Volatile());
+ regs.takeUnchecked(regSlots);
+ LiveRegisterSet save(regs.asLiveSet());
+ masm.PushRegsInMask(save);
+
+ const Register regTemp = regs.takeAnyGeneral();
+ MOZ_ASSERT(regTemp != regSlots);
+
+ using Fn = void (*)(void* p);
+ masm.setupUnalignedABICall(regTemp);
+ masm.passABIArg(regSlots);
+ masm.callWithABI<Fn, js_free>(ABIType::General,
+ CheckUnsafeCallWithABI::DontCheckOther);
+
+ masm.PopRegsInMask(save);
+
+ masm.ret();
+}
+
+void JitRuntime::generateLazyLinkStub(MacroAssembler& masm) {
+ AutoCreatedBy acb(masm, "JitRuntime::generateLazyLinkStub");
+
+ lazyLinkStubOffset_ = startTrampolineCode(masm);
+
+#ifdef JS_USE_LINK_REGISTER
+ masm.pushReturnAddress();
+#endif
+ masm.Push(FramePointer);
+ masm.moveStackPtrTo(FramePointer);
+
+ AllocatableGeneralRegisterSet regs(GeneralRegisterSet::Volatile());
+ Register temp0 = regs.takeAny();
+ Register temp1 = regs.takeAny();
+ Register temp2 = regs.takeAny();
+
+ masm.loadJSContext(temp0);
+ masm.enterFakeExitFrame(temp0, temp2, ExitFrameType::LazyLink);
+ masm.moveStackPtrTo(temp1);
+
+ using Fn = uint8_t* (*)(JSContext* cx, LazyLinkExitFrameLayout* frame);
+ masm.setupUnalignedABICall(temp2);
+ masm.passABIArg(temp0);
+ masm.passABIArg(temp1);
+ masm.callWithABI<Fn, LazyLinkTopActivation>(
+ ABIType::General, CheckUnsafeCallWithABI::DontCheckHasExitFrame);
+
+ // Discard exit frame and restore frame pointer.
+ masm.leaveExitFrame(0);
+ masm.pop(FramePointer);
+
+#ifdef JS_USE_LINK_REGISTER
+ // Restore the return address such that the emitPrologue function of the
+ // CodeGenerator can push it back on the stack with pushReturnAddress.
+ masm.popReturnAddress();
+#endif
+ masm.jump(ReturnReg);
+}
+
+void JitRuntime::generateInterpreterStub(MacroAssembler& masm) {
+ AutoCreatedBy acb(masm, "JitRuntime::generateInterpreterStub");
+
+ interpreterStubOffset_ = startTrampolineCode(masm);
+
+#ifdef JS_USE_LINK_REGISTER
+ masm.pushReturnAddress();
+#endif
+ masm.Push(FramePointer);
+ masm.moveStackPtrTo(FramePointer);
+
+ AllocatableGeneralRegisterSet regs(GeneralRegisterSet::Volatile());
+ Register temp0 = regs.takeAny();
+ Register temp1 = regs.takeAny();
+ Register temp2 = regs.takeAny();
+
+ masm.loadJSContext(temp0);
+ masm.enterFakeExitFrame(temp0, temp2, ExitFrameType::InterpreterStub);
+ masm.moveStackPtrTo(temp1);
+
+ using Fn = bool (*)(JSContext* cx, InterpreterStubExitFrameLayout* frame);
+ masm.setupUnalignedABICall(temp2);
+ masm.passABIArg(temp0);
+ masm.passABIArg(temp1);
+ masm.callWithABI<Fn, InvokeFromInterpreterStub>(
+ ABIType::General, CheckUnsafeCallWithABI::DontCheckHasExitFrame);
+
+ masm.branchIfFalseBool(ReturnReg, masm.failureLabel());
+
+ // Discard exit frame and restore frame pointer.
+ masm.leaveExitFrame(0);
+ masm.pop(FramePointer);
+
+ // InvokeFromInterpreterStub stores the return value in argv[0], where the
+ // caller stored |this|. Subtract |sizeof(void*)| for the frame pointer we
+ // just popped.
+ masm.loadValue(Address(masm.getStackPointer(),
+ JitFrameLayout::offsetOfThis() - sizeof(void*)),
+ JSReturnOperand);
+ masm.ret();
+}
+
+void JitRuntime::generateDoubleToInt32ValueStub(MacroAssembler& masm) {
+ AutoCreatedBy acb(masm, "JitRuntime::generateDoubleToInt32ValueStub");
+ doubleToInt32ValueStubOffset_ = startTrampolineCode(masm);
+
+ Label done;
+ masm.branchTestDouble(Assembler::NotEqual, R0, &done);
+
+ masm.unboxDouble(R0, FloatReg0);
+ masm.convertDoubleToInt32(FloatReg0, R1.scratchReg(), &done,
+ /* negativeZeroCheck = */ false);
+ masm.tagValue(JSVAL_TYPE_INT32, R1.scratchReg(), R0);
+
+ masm.bind(&done);
+ masm.abiret();
+}
+
+void CodeGenerator::visitLinearizeString(LLinearizeString* lir) {
+ Register str = ToRegister(lir->str());
+ Register output = ToRegister(lir->output());
+
+ using Fn = JSLinearString* (*)(JSContext*, JSString*);
+ auto* ool = oolCallVM<Fn, jit::LinearizeForCharAccess>(
+ lir, ArgList(str), StoreRegisterTo(output));
+
+ masm.branchIfRope(str, ool->entry());
+
+ masm.movePtr(str, output);
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitLinearizeForCharAccess(LLinearizeForCharAccess* lir) {
+ Register str = ToRegister(lir->str());
+ Register index = ToRegister(lir->index());
+ Register output = ToRegister(lir->output());
+
+ using Fn = JSLinearString* (*)(JSContext*, JSString*);
+ auto* ool = oolCallVM<Fn, jit::LinearizeForCharAccess>(
+ lir, ArgList(str), StoreRegisterTo(output));
+
+ masm.branchIfNotCanLoadStringChar(str, index, output, ool->entry());
+
+ masm.movePtr(str, output);
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitLinearizeForCodePointAccess(
+ LLinearizeForCodePointAccess* lir) {
+ Register str = ToRegister(lir->str());
+ Register index = ToRegister(lir->index());
+ Register output = ToRegister(lir->output());
+ Register temp = ToRegister(lir->temp0());
+
+ using Fn = JSLinearString* (*)(JSContext*, JSString*);
+ auto* ool = oolCallVM<Fn, jit::LinearizeForCharAccess>(
+ lir, ArgList(str), StoreRegisterTo(output));
+
+ masm.branchIfNotCanLoadStringCodePoint(str, index, output, temp,
+ ool->entry());
+
+ masm.movePtr(str, output);
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitToRelativeStringIndex(LToRelativeStringIndex* lir) {
+ Register index = ToRegister(lir->index());
+ Register length = ToRegister(lir->length());
+ Register output = ToRegister(lir->output());
+
+ masm.move32(Imm32(0), output);
+ masm.cmp32Move32(Assembler::LessThan, index, Imm32(0), length, output);
+ masm.add32(index, output);
+}
+
+void CodeGenerator::visitCharCodeAt(LCharCodeAt* lir) {
+ Register str = ToRegister(lir->str());
+ Register output = ToRegister(lir->output());
+ Register temp0 = ToRegister(lir->temp0());
+ Register temp1 = ToRegister(lir->temp1());
+
+ using Fn = bool (*)(JSContext*, HandleString, int32_t, uint32_t*);
+
+ if (lir->index()->isBogus()) {
+ auto* ool = oolCallVM<Fn, jit::CharCodeAt>(lir, ArgList(str, Imm32(0)),
+ StoreRegisterTo(output));
+ masm.loadStringChar(str, 0, output, temp0, temp1, ool->entry());
+ masm.bind(ool->rejoin());
+ } else {
+ Register index = ToRegister(lir->index());
+
+ auto* ool = oolCallVM<Fn, jit::CharCodeAt>(lir, ArgList(str, index),
+ StoreRegisterTo(output));
+ masm.loadStringChar(str, index, output, temp0, temp1, ool->entry());
+ masm.bind(ool->rejoin());
+ }
+}
+
+void CodeGenerator::visitCharCodeAtOrNegative(LCharCodeAtOrNegative* lir) {
+ Register str = ToRegister(lir->str());
+ Register output = ToRegister(lir->output());
+ Register temp0 = ToRegister(lir->temp0());
+ Register temp1 = ToRegister(lir->temp1());
+
+ using Fn = bool (*)(JSContext*, HandleString, int32_t, uint32_t*);
+
+ // Return -1 for out-of-bounds access.
+ masm.move32(Imm32(-1), output);
+
+ if (lir->index()->isBogus()) {
+ auto* ool = oolCallVM<Fn, jit::CharCodeAt>(lir, ArgList(str, Imm32(0)),
+ StoreRegisterTo(output));
+
+ masm.branch32(Assembler::Equal, Address(str, JSString::offsetOfLength()),
+ Imm32(0), ool->rejoin());
+ masm.loadStringChar(str, 0, output, temp0, temp1, ool->entry());
+ masm.bind(ool->rejoin());
+ } else {
+ Register index = ToRegister(lir->index());
+
+ auto* ool = oolCallVM<Fn, jit::CharCodeAt>(lir, ArgList(str, index),
+ StoreRegisterTo(output));
+
+ masm.spectreBoundsCheck32(index, Address(str, JSString::offsetOfLength()),
+ temp0, ool->rejoin());
+ masm.loadStringChar(str, index, output, temp0, temp1, ool->entry());
+ masm.bind(ool->rejoin());
+ }
+}
+
+void CodeGenerator::visitCodePointAt(LCodePointAt* lir) {
+ Register str = ToRegister(lir->str());
+ Register index = ToRegister(lir->index());
+ Register output = ToRegister(lir->output());
+ Register temp0 = ToRegister(lir->temp0());
+ Register temp1 = ToRegister(lir->temp1());
+
+ using Fn = bool (*)(JSContext*, HandleString, int32_t, uint32_t*);
+ auto* ool = oolCallVM<Fn, jit::CodePointAt>(lir, ArgList(str, index),
+ StoreRegisterTo(output));
+
+ masm.loadStringCodePoint(str, index, output, temp0, temp1, ool->entry());
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitCodePointAtOrNegative(LCodePointAtOrNegative* lir) {
+ Register str = ToRegister(lir->str());
+ Register index = ToRegister(lir->index());
+ Register output = ToRegister(lir->output());
+ Register temp0 = ToRegister(lir->temp0());
+ Register temp1 = ToRegister(lir->temp1());
+
+ using Fn = bool (*)(JSContext*, HandleString, int32_t, uint32_t*);
+ auto* ool = oolCallVM<Fn, jit::CodePointAt>(lir, ArgList(str, index),
+ StoreRegisterTo(output));
+
+ // Return -1 for out-of-bounds access.
+ masm.move32(Imm32(-1), output);
+
+ masm.spectreBoundsCheck32(index, Address(str, JSString::offsetOfLength()),
+ temp0, ool->rejoin());
+ masm.loadStringCodePoint(str, index, output, temp0, temp1, ool->entry());
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitNegativeToNaN(LNegativeToNaN* lir) {
+ Register input = ToRegister(lir->input());
+ ValueOperand output = ToOutValue(lir);
+
+ masm.tagValue(JSVAL_TYPE_INT32, input, output);
+
+ Label done;
+ masm.branchTest32(Assembler::NotSigned, input, input, &done);
+ masm.moveValue(JS::NaNValue(), output);
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitNegativeToUndefined(LNegativeToUndefined* lir) {
+ Register input = ToRegister(lir->input());
+ ValueOperand output = ToOutValue(lir);
+
+ masm.tagValue(JSVAL_TYPE_INT32, input, output);
+
+ Label done;
+ masm.branchTest32(Assembler::NotSigned, input, input, &done);
+ masm.moveValue(JS::UndefinedValue(), output);
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitFromCharCode(LFromCharCode* lir) {
+ Register code = ToRegister(lir->code());
+ Register output = ToRegister(lir->output());
+
+ using Fn = JSLinearString* (*)(JSContext*, int32_t);
+ auto* ool = oolCallVM<Fn, js::StringFromCharCode>(lir, ArgList(code),
+ StoreRegisterTo(output));
+
+ // OOL path if code >= UNIT_STATIC_LIMIT.
+ masm.lookupStaticString(code, output, gen->runtime->staticStrings(),
+ ool->entry());
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitFromCharCodeEmptyIfNegative(
+ LFromCharCodeEmptyIfNegative* lir) {
+ Register code = ToRegister(lir->code());
+ Register output = ToRegister(lir->output());
+
+ using Fn = JSLinearString* (*)(JSContext*, int32_t);
+ auto* ool = oolCallVM<Fn, js::StringFromCharCode>(lir, ArgList(code),
+ StoreRegisterTo(output));
+
+ // Return the empty string for negative inputs.
+ const JSAtomState& names = gen->runtime->names();
+ masm.movePtr(ImmGCPtr(names.empty_), output);
+ masm.branchTest32(Assembler::Signed, code, code, ool->rejoin());
+
+ // OOL path if code >= UNIT_STATIC_LIMIT.
+ masm.lookupStaticString(code, output, gen->runtime->staticStrings(),
+ ool->entry());
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitFromCharCodeUndefinedIfNegative(
+ LFromCharCodeUndefinedIfNegative* lir) {
+ Register code = ToRegister(lir->code());
+ ValueOperand output = ToOutValue(lir);
+ Register temp = output.scratchReg();
+
+ using Fn = JSLinearString* (*)(JSContext*, int32_t);
+ auto* ool = oolCallVM<Fn, js::StringFromCharCode>(lir, ArgList(code),
+ StoreRegisterTo(temp));
+
+ // Return |undefined| for negative inputs.
+ Label done;
+ masm.moveValue(UndefinedValue(), output);
+ masm.branchTest32(Assembler::Signed, code, code, &done);
+
+ // OOL path if code >= UNIT_STATIC_LIMIT.
+ masm.lookupStaticString(code, temp, gen->runtime->staticStrings(),
+ ool->entry());
+
+ masm.bind(ool->rejoin());
+ masm.tagValue(JSVAL_TYPE_STRING, temp, output);
+
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitFromCodePoint(LFromCodePoint* lir) {
+ Register codePoint = ToRegister(lir->codePoint());
+ Register output = ToRegister(lir->output());
+ Register temp0 = ToRegister(lir->temp0());
+ Register temp1 = ToRegister(lir->temp1());
+ LSnapshot* snapshot = lir->snapshot();
+
+ // The OOL path is only taken when we can't allocate the inline string.
+ using Fn = JSLinearString* (*)(JSContext*, char32_t);
+ auto* ool = oolCallVM<Fn, js::StringFromCodePoint>(lir, ArgList(codePoint),
+ StoreRegisterTo(output));
+
+ Label isTwoByte;
+ Label* done = ool->rejoin();
+
+ static_assert(
+ StaticStrings::UNIT_STATIC_LIMIT - 1 == JSString::MAX_LATIN1_CHAR,
+ "Latin-1 strings can be loaded from static strings");
+
+ {
+ masm.lookupStaticString(codePoint, output, gen->runtime->staticStrings(),
+ &isTwoByte);
+ masm.jump(done);
+ }
+ masm.bind(&isTwoByte);
+ {
+ // Use a bailout if the input is not a valid code point, because
+ // MFromCodePoint is movable and it'd be observable when a moved
+ // fromCodePoint throws an exception before its actual call site.
+ bailoutCmp32(Assembler::Above, codePoint, Imm32(unicode::NonBMPMax),
+ snapshot);
+
+ // Allocate a JSThinInlineString.
+ {
+ static_assert(JSThinInlineString::MAX_LENGTH_TWO_BYTE >= 2,
+ "JSThinInlineString can hold a supplementary code point");
+
+ uint32_t flags = JSString::INIT_THIN_INLINE_FLAGS;
+ masm.newGCString(output, temp0, gen->initialStringHeap(), ool->entry());
+ masm.store32(Imm32(flags), Address(output, JSString::offsetOfFlags()));
+ }
+
+ Label isSupplementary;
+ masm.branch32(Assembler::AboveOrEqual, codePoint, Imm32(unicode::NonBMPMin),
+ &isSupplementary);
+ {
+ // Store length.
+ masm.store32(Imm32(1), Address(output, JSString::offsetOfLength()));
+
+ // Load chars pointer in temp0.
+ masm.loadInlineStringCharsForStore(output, temp0);
+
+ masm.store16(codePoint, Address(temp0, 0));
+
+ masm.jump(done);
+ }
+ masm.bind(&isSupplementary);
+ {
+ // Store length.
+ masm.store32(Imm32(2), Address(output, JSString::offsetOfLength()));
+
+ // Load chars pointer in temp0.
+ masm.loadInlineStringCharsForStore(output, temp0);
+
+ // Inlined unicode::LeadSurrogate(uint32_t).
+ masm.move32(codePoint, temp1);
+ masm.rshift32(Imm32(10), temp1);
+ masm.add32(Imm32(unicode::LeadSurrogateMin - (unicode::NonBMPMin >> 10)),
+ temp1);
+
+ masm.store16(temp1, Address(temp0, 0));
+
+ // Inlined unicode::TrailSurrogate(uint32_t).
+ masm.move32(codePoint, temp1);
+ masm.and32(Imm32(0x3FF), temp1);
+ masm.or32(Imm32(unicode::TrailSurrogateMin), temp1);
+
+ masm.store16(temp1, Address(temp0, sizeof(char16_t)));
+ }
+ }
+
+ masm.bind(done);
+}
+
+void CodeGenerator::visitStringIncludes(LStringIncludes* lir) {
+ pushArg(ToRegister(lir->searchString()));
+ pushArg(ToRegister(lir->string()));
+
+ using Fn = bool (*)(JSContext*, HandleString, HandleString, bool*);
+ callVM<Fn, js::StringIncludes>(lir);
+}
+
+template <typename LIns>
+static void CallStringMatch(MacroAssembler& masm, LIns* lir, OutOfLineCode* ool,
+ LiveRegisterSet volatileRegs) {
+ Register string = ToRegister(lir->string());
+ Register output = ToRegister(lir->output());
+ Register tempLength = ToRegister(lir->temp0());
+ Register tempChars = ToRegister(lir->temp1());
+ Register maybeTempPat = ToTempRegisterOrInvalid(lir->temp2());
+
+ const JSLinearString* searchString = lir->searchString();
+ size_t length = searchString->length();
+ MOZ_ASSERT(length == 1 || length == 2);
+
+ // The additional temp register is only needed when searching for two
+ // pattern characters.
+ MOZ_ASSERT_IF(length == 2, maybeTempPat != InvalidReg);
+
+ if constexpr (std::is_same_v<LIns, LStringIncludesSIMD>) {
+ masm.move32(Imm32(0), output);
+ } else {
+ masm.move32(Imm32(-1), output);
+ }
+
+ masm.loadStringLength(string, tempLength);
+
+ // Can't be a substring when the string is smaller than the search string.
+ Label done;
+ masm.branch32(Assembler::Below, tempLength, Imm32(length), ool->rejoin());
+
+ bool searchStringIsPureTwoByte = false;
+ if (searchString->hasTwoByteChars()) {
+ JS::AutoCheckCannotGC nogc;
+ searchStringIsPureTwoByte =
+ !mozilla::IsUtf16Latin1(searchString->twoByteRange(nogc));
+ }
+
+ // Pure two-byte strings can't occur in a Latin-1 string.
+ if (searchStringIsPureTwoByte) {
+ masm.branchLatin1String(string, ool->rejoin());
+ }
+
+ // Slow path when we need to linearize the string.
+ masm.branchIfRope(string, ool->entry());
+
+ Label restoreVolatile;
+
+ auto callMatcher = [&](CharEncoding encoding) {
+ masm.loadStringChars(string, tempChars, encoding);
+
+ LiveGeneralRegisterSet liveRegs;
+ if constexpr (std::is_same_v<LIns, LStringIndexOfSIMD>) {
+ // Save |tempChars| to compute the result index.
+ liveRegs.add(tempChars);
+
+#ifdef DEBUG
+ // Save |tempLength| in debug-mode for assertions.
+ liveRegs.add(tempLength);
+#endif
+
+ // Exclude non-volatile registers.
+ liveRegs.set() = GeneralRegisterSet::Intersect(
+ liveRegs.set(), GeneralRegisterSet::Volatile());
+
+ masm.PushRegsInMask(liveRegs);
+ }
+
+ if (length == 1) {
+ char16_t pat = searchString->latin1OrTwoByteChar(0);
+ MOZ_ASSERT_IF(encoding == CharEncoding::Latin1,
+ pat <= JSString::MAX_LATIN1_CHAR);
+
+ masm.move32(Imm32(pat), output);
+
+ masm.setupAlignedABICall();
+ masm.passABIArg(tempChars);
+ masm.passABIArg(output);
+ masm.passABIArg(tempLength);
+ if (encoding == CharEncoding::Latin1) {
+ using Fn = const char* (*)(const char*, char, size_t);
+ masm.callWithABI<Fn, mozilla::SIMD::memchr8>(
+ ABIType::General, CheckUnsafeCallWithABI::DontCheckOther);
+ } else {
+ using Fn = const char16_t* (*)(const char16_t*, char16_t, size_t);
+ masm.callWithABI<Fn, mozilla::SIMD::memchr16>(
+ ABIType::General, CheckUnsafeCallWithABI::DontCheckOther);
+ }
+ } else {
+ char16_t pat0 = searchString->latin1OrTwoByteChar(0);
+ MOZ_ASSERT_IF(encoding == CharEncoding::Latin1,
+ pat0 <= JSString::MAX_LATIN1_CHAR);
+
+ char16_t pat1 = searchString->latin1OrTwoByteChar(1);
+ MOZ_ASSERT_IF(encoding == CharEncoding::Latin1,
+ pat1 <= JSString::MAX_LATIN1_CHAR);
+
+ masm.move32(Imm32(pat0), output);
+ masm.move32(Imm32(pat1), maybeTempPat);
+
+ masm.setupAlignedABICall();
+ masm.passABIArg(tempChars);
+ masm.passABIArg(output);
+ masm.passABIArg(maybeTempPat);
+ masm.passABIArg(tempLength);
+ if (encoding == CharEncoding::Latin1) {
+ using Fn = const char* (*)(const char*, char, char, size_t);
+ masm.callWithABI<Fn, mozilla::SIMD::memchr2x8>(
+ ABIType::General, CheckUnsafeCallWithABI::DontCheckOther);
+ } else {
+ using Fn =
+ const char16_t* (*)(const char16_t*, char16_t, char16_t, size_t);
+ masm.callWithABI<Fn, mozilla::SIMD::memchr2x16>(
+ ABIType::General, CheckUnsafeCallWithABI::DontCheckOther);
+ }
+ }
+
+ masm.storeCallPointerResult(output);
+
+ // Convert to string index for `indexOf`.
+ if constexpr (std::is_same_v<LIns, LStringIndexOfSIMD>) {
+ // Restore |tempChars|. (And in debug mode |tempLength|.)
+ masm.PopRegsInMask(liveRegs);
+
+ Label found;
+ masm.branchPtr(Assembler::NotEqual, output, ImmPtr(nullptr), &found);
+ {
+ masm.move32(Imm32(-1), output);
+ masm.jump(&restoreVolatile);
+ }
+ masm.bind(&found);
+
+#ifdef DEBUG
+ // Check lower bound.
+ Label lower;
+ masm.branchPtr(Assembler::AboveOrEqual, output, tempChars, &lower);
+ masm.assumeUnreachable("result pointer below string chars");
+ masm.bind(&lower);
+
+ // Compute the end position of the characters.
+ auto scale = encoding == CharEncoding::Latin1 ? TimesOne : TimesTwo;
+ masm.computeEffectiveAddress(BaseIndex(tempChars, tempLength, scale),
+ tempLength);
+
+ // Check upper bound.
+ Label upper;
+ masm.branchPtr(Assembler::Below, output, tempLength, &upper);
+ masm.assumeUnreachable("result pointer above string chars");
+ masm.bind(&upper);
+#endif
+
+ masm.subPtr(tempChars, output);
+
+ if (encoding == CharEncoding::TwoByte) {
+ masm.rshiftPtr(Imm32(1), output);
+ }
+ }
+ };
+
+ volatileRegs.takeUnchecked(output);
+ volatileRegs.takeUnchecked(tempLength);
+ volatileRegs.takeUnchecked(tempChars);
+ if (maybeTempPat != InvalidReg) {
+ volatileRegs.takeUnchecked(maybeTempPat);
+ }
+ masm.PushRegsInMask(volatileRegs);
+
+ // Handle the case when the input is a Latin-1 string.
+ if (!searchStringIsPureTwoByte) {
+ Label twoByte;
+ masm.branchTwoByteString(string, &twoByte);
+ {
+ callMatcher(CharEncoding::Latin1);
+ masm.jump(&restoreVolatile);
+ }
+ masm.bind(&twoByte);
+ }
+
+ // Handle the case when the input is a two-byte string.
+ callMatcher(CharEncoding::TwoByte);
+
+ masm.bind(&restoreVolatile);
+ masm.PopRegsInMask(volatileRegs);
+
+ // Convert to bool for `includes`.
+ if constexpr (std::is_same_v<LIns, LStringIncludesSIMD>) {
+ masm.cmpPtrSet(Assembler::NotEqual, output, ImmPtr(nullptr), output);
+ }
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitStringIncludesSIMD(LStringIncludesSIMD* lir) {
+ Register string = ToRegister(lir->string());
+ Register output = ToRegister(lir->output());
+ const JSLinearString* searchString = lir->searchString();
+
+ using Fn = bool (*)(JSContext*, HandleString, HandleString, bool*);
+ auto* ool = oolCallVM<Fn, js::StringIncludes>(
+ lir, ArgList(string, ImmGCPtr(searchString)), StoreRegisterTo(output));
+
+ CallStringMatch(masm, lir, ool, liveVolatileRegs(lir));
+}
+
+void CodeGenerator::visitStringIndexOf(LStringIndexOf* lir) {
+ pushArg(ToRegister(lir->searchString()));
+ pushArg(ToRegister(lir->string()));
+
+ using Fn = bool (*)(JSContext*, HandleString, HandleString, int32_t*);
+ callVM<Fn, js::StringIndexOf>(lir);
+}
+
+void CodeGenerator::visitStringIndexOfSIMD(LStringIndexOfSIMD* lir) {
+ Register string = ToRegister(lir->string());
+ Register output = ToRegister(lir->output());
+ const JSLinearString* searchString = lir->searchString();
+
+ using Fn = bool (*)(JSContext*, HandleString, HandleString, int32_t*);
+ auto* ool = oolCallVM<Fn, js::StringIndexOf>(
+ lir, ArgList(string, ImmGCPtr(searchString)), StoreRegisterTo(output));
+
+ CallStringMatch(masm, lir, ool, liveVolatileRegs(lir));
+}
+
+void CodeGenerator::visitStringLastIndexOf(LStringLastIndexOf* lir) {
+ pushArg(ToRegister(lir->searchString()));
+ pushArg(ToRegister(lir->string()));
+
+ using Fn = bool (*)(JSContext*, HandleString, HandleString, int32_t*);
+ callVM<Fn, js::StringLastIndexOf>(lir);
+}
+
+void CodeGenerator::visitStringStartsWith(LStringStartsWith* lir) {
+ pushArg(ToRegister(lir->searchString()));
+ pushArg(ToRegister(lir->string()));
+
+ using Fn = bool (*)(JSContext*, HandleString, HandleString, bool*);
+ callVM<Fn, js::StringStartsWith>(lir);
+}
+
+void CodeGenerator::visitStringStartsWithInline(LStringStartsWithInline* lir) {
+ Register string = ToRegister(lir->string());
+ Register output = ToRegister(lir->output());
+ Register temp = ToRegister(lir->temp0());
+
+ const JSLinearString* searchString = lir->searchString();
+
+ size_t length = searchString->length();
+ MOZ_ASSERT(length > 0);
+
+ using Fn = bool (*)(JSContext*, HandleString, HandleString, bool*);
+ auto* ool = oolCallVM<Fn, js::StringStartsWith>(
+ lir, ArgList(string, ImmGCPtr(searchString)), StoreRegisterTo(output));
+
+ masm.move32(Imm32(0), output);
+
+ // Can't be a prefix when the string is smaller than the search string.
+ masm.branch32(Assembler::Below, Address(string, JSString::offsetOfLength()),
+ Imm32(length), ool->rejoin());
+
+ // Unwind ropes at the start if possible.
+ Label compare;
+ masm.movePtr(string, temp);
+ masm.branchIfNotRope(temp, &compare);
+
+ Label unwindRope;
+ masm.bind(&unwindRope);
+ masm.loadRopeLeftChild(temp, output);
+ masm.movePtr(output, temp);
+
+ // If the left child is smaller than the search string, jump into the VM to
+ // linearize the string.
+ masm.branch32(Assembler::Below, Address(temp, JSString::offsetOfLength()),
+ Imm32(length), ool->entry());
+
+ // Otherwise keep unwinding ropes.
+ masm.branchIfRope(temp, &unwindRope);
+
+ masm.bind(&compare);
+
+ // If operands point to the same instance, it's trivially a prefix.
+ Label notPointerEqual;
+ masm.branchPtr(Assembler::NotEqual, temp, ImmGCPtr(searchString),
+ &notPointerEqual);
+ masm.move32(Imm32(1), output);
+ masm.jump(ool->rejoin());
+ masm.bind(&notPointerEqual);
+
+ if (searchString->hasTwoByteChars()) {
+ // Pure two-byte strings can't be a prefix of Latin-1 strings.
+ JS::AutoCheckCannotGC nogc;
+ if (!mozilla::IsUtf16Latin1(searchString->twoByteRange(nogc))) {
+ Label compareChars;
+ masm.branchTwoByteString(temp, &compareChars);
+ masm.move32(Imm32(0), output);
+ masm.jump(ool->rejoin());
+ masm.bind(&compareChars);
+ }
+ }
+
+ // Load the input string's characters.
+ Register stringChars = output;
+ masm.loadStringCharsForCompare(temp, searchString, stringChars, ool->entry());
+
+ // Start comparing character by character.
+ masm.compareStringChars(JSOp::Eq, stringChars, searchString, output);
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitStringEndsWith(LStringEndsWith* lir) {
+ pushArg(ToRegister(lir->searchString()));
+ pushArg(ToRegister(lir->string()));
+
+ using Fn = bool (*)(JSContext*, HandleString, HandleString, bool*);
+ callVM<Fn, js::StringEndsWith>(lir);
+}
+
+void CodeGenerator::visitStringEndsWithInline(LStringEndsWithInline* lir) {
+ Register string = ToRegister(lir->string());
+ Register output = ToRegister(lir->output());
+ Register temp = ToRegister(lir->temp0());
+
+ const JSLinearString* searchString = lir->searchString();
+
+ size_t length = searchString->length();
+ MOZ_ASSERT(length > 0);
+
+ using Fn = bool (*)(JSContext*, HandleString, HandleString, bool*);
+ auto* ool = oolCallVM<Fn, js::StringEndsWith>(
+ lir, ArgList(string, ImmGCPtr(searchString)), StoreRegisterTo(output));
+
+ masm.move32(Imm32(0), output);
+
+ // Can't be a suffix when the string is smaller than the search string.
+ masm.branch32(Assembler::Below, Address(string, JSString::offsetOfLength()),
+ Imm32(length), ool->rejoin());
+
+ // Unwind ropes at the end if possible.
+ Label compare;
+ masm.movePtr(string, temp);
+ masm.branchIfNotRope(temp, &compare);
+
+ Label unwindRope;
+ masm.bind(&unwindRope);
+ masm.loadRopeRightChild(temp, output);
+ masm.movePtr(output, temp);
+
+ // If the right child is smaller than the search string, jump into the VM to
+ // linearize the string.
+ masm.branch32(Assembler::Below, Address(temp, JSString::offsetOfLength()),
+ Imm32(length), ool->entry());
+
+ // Otherwise keep unwinding ropes.
+ masm.branchIfRope(temp, &unwindRope);
+
+ masm.bind(&compare);
+
+ // If operands point to the same instance, it's trivially a suffix.
+ Label notPointerEqual;
+ masm.branchPtr(Assembler::NotEqual, temp, ImmGCPtr(searchString),
+ &notPointerEqual);
+ masm.move32(Imm32(1), output);
+ masm.jump(ool->rejoin());
+ masm.bind(&notPointerEqual);
+
+ CharEncoding encoding = searchString->hasLatin1Chars()
+ ? CharEncoding::Latin1
+ : CharEncoding::TwoByte;
+ if (encoding == CharEncoding::TwoByte) {
+ // Pure two-byte strings can't be a suffix of Latin-1 strings.
+ JS::AutoCheckCannotGC nogc;
+ if (!mozilla::IsUtf16Latin1(searchString->twoByteRange(nogc))) {
+ Label compareChars;
+ masm.branchTwoByteString(temp, &compareChars);
+ masm.move32(Imm32(0), output);
+ masm.jump(ool->rejoin());
+ masm.bind(&compareChars);
+ }
+ }
+
+ // Load the input string's characters.
+ Register stringChars = output;
+ masm.loadStringCharsForCompare(temp, searchString, stringChars, ool->entry());
+
+ // Move string-char pointer to the suffix string.
+ masm.loadStringLength(temp, temp);
+ masm.sub32(Imm32(length), temp);
+ masm.addToCharPtr(stringChars, temp, encoding);
+
+ // Start comparing character by character.
+ masm.compareStringChars(JSOp::Eq, stringChars, searchString, output);
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitStringToLowerCase(LStringToLowerCase* lir) {
+ Register string = ToRegister(lir->string());
+ Register output = ToRegister(lir->output());
+ Register temp0 = ToRegister(lir->temp0());
+ Register temp1 = ToRegister(lir->temp1());
+ Register temp2 = ToRegister(lir->temp2());
+
+ // On x86 there are not enough registers. In that case reuse the string
+ // register as a temporary.
+ Register temp3 =
+ lir->temp3()->isBogusTemp() ? string : ToRegister(lir->temp3());
+ Register temp4 = ToRegister(lir->temp4());
+
+ using Fn = JSString* (*)(JSContext*, HandleString);
+ OutOfLineCode* ool = oolCallVM<Fn, js::StringToLowerCase>(
+ lir, ArgList(string), StoreRegisterTo(output));
+
+ // Take the slow path if the string isn't a linear Latin-1 string.
+ Imm32 linearLatin1Bits(JSString::LINEAR_BIT | JSString::LATIN1_CHARS_BIT);
+ Register flags = temp0;
+ masm.load32(Address(string, JSString::offsetOfFlags()), flags);
+ masm.and32(linearLatin1Bits, flags);
+ masm.branch32(Assembler::NotEqual, flags, linearLatin1Bits, ool->entry());
+
+ Register length = temp0;
+ masm.loadStringLength(string, length);
+
+ // Return the input if it's the empty string.
+ Label notEmptyString;
+ masm.branch32(Assembler::NotEqual, length, Imm32(0), &notEmptyString);
+ {
+ masm.movePtr(string, output);
+ masm.jump(ool->rejoin());
+ }
+ masm.bind(&notEmptyString);
+
+ Register inputChars = temp1;
+ masm.loadStringChars(string, inputChars, CharEncoding::Latin1);
+
+ Register toLowerCaseTable = temp2;
+ masm.movePtr(ImmPtr(unicode::latin1ToLowerCaseTable), toLowerCaseTable);
+
+ // Single element strings can be directly retrieved from static strings cache.
+ Label notSingleElementString;
+ masm.branch32(Assembler::NotEqual, length, Imm32(1), &notSingleElementString);
+ {
+ Register current = temp4;
+
+ masm.loadChar(Address(inputChars, 0), current, CharEncoding::Latin1);
+ masm.load8ZeroExtend(BaseIndex(toLowerCaseTable, current, TimesOne),
+ current);
+ masm.lookupStaticString(current, output, gen->runtime->staticStrings());
+
+ masm.jump(ool->rejoin());
+ }
+ masm.bind(&notSingleElementString);
+
+ // Use the OOL-path when the string is too long. This prevents scanning long
+ // strings which have upper case characters only near the end a second time in
+ // the VM.
+ constexpr int32_t MaxInlineLength = 64;
+ masm.branch32(Assembler::Above, length, Imm32(MaxInlineLength), ool->entry());
+
+ {
+ // Check if there are any characters which need to be converted.
+ //
+ // This extra loop gives a small performance improvement for strings which
+ // are already lower cased and lets us avoid calling into the runtime for
+ // non-inline, all lower case strings. But more importantly it avoids
+ // repeated inline allocation failures:
+ // |AllocateThinOrFatInlineString| below takes the OOL-path and calls the
+ // |js::StringToLowerCase| runtime function when the result string can't be
+ // allocated inline. And |js::StringToLowerCase| directly returns the input
+ // string when no characters need to be converted. That means it won't
+ // trigger GC to clear up the free nursery space, so the next toLowerCase()
+ // call will again fail to inline allocate the result string.
+ Label hasUpper;
+ {
+ Register checkInputChars = output;
+ masm.movePtr(inputChars, checkInputChars);
+
+ Register current = temp4;
+
+ Label start;
+ masm.bind(&start);
+ masm.loadChar(Address(checkInputChars, 0), current, CharEncoding::Latin1);
+ masm.branch8(Assembler::NotEqual,
+ BaseIndex(toLowerCaseTable, current, TimesOne), current,
+ &hasUpper);
+ masm.addPtr(Imm32(sizeof(Latin1Char)), checkInputChars);
+ masm.branchSub32(Assembler::NonZero, Imm32(1), length, &start);
+
+ // Input is already in lower case.
+ masm.movePtr(string, output);
+ masm.jump(ool->rejoin());
+ }
+ masm.bind(&hasUpper);
+
+ // |length| was clobbered above, reload.
+ masm.loadStringLength(string, length);
+
+ // Call into the runtime when we can't create an inline string.
+ masm.branch32(Assembler::Above, length,
+ Imm32(JSFatInlineString::MAX_LENGTH_LATIN1), ool->entry());
+
+ AllocateThinOrFatInlineString(masm, output, length, temp4,
+ initialStringHeap(), ool->entry(),
+ CharEncoding::Latin1);
+
+ if (temp3 == string) {
+ masm.push(string);
+ }
+
+ Register outputChars = temp3;
+ masm.loadInlineStringCharsForStore(output, outputChars);
+
+ {
+ Register current = temp4;
+
+ Label start;
+ masm.bind(&start);
+ masm.loadChar(Address(inputChars, 0), current, CharEncoding::Latin1);
+ masm.load8ZeroExtend(BaseIndex(toLowerCaseTable, current, TimesOne),
+ current);
+ masm.storeChar(current, Address(outputChars, 0), CharEncoding::Latin1);
+ masm.addPtr(Imm32(sizeof(Latin1Char)), inputChars);
+ masm.addPtr(Imm32(sizeof(Latin1Char)), outputChars);
+ masm.branchSub32(Assembler::NonZero, Imm32(1), length, &start);
+ }
+
+ if (temp3 == string) {
+ masm.pop(string);
+ }
+ }
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitStringToUpperCase(LStringToUpperCase* lir) {
+ pushArg(ToRegister(lir->string()));
+
+ using Fn = JSString* (*)(JSContext*, HandleString);
+ callVM<Fn, js::StringToUpperCase>(lir);
+}
+
+void CodeGenerator::visitCharCodeToLowerCase(LCharCodeToLowerCase* lir) {
+ Register code = ToRegister(lir->code());
+ Register output = ToRegister(lir->output());
+ Register temp = ToRegister(lir->temp0());
+
+ using Fn = JSString* (*)(JSContext*, int32_t);
+ auto* ool = oolCallVM<Fn, jit::CharCodeToLowerCase>(lir, ArgList(code),
+ StoreRegisterTo(output));
+
+ constexpr char16_t NonLatin1Min = char16_t(JSString::MAX_LATIN1_CHAR) + 1;
+
+ // OOL path if code >= NonLatin1Min.
+ masm.boundsCheck32PowerOfTwo(code, NonLatin1Min, ool->entry());
+
+ // Convert to lower case.
+ masm.movePtr(ImmPtr(unicode::latin1ToLowerCaseTable), temp);
+ masm.load8ZeroExtend(BaseIndex(temp, code, TimesOne), temp);
+
+ // Load static string for lower case character.
+ masm.lookupStaticString(temp, output, gen->runtime->staticStrings());
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitCharCodeToUpperCase(LCharCodeToUpperCase* lir) {
+ Register code = ToRegister(lir->code());
+ Register output = ToRegister(lir->output());
+ Register temp = ToRegister(lir->temp0());
+
+ using Fn = JSString* (*)(JSContext*, int32_t);
+ auto* ool = oolCallVM<Fn, jit::CharCodeToUpperCase>(lir, ArgList(code),
+ StoreRegisterTo(output));
+
+ constexpr char16_t NonLatin1Min = char16_t(JSString::MAX_LATIN1_CHAR) + 1;
+
+ // OOL path if code >= NonLatin1Min.
+ masm.boundsCheck32PowerOfTwo(code, NonLatin1Min, ool->entry());
+
+ // Most one element Latin-1 strings can be directly retrieved from the
+ // static strings cache, except the following three characters:
+ //
+ // 1. ToUpper(U+00B5) = 0+039C
+ // 2. ToUpper(U+00FF) = 0+0178
+ // 3. ToUpper(U+00DF) = 0+0053 0+0053
+ masm.branch32(Assembler::Equal, code, Imm32(unicode::MICRO_SIGN),
+ ool->entry());
+ masm.branch32(Assembler::Equal, code,
+ Imm32(unicode::LATIN_SMALL_LETTER_Y_WITH_DIAERESIS),
+ ool->entry());
+ masm.branch32(Assembler::Equal, code,
+ Imm32(unicode::LATIN_SMALL_LETTER_SHARP_S), ool->entry());
+
+ // Inline unicode::ToUpperCase (without the special case for ASCII characters)
+
+ constexpr size_t shift = unicode::CharInfoShift;
+
+ // code >> shift
+ masm.move32(code, temp);
+ masm.rshift32(Imm32(shift), temp);
+
+ // index = index1[code >> shift];
+ masm.movePtr(ImmPtr(unicode::index1), output);
+ masm.load8ZeroExtend(BaseIndex(output, temp, TimesOne), temp);
+
+ // (code & ((1 << shift) - 1)
+ masm.move32(code, output);
+ masm.and32(Imm32((1 << shift) - 1), output);
+
+ // (index << shift) + (code & ((1 << shift) - 1))
+ masm.lshift32(Imm32(shift), temp);
+ masm.add32(output, temp);
+
+ // index = index2[(index << shift) + (code & ((1 << shift) - 1))]
+ masm.movePtr(ImmPtr(unicode::index2), output);
+ masm.load8ZeroExtend(BaseIndex(output, temp, TimesOne), temp);
+
+ // Compute |index * 6| through |(index * 3) * TimesTwo|.
+ static_assert(sizeof(unicode::CharacterInfo) == 6);
+ masm.mulBy3(temp, temp);
+
+ // upperCase = js_charinfo[index].upperCase
+ masm.movePtr(ImmPtr(unicode::js_charinfo), output);
+ masm.load16ZeroExtend(BaseIndex(output, temp, TimesTwo,
+ offsetof(unicode::CharacterInfo, upperCase)),
+ temp);
+
+ // uint16_t(ch) + upperCase
+ masm.add32(code, temp);
+
+ // Clear any high bits added when performing the unsigned 16-bit addition
+ // through a signed 32-bit addition.
+ masm.move8ZeroExtend(temp, temp);
+
+ // Load static string for upper case character.
+ masm.lookupStaticString(temp, output, gen->runtime->staticStrings());
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitStringTrimStartIndex(LStringTrimStartIndex* lir) {
+ Register string = ToRegister(lir->string());
+ Register output = ToRegister(lir->output());
+
+ auto volatileRegs = liveVolatileRegs(lir);
+ volatileRegs.takeUnchecked(output);
+
+ masm.PushRegsInMask(volatileRegs);
+
+ using Fn = int32_t (*)(const JSString*);
+ masm.setupAlignedABICall();
+ masm.passABIArg(string);
+ masm.callWithABI<Fn, jit::StringTrimStartIndex>();
+ masm.storeCallInt32Result(output);
+
+ masm.PopRegsInMask(volatileRegs);
+}
+
+void CodeGenerator::visitStringTrimEndIndex(LStringTrimEndIndex* lir) {
+ Register string = ToRegister(lir->string());
+ Register start = ToRegister(lir->start());
+ Register output = ToRegister(lir->output());
+
+ auto volatileRegs = liveVolatileRegs(lir);
+ volatileRegs.takeUnchecked(output);
+
+ masm.PushRegsInMask(volatileRegs);
+
+ using Fn = int32_t (*)(const JSString*, int32_t);
+ masm.setupAlignedABICall();
+ masm.passABIArg(string);
+ masm.passABIArg(start);
+ masm.callWithABI<Fn, jit::StringTrimEndIndex>();
+ masm.storeCallInt32Result(output);
+
+ masm.PopRegsInMask(volatileRegs);
+}
+
+void CodeGenerator::visitStringSplit(LStringSplit* lir) {
+ pushArg(Imm32(INT32_MAX));
+ pushArg(ToRegister(lir->separator()));
+ pushArg(ToRegister(lir->string()));
+
+ using Fn = ArrayObject* (*)(JSContext*, HandleString, HandleString, uint32_t);
+ callVM<Fn, js::StringSplitString>(lir);
+}
+
+void CodeGenerator::visitInitializedLength(LInitializedLength* lir) {
+ Address initLength(ToRegister(lir->elements()),
+ ObjectElements::offsetOfInitializedLength());
+ masm.load32(initLength, ToRegister(lir->output()));
+}
+
+void CodeGenerator::visitSetInitializedLength(LSetInitializedLength* lir) {
+ Address initLength(ToRegister(lir->elements()),
+ ObjectElements::offsetOfInitializedLength());
+ SetLengthFromIndex(masm, lir->index(), initLength);
+}
+
+void CodeGenerator::visitNotBI(LNotBI* lir) {
+ Register input = ToRegister(lir->input());
+ Register output = ToRegister(lir->output());
+
+ masm.cmp32Set(Assembler::Equal, Address(input, BigInt::offsetOfLength()),
+ Imm32(0), output);
+}
+
+void CodeGenerator::visitNotO(LNotO* lir) {
+ Register objreg = ToRegister(lir->input());
+ Register output = ToRegister(lir->output());
+
+ bool intact = hasSeenObjectEmulateUndefinedFuseIntactAndDependencyNoted();
+ if (intact) {
+ // Bug 1874905: It would be fantastic if this could be optimized out.
+ assertObjectDoesNotEmulateUndefined(objreg, output, lir->mir());
+ masm.move32(Imm32(0), output);
+ } else {
+ auto* ool = new (alloc()) OutOfLineTestObjectWithLabels();
+ addOutOfLineCode(ool, lir->mir());
+
+ Label* ifEmulatesUndefined = ool->label1();
+ Label* ifDoesntEmulateUndefined = ool->label2();
+
+ branchTestObjectEmulatesUndefined(objreg, ifEmulatesUndefined,
+ ifDoesntEmulateUndefined, output, ool);
+ // fall through
+
+ Label join;
+
+ masm.move32(Imm32(0), output);
+ masm.jump(&join);
+
+ masm.bind(ifEmulatesUndefined);
+ masm.move32(Imm32(1), output);
+
+ masm.bind(&join);
+ }
+}
+
+void CodeGenerator::visitNotV(LNotV* lir) {
+ auto* ool = new (alloc()) OutOfLineTestObjectWithLabels();
+ addOutOfLineCode(ool, lir->mir());
+
+ Label* ifTruthy = ool->label1();
+ Label* ifFalsy = ool->label2();
+
+ ValueOperand input = ToValue(lir, LNotV::InputIndex);
+ Register tempToUnbox = ToTempUnboxRegister(lir->temp1());
+ FloatRegister floatTemp = ToFloatRegister(lir->temp0());
+ Register output = ToRegister(lir->output());
+ const TypeDataList& observedTypes = lir->mir()->observedTypes();
+
+ testValueTruthy(input, tempToUnbox, output, floatTemp, observedTypes,
+ ifTruthy, ifFalsy, ool);
+
+ Label join;
+
+ // Note that the testValueTruthy call above may choose to fall through
+ // to ifTruthy instead of branching there.
+ masm.bind(ifTruthy);
+ masm.move32(Imm32(0), output);
+ masm.jump(&join);
+
+ masm.bind(ifFalsy);
+ masm.move32(Imm32(1), output);
+
+ // both branches meet here.
+ masm.bind(&join);
+}
+
+void CodeGenerator::visitBoundsCheck(LBoundsCheck* lir) {
+ const LAllocation* index = lir->index();
+ const LAllocation* length = lir->length();
+ LSnapshot* snapshot = lir->snapshot();
+
+ MIRType type = lir->mir()->type();
+
+ auto bailoutCmp = [&](Assembler::Condition cond, auto lhs, auto rhs) {
+ if (type == MIRType::Int32) {
+ bailoutCmp32(cond, lhs, rhs, snapshot);
+ } else {
+ MOZ_ASSERT(type == MIRType::IntPtr);
+ bailoutCmpPtr(cond, lhs, rhs, snapshot);
+ }
+ };
+
+ auto bailoutCmpConstant = [&](Assembler::Condition cond, auto lhs,
+ int32_t rhs) {
+ if (type == MIRType::Int32) {
+ bailoutCmp32(cond, lhs, Imm32(rhs), snapshot);
+ } else {
+ MOZ_ASSERT(type == MIRType::IntPtr);
+ bailoutCmpPtr(cond, lhs, ImmWord(rhs), snapshot);
+ }
+ };
+
+ if (index->isConstant()) {
+ // Use uint32 so that the comparison is unsigned.
+ uint32_t idx = ToInt32(index);
+ if (length->isConstant()) {
+ uint32_t len = ToInt32(lir->length());
+ if (idx < len) {
+ return;
+ }
+ bailout(snapshot);
+ return;
+ }
+
+ if (length->isRegister()) {
+ bailoutCmpConstant(Assembler::BelowOrEqual, ToRegister(length), idx);
+ } else {
+ bailoutCmpConstant(Assembler::BelowOrEqual, ToAddress(length), idx);
+ }
+ return;
+ }
+
+ Register indexReg = ToRegister(index);
+ if (length->isConstant()) {
+ bailoutCmpConstant(Assembler::AboveOrEqual, indexReg, ToInt32(length));
+ } else if (length->isRegister()) {
+ bailoutCmp(Assembler::BelowOrEqual, ToRegister(length), indexReg);
+ } else {
+ bailoutCmp(Assembler::BelowOrEqual, ToAddress(length), indexReg);
+ }
+}
+
+void CodeGenerator::visitBoundsCheckRange(LBoundsCheckRange* lir) {
+ int32_t min = lir->mir()->minimum();
+ int32_t max = lir->mir()->maximum();
+ MOZ_ASSERT(max >= min);
+
+ LSnapshot* snapshot = lir->snapshot();
+ MIRType type = lir->mir()->type();
+
+ const LAllocation* length = lir->length();
+ Register temp = ToRegister(lir->getTemp(0));
+
+ auto bailoutCmp = [&](Assembler::Condition cond, auto lhs, auto rhs) {
+ if (type == MIRType::Int32) {
+ bailoutCmp32(cond, lhs, rhs, snapshot);
+ } else {
+ MOZ_ASSERT(type == MIRType::IntPtr);
+ bailoutCmpPtr(cond, lhs, rhs, snapshot);
+ }
+ };
+
+ auto bailoutCmpConstant = [&](Assembler::Condition cond, auto lhs,
+ int32_t rhs) {
+ if (type == MIRType::Int32) {
+ bailoutCmp32(cond, lhs, Imm32(rhs), snapshot);
+ } else {
+ MOZ_ASSERT(type == MIRType::IntPtr);
+ bailoutCmpPtr(cond, lhs, ImmWord(rhs), snapshot);
+ }
+ };
+
+ if (lir->index()->isConstant()) {
+ int32_t nmin, nmax;
+ int32_t index = ToInt32(lir->index());
+ if (SafeAdd(index, min, &nmin) && SafeAdd(index, max, &nmax) && nmin >= 0) {
+ if (length->isRegister()) {
+ bailoutCmpConstant(Assembler::BelowOrEqual, ToRegister(length), nmax);
+ } else {
+ bailoutCmpConstant(Assembler::BelowOrEqual, ToAddress(length), nmax);
+ }
+ return;
+ }
+ masm.mov(ImmWord(index), temp);
+ } else {
+ masm.mov(ToRegister(lir->index()), temp);
+ }
+
+ // If the minimum and maximum differ then do an underflow check first.
+ // If the two are the same then doing an unsigned comparison on the
+ // length will also catch a negative index.
+ if (min != max) {
+ if (min != 0) {
+ Label bail;
+ if (type == MIRType::Int32) {
+ masm.branchAdd32(Assembler::Overflow, Imm32(min), temp, &bail);
+ } else {
+ masm.branchAddPtr(Assembler::Overflow, Imm32(min), temp, &bail);
+ }
+ bailoutFrom(&bail, snapshot);
+ }
+
+ bailoutCmpConstant(Assembler::LessThan, temp, 0);
+
+ if (min != 0) {
+ int32_t diff;
+ if (SafeSub(max, min, &diff)) {
+ max = diff;
+ } else {
+ if (type == MIRType::Int32) {
+ masm.sub32(Imm32(min), temp);
+ } else {
+ masm.subPtr(Imm32(min), temp);
+ }
+ }
+ }
+ }
+
+ // Compute the maximum possible index. No overflow check is needed when
+ // max > 0. We can only wraparound to a negative number, which will test as
+ // larger than all nonnegative numbers in the unsigned comparison, and the
+ // length is required to be nonnegative (else testing a negative length
+ // would succeed on any nonnegative index).
+ if (max != 0) {
+ if (max < 0) {
+ Label bail;
+ if (type == MIRType::Int32) {
+ masm.branchAdd32(Assembler::Overflow, Imm32(max), temp, &bail);
+ } else {
+ masm.branchAddPtr(Assembler::Overflow, Imm32(max), temp, &bail);
+ }
+ bailoutFrom(&bail, snapshot);
+ } else {
+ if (type == MIRType::Int32) {
+ masm.add32(Imm32(max), temp);
+ } else {
+ masm.addPtr(Imm32(max), temp);
+ }
+ }
+ }
+
+ if (length->isRegister()) {
+ bailoutCmp(Assembler::BelowOrEqual, ToRegister(length), temp);
+ } else {
+ bailoutCmp(Assembler::BelowOrEqual, ToAddress(length), temp);
+ }
+}
+
+void CodeGenerator::visitBoundsCheckLower(LBoundsCheckLower* lir) {
+ int32_t min = lir->mir()->minimum();
+ bailoutCmp32(Assembler::LessThan, ToRegister(lir->index()), Imm32(min),
+ lir->snapshot());
+}
+
+void CodeGenerator::visitSpectreMaskIndex(LSpectreMaskIndex* lir) {
+ MOZ_ASSERT(JitOptions.spectreIndexMasking);
+
+ const LAllocation* length = lir->length();
+ Register index = ToRegister(lir->index());
+ Register output = ToRegister(lir->output());
+
+ if (lir->mir()->type() == MIRType::Int32) {
+ if (length->isRegister()) {
+ masm.spectreMaskIndex32(index, ToRegister(length), output);
+ } else {
+ masm.spectreMaskIndex32(index, ToAddress(length), output);
+ }
+ } else {
+ MOZ_ASSERT(lir->mir()->type() == MIRType::IntPtr);
+ if (length->isRegister()) {
+ masm.spectreMaskIndexPtr(index, ToRegister(length), output);
+ } else {
+ masm.spectreMaskIndexPtr(index, ToAddress(length), output);
+ }
+ }
+}
+
+class OutOfLineStoreElementHole : public OutOfLineCodeBase<CodeGenerator> {
+ LInstruction* ins_;
+
+ public:
+ explicit OutOfLineStoreElementHole(LInstruction* ins) : ins_(ins) {
+ MOZ_ASSERT(ins->isStoreElementHoleV() || ins->isStoreElementHoleT());
+ }
+
+ void accept(CodeGenerator* codegen) override {
+ codegen->visitOutOfLineStoreElementHole(this);
+ }
+
+ MStoreElementHole* mir() const {
+ return ins_->isStoreElementHoleV() ? ins_->toStoreElementHoleV()->mir()
+ : ins_->toStoreElementHoleT()->mir();
+ }
+ LInstruction* ins() const { return ins_; }
+};
+
+void CodeGenerator::emitStoreHoleCheck(Register elements,
+ const LAllocation* index,
+ LSnapshot* snapshot) {
+ Label bail;
+ if (index->isConstant()) {
+ Address dest(elements, ToInt32(index) * sizeof(js::Value));
+ masm.branchTestMagic(Assembler::Equal, dest, &bail);
+ } else {
+ BaseObjectElementIndex dest(elements, ToRegister(index));
+ masm.branchTestMagic(Assembler::Equal, dest, &bail);
+ }
+ bailoutFrom(&bail, snapshot);
+}
+
+void CodeGenerator::emitStoreElementTyped(const LAllocation* value,
+ MIRType valueType, Register elements,
+ const LAllocation* index) {
+ MOZ_ASSERT(valueType != MIRType::MagicHole);
+ ConstantOrRegister v = ToConstantOrRegister(value, valueType);
+ if (index->isConstant()) {
+ Address dest(elements, ToInt32(index) * sizeof(js::Value));
+ masm.storeUnboxedValue(v, valueType, dest);
+ } else {
+ BaseObjectElementIndex dest(elements, ToRegister(index));
+ masm.storeUnboxedValue(v, valueType, dest);
+ }
+}
+
+void CodeGenerator::visitStoreElementT(LStoreElementT* store) {
+ Register elements = ToRegister(store->elements());
+ const LAllocation* index = store->index();
+
+ if (store->mir()->needsBarrier()) {
+ emitPreBarrier(elements, index);
+ }
+
+ if (store->mir()->needsHoleCheck()) {
+ emitStoreHoleCheck(elements, index, store->snapshot());
+ }
+
+ emitStoreElementTyped(store->value(), store->mir()->value()->type(), elements,
+ index);
+}
+
+void CodeGenerator::visitStoreElementV(LStoreElementV* lir) {
+ const ValueOperand value = ToValue(lir, LStoreElementV::Value);
+ Register elements = ToRegister(lir->elements());
+ const LAllocation* index = lir->index();
+
+ if (lir->mir()->needsBarrier()) {
+ emitPreBarrier(elements, index);
+ }
+
+ if (lir->mir()->needsHoleCheck()) {
+ emitStoreHoleCheck(elements, index, lir->snapshot());
+ }
+
+ if (lir->index()->isConstant()) {
+ Address dest(elements, ToInt32(lir->index()) * sizeof(js::Value));
+ masm.storeValue(value, dest);
+ } else {
+ BaseObjectElementIndex dest(elements, ToRegister(lir->index()));
+ masm.storeValue(value, dest);
+ }
+}
+
+void CodeGenerator::visitStoreHoleValueElement(LStoreHoleValueElement* lir) {
+ Register elements = ToRegister(lir->elements());
+ Register index = ToRegister(lir->index());
+
+ Address elementsFlags(elements, ObjectElements::offsetOfFlags());
+ masm.or32(Imm32(ObjectElements::NON_PACKED), elementsFlags);
+
+ BaseObjectElementIndex element(elements, index);
+ masm.storeValue(MagicValue(JS_ELEMENTS_HOLE), element);
+}
+
+void CodeGenerator::visitStoreElementHoleT(LStoreElementHoleT* lir) {
+ auto* ool = new (alloc()) OutOfLineStoreElementHole(lir);
+ addOutOfLineCode(ool, lir->mir());
+
+ Register obj = ToRegister(lir->object());
+ Register elements = ToRegister(lir->elements());
+ Register index = ToRegister(lir->index());
+ Register temp = ToRegister(lir->temp0());
+
+ Address initLength(elements, ObjectElements::offsetOfInitializedLength());
+ masm.spectreBoundsCheck32(index, initLength, temp, ool->entry());
+
+ emitPreBarrier(elements, lir->index());
+
+ masm.bind(ool->rejoin());
+ emitStoreElementTyped(lir->value(), lir->mir()->value()->type(), elements,
+ lir->index());
+
+ if (ValueNeedsPostBarrier(lir->mir()->value())) {
+ LiveRegisterSet regs = liveVolatileRegs(lir);
+ ConstantOrRegister val =
+ ToConstantOrRegister(lir->value(), lir->mir()->value()->type());
+ emitElementPostWriteBarrier(lir->mir(), regs, obj, lir->index(), temp, val);
+ }
+}
+
+void CodeGenerator::visitStoreElementHoleV(LStoreElementHoleV* lir) {
+ auto* ool = new (alloc()) OutOfLineStoreElementHole(lir);
+ addOutOfLineCode(ool, lir->mir());
+
+ Register obj = ToRegister(lir->object());
+ Register elements = ToRegister(lir->elements());
+ Register index = ToRegister(lir->index());
+ const ValueOperand value = ToValue(lir, LStoreElementHoleV::ValueIndex);
+ Register temp = ToRegister(lir->temp0());
+
+ Address initLength(elements, ObjectElements::offsetOfInitializedLength());
+ masm.spectreBoundsCheck32(index, initLength, temp, ool->entry());
+
+ emitPreBarrier(elements, lir->index());
+
+ masm.bind(ool->rejoin());
+ masm.storeValue(value, BaseObjectElementIndex(elements, index));
+
+ if (ValueNeedsPostBarrier(lir->mir()->value())) {
+ LiveRegisterSet regs = liveVolatileRegs(lir);
+ emitElementPostWriteBarrier(lir->mir(), regs, obj, lir->index(), temp,
+ ConstantOrRegister(value));
+ }
+}
+
+void CodeGenerator::visitOutOfLineStoreElementHole(
+ OutOfLineStoreElementHole* ool) {
+ Register object, elements, index;
+ LInstruction* ins = ool->ins();
+ mozilla::Maybe<ConstantOrRegister> value;
+ Register temp;
+
+ if (ins->isStoreElementHoleV()) {
+ LStoreElementHoleV* store = ins->toStoreElementHoleV();
+ object = ToRegister(store->object());
+ elements = ToRegister(store->elements());
+ index = ToRegister(store->index());
+ value.emplace(
+ TypedOrValueRegister(ToValue(store, LStoreElementHoleV::ValueIndex)));
+ temp = ToRegister(store->temp0());
+ } else {
+ LStoreElementHoleT* store = ins->toStoreElementHoleT();
+ object = ToRegister(store->object());
+ elements = ToRegister(store->elements());
+ index = ToRegister(store->index());
+ if (store->value()->isConstant()) {
+ value.emplace(
+ ConstantOrRegister(store->value()->toConstant()->toJSValue()));
+ } else {
+ MIRType valueType = store->mir()->value()->type();
+ value.emplace(
+ TypedOrValueRegister(valueType, ToAnyRegister(store->value())));
+ }
+ temp = ToRegister(store->temp0());
+ }
+
+ Address initLength(elements, ObjectElements::offsetOfInitializedLength());
+
+ // We're out-of-bounds. We only handle the index == initlength case.
+ // If index > initializedLength, bail out. Note that this relies on the
+ // condition flags sticking from the incoming branch.
+ // Also note: this branch does not need Spectre mitigations, doing that for
+ // the capacity check below is sufficient.
+ Label allocElement, addNewElement;
+#if defined(JS_CODEGEN_MIPS32) || defined(JS_CODEGEN_MIPS64) || \
+ defined(JS_CODEGEN_LOONG64) || defined(JS_CODEGEN_RISCV64)
+ // Had to reimplement for MIPS because there are no flags.
+ bailoutCmp32(Assembler::NotEqual, initLength, index, ins->snapshot());
+#else
+ bailoutIf(Assembler::NotEqual, ins->snapshot());
+#endif
+
+ // If index < capacity, we can add a dense element inline. If not, we need
+ // to allocate more elements first.
+ masm.spectreBoundsCheck32(
+ index, Address(elements, ObjectElements::offsetOfCapacity()), temp,
+ &allocElement);
+ masm.jump(&addNewElement);
+
+ masm.bind(&allocElement);
+
+ // Save all live volatile registers, except |temp|.
+ LiveRegisterSet liveRegs = liveVolatileRegs(ins);
+ liveRegs.takeUnchecked(temp);
+ masm.PushRegsInMask(liveRegs);
+
+ masm.setupAlignedABICall();
+ masm.loadJSContext(temp);
+ masm.passABIArg(temp);
+ masm.passABIArg(object);
+
+ using Fn = bool (*)(JSContext*, NativeObject*);
+ masm.callWithABI<Fn, NativeObject::addDenseElementPure>();
+ masm.storeCallPointerResult(temp);
+
+ masm.PopRegsInMask(liveRegs);
+ bailoutIfFalseBool(temp, ins->snapshot());
+
+ // Load the reallocated elements pointer.
+ masm.loadPtr(Address(object, NativeObject::offsetOfElements()), elements);
+
+ masm.bind(&addNewElement);
+
+ // Increment initLength
+ masm.add32(Imm32(1), initLength);
+
+ // If length is now <= index, increment length too.
+ Label skipIncrementLength;
+ Address length(elements, ObjectElements::offsetOfLength());
+ masm.branch32(Assembler::Above, length, index, &skipIncrementLength);
+ masm.add32(Imm32(1), length);
+ masm.bind(&skipIncrementLength);
+
+ // Jump to the inline path where we will store the value.
+ // We rejoin after the prebarrier, because the memory is uninitialized.
+ masm.jump(ool->rejoin());
+}
+
+void CodeGenerator::visitArrayPopShift(LArrayPopShift* lir) {
+ Register obj = ToRegister(lir->object());
+ Register temp1 = ToRegister(lir->temp0());
+ Register temp2 = ToRegister(lir->temp1());
+ ValueOperand out = ToOutValue(lir);
+
+ Label bail;
+ if (lir->mir()->mode() == MArrayPopShift::Pop) {
+ masm.packedArrayPop(obj, out, temp1, temp2, &bail);
+ } else {
+ MOZ_ASSERT(lir->mir()->mode() == MArrayPopShift::Shift);
+ LiveRegisterSet volatileRegs = liveVolatileRegs(lir);
+ masm.packedArrayShift(obj, out, temp1, temp2, volatileRegs, &bail);
+ }
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+class OutOfLineArrayPush : public OutOfLineCodeBase<CodeGenerator> {
+ LArrayPush* ins_;
+
+ public:
+ explicit OutOfLineArrayPush(LArrayPush* ins) : ins_(ins) {}
+
+ void accept(CodeGenerator* codegen) override {
+ codegen->visitOutOfLineArrayPush(this);
+ }
+
+ LArrayPush* ins() const { return ins_; }
+};
+
+void CodeGenerator::visitArrayPush(LArrayPush* lir) {
+ Register obj = ToRegister(lir->object());
+ Register elementsTemp = ToRegister(lir->temp0());
+ Register length = ToRegister(lir->output());
+ ValueOperand value = ToValue(lir, LArrayPush::ValueIndex);
+ Register spectreTemp = ToTempRegisterOrInvalid(lir->temp1());
+
+ auto* ool = new (alloc()) OutOfLineArrayPush(lir);
+ addOutOfLineCode(ool, lir->mir());
+
+ // Load obj->elements in elementsTemp.
+ masm.loadPtr(Address(obj, NativeObject::offsetOfElements()), elementsTemp);
+
+ Address initLengthAddr(elementsTemp,
+ ObjectElements::offsetOfInitializedLength());
+ Address lengthAddr(elementsTemp, ObjectElements::offsetOfLength());
+ Address capacityAddr(elementsTemp, ObjectElements::offsetOfCapacity());
+
+ // Bail out if length != initLength.
+ masm.load32(lengthAddr, length);
+ bailoutCmp32(Assembler::NotEqual, initLengthAddr, length, lir->snapshot());
+
+ // If length < capacity, we can add a dense element inline. If not, we
+ // need to allocate more elements.
+ masm.spectreBoundsCheck32(length, capacityAddr, spectreTemp, ool->entry());
+ masm.bind(ool->rejoin());
+
+ // Store the value.
+ masm.storeValue(value, BaseObjectElementIndex(elementsTemp, length));
+
+ // Update length and initialized length.
+ masm.add32(Imm32(1), length);
+ masm.store32(length, Address(elementsTemp, ObjectElements::offsetOfLength()));
+ masm.store32(length, Address(elementsTemp,
+ ObjectElements::offsetOfInitializedLength()));
+
+ if (ValueNeedsPostBarrier(lir->mir()->value())) {
+ LiveRegisterSet regs = liveVolatileRegs(lir);
+ regs.addUnchecked(length);
+ emitElementPostWriteBarrier(lir->mir(), regs, obj, lir->output()->output(),
+ elementsTemp, ConstantOrRegister(value),
+ /* indexDiff = */ -1);
+ }
+}
+
+void CodeGenerator::visitOutOfLineArrayPush(OutOfLineArrayPush* ool) {
+ LArrayPush* ins = ool->ins();
+
+ Register object = ToRegister(ins->object());
+ Register temp = ToRegister(ins->temp0());
+
+ LiveRegisterSet liveRegs = liveVolatileRegs(ins);
+ liveRegs.takeUnchecked(temp);
+ liveRegs.addUnchecked(ToRegister(ins->output()));
+ liveRegs.addUnchecked(ToValue(ins, LArrayPush::ValueIndex));
+
+ masm.PushRegsInMask(liveRegs);
+
+ masm.setupAlignedABICall();
+ masm.loadJSContext(temp);
+ masm.passABIArg(temp);
+ masm.passABIArg(object);
+
+ using Fn = bool (*)(JSContext*, NativeObject* obj);
+ masm.callWithABI<Fn, NativeObject::addDenseElementPure>();
+ masm.storeCallPointerResult(temp);
+
+ masm.PopRegsInMask(liveRegs);
+ bailoutIfFalseBool(temp, ins->snapshot());
+
+ // Load the reallocated elements pointer.
+ masm.loadPtr(Address(object, NativeObject::offsetOfElements()), temp);
+
+ masm.jump(ool->rejoin());
+}
+
+void CodeGenerator::visitArraySlice(LArraySlice* lir) {
+ Register object = ToRegister(lir->object());
+ Register begin = ToRegister(lir->begin());
+ Register end = ToRegister(lir->end());
+ Register temp0 = ToRegister(lir->temp0());
+ Register temp1 = ToRegister(lir->temp1());
+
+ Label call, fail;
+
+ Label bail;
+ masm.branchArrayIsNotPacked(object, temp0, temp1, &bail);
+ bailoutFrom(&bail, lir->snapshot());
+
+ // Try to allocate an object.
+ TemplateObject templateObject(lir->mir()->templateObj());
+ masm.createGCObject(temp0, temp1, templateObject, lir->mir()->initialHeap(),
+ &fail);
+
+ masm.jump(&call);
+ {
+ masm.bind(&fail);
+ masm.movePtr(ImmPtr(nullptr), temp0);
+ }
+ masm.bind(&call);
+
+ pushArg(temp0);
+ pushArg(end);
+ pushArg(begin);
+ pushArg(object);
+
+ using Fn =
+ JSObject* (*)(JSContext*, HandleObject, int32_t, int32_t, HandleObject);
+ callVM<Fn, ArraySliceDense>(lir);
+}
+
+void CodeGenerator::visitArgumentsSlice(LArgumentsSlice* lir) {
+ Register object = ToRegister(lir->object());
+ Register begin = ToRegister(lir->begin());
+ Register end = ToRegister(lir->end());
+ Register temp0 = ToRegister(lir->temp0());
+ Register temp1 = ToRegister(lir->temp1());
+
+ Label call, fail;
+
+ // Try to allocate an object.
+ TemplateObject templateObject(lir->mir()->templateObj());
+ masm.createGCObject(temp0, temp1, templateObject, lir->mir()->initialHeap(),
+ &fail);
+
+ masm.jump(&call);
+ {
+ masm.bind(&fail);
+ masm.movePtr(ImmPtr(nullptr), temp0);
+ }
+ masm.bind(&call);
+
+ pushArg(temp0);
+ pushArg(end);
+ pushArg(begin);
+ pushArg(object);
+
+ using Fn =
+ JSObject* (*)(JSContext*, HandleObject, int32_t, int32_t, HandleObject);
+ callVM<Fn, ArgumentsSliceDense>(lir);
+}
+
+#ifdef DEBUG
+void CodeGenerator::emitAssertArgumentsSliceBounds(const RegisterOrInt32& begin,
+ const RegisterOrInt32& count,
+ Register numActualArgs) {
+ // |begin| must be positive or zero.
+ if (begin.is<Register>()) {
+ Label beginOk;
+ masm.branch32(Assembler::GreaterThanOrEqual, begin.as<Register>(), Imm32(0),
+ &beginOk);
+ masm.assumeUnreachable("begin < 0");
+ masm.bind(&beginOk);
+ } else {
+ MOZ_ASSERT(begin.as<int32_t>() >= 0);
+ }
+
+ // |count| must be positive or zero.
+ if (count.is<Register>()) {
+ Label countOk;
+ masm.branch32(Assembler::GreaterThanOrEqual, count.as<Register>(), Imm32(0),
+ &countOk);
+ masm.assumeUnreachable("count < 0");
+ masm.bind(&countOk);
+ } else {
+ MOZ_ASSERT(count.as<int32_t>() >= 0);
+ }
+
+ // |begin| must be less-or-equal to |numActualArgs|.
+ Label argsBeginOk;
+ if (begin.is<Register>()) {
+ masm.branchPtr(Assembler::AboveOrEqual, numActualArgs, begin.as<Register>(),
+ &argsBeginOk);
+ } else {
+ masm.branchPtr(Assembler::AboveOrEqual, numActualArgs,
+ Imm32(begin.as<int32_t>()), &argsBeginOk);
+ }
+ masm.assumeUnreachable("begin <= numActualArgs");
+ masm.bind(&argsBeginOk);
+
+ // |count| must be less-or-equal to |numActualArgs|.
+ Label argsCountOk;
+ if (count.is<Register>()) {
+ masm.branchPtr(Assembler::AboveOrEqual, numActualArgs, count.as<Register>(),
+ &argsCountOk);
+ } else {
+ masm.branchPtr(Assembler::AboveOrEqual, numActualArgs,
+ Imm32(count.as<int32_t>()), &argsCountOk);
+ }
+ masm.assumeUnreachable("count <= numActualArgs");
+ masm.bind(&argsCountOk);
+
+ // |begin| and |count| must be preserved, but |numActualArgs| can be changed.
+ //
+ // Pre-condition: |count| <= |numActualArgs|
+ // Condition to test: |begin + count| <= |numActualArgs|
+ // Transform to: |begin| <= |numActualArgs - count|
+ if (count.is<Register>()) {
+ masm.subPtr(count.as<Register>(), numActualArgs);
+ } else {
+ masm.subPtr(Imm32(count.as<int32_t>()), numActualArgs);
+ }
+
+ // |begin + count| must be less-or-equal to |numActualArgs|.
+ Label argsBeginCountOk;
+ if (begin.is<Register>()) {
+ masm.branchPtr(Assembler::AboveOrEqual, numActualArgs, begin.as<Register>(),
+ &argsBeginCountOk);
+ } else {
+ masm.branchPtr(Assembler::AboveOrEqual, numActualArgs,
+ Imm32(begin.as<int32_t>()), &argsBeginCountOk);
+ }
+ masm.assumeUnreachable("begin + count <= numActualArgs");
+ masm.bind(&argsBeginCountOk);
+}
+#endif
+
+template <class ArgumentsSlice>
+void CodeGenerator::emitNewArray(ArgumentsSlice* lir,
+ const RegisterOrInt32& count, Register output,
+ Register temp) {
+ using Fn = ArrayObject* (*)(JSContext*, int32_t);
+ auto* ool = count.match(
+ [&](Register count) {
+ return oolCallVM<Fn, NewArrayObjectEnsureDenseInitLength>(
+ lir, ArgList(count), StoreRegisterTo(output));
+ },
+ [&](int32_t count) {
+ return oolCallVM<Fn, NewArrayObjectEnsureDenseInitLength>(
+ lir, ArgList(Imm32(count)), StoreRegisterTo(output));
+ });
+
+ TemplateObject templateObject(lir->mir()->templateObj());
+ MOZ_ASSERT(templateObject.isArrayObject());
+
+ auto templateNativeObj = templateObject.asTemplateNativeObject();
+ MOZ_ASSERT(templateNativeObj.getArrayLength() == 0);
+ MOZ_ASSERT(templateNativeObj.getDenseInitializedLength() == 0);
+ MOZ_ASSERT(!templateNativeObj.hasDynamicElements());
+
+ // Check array capacity. Call into the VM if the template object's capacity
+ // is too small.
+ bool tryAllocate = count.match(
+ [&](Register count) {
+ masm.branch32(Assembler::Above, count,
+ Imm32(templateNativeObj.getDenseCapacity()),
+ ool->entry());
+ return true;
+ },
+ [&](int32_t count) {
+ MOZ_ASSERT(count >= 0);
+ if (uint32_t(count) > templateNativeObj.getDenseCapacity()) {
+ masm.jump(ool->entry());
+ return false;
+ }
+ return true;
+ });
+
+ if (tryAllocate) {
+ // Try to allocate an object.
+ masm.createGCObject(output, temp, templateObject, lir->mir()->initialHeap(),
+ ool->entry());
+
+ auto setInitializedLengthAndLength = [&](auto count) {
+ const int elementsOffset = NativeObject::offsetOfFixedElements();
+
+ // Update initialized length.
+ Address initLength(
+ output, elementsOffset + ObjectElements::offsetOfInitializedLength());
+ masm.store32(count, initLength);
+
+ // Update length.
+ Address length(output, elementsOffset + ObjectElements::offsetOfLength());
+ masm.store32(count, length);
+ };
+
+ // The array object was successfully created. Set the length and initialized
+ // length and then proceed to fill the elements.
+ count.match([&](Register count) { setInitializedLengthAndLength(count); },
+ [&](int32_t count) {
+ if (count > 0) {
+ setInitializedLengthAndLength(Imm32(count));
+ }
+ });
+ }
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitFrameArgumentsSlice(LFrameArgumentsSlice* lir) {
+ Register begin = ToRegister(lir->begin());
+ Register count = ToRegister(lir->count());
+ Register temp = ToRegister(lir->temp0());
+ Register output = ToRegister(lir->output());
+
+#ifdef DEBUG
+ masm.loadNumActualArgs(FramePointer, temp);
+ emitAssertArgumentsSliceBounds(RegisterOrInt32(begin), RegisterOrInt32(count),
+ temp);
+#endif
+
+ emitNewArray(lir, RegisterOrInt32(count), output, temp);
+
+ Label done;
+ masm.branch32(Assembler::Equal, count, Imm32(0), &done);
+ {
+ AllocatableGeneralRegisterSet allRegs(GeneralRegisterSet::All());
+ allRegs.take(begin);
+ allRegs.take(count);
+ allRegs.take(temp);
+ allRegs.take(output);
+
+ ValueOperand value = allRegs.takeAnyValue();
+
+ LiveRegisterSet liveRegs;
+ liveRegs.add(output);
+ liveRegs.add(begin);
+ liveRegs.add(value);
+
+ masm.PushRegsInMask(liveRegs);
+
+ // Initialize all elements.
+
+ Register elements = output;
+ masm.loadPtr(Address(output, NativeObject::offsetOfElements()), elements);
+
+ Register argIndex = begin;
+
+ Register index = temp;
+ masm.move32(Imm32(0), index);
+
+ size_t argvOffset = JitFrameLayout::offsetOfActualArgs();
+ BaseValueIndex argPtr(FramePointer, argIndex, argvOffset);
+
+ Label loop;
+ masm.bind(&loop);
+
+ masm.loadValue(argPtr, value);
+
+ // We don't need a pre-barrier, because the element at |index| is guaranteed
+ // to be a non-GC thing (either uninitialized memory or the magic hole
+ // value).
+ masm.storeValue(value, BaseObjectElementIndex(elements, index));
+
+ masm.add32(Imm32(1), index);
+ masm.add32(Imm32(1), argIndex);
+
+ masm.branch32(Assembler::LessThan, index, count, &loop);
+
+ masm.PopRegsInMask(liveRegs);
+
+ // Emit a post-write barrier if |output| is tenured.
+ //
+ // We expect that |output| is nursery allocated, so it isn't worth the
+ // trouble to check if no frame argument is a nursery thing, which would
+ // allow to omit the post-write barrier.
+ masm.branchPtrInNurseryChunk(Assembler::Equal, output, temp, &done);
+
+ LiveRegisterSet volatileRegs = liveVolatileRegs(lir);
+ volatileRegs.takeUnchecked(temp);
+ if (output.volatile_()) {
+ volatileRegs.addUnchecked(output);
+ }
+
+ masm.PushRegsInMask(volatileRegs);
+ emitPostWriteBarrier(output);
+ masm.PopRegsInMask(volatileRegs);
+ }
+ masm.bind(&done);
+}
+
+CodeGenerator::RegisterOrInt32 CodeGenerator::ToRegisterOrInt32(
+ const LAllocation* allocation) {
+ if (allocation->isConstant()) {
+ return RegisterOrInt32(allocation->toConstant()->toInt32());
+ }
+ return RegisterOrInt32(ToRegister(allocation));
+}
+
+void CodeGenerator::visitInlineArgumentsSlice(LInlineArgumentsSlice* lir) {
+ RegisterOrInt32 begin = ToRegisterOrInt32(lir->begin());
+ RegisterOrInt32 count = ToRegisterOrInt32(lir->count());
+ Register temp = ToRegister(lir->temp());
+ Register output = ToRegister(lir->output());
+
+ uint32_t numActuals = lir->mir()->numActuals();
+
+#ifdef DEBUG
+ masm.move32(Imm32(numActuals), temp);
+
+ emitAssertArgumentsSliceBounds(begin, count, temp);
+#endif
+
+ emitNewArray(lir, count, output, temp);
+
+ // We're done if there are no actual arguments.
+ if (numActuals == 0) {
+ return;
+ }
+
+ // Check if any arguments have to be copied.
+ Label done;
+ if (count.is<Register>()) {
+ masm.branch32(Assembler::Equal, count.as<Register>(), Imm32(0), &done);
+ } else if (count.as<int32_t>() == 0) {
+ return;
+ }
+
+ auto getArg = [&](uint32_t i) {
+ return toConstantOrRegister(lir, LInlineArgumentsSlice::ArgIndex(i),
+ lir->mir()->getArg(i)->type());
+ };
+
+ auto storeArg = [&](uint32_t i, auto dest) {
+ // We don't need a pre-barrier because the element at |index| is guaranteed
+ // to be a non-GC thing (either uninitialized memory or the magic hole
+ // value).
+ masm.storeConstantOrRegister(getArg(i), dest);
+ };
+
+ // Initialize all elements.
+ if (numActuals == 1) {
+ // There's exactly one argument. We've checked that |count| is non-zero,
+ // which implies that |begin| must be zero.
+ MOZ_ASSERT_IF(begin.is<int32_t>(), begin.as<int32_t>() == 0);
+
+ Register elements = temp;
+ masm.loadPtr(Address(output, NativeObject::offsetOfElements()), elements);
+
+ storeArg(0, Address(elements, 0));
+ } else if (begin.is<Register>()) {
+ // There is more than one argument and |begin| isn't a compile-time
+ // constant. Iterate through 0..numActuals to search for |begin| and then
+ // start copying |count| arguments from that index.
+
+ LiveGeneralRegisterSet liveRegs;
+ liveRegs.add(output);
+ liveRegs.add(begin.as<Register>());
+
+ masm.PushRegsInMask(liveRegs);
+
+ Register elements = output;
+ masm.loadPtr(Address(output, NativeObject::offsetOfElements()), elements);
+
+ Register argIndex = begin.as<Register>();
+
+ Register index = temp;
+ masm.move32(Imm32(0), index);
+
+ Label doneLoop;
+ for (uint32_t i = 0; i < numActuals; ++i) {
+ Label next;
+ masm.branch32(Assembler::NotEqual, argIndex, Imm32(i), &next);
+
+ storeArg(i, BaseObjectElementIndex(elements, index));
+
+ masm.add32(Imm32(1), index);
+ masm.add32(Imm32(1), argIndex);
+
+ if (count.is<Register>()) {
+ masm.branch32(Assembler::GreaterThanOrEqual, index,
+ count.as<Register>(), &doneLoop);
+ } else {
+ masm.branch32(Assembler::GreaterThanOrEqual, index,
+ Imm32(count.as<int32_t>()), &doneLoop);
+ }
+
+ masm.bind(&next);
+ }
+ masm.bind(&doneLoop);
+
+ masm.PopRegsInMask(liveRegs);
+ } else {
+ // There is more than one argument and |begin| is a compile-time constant.
+
+ Register elements = temp;
+ masm.loadPtr(Address(output, NativeObject::offsetOfElements()), elements);
+
+ int32_t argIndex = begin.as<int32_t>();
+
+ int32_t index = 0;
+
+ Label doneLoop;
+ for (uint32_t i = argIndex; i < numActuals; ++i) {
+ storeArg(i, Address(elements, index * sizeof(Value)));
+
+ index += 1;
+
+ if (count.is<Register>()) {
+ masm.branch32(Assembler::LessThanOrEqual, count.as<Register>(),
+ Imm32(index), &doneLoop);
+ } else {
+ if (index >= count.as<int32_t>()) {
+ break;
+ }
+ }
+ }
+ masm.bind(&doneLoop);
+ }
+
+ // Determine if we have to emit post-write barrier.
+ //
+ // If either |begin| or |count| is a constant, use their value directly.
+ // Otherwise assume we copy all inline arguments from 0..numActuals.
+ bool postWriteBarrier = false;
+ uint32_t actualBegin = begin.match([](Register) { return 0; },
+ [](int32_t value) { return value; });
+ uint32_t actualCount =
+ count.match([=](Register) { return numActuals; },
+ [](int32_t value) -> uint32_t { return value; });
+ for (uint32_t i = 0; i < actualCount; ++i) {
+ ConstantOrRegister arg = getArg(actualBegin + i);
+ if (arg.constant()) {
+ Value v = arg.value();
+ if (v.isGCThing() && IsInsideNursery(v.toGCThing())) {
+ postWriteBarrier = true;
+ }
+ } else {
+ MIRType type = arg.reg().type();
+ if (type == MIRType::Value || NeedsPostBarrier(type)) {
+ postWriteBarrier = true;
+ }
+ }
+ }
+
+ // Emit a post-write barrier if |output| is tenured and we couldn't
+ // determine at compile-time that no barrier is needed.
+ if (postWriteBarrier) {
+ masm.branchPtrInNurseryChunk(Assembler::Equal, output, temp, &done);
+
+ LiveRegisterSet volatileRegs = liveVolatileRegs(lir);
+ volatileRegs.takeUnchecked(temp);
+ if (output.volatile_()) {
+ volatileRegs.addUnchecked(output);
+ }
+
+ masm.PushRegsInMask(volatileRegs);
+ emitPostWriteBarrier(output);
+ masm.PopRegsInMask(volatileRegs);
+ }
+
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitNormalizeSliceTerm(LNormalizeSliceTerm* lir) {
+ Register value = ToRegister(lir->value());
+ Register length = ToRegister(lir->length());
+ Register output = ToRegister(lir->output());
+
+ masm.move32(value, output);
+
+ Label positive;
+ masm.branch32(Assembler::GreaterThanOrEqual, value, Imm32(0), &positive);
+
+ Label done;
+ masm.add32(length, output);
+ masm.branch32(Assembler::GreaterThanOrEqual, output, Imm32(0), &done);
+ masm.move32(Imm32(0), output);
+ masm.jump(&done);
+
+ masm.bind(&positive);
+ masm.cmp32Move32(Assembler::LessThan, length, value, length, output);
+
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitArrayJoin(LArrayJoin* lir) {
+ Label skipCall;
+
+ Register output = ToRegister(lir->output());
+ Register sep = ToRegister(lir->separator());
+ Register array = ToRegister(lir->array());
+ Register temp = ToRegister(lir->temp0());
+
+ // Fast path for simple length <= 1 cases.
+ {
+ masm.loadPtr(Address(array, NativeObject::offsetOfElements()), temp);
+ Address length(temp, ObjectElements::offsetOfLength());
+ Address initLength(temp, ObjectElements::offsetOfInitializedLength());
+
+ // Check for length == 0
+ Label notEmpty;
+ masm.branch32(Assembler::NotEqual, length, Imm32(0), &notEmpty);
+ const JSAtomState& names = gen->runtime->names();
+ masm.movePtr(ImmGCPtr(names.empty_), output);
+ masm.jump(&skipCall);
+
+ masm.bind(&notEmpty);
+ Label notSingleString;
+ // Check for length == 1, initializedLength >= 1, arr[0].isString()
+ masm.branch32(Assembler::NotEqual, length, Imm32(1), &notSingleString);
+ masm.branch32(Assembler::LessThan, initLength, Imm32(1), &notSingleString);
+
+ Address elem0(temp, 0);
+ masm.branchTestString(Assembler::NotEqual, elem0, &notSingleString);
+
+ // At this point, 'output' can be used as a scratch register, since we're
+ // guaranteed to succeed.
+ masm.unboxString(elem0, output);
+ masm.jump(&skipCall);
+ masm.bind(&notSingleString);
+ }
+
+ pushArg(sep);
+ pushArg(array);
+
+ using Fn = JSString* (*)(JSContext*, HandleObject, HandleString);
+ callVM<Fn, jit::ArrayJoin>(lir);
+ masm.bind(&skipCall);
+}
+
+void CodeGenerator::visitObjectKeys(LObjectKeys* lir) {
+ Register object = ToRegister(lir->object());
+
+ pushArg(object);
+
+ using Fn = JSObject* (*)(JSContext*, HandleObject);
+ callVM<Fn, jit::ObjectKeys>(lir);
+}
+
+void CodeGenerator::visitObjectKeysLength(LObjectKeysLength* lir) {
+ Register object = ToRegister(lir->object());
+
+ pushArg(object);
+
+ using Fn = bool (*)(JSContext*, HandleObject, int32_t*);
+ callVM<Fn, jit::ObjectKeysLength>(lir);
+}
+
+void CodeGenerator::visitGetIteratorCache(LGetIteratorCache* lir) {
+ LiveRegisterSet liveRegs = lir->safepoint()->liveRegs();
+ TypedOrValueRegister val =
+ toConstantOrRegister(lir, LGetIteratorCache::ValueIndex,
+ lir->mir()->value()->type())
+ .reg();
+ Register output = ToRegister(lir->output());
+ Register temp0 = ToRegister(lir->temp0());
+ Register temp1 = ToRegister(lir->temp1());
+
+ IonGetIteratorIC ic(liveRegs, val, output, temp0, temp1);
+ addIC(lir, allocateIC(ic));
+}
+
+void CodeGenerator::visitOptimizeSpreadCallCache(
+ LOptimizeSpreadCallCache* lir) {
+ LiveRegisterSet liveRegs = lir->safepoint()->liveRegs();
+ ValueOperand val = ToValue(lir, LOptimizeSpreadCallCache::ValueIndex);
+ ValueOperand output = ToOutValue(lir);
+ Register temp = ToRegister(lir->temp0());
+
+ IonOptimizeSpreadCallIC ic(liveRegs, val, output, temp);
+ addIC(lir, allocateIC(ic));
+}
+
+void CodeGenerator::visitCloseIterCache(LCloseIterCache* lir) {
+ LiveRegisterSet liveRegs = lir->safepoint()->liveRegs();
+ Register iter = ToRegister(lir->iter());
+ Register temp = ToRegister(lir->temp0());
+ CompletionKind kind = CompletionKind(lir->mir()->completionKind());
+
+ IonCloseIterIC ic(liveRegs, iter, temp, kind);
+ addIC(lir, allocateIC(ic));
+}
+
+void CodeGenerator::visitOptimizeGetIteratorCache(
+ LOptimizeGetIteratorCache* lir) {
+ LiveRegisterSet liveRegs = lir->safepoint()->liveRegs();
+ ValueOperand val = ToValue(lir, LOptimizeGetIteratorCache::ValueIndex);
+ Register output = ToRegister(lir->output());
+ Register temp = ToRegister(lir->temp0());
+
+ IonOptimizeGetIteratorIC ic(liveRegs, val, output, temp);
+ addIC(lir, allocateIC(ic));
+}
+
+void CodeGenerator::visitIteratorMore(LIteratorMore* lir) {
+ const Register obj = ToRegister(lir->iterator());
+ const ValueOperand output = ToOutValue(lir);
+ const Register temp = ToRegister(lir->temp0());
+
+ masm.iteratorMore(obj, output, temp);
+}
+
+void CodeGenerator::visitIsNoIterAndBranch(LIsNoIterAndBranch* lir) {
+ ValueOperand input = ToValue(lir, LIsNoIterAndBranch::Input);
+ Label* ifTrue = getJumpLabelForBranch(lir->ifTrue());
+ Label* ifFalse = getJumpLabelForBranch(lir->ifFalse());
+
+ masm.branchTestMagic(Assembler::Equal, input, ifTrue);
+
+ if (!isNextBlock(lir->ifFalse()->lir())) {
+ masm.jump(ifFalse);
+ }
+}
+
+void CodeGenerator::visitIteratorEnd(LIteratorEnd* lir) {
+ const Register obj = ToRegister(lir->object());
+ const Register temp0 = ToRegister(lir->temp0());
+ const Register temp1 = ToRegister(lir->temp1());
+ const Register temp2 = ToRegister(lir->temp2());
+
+ masm.iteratorClose(obj, temp0, temp1, temp2);
+}
+
+void CodeGenerator::visitArgumentsLength(LArgumentsLength* lir) {
+ // read number of actual arguments from the JS frame.
+ Register argc = ToRegister(lir->output());
+ masm.loadNumActualArgs(FramePointer, argc);
+}
+
+void CodeGenerator::visitGetFrameArgument(LGetFrameArgument* lir) {
+ ValueOperand result = ToOutValue(lir);
+ const LAllocation* index = lir->index();
+ size_t argvOffset = JitFrameLayout::offsetOfActualArgs();
+
+ // This instruction is used to access actual arguments and formal arguments.
+ // The number of Values on the stack is |max(numFormals, numActuals)|, so we
+ // assert |index < numFormals || index < numActuals| in debug builds.
+ DebugOnly<size_t> numFormals = gen->outerInfo().script()->function()->nargs();
+
+ if (index->isConstant()) {
+ int32_t i = index->toConstant()->toInt32();
+#ifdef DEBUG
+ if (uint32_t(i) >= numFormals) {
+ Label ok;
+ Register argc = result.scratchReg();
+ masm.loadNumActualArgs(FramePointer, argc);
+ masm.branch32(Assembler::Above, argc, Imm32(i), &ok);
+ masm.assumeUnreachable("Invalid argument index");
+ masm.bind(&ok);
+ }
+#endif
+ Address argPtr(FramePointer, sizeof(Value) * i + argvOffset);
+ masm.loadValue(argPtr, result);
+ } else {
+ Register i = ToRegister(index);
+#ifdef DEBUG
+ Label ok;
+ Register argc = result.scratchReg();
+ masm.branch32(Assembler::Below, i, Imm32(numFormals), &ok);
+ masm.loadNumActualArgs(FramePointer, argc);
+ masm.branch32(Assembler::Above, argc, i, &ok);
+ masm.assumeUnreachable("Invalid argument index");
+ masm.bind(&ok);
+#endif
+ BaseValueIndex argPtr(FramePointer, i, argvOffset);
+ masm.loadValue(argPtr, result);
+ }
+}
+
+void CodeGenerator::visitGetFrameArgumentHole(LGetFrameArgumentHole* lir) {
+ ValueOperand result = ToOutValue(lir);
+ Register index = ToRegister(lir->index());
+ Register length = ToRegister(lir->length());
+ Register spectreTemp = ToTempRegisterOrInvalid(lir->temp0());
+ size_t argvOffset = JitFrameLayout::offsetOfActualArgs();
+
+ Label outOfBounds, done;
+ masm.spectreBoundsCheck32(index, length, spectreTemp, &outOfBounds);
+
+ BaseValueIndex argPtr(FramePointer, index, argvOffset);
+ masm.loadValue(argPtr, result);
+ masm.jump(&done);
+
+ masm.bind(&outOfBounds);
+ bailoutCmp32(Assembler::LessThan, index, Imm32(0), lir->snapshot());
+ masm.moveValue(UndefinedValue(), result);
+
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitRest(LRest* lir) {
+ Register numActuals = ToRegister(lir->numActuals());
+ Register temp0 = ToRegister(lir->temp0());
+ Register temp1 = ToRegister(lir->temp1());
+ Register temp2 = ToRegister(lir->temp2());
+ Register temp3 = ToRegister(lir->temp3());
+ unsigned numFormals = lir->mir()->numFormals();
+
+ constexpr uint32_t arrayCapacity = 2;
+
+ if (Shape* shape = lir->mir()->shape()) {
+ uint32_t arrayLength = 0;
+ gc::AllocKind allocKind = GuessArrayGCKind(arrayCapacity);
+ MOZ_ASSERT(CanChangeToBackgroundAllocKind(allocKind, &ArrayObject::class_));
+ allocKind = ForegroundToBackgroundAllocKind(allocKind);
+ MOZ_ASSERT(GetGCKindSlots(allocKind) ==
+ arrayCapacity + ObjectElements::VALUES_PER_HEADER);
+
+ Label joinAlloc, failAlloc;
+ masm.movePtr(ImmGCPtr(shape), temp0);
+ masm.createArrayWithFixedElements(temp2, temp0, temp1, InvalidReg,
+ arrayLength, arrayCapacity, 0, 0,
+ allocKind, gc::Heap::Default, &failAlloc);
+ masm.jump(&joinAlloc);
+ {
+ masm.bind(&failAlloc);
+ masm.movePtr(ImmPtr(nullptr), temp2);
+ }
+ masm.bind(&joinAlloc);
+ } else {
+ masm.movePtr(ImmPtr(nullptr), temp2);
+ }
+
+ // Set temp1 to the address of the first actual argument.
+ size_t actualsOffset = JitFrameLayout::offsetOfActualArgs();
+ masm.computeEffectiveAddress(Address(FramePointer, actualsOffset), temp1);
+
+ // Compute array length: max(numActuals - numFormals, 0).
+ Register lengthReg;
+ if (numFormals) {
+ lengthReg = temp0;
+ Label emptyLength, joinLength;
+ masm.branch32(Assembler::LessThanOrEqual, numActuals, Imm32(numFormals),
+ &emptyLength);
+ {
+ masm.move32(numActuals, lengthReg);
+ masm.sub32(Imm32(numFormals), lengthReg);
+
+ // Skip formal arguments.
+ masm.addPtr(Imm32(sizeof(Value) * numFormals), temp1);
+
+ masm.jump(&joinLength);
+ }
+ masm.bind(&emptyLength);
+ {
+ masm.move32(Imm32(0), lengthReg);
+
+ // Leave temp1 pointed to the start of actuals() when the rest-array
+ // length is zero. We don't use |actuals() + numFormals| because
+ // |numFormals| can be any non-negative int32 value when this MRest was
+ // created from scalar replacement optimizations. And it seems
+ // questionable to compute a Value* pointer which points to who knows
+ // where.
+ }
+ masm.bind(&joinLength);
+ } else {
+ // Use numActuals directly when there are no formals.
+ lengthReg = numActuals;
+ }
+
+ // Try to initialize the array elements.
+ Label vmCall, done;
+ if (lir->mir()->shape()) {
+ // Call into C++ if we failed to allocate an array or there are more than
+ // |arrayCapacity| elements.
+ masm.branchTestPtr(Assembler::Zero, temp2, temp2, &vmCall);
+ masm.branch32(Assembler::Above, lengthReg, Imm32(arrayCapacity), &vmCall);
+
+ // The array must be nursery allocated so no post barrier is needed.
+#ifdef DEBUG
+ Label ok;
+ masm.branchPtrInNurseryChunk(Assembler::Equal, temp2, temp3, &ok);
+ masm.assumeUnreachable("Unexpected tenured object for LRest");
+ masm.bind(&ok);
+#endif
+
+ Label initialized;
+ masm.branch32(Assembler::Equal, lengthReg, Imm32(0), &initialized);
+
+ // Store length and initializedLength.
+ Register elements = temp3;
+ masm.loadPtr(Address(temp2, NativeObject::offsetOfElements()), elements);
+ Address lengthAddr(elements, ObjectElements::offsetOfLength());
+ Address initLengthAddr(elements,
+ ObjectElements::offsetOfInitializedLength());
+ masm.store32(lengthReg, lengthAddr);
+ masm.store32(lengthReg, initLengthAddr);
+
+ // Store either one or two elements. This may clobber lengthReg (temp0).
+ static_assert(arrayCapacity == 2, "code handles 1 or 2 elements");
+ Label storeFirst;
+ masm.branch32(Assembler::Equal, lengthReg, Imm32(1), &storeFirst);
+ masm.storeValue(Address(temp1, sizeof(Value)),
+ Address(elements, sizeof(Value)), temp0);
+ masm.bind(&storeFirst);
+ masm.storeValue(Address(temp1, 0), Address(elements, 0), temp0);
+
+ // Done.
+ masm.bind(&initialized);
+ masm.movePtr(temp2, ReturnReg);
+ masm.jump(&done);
+ }
+
+ masm.bind(&vmCall);
+
+ pushArg(temp2);
+ pushArg(temp1);
+ pushArg(lengthReg);
+
+ using Fn =
+ ArrayObject* (*)(JSContext*, uint32_t, Value*, Handle<ArrayObject*>);
+ callVM<Fn, InitRestParameter>(lir);
+
+ masm.bind(&done);
+}
+
+// Create a stackmap from the given safepoint, with the structure:
+//
+// <reg dump, if any>
+// | ++ <body (general spill)>
+// | | ++ <space for Frame>
+// | | ++ <inbound args>
+// | | |
+// Lowest Addr Highest Addr
+// |
+// framePushedAtStackMapBase
+//
+// The caller owns the resulting stackmap. This assumes a grow-down stack.
+//
+// For non-debug builds, if the stackmap would contain no pointers, no
+// stackmap is created, and nullptr is returned. For a debug build, a
+// stackmap is always created and returned.
+//
+// Depending on the type of safepoint, the stackmap may need to account for
+// spilled registers. WasmSafepointKind::LirCall corresponds to LIR nodes where
+// isCall() == true, for which the register allocator will spill/restore all
+// live registers at the LIR level - in this case, the LSafepoint sees only live
+// values on the stack, never in registers. WasmSafepointKind::CodegenCall, on
+// the other hand, is for LIR nodes which may manually spill/restore live
+// registers in codegen, in which case the stackmap must account for this. Traps
+// also require tracking of live registers, but spilling is handled by the trap
+// mechanism.
+static bool CreateStackMapFromLSafepoint(LSafepoint& safepoint,
+ const RegisterOffsets& trapExitLayout,
+ size_t trapExitLayoutNumWords,
+ size_t nInboundStackArgBytes,
+ wasm::StackMap** result) {
+ // Ensure this is defined on all return paths.
+ *result = nullptr;
+
+ // The size of the wasm::Frame itself.
+ const size_t nFrameBytes = sizeof(wasm::Frame);
+
+ // This is the number of bytes spilled for live registers, outside of a trap.
+ // For traps, trapExitLayout and trapExitLayoutNumWords will be used.
+ const size_t nRegisterDumpBytes =
+ MacroAssembler::PushRegsInMaskSizeInBytes(safepoint.liveRegs());
+
+ // As mentioned above, for WasmSafepointKind::LirCall, register spills and
+ // restores are handled at the LIR level and there should therefore be no live
+ // registers to handle here.
+ MOZ_ASSERT_IF(safepoint.wasmSafepointKind() == WasmSafepointKind::LirCall,
+ nRegisterDumpBytes == 0);
+ MOZ_ASSERT(nRegisterDumpBytes % sizeof(void*) == 0);
+
+ // This is the number of bytes in the general spill area, below the Frame.
+ const size_t nBodyBytes = safepoint.framePushedAtStackMapBase();
+
+ // The stack map owns any alignment padding around inbound stack args.
+ const size_t nInboundStackArgBytesAligned =
+ wasm::AlignStackArgAreaSize(nInboundStackArgBytes);
+
+ // This is the number of bytes in the general spill area, the Frame, and the
+ // incoming args, but not including any register dump area.
+ const size_t nNonRegisterBytes =
+ nBodyBytes + nFrameBytes + nInboundStackArgBytesAligned;
+ MOZ_ASSERT(nNonRegisterBytes % sizeof(void*) == 0);
+
+ // This is the number of bytes in the register dump area, if any, below the
+ // general spill area.
+ const size_t nRegisterBytes =
+ (safepoint.wasmSafepointKind() == WasmSafepointKind::Trap)
+ ? (trapExitLayoutNumWords * sizeof(void*))
+ : nRegisterDumpBytes;
+
+ // This is the total number of bytes covered by the map.
+ const size_t nTotalBytes = nNonRegisterBytes + nRegisterBytes;
+
+#ifndef DEBUG
+ bool needStackMap = !(safepoint.wasmAnyRefRegs().empty() &&
+ safepoint.wasmAnyRefSlots().empty() &&
+ safepoint.slotsOrElementsSlots().empty());
+
+ // There are no references, and this is a non-debug build, so don't bother
+ // building the stackmap.
+ if (!needStackMap) {
+ return true;
+ }
+#endif
+
+ wasm::StackMap* stackMap =
+ wasm::StackMap::create(nTotalBytes / sizeof(void*));
+ if (!stackMap) {
+ return false;
+ }
+ if (safepoint.wasmSafepointKind() == WasmSafepointKind::Trap) {
+ stackMap->setExitStubWords(trapExitLayoutNumWords);
+ }
+
+ // REG DUMP AREA, if any.
+ size_t regDumpWords = 0;
+ const LiveGeneralRegisterSet wasmAnyRefRegs = safepoint.wasmAnyRefRegs();
+ GeneralRegisterForwardIterator wasmAnyRefRegsIter(wasmAnyRefRegs);
+ switch (safepoint.wasmSafepointKind()) {
+ case WasmSafepointKind::LirCall:
+ case WasmSafepointKind::CodegenCall: {
+ size_t spilledNumWords = nRegisterDumpBytes / sizeof(void*);
+ regDumpWords += spilledNumWords;
+
+ for (; wasmAnyRefRegsIter.more(); ++wasmAnyRefRegsIter) {
+ Register reg = *wasmAnyRefRegsIter;
+ size_t offsetFromSpillBase =
+ safepoint.liveRegs().gprs().offsetOfPushedRegister(reg) /
+ sizeof(void*);
+ MOZ_ASSERT(0 < offsetFromSpillBase &&
+ offsetFromSpillBase <= spilledNumWords);
+ size_t index = spilledNumWords - offsetFromSpillBase;
+
+ stackMap->set(index, wasm::StackMap::AnyRef);
+ }
+
+ // Float and vector registers do not have to be handled; they cannot
+ // contain wasm anyrefs, and they are spilled after general-purpose
+ // registers. Gprs are therefore closest to the spill base and thus their
+ // offset calculation does not need to account for other spills.
+ } break;
+ case WasmSafepointKind::Trap: {
+ regDumpWords += trapExitLayoutNumWords;
+
+ for (; wasmAnyRefRegsIter.more(); ++wasmAnyRefRegsIter) {
+ Register reg = *wasmAnyRefRegsIter;
+ size_t offsetFromTop = trapExitLayout.getOffset(reg);
+
+ // If this doesn't hold, the associated register wasn't saved by
+ // the trap exit stub. Better to crash now than much later, in
+ // some obscure place, and possibly with security consequences.
+ MOZ_RELEASE_ASSERT(offsetFromTop < trapExitLayoutNumWords);
+
+ // offsetFromTop is an offset in words down from the highest
+ // address in the exit stub save area. Switch it around to be an
+ // offset up from the bottom of the (integer register) save area.
+ size_t offsetFromBottom = trapExitLayoutNumWords - 1 - offsetFromTop;
+
+ stackMap->set(offsetFromBottom, wasm::StackMap::AnyRef);
+ }
+ } break;
+ default:
+ MOZ_CRASH("unreachable");
+ }
+
+ // BODY (GENERAL SPILL) AREA and FRAME and INCOMING ARGS
+ // Deal with roots on the stack.
+ const LSafepoint::SlotList& wasmAnyRefSlots = safepoint.wasmAnyRefSlots();
+ for (SafepointSlotEntry wasmAnyRefSlot : wasmAnyRefSlots) {
+ // The following needs to correspond with JitFrameLayout::slotRef
+ // wasmAnyRefSlot.stack == 0 means the slot is in the args area
+ if (wasmAnyRefSlot.stack) {
+ // It's a slot in the body allocation, so .slot is interpreted
+ // as an index downwards from the Frame*
+ MOZ_ASSERT(wasmAnyRefSlot.slot <= nBodyBytes);
+ uint32_t offsetInBytes = nBodyBytes - wasmAnyRefSlot.slot;
+ MOZ_ASSERT(offsetInBytes % sizeof(void*) == 0);
+ stackMap->set(regDumpWords + offsetInBytes / sizeof(void*),
+ wasm::StackMap::AnyRef);
+ } else {
+ // It's an argument slot
+ MOZ_ASSERT(wasmAnyRefSlot.slot < nInboundStackArgBytes);
+ uint32_t offsetInBytes = nBodyBytes + nFrameBytes + wasmAnyRefSlot.slot;
+ MOZ_ASSERT(offsetInBytes % sizeof(void*) == 0);
+ stackMap->set(regDumpWords + offsetInBytes / sizeof(void*),
+ wasm::StackMap::AnyRef);
+ }
+ }
+
+ // Track array data pointers on the stack
+ const LSafepoint::SlotList& slots = safepoint.slotsOrElementsSlots();
+ for (SafepointSlotEntry slot : slots) {
+ MOZ_ASSERT(slot.stack);
+
+ // It's a slot in the body allocation, so .slot is interpreted
+ // as an index downwards from the Frame*
+ MOZ_ASSERT(slot.slot <= nBodyBytes);
+ uint32_t offsetInBytes = nBodyBytes - slot.slot;
+ MOZ_ASSERT(offsetInBytes % sizeof(void*) == 0);
+ stackMap->set(regDumpWords + offsetInBytes / sizeof(void*),
+ wasm::StackMap::Kind::ArrayDataPointer);
+ }
+
+ // Record in the map, how far down from the highest address the Frame* is.
+ // Take the opportunity to check that we haven't marked any part of the
+ // Frame itself as a pointer.
+ stackMap->setFrameOffsetFromTop((nInboundStackArgBytesAligned + nFrameBytes) /
+ sizeof(void*));
+#ifdef DEBUG
+ for (uint32_t i = 0; i < nFrameBytes / sizeof(void*); i++) {
+ MOZ_ASSERT(stackMap->get(stackMap->header.numMappedWords -
+ stackMap->header.frameOffsetFromTop + i) ==
+ wasm::StackMap::Kind::POD);
+ }
+#endif
+
+ *result = stackMap;
+ return true;
+}
+
+bool CodeGenerator::generateWasm(
+ wasm::CallIndirectId callIndirectId, wasm::BytecodeOffset trapOffset,
+ const wasm::ArgTypeVector& argTypes, const RegisterOffsets& trapExitLayout,
+ size_t trapExitLayoutNumWords, wasm::FuncOffsets* offsets,
+ wasm::StackMaps* stackMaps, wasm::Decoder* decoder) {
+ AutoCreatedBy acb(masm, "CodeGenerator::generateWasm");
+
+ JitSpew(JitSpew_Codegen, "# Emitting wasm code");
+
+ size_t nInboundStackArgBytes = StackArgAreaSizeUnaligned(argTypes);
+ inboundStackArgBytes_ = nInboundStackArgBytes;
+
+ wasm::GenerateFunctionPrologue(masm, callIndirectId, mozilla::Nothing(),
+ offsets);
+
+ MOZ_ASSERT(masm.framePushed() == 0);
+
+ // Very large frames are implausible, probably an attack.
+ if (frameSize() > wasm::MaxFrameSize) {
+ return decoder->fail(decoder->beginOffset(), "stack frame is too large");
+ }
+
+ if (omitOverRecursedCheck()) {
+ masm.reserveStack(frameSize());
+ } else {
+ std::pair<CodeOffset, uint32_t> pair =
+ masm.wasmReserveStackChecked(frameSize(), trapOffset);
+ CodeOffset trapInsnOffset = pair.first;
+ size_t nBytesReservedBeforeTrap = pair.second;
+
+ wasm::StackMap* functionEntryStackMap = nullptr;
+ if (!CreateStackMapForFunctionEntryTrap(
+ argTypes, trapExitLayout, trapExitLayoutNumWords,
+ nBytesReservedBeforeTrap, nInboundStackArgBytes,
+ &functionEntryStackMap)) {
+ return false;
+ }
+
+ // In debug builds, we'll always have a stack map, even if there are no
+ // refs to track.
+ MOZ_ASSERT(functionEntryStackMap);
+
+ if (functionEntryStackMap &&
+ !stackMaps->add((uint8_t*)(uintptr_t)trapInsnOffset.offset(),
+ functionEntryStackMap)) {
+ functionEntryStackMap->destroy();
+ return false;
+ }
+ }
+
+ MOZ_ASSERT(masm.framePushed() == frameSize());
+
+ if (!generateBody()) {
+ return false;
+ }
+
+ masm.bind(&returnLabel_);
+ wasm::GenerateFunctionEpilogue(masm, frameSize(), offsets);
+
+ if (!generateOutOfLineCode()) {
+ return false;
+ }
+
+ masm.flush();
+ if (masm.oom()) {
+ return false;
+ }
+
+ offsets->end = masm.currentOffset();
+
+ MOZ_ASSERT(!masm.failureLabel()->used());
+ MOZ_ASSERT(snapshots_.listSize() == 0);
+ MOZ_ASSERT(snapshots_.RVATableSize() == 0);
+ MOZ_ASSERT(recovers_.size() == 0);
+ MOZ_ASSERT(graph.numConstants() == 0);
+ MOZ_ASSERT(osiIndices_.empty());
+ MOZ_ASSERT(icList_.empty());
+ MOZ_ASSERT(safepoints_.size() == 0);
+ MOZ_ASSERT(!scriptCounts_);
+
+ // Convert the safepoints to stackmaps and add them to our running
+ // collection thereof.
+ for (CodegenSafepointIndex& index : safepointIndices_) {
+ wasm::StackMap* stackMap = nullptr;
+ if (!CreateStackMapFromLSafepoint(*index.safepoint(), trapExitLayout,
+ trapExitLayoutNumWords,
+ nInboundStackArgBytes, &stackMap)) {
+ return false;
+ }
+
+ // In debug builds, we'll always have a stack map.
+ MOZ_ASSERT(stackMap);
+ if (!stackMap) {
+ continue;
+ }
+
+ if (!stackMaps->add((uint8_t*)(uintptr_t)index.displacement(), stackMap)) {
+ stackMap->destroy();
+ return false;
+ }
+ }
+
+ return true;
+}
+
+bool CodeGenerator::generate() {
+ AutoCreatedBy acb(masm, "CodeGenerator::generate");
+
+ JitSpew(JitSpew_Codegen, "# Emitting code for script %s:%u:%u",
+ gen->outerInfo().script()->filename(),
+ gen->outerInfo().script()->lineno(),
+ gen->outerInfo().script()->column().oneOriginValue());
+
+ // Initialize native code table with an entry to the start of
+ // top-level script.
+ InlineScriptTree* tree = gen->outerInfo().inlineScriptTree();
+ jsbytecode* startPC = tree->script()->code();
+ BytecodeSite* startSite = new (gen->alloc()) BytecodeSite(tree, startPC);
+ if (!addNativeToBytecodeEntry(startSite)) {
+ return false;
+ }
+
+ if (!safepoints_.init(gen->alloc())) {
+ return false;
+ }
+
+ perfSpewer_.recordOffset(masm, "Prologue");
+ if (!generatePrologue()) {
+ return false;
+ }
+
+ // Reset native => bytecode map table with top-level script and startPc.
+ if (!addNativeToBytecodeEntry(startSite)) {
+ return false;
+ }
+
+ if (!generateBody()) {
+ return false;
+ }
+
+ // Reset native => bytecode map table with top-level script and startPc.
+ if (!addNativeToBytecodeEntry(startSite)) {
+ return false;
+ }
+
+ perfSpewer_.recordOffset(masm, "Epilogue");
+ if (!generateEpilogue()) {
+ return false;
+ }
+
+ // Reset native => bytecode map table with top-level script and startPc.
+ if (!addNativeToBytecodeEntry(startSite)) {
+ return false;
+ }
+
+ perfSpewer_.recordOffset(masm, "InvalidateEpilogue");
+ generateInvalidateEpilogue();
+
+ // native => bytecode entries for OOL code will be added
+ // by CodeGeneratorShared::generateOutOfLineCode
+ perfSpewer_.recordOffset(masm, "OOLCode");
+ if (!generateOutOfLineCode()) {
+ return false;
+ }
+
+ // Add terminal entry.
+ if (!addNativeToBytecodeEntry(startSite)) {
+ return false;
+ }
+
+ // Dump Native to bytecode entries to spew.
+ dumpNativeToBytecodeEntries();
+
+ // We encode safepoints after the OSI-point offsets have been determined.
+ if (!encodeSafepoints()) {
+ return false;
+ }
+
+ return !masm.oom();
+}
+
+static bool AddInlinedCompilations(JSContext* cx, HandleScript script,
+ IonCompilationId compilationId,
+ const WarpSnapshot* snapshot,
+ bool* isValid) {
+ MOZ_ASSERT(!*isValid);
+ RecompileInfo recompileInfo(script, compilationId);
+
+ JitZone* jitZone = cx->zone()->jitZone();
+
+ for (const auto* scriptSnapshot : snapshot->scripts()) {
+ JSScript* inlinedScript = scriptSnapshot->script();
+ if (inlinedScript == script) {
+ continue;
+ }
+
+ // TODO(post-Warp): This matches FinishCompilation and is necessary to
+ // ensure in-progress compilations are canceled when an inlined functon
+ // becomes a debuggee. See the breakpoint-14.js jit-test.
+ // When TI is gone, try to clean this up by moving AddInlinedCompilations to
+ // WarpOracle so that we can handle this as part of addPendingRecompile
+ // instead of requiring this separate check.
+ if (inlinedScript->isDebuggee()) {
+ *isValid = false;
+ return true;
+ }
+
+ if (!jitZone->addInlinedCompilation(recompileInfo, inlinedScript)) {
+ return false;
+ }
+ }
+
+ *isValid = true;
+ return true;
+}
+
+void CodeGenerator::validateAndRegisterFuseDependencies(JSContext* cx,
+ HandleScript script,
+ bool* isValid) {
+ // No need to validate as we will toss this compilation anyhow.
+ if (!*isValid) {
+ return;
+ }
+
+ for (auto dependency : fuseDependencies) {
+ switch (dependency) {
+ case FuseDependencyKind::HasSeenObjectEmulateUndefinedFuse: {
+ auto& hasSeenObjectEmulateUndefinedFuse =
+ cx->runtime()->hasSeenObjectEmulateUndefinedFuse.ref();
+
+ if (!hasSeenObjectEmulateUndefinedFuse.intact()) {
+ JitSpew(JitSpew_Codegen,
+ "tossing compilation; fuse dependency no longer valid\n");
+ *isValid = false;
+ return;
+ }
+
+ if (!hasSeenObjectEmulateUndefinedFuse.addFuseDependency(cx, script)) {
+ JitSpew(
+ JitSpew_Codegen,
+ "tossing compilation; failed to register script dependency\n");
+ *isValid = false;
+ return;
+ }
+ break;
+ }
+
+ default:
+ MOZ_CRASH("Unknown Dependency Kind");
+ }
+ }
+}
+
+bool CodeGenerator::link(JSContext* cx, const WarpSnapshot* snapshot) {
+ AutoCreatedBy acb(masm, "CodeGenerator::link");
+
+ // We cancel off-thread Ion compilations in a few places during GC, but if
+ // this compilation was performed off-thread it will already have been
+ // removed from the relevant lists by this point. Don't allow GC here.
+ JS::AutoAssertNoGC nogc(cx);
+
+ RootedScript script(cx, gen->outerInfo().script());
+ MOZ_ASSERT(!script->hasIonScript());
+
+ // Perform any read barriers which were skipped while compiling the
+ // script, which may have happened off-thread.
+ JitZone* jitZone = cx->zone()->jitZone();
+ jitZone->performStubReadBarriers(zoneStubsToReadBarrier_);
+
+ if (scriptCounts_ && !script->hasScriptCounts() &&
+ !script->initScriptCounts(cx)) {
+ return false;
+ }
+
+ IonCompilationId compilationId =
+ cx->runtime()->jitRuntime()->nextCompilationId();
+ jitZone->currentCompilationIdRef().emplace(compilationId);
+ auto resetCurrentId = mozilla::MakeScopeExit(
+ [jitZone] { jitZone->currentCompilationIdRef().reset(); });
+
+ // Record constraints. If an error occured, returns false and potentially
+ // prevent future compilations. Otherwise, if an invalidation occured, then
+ // skip the current compilation.
+ bool isValid = false;
+
+ // If an inlined script is invalidated (for example, by attaching
+ // a debugger), we must also invalidate the parent IonScript.
+ if (!AddInlinedCompilations(cx, script, compilationId, snapshot, &isValid)) {
+ return false;
+ }
+
+ // Validate fuse dependencies here; if a fuse has popped since we registered a
+ // dependency then we need to toss this compilation as it assumes things which
+ // are not valid.
+ //
+ // Eagerly register a fuse dependency here too; this way if we OOM we can
+ // instead simply remove the compilation and move on with our lives.
+ validateAndRegisterFuseDependencies(cx, script, &isValid);
+
+ // This compilation is no longer valid; don't proceed, but return true as this
+ // isn't an error case either.
+ if (!isValid) {
+ return true;
+ }
+
+ uint32_t argumentSlots = (gen->outerInfo().nargs() + 1) * sizeof(Value);
+
+ size_t numNurseryObjects = snapshot->nurseryObjects().length();
+
+ IonScript* ionScript = IonScript::New(
+ cx, compilationId, graph.localSlotsSize(), argumentSlots, frameDepth_,
+ snapshots_.listSize(), snapshots_.RVATableSize(), recovers_.size(),
+ graph.numConstants(), numNurseryObjects, safepointIndices_.length(),
+ osiIndices_.length(), icList_.length(), runtimeData_.length(),
+ safepoints_.size());
+ if (!ionScript) {
+ return false;
+ }
+#ifdef DEBUG
+ ionScript->setICHash(snapshot->icHash());
+#endif
+
+ auto freeIonScript = mozilla::MakeScopeExit([&ionScript] {
+ // Use js_free instead of IonScript::Destroy: the cache list is still
+ // uninitialized.
+ js_free(ionScript);
+ });
+
+ Linker linker(masm);
+ JitCode* code = linker.newCode(cx, CodeKind::Ion);
+ if (!code) {
+ return false;
+ }
+
+ // Encode native to bytecode map if profiling is enabled.
+ if (isProfilerInstrumentationEnabled()) {
+ // Generate native-to-bytecode main table.
+ IonEntry::ScriptList scriptList;
+ if (!generateCompactNativeToBytecodeMap(cx, code, scriptList)) {
+ return false;
+ }
+
+ uint8_t* ionTableAddr =
+ ((uint8_t*)nativeToBytecodeMap_.get()) + nativeToBytecodeTableOffset_;
+ JitcodeIonTable* ionTable = (JitcodeIonTable*)ionTableAddr;
+
+ // Construct the IonEntry that will go into the global table.
+ auto entry = MakeJitcodeGlobalEntry<IonEntry>(
+ cx, code, code->raw(), code->rawEnd(), std::move(scriptList), ionTable);
+ if (!entry) {
+ return false;
+ }
+ (void)nativeToBytecodeMap_.release(); // Table is now owned by |entry|.
+
+ // Add entry to the global table.
+ JitcodeGlobalTable* globalTable =
+ cx->runtime()->jitRuntime()->getJitcodeGlobalTable();
+ if (!globalTable->addEntry(std::move(entry))) {
+ return false;
+ }
+
+ // Mark the jitcode as having a bytecode map.
+ code->setHasBytecodeMap();
+ } else {
+ // Add a dumy jitcodeGlobalTable entry.
+ auto entry = MakeJitcodeGlobalEntry<DummyEntry>(cx, code, code->raw(),
+ code->rawEnd());
+ if (!entry) {
+ return false;
+ }
+
+ // Add entry to the global table.
+ JitcodeGlobalTable* globalTable =
+ cx->runtime()->jitRuntime()->getJitcodeGlobalTable();
+ if (!globalTable->addEntry(std::move(entry))) {
+ return false;
+ }
+
+ // Mark the jitcode as having a bytecode map.
+ code->setHasBytecodeMap();
+ }
+
+ ionScript->setMethod(code);
+
+ // If the Gecko Profiler is enabled, mark IonScript as having been
+ // instrumented accordingly.
+ if (isProfilerInstrumentationEnabled()) {
+ ionScript->setHasProfilingInstrumentation();
+ }
+
+ Assembler::PatchDataWithValueCheck(
+ CodeLocationLabel(code, invalidateEpilogueData_), ImmPtr(ionScript),
+ ImmPtr((void*)-1));
+
+ for (CodeOffset offset : ionScriptLabels_) {
+ Assembler::PatchDataWithValueCheck(CodeLocationLabel(code, offset),
+ ImmPtr(ionScript), ImmPtr((void*)-1));
+ }
+
+ for (NurseryObjectLabel label : ionNurseryObjectLabels_) {
+ void* entry = ionScript->addressOfNurseryObject(label.nurseryIndex);
+ Assembler::PatchDataWithValueCheck(CodeLocationLabel(code, label.offset),
+ ImmPtr(entry), ImmPtr((void*)-1));
+ }
+
+ // for generating inline caches during the execution.
+ if (runtimeData_.length()) {
+ ionScript->copyRuntimeData(&runtimeData_[0]);
+ }
+ if (icList_.length()) {
+ ionScript->copyICEntries(&icList_[0]);
+ }
+
+ for (size_t i = 0; i < icInfo_.length(); i++) {
+ IonIC& ic = ionScript->getICFromIndex(i);
+ Assembler::PatchDataWithValueCheck(
+ CodeLocationLabel(code, icInfo_[i].icOffsetForJump),
+ ImmPtr(ic.codeRawPtr()), ImmPtr((void*)-1));
+ Assembler::PatchDataWithValueCheck(
+ CodeLocationLabel(code, icInfo_[i].icOffsetForPush), ImmPtr(&ic),
+ ImmPtr((void*)-1));
+ }
+
+ JitSpew(JitSpew_Codegen, "Created IonScript %p (raw %p)", (void*)ionScript,
+ (void*)code->raw());
+
+ ionScript->setInvalidationEpilogueDataOffset(
+ invalidateEpilogueData_.offset());
+ if (jsbytecode* osrPc = gen->outerInfo().osrPc()) {
+ ionScript->setOsrPc(osrPc);
+ ionScript->setOsrEntryOffset(getOsrEntryOffset());
+ }
+ ionScript->setInvalidationEpilogueOffset(invalidate_.offset());
+
+ perfSpewer_.saveProfile(cx, script, code);
+
+#ifdef MOZ_VTUNE
+ vtune::MarkScript(code, script, "ion");
+#endif
+
+ // Set a Ion counter hint for this script.
+ if (cx->runtime()->jitRuntime()->hasJitHintsMap()) {
+ JitHintsMap* jitHints = cx->runtime()->jitRuntime()->getJitHintsMap();
+ jitHints->recordIonCompilation(script);
+ }
+
+ // for marking during GC.
+ if (safepointIndices_.length()) {
+ ionScript->copySafepointIndices(&safepointIndices_[0]);
+ }
+ if (safepoints_.size()) {
+ ionScript->copySafepoints(&safepoints_);
+ }
+
+ // for recovering from an Ion Frame.
+ if (osiIndices_.length()) {
+ ionScript->copyOsiIndices(&osiIndices_[0]);
+ }
+ if (snapshots_.listSize()) {
+ ionScript->copySnapshots(&snapshots_);
+ }
+ MOZ_ASSERT_IF(snapshots_.listSize(), recovers_.size());
+ if (recovers_.size()) {
+ ionScript->copyRecovers(&recovers_);
+ }
+ if (graph.numConstants()) {
+ const Value* vp = graph.constantPool();
+ ionScript->copyConstants(vp);
+ for (size_t i = 0; i < graph.numConstants(); i++) {
+ const Value& v = vp[i];
+ if (v.isGCThing()) {
+ if (gc::StoreBuffer* sb = v.toGCThing()->storeBuffer()) {
+ sb->putWholeCell(script);
+ break;
+ }
+ }
+ }
+ }
+
+ // Attach any generated script counts to the script.
+ if (IonScriptCounts* counts = extractScriptCounts()) {
+ script->addIonCounts(counts);
+ }
+ // WARNING: Code after this point must be infallible!
+
+ // Copy the list of nursery objects. Note that the store buffer can add
+ // HeapPtr edges that must be cleared in IonScript::Destroy. See the
+ // infallibility warning above.
+ const auto& nurseryObjects = snapshot->nurseryObjects();
+ for (size_t i = 0; i < nurseryObjects.length(); i++) {
+ ionScript->nurseryObjects()[i].init(nurseryObjects[i]);
+ }
+
+ // Transfer ownership of the IonScript to the JitScript. At this point enough
+ // of the IonScript must be initialized for IonScript::Destroy to work.
+ freeIonScript.release();
+ script->jitScript()->setIonScript(script, ionScript);
+
+ return true;
+}
+
+// An out-of-line path to convert a boxed int32 to either a float or double.
+class OutOfLineUnboxFloatingPoint : public OutOfLineCodeBase<CodeGenerator> {
+ LUnboxFloatingPoint* unboxFloatingPoint_;
+
+ public:
+ explicit OutOfLineUnboxFloatingPoint(LUnboxFloatingPoint* unboxFloatingPoint)
+ : unboxFloatingPoint_(unboxFloatingPoint) {}
+
+ void accept(CodeGenerator* codegen) override {
+ codegen->visitOutOfLineUnboxFloatingPoint(this);
+ }
+
+ LUnboxFloatingPoint* unboxFloatingPoint() const {
+ return unboxFloatingPoint_;
+ }
+};
+
+void CodeGenerator::visitUnboxFloatingPoint(LUnboxFloatingPoint* lir) {
+ const ValueOperand box = ToValue(lir, LUnboxFloatingPoint::Input);
+ const LDefinition* result = lir->output();
+
+ // Out-of-line path to convert int32 to double or bailout
+ // if this instruction is fallible.
+ OutOfLineUnboxFloatingPoint* ool =
+ new (alloc()) OutOfLineUnboxFloatingPoint(lir);
+ addOutOfLineCode(ool, lir->mir());
+
+ FloatRegister resultReg = ToFloatRegister(result);
+ masm.branchTestDouble(Assembler::NotEqual, box, ool->entry());
+ masm.unboxDouble(box, resultReg);
+ if (lir->type() == MIRType::Float32) {
+ masm.convertDoubleToFloat32(resultReg, resultReg);
+ }
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitOutOfLineUnboxFloatingPoint(
+ OutOfLineUnboxFloatingPoint* ool) {
+ LUnboxFloatingPoint* ins = ool->unboxFloatingPoint();
+ const ValueOperand value = ToValue(ins, LUnboxFloatingPoint::Input);
+
+ if (ins->mir()->fallible()) {
+ Label bail;
+ masm.branchTestInt32(Assembler::NotEqual, value, &bail);
+ bailoutFrom(&bail, ins->snapshot());
+ }
+ masm.int32ValueToFloatingPoint(value, ToFloatRegister(ins->output()),
+ ins->type());
+ masm.jump(ool->rejoin());
+}
+
+void CodeGenerator::visitCallBindVar(LCallBindVar* lir) {
+ pushArg(ToRegister(lir->environmentChain()));
+
+ using Fn = JSObject* (*)(JSContext*, JSObject*);
+ callVM<Fn, BindVarOperation>(lir);
+}
+
+void CodeGenerator::visitMegamorphicSetElement(LMegamorphicSetElement* lir) {
+ Register obj = ToRegister(lir->getOperand(0));
+ ValueOperand idVal = ToValue(lir, LMegamorphicSetElement::IndexIndex);
+ ValueOperand value = ToValue(lir, LMegamorphicSetElement::ValueIndex);
+
+ Register temp0 = ToRegister(lir->temp0());
+ // See comment in LIROps.yaml (x86 is short on registers)
+#ifndef JS_CODEGEN_X86
+ Register temp1 = ToRegister(lir->temp1());
+ Register temp2 = ToRegister(lir->temp2());
+#endif
+
+ Label cacheHit, done;
+#ifdef JS_CODEGEN_X86
+ masm.emitMegamorphicCachedSetSlot(
+ idVal, obj, temp0, value, &cacheHit,
+ [](MacroAssembler& masm, const Address& addr, MIRType mirType) {
+ EmitPreBarrier(masm, addr, mirType);
+ });
+#else
+ masm.emitMegamorphicCachedSetSlot(
+ idVal, obj, temp0, temp1, temp2, value, &cacheHit,
+ [](MacroAssembler& masm, const Address& addr, MIRType mirType) {
+ EmitPreBarrier(masm, addr, mirType);
+ });
+#endif
+
+ pushArg(Imm32(lir->mir()->strict()));
+ pushArg(ToValue(lir, LMegamorphicSetElement::ValueIndex));
+ pushArg(ToValue(lir, LMegamorphicSetElement::IndexIndex));
+ pushArg(obj);
+
+ using Fn = bool (*)(JSContext*, HandleObject, HandleValue, HandleValue, bool);
+ callVM<Fn, js::jit::SetElementMegamorphic<true>>(lir);
+
+ masm.jump(&done);
+ masm.bind(&cacheHit);
+
+ masm.branchPtrInNurseryChunk(Assembler::Equal, obj, temp0, &done);
+ masm.branchValueIsNurseryCell(Assembler::NotEqual, value, temp0, &done);
+
+ saveVolatile(temp0);
+ emitPostWriteBarrier(obj);
+ restoreVolatile(temp0);
+
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitLoadScriptedProxyHandler(
+ LLoadScriptedProxyHandler* ins) {
+ const Register obj = ToRegister(ins->getOperand(0));
+ ValueOperand output = ToOutValue(ins);
+
+ masm.loadPtr(Address(obj, ProxyObject::offsetOfReservedSlots()),
+ output.scratchReg());
+ masm.loadValue(
+ Address(output.scratchReg(), js::detail::ProxyReservedSlots::offsetOfSlot(
+ ScriptedProxyHandler::HANDLER_EXTRA)),
+ output);
+}
+
+#ifdef JS_PUNBOX64
+void CodeGenerator::visitCheckScriptedProxyGetResult(
+ LCheckScriptedProxyGetResult* ins) {
+ ValueOperand target = ToValue(ins, LCheckScriptedProxyGetResult::TargetIndex);
+ ValueOperand value = ToValue(ins, LCheckScriptedProxyGetResult::ValueIndex);
+ ValueOperand id = ToValue(ins, LCheckScriptedProxyGetResult::IdIndex);
+ Register scratch = ToRegister(ins->temp0());
+ Register scratch2 = ToRegister(ins->temp1());
+
+ using Fn = bool (*)(JSContext*, HandleObject, HandleValue, HandleValue,
+ MutableHandleValue);
+ OutOfLineCode* ool = oolCallVM<Fn, CheckProxyGetByValueResult>(
+ ins, ArgList(scratch, id, value), StoreValueTo(value));
+
+ masm.unboxObject(target, scratch);
+ masm.branchTestObjectNeedsProxyResultValidation(Assembler::NonZero, scratch,
+ scratch2, ool->entry());
+ masm.bind(ool->rejoin());
+}
+#endif
+
+void CodeGenerator::visitIdToStringOrSymbol(LIdToStringOrSymbol* ins) {
+ ValueOperand id = ToValue(ins, LIdToStringOrSymbol::IdIndex);
+ ValueOperand output = ToOutValue(ins);
+ Register scratch = ToRegister(ins->temp0());
+
+ masm.moveValue(id, output);
+
+ Label done, callVM;
+ Label bail;
+ {
+ ScratchTagScope tag(masm, output);
+ masm.splitTagForTest(output, tag);
+ masm.branchTestString(Assembler::Equal, tag, &done);
+ masm.branchTestSymbol(Assembler::Equal, tag, &done);
+ masm.branchTestInt32(Assembler::NotEqual, tag, &bail);
+ }
+
+ masm.unboxInt32(output, scratch);
+
+ using Fn = JSLinearString* (*)(JSContext*, int);
+ OutOfLineCode* ool = oolCallVM<Fn, Int32ToString<CanGC>>(
+ ins, ArgList(scratch), StoreRegisterTo(output.scratchReg()));
+
+ masm.lookupStaticIntString(scratch, output.scratchReg(),
+ gen->runtime->staticStrings(), ool->entry());
+
+ masm.bind(ool->rejoin());
+ masm.tagValue(JSVAL_TYPE_STRING, output.scratchReg(), output);
+ masm.bind(&done);
+
+ bailoutFrom(&bail, ins->snapshot());
+}
+
+void CodeGenerator::visitLoadFixedSlotV(LLoadFixedSlotV* ins) {
+ const Register obj = ToRegister(ins->getOperand(0));
+ size_t slot = ins->mir()->slot();
+ ValueOperand result = ToOutValue(ins);
+
+ masm.loadValue(Address(obj, NativeObject::getFixedSlotOffset(slot)), result);
+}
+
+void CodeGenerator::visitLoadFixedSlotT(LLoadFixedSlotT* ins) {
+ const Register obj = ToRegister(ins->getOperand(0));
+ size_t slot = ins->mir()->slot();
+ AnyRegister result = ToAnyRegister(ins->getDef(0));
+ MIRType type = ins->mir()->type();
+
+ masm.loadUnboxedValue(Address(obj, NativeObject::getFixedSlotOffset(slot)),
+ type, result);
+}
+
+template <typename T>
+static void EmitLoadAndUnbox(MacroAssembler& masm, const T& src, MIRType type,
+ bool fallible, AnyRegister dest, Label* fail) {
+ if (type == MIRType::Double) {
+ MOZ_ASSERT(dest.isFloat());
+ masm.ensureDouble(src, dest.fpu(), fail);
+ return;
+ }
+ if (fallible) {
+ switch (type) {
+ case MIRType::Int32:
+ masm.fallibleUnboxInt32(src, dest.gpr(), fail);
+ break;
+ case MIRType::Boolean:
+ masm.fallibleUnboxBoolean(src, dest.gpr(), fail);
+ break;
+ case MIRType::Object:
+ masm.fallibleUnboxObject(src, dest.gpr(), fail);
+ break;
+ case MIRType::String:
+ masm.fallibleUnboxString(src, dest.gpr(), fail);
+ break;
+ case MIRType::Symbol:
+ masm.fallibleUnboxSymbol(src, dest.gpr(), fail);
+ break;
+ case MIRType::BigInt:
+ masm.fallibleUnboxBigInt(src, dest.gpr(), fail);
+ break;
+ default:
+ MOZ_CRASH("Unexpected MIRType");
+ }
+ return;
+ }
+ masm.loadUnboxedValue(src, type, dest);
+}
+
+void CodeGenerator::visitLoadFixedSlotAndUnbox(LLoadFixedSlotAndUnbox* ins) {
+ const MLoadFixedSlotAndUnbox* mir = ins->mir();
+ MIRType type = mir->type();
+ Register input = ToRegister(ins->object());
+ AnyRegister result = ToAnyRegister(ins->output());
+ size_t slot = mir->slot();
+
+ Address address(input, NativeObject::getFixedSlotOffset(slot));
+
+ Label bail;
+ EmitLoadAndUnbox(masm, address, type, mir->fallible(), result, &bail);
+ if (mir->fallible()) {
+ bailoutFrom(&bail, ins->snapshot());
+ }
+}
+
+void CodeGenerator::visitLoadDynamicSlotAndUnbox(
+ LLoadDynamicSlotAndUnbox* ins) {
+ const MLoadDynamicSlotAndUnbox* mir = ins->mir();
+ MIRType type = mir->type();
+ Register input = ToRegister(ins->slots());
+ AnyRegister result = ToAnyRegister(ins->output());
+ size_t slot = mir->slot();
+
+ Address address(input, slot * sizeof(JS::Value));
+
+ Label bail;
+ EmitLoadAndUnbox(masm, address, type, mir->fallible(), result, &bail);
+ if (mir->fallible()) {
+ bailoutFrom(&bail, ins->snapshot());
+ }
+}
+
+void CodeGenerator::visitLoadElementAndUnbox(LLoadElementAndUnbox* ins) {
+ const MLoadElementAndUnbox* mir = ins->mir();
+ MIRType type = mir->type();
+ Register elements = ToRegister(ins->elements());
+ AnyRegister result = ToAnyRegister(ins->output());
+
+ Label bail;
+ if (ins->index()->isConstant()) {
+ NativeObject::elementsSizeMustNotOverflow();
+ int32_t offset = ToInt32(ins->index()) * sizeof(Value);
+ Address address(elements, offset);
+ EmitLoadAndUnbox(masm, address, type, mir->fallible(), result, &bail);
+ } else {
+ BaseObjectElementIndex address(elements, ToRegister(ins->index()));
+ EmitLoadAndUnbox(masm, address, type, mir->fallible(), result, &bail);
+ }
+
+ if (mir->fallible()) {
+ bailoutFrom(&bail, ins->snapshot());
+ }
+}
+
+class OutOfLineAtomizeSlot : public OutOfLineCodeBase<CodeGenerator> {
+ LInstruction* lir_;
+ Register stringReg_;
+ Address slotAddr_;
+ TypedOrValueRegister dest_;
+
+ public:
+ OutOfLineAtomizeSlot(LInstruction* lir, Register stringReg, Address slotAddr,
+ TypedOrValueRegister dest)
+ : lir_(lir), stringReg_(stringReg), slotAddr_(slotAddr), dest_(dest) {}
+
+ void accept(CodeGenerator* codegen) final {
+ codegen->visitOutOfLineAtomizeSlot(this);
+ }
+ LInstruction* lir() const { return lir_; }
+ Register stringReg() const { return stringReg_; }
+ Address slotAddr() const { return slotAddr_; }
+ TypedOrValueRegister dest() const { return dest_; }
+};
+
+void CodeGenerator::visitOutOfLineAtomizeSlot(OutOfLineAtomizeSlot* ool) {
+ LInstruction* lir = ool->lir();
+ Register stringReg = ool->stringReg();
+ Address slotAddr = ool->slotAddr();
+ TypedOrValueRegister dest = ool->dest();
+
+ // This code is called with a non-atomic string in |stringReg|.
+ // When it returns, |stringReg| contains an unboxed pointer to an
+ // atomized version of that string, and |slotAddr| contains a
+ // StringValue pointing to that atom. If |dest| is a ValueOperand,
+ // it contains the same StringValue; otherwise we assert that |dest|
+ // is |stringReg|.
+
+ saveLive(lir);
+ pushArg(stringReg);
+
+ using Fn = JSAtom* (*)(JSContext*, JSString*);
+ callVM<Fn, js::AtomizeString>(lir);
+ StoreRegisterTo(stringReg).generate(this);
+ restoreLiveIgnore(lir, StoreRegisterTo(stringReg).clobbered());
+
+ if (dest.hasValue()) {
+ masm.moveValue(
+ TypedOrValueRegister(MIRType::String, AnyRegister(stringReg)),
+ dest.valueReg());
+ } else {
+ MOZ_ASSERT(dest.typedReg().gpr() == stringReg);
+ }
+
+ emitPreBarrier(slotAddr);
+ masm.storeTypedOrValue(dest, slotAddr);
+
+ // We don't need a post-barrier because atoms aren't nursery-allocated.
+#ifdef DEBUG
+ // We need a temp register for the nursery check. Spill something.
+ AllocatableGeneralRegisterSet allRegs(GeneralRegisterSet::All());
+ allRegs.take(stringReg);
+ Register temp = allRegs.takeAny();
+ masm.push(temp);
+
+ Label tenured;
+ masm.branchPtrInNurseryChunk(Assembler::NotEqual, stringReg, temp, &tenured);
+ masm.assumeUnreachable("AtomizeString returned a nursery pointer");
+ masm.bind(&tenured);
+
+ masm.pop(temp);
+#endif
+
+ masm.jump(ool->rejoin());
+}
+
+void CodeGenerator::emitMaybeAtomizeSlot(LInstruction* ins, Register stringReg,
+ Address slotAddr,
+ TypedOrValueRegister dest) {
+ OutOfLineAtomizeSlot* ool =
+ new (alloc()) OutOfLineAtomizeSlot(ins, stringReg, slotAddr, dest);
+ addOutOfLineCode(ool, ins->mirRaw()->toInstruction());
+ masm.branchTest32(Assembler::Zero,
+ Address(stringReg, JSString::offsetOfFlags()),
+ Imm32(JSString::ATOM_BIT), ool->entry());
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitLoadFixedSlotAndAtomize(
+ LLoadFixedSlotAndAtomize* ins) {
+ Register obj = ToRegister(ins->getOperand(0));
+ Register temp = ToRegister(ins->temp0());
+ size_t slot = ins->mir()->slot();
+ ValueOperand result = ToOutValue(ins);
+
+ Address slotAddr(obj, NativeObject::getFixedSlotOffset(slot));
+ masm.loadValue(slotAddr, result);
+
+ Label notString;
+ masm.branchTestString(Assembler::NotEqual, result, &notString);
+ masm.unboxString(result, temp);
+ emitMaybeAtomizeSlot(ins, temp, slotAddr, result);
+ masm.bind(&notString);
+}
+
+void CodeGenerator::visitLoadDynamicSlotAndAtomize(
+ LLoadDynamicSlotAndAtomize* ins) {
+ ValueOperand result = ToOutValue(ins);
+ Register temp = ToRegister(ins->temp0());
+ Register base = ToRegister(ins->input());
+ int32_t offset = ins->mir()->slot() * sizeof(js::Value);
+
+ Address slotAddr(base, offset);
+ masm.loadValue(slotAddr, result);
+
+ Label notString;
+ masm.branchTestString(Assembler::NotEqual, result, &notString);
+ masm.unboxString(result, temp);
+ emitMaybeAtomizeSlot(ins, temp, slotAddr, result);
+ masm.bind(&notString);
+}
+
+void CodeGenerator::visitLoadFixedSlotUnboxAndAtomize(
+ LLoadFixedSlotUnboxAndAtomize* ins) {
+ const MLoadFixedSlotAndUnbox* mir = ins->mir();
+ MOZ_ASSERT(mir->type() == MIRType::String);
+ Register input = ToRegister(ins->object());
+ AnyRegister result = ToAnyRegister(ins->output());
+ size_t slot = mir->slot();
+
+ Address slotAddr(input, NativeObject::getFixedSlotOffset(slot));
+
+ Label bail;
+ EmitLoadAndUnbox(masm, slotAddr, MIRType::String, mir->fallible(), result,
+ &bail);
+ emitMaybeAtomizeSlot(ins, result.gpr(), slotAddr,
+ TypedOrValueRegister(MIRType::String, result));
+
+ if (mir->fallible()) {
+ bailoutFrom(&bail, ins->snapshot());
+ }
+}
+
+void CodeGenerator::visitLoadDynamicSlotUnboxAndAtomize(
+ LLoadDynamicSlotUnboxAndAtomize* ins) {
+ const MLoadDynamicSlotAndUnbox* mir = ins->mir();
+ MOZ_ASSERT(mir->type() == MIRType::String);
+ Register input = ToRegister(ins->slots());
+ AnyRegister result = ToAnyRegister(ins->output());
+ size_t slot = mir->slot();
+
+ Address slotAddr(input, slot * sizeof(JS::Value));
+
+ Label bail;
+ EmitLoadAndUnbox(masm, slotAddr, MIRType::String, mir->fallible(), result,
+ &bail);
+ emitMaybeAtomizeSlot(ins, result.gpr(), slotAddr,
+ TypedOrValueRegister(MIRType::String, result));
+
+ if (mir->fallible()) {
+ bailoutFrom(&bail, ins->snapshot());
+ }
+}
+
+void CodeGenerator::visitAddAndStoreSlot(LAddAndStoreSlot* ins) {
+ const Register obj = ToRegister(ins->getOperand(0));
+ const ValueOperand value = ToValue(ins, LAddAndStoreSlot::ValueIndex);
+ const Register maybeTemp = ToTempRegisterOrInvalid(ins->temp0());
+
+ Shape* shape = ins->mir()->shape();
+ masm.storeObjShape(shape, obj, [](MacroAssembler& masm, const Address& addr) {
+ EmitPreBarrier(masm, addr, MIRType::Shape);
+ });
+
+ // Perform the store. No pre-barrier required since this is a new
+ // initialization.
+
+ uint32_t offset = ins->mir()->slotOffset();
+ if (ins->mir()->kind() == MAddAndStoreSlot::Kind::FixedSlot) {
+ Address slot(obj, offset);
+ masm.storeValue(value, slot);
+ } else {
+ masm.loadPtr(Address(obj, NativeObject::offsetOfSlots()), maybeTemp);
+ Address slot(maybeTemp, offset);
+ masm.storeValue(value, slot);
+ }
+}
+
+void CodeGenerator::visitAllocateAndStoreSlot(LAllocateAndStoreSlot* ins) {
+ const Register obj = ToRegister(ins->getOperand(0));
+ const ValueOperand value = ToValue(ins, LAllocateAndStoreSlot::ValueIndex);
+ const Register temp0 = ToRegister(ins->temp0());
+ const Register temp1 = ToRegister(ins->temp1());
+
+ masm.Push(obj);
+ masm.Push(value);
+
+ using Fn = bool (*)(JSContext* cx, NativeObject* obj, uint32_t newCount);
+ masm.setupAlignedABICall();
+ masm.loadJSContext(temp0);
+ masm.passABIArg(temp0);
+ masm.passABIArg(obj);
+ masm.move32(Imm32(ins->mir()->numNewSlots()), temp1);
+ masm.passABIArg(temp1);
+ masm.callWithABI<Fn, NativeObject::growSlotsPure>();
+ masm.storeCallPointerResult(temp0);
+
+ masm.Pop(value);
+ masm.Pop(obj);
+
+ bailoutIfFalseBool(temp0, ins->snapshot());
+
+ masm.storeObjShape(ins->mir()->shape(), obj,
+ [](MacroAssembler& masm, const Address& addr) {
+ EmitPreBarrier(masm, addr, MIRType::Shape);
+ });
+
+ // Perform the store. No pre-barrier required since this is a new
+ // initialization.
+ masm.loadPtr(Address(obj, NativeObject::offsetOfSlots()), temp0);
+ Address slot(temp0, ins->mir()->slotOffset());
+ masm.storeValue(value, slot);
+}
+
+void CodeGenerator::visitAddSlotAndCallAddPropHook(
+ LAddSlotAndCallAddPropHook* ins) {
+ const Register obj = ToRegister(ins->object());
+ const ValueOperand value =
+ ToValue(ins, LAddSlotAndCallAddPropHook::ValueIndex);
+
+ pushArg(ImmGCPtr(ins->mir()->shape()));
+ pushArg(value);
+ pushArg(obj);
+
+ using Fn =
+ bool (*)(JSContext*, Handle<NativeObject*>, HandleValue, Handle<Shape*>);
+ callVM<Fn, AddSlotAndCallAddPropHook>(ins);
+}
+
+void CodeGenerator::visitStoreFixedSlotV(LStoreFixedSlotV* ins) {
+ const Register obj = ToRegister(ins->getOperand(0));
+ size_t slot = ins->mir()->slot();
+
+ const ValueOperand value = ToValue(ins, LStoreFixedSlotV::ValueIndex);
+
+ Address address(obj, NativeObject::getFixedSlotOffset(slot));
+ if (ins->mir()->needsBarrier()) {
+ emitPreBarrier(address);
+ }
+
+ masm.storeValue(value, address);
+}
+
+void CodeGenerator::visitStoreFixedSlotT(LStoreFixedSlotT* ins) {
+ const Register obj = ToRegister(ins->getOperand(0));
+ size_t slot = ins->mir()->slot();
+
+ const LAllocation* value = ins->value();
+ MIRType valueType = ins->mir()->value()->type();
+
+ Address address(obj, NativeObject::getFixedSlotOffset(slot));
+ if (ins->mir()->needsBarrier()) {
+ emitPreBarrier(address);
+ }
+
+ ConstantOrRegister nvalue =
+ value->isConstant()
+ ? ConstantOrRegister(value->toConstant()->toJSValue())
+ : TypedOrValueRegister(valueType, ToAnyRegister(value));
+ masm.storeConstantOrRegister(nvalue, address);
+}
+
+void CodeGenerator::visitGetNameCache(LGetNameCache* ins) {
+ LiveRegisterSet liveRegs = ins->safepoint()->liveRegs();
+ Register envChain = ToRegister(ins->envObj());
+ ValueOperand output = ToOutValue(ins);
+ Register temp = ToRegister(ins->temp0());
+
+ IonGetNameIC ic(liveRegs, envChain, output, temp);
+ addIC(ins, allocateIC(ic));
+}
+
+void CodeGenerator::addGetPropertyCache(LInstruction* ins,
+ LiveRegisterSet liveRegs,
+ TypedOrValueRegister value,
+ const ConstantOrRegister& id,
+ ValueOperand output) {
+ CacheKind kind = CacheKind::GetElem;
+ if (id.constant() && id.value().isString()) {
+ JSString* idString = id.value().toString();
+ if (idString->isAtom() && !idString->asAtom().isIndex()) {
+ kind = CacheKind::GetProp;
+ }
+ }
+ IonGetPropertyIC cache(kind, liveRegs, value, id, output);
+ addIC(ins, allocateIC(cache));
+}
+
+void CodeGenerator::addSetPropertyCache(LInstruction* ins,
+ LiveRegisterSet liveRegs,
+ Register objReg, Register temp,
+ const ConstantOrRegister& id,
+ const ConstantOrRegister& value,
+ bool strict) {
+ CacheKind kind = CacheKind::SetElem;
+ if (id.constant() && id.value().isString()) {
+ JSString* idString = id.value().toString();
+ if (idString->isAtom() && !idString->asAtom().isIndex()) {
+ kind = CacheKind::SetProp;
+ }
+ }
+ IonSetPropertyIC cache(kind, liveRegs, objReg, temp, id, value, strict);
+ addIC(ins, allocateIC(cache));
+}
+
+ConstantOrRegister CodeGenerator::toConstantOrRegister(LInstruction* lir,
+ size_t n, MIRType type) {
+ if (type == MIRType::Value) {
+ return TypedOrValueRegister(ToValue(lir, n));
+ }
+
+ const LAllocation* value = lir->getOperand(n);
+ if (value->isConstant()) {
+ return ConstantOrRegister(value->toConstant()->toJSValue());
+ }
+
+ return TypedOrValueRegister(type, ToAnyRegister(value));
+}
+
+void CodeGenerator::visitGetPropertyCache(LGetPropertyCache* ins) {
+ LiveRegisterSet liveRegs = ins->safepoint()->liveRegs();
+ TypedOrValueRegister value =
+ toConstantOrRegister(ins, LGetPropertyCache::ValueIndex,
+ ins->mir()->value()->type())
+ .reg();
+ ConstantOrRegister id = toConstantOrRegister(ins, LGetPropertyCache::IdIndex,
+ ins->mir()->idval()->type());
+ ValueOperand output = ToOutValue(ins);
+ addGetPropertyCache(ins, liveRegs, value, id, output);
+}
+
+void CodeGenerator::visitGetPropSuperCache(LGetPropSuperCache* ins) {
+ LiveRegisterSet liveRegs = ins->safepoint()->liveRegs();
+ Register obj = ToRegister(ins->obj());
+ TypedOrValueRegister receiver =
+ toConstantOrRegister(ins, LGetPropSuperCache::ReceiverIndex,
+ ins->mir()->receiver()->type())
+ .reg();
+ ConstantOrRegister id = toConstantOrRegister(ins, LGetPropSuperCache::IdIndex,
+ ins->mir()->idval()->type());
+ ValueOperand output = ToOutValue(ins);
+
+ CacheKind kind = CacheKind::GetElemSuper;
+ if (id.constant() && id.value().isString()) {
+ JSString* idString = id.value().toString();
+ if (idString->isAtom() && !idString->asAtom().isIndex()) {
+ kind = CacheKind::GetPropSuper;
+ }
+ }
+
+ IonGetPropSuperIC cache(kind, liveRegs, obj, receiver, id, output);
+ addIC(ins, allocateIC(cache));
+}
+
+void CodeGenerator::visitBindNameCache(LBindNameCache* ins) {
+ LiveRegisterSet liveRegs = ins->safepoint()->liveRegs();
+ Register envChain = ToRegister(ins->environmentChain());
+ Register output = ToRegister(ins->output());
+ Register temp = ToRegister(ins->temp0());
+
+ IonBindNameIC ic(liveRegs, envChain, output, temp);
+ addIC(ins, allocateIC(ic));
+}
+
+void CodeGenerator::visitHasOwnCache(LHasOwnCache* ins) {
+ LiveRegisterSet liveRegs = ins->safepoint()->liveRegs();
+ TypedOrValueRegister value =
+ toConstantOrRegister(ins, LHasOwnCache::ValueIndex,
+ ins->mir()->value()->type())
+ .reg();
+ TypedOrValueRegister id = toConstantOrRegister(ins, LHasOwnCache::IdIndex,
+ ins->mir()->idval()->type())
+ .reg();
+ Register output = ToRegister(ins->output());
+
+ IonHasOwnIC cache(liveRegs, value, id, output);
+ addIC(ins, allocateIC(cache));
+}
+
+void CodeGenerator::visitCheckPrivateFieldCache(LCheckPrivateFieldCache* ins) {
+ LiveRegisterSet liveRegs = ins->safepoint()->liveRegs();
+ TypedOrValueRegister value =
+ toConstantOrRegister(ins, LCheckPrivateFieldCache::ValueIndex,
+ ins->mir()->value()->type())
+ .reg();
+ TypedOrValueRegister id =
+ toConstantOrRegister(ins, LCheckPrivateFieldCache::IdIndex,
+ ins->mir()->idval()->type())
+ .reg();
+ Register output = ToRegister(ins->output());
+
+ IonCheckPrivateFieldIC cache(liveRegs, value, id, output);
+ addIC(ins, allocateIC(cache));
+}
+
+void CodeGenerator::visitNewPrivateName(LNewPrivateName* ins) {
+ pushArg(ImmGCPtr(ins->mir()->name()));
+
+ using Fn = JS::Symbol* (*)(JSContext*, Handle<JSAtom*>);
+ callVM<Fn, NewPrivateName>(ins);
+}
+
+void CodeGenerator::visitCallDeleteProperty(LCallDeleteProperty* lir) {
+ pushArg(ImmGCPtr(lir->mir()->name()));
+ pushArg(ToValue(lir, LCallDeleteProperty::ValueIndex));
+
+ using Fn = bool (*)(JSContext*, HandleValue, Handle<PropertyName*>, bool*);
+ if (lir->mir()->strict()) {
+ callVM<Fn, DelPropOperation<true>>(lir);
+ } else {
+ callVM<Fn, DelPropOperation<false>>(lir);
+ }
+}
+
+void CodeGenerator::visitCallDeleteElement(LCallDeleteElement* lir) {
+ pushArg(ToValue(lir, LCallDeleteElement::IndexIndex));
+ pushArg(ToValue(lir, LCallDeleteElement::ValueIndex));
+
+ using Fn = bool (*)(JSContext*, HandleValue, HandleValue, bool*);
+ if (lir->mir()->strict()) {
+ callVM<Fn, DelElemOperation<true>>(lir);
+ } else {
+ callVM<Fn, DelElemOperation<false>>(lir);
+ }
+}
+
+void CodeGenerator::visitObjectToIterator(LObjectToIterator* lir) {
+ Register obj = ToRegister(lir->object());
+ Register iterObj = ToRegister(lir->output());
+ Register temp = ToRegister(lir->temp0());
+ Register temp2 = ToRegister(lir->temp1());
+ Register temp3 = ToRegister(lir->temp2());
+
+ using Fn = PropertyIteratorObject* (*)(JSContext*, HandleObject);
+ OutOfLineCode* ool = (lir->mir()->wantsIndices())
+ ? oolCallVM<Fn, GetIteratorWithIndices>(
+ lir, ArgList(obj), StoreRegisterTo(iterObj))
+ : oolCallVM<Fn, GetIterator>(
+ lir, ArgList(obj), StoreRegisterTo(iterObj));
+
+ masm.maybeLoadIteratorFromShape(obj, iterObj, temp, temp2, temp3,
+ ool->entry());
+
+ Register nativeIter = temp;
+ masm.loadPrivate(
+ Address(iterObj, PropertyIteratorObject::offsetOfIteratorSlot()),
+ nativeIter);
+
+ if (lir->mir()->wantsIndices()) {
+ // At least one consumer of the output of this iterator has been optimized
+ // to use iterator indices. If the cached iterator doesn't include indices,
+ // but it was marked to indicate that we can create them if needed, then we
+ // do a VM call to replace the cached iterator with a fresh iterator
+ // including indices.
+ masm.branchNativeIteratorIndices(Assembler::Equal, nativeIter, temp2,
+ NativeIteratorIndices::AvailableOnRequest,
+ ool->entry());
+ }
+
+ Address iterFlagsAddr(nativeIter, NativeIterator::offsetOfFlagsAndCount());
+ masm.storePtr(
+ obj, Address(nativeIter, NativeIterator::offsetOfObjectBeingIterated()));
+ masm.or32(Imm32(NativeIterator::Flags::Active), iterFlagsAddr);
+
+ Register enumeratorsAddr = temp2;
+ masm.movePtr(ImmPtr(lir->mir()->enumeratorsAddr()), enumeratorsAddr);
+ masm.registerIterator(enumeratorsAddr, nativeIter, temp3);
+
+ // Generate post-write barrier for storing to |iterObj->objectBeingIterated_|.
+ // We already know that |iterObj| is tenured, so we only have to check |obj|.
+ Label skipBarrier;
+ masm.branchPtrInNurseryChunk(Assembler::NotEqual, obj, temp2, &skipBarrier);
+ {
+ LiveRegisterSet save = liveVolatileRegs(lir);
+ save.takeUnchecked(temp);
+ save.takeUnchecked(temp2);
+ save.takeUnchecked(temp3);
+ if (iterObj.volatile_()) {
+ save.addUnchecked(iterObj);
+ }
+
+ masm.PushRegsInMask(save);
+ emitPostWriteBarrier(iterObj);
+ masm.PopRegsInMask(save);
+ }
+ masm.bind(&skipBarrier);
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitValueToIterator(LValueToIterator* lir) {
+ pushArg(ToValue(lir, LValueToIterator::ValueIndex));
+
+ using Fn = PropertyIteratorObject* (*)(JSContext*, HandleValue);
+ callVM<Fn, ValueToIterator>(lir);
+}
+
+void CodeGenerator::visitIteratorHasIndicesAndBranch(
+ LIteratorHasIndicesAndBranch* lir) {
+ Register iterator = ToRegister(lir->iterator());
+ Register object = ToRegister(lir->object());
+ Register temp = ToRegister(lir->temp());
+ Register temp2 = ToRegister(lir->temp2());
+ Label* ifTrue = getJumpLabelForBranch(lir->ifTrue());
+ Label* ifFalse = getJumpLabelForBranch(lir->ifFalse());
+
+ // Check that the iterator has indices available.
+ Address nativeIterAddr(iterator,
+ PropertyIteratorObject::offsetOfIteratorSlot());
+ masm.loadPrivate(nativeIterAddr, temp);
+ masm.branchNativeIteratorIndices(Assembler::NotEqual, temp, temp2,
+ NativeIteratorIndices::Valid, ifFalse);
+
+ // Guard that the first shape stored in the iterator matches the current
+ // shape of the iterated object.
+ Address firstShapeAddr(temp, NativeIterator::offsetOfFirstShape());
+ masm.loadPtr(firstShapeAddr, temp);
+ masm.branchTestObjShape(Assembler::NotEqual, object, temp, temp2, object,
+ ifFalse);
+
+ if (!isNextBlock(lir->ifTrue()->lir())) {
+ masm.jump(ifTrue);
+ }
+}
+
+void CodeGenerator::visitLoadSlotByIteratorIndex(
+ LLoadSlotByIteratorIndex* lir) {
+ Register object = ToRegister(lir->object());
+ Register iterator = ToRegister(lir->iterator());
+ Register temp = ToRegister(lir->temp0());
+ Register temp2 = ToRegister(lir->temp1());
+ ValueOperand result = ToOutValue(lir);
+
+ masm.extractCurrentIndexAndKindFromIterator(iterator, temp, temp2);
+
+ Label notDynamicSlot, notFixedSlot, done;
+ masm.branch32(Assembler::NotEqual, temp2,
+ Imm32(uint32_t(PropertyIndex::Kind::DynamicSlot)),
+ &notDynamicSlot);
+ masm.loadPtr(Address(object, NativeObject::offsetOfSlots()), temp2);
+ masm.loadValue(BaseValueIndex(temp2, temp), result);
+ masm.jump(&done);
+
+ masm.bind(&notDynamicSlot);
+ masm.branch32(Assembler::NotEqual, temp2,
+ Imm32(uint32_t(PropertyIndex::Kind::FixedSlot)), &notFixedSlot);
+ // Fixed slot
+ masm.loadValue(BaseValueIndex(object, temp, sizeof(NativeObject)), result);
+ masm.jump(&done);
+ masm.bind(&notFixedSlot);
+
+#ifdef DEBUG
+ Label kindOkay;
+ masm.branch32(Assembler::Equal, temp2,
+ Imm32(uint32_t(PropertyIndex::Kind::Element)), &kindOkay);
+ masm.assumeUnreachable("Invalid PropertyIndex::Kind");
+ masm.bind(&kindOkay);
+#endif
+
+ // Dense element
+ masm.loadPtr(Address(object, NativeObject::offsetOfElements()), temp2);
+ Label indexOkay;
+ Address initLength(temp2, ObjectElements::offsetOfInitializedLength());
+ masm.branch32(Assembler::Above, initLength, temp, &indexOkay);
+ masm.assumeUnreachable("Dense element out of bounds");
+ masm.bind(&indexOkay);
+
+ masm.loadValue(BaseObjectElementIndex(temp2, temp), result);
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitStoreSlotByIteratorIndex(
+ LStoreSlotByIteratorIndex* lir) {
+ Register object = ToRegister(lir->object());
+ Register iterator = ToRegister(lir->iterator());
+ ValueOperand value = ToValue(lir, LStoreSlotByIteratorIndex::ValueIndex);
+ Register temp = ToRegister(lir->temp0());
+ Register temp2 = ToRegister(lir->temp1());
+
+ masm.extractCurrentIndexAndKindFromIterator(iterator, temp, temp2);
+
+ Label notDynamicSlot, notFixedSlot, done, doStore;
+ masm.branch32(Assembler::NotEqual, temp2,
+ Imm32(uint32_t(PropertyIndex::Kind::DynamicSlot)),
+ &notDynamicSlot);
+ masm.loadPtr(Address(object, NativeObject::offsetOfSlots()), temp2);
+ masm.computeEffectiveAddress(BaseValueIndex(temp2, temp), temp);
+ masm.jump(&doStore);
+
+ masm.bind(&notDynamicSlot);
+ masm.branch32(Assembler::NotEqual, temp2,
+ Imm32(uint32_t(PropertyIndex::Kind::FixedSlot)), &notFixedSlot);
+ // Fixed slot
+ masm.computeEffectiveAddress(
+ BaseValueIndex(object, temp, sizeof(NativeObject)), temp);
+ masm.jump(&doStore);
+ masm.bind(&notFixedSlot);
+
+#ifdef DEBUG
+ Label kindOkay;
+ masm.branch32(Assembler::Equal, temp2,
+ Imm32(uint32_t(PropertyIndex::Kind::Element)), &kindOkay);
+ masm.assumeUnreachable("Invalid PropertyIndex::Kind");
+ masm.bind(&kindOkay);
+#endif
+
+ // Dense element
+ masm.loadPtr(Address(object, NativeObject::offsetOfElements()), temp2);
+ Label indexOkay;
+ Address initLength(temp2, ObjectElements::offsetOfInitializedLength());
+ masm.branch32(Assembler::Above, initLength, temp, &indexOkay);
+ masm.assumeUnreachable("Dense element out of bounds");
+ masm.bind(&indexOkay);
+
+ BaseObjectElementIndex elementAddress(temp2, temp);
+ masm.computeEffectiveAddress(elementAddress, temp);
+
+ masm.bind(&doStore);
+ Address storeAddress(temp, 0);
+ emitPreBarrier(storeAddress);
+ masm.storeValue(value, storeAddress);
+
+ masm.branchPtrInNurseryChunk(Assembler::Equal, object, temp2, &done);
+ masm.branchValueIsNurseryCell(Assembler::NotEqual, value, temp2, &done);
+
+ saveVolatile(temp2);
+ emitPostWriteBarrier(object);
+ restoreVolatile(temp2);
+
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitSetPropertyCache(LSetPropertyCache* ins) {
+ LiveRegisterSet liveRegs = ins->safepoint()->liveRegs();
+ Register objReg = ToRegister(ins->object());
+ Register temp = ToRegister(ins->temp0());
+
+ ConstantOrRegister id = toConstantOrRegister(ins, LSetPropertyCache::IdIndex,
+ ins->mir()->idval()->type());
+ ConstantOrRegister value = toConstantOrRegister(
+ ins, LSetPropertyCache::ValueIndex, ins->mir()->value()->type());
+
+ addSetPropertyCache(ins, liveRegs, objReg, temp, id, value,
+ ins->mir()->strict());
+}
+
+void CodeGenerator::visitThrow(LThrow* lir) {
+ pushArg(ToValue(lir, LThrow::ValueIndex));
+
+ using Fn = bool (*)(JSContext*, HandleValue);
+ callVM<Fn, js::ThrowOperation>(lir);
+}
+
+void CodeGenerator::visitThrowWithStack(LThrowWithStack* lir) {
+ pushArg(ToValue(lir, LThrowWithStack::StackIndex));
+ pushArg(ToValue(lir, LThrowWithStack::ValueIndex));
+
+ using Fn = bool (*)(JSContext*, HandleValue, HandleValue);
+ callVM<Fn, js::ThrowWithStackOperation>(lir);
+}
+
+class OutOfLineTypeOfV : public OutOfLineCodeBase<CodeGenerator> {
+ LTypeOfV* ins_;
+
+ public:
+ explicit OutOfLineTypeOfV(LTypeOfV* ins) : ins_(ins) {}
+
+ void accept(CodeGenerator* codegen) override {
+ codegen->visitOutOfLineTypeOfV(this);
+ }
+ LTypeOfV* ins() const { return ins_; }
+};
+
+void CodeGenerator::emitTypeOfJSType(JSValueType type, Register output) {
+ switch (type) {
+ case JSVAL_TYPE_OBJECT:
+ masm.move32(Imm32(JSTYPE_OBJECT), output);
+ break;
+ case JSVAL_TYPE_DOUBLE:
+ case JSVAL_TYPE_INT32:
+ masm.move32(Imm32(JSTYPE_NUMBER), output);
+ break;
+ case JSVAL_TYPE_BOOLEAN:
+ masm.move32(Imm32(JSTYPE_BOOLEAN), output);
+ break;
+ case JSVAL_TYPE_UNDEFINED:
+ masm.move32(Imm32(JSTYPE_UNDEFINED), output);
+ break;
+ case JSVAL_TYPE_NULL:
+ masm.move32(Imm32(JSTYPE_OBJECT), output);
+ break;
+ case JSVAL_TYPE_STRING:
+ masm.move32(Imm32(JSTYPE_STRING), output);
+ break;
+ case JSVAL_TYPE_SYMBOL:
+ masm.move32(Imm32(JSTYPE_SYMBOL), output);
+ break;
+ case JSVAL_TYPE_BIGINT:
+ masm.move32(Imm32(JSTYPE_BIGINT), output);
+ break;
+ default:
+ MOZ_CRASH("Unsupported JSValueType");
+ }
+}
+
+void CodeGenerator::emitTypeOfCheck(JSValueType type, Register tag,
+ Register output, Label* done,
+ Label* oolObject) {
+ Label notMatch;
+ switch (type) {
+ case JSVAL_TYPE_OBJECT:
+ // The input may be a callable object (result is "function") or
+ // may emulate undefined (result is "undefined"). Use an OOL path.
+ masm.branchTestObject(Assembler::Equal, tag, oolObject);
+ return;
+ case JSVAL_TYPE_DOUBLE:
+ case JSVAL_TYPE_INT32:
+ masm.branchTestNumber(Assembler::NotEqual, tag, &notMatch);
+ break;
+ default:
+ masm.branchTestType(Assembler::NotEqual, tag, type, &notMatch);
+ break;
+ }
+
+ emitTypeOfJSType(type, output);
+ masm.jump(done);
+ masm.bind(&notMatch);
+}
+
+void CodeGenerator::visitTypeOfV(LTypeOfV* lir) {
+ const ValueOperand value = ToValue(lir, LTypeOfV::InputIndex);
+ Register output = ToRegister(lir->output());
+ Register tag = masm.extractTag(value, output);
+
+ Label done;
+
+ auto* ool = new (alloc()) OutOfLineTypeOfV(lir);
+ addOutOfLineCode(ool, lir->mir());
+
+ const std::initializer_list<JSValueType> defaultOrder = {
+ JSVAL_TYPE_OBJECT, JSVAL_TYPE_DOUBLE, JSVAL_TYPE_UNDEFINED,
+ JSVAL_TYPE_NULL, JSVAL_TYPE_BOOLEAN, JSVAL_TYPE_STRING,
+ JSVAL_TYPE_SYMBOL, JSVAL_TYPE_BIGINT};
+
+ mozilla::EnumSet<JSValueType, uint32_t> remaining(defaultOrder);
+
+ // Generate checks for previously observed types first.
+ // The TypeDataList is sorted by descending frequency.
+ for (auto& observed : lir->mir()->observedTypes()) {
+ JSValueType type = observed.type();
+
+ // Unify number types.
+ if (type == JSVAL_TYPE_INT32) {
+ type = JSVAL_TYPE_DOUBLE;
+ }
+
+ remaining -= type;
+
+ emitTypeOfCheck(type, tag, output, &done, ool->entry());
+ }
+
+ // Generate checks for remaining types.
+ for (auto type : defaultOrder) {
+ if (!remaining.contains(type)) {
+ continue;
+ }
+ remaining -= type;
+
+ if (remaining.isEmpty() && type != JSVAL_TYPE_OBJECT) {
+ // We can skip the check for the last remaining type, unless the type is
+ // JSVAL_TYPE_OBJECT, which may have to go through the OOL path.
+#ifdef DEBUG
+ emitTypeOfCheck(type, tag, output, &done, ool->entry());
+ masm.assumeUnreachable("Unexpected Value type in visitTypeOfV");
+#else
+ emitTypeOfJSType(type, output);
+#endif
+ } else {
+ emitTypeOfCheck(type, tag, output, &done, ool->entry());
+ }
+ }
+ MOZ_ASSERT(remaining.isEmpty());
+
+ masm.bind(&done);
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::emitTypeOfObject(Register obj, Register output,
+ Label* done) {
+ Label slowCheck, isObject, isCallable, isUndefined;
+ masm.typeOfObject(obj, output, &slowCheck, &isObject, &isCallable,
+ &isUndefined);
+
+ masm.bind(&isCallable);
+ masm.move32(Imm32(JSTYPE_FUNCTION), output);
+ masm.jump(done);
+
+ masm.bind(&isUndefined);
+ masm.move32(Imm32(JSTYPE_UNDEFINED), output);
+ masm.jump(done);
+
+ masm.bind(&isObject);
+ masm.move32(Imm32(JSTYPE_OBJECT), output);
+ masm.jump(done);
+
+ masm.bind(&slowCheck);
+
+ saveVolatile(output);
+ using Fn = JSType (*)(JSObject*);
+ masm.setupAlignedABICall();
+ masm.passABIArg(obj);
+ masm.callWithABI<Fn, js::TypeOfObject>();
+ masm.storeCallInt32Result(output);
+ restoreVolatile(output);
+}
+
+void CodeGenerator::visitOutOfLineTypeOfV(OutOfLineTypeOfV* ool) {
+ LTypeOfV* ins = ool->ins();
+
+ ValueOperand input = ToValue(ins, LTypeOfV::InputIndex);
+ Register temp = ToTempUnboxRegister(ins->temp0());
+ Register output = ToRegister(ins->output());
+
+ Register obj = masm.extractObject(input, temp);
+ emitTypeOfObject(obj, output, ool->rejoin());
+ masm.jump(ool->rejoin());
+}
+
+void CodeGenerator::visitTypeOfO(LTypeOfO* lir) {
+ Register obj = ToRegister(lir->object());
+ Register output = ToRegister(lir->output());
+
+ Label done;
+ emitTypeOfObject(obj, output, &done);
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitTypeOfName(LTypeOfName* lir) {
+ Register input = ToRegister(lir->input());
+ Register output = ToRegister(lir->output());
+
+#ifdef DEBUG
+ Label ok;
+ masm.branch32(Assembler::Below, input, Imm32(JSTYPE_LIMIT), &ok);
+ masm.assumeUnreachable("bad JSType");
+ masm.bind(&ok);
+#endif
+
+ static_assert(JSTYPE_UNDEFINED == 0);
+
+ masm.movePtr(ImmPtr(&gen->runtime->names().undefined), output);
+ masm.loadPtr(BaseIndex(output, input, ScalePointer), output);
+}
+
+class OutOfLineTypeOfIsNonPrimitiveV : public OutOfLineCodeBase<CodeGenerator> {
+ LTypeOfIsNonPrimitiveV* ins_;
+
+ public:
+ explicit OutOfLineTypeOfIsNonPrimitiveV(LTypeOfIsNonPrimitiveV* ins)
+ : ins_(ins) {}
+
+ void accept(CodeGenerator* codegen) override {
+ codegen->visitOutOfLineTypeOfIsNonPrimitiveV(this);
+ }
+ auto* ins() const { return ins_; }
+};
+
+class OutOfLineTypeOfIsNonPrimitiveO : public OutOfLineCodeBase<CodeGenerator> {
+ LTypeOfIsNonPrimitiveO* ins_;
+
+ public:
+ explicit OutOfLineTypeOfIsNonPrimitiveO(LTypeOfIsNonPrimitiveO* ins)
+ : ins_(ins) {}
+
+ void accept(CodeGenerator* codegen) override {
+ codegen->visitOutOfLineTypeOfIsNonPrimitiveO(this);
+ }
+ auto* ins() const { return ins_; }
+};
+
+void CodeGenerator::emitTypeOfIsObjectOOL(MTypeOfIs* mir, Register obj,
+ Register output) {
+ saveVolatile(output);
+ using Fn = JSType (*)(JSObject*);
+ masm.setupAlignedABICall();
+ masm.passABIArg(obj);
+ masm.callWithABI<Fn, js::TypeOfObject>();
+ masm.storeCallInt32Result(output);
+ restoreVolatile(output);
+
+ auto cond = JSOpToCondition(mir->jsop(), /* isSigned = */ false);
+ masm.cmp32Set(cond, output, Imm32(mir->jstype()), output);
+}
+
+void CodeGenerator::visitOutOfLineTypeOfIsNonPrimitiveV(
+ OutOfLineTypeOfIsNonPrimitiveV* ool) {
+ auto* ins = ool->ins();
+ ValueOperand input = ToValue(ins, LTypeOfIsNonPrimitiveV::InputIndex);
+ Register output = ToRegister(ins->output());
+ Register temp = ToTempUnboxRegister(ins->temp0());
+
+ Register obj = masm.extractObject(input, temp);
+
+ emitTypeOfIsObjectOOL(ins->mir(), obj, output);
+
+ masm.jump(ool->rejoin());
+}
+
+void CodeGenerator::visitOutOfLineTypeOfIsNonPrimitiveO(
+ OutOfLineTypeOfIsNonPrimitiveO* ool) {
+ auto* ins = ool->ins();
+ Register input = ToRegister(ins->input());
+ Register output = ToRegister(ins->output());
+
+ emitTypeOfIsObjectOOL(ins->mir(), input, output);
+
+ masm.jump(ool->rejoin());
+}
+
+void CodeGenerator::emitTypeOfIsObject(MTypeOfIs* mir, Register obj,
+ Register output, Label* success,
+ Label* fail, Label* slowCheck) {
+ Label* isObject = fail;
+ Label* isFunction = fail;
+ Label* isUndefined = fail;
+
+ switch (mir->jstype()) {
+ case JSTYPE_UNDEFINED:
+ isUndefined = success;
+ break;
+
+ case JSTYPE_OBJECT:
+ isObject = success;
+ break;
+
+ case JSTYPE_FUNCTION:
+ isFunction = success;
+ break;
+
+ case JSTYPE_STRING:
+ case JSTYPE_NUMBER:
+ case JSTYPE_BOOLEAN:
+ case JSTYPE_SYMBOL:
+ case JSTYPE_BIGINT:
+#ifdef ENABLE_RECORD_TUPLE
+ case JSTYPE_RECORD:
+ case JSTYPE_TUPLE:
+#endif
+ case JSTYPE_LIMIT:
+ MOZ_CRASH("Primitive type");
+ }
+
+ masm.typeOfObject(obj, output, slowCheck, isObject, isFunction, isUndefined);
+
+ auto op = mir->jsop();
+
+ Label done;
+ masm.bind(fail);
+ masm.move32(Imm32(op == JSOp::Ne || op == JSOp::StrictNe), output);
+ masm.jump(&done);
+ masm.bind(success);
+ masm.move32(Imm32(op == JSOp::Eq || op == JSOp::StrictEq), output);
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitTypeOfIsNonPrimitiveV(LTypeOfIsNonPrimitiveV* lir) {
+ ValueOperand input = ToValue(lir, LTypeOfIsNonPrimitiveV::InputIndex);
+ Register output = ToRegister(lir->output());
+ Register temp = ToTempUnboxRegister(lir->temp0());
+
+ auto* mir = lir->mir();
+
+ auto* ool = new (alloc()) OutOfLineTypeOfIsNonPrimitiveV(lir);
+ addOutOfLineCode(ool, mir);
+
+ Label success, fail;
+
+ switch (mir->jstype()) {
+ case JSTYPE_UNDEFINED: {
+ ScratchTagScope tag(masm, input);
+ masm.splitTagForTest(input, tag);
+
+ masm.branchTestUndefined(Assembler::Equal, tag, &success);
+ masm.branchTestObject(Assembler::NotEqual, tag, &fail);
+ break;
+ }
+
+ case JSTYPE_OBJECT: {
+ ScratchTagScope tag(masm, input);
+ masm.splitTagForTest(input, tag);
+
+ masm.branchTestNull(Assembler::Equal, tag, &success);
+ masm.branchTestObject(Assembler::NotEqual, tag, &fail);
+ break;
+ }
+
+ case JSTYPE_FUNCTION: {
+ masm.branchTestObject(Assembler::NotEqual, input, &fail);
+ break;
+ }
+
+ case JSTYPE_STRING:
+ case JSTYPE_NUMBER:
+ case JSTYPE_BOOLEAN:
+ case JSTYPE_SYMBOL:
+ case JSTYPE_BIGINT:
+#ifdef ENABLE_RECORD_TUPLE
+ case JSTYPE_RECORD:
+ case JSTYPE_TUPLE:
+#endif
+ case JSTYPE_LIMIT:
+ MOZ_CRASH("Primitive type");
+ }
+
+ Register obj = masm.extractObject(input, temp);
+
+ emitTypeOfIsObject(mir, obj, output, &success, &fail, ool->entry());
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitTypeOfIsNonPrimitiveO(LTypeOfIsNonPrimitiveO* lir) {
+ Register input = ToRegister(lir->input());
+ Register output = ToRegister(lir->output());
+
+ auto* mir = lir->mir();
+
+ auto* ool = new (alloc()) OutOfLineTypeOfIsNonPrimitiveO(lir);
+ addOutOfLineCode(ool, mir);
+
+ Label success, fail;
+ emitTypeOfIsObject(mir, input, output, &success, &fail, ool->entry());
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitTypeOfIsPrimitive(LTypeOfIsPrimitive* lir) {
+ ValueOperand input = ToValue(lir, LTypeOfIsPrimitive::InputIndex);
+ Register output = ToRegister(lir->output());
+
+ auto* mir = lir->mir();
+ auto cond = JSOpToCondition(mir->jsop(), /* isSigned = */ false);
+
+ switch (mir->jstype()) {
+ case JSTYPE_STRING:
+ masm.testStringSet(cond, input, output);
+ break;
+ case JSTYPE_NUMBER:
+ masm.testNumberSet(cond, input, output);
+ break;
+ case JSTYPE_BOOLEAN:
+ masm.testBooleanSet(cond, input, output);
+ break;
+ case JSTYPE_SYMBOL:
+ masm.testSymbolSet(cond, input, output);
+ break;
+ case JSTYPE_BIGINT:
+ masm.testBigIntSet(cond, input, output);
+ break;
+
+ case JSTYPE_UNDEFINED:
+ case JSTYPE_OBJECT:
+ case JSTYPE_FUNCTION:
+#ifdef ENABLE_RECORD_TUPLE
+ case JSTYPE_RECORD:
+ case JSTYPE_TUPLE:
+#endif
+ case JSTYPE_LIMIT:
+ MOZ_CRASH("Non-primitive type");
+ }
+}
+
+void CodeGenerator::visitToAsyncIter(LToAsyncIter* lir) {
+ pushArg(ToValue(lir, LToAsyncIter::NextMethodIndex));
+ pushArg(ToRegister(lir->iterator()));
+
+ using Fn = JSObject* (*)(JSContext*, HandleObject, HandleValue);
+ callVM<Fn, js::CreateAsyncFromSyncIterator>(lir);
+}
+
+void CodeGenerator::visitToPropertyKeyCache(LToPropertyKeyCache* lir) {
+ LiveRegisterSet liveRegs = lir->safepoint()->liveRegs();
+ ValueOperand input = ToValue(lir, LToPropertyKeyCache::InputIndex);
+ ValueOperand output = ToOutValue(lir);
+
+ IonToPropertyKeyIC ic(liveRegs, input, output);
+ addIC(lir, allocateIC(ic));
+}
+
+void CodeGenerator::visitLoadElementV(LLoadElementV* load) {
+ Register elements = ToRegister(load->elements());
+ const ValueOperand out = ToOutValue(load);
+
+ if (load->index()->isConstant()) {
+ NativeObject::elementsSizeMustNotOverflow();
+ int32_t offset = ToInt32(load->index()) * sizeof(Value);
+ masm.loadValue(Address(elements, offset), out);
+ } else {
+ masm.loadValue(BaseObjectElementIndex(elements, ToRegister(load->index())),
+ out);
+ }
+
+ Label testMagic;
+ masm.branchTestMagic(Assembler::Equal, out, &testMagic);
+ bailoutFrom(&testMagic, load->snapshot());
+}
+
+void CodeGenerator::visitLoadElementHole(LLoadElementHole* lir) {
+ Register elements = ToRegister(lir->elements());
+ Register index = ToRegister(lir->index());
+ Register initLength = ToRegister(lir->initLength());
+ const ValueOperand out = ToOutValue(lir);
+
+ const MLoadElementHole* mir = lir->mir();
+
+ // If the index is out of bounds, load |undefined|. Otherwise, load the
+ // value.
+ Label outOfBounds, done;
+ masm.spectreBoundsCheck32(index, initLength, out.scratchReg(), &outOfBounds);
+
+ masm.loadValue(BaseObjectElementIndex(elements, index), out);
+
+ // If the value wasn't a hole, we're done. Otherwise, we'll load undefined.
+ masm.branchTestMagic(Assembler::NotEqual, out, &done);
+
+ if (mir->needsNegativeIntCheck()) {
+ Label loadUndefined;
+ masm.jump(&loadUndefined);
+
+ masm.bind(&outOfBounds);
+
+ bailoutCmp32(Assembler::LessThan, index, Imm32(0), lir->snapshot());
+
+ masm.bind(&loadUndefined);
+ } else {
+ masm.bind(&outOfBounds);
+ }
+ masm.moveValue(UndefinedValue(), out);
+
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitLoadUnboxedScalar(LLoadUnboxedScalar* lir) {
+ Register elements = ToRegister(lir->elements());
+ Register temp = ToTempRegisterOrInvalid(lir->temp0());
+ AnyRegister out = ToAnyRegister(lir->output());
+
+ const MLoadUnboxedScalar* mir = lir->mir();
+
+ Scalar::Type storageType = mir->storageType();
+
+ Label fail;
+ if (lir->index()->isConstant()) {
+ Address source =
+ ToAddress(elements, lir->index(), storageType, mir->offsetAdjustment());
+ masm.loadFromTypedArray(storageType, source, out, temp, &fail);
+ } else {
+ BaseIndex source(elements, ToRegister(lir->index()),
+ ScaleFromScalarType(storageType), mir->offsetAdjustment());
+ masm.loadFromTypedArray(storageType, source, out, temp, &fail);
+ }
+
+ if (fail.used()) {
+ bailoutFrom(&fail, lir->snapshot());
+ }
+}
+
+void CodeGenerator::visitLoadUnboxedBigInt(LLoadUnboxedBigInt* lir) {
+ Register elements = ToRegister(lir->elements());
+ Register temp = ToRegister(lir->temp());
+ Register64 temp64 = ToRegister64(lir->temp64());
+ Register out = ToRegister(lir->output());
+
+ const MLoadUnboxedScalar* mir = lir->mir();
+
+ Scalar::Type storageType = mir->storageType();
+
+ if (lir->index()->isConstant()) {
+ Address source =
+ ToAddress(elements, lir->index(), storageType, mir->offsetAdjustment());
+ masm.load64(source, temp64);
+ } else {
+ BaseIndex source(elements, ToRegister(lir->index()),
+ ScaleFromScalarType(storageType), mir->offsetAdjustment());
+ masm.load64(source, temp64);
+ }
+
+ emitCreateBigInt(lir, storageType, temp64, out, temp);
+}
+
+void CodeGenerator::visitLoadDataViewElement(LLoadDataViewElement* lir) {
+ Register elements = ToRegister(lir->elements());
+ const LAllocation* littleEndian = lir->littleEndian();
+ Register temp = ToTempRegisterOrInvalid(lir->temp());
+ Register64 temp64 = ToTempRegister64OrInvalid(lir->temp64());
+ AnyRegister out = ToAnyRegister(lir->output());
+
+ const MLoadDataViewElement* mir = lir->mir();
+ Scalar::Type storageType = mir->storageType();
+
+ BaseIndex source(elements, ToRegister(lir->index()), TimesOne);
+
+ bool noSwap = littleEndian->isConstant() &&
+ ToBoolean(littleEndian) == MOZ_LITTLE_ENDIAN();
+
+ // Directly load if no byte swap is needed and the platform supports unaligned
+ // accesses for the access. (Such support is assumed for integer types.)
+ if (noSwap && (!Scalar::isFloatingType(storageType) ||
+ MacroAssembler::SupportsFastUnalignedFPAccesses())) {
+ if (!Scalar::isBigIntType(storageType)) {
+ Label fail;
+ masm.loadFromTypedArray(storageType, source, out, temp, &fail);
+
+ if (fail.used()) {
+ bailoutFrom(&fail, lir->snapshot());
+ }
+ } else {
+ masm.load64(source, temp64);
+
+ emitCreateBigInt(lir, storageType, temp64, out.gpr(), temp);
+ }
+ return;
+ }
+
+ // Load the value into a gpr register.
+ switch (storageType) {
+ case Scalar::Int16:
+ masm.load16UnalignedSignExtend(source, out.gpr());
+ break;
+ case Scalar::Uint16:
+ masm.load16UnalignedZeroExtend(source, out.gpr());
+ break;
+ case Scalar::Int32:
+ masm.load32Unaligned(source, out.gpr());
+ break;
+ case Scalar::Uint32:
+ masm.load32Unaligned(source, out.isFloat() ? temp : out.gpr());
+ break;
+ case Scalar::Float32:
+ masm.load32Unaligned(source, temp);
+ break;
+ case Scalar::Float64:
+ case Scalar::BigInt64:
+ case Scalar::BigUint64:
+ masm.load64Unaligned(source, temp64);
+ break;
+ case Scalar::Int8:
+ case Scalar::Uint8:
+ case Scalar::Uint8Clamped:
+ default:
+ MOZ_CRASH("Invalid typed array type");
+ }
+
+ if (!noSwap) {
+ // Swap the bytes in the loaded value.
+ Label skip;
+ if (!littleEndian->isConstant()) {
+ masm.branch32(
+ MOZ_LITTLE_ENDIAN() ? Assembler::NotEqual : Assembler::Equal,
+ ToRegister(littleEndian), Imm32(0), &skip);
+ }
+
+ switch (storageType) {
+ case Scalar::Int16:
+ masm.byteSwap16SignExtend(out.gpr());
+ break;
+ case Scalar::Uint16:
+ masm.byteSwap16ZeroExtend(out.gpr());
+ break;
+ case Scalar::Int32:
+ masm.byteSwap32(out.gpr());
+ break;
+ case Scalar::Uint32:
+ masm.byteSwap32(out.isFloat() ? temp : out.gpr());
+ break;
+ case Scalar::Float32:
+ masm.byteSwap32(temp);
+ break;
+ case Scalar::Float64:
+ case Scalar::BigInt64:
+ case Scalar::BigUint64:
+ masm.byteSwap64(temp64);
+ break;
+ case Scalar::Int8:
+ case Scalar::Uint8:
+ case Scalar::Uint8Clamped:
+ default:
+ MOZ_CRASH("Invalid typed array type");
+ }
+
+ if (skip.used()) {
+ masm.bind(&skip);
+ }
+ }
+
+ // Move the value into the output register.
+ switch (storageType) {
+ case Scalar::Int16:
+ case Scalar::Uint16:
+ case Scalar::Int32:
+ break;
+ case Scalar::Uint32:
+ if (out.isFloat()) {
+ masm.convertUInt32ToDouble(temp, out.fpu());
+ } else {
+ // Bail out if the value doesn't fit into a signed int32 value. This
+ // is what allows MLoadDataViewElement to have a type() of
+ // MIRType::Int32 for UInt32 array loads.
+ bailoutTest32(Assembler::Signed, out.gpr(), out.gpr(), lir->snapshot());
+ }
+ break;
+ case Scalar::Float32:
+ masm.moveGPRToFloat32(temp, out.fpu());
+ masm.canonicalizeFloat(out.fpu());
+ break;
+ case Scalar::Float64:
+ masm.moveGPR64ToDouble(temp64, out.fpu());
+ masm.canonicalizeDouble(out.fpu());
+ break;
+ case Scalar::BigInt64:
+ case Scalar::BigUint64:
+ emitCreateBigInt(lir, storageType, temp64, out.gpr(), temp);
+ break;
+ case Scalar::Int8:
+ case Scalar::Uint8:
+ case Scalar::Uint8Clamped:
+ default:
+ MOZ_CRASH("Invalid typed array type");
+ }
+}
+
+void CodeGenerator::visitLoadTypedArrayElementHole(
+ LLoadTypedArrayElementHole* lir) {
+ Register object = ToRegister(lir->object());
+ const ValueOperand out = ToOutValue(lir);
+
+ // Load the length.
+ Register scratch = out.scratchReg();
+ Register scratch2 = ToRegister(lir->temp0());
+ Register index = ToRegister(lir->index());
+ masm.loadArrayBufferViewLengthIntPtr(object, scratch);
+
+ // Load undefined if index >= length.
+ Label outOfBounds, done;
+ masm.spectreBoundsCheckPtr(index, scratch, scratch2, &outOfBounds);
+
+ // Load the elements vector.
+ masm.loadPtr(Address(object, ArrayBufferViewObject::dataOffset()), scratch);
+
+ Scalar::Type arrayType = lir->mir()->arrayType();
+ Label fail;
+ BaseIndex source(scratch, index, ScaleFromScalarType(arrayType));
+ MacroAssembler::Uint32Mode uint32Mode =
+ lir->mir()->forceDouble() ? MacroAssembler::Uint32Mode::ForceDouble
+ : MacroAssembler::Uint32Mode::FailOnDouble;
+ masm.loadFromTypedArray(arrayType, source, out, uint32Mode, out.scratchReg(),
+ &fail);
+ masm.jump(&done);
+
+ masm.bind(&outOfBounds);
+ masm.moveValue(UndefinedValue(), out);
+
+ if (fail.used()) {
+ bailoutFrom(&fail, lir->snapshot());
+ }
+
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitLoadTypedArrayElementHoleBigInt(
+ LLoadTypedArrayElementHoleBigInt* lir) {
+ Register object = ToRegister(lir->object());
+ const ValueOperand out = ToOutValue(lir);
+
+ // On x86 there are not enough registers. In that case reuse the output's
+ // type register as temporary.
+#ifdef JS_CODEGEN_X86
+ MOZ_ASSERT(lir->temp()->isBogusTemp());
+ Register temp = out.typeReg();
+#else
+ Register temp = ToRegister(lir->temp());
+#endif
+ Register64 temp64 = ToRegister64(lir->temp64());
+
+ // Load the length.
+ Register scratch = out.scratchReg();
+ Register index = ToRegister(lir->index());
+ masm.loadArrayBufferViewLengthIntPtr(object, scratch);
+
+ // Load undefined if index >= length.
+ Label outOfBounds, done;
+ masm.spectreBoundsCheckPtr(index, scratch, temp, &outOfBounds);
+
+ // Load the elements vector.
+ masm.loadPtr(Address(object, ArrayBufferViewObject::dataOffset()), scratch);
+
+ Scalar::Type arrayType = lir->mir()->arrayType();
+ BaseIndex source(scratch, index, ScaleFromScalarType(arrayType));
+ masm.load64(source, temp64);
+
+ Register bigInt = out.scratchReg();
+ emitCreateBigInt(lir, arrayType, temp64, bigInt, temp);
+
+ masm.tagValue(JSVAL_TYPE_BIGINT, bigInt, out);
+ masm.jump(&done);
+
+ masm.bind(&outOfBounds);
+ masm.moveValue(UndefinedValue(), out);
+
+ masm.bind(&done);
+}
+
+template <SwitchTableType tableType>
+class OutOfLineSwitch : public OutOfLineCodeBase<CodeGenerator> {
+ using LabelsVector = Vector<Label, 0, JitAllocPolicy>;
+ using CodeLabelsVector = Vector<CodeLabel, 0, JitAllocPolicy>;
+ LabelsVector labels_;
+ CodeLabelsVector codeLabels_;
+ CodeLabel start_;
+ bool isOutOfLine_;
+
+ void accept(CodeGenerator* codegen) override {
+ codegen->visitOutOfLineSwitch(this);
+ }
+
+ public:
+ explicit OutOfLineSwitch(TempAllocator& alloc)
+ : labels_(alloc), codeLabels_(alloc), isOutOfLine_(false) {}
+
+ CodeLabel* start() { return &start_; }
+
+ CodeLabelsVector& codeLabels() { return codeLabels_; }
+ LabelsVector& labels() { return labels_; }
+
+ void jumpToCodeEntries(MacroAssembler& masm, Register index, Register temp) {
+ Register base;
+ if (tableType == SwitchTableType::Inline) {
+#if defined(JS_CODEGEN_ARM)
+ base = ::js::jit::pc;
+#else
+ MOZ_CRASH("NYI: SwitchTableType::Inline");
+#endif
+ } else {
+#if defined(JS_CODEGEN_ARM)
+ MOZ_CRASH("NYI: SwitchTableType::OutOfLine");
+#else
+ masm.mov(start(), temp);
+ base = temp;
+#endif
+ }
+ BaseIndex jumpTarget(base, index, ScalePointer);
+ masm.branchToComputedAddress(jumpTarget);
+ }
+
+ // Register an entry in the switch table.
+ void addTableEntry(MacroAssembler& masm) {
+ if ((!isOutOfLine_ && tableType == SwitchTableType::Inline) ||
+ (isOutOfLine_ && tableType == SwitchTableType::OutOfLine)) {
+ CodeLabel cl;
+ masm.writeCodePointer(&cl);
+ masm.propagateOOM(codeLabels_.append(std::move(cl)));
+ }
+ }
+ // Register the code, to which the table will jump to.
+ void addCodeEntry(MacroAssembler& masm) {
+ Label entry;
+ masm.bind(&entry);
+ masm.propagateOOM(labels_.append(std::move(entry)));
+ }
+
+ void setOutOfLine() { isOutOfLine_ = true; }
+};
+
+template <SwitchTableType tableType>
+void CodeGenerator::visitOutOfLineSwitch(
+ OutOfLineSwitch<tableType>* jumpTable) {
+ jumpTable->setOutOfLine();
+ auto& labels = jumpTable->labels();
+
+ if (tableType == SwitchTableType::OutOfLine) {
+#if defined(JS_CODEGEN_ARM)
+ MOZ_CRASH("NYI: SwitchTableType::OutOfLine");
+#elif defined(JS_CODEGEN_NONE)
+ MOZ_CRASH();
+#else
+
+# if defined(JS_CODEGEN_ARM64)
+ AutoForbidPoolsAndNops afp(
+ &masm,
+ (labels.length() + 1) * (sizeof(void*) / vixl::kInstructionSize));
+# endif
+
+ masm.haltingAlign(sizeof(void*));
+
+ // Bind the address of the jump table and reserve the space for code
+ // pointers to jump in the newly generated code.
+ masm.bind(jumpTable->start());
+ masm.addCodeLabel(*jumpTable->start());
+ for (size_t i = 0, e = labels.length(); i < e; i++) {
+ jumpTable->addTableEntry(masm);
+ }
+#endif
+ }
+
+ // Register all reserved pointers of the jump table to target labels. The
+ // entries of the jump table need to be absolute addresses and thus must be
+ // patched after codegen is finished.
+ auto& codeLabels = jumpTable->codeLabels();
+ for (size_t i = 0, e = codeLabels.length(); i < e; i++) {
+ auto& cl = codeLabels[i];
+ cl.target()->bind(labels[i].offset());
+ masm.addCodeLabel(cl);
+ }
+}
+
+template void CodeGenerator::visitOutOfLineSwitch(
+ OutOfLineSwitch<SwitchTableType::Inline>* jumpTable);
+template void CodeGenerator::visitOutOfLineSwitch(
+ OutOfLineSwitch<SwitchTableType::OutOfLine>* jumpTable);
+
+template <typename T>
+static inline void StoreToTypedArray(MacroAssembler& masm,
+ Scalar::Type writeType,
+ const LAllocation* value, const T& dest) {
+ if (writeType == Scalar::Float32 || writeType == Scalar::Float64) {
+ masm.storeToTypedFloatArray(writeType, ToFloatRegister(value), dest);
+ } else {
+ if (value->isConstant()) {
+ masm.storeToTypedIntArray(writeType, Imm32(ToInt32(value)), dest);
+ } else {
+ masm.storeToTypedIntArray(writeType, ToRegister(value), dest);
+ }
+ }
+}
+
+void CodeGenerator::visitStoreUnboxedScalar(LStoreUnboxedScalar* lir) {
+ Register elements = ToRegister(lir->elements());
+ const LAllocation* value = lir->value();
+
+ const MStoreUnboxedScalar* mir = lir->mir();
+
+ Scalar::Type writeType = mir->writeType();
+
+ if (lir->index()->isConstant()) {
+ Address dest = ToAddress(elements, lir->index(), writeType);
+ StoreToTypedArray(masm, writeType, value, dest);
+ } else {
+ BaseIndex dest(elements, ToRegister(lir->index()),
+ ScaleFromScalarType(writeType));
+ StoreToTypedArray(masm, writeType, value, dest);
+ }
+}
+
+void CodeGenerator::visitStoreUnboxedBigInt(LStoreUnboxedBigInt* lir) {
+ Register elements = ToRegister(lir->elements());
+ Register value = ToRegister(lir->value());
+ Register64 temp = ToRegister64(lir->temp());
+
+ Scalar::Type writeType = lir->mir()->writeType();
+
+ masm.loadBigInt64(value, temp);
+
+ if (lir->index()->isConstant()) {
+ Address dest = ToAddress(elements, lir->index(), writeType);
+ masm.storeToTypedBigIntArray(writeType, temp, dest);
+ } else {
+ BaseIndex dest(elements, ToRegister(lir->index()),
+ ScaleFromScalarType(writeType));
+ masm.storeToTypedBigIntArray(writeType, temp, dest);
+ }
+}
+
+void CodeGenerator::visitStoreDataViewElement(LStoreDataViewElement* lir) {
+ Register elements = ToRegister(lir->elements());
+ const LAllocation* value = lir->value();
+ const LAllocation* littleEndian = lir->littleEndian();
+ Register temp = ToTempRegisterOrInvalid(lir->temp());
+ Register64 temp64 = ToTempRegister64OrInvalid(lir->temp64());
+
+ const MStoreDataViewElement* mir = lir->mir();
+ Scalar::Type writeType = mir->writeType();
+
+ BaseIndex dest(elements, ToRegister(lir->index()), TimesOne);
+
+ bool noSwap = littleEndian->isConstant() &&
+ ToBoolean(littleEndian) == MOZ_LITTLE_ENDIAN();
+
+ // Directly store if no byte swap is needed and the platform supports
+ // unaligned accesses for the access. (Such support is assumed for integer
+ // types.)
+ if (noSwap && (!Scalar::isFloatingType(writeType) ||
+ MacroAssembler::SupportsFastUnalignedFPAccesses())) {
+ if (!Scalar::isBigIntType(writeType)) {
+ StoreToTypedArray(masm, writeType, value, dest);
+ } else {
+ masm.loadBigInt64(ToRegister(value), temp64);
+ masm.storeToTypedBigIntArray(writeType, temp64, dest);
+ }
+ return;
+ }
+
+ // Load the value into a gpr register.
+ switch (writeType) {
+ case Scalar::Int16:
+ case Scalar::Uint16:
+ case Scalar::Int32:
+ case Scalar::Uint32:
+ if (value->isConstant()) {
+ masm.move32(Imm32(ToInt32(value)), temp);
+ } else {
+ masm.move32(ToRegister(value), temp);
+ }
+ break;
+ case Scalar::Float32: {
+ FloatRegister fvalue = ToFloatRegister(value);
+ masm.canonicalizeFloatIfDeterministic(fvalue);
+ masm.moveFloat32ToGPR(fvalue, temp);
+ break;
+ }
+ case Scalar::Float64: {
+ FloatRegister fvalue = ToFloatRegister(value);
+ masm.canonicalizeDoubleIfDeterministic(fvalue);
+ masm.moveDoubleToGPR64(fvalue, temp64);
+ break;
+ }
+ case Scalar::BigInt64:
+ case Scalar::BigUint64:
+ masm.loadBigInt64(ToRegister(value), temp64);
+ break;
+ case Scalar::Int8:
+ case Scalar::Uint8:
+ case Scalar::Uint8Clamped:
+ default:
+ MOZ_CRASH("Invalid typed array type");
+ }
+
+ if (!noSwap) {
+ // Swap the bytes in the loaded value.
+ Label skip;
+ if (!littleEndian->isConstant()) {
+ masm.branch32(
+ MOZ_LITTLE_ENDIAN() ? Assembler::NotEqual : Assembler::Equal,
+ ToRegister(littleEndian), Imm32(0), &skip);
+ }
+
+ switch (writeType) {
+ case Scalar::Int16:
+ masm.byteSwap16SignExtend(temp);
+ break;
+ case Scalar::Uint16:
+ masm.byteSwap16ZeroExtend(temp);
+ break;
+ case Scalar::Int32:
+ case Scalar::Uint32:
+ case Scalar::Float32:
+ masm.byteSwap32(temp);
+ break;
+ case Scalar::Float64:
+ case Scalar::BigInt64:
+ case Scalar::BigUint64:
+ masm.byteSwap64(temp64);
+ break;
+ case Scalar::Int8:
+ case Scalar::Uint8:
+ case Scalar::Uint8Clamped:
+ default:
+ MOZ_CRASH("Invalid typed array type");
+ }
+
+ if (skip.used()) {
+ masm.bind(&skip);
+ }
+ }
+
+ // Store the value into the destination.
+ switch (writeType) {
+ case Scalar::Int16:
+ case Scalar::Uint16:
+ masm.store16Unaligned(temp, dest);
+ break;
+ case Scalar::Int32:
+ case Scalar::Uint32:
+ case Scalar::Float32:
+ masm.store32Unaligned(temp, dest);
+ break;
+ case Scalar::Float64:
+ case Scalar::BigInt64:
+ case Scalar::BigUint64:
+ masm.store64Unaligned(temp64, dest);
+ break;
+ case Scalar::Int8:
+ case Scalar::Uint8:
+ case Scalar::Uint8Clamped:
+ default:
+ MOZ_CRASH("Invalid typed array type");
+ }
+}
+
+void CodeGenerator::visitStoreTypedArrayElementHole(
+ LStoreTypedArrayElementHole* lir) {
+ Register elements = ToRegister(lir->elements());
+ const LAllocation* value = lir->value();
+
+ Scalar::Type arrayType = lir->mir()->arrayType();
+
+ Register index = ToRegister(lir->index());
+ const LAllocation* length = lir->length();
+ Register spectreTemp = ToTempRegisterOrInvalid(lir->temp0());
+
+ Label skip;
+ if (length->isRegister()) {
+ masm.spectreBoundsCheckPtr(index, ToRegister(length), spectreTemp, &skip);
+ } else {
+ masm.spectreBoundsCheckPtr(index, ToAddress(length), spectreTemp, &skip);
+ }
+
+ BaseIndex dest(elements, index, ScaleFromScalarType(arrayType));
+ StoreToTypedArray(masm, arrayType, value, dest);
+
+ masm.bind(&skip);
+}
+
+void CodeGenerator::visitStoreTypedArrayElementHoleBigInt(
+ LStoreTypedArrayElementHoleBigInt* lir) {
+ Register elements = ToRegister(lir->elements());
+ Register value = ToRegister(lir->value());
+ Register64 temp = ToRegister64(lir->temp());
+
+ Scalar::Type arrayType = lir->mir()->arrayType();
+
+ Register index = ToRegister(lir->index());
+ const LAllocation* length = lir->length();
+ Register spectreTemp = temp.scratchReg();
+
+ Label skip;
+ if (length->isRegister()) {
+ masm.spectreBoundsCheckPtr(index, ToRegister(length), spectreTemp, &skip);
+ } else {
+ masm.spectreBoundsCheckPtr(index, ToAddress(length), spectreTemp, &skip);
+ }
+
+ masm.loadBigInt64(value, temp);
+
+ BaseIndex dest(elements, index, ScaleFromScalarType(arrayType));
+ masm.storeToTypedBigIntArray(arrayType, temp, dest);
+
+ masm.bind(&skip);
+}
+
+void CodeGenerator::visitAtomicIsLockFree(LAtomicIsLockFree* lir) {
+ Register value = ToRegister(lir->value());
+ Register output = ToRegister(lir->output());
+
+ masm.atomicIsLockFreeJS(value, output);
+}
+
+void CodeGenerator::visitClampIToUint8(LClampIToUint8* lir) {
+ Register output = ToRegister(lir->output());
+ MOZ_ASSERT(output == ToRegister(lir->input()));
+ masm.clampIntToUint8(output);
+}
+
+void CodeGenerator::visitClampDToUint8(LClampDToUint8* lir) {
+ FloatRegister input = ToFloatRegister(lir->input());
+ Register output = ToRegister(lir->output());
+ masm.clampDoubleToUint8(input, output);
+}
+
+void CodeGenerator::visitClampVToUint8(LClampVToUint8* lir) {
+ ValueOperand operand = ToValue(lir, LClampVToUint8::InputIndex);
+ FloatRegister tempFloat = ToFloatRegister(lir->temp0());
+ Register output = ToRegister(lir->output());
+
+ using Fn = bool (*)(JSContext*, JSString*, double*);
+ OutOfLineCode* oolString = oolCallVM<Fn, StringToNumber>(
+ lir, ArgList(output), StoreFloatRegisterTo(tempFloat));
+ Label* stringEntry = oolString->entry();
+ Label* stringRejoin = oolString->rejoin();
+
+ Label fails;
+ masm.clampValueToUint8(operand, stringEntry, stringRejoin, output, tempFloat,
+ output, &fails);
+
+ bailoutFrom(&fails, lir->snapshot());
+}
+
+void CodeGenerator::visitInCache(LInCache* ins) {
+ LiveRegisterSet liveRegs = ins->safepoint()->liveRegs();
+
+ ConstantOrRegister key =
+ toConstantOrRegister(ins, LInCache::LhsIndex, ins->mir()->key()->type());
+ Register object = ToRegister(ins->rhs());
+ Register output = ToRegister(ins->output());
+ Register temp = ToRegister(ins->temp0());
+
+ IonInIC cache(liveRegs, key, object, output, temp);
+ addIC(ins, allocateIC(cache));
+}
+
+void CodeGenerator::visitInArray(LInArray* lir) {
+ const MInArray* mir = lir->mir();
+ Register elements = ToRegister(lir->elements());
+ Register initLength = ToRegister(lir->initLength());
+ Register output = ToRegister(lir->output());
+
+ Label falseBranch, done, trueBranch;
+
+ if (lir->index()->isConstant()) {
+ int32_t index = ToInt32(lir->index());
+
+ if (index < 0) {
+ MOZ_ASSERT(mir->needsNegativeIntCheck());
+ bailout(lir->snapshot());
+ return;
+ }
+
+ masm.branch32(Assembler::BelowOrEqual, initLength, Imm32(index),
+ &falseBranch);
+
+ NativeObject::elementsSizeMustNotOverflow();
+ Address address = Address(elements, index * sizeof(Value));
+ masm.branchTestMagic(Assembler::Equal, address, &falseBranch);
+ } else {
+ Register index = ToRegister(lir->index());
+
+ Label negativeIntCheck;
+ Label* failedInitLength = &falseBranch;
+ if (mir->needsNegativeIntCheck()) {
+ failedInitLength = &negativeIntCheck;
+ }
+
+ masm.branch32(Assembler::BelowOrEqual, initLength, index, failedInitLength);
+
+ BaseObjectElementIndex address(elements, index);
+ masm.branchTestMagic(Assembler::Equal, address, &falseBranch);
+
+ if (mir->needsNegativeIntCheck()) {
+ masm.jump(&trueBranch);
+ masm.bind(&negativeIntCheck);
+
+ bailoutCmp32(Assembler::LessThan, index, Imm32(0), lir->snapshot());
+
+ masm.jump(&falseBranch);
+ }
+ }
+
+ masm.bind(&trueBranch);
+ masm.move32(Imm32(1), output);
+ masm.jump(&done);
+
+ masm.bind(&falseBranch);
+ masm.move32(Imm32(0), output);
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitGuardElementNotHole(LGuardElementNotHole* lir) {
+ Register elements = ToRegister(lir->elements());
+ const LAllocation* index = lir->index();
+
+ Label testMagic;
+ if (index->isConstant()) {
+ Address address(elements, ToInt32(index) * sizeof(js::Value));
+ masm.branchTestMagic(Assembler::Equal, address, &testMagic);
+ } else {
+ BaseObjectElementIndex address(elements, ToRegister(index));
+ masm.branchTestMagic(Assembler::Equal, address, &testMagic);
+ }
+ bailoutFrom(&testMagic, lir->snapshot());
+}
+
+void CodeGenerator::visitInstanceOfO(LInstanceOfO* ins) {
+ Register protoReg = ToRegister(ins->rhs());
+ emitInstanceOf(ins, protoReg);
+}
+
+void CodeGenerator::visitInstanceOfV(LInstanceOfV* ins) {
+ Register protoReg = ToRegister(ins->rhs());
+ emitInstanceOf(ins, protoReg);
+}
+
+void CodeGenerator::emitInstanceOf(LInstruction* ins, Register protoReg) {
+ // This path implements fun_hasInstance when the function's prototype is
+ // known to be the object in protoReg
+
+ Label done;
+ Register output = ToRegister(ins->getDef(0));
+
+ // If the lhs is a primitive, the result is false.
+ Register objReg;
+ if (ins->isInstanceOfV()) {
+ Label isObject;
+ ValueOperand lhsValue = ToValue(ins, LInstanceOfV::LhsIndex);
+ masm.branchTestObject(Assembler::Equal, lhsValue, &isObject);
+ masm.mov(ImmWord(0), output);
+ masm.jump(&done);
+ masm.bind(&isObject);
+ objReg = masm.extractObject(lhsValue, output);
+ } else {
+ objReg = ToRegister(ins->toInstanceOfO()->lhs());
+ }
+
+ // Crawl the lhs's prototype chain in a loop to search for prototypeObject.
+ // This follows the main loop of js::IsPrototypeOf, though additionally breaks
+ // out of the loop on Proxy::LazyProto.
+
+ // Load the lhs's prototype.
+ masm.loadObjProto(objReg, output);
+
+ Label testLazy;
+ {
+ Label loopPrototypeChain;
+ masm.bind(&loopPrototypeChain);
+
+ // Test for the target prototype object.
+ Label notPrototypeObject;
+ masm.branchPtr(Assembler::NotEqual, output, protoReg, &notPrototypeObject);
+ masm.mov(ImmWord(1), output);
+ masm.jump(&done);
+ masm.bind(&notPrototypeObject);
+
+ MOZ_ASSERT(uintptr_t(TaggedProto::LazyProto) == 1);
+
+ // Test for nullptr or Proxy::LazyProto
+ masm.branchPtr(Assembler::BelowOrEqual, output, ImmWord(1), &testLazy);
+
+ // Load the current object's prototype.
+ masm.loadObjProto(output, output);
+
+ masm.jump(&loopPrototypeChain);
+ }
+
+ // Make a VM call if an object with a lazy proto was found on the prototype
+ // chain. This currently occurs only for cross compartment wrappers, which
+ // we do not expect to be compared with non-wrapper functions from this
+ // compartment. Otherwise, we stopped on a nullptr prototype and the output
+ // register is already correct.
+
+ using Fn = bool (*)(JSContext*, HandleObject, JSObject*, bool*);
+ auto* ool = oolCallVM<Fn, IsPrototypeOf>(ins, ArgList(protoReg, objReg),
+ StoreRegisterTo(output));
+
+ // Regenerate the original lhs object for the VM call.
+ Label regenerate, *lazyEntry;
+ if (objReg != output) {
+ lazyEntry = ool->entry();
+ } else {
+ masm.bind(&regenerate);
+ lazyEntry = &regenerate;
+ if (ins->isInstanceOfV()) {
+ ValueOperand lhsValue = ToValue(ins, LInstanceOfV::LhsIndex);
+ objReg = masm.extractObject(lhsValue, output);
+ } else {
+ objReg = ToRegister(ins->toInstanceOfO()->lhs());
+ }
+ MOZ_ASSERT(objReg == output);
+ masm.jump(ool->entry());
+ }
+
+ masm.bind(&testLazy);
+ masm.branchPtr(Assembler::Equal, output, ImmWord(1), lazyEntry);
+
+ masm.bind(&done);
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitInstanceOfCache(LInstanceOfCache* ins) {
+ // The Lowering ensures that RHS is an object, and that LHS is a value.
+ LiveRegisterSet liveRegs = ins->safepoint()->liveRegs();
+ TypedOrValueRegister lhs =
+ TypedOrValueRegister(ToValue(ins, LInstanceOfCache::LHS));
+ Register rhs = ToRegister(ins->rhs());
+ Register output = ToRegister(ins->output());
+
+ IonInstanceOfIC ic(liveRegs, lhs, rhs, output);
+ addIC(ins, allocateIC(ic));
+}
+
+void CodeGenerator::visitGetDOMProperty(LGetDOMProperty* ins) {
+ const Register JSContextReg = ToRegister(ins->getJSContextReg());
+ const Register ObjectReg = ToRegister(ins->getObjectReg());
+ const Register PrivateReg = ToRegister(ins->getPrivReg());
+ const Register ValueReg = ToRegister(ins->getValueReg());
+
+ Label haveValue;
+ if (ins->mir()->valueMayBeInSlot()) {
+ size_t slot = ins->mir()->domMemberSlotIndex();
+ // It's a bit annoying to redo these slot calculations, which duplcate
+ // LSlots and a few other things like that, but I'm not sure there's a
+ // way to reuse those here.
+ //
+ // If this ever gets fixed to work with proxies (by not assuming that
+ // reserved slot indices, which is what domMemberSlotIndex() returns,
+ // match fixed slot indices), we can reenable MGetDOMProperty for
+ // proxies in IonBuilder.
+ if (slot < NativeObject::MAX_FIXED_SLOTS) {
+ masm.loadValue(Address(ObjectReg, NativeObject::getFixedSlotOffset(slot)),
+ JSReturnOperand);
+ } else {
+ // It's a dynamic slot.
+ slot -= NativeObject::MAX_FIXED_SLOTS;
+ // Use PrivateReg as a scratch register for the slots pointer.
+ masm.loadPtr(Address(ObjectReg, NativeObject::offsetOfSlots()),
+ PrivateReg);
+ masm.loadValue(Address(PrivateReg, slot * sizeof(js::Value)),
+ JSReturnOperand);
+ }
+ masm.branchTestUndefined(Assembler::NotEqual, JSReturnOperand, &haveValue);
+ }
+
+ DebugOnly<uint32_t> initialStack = masm.framePushed();
+
+ masm.checkStackAlignment();
+
+ // Make space for the outparam. Pre-initialize it to UndefinedValue so we
+ // can trace it at GC time.
+ masm.Push(UndefinedValue());
+ // We pass the pointer to our out param as an instance of
+ // JSJitGetterCallArgs, since on the binary level it's the same thing.
+ static_assert(sizeof(JSJitGetterCallArgs) == sizeof(Value*));
+ masm.moveStackPtrTo(ValueReg);
+
+ masm.Push(ObjectReg);
+
+ LoadDOMPrivate(masm, ObjectReg, PrivateReg, ins->mir()->objectKind());
+
+ // Rooting will happen at GC time.
+ masm.moveStackPtrTo(ObjectReg);
+
+ Realm* getterRealm = ins->mir()->getterRealm();
+ if (gen->realm->realmPtr() != getterRealm) {
+ // We use JSContextReg as scratch register here.
+ masm.switchToRealm(getterRealm, JSContextReg);
+ }
+
+ uint32_t safepointOffset = masm.buildFakeExitFrame(JSContextReg);
+ masm.loadJSContext(JSContextReg);
+ masm.enterFakeExitFrame(JSContextReg, JSContextReg,
+ ExitFrameType::IonDOMGetter);
+
+ markSafepointAt(safepointOffset, ins);
+
+ masm.setupAlignedABICall();
+ masm.loadJSContext(JSContextReg);
+ masm.passABIArg(JSContextReg);
+ masm.passABIArg(ObjectReg);
+ masm.passABIArg(PrivateReg);
+ masm.passABIArg(ValueReg);
+ ensureOsiSpace();
+ masm.callWithABI(DynamicFunction<JSJitGetterOp>(ins->mir()->fun()),
+ ABIType::General,
+ CheckUnsafeCallWithABI::DontCheckHasExitFrame);
+
+ if (ins->mir()->isInfallible()) {
+ masm.loadValue(Address(masm.getStackPointer(),
+ IonDOMExitFrameLayout::offsetOfResult()),
+ JSReturnOperand);
+ } else {
+ masm.branchIfFalseBool(ReturnReg, masm.exceptionLabel());
+
+ masm.loadValue(Address(masm.getStackPointer(),
+ IonDOMExitFrameLayout::offsetOfResult()),
+ JSReturnOperand);
+ }
+
+ // Switch back to the current realm if needed. Note: if the getter threw an
+ // exception, the exception handler will do this.
+ if (gen->realm->realmPtr() != getterRealm) {
+ static_assert(!JSReturnOperand.aliases(ReturnReg),
+ "Clobbering ReturnReg should not affect the return value");
+ masm.switchToRealm(gen->realm->realmPtr(), ReturnReg);
+ }
+
+ // Until C++ code is instrumented against Spectre, prevent speculative
+ // execution from returning any private data.
+ if (JitOptions.spectreJitToCxxCalls && ins->mir()->hasLiveDefUses()) {
+ masm.speculationBarrier();
+ }
+
+ masm.adjustStack(IonDOMExitFrameLayout::Size());
+
+ masm.bind(&haveValue);
+
+ MOZ_ASSERT(masm.framePushed() == initialStack);
+}
+
+void CodeGenerator::visitGetDOMMemberV(LGetDOMMemberV* ins) {
+ // It's simpler to duplicate visitLoadFixedSlotV here than it is to try to
+ // use an LLoadFixedSlotV or some subclass of it for this case: that would
+ // require us to have MGetDOMMember inherit from MLoadFixedSlot, and then
+ // we'd have to duplicate a bunch of stuff we now get for free from
+ // MGetDOMProperty.
+ //
+ // If this ever gets fixed to work with proxies (by not assuming that
+ // reserved slot indices, which is what domMemberSlotIndex() returns,
+ // match fixed slot indices), we can reenable MGetDOMMember for
+ // proxies in IonBuilder.
+ Register object = ToRegister(ins->object());
+ size_t slot = ins->mir()->domMemberSlotIndex();
+ ValueOperand result = ToOutValue(ins);
+
+ masm.loadValue(Address(object, NativeObject::getFixedSlotOffset(slot)),
+ result);
+}
+
+void CodeGenerator::visitGetDOMMemberT(LGetDOMMemberT* ins) {
+ // It's simpler to duplicate visitLoadFixedSlotT here than it is to try to
+ // use an LLoadFixedSlotT or some subclass of it for this case: that would
+ // require us to have MGetDOMMember inherit from MLoadFixedSlot, and then
+ // we'd have to duplicate a bunch of stuff we now get for free from
+ // MGetDOMProperty.
+ //
+ // If this ever gets fixed to work with proxies (by not assuming that
+ // reserved slot indices, which is what domMemberSlotIndex() returns,
+ // match fixed slot indices), we can reenable MGetDOMMember for
+ // proxies in IonBuilder.
+ Register object = ToRegister(ins->object());
+ size_t slot = ins->mir()->domMemberSlotIndex();
+ AnyRegister result = ToAnyRegister(ins->getDef(0));
+ MIRType type = ins->mir()->type();
+
+ masm.loadUnboxedValue(Address(object, NativeObject::getFixedSlotOffset(slot)),
+ type, result);
+}
+
+void CodeGenerator::visitSetDOMProperty(LSetDOMProperty* ins) {
+ const Register JSContextReg = ToRegister(ins->getJSContextReg());
+ const Register ObjectReg = ToRegister(ins->getObjectReg());
+ const Register PrivateReg = ToRegister(ins->getPrivReg());
+ const Register ValueReg = ToRegister(ins->getValueReg());
+
+ DebugOnly<uint32_t> initialStack = masm.framePushed();
+
+ masm.checkStackAlignment();
+
+ // Push the argument. Rooting will happen at GC time.
+ ValueOperand argVal = ToValue(ins, LSetDOMProperty::Value);
+ masm.Push(argVal);
+ // We pass the pointer to our out param as an instance of
+ // JSJitGetterCallArgs, since on the binary level it's the same thing.
+ static_assert(sizeof(JSJitSetterCallArgs) == sizeof(Value*));
+ masm.moveStackPtrTo(ValueReg);
+
+ masm.Push(ObjectReg);
+
+ LoadDOMPrivate(masm, ObjectReg, PrivateReg, ins->mir()->objectKind());
+
+ // Rooting will happen at GC time.
+ masm.moveStackPtrTo(ObjectReg);
+
+ Realm* setterRealm = ins->mir()->setterRealm();
+ if (gen->realm->realmPtr() != setterRealm) {
+ // We use JSContextReg as scratch register here.
+ masm.switchToRealm(setterRealm, JSContextReg);
+ }
+
+ uint32_t safepointOffset = masm.buildFakeExitFrame(JSContextReg);
+ masm.loadJSContext(JSContextReg);
+ masm.enterFakeExitFrame(JSContextReg, JSContextReg,
+ ExitFrameType::IonDOMSetter);
+
+ markSafepointAt(safepointOffset, ins);
+
+ masm.setupAlignedABICall();
+ masm.loadJSContext(JSContextReg);
+ masm.passABIArg(JSContextReg);
+ masm.passABIArg(ObjectReg);
+ masm.passABIArg(PrivateReg);
+ masm.passABIArg(ValueReg);
+ ensureOsiSpace();
+ masm.callWithABI(DynamicFunction<JSJitSetterOp>(ins->mir()->fun()),
+ ABIType::General,
+ CheckUnsafeCallWithABI::DontCheckHasExitFrame);
+
+ masm.branchIfFalseBool(ReturnReg, masm.exceptionLabel());
+
+ // Switch back to the current realm if needed. Note: if the setter threw an
+ // exception, the exception handler will do this.
+ if (gen->realm->realmPtr() != setterRealm) {
+ masm.switchToRealm(gen->realm->realmPtr(), ReturnReg);
+ }
+
+ masm.adjustStack(IonDOMExitFrameLayout::Size());
+
+ MOZ_ASSERT(masm.framePushed() == initialStack);
+}
+
+void CodeGenerator::visitLoadDOMExpandoValue(LLoadDOMExpandoValue* ins) {
+ Register proxy = ToRegister(ins->proxy());
+ ValueOperand out = ToOutValue(ins);
+
+ masm.loadPtr(Address(proxy, ProxyObject::offsetOfReservedSlots()),
+ out.scratchReg());
+ masm.loadValue(Address(out.scratchReg(),
+ js::detail::ProxyReservedSlots::offsetOfPrivateSlot()),
+ out);
+}
+
+void CodeGenerator::visitLoadDOMExpandoValueGuardGeneration(
+ LLoadDOMExpandoValueGuardGeneration* ins) {
+ Register proxy = ToRegister(ins->proxy());
+ ValueOperand out = ToOutValue(ins);
+
+ Label bail;
+ masm.loadDOMExpandoValueGuardGeneration(proxy, out,
+ ins->mir()->expandoAndGeneration(),
+ ins->mir()->generation(), &bail);
+ bailoutFrom(&bail, ins->snapshot());
+}
+
+void CodeGenerator::visitLoadDOMExpandoValueIgnoreGeneration(
+ LLoadDOMExpandoValueIgnoreGeneration* ins) {
+ Register proxy = ToRegister(ins->proxy());
+ ValueOperand out = ToOutValue(ins);
+
+ masm.loadPtr(Address(proxy, ProxyObject::offsetOfReservedSlots()),
+ out.scratchReg());
+
+ // Load the ExpandoAndGeneration* from the PrivateValue.
+ masm.loadPrivate(
+ Address(out.scratchReg(),
+ js::detail::ProxyReservedSlots::offsetOfPrivateSlot()),
+ out.scratchReg());
+
+ // Load expandoAndGeneration->expando into the output Value register.
+ masm.loadValue(
+ Address(out.scratchReg(), ExpandoAndGeneration::offsetOfExpando()), out);
+}
+
+void CodeGenerator::visitGuardDOMExpandoMissingOrGuardShape(
+ LGuardDOMExpandoMissingOrGuardShape* ins) {
+ Register temp = ToRegister(ins->temp0());
+ ValueOperand input =
+ ToValue(ins, LGuardDOMExpandoMissingOrGuardShape::InputIndex);
+
+ Label done;
+ masm.branchTestUndefined(Assembler::Equal, input, &done);
+
+ masm.debugAssertIsObject(input);
+ masm.unboxObject(input, temp);
+ // The expando object is not used in this case, so we don't need Spectre
+ // mitigations.
+ Label bail;
+ masm.branchTestObjShapeNoSpectreMitigations(Assembler::NotEqual, temp,
+ ins->mir()->shape(), &bail);
+ bailoutFrom(&bail, ins->snapshot());
+
+ masm.bind(&done);
+}
+
+class OutOfLineIsCallable : public OutOfLineCodeBase<CodeGenerator> {
+ Register object_;
+ Register output_;
+
+ public:
+ OutOfLineIsCallable(Register object, Register output)
+ : object_(object), output_(output) {}
+
+ void accept(CodeGenerator* codegen) override {
+ codegen->visitOutOfLineIsCallable(this);
+ }
+ Register object() const { return object_; }
+ Register output() const { return output_; }
+};
+
+void CodeGenerator::visitIsCallableO(LIsCallableO* ins) {
+ Register object = ToRegister(ins->object());
+ Register output = ToRegister(ins->output());
+
+ OutOfLineIsCallable* ool = new (alloc()) OutOfLineIsCallable(object, output);
+ addOutOfLineCode(ool, ins->mir());
+
+ masm.isCallable(object, output, ool->entry());
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitIsCallableV(LIsCallableV* ins) {
+ ValueOperand val = ToValue(ins, LIsCallableV::ObjectIndex);
+ Register output = ToRegister(ins->output());
+ Register temp = ToRegister(ins->temp0());
+
+ Label notObject;
+ masm.fallibleUnboxObject(val, temp, &notObject);
+
+ OutOfLineIsCallable* ool = new (alloc()) OutOfLineIsCallable(temp, output);
+ addOutOfLineCode(ool, ins->mir());
+
+ masm.isCallable(temp, output, ool->entry());
+ masm.jump(ool->rejoin());
+
+ masm.bind(&notObject);
+ masm.move32(Imm32(0), output);
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitOutOfLineIsCallable(OutOfLineIsCallable* ool) {
+ Register object = ool->object();
+ Register output = ool->output();
+
+ saveVolatile(output);
+ using Fn = bool (*)(JSObject* obj);
+ masm.setupAlignedABICall();
+ masm.passABIArg(object);
+ masm.callWithABI<Fn, ObjectIsCallable>();
+ masm.storeCallBoolResult(output);
+ restoreVolatile(output);
+ masm.jump(ool->rejoin());
+}
+
+class OutOfLineIsConstructor : public OutOfLineCodeBase<CodeGenerator> {
+ LIsConstructor* ins_;
+
+ public:
+ explicit OutOfLineIsConstructor(LIsConstructor* ins) : ins_(ins) {}
+
+ void accept(CodeGenerator* codegen) override {
+ codegen->visitOutOfLineIsConstructor(this);
+ }
+ LIsConstructor* ins() const { return ins_; }
+};
+
+void CodeGenerator::visitIsConstructor(LIsConstructor* ins) {
+ Register object = ToRegister(ins->object());
+ Register output = ToRegister(ins->output());
+
+ OutOfLineIsConstructor* ool = new (alloc()) OutOfLineIsConstructor(ins);
+ addOutOfLineCode(ool, ins->mir());
+
+ masm.isConstructor(object, output, ool->entry());
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitOutOfLineIsConstructor(OutOfLineIsConstructor* ool) {
+ LIsConstructor* ins = ool->ins();
+ Register object = ToRegister(ins->object());
+ Register output = ToRegister(ins->output());
+
+ saveVolatile(output);
+ using Fn = bool (*)(JSObject* obj);
+ masm.setupAlignedABICall();
+ masm.passABIArg(object);
+ masm.callWithABI<Fn, ObjectIsConstructor>();
+ masm.storeCallBoolResult(output);
+ restoreVolatile(output);
+ masm.jump(ool->rejoin());
+}
+
+void CodeGenerator::visitIsCrossRealmArrayConstructor(
+ LIsCrossRealmArrayConstructor* ins) {
+ Register object = ToRegister(ins->object());
+ Register output = ToRegister(ins->output());
+
+ masm.setIsCrossRealmArrayConstructor(object, output);
+}
+
+static void EmitObjectIsArray(MacroAssembler& masm, OutOfLineCode* ool,
+ Register obj, Register output,
+ Label* notArray = nullptr) {
+ masm.loadObjClassUnsafe(obj, output);
+
+ Label isArray;
+ masm.branchPtr(Assembler::Equal, output, ImmPtr(&ArrayObject::class_),
+ &isArray);
+
+ // Branch to OOL path if it's a proxy.
+ masm.branchTestClassIsProxy(true, output, ool->entry());
+
+ if (notArray) {
+ masm.bind(notArray);
+ }
+ masm.move32(Imm32(0), output);
+ masm.jump(ool->rejoin());
+
+ masm.bind(&isArray);
+ masm.move32(Imm32(1), output);
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitIsArrayO(LIsArrayO* lir) {
+ Register object = ToRegister(lir->object());
+ Register output = ToRegister(lir->output());
+
+ using Fn = bool (*)(JSContext*, HandleObject, bool*);
+ OutOfLineCode* ool = oolCallVM<Fn, js::IsArrayFromJit>(
+ lir, ArgList(object), StoreRegisterTo(output));
+ EmitObjectIsArray(masm, ool, object, output);
+}
+
+void CodeGenerator::visitIsArrayV(LIsArrayV* lir) {
+ ValueOperand val = ToValue(lir, LIsArrayV::ValueIndex);
+ Register output = ToRegister(lir->output());
+ Register temp = ToRegister(lir->temp0());
+
+ Label notArray;
+ masm.fallibleUnboxObject(val, temp, &notArray);
+
+ using Fn = bool (*)(JSContext*, HandleObject, bool*);
+ OutOfLineCode* ool = oolCallVM<Fn, js::IsArrayFromJit>(
+ lir, ArgList(temp), StoreRegisterTo(output));
+ EmitObjectIsArray(masm, ool, temp, output, &notArray);
+}
+
+void CodeGenerator::visitIsTypedArray(LIsTypedArray* lir) {
+ Register object = ToRegister(lir->object());
+ Register output = ToRegister(lir->output());
+
+ OutOfLineCode* ool = nullptr;
+ if (lir->mir()->isPossiblyWrapped()) {
+ using Fn = bool (*)(JSContext*, JSObject*, bool*);
+ ool = oolCallVM<Fn, jit::IsPossiblyWrappedTypedArray>(
+ lir, ArgList(object), StoreRegisterTo(output));
+ }
+
+ Label notTypedArray;
+ Label done;
+
+ masm.loadObjClassUnsafe(object, output);
+ masm.branchIfClassIsNotTypedArray(output, &notTypedArray);
+
+ masm.move32(Imm32(1), output);
+ masm.jump(&done);
+ masm.bind(&notTypedArray);
+ if (ool) {
+ masm.branchTestClassIsProxy(true, output, ool->entry());
+ }
+ masm.move32(Imm32(0), output);
+ masm.bind(&done);
+ if (ool) {
+ masm.bind(ool->rejoin());
+ }
+}
+
+void CodeGenerator::visitIsObject(LIsObject* ins) {
+ Register output = ToRegister(ins->output());
+ ValueOperand value = ToValue(ins, LIsObject::ObjectIndex);
+ masm.testObjectSet(Assembler::Equal, value, output);
+}
+
+void CodeGenerator::visitIsObjectAndBranch(LIsObjectAndBranch* ins) {
+ ValueOperand value = ToValue(ins, LIsObjectAndBranch::Input);
+ testObjectEmitBranch(Assembler::Equal, value, ins->ifTrue(), ins->ifFalse());
+}
+
+void CodeGenerator::visitIsNullOrUndefined(LIsNullOrUndefined* ins) {
+ Register output = ToRegister(ins->output());
+ ValueOperand value = ToValue(ins, LIsNullOrUndefined::InputIndex);
+
+ Label isNotNull, done;
+ masm.branchTestNull(Assembler::NotEqual, value, &isNotNull);
+
+ masm.move32(Imm32(1), output);
+ masm.jump(&done);
+
+ masm.bind(&isNotNull);
+ masm.testUndefinedSet(Assembler::Equal, value, output);
+
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitIsNullOrUndefinedAndBranch(
+ LIsNullOrUndefinedAndBranch* ins) {
+ Label* ifTrue = getJumpLabelForBranch(ins->ifTrue());
+ Label* ifFalse = getJumpLabelForBranch(ins->ifFalse());
+ ValueOperand value = ToValue(ins, LIsNullOrUndefinedAndBranch::Input);
+
+ ScratchTagScope tag(masm, value);
+ masm.splitTagForTest(value, tag);
+
+ masm.branchTestNull(Assembler::Equal, tag, ifTrue);
+ masm.branchTestUndefined(Assembler::Equal, tag, ifTrue);
+
+ if (!isNextBlock(ins->ifFalse()->lir())) {
+ masm.jump(ifFalse);
+ }
+}
+
+void CodeGenerator::loadOutermostJSScript(Register reg) {
+ // The "outermost" JSScript means the script that we are compiling
+ // basically; this is not always the script associated with the
+ // current basic block, which might be an inlined script.
+
+ MIRGraph& graph = current->mir()->graph();
+ MBasicBlock* entryBlock = graph.entryBlock();
+ masm.movePtr(ImmGCPtr(entryBlock->info().script()), reg);
+}
+
+void CodeGenerator::loadJSScriptForBlock(MBasicBlock* block, Register reg) {
+ // The current JSScript means the script for the current
+ // basic block. This may be an inlined script.
+
+ JSScript* script = block->info().script();
+ masm.movePtr(ImmGCPtr(script), reg);
+}
+
+void CodeGenerator::visitHasClass(LHasClass* ins) {
+ Register lhs = ToRegister(ins->lhs());
+ Register output = ToRegister(ins->output());
+
+ masm.loadObjClassUnsafe(lhs, output);
+ masm.cmpPtrSet(Assembler::Equal, output, ImmPtr(ins->mir()->getClass()),
+ output);
+}
+
+void CodeGenerator::visitGuardToClass(LGuardToClass* ins) {
+ Register lhs = ToRegister(ins->lhs());
+ Register temp = ToRegister(ins->temp0());
+
+ // branchTestObjClass may zero the object register on speculative paths
+ // (we should have a defineReuseInput allocation in this case).
+ Register spectreRegToZero = lhs;
+
+ Label notEqual;
+
+ masm.branchTestObjClass(Assembler::NotEqual, lhs, ins->mir()->getClass(),
+ temp, spectreRegToZero, &notEqual);
+
+ // Can't return null-return here, so bail.
+ bailoutFrom(&notEqual, ins->snapshot());
+}
+
+void CodeGenerator::visitGuardToFunction(LGuardToFunction* ins) {
+ Register lhs = ToRegister(ins->lhs());
+ Register temp = ToRegister(ins->temp0());
+
+ // branchTestObjClass may zero the object register on speculative paths
+ // (we should have a defineReuseInput allocation in this case).
+ Register spectreRegToZero = lhs;
+
+ Label notEqual;
+
+ masm.branchTestObjIsFunction(Assembler::NotEqual, lhs, temp, spectreRegToZero,
+ &notEqual);
+
+ // Can't return null-return here, so bail.
+ bailoutFrom(&notEqual, ins->snapshot());
+}
+
+void CodeGenerator::visitObjectClassToString(LObjectClassToString* lir) {
+ Register obj = ToRegister(lir->lhs());
+ Register temp = ToRegister(lir->temp0());
+
+ using Fn = JSString* (*)(JSContext*, JSObject*);
+ masm.setupAlignedABICall();
+ masm.loadJSContext(temp);
+ masm.passABIArg(temp);
+ masm.passABIArg(obj);
+ masm.callWithABI<Fn, js::ObjectClassToString>();
+
+ bailoutCmpPtr(Assembler::Equal, ReturnReg, ImmWord(0), lir->snapshot());
+}
+
+void CodeGenerator::visitWasmParameter(LWasmParameter* lir) {}
+
+void CodeGenerator::visitWasmParameterI64(LWasmParameterI64* lir) {}
+
+void CodeGenerator::visitWasmReturn(LWasmReturn* lir) {
+ // Don't emit a jump to the return label if this is the last block.
+ if (current->mir() != *gen->graph().poBegin()) {
+ masm.jump(&returnLabel_);
+ }
+}
+
+void CodeGenerator::visitWasmReturnI64(LWasmReturnI64* lir) {
+ // Don't emit a jump to the return label if this is the last block.
+ if (current->mir() != *gen->graph().poBegin()) {
+ masm.jump(&returnLabel_);
+ }
+}
+
+void CodeGenerator::visitWasmReturnVoid(LWasmReturnVoid* lir) {
+ // Don't emit a jump to the return label if this is the last block.
+ if (current->mir() != *gen->graph().poBegin()) {
+ masm.jump(&returnLabel_);
+ }
+}
+
+void CodeGenerator::emitAssertRangeI(MIRType type, const Range* r,
+ Register input) {
+ // Check the lower bound.
+ if (r->hasInt32LowerBound() && r->lower() > INT32_MIN) {
+ Label success;
+ if (type == MIRType::Int32 || type == MIRType::Boolean) {
+ masm.branch32(Assembler::GreaterThanOrEqual, input, Imm32(r->lower()),
+ &success);
+ } else {
+ MOZ_ASSERT(type == MIRType::IntPtr);
+ masm.branchPtr(Assembler::GreaterThanOrEqual, input, Imm32(r->lower()),
+ &success);
+ }
+ masm.assumeUnreachable(
+ "Integer input should be equal or higher than Lowerbound.");
+ masm.bind(&success);
+ }
+
+ // Check the upper bound.
+ if (r->hasInt32UpperBound() && r->upper() < INT32_MAX) {
+ Label success;
+ if (type == MIRType::Int32 || type == MIRType::Boolean) {
+ masm.branch32(Assembler::LessThanOrEqual, input, Imm32(r->upper()),
+ &success);
+ } else {
+ MOZ_ASSERT(type == MIRType::IntPtr);
+ masm.branchPtr(Assembler::LessThanOrEqual, input, Imm32(r->upper()),
+ &success);
+ }
+ masm.assumeUnreachable(
+ "Integer input should be lower or equal than Upperbound.");
+ masm.bind(&success);
+ }
+
+ // For r->canHaveFractionalPart(), r->canBeNegativeZero(), and
+ // r->exponent(), there's nothing to check, because if we ended up in the
+ // integer range checking code, the value is already in an integer register
+ // in the integer range.
+}
+
+void CodeGenerator::emitAssertRangeD(const Range* r, FloatRegister input,
+ FloatRegister temp) {
+ // Check the lower bound.
+ if (r->hasInt32LowerBound()) {
+ Label success;
+ masm.loadConstantDouble(r->lower(), temp);
+ if (r->canBeNaN()) {
+ masm.branchDouble(Assembler::DoubleUnordered, input, input, &success);
+ }
+ masm.branchDouble(Assembler::DoubleGreaterThanOrEqual, input, temp,
+ &success);
+ masm.assumeUnreachable(
+ "Double input should be equal or higher than Lowerbound.");
+ masm.bind(&success);
+ }
+ // Check the upper bound.
+ if (r->hasInt32UpperBound()) {
+ Label success;
+ masm.loadConstantDouble(r->upper(), temp);
+ if (r->canBeNaN()) {
+ masm.branchDouble(Assembler::DoubleUnordered, input, input, &success);
+ }
+ masm.branchDouble(Assembler::DoubleLessThanOrEqual, input, temp, &success);
+ masm.assumeUnreachable(
+ "Double input should be lower or equal than Upperbound.");
+ masm.bind(&success);
+ }
+
+ // This code does not yet check r->canHaveFractionalPart(). This would require
+ // new assembler interfaces to make rounding instructions available.
+
+ if (!r->canBeNegativeZero()) {
+ Label success;
+
+ // First, test for being equal to 0.0, which also includes -0.0.
+ masm.loadConstantDouble(0.0, temp);
+ masm.branchDouble(Assembler::DoubleNotEqualOrUnordered, input, temp,
+ &success);
+
+ // The easiest way to distinguish -0.0 from 0.0 is that 1.0/-0.0 is
+ // -Infinity instead of Infinity.
+ masm.loadConstantDouble(1.0, temp);
+ masm.divDouble(input, temp);
+ masm.branchDouble(Assembler::DoubleGreaterThan, temp, input, &success);
+
+ masm.assumeUnreachable("Input shouldn't be negative zero.");
+
+ masm.bind(&success);
+ }
+
+ if (!r->hasInt32Bounds() && !r->canBeInfiniteOrNaN() &&
+ r->exponent() < FloatingPoint<double>::kExponentBias) {
+ // Check the bounds implied by the maximum exponent.
+ Label exponentLoOk;
+ masm.loadConstantDouble(pow(2.0, r->exponent() + 1), temp);
+ masm.branchDouble(Assembler::DoubleUnordered, input, input, &exponentLoOk);
+ masm.branchDouble(Assembler::DoubleLessThanOrEqual, input, temp,
+ &exponentLoOk);
+ masm.assumeUnreachable("Check for exponent failed.");
+ masm.bind(&exponentLoOk);
+
+ Label exponentHiOk;
+ masm.loadConstantDouble(-pow(2.0, r->exponent() + 1), temp);
+ masm.branchDouble(Assembler::DoubleUnordered, input, input, &exponentHiOk);
+ masm.branchDouble(Assembler::DoubleGreaterThanOrEqual, input, temp,
+ &exponentHiOk);
+ masm.assumeUnreachable("Check for exponent failed.");
+ masm.bind(&exponentHiOk);
+ } else if (!r->hasInt32Bounds() && !r->canBeNaN()) {
+ // If we think the value can't be NaN, check that it isn't.
+ Label notnan;
+ masm.branchDouble(Assembler::DoubleOrdered, input, input, &notnan);
+ masm.assumeUnreachable("Input shouldn't be NaN.");
+ masm.bind(&notnan);
+
+ // If we think the value also can't be an infinity, check that it isn't.
+ if (!r->canBeInfiniteOrNaN()) {
+ Label notposinf;
+ masm.loadConstantDouble(PositiveInfinity<double>(), temp);
+ masm.branchDouble(Assembler::DoubleLessThan, input, temp, &notposinf);
+ masm.assumeUnreachable("Input shouldn't be +Inf.");
+ masm.bind(&notposinf);
+
+ Label notneginf;
+ masm.loadConstantDouble(NegativeInfinity<double>(), temp);
+ masm.branchDouble(Assembler::DoubleGreaterThan, input, temp, &notneginf);
+ masm.assumeUnreachable("Input shouldn't be -Inf.");
+ masm.bind(&notneginf);
+ }
+ }
+}
+
+void CodeGenerator::visitAssertClass(LAssertClass* ins) {
+ Register obj = ToRegister(ins->input());
+ Register temp = ToRegister(ins->getTemp(0));
+
+ Label success;
+ if (ins->mir()->getClass() == &FunctionClass) {
+ // Allow both possible function classes here.
+ masm.branchTestObjIsFunctionNoSpectreMitigations(Assembler::Equal, obj,
+ temp, &success);
+ } else {
+ masm.branchTestObjClassNoSpectreMitigations(
+ Assembler::Equal, obj, ins->mir()->getClass(), temp, &success);
+ }
+ masm.assumeUnreachable("Wrong KnownClass during run-time");
+ masm.bind(&success);
+}
+
+void CodeGenerator::visitAssertShape(LAssertShape* ins) {
+ Register obj = ToRegister(ins->input());
+
+ Label success;
+ masm.branchTestObjShapeNoSpectreMitigations(Assembler::Equal, obj,
+ ins->mir()->shape(), &success);
+ masm.assumeUnreachable("Wrong Shape during run-time");
+ masm.bind(&success);
+}
+
+void CodeGenerator::visitAssertRangeI(LAssertRangeI* ins) {
+ Register input = ToRegister(ins->input());
+ const Range* r = ins->range();
+
+ emitAssertRangeI(ins->mir()->input()->type(), r, input);
+}
+
+void CodeGenerator::visitAssertRangeD(LAssertRangeD* ins) {
+ FloatRegister input = ToFloatRegister(ins->input());
+ FloatRegister temp = ToFloatRegister(ins->temp());
+ const Range* r = ins->range();
+
+ emitAssertRangeD(r, input, temp);
+}
+
+void CodeGenerator::visitAssertRangeF(LAssertRangeF* ins) {
+ FloatRegister input = ToFloatRegister(ins->input());
+ FloatRegister temp = ToFloatRegister(ins->temp());
+ FloatRegister temp2 = ToFloatRegister(ins->temp2());
+
+ const Range* r = ins->range();
+
+ masm.convertFloat32ToDouble(input, temp);
+ emitAssertRangeD(r, temp, temp2);
+}
+
+void CodeGenerator::visitAssertRangeV(LAssertRangeV* ins) {
+ const Range* r = ins->range();
+ const ValueOperand value = ToValue(ins, LAssertRangeV::Input);
+ Label done;
+
+ {
+ ScratchTagScope tag(masm, value);
+ masm.splitTagForTest(value, tag);
+
+ {
+ Label isNotInt32;
+ masm.branchTestInt32(Assembler::NotEqual, tag, &isNotInt32);
+ {
+ ScratchTagScopeRelease _(&tag);
+ Register unboxInt32 = ToTempUnboxRegister(ins->temp());
+ Register input = masm.extractInt32(value, unboxInt32);
+ emitAssertRangeI(MIRType::Int32, r, input);
+ masm.jump(&done);
+ }
+ masm.bind(&isNotInt32);
+ }
+
+ {
+ Label isNotDouble;
+ masm.branchTestDouble(Assembler::NotEqual, tag, &isNotDouble);
+ {
+ ScratchTagScopeRelease _(&tag);
+ FloatRegister input = ToFloatRegister(ins->floatTemp1());
+ FloatRegister temp = ToFloatRegister(ins->floatTemp2());
+ masm.unboxDouble(value, input);
+ emitAssertRangeD(r, input, temp);
+ masm.jump(&done);
+ }
+ masm.bind(&isNotDouble);
+ }
+ }
+
+ masm.assumeUnreachable("Incorrect range for Value.");
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitInterruptCheck(LInterruptCheck* lir) {
+ using Fn = bool (*)(JSContext*);
+ OutOfLineCode* ool =
+ oolCallVM<Fn, InterruptCheck>(lir, ArgList(), StoreNothing());
+
+ const void* interruptAddr = gen->runtime->addressOfInterruptBits();
+ masm.branch32(Assembler::NotEqual, AbsoluteAddress(interruptAddr), Imm32(0),
+ ool->entry());
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitOutOfLineResumableWasmTrap(
+ OutOfLineResumableWasmTrap* ool) {
+ LInstruction* lir = ool->lir();
+ masm.wasmTrap(ool->trap(), ool->bytecodeOffset());
+
+ markSafepointAt(masm.currentOffset(), lir);
+
+ // Note that masm.framePushed() doesn't include the register dump area.
+ // That will be taken into account when the StackMap is created from the
+ // LSafepoint.
+ lir->safepoint()->setFramePushedAtStackMapBase(ool->framePushed());
+ lir->safepoint()->setWasmSafepointKind(WasmSafepointKind::Trap);
+
+ masm.jump(ool->rejoin());
+}
+
+void CodeGenerator::visitOutOfLineAbortingWasmTrap(
+ OutOfLineAbortingWasmTrap* ool) {
+ masm.wasmTrap(ool->trap(), ool->bytecodeOffset());
+}
+
+void CodeGenerator::visitWasmInterruptCheck(LWasmInterruptCheck* lir) {
+ MOZ_ASSERT(gen->compilingWasm());
+
+ OutOfLineResumableWasmTrap* ool = new (alloc()) OutOfLineResumableWasmTrap(
+ lir, masm.framePushed(), lir->mir()->bytecodeOffset(),
+ wasm::Trap::CheckInterrupt);
+ addOutOfLineCode(ool, lir->mir());
+ masm.branch32(
+ Assembler::NotEqual,
+ Address(ToRegister(lir->instance()), wasm::Instance::offsetOfInterrupt()),
+ Imm32(0), ool->entry());
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitWasmTrap(LWasmTrap* lir) {
+ MOZ_ASSERT(gen->compilingWasm());
+ const MWasmTrap* mir = lir->mir();
+
+ masm.wasmTrap(mir->trap(), mir->bytecodeOffset());
+}
+
+void CodeGenerator::visitWasmTrapIfNull(LWasmTrapIfNull* lir) {
+ MOZ_ASSERT(gen->compilingWasm());
+ const MWasmTrapIfNull* mir = lir->mir();
+ Label nonNull;
+ Register ref = ToRegister(lir->ref());
+
+ masm.branchWasmAnyRefIsNull(false, ref, &nonNull);
+ masm.wasmTrap(mir->trap(), mir->bytecodeOffset());
+ masm.bind(&nonNull);
+}
+
+void CodeGenerator::visitWasmRefIsSubtypeOfAbstract(
+ LWasmRefIsSubtypeOfAbstract* ins) {
+ MOZ_ASSERT(gen->compilingWasm());
+
+ const MWasmRefIsSubtypeOfAbstract* mir = ins->mir();
+ MOZ_ASSERT(!mir->destType().isTypeRef());
+
+ Register ref = ToRegister(ins->ref());
+ Register superSTV = Register::Invalid();
+ Register scratch1 = ToTempRegisterOrInvalid(ins->temp0());
+ Register scratch2 = Register::Invalid();
+ Register result = ToRegister(ins->output());
+ Label onSuccess;
+ Label onFail;
+ Label join;
+ masm.branchWasmRefIsSubtype(ref, mir->sourceType(), mir->destType(),
+ &onSuccess, /*onSuccess=*/true, superSTV,
+ scratch1, scratch2);
+ masm.bind(&onFail);
+ masm.xor32(result, result);
+ masm.jump(&join);
+ masm.bind(&onSuccess);
+ masm.move32(Imm32(1), result);
+ masm.bind(&join);
+}
+
+void CodeGenerator::visitWasmRefIsSubtypeOfConcrete(
+ LWasmRefIsSubtypeOfConcrete* ins) {
+ MOZ_ASSERT(gen->compilingWasm());
+
+ const MWasmRefIsSubtypeOfConcrete* mir = ins->mir();
+ MOZ_ASSERT(mir->destType().isTypeRef());
+
+ Register ref = ToRegister(ins->ref());
+ Register superSTV = ToRegister(ins->superSTV());
+ Register scratch1 = ToRegister(ins->temp0());
+ Register scratch2 = ToTempRegisterOrInvalid(ins->temp1());
+ Register result = ToRegister(ins->output());
+ Label onSuccess;
+ Label join;
+ masm.branchWasmRefIsSubtype(ref, mir->sourceType(), mir->destType(),
+ &onSuccess, /*onSuccess=*/true, superSTV,
+ scratch1, scratch2);
+ masm.move32(Imm32(0), result);
+ masm.jump(&join);
+ masm.bind(&onSuccess);
+ masm.move32(Imm32(1), result);
+ masm.bind(&join);
+}
+
+void CodeGenerator::visitWasmRefIsSubtypeOfAbstractAndBranch(
+ LWasmRefIsSubtypeOfAbstractAndBranch* ins) {
+ MOZ_ASSERT(gen->compilingWasm());
+ Register ref = ToRegister(ins->ref());
+ Register scratch1 = ToTempRegisterOrInvalid(ins->temp0());
+ Label* onSuccess = getJumpLabelForBranch(ins->ifTrue());
+ Label* onFail = getJumpLabelForBranch(ins->ifFalse());
+ masm.branchWasmRefIsSubtype(
+ ref, ins->sourceType(), ins->destType(), onSuccess, /*onSuccess=*/true,
+ Register::Invalid(), scratch1, Register::Invalid());
+ masm.jump(onFail);
+}
+
+void CodeGenerator::visitWasmRefIsSubtypeOfConcreteAndBranch(
+ LWasmRefIsSubtypeOfConcreteAndBranch* ins) {
+ MOZ_ASSERT(gen->compilingWasm());
+ Register ref = ToRegister(ins->ref());
+ Register superSTV = ToRegister(ins->superSTV());
+ Register scratch1 = ToRegister(ins->temp0());
+ Register scratch2 = ToTempRegisterOrInvalid(ins->temp1());
+ Label* onSuccess = getJumpLabelForBranch(ins->ifTrue());
+ Label* onFail = getJumpLabelForBranch(ins->ifFalse());
+ masm.branchWasmRefIsSubtype(ref, ins->sourceType(), ins->destType(),
+ onSuccess, /*onSuccess=*/true, superSTV, scratch1,
+ scratch2);
+ masm.jump(onFail);
+}
+
+void CodeGenerator::callWasmStructAllocFun(LInstruction* lir,
+ wasm::SymbolicAddress fun,
+ Register typeDefData,
+ Register output) {
+ masm.Push(InstanceReg);
+ int32_t framePushedAfterInstance = masm.framePushed();
+ saveLive(lir);
+
+ masm.setupWasmABICall();
+ masm.passABIArg(InstanceReg);
+ masm.passABIArg(typeDefData);
+ int32_t instanceOffset = masm.framePushed() - framePushedAfterInstance;
+ CodeOffset offset =
+ masm.callWithABI(wasm::BytecodeOffset(0), fun,
+ mozilla::Some(instanceOffset), ABIType::General);
+ masm.storeCallPointerResult(output);
+
+ markSafepointAt(offset.offset(), lir);
+ lir->safepoint()->setFramePushedAtStackMapBase(framePushedAfterInstance);
+ lir->safepoint()->setWasmSafepointKind(WasmSafepointKind::CodegenCall);
+
+ restoreLive(lir);
+ masm.Pop(InstanceReg);
+#if JS_CODEGEN_ARM64
+ masm.syncStackPtr();
+#endif
+}
+
+// Out-of-line path to allocate wasm GC structs
+class OutOfLineWasmNewStruct : public OutOfLineCodeBase<CodeGenerator> {
+ LInstruction* lir_;
+ wasm::SymbolicAddress fun_;
+ Register typeDefData_;
+ Register output_;
+
+ public:
+ OutOfLineWasmNewStruct(LInstruction* lir, wasm::SymbolicAddress fun,
+ Register typeDefData, Register output)
+ : lir_(lir), fun_(fun), typeDefData_(typeDefData), output_(output) {}
+
+ void accept(CodeGenerator* codegen) override {
+ codegen->visitOutOfLineWasmNewStruct(this);
+ }
+
+ LInstruction* lir() const { return lir_; }
+ wasm::SymbolicAddress fun() const { return fun_; }
+ Register typeDefData() const { return typeDefData_; }
+ Register output() const { return output_; }
+};
+
+void CodeGenerator::visitOutOfLineWasmNewStruct(OutOfLineWasmNewStruct* ool) {
+ callWasmStructAllocFun(ool->lir(), ool->fun(), ool->typeDefData(),
+ ool->output());
+ masm.jump(ool->rejoin());
+}
+
+void CodeGenerator::visitWasmNewStructObject(LWasmNewStructObject* lir) {
+ MOZ_ASSERT(gen->compilingWasm());
+
+ MWasmNewStructObject* mir = lir->mir();
+
+ Register typeDefData = ToRegister(lir->typeDefData());
+ Register output = ToRegister(lir->output());
+
+ if (mir->isOutline()) {
+ wasm::SymbolicAddress fun = mir->zeroFields()
+ ? wasm::SymbolicAddress::StructNewOOL_true
+ : wasm::SymbolicAddress::StructNewOOL_false;
+ callWasmStructAllocFun(lir, fun, typeDefData, output);
+ } else {
+ wasm::SymbolicAddress fun = mir->zeroFields()
+ ? wasm::SymbolicAddress::StructNewIL_true
+ : wasm::SymbolicAddress::StructNewIL_false;
+
+ Register instance = ToRegister(lir->instance());
+ MOZ_ASSERT(instance == InstanceReg);
+
+ auto ool =
+ new (alloc()) OutOfLineWasmNewStruct(lir, fun, typeDefData, output);
+ addOutOfLineCode(ool, lir->mir());
+
+ Register temp1 = ToRegister(lir->temp0());
+ Register temp2 = ToRegister(lir->temp1());
+ masm.wasmNewStructObject(instance, output, typeDefData, temp1, temp2,
+ ool->entry(), mir->allocKind(), mir->zeroFields());
+
+ masm.bind(ool->rejoin());
+ }
+}
+
+void CodeGenerator::callWasmArrayAllocFun(LInstruction* lir,
+ wasm::SymbolicAddress fun,
+ Register numElements,
+ Register typeDefData, Register output,
+ wasm::BytecodeOffset bytecodeOffset) {
+ masm.Push(InstanceReg);
+ int32_t framePushedAfterInstance = masm.framePushed();
+ saveLive(lir);
+
+ masm.setupWasmABICall();
+ masm.passABIArg(InstanceReg);
+ masm.passABIArg(numElements);
+ masm.passABIArg(typeDefData);
+ int32_t instanceOffset = masm.framePushed() - framePushedAfterInstance;
+ CodeOffset offset = masm.callWithABI(
+ bytecodeOffset, fun, mozilla::Some(instanceOffset), ABIType::General);
+ masm.storeCallPointerResult(output);
+
+ markSafepointAt(offset.offset(), lir);
+ lir->safepoint()->setFramePushedAtStackMapBase(framePushedAfterInstance);
+ lir->safepoint()->setWasmSafepointKind(WasmSafepointKind::CodegenCall);
+
+ restoreLive(lir);
+ masm.Pop(InstanceReg);
+#if JS_CODEGEN_ARM64
+ masm.syncStackPtr();
+#endif
+
+ Label ok;
+ masm.branchPtr(Assembler::NonZero, output, ImmWord(0), &ok);
+ masm.wasmTrap(wasm::Trap::ThrowReported, bytecodeOffset);
+ masm.bind(&ok);
+}
+
+// Out-of-line path to allocate wasm GC arrays
+class OutOfLineWasmNewArray : public OutOfLineCodeBase<CodeGenerator> {
+ LInstruction* lir_;
+ wasm::SymbolicAddress fun_;
+ Register numElementsReg_;
+ mozilla::Maybe<uint32_t> numElements_;
+ Register typeDefData_;
+ Register output_;
+ wasm::BytecodeOffset bytecodeOffset_;
+
+ public:
+ OutOfLineWasmNewArray(LInstruction* lir, wasm::SymbolicAddress fun,
+ Register numElementsReg,
+ mozilla::Maybe<uint32_t> numElements,
+ Register typeDefData, Register output,
+ wasm::BytecodeOffset bytecodeOffset)
+ : lir_(lir),
+ fun_(fun),
+ numElementsReg_(numElementsReg),
+ numElements_(numElements),
+ typeDefData_(typeDefData),
+ output_(output),
+ bytecodeOffset_(bytecodeOffset) {}
+
+ void accept(CodeGenerator* codegen) override {
+ codegen->visitOutOfLineWasmNewArray(this);
+ }
+
+ LInstruction* lir() const { return lir_; }
+ wasm::SymbolicAddress fun() const { return fun_; }
+ Register numElementsReg() const { return numElementsReg_; }
+ mozilla::Maybe<uint32_t> numElements() const { return numElements_; }
+ Register typeDefData() const { return typeDefData_; }
+ Register output() const { return output_; }
+ wasm::BytecodeOffset bytecodeOffset() const { return bytecodeOffset_; }
+};
+
+void CodeGenerator::visitOutOfLineWasmNewArray(OutOfLineWasmNewArray* ool) {
+ if (ool->numElements().isSome()) {
+ masm.move32(Imm32(ool->numElements().value()), ool->numElementsReg());
+ }
+ callWasmArrayAllocFun(ool->lir(), ool->fun(), ool->numElementsReg(),
+ ool->typeDefData(), ool->output(),
+ ool->bytecodeOffset());
+ masm.jump(ool->rejoin());
+}
+
+void CodeGenerator::visitWasmNewArrayObject(LWasmNewArrayObject* lir) {
+ MOZ_ASSERT(gen->compilingWasm());
+
+ MWasmNewArrayObject* mir = lir->mir();
+
+ Register typeDefData = ToRegister(lir->typeDefData());
+ Register output = ToRegister(lir->output());
+ Register temp1 = ToRegister(lir->temp0());
+ Register temp2 = ToRegister(lir->temp1());
+
+ wasm::SymbolicAddress fun = mir->zeroFields()
+ ? wasm::SymbolicAddress::ArrayNew_true
+ : wasm::SymbolicAddress::ArrayNew_false;
+
+ if (lir->numElements()->isConstant()) {
+ // numElements is constant, so we can do optimized code generation.
+ uint32_t numElements = lir->numElements()->toConstant()->toInt32();
+ CheckedUint32 storageBytes =
+ WasmArrayObject::calcStorageBytesChecked(mir->elemSize(), numElements);
+ if (!storageBytes.isValid() ||
+ storageBytes.value() > WasmArrayObject_MaxInlineBytes) {
+ // Too much array data to store inline. Immediately perform an instance
+ // call to handle the out-of-line storage.
+ masm.move32(Imm32(numElements), temp1);
+ callWasmArrayAllocFun(lir, fun, temp1, typeDefData, output,
+ mir->bytecodeOffset());
+ } else {
+ // storageBytes is small enough to be stored inline in WasmArrayObject.
+ // Attempt a nursery allocation and fall back to an instance call if it
+ // fails.
+ Register instance = ToRegister(lir->instance());
+ MOZ_ASSERT(instance == InstanceReg);
+
+ auto ool = new (alloc())
+ OutOfLineWasmNewArray(lir, fun, temp1, mozilla::Some(numElements),
+ typeDefData, output, mir->bytecodeOffset());
+ addOutOfLineCode(ool, lir->mir());
+
+ masm.wasmNewArrayObjectFixed(instance, output, typeDefData, temp1, temp2,
+ ool->entry(), numElements,
+ storageBytes.value(), mir->zeroFields());
+
+ masm.bind(ool->rejoin());
+ }
+ } else {
+ // numElements is dynamic. Attempt a dynamic inline-storage nursery
+ // allocation and fall back to an instance call if it fails.
+ Register instance = ToRegister(lir->instance());
+ MOZ_ASSERT(instance == InstanceReg);
+ Register numElements = ToRegister(lir->numElements());
+
+ auto ool = new (alloc())
+ OutOfLineWasmNewArray(lir, fun, numElements, mozilla::Nothing(),
+ typeDefData, output, mir->bytecodeOffset());
+ addOutOfLineCode(ool, lir->mir());
+
+ masm.wasmNewArrayObject(instance, output, numElements, typeDefData, temp1,
+ ool->entry(), mir->elemSize(), mir->zeroFields());
+
+ masm.bind(ool->rejoin());
+ }
+}
+
+void CodeGenerator::visitWasmHeapReg(LWasmHeapReg* ins) {
+#ifdef WASM_HAS_HEAPREG
+ masm.movePtr(HeapReg, ToRegister(ins->output()));
+#else
+ MOZ_CRASH();
+#endif
+}
+
+void CodeGenerator::visitWasmBoundsCheck(LWasmBoundsCheck* ins) {
+ const MWasmBoundsCheck* mir = ins->mir();
+ Register ptr = ToRegister(ins->ptr());
+ Register boundsCheckLimit = ToRegister(ins->boundsCheckLimit());
+ // When there are no spectre mitigations in place, branching out-of-line to
+ // the trap is a big performance win, but with mitigations it's trickier. See
+ // bug 1680243.
+ if (JitOptions.spectreIndexMasking) {
+ Label ok;
+ masm.wasmBoundsCheck32(Assembler::Below, ptr, boundsCheckLimit, &ok);
+ masm.wasmTrap(wasm::Trap::OutOfBounds, mir->bytecodeOffset());
+ masm.bind(&ok);
+ } else {
+ OutOfLineAbortingWasmTrap* ool = new (alloc()) OutOfLineAbortingWasmTrap(
+ mir->bytecodeOffset(), wasm::Trap::OutOfBounds);
+ addOutOfLineCode(ool, mir);
+ masm.wasmBoundsCheck32(Assembler::AboveOrEqual, ptr, boundsCheckLimit,
+ ool->entry());
+ }
+}
+
+void CodeGenerator::visitWasmBoundsCheck64(LWasmBoundsCheck64* ins) {
+ const MWasmBoundsCheck* mir = ins->mir();
+ Register64 ptr = ToRegister64(ins->ptr());
+ Register64 boundsCheckLimit = ToRegister64(ins->boundsCheckLimit());
+ // See above.
+ if (JitOptions.spectreIndexMasking) {
+ Label ok;
+ masm.wasmBoundsCheck64(Assembler::Below, ptr, boundsCheckLimit, &ok);
+ masm.wasmTrap(wasm::Trap::OutOfBounds, mir->bytecodeOffset());
+ masm.bind(&ok);
+ } else {
+ OutOfLineAbortingWasmTrap* ool = new (alloc()) OutOfLineAbortingWasmTrap(
+ mir->bytecodeOffset(), wasm::Trap::OutOfBounds);
+ addOutOfLineCode(ool, mir);
+ masm.wasmBoundsCheck64(Assembler::AboveOrEqual, ptr, boundsCheckLimit,
+ ool->entry());
+ }
+}
+
+void CodeGenerator::visitWasmBoundsCheckRange32(LWasmBoundsCheckRange32* ins) {
+ const MWasmBoundsCheckRange32* mir = ins->mir();
+ Register index = ToRegister(ins->index());
+ Register length = ToRegister(ins->length());
+ Register limit = ToRegister(ins->limit());
+ Register tmp = ToRegister(ins->temp0());
+
+ masm.wasmBoundsCheckRange32(index, length, limit, tmp, mir->bytecodeOffset());
+}
+
+void CodeGenerator::visitWasmAlignmentCheck(LWasmAlignmentCheck* ins) {
+ const MWasmAlignmentCheck* mir = ins->mir();
+ Register ptr = ToRegister(ins->ptr());
+ OutOfLineAbortingWasmTrap* ool = new (alloc()) OutOfLineAbortingWasmTrap(
+ mir->bytecodeOffset(), wasm::Trap::UnalignedAccess);
+ addOutOfLineCode(ool, mir);
+ masm.branchTest32(Assembler::NonZero, ptr, Imm32(mir->byteSize() - 1),
+ ool->entry());
+}
+
+void CodeGenerator::visitWasmAlignmentCheck64(LWasmAlignmentCheck64* ins) {
+ const MWasmAlignmentCheck* mir = ins->mir();
+ Register64 ptr = ToRegister64(ins->ptr());
+#ifdef JS_64BIT
+ Register r = ptr.reg;
+#else
+ Register r = ptr.low;
+#endif
+ OutOfLineAbortingWasmTrap* ool = new (alloc()) OutOfLineAbortingWasmTrap(
+ mir->bytecodeOffset(), wasm::Trap::UnalignedAccess);
+ addOutOfLineCode(ool, mir);
+ masm.branchTestPtr(Assembler::NonZero, r, Imm32(mir->byteSize() - 1),
+ ool->entry());
+}
+
+void CodeGenerator::visitWasmLoadInstance(LWasmLoadInstance* ins) {
+ switch (ins->mir()->type()) {
+ case MIRType::WasmAnyRef:
+ case MIRType::Pointer:
+ masm.loadPtr(Address(ToRegister(ins->instance()), ins->mir()->offset()),
+ ToRegister(ins->output()));
+ break;
+ case MIRType::Int32:
+ masm.load32(Address(ToRegister(ins->instance()), ins->mir()->offset()),
+ ToRegister(ins->output()));
+ break;
+ default:
+ MOZ_CRASH("MIRType not supported in WasmLoadInstance");
+ }
+}
+
+void CodeGenerator::visitWasmLoadInstance64(LWasmLoadInstance64* ins) {
+ MOZ_ASSERT(ins->mir()->type() == MIRType::Int64);
+ masm.load64(Address(ToRegister(ins->instance()), ins->mir()->offset()),
+ ToOutRegister64(ins));
+}
+
+void CodeGenerator::incrementWarmUpCounter(AbsoluteAddress warmUpCount,
+ JSScript* script, Register tmp) {
+ // The code depends on the JitScript* not being discarded without also
+ // invalidating Ion code. Assert this.
+#ifdef DEBUG
+ Label ok;
+ masm.movePtr(ImmGCPtr(script), tmp);
+ masm.loadJitScript(tmp, tmp);
+ masm.branchPtr(Assembler::Equal, tmp, ImmPtr(script->jitScript()), &ok);
+ masm.assumeUnreachable("Didn't find JitScript?");
+ masm.bind(&ok);
+#endif
+
+ masm.load32(warmUpCount, tmp);
+ masm.add32(Imm32(1), tmp);
+ masm.store32(tmp, warmUpCount);
+}
+
+void CodeGenerator::visitIncrementWarmUpCounter(LIncrementWarmUpCounter* ins) {
+ Register tmp = ToRegister(ins->temp0());
+
+ AbsoluteAddress warmUpCount =
+ AbsoluteAddress(ins->mir()->script()->jitScript())
+ .offset(JitScript::offsetOfWarmUpCount());
+ incrementWarmUpCounter(warmUpCount, ins->mir()->script(), tmp);
+}
+
+void CodeGenerator::visitLexicalCheck(LLexicalCheck* ins) {
+ ValueOperand inputValue = ToValue(ins, LLexicalCheck::InputIndex);
+ Label bail;
+ masm.branchTestMagicValue(Assembler::Equal, inputValue,
+ JS_UNINITIALIZED_LEXICAL, &bail);
+ bailoutFrom(&bail, ins->snapshot());
+}
+
+void CodeGenerator::visitThrowRuntimeLexicalError(
+ LThrowRuntimeLexicalError* ins) {
+ pushArg(Imm32(ins->mir()->errorNumber()));
+
+ using Fn = bool (*)(JSContext*, unsigned);
+ callVM<Fn, jit::ThrowRuntimeLexicalError>(ins);
+}
+
+void CodeGenerator::visitThrowMsg(LThrowMsg* ins) {
+ pushArg(Imm32(static_cast<int32_t>(ins->mir()->throwMsgKind())));
+
+ using Fn = bool (*)(JSContext*, unsigned);
+ callVM<Fn, js::ThrowMsgOperation>(ins);
+}
+
+void CodeGenerator::visitGlobalDeclInstantiation(
+ LGlobalDeclInstantiation* ins) {
+ pushArg(ImmPtr(ins->mir()->resumePoint()->pc()));
+ pushArg(ImmGCPtr(ins->mir()->block()->info().script()));
+
+ using Fn = bool (*)(JSContext*, HandleScript, const jsbytecode*);
+ callVM<Fn, GlobalDeclInstantiationFromIon>(ins);
+}
+
+void CodeGenerator::visitDebugger(LDebugger* ins) {
+ Register cx = ToRegister(ins->temp0());
+
+ masm.loadJSContext(cx);
+ using Fn = bool (*)(JSContext* cx);
+ masm.setupAlignedABICall();
+ masm.passABIArg(cx);
+ masm.callWithABI<Fn, GlobalHasLiveOnDebuggerStatement>();
+
+ Label bail;
+ masm.branchIfTrueBool(ReturnReg, &bail);
+ bailoutFrom(&bail, ins->snapshot());
+}
+
+void CodeGenerator::visitNewTarget(LNewTarget* ins) {
+ ValueOperand output = ToOutValue(ins);
+
+ // if (isConstructing) output = argv[Max(numActualArgs, numFormalArgs)]
+ Label notConstructing, done;
+ Address calleeToken(FramePointer, JitFrameLayout::offsetOfCalleeToken());
+ masm.branchTestPtr(Assembler::Zero, calleeToken,
+ Imm32(CalleeToken_FunctionConstructing), &notConstructing);
+
+ Register argvLen = output.scratchReg();
+ masm.loadNumActualArgs(FramePointer, argvLen);
+
+ Label useNFormals;
+
+ size_t numFormalArgs = ins->mirRaw()->block()->info().nargs();
+ masm.branchPtr(Assembler::Below, argvLen, Imm32(numFormalArgs), &useNFormals);
+
+ size_t argsOffset = JitFrameLayout::offsetOfActualArgs();
+ {
+ BaseValueIndex newTarget(FramePointer, argvLen, argsOffset);
+ masm.loadValue(newTarget, output);
+ masm.jump(&done);
+ }
+
+ masm.bind(&useNFormals);
+
+ {
+ Address newTarget(FramePointer,
+ argsOffset + (numFormalArgs * sizeof(Value)));
+ masm.loadValue(newTarget, output);
+ masm.jump(&done);
+ }
+
+ // else output = undefined
+ masm.bind(&notConstructing);
+ masm.moveValue(UndefinedValue(), output);
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitCheckReturn(LCheckReturn* ins) {
+ ValueOperand returnValue = ToValue(ins, LCheckReturn::ReturnValueIndex);
+ ValueOperand thisValue = ToValue(ins, LCheckReturn::ThisValueIndex);
+ ValueOperand output = ToOutValue(ins);
+
+ using Fn = bool (*)(JSContext*, HandleValue);
+ OutOfLineCode* ool = oolCallVM<Fn, ThrowBadDerivedReturnOrUninitializedThis>(
+ ins, ArgList(returnValue), StoreNothing());
+
+ Label noChecks;
+ masm.branchTestObject(Assembler::Equal, returnValue, &noChecks);
+ masm.branchTestUndefined(Assembler::NotEqual, returnValue, ool->entry());
+ masm.branchTestMagic(Assembler::Equal, thisValue, ool->entry());
+ masm.moveValue(thisValue, output);
+ masm.jump(ool->rejoin());
+ masm.bind(&noChecks);
+ masm.moveValue(returnValue, output);
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitCheckIsObj(LCheckIsObj* ins) {
+ ValueOperand value = ToValue(ins, LCheckIsObj::ValueIndex);
+ Register output = ToRegister(ins->output());
+
+ using Fn = bool (*)(JSContext*, CheckIsObjectKind);
+ OutOfLineCode* ool = oolCallVM<Fn, ThrowCheckIsObject>(
+ ins, ArgList(Imm32(ins->mir()->checkKind())), StoreNothing());
+
+ masm.fallibleUnboxObject(value, output, ool->entry());
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitCheckObjCoercible(LCheckObjCoercible* ins) {
+ ValueOperand checkValue = ToValue(ins, LCheckObjCoercible::ValueIndex);
+
+ using Fn = bool (*)(JSContext*, HandleValue);
+ OutOfLineCode* ool = oolCallVM<Fn, ThrowObjectCoercible>(
+ ins, ArgList(checkValue), StoreNothing());
+ masm.branchTestNull(Assembler::Equal, checkValue, ool->entry());
+ masm.branchTestUndefined(Assembler::Equal, checkValue, ool->entry());
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitCheckClassHeritage(LCheckClassHeritage* ins) {
+ ValueOperand heritage = ToValue(ins, LCheckClassHeritage::HeritageIndex);
+ Register temp0 = ToRegister(ins->temp0());
+ Register temp1 = ToRegister(ins->temp1());
+
+ using Fn = bool (*)(JSContext*, HandleValue);
+ OutOfLineCode* ool = oolCallVM<Fn, CheckClassHeritageOperation>(
+ ins, ArgList(heritage), StoreNothing());
+
+ masm.branchTestNull(Assembler::Equal, heritage, ool->rejoin());
+ masm.fallibleUnboxObject(heritage, temp0, ool->entry());
+
+ masm.isConstructor(temp0, temp1, ool->entry());
+ masm.branchTest32(Assembler::Zero, temp1, temp1, ool->entry());
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitCheckThis(LCheckThis* ins) {
+ ValueOperand thisValue = ToValue(ins, LCheckThis::ValueIndex);
+
+ using Fn = bool (*)(JSContext*);
+ OutOfLineCode* ool =
+ oolCallVM<Fn, ThrowUninitializedThis>(ins, ArgList(), StoreNothing());
+ masm.branchTestMagic(Assembler::Equal, thisValue, ool->entry());
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitCheckThisReinit(LCheckThisReinit* ins) {
+ ValueOperand thisValue = ToValue(ins, LCheckThisReinit::ThisValueIndex);
+
+ using Fn = bool (*)(JSContext*);
+ OutOfLineCode* ool =
+ oolCallVM<Fn, ThrowInitializedThis>(ins, ArgList(), StoreNothing());
+ masm.branchTestMagic(Assembler::NotEqual, thisValue, ool->entry());
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitGenerator(LGenerator* lir) {
+ Register callee = ToRegister(lir->callee());
+ Register environmentChain = ToRegister(lir->environmentChain());
+ Register argsObject = ToRegister(lir->argsObject());
+
+ pushArg(argsObject);
+ pushArg(environmentChain);
+ pushArg(ImmGCPtr(current->mir()->info().script()));
+ pushArg(callee);
+
+ using Fn = JSObject* (*)(JSContext* cx, HandleFunction, HandleScript,
+ HandleObject, HandleObject);
+ callVM<Fn, CreateGenerator>(lir);
+}
+
+void CodeGenerator::visitAsyncResolve(LAsyncResolve* lir) {
+ Register generator = ToRegister(lir->generator());
+ ValueOperand value = ToValue(lir, LAsyncResolve::ValueIndex);
+
+ pushArg(value);
+ pushArg(generator);
+
+ using Fn = JSObject* (*)(JSContext*, Handle<AsyncFunctionGeneratorObject*>,
+ HandleValue);
+ callVM<Fn, js::AsyncFunctionResolve>(lir);
+}
+
+void CodeGenerator::visitAsyncReject(LAsyncReject* lir) {
+ Register generator = ToRegister(lir->generator());
+ ValueOperand reason = ToValue(lir, LAsyncReject::ReasonIndex);
+ ValueOperand stack = ToValue(lir, LAsyncReject::StackIndex);
+
+ pushArg(stack);
+ pushArg(reason);
+ pushArg(generator);
+
+ using Fn = JSObject* (*)(JSContext*, Handle<AsyncFunctionGeneratorObject*>,
+ HandleValue, HandleValue);
+ callVM<Fn, js::AsyncFunctionReject>(lir);
+}
+
+void CodeGenerator::visitAsyncAwait(LAsyncAwait* lir) {
+ ValueOperand value = ToValue(lir, LAsyncAwait::ValueIndex);
+ Register generator = ToRegister(lir->generator());
+
+ pushArg(value);
+ pushArg(generator);
+
+ using Fn =
+ JSObject* (*)(JSContext* cx, Handle<AsyncFunctionGeneratorObject*> genObj,
+ HandleValue value);
+ callVM<Fn, js::AsyncFunctionAwait>(lir);
+}
+
+void CodeGenerator::visitCanSkipAwait(LCanSkipAwait* lir) {
+ ValueOperand value = ToValue(lir, LCanSkipAwait::ValueIndex);
+
+ pushArg(value);
+
+ using Fn = bool (*)(JSContext*, HandleValue, bool* canSkip);
+ callVM<Fn, js::CanSkipAwait>(lir);
+}
+
+void CodeGenerator::visitMaybeExtractAwaitValue(LMaybeExtractAwaitValue* lir) {
+ ValueOperand value = ToValue(lir, LMaybeExtractAwaitValue::ValueIndex);
+ ValueOperand output = ToOutValue(lir);
+ Register canSkip = ToRegister(lir->canSkip());
+
+ Label cantExtract, finished;
+ masm.branchIfFalseBool(canSkip, &cantExtract);
+
+ pushArg(value);
+
+ using Fn = bool (*)(JSContext*, HandleValue, MutableHandleValue);
+ callVM<Fn, js::ExtractAwaitValue>(lir);
+ masm.jump(&finished);
+ masm.bind(&cantExtract);
+
+ masm.moveValue(value, output);
+
+ masm.bind(&finished);
+}
+
+void CodeGenerator::visitDebugCheckSelfHosted(LDebugCheckSelfHosted* ins) {
+ ValueOperand checkValue = ToValue(ins, LDebugCheckSelfHosted::ValueIndex);
+ pushArg(checkValue);
+ using Fn = bool (*)(JSContext*, HandleValue);
+ callVM<Fn, js::Debug_CheckSelfHosted>(ins);
+}
+
+void CodeGenerator::visitRandom(LRandom* ins) {
+ using mozilla::non_crypto::XorShift128PlusRNG;
+
+ FloatRegister output = ToFloatRegister(ins->output());
+ Register rngReg = ToRegister(ins->temp0());
+
+ Register64 temp1 = ToRegister64(ins->temp1());
+ Register64 temp2 = ToRegister64(ins->temp2());
+
+ const XorShift128PlusRNG* rng = gen->realm->addressOfRandomNumberGenerator();
+ masm.movePtr(ImmPtr(rng), rngReg);
+
+ masm.randomDouble(rngReg, output, temp1, temp2);
+ if (js::SupportDifferentialTesting()) {
+ masm.loadConstantDouble(0.0, output);
+ }
+}
+
+void CodeGenerator::visitSignExtendInt32(LSignExtendInt32* ins) {
+ Register input = ToRegister(ins->input());
+ Register output = ToRegister(ins->output());
+
+ switch (ins->mode()) {
+ case MSignExtendInt32::Byte:
+ masm.move8SignExtend(input, output);
+ break;
+ case MSignExtendInt32::Half:
+ masm.move16SignExtend(input, output);
+ break;
+ }
+}
+
+void CodeGenerator::visitRotate(LRotate* ins) {
+ MRotate* mir = ins->mir();
+ Register input = ToRegister(ins->input());
+ Register dest = ToRegister(ins->output());
+
+ const LAllocation* count = ins->count();
+ if (count->isConstant()) {
+ int32_t c = ToInt32(count) & 0x1F;
+ if (mir->isLeftRotate()) {
+ masm.rotateLeft(Imm32(c), input, dest);
+ } else {
+ masm.rotateRight(Imm32(c), input, dest);
+ }
+ } else {
+ Register creg = ToRegister(count);
+ if (mir->isLeftRotate()) {
+ masm.rotateLeft(creg, input, dest);
+ } else {
+ masm.rotateRight(creg, input, dest);
+ }
+ }
+}
+
+class OutOfLineNaNToZero : public OutOfLineCodeBase<CodeGenerator> {
+ LNaNToZero* lir_;
+
+ public:
+ explicit OutOfLineNaNToZero(LNaNToZero* lir) : lir_(lir) {}
+
+ void accept(CodeGenerator* codegen) override {
+ codegen->visitOutOfLineNaNToZero(this);
+ }
+ LNaNToZero* lir() const { return lir_; }
+};
+
+void CodeGenerator::visitOutOfLineNaNToZero(OutOfLineNaNToZero* ool) {
+ FloatRegister output = ToFloatRegister(ool->lir()->output());
+ masm.loadConstantDouble(0.0, output);
+ masm.jump(ool->rejoin());
+}
+
+void CodeGenerator::visitNaNToZero(LNaNToZero* lir) {
+ FloatRegister input = ToFloatRegister(lir->input());
+
+ OutOfLineNaNToZero* ool = new (alloc()) OutOfLineNaNToZero(lir);
+ addOutOfLineCode(ool, lir->mir());
+
+ if (lir->mir()->operandIsNeverNegativeZero()) {
+ masm.branchDouble(Assembler::DoubleUnordered, input, input, ool->entry());
+ } else {
+ FloatRegister scratch = ToFloatRegister(lir->temp0());
+ masm.loadConstantDouble(0.0, scratch);
+ masm.branchDouble(Assembler::DoubleEqualOrUnordered, input, scratch,
+ ool->entry());
+ }
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitIsPackedArray(LIsPackedArray* lir) {
+ Register obj = ToRegister(lir->object());
+ Register output = ToRegister(lir->output());
+ Register temp = ToRegister(lir->temp0());
+
+ masm.setIsPackedArray(obj, output, temp);
+}
+
+void CodeGenerator::visitGuardArrayIsPacked(LGuardArrayIsPacked* lir) {
+ Register array = ToRegister(lir->array());
+ Register temp0 = ToRegister(lir->temp0());
+ Register temp1 = ToRegister(lir->temp1());
+
+ Label bail;
+ masm.branchArrayIsNotPacked(array, temp0, temp1, &bail);
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+void CodeGenerator::visitGetPrototypeOf(LGetPrototypeOf* lir) {
+ Register target = ToRegister(lir->target());
+ ValueOperand out = ToOutValue(lir);
+ Register scratch = out.scratchReg();
+
+ using Fn = bool (*)(JSContext*, HandleObject, MutableHandleValue);
+ OutOfLineCode* ool = oolCallVM<Fn, jit::GetPrototypeOf>(lir, ArgList(target),
+ StoreValueTo(out));
+
+ MOZ_ASSERT(uintptr_t(TaggedProto::LazyProto) == 1);
+
+ masm.loadObjProto(target, scratch);
+
+ Label hasProto;
+ masm.branchPtr(Assembler::Above, scratch, ImmWord(1), &hasProto);
+
+ // Call into the VM for lazy prototypes.
+ masm.branchPtr(Assembler::Equal, scratch, ImmWord(1), ool->entry());
+
+ masm.moveValue(NullValue(), out);
+ masm.jump(ool->rejoin());
+
+ masm.bind(&hasProto);
+ masm.tagValue(JSVAL_TYPE_OBJECT, scratch, out);
+
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitObjectWithProto(LObjectWithProto* lir) {
+ pushArg(ToValue(lir, LObjectWithProto::PrototypeIndex));
+
+ using Fn = PlainObject* (*)(JSContext*, HandleValue);
+ callVM<Fn, js::ObjectWithProtoOperation>(lir);
+}
+
+void CodeGenerator::visitObjectStaticProto(LObjectStaticProto* lir) {
+ Register obj = ToRegister(lir->input());
+ Register output = ToRegister(lir->output());
+
+ masm.loadObjProto(obj, output);
+
+#ifdef DEBUG
+ // We shouldn't encounter a null or lazy proto.
+ MOZ_ASSERT(uintptr_t(TaggedProto::LazyProto) == 1);
+
+ Label done;
+ masm.branchPtr(Assembler::Above, output, ImmWord(1), &done);
+ masm.assumeUnreachable("Unexpected null or lazy proto in MObjectStaticProto");
+ masm.bind(&done);
+#endif
+}
+
+void CodeGenerator::visitBuiltinObject(LBuiltinObject* lir) {
+ pushArg(Imm32(static_cast<int32_t>(lir->mir()->builtinObjectKind())));
+
+ using Fn = JSObject* (*)(JSContext*, BuiltinObjectKind);
+ callVM<Fn, js::BuiltinObjectOperation>(lir);
+}
+
+void CodeGenerator::visitSuperFunction(LSuperFunction* lir) {
+ Register callee = ToRegister(lir->callee());
+ ValueOperand out = ToOutValue(lir);
+ Register temp = ToRegister(lir->temp0());
+
+#ifdef DEBUG
+ Label classCheckDone;
+ masm.branchTestObjIsFunction(Assembler::Equal, callee, temp, callee,
+ &classCheckDone);
+ masm.assumeUnreachable("Unexpected non-JSFunction callee in JSOp::SuperFun");
+ masm.bind(&classCheckDone);
+#endif
+
+ // Load prototype of callee
+ masm.loadObjProto(callee, temp);
+
+#ifdef DEBUG
+ // We won't encounter a lazy proto, because |callee| is guaranteed to be a
+ // JSFunction and only proxy objects can have a lazy proto.
+ MOZ_ASSERT(uintptr_t(TaggedProto::LazyProto) == 1);
+
+ Label proxyCheckDone;
+ masm.branchPtr(Assembler::NotEqual, temp, ImmWord(1), &proxyCheckDone);
+ masm.assumeUnreachable("Unexpected lazy proto in JSOp::SuperFun");
+ masm.bind(&proxyCheckDone);
+#endif
+
+ Label nullProto, done;
+ masm.branchPtr(Assembler::Equal, temp, ImmWord(0), &nullProto);
+
+ // Box prototype and return
+ masm.tagValue(JSVAL_TYPE_OBJECT, temp, out);
+ masm.jump(&done);
+
+ masm.bind(&nullProto);
+ masm.moveValue(NullValue(), out);
+
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitInitHomeObject(LInitHomeObject* lir) {
+ Register func = ToRegister(lir->function());
+ ValueOperand homeObject = ToValue(lir, LInitHomeObject::HomeObjectIndex);
+
+ masm.assertFunctionIsExtended(func);
+
+ Address addr(func, FunctionExtended::offsetOfMethodHomeObjectSlot());
+
+ emitPreBarrier(addr);
+ masm.storeValue(homeObject, addr);
+}
+
+void CodeGenerator::visitIsTypedArrayConstructor(
+ LIsTypedArrayConstructor* lir) {
+ Register object = ToRegister(lir->object());
+ Register output = ToRegister(lir->output());
+
+ masm.setIsDefinitelyTypedArrayConstructor(object, output);
+}
+
+void CodeGenerator::visitLoadValueTag(LLoadValueTag* lir) {
+ ValueOperand value = ToValue(lir, LLoadValueTag::ValueIndex);
+ Register output = ToRegister(lir->output());
+
+ Register tag = masm.extractTag(value, output);
+ if (tag != output) {
+ masm.mov(tag, output);
+ }
+}
+
+void CodeGenerator::visitGuardTagNotEqual(LGuardTagNotEqual* lir) {
+ Register lhs = ToRegister(lir->lhs());
+ Register rhs = ToRegister(lir->rhs());
+
+ bailoutCmp32(Assembler::Equal, lhs, rhs, lir->snapshot());
+
+ // If both lhs and rhs are numbers, can't use tag comparison to do inequality
+ // comparison
+ Label done;
+ masm.branchTestNumber(Assembler::NotEqual, lhs, &done);
+ masm.branchTestNumber(Assembler::NotEqual, rhs, &done);
+ bailout(lir->snapshot());
+
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitLoadWrapperTarget(LLoadWrapperTarget* lir) {
+ Register object = ToRegister(lir->object());
+ Register output = ToRegister(lir->output());
+
+ masm.loadPtr(Address(object, ProxyObject::offsetOfReservedSlots()), output);
+ masm.unboxObject(
+ Address(output, js::detail::ProxyReservedSlots::offsetOfPrivateSlot()),
+ output);
+}
+
+void CodeGenerator::visitGuardHasGetterSetter(LGuardHasGetterSetter* lir) {
+ Register object = ToRegister(lir->object());
+ Register temp0 = ToRegister(lir->temp0());
+ Register temp1 = ToRegister(lir->temp1());
+ Register temp2 = ToRegister(lir->temp2());
+
+ masm.movePropertyKey(lir->mir()->propId(), temp1);
+ masm.movePtr(ImmGCPtr(lir->mir()->getterSetter()), temp2);
+
+ using Fn = bool (*)(JSContext* cx, JSObject* obj, jsid id,
+ GetterSetter* getterSetter);
+ masm.setupAlignedABICall();
+ masm.loadJSContext(temp0);
+ masm.passABIArg(temp0);
+ masm.passABIArg(object);
+ masm.passABIArg(temp1);
+ masm.passABIArg(temp2);
+ masm.callWithABI<Fn, ObjectHasGetterSetterPure>();
+
+ bailoutIfFalseBool(ReturnReg, lir->snapshot());
+}
+
+void CodeGenerator::visitGuardIsExtensible(LGuardIsExtensible* lir) {
+ Register object = ToRegister(lir->object());
+ Register temp = ToRegister(lir->temp0());
+
+ Label bail;
+ masm.branchIfObjectNotExtensible(object, temp, &bail);
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+void CodeGenerator::visitGuardInt32IsNonNegative(
+ LGuardInt32IsNonNegative* lir) {
+ Register index = ToRegister(lir->index());
+
+ bailoutCmp32(Assembler::LessThan, index, Imm32(0), lir->snapshot());
+}
+
+void CodeGenerator::visitGuardInt32Range(LGuardInt32Range* lir) {
+ Register input = ToRegister(lir->input());
+
+ bailoutCmp32(Assembler::LessThan, input, Imm32(lir->mir()->minimum()),
+ lir->snapshot());
+ bailoutCmp32(Assembler::GreaterThan, input, Imm32(lir->mir()->maximum()),
+ lir->snapshot());
+}
+
+void CodeGenerator::visitGuardIndexIsNotDenseElement(
+ LGuardIndexIsNotDenseElement* lir) {
+ Register object = ToRegister(lir->object());
+ Register index = ToRegister(lir->index());
+ Register temp = ToRegister(lir->temp0());
+ Register spectreTemp = ToTempRegisterOrInvalid(lir->temp1());
+
+ // Load obj->elements.
+ masm.loadPtr(Address(object, NativeObject::offsetOfElements()), temp);
+
+ // Ensure index >= initLength or the element is a hole.
+ Label notDense;
+ Address capacity(temp, ObjectElements::offsetOfInitializedLength());
+ masm.spectreBoundsCheck32(index, capacity, spectreTemp, &notDense);
+
+ BaseValueIndex element(temp, index);
+ masm.branchTestMagic(Assembler::Equal, element, &notDense);
+
+ bailout(lir->snapshot());
+
+ masm.bind(&notDense);
+}
+
+void CodeGenerator::visitGuardIndexIsValidUpdateOrAdd(
+ LGuardIndexIsValidUpdateOrAdd* lir) {
+ Register object = ToRegister(lir->object());
+ Register index = ToRegister(lir->index());
+ Register temp = ToRegister(lir->temp0());
+ Register spectreTemp = ToTempRegisterOrInvalid(lir->temp1());
+
+ // Load obj->elements.
+ masm.loadPtr(Address(object, NativeObject::offsetOfElements()), temp);
+
+ Label success;
+
+ // If length is writable, branch to &success. All indices are writable.
+ Address flags(temp, ObjectElements::offsetOfFlags());
+ masm.branchTest32(Assembler::Zero, flags,
+ Imm32(ObjectElements::Flags::NONWRITABLE_ARRAY_LENGTH),
+ &success);
+
+ // Otherwise, ensure index is in bounds.
+ Label bail;
+ Address length(temp, ObjectElements::offsetOfLength());
+ masm.spectreBoundsCheck32(index, length, spectreTemp, &bail);
+ masm.bind(&success);
+
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+void CodeGenerator::visitCallAddOrUpdateSparseElement(
+ LCallAddOrUpdateSparseElement* lir) {
+ Register object = ToRegister(lir->object());
+ Register index = ToRegister(lir->index());
+ ValueOperand value = ToValue(lir, LCallAddOrUpdateSparseElement::ValueIndex);
+
+ pushArg(Imm32(lir->mir()->strict()));
+ pushArg(value);
+ pushArg(index);
+ pushArg(object);
+
+ using Fn =
+ bool (*)(JSContext*, Handle<NativeObject*>, int32_t, HandleValue, bool);
+ callVM<Fn, js::AddOrUpdateSparseElementHelper>(lir);
+}
+
+void CodeGenerator::visitCallGetSparseElement(LCallGetSparseElement* lir) {
+ Register object = ToRegister(lir->object());
+ Register index = ToRegister(lir->index());
+
+ pushArg(index);
+ pushArg(object);
+
+ using Fn =
+ bool (*)(JSContext*, Handle<NativeObject*>, int32_t, MutableHandleValue);
+ callVM<Fn, js::GetSparseElementHelper>(lir);
+}
+
+void CodeGenerator::visitCallNativeGetElement(LCallNativeGetElement* lir) {
+ Register object = ToRegister(lir->object());
+ Register index = ToRegister(lir->index());
+
+ pushArg(index);
+ pushArg(TypedOrValueRegister(MIRType::Object, AnyRegister(object)));
+ pushArg(object);
+
+ using Fn = bool (*)(JSContext*, Handle<NativeObject*>, HandleValue, int32_t,
+ MutableHandleValue);
+ callVM<Fn, js::NativeGetElement>(lir);
+}
+
+void CodeGenerator::visitCallNativeGetElementSuper(
+ LCallNativeGetElementSuper* lir) {
+ Register object = ToRegister(lir->object());
+ Register index = ToRegister(lir->index());
+ ValueOperand receiver =
+ ToValue(lir, LCallNativeGetElementSuper::ReceiverIndex);
+
+ pushArg(index);
+ pushArg(receiver);
+ pushArg(object);
+
+ using Fn = bool (*)(JSContext*, Handle<NativeObject*>, HandleValue, int32_t,
+ MutableHandleValue);
+ callVM<Fn, js::NativeGetElement>(lir);
+}
+
+void CodeGenerator::visitCallObjectHasSparseElement(
+ LCallObjectHasSparseElement* lir) {
+ Register object = ToRegister(lir->object());
+ Register index = ToRegister(lir->index());
+ Register temp0 = ToRegister(lir->temp0());
+ Register temp1 = ToRegister(lir->temp1());
+ Register output = ToRegister(lir->output());
+
+ masm.reserveStack(sizeof(Value));
+ masm.moveStackPtrTo(temp1);
+
+ using Fn = bool (*)(JSContext*, NativeObject*, int32_t, Value*);
+ masm.setupAlignedABICall();
+ masm.loadJSContext(temp0);
+ masm.passABIArg(temp0);
+ masm.passABIArg(object);
+ masm.passABIArg(index);
+ masm.passABIArg(temp1);
+ masm.callWithABI<Fn, HasNativeElementPure>();
+ masm.storeCallPointerResult(temp0);
+
+ Label bail, ok;
+ uint32_t framePushed = masm.framePushed();
+ masm.branchIfTrueBool(temp0, &ok);
+ masm.adjustStack(sizeof(Value));
+ masm.jump(&bail);
+
+ masm.bind(&ok);
+ masm.setFramePushed(framePushed);
+ masm.unboxBoolean(Address(masm.getStackPointer(), 0), output);
+ masm.adjustStack(sizeof(Value));
+
+ bailoutFrom(&bail, lir->snapshot());
+}
+
+void CodeGenerator::visitBigIntAsIntN(LBigIntAsIntN* ins) {
+ Register bits = ToRegister(ins->bits());
+ Register input = ToRegister(ins->input());
+
+ pushArg(bits);
+ pushArg(input);
+
+ using Fn = BigInt* (*)(JSContext*, HandleBigInt, int32_t);
+ callVM<Fn, jit::BigIntAsIntN>(ins);
+}
+
+void CodeGenerator::visitBigIntAsIntN64(LBigIntAsIntN64* ins) {
+ Register input = ToRegister(ins->input());
+ Register temp = ToRegister(ins->temp());
+ Register64 temp64 = ToRegister64(ins->temp64());
+ Register output = ToRegister(ins->output());
+
+ Label done, create;
+
+ masm.movePtr(input, output);
+
+ // Load the BigInt value as an int64.
+ masm.loadBigInt64(input, temp64);
+
+ // Create a new BigInt when the input exceeds the int64 range.
+ masm.branch32(Assembler::Above, Address(input, BigInt::offsetOfLength()),
+ Imm32(64 / BigInt::DigitBits), &create);
+
+ // And create a new BigInt when the value and the BigInt have different signs.
+ Label nonNegative;
+ masm.branchIfBigIntIsNonNegative(input, &nonNegative);
+ masm.branchTest64(Assembler::NotSigned, temp64, temp64, temp, &create);
+ masm.jump(&done);
+
+ masm.bind(&nonNegative);
+ masm.branchTest64(Assembler::NotSigned, temp64, temp64, temp, &done);
+
+ masm.bind(&create);
+ emitCreateBigInt(ins, Scalar::BigInt64, temp64, output, temp);
+
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitBigIntAsIntN32(LBigIntAsIntN32* ins) {
+ Register input = ToRegister(ins->input());
+ Register temp = ToRegister(ins->temp());
+ Register64 temp64 = ToRegister64(ins->temp64());
+ Register output = ToRegister(ins->output());
+
+ Label done, create;
+
+ masm.movePtr(input, output);
+
+ // Load the absolute value of the first digit.
+ masm.loadFirstBigIntDigitOrZero(input, temp);
+
+ // If the absolute value exceeds the int32 range, create a new BigInt.
+ masm.branchPtr(Assembler::Above, temp, Imm32(INT32_MAX), &create);
+
+ // Also create a new BigInt if we have more than one digit.
+ masm.branch32(Assembler::BelowOrEqual,
+ Address(input, BigInt::offsetOfLength()), Imm32(1), &done);
+
+ masm.bind(&create);
+
+ // |temp| stores the absolute value, negate it when the sign flag is set.
+ Label nonNegative;
+ masm.branchIfBigIntIsNonNegative(input, &nonNegative);
+ masm.negPtr(temp);
+ masm.bind(&nonNegative);
+
+ masm.move32To64SignExtend(temp, temp64);
+ emitCreateBigInt(ins, Scalar::BigInt64, temp64, output, temp);
+
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitBigIntAsUintN(LBigIntAsUintN* ins) {
+ Register bits = ToRegister(ins->bits());
+ Register input = ToRegister(ins->input());
+
+ pushArg(bits);
+ pushArg(input);
+
+ using Fn = BigInt* (*)(JSContext*, HandleBigInt, int32_t);
+ callVM<Fn, jit::BigIntAsUintN>(ins);
+}
+
+void CodeGenerator::visitBigIntAsUintN64(LBigIntAsUintN64* ins) {
+ Register input = ToRegister(ins->input());
+ Register temp = ToRegister(ins->temp());
+ Register64 temp64 = ToRegister64(ins->temp64());
+ Register output = ToRegister(ins->output());
+
+ Label done, create;
+
+ masm.movePtr(input, output);
+
+ // Load the BigInt value as an uint64.
+ masm.loadBigInt64(input, temp64);
+
+ // Create a new BigInt when the input exceeds the uint64 range.
+ masm.branch32(Assembler::Above, Address(input, BigInt::offsetOfLength()),
+ Imm32(64 / BigInt::DigitBits), &create);
+
+ // And create a new BigInt when the input has the sign flag set.
+ masm.branchIfBigIntIsNonNegative(input, &done);
+
+ masm.bind(&create);
+ emitCreateBigInt(ins, Scalar::BigUint64, temp64, output, temp);
+
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitBigIntAsUintN32(LBigIntAsUintN32* ins) {
+ Register input = ToRegister(ins->input());
+ Register temp = ToRegister(ins->temp());
+ Register64 temp64 = ToRegister64(ins->temp64());
+ Register output = ToRegister(ins->output());
+
+ Label done, create;
+
+ masm.movePtr(input, output);
+
+ // Load the absolute value of the first digit.
+ masm.loadFirstBigIntDigitOrZero(input, temp);
+
+ // If the absolute value exceeds the uint32 range, create a new BigInt.
+#if JS_PUNBOX64
+ masm.branchPtr(Assembler::Above, temp, ImmWord(UINT32_MAX), &create);
+#endif
+
+ // Also create a new BigInt if we have more than one digit.
+ masm.branch32(Assembler::Above, Address(input, BigInt::offsetOfLength()),
+ Imm32(1), &create);
+
+ // And create a new BigInt when the input has the sign flag set.
+ masm.branchIfBigIntIsNonNegative(input, &done);
+
+ masm.bind(&create);
+
+ // |temp| stores the absolute value, negate it when the sign flag is set.
+ Label nonNegative;
+ masm.branchIfBigIntIsNonNegative(input, &nonNegative);
+ masm.negPtr(temp);
+ masm.bind(&nonNegative);
+
+ masm.move32To64ZeroExtend(temp, temp64);
+ emitCreateBigInt(ins, Scalar::BigUint64, temp64, output, temp);
+
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitGuardNonGCThing(LGuardNonGCThing* ins) {
+ ValueOperand input = ToValue(ins, LGuardNonGCThing::InputIndex);
+
+ Label bail;
+ masm.branchTestGCThing(Assembler::Equal, input, &bail);
+ bailoutFrom(&bail, ins->snapshot());
+}
+
+void CodeGenerator::visitToHashableNonGCThing(LToHashableNonGCThing* ins) {
+ ValueOperand input = ToValue(ins, LToHashableNonGCThing::InputIndex);
+ FloatRegister tempFloat = ToFloatRegister(ins->temp0());
+ ValueOperand output = ToOutValue(ins);
+
+ masm.toHashableNonGCThing(input, output, tempFloat);
+}
+
+void CodeGenerator::visitToHashableString(LToHashableString* ins) {
+ Register input = ToRegister(ins->input());
+ Register output = ToRegister(ins->output());
+
+ using Fn = JSAtom* (*)(JSContext*, JSString*);
+ auto* ool = oolCallVM<Fn, js::AtomizeString>(ins, ArgList(input),
+ StoreRegisterTo(output));
+
+ Label isAtom;
+ masm.branchTest32(Assembler::NonZero,
+ Address(input, JSString::offsetOfFlags()),
+ Imm32(JSString::ATOM_BIT), &isAtom);
+
+ masm.lookupStringInAtomCacheLastLookups(input, output, ool->entry());
+ masm.bind(&isAtom);
+ masm.movePtr(input, output);
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::visitToHashableValue(LToHashableValue* ins) {
+ ValueOperand input = ToValue(ins, LToHashableValue::InputIndex);
+ FloatRegister tempFloat = ToFloatRegister(ins->temp0());
+ ValueOperand output = ToOutValue(ins);
+
+ Register str = output.scratchReg();
+
+ using Fn = JSAtom* (*)(JSContext*, JSString*);
+ auto* ool =
+ oolCallVM<Fn, js::AtomizeString>(ins, ArgList(str), StoreRegisterTo(str));
+
+ masm.toHashableValue(input, output, tempFloat, ool->entry(), ool->rejoin());
+}
+
+void CodeGenerator::visitHashNonGCThing(LHashNonGCThing* ins) {
+ ValueOperand input = ToValue(ins, LHashNonGCThing::InputIndex);
+ Register temp = ToRegister(ins->temp0());
+ Register output = ToRegister(ins->output());
+
+ masm.prepareHashNonGCThing(input, output, temp);
+}
+
+void CodeGenerator::visitHashString(LHashString* ins) {
+ Register input = ToRegister(ins->input());
+ Register temp = ToRegister(ins->temp0());
+ Register output = ToRegister(ins->output());
+
+ masm.prepareHashString(input, output, temp);
+}
+
+void CodeGenerator::visitHashSymbol(LHashSymbol* ins) {
+ Register input = ToRegister(ins->input());
+ Register output = ToRegister(ins->output());
+
+ masm.prepareHashSymbol(input, output);
+}
+
+void CodeGenerator::visitHashBigInt(LHashBigInt* ins) {
+ Register input = ToRegister(ins->input());
+ Register temp0 = ToRegister(ins->temp0());
+ Register temp1 = ToRegister(ins->temp1());
+ Register temp2 = ToRegister(ins->temp2());
+ Register output = ToRegister(ins->output());
+
+ masm.prepareHashBigInt(input, output, temp0, temp1, temp2);
+}
+
+void CodeGenerator::visitHashObject(LHashObject* ins) {
+ Register setObj = ToRegister(ins->setObject());
+ ValueOperand input = ToValue(ins, LHashObject::InputIndex);
+ Register temp0 = ToRegister(ins->temp0());
+ Register temp1 = ToRegister(ins->temp1());
+ Register temp2 = ToRegister(ins->temp2());
+ Register temp3 = ToRegister(ins->temp3());
+ Register output = ToRegister(ins->output());
+
+ masm.prepareHashObject(setObj, input, output, temp0, temp1, temp2, temp3);
+}
+
+void CodeGenerator::visitHashValue(LHashValue* ins) {
+ Register setObj = ToRegister(ins->setObject());
+ ValueOperand input = ToValue(ins, LHashValue::InputIndex);
+ Register temp0 = ToRegister(ins->temp0());
+ Register temp1 = ToRegister(ins->temp1());
+ Register temp2 = ToRegister(ins->temp2());
+ Register temp3 = ToRegister(ins->temp3());
+ Register output = ToRegister(ins->output());
+
+ masm.prepareHashValue(setObj, input, output, temp0, temp1, temp2, temp3);
+}
+
+void CodeGenerator::visitSetObjectHasNonBigInt(LSetObjectHasNonBigInt* ins) {
+ Register setObj = ToRegister(ins->setObject());
+ ValueOperand input = ToValue(ins, LSetObjectHasNonBigInt::InputIndex);
+ Register hash = ToRegister(ins->hash());
+ Register temp0 = ToRegister(ins->temp0());
+ Register temp1 = ToRegister(ins->temp1());
+ Register output = ToRegister(ins->output());
+
+ masm.setObjectHasNonBigInt(setObj, input, hash, output, temp0, temp1);
+}
+
+void CodeGenerator::visitSetObjectHasBigInt(LSetObjectHasBigInt* ins) {
+ Register setObj = ToRegister(ins->setObject());
+ ValueOperand input = ToValue(ins, LSetObjectHasBigInt::InputIndex);
+ Register hash = ToRegister(ins->hash());
+ Register temp0 = ToRegister(ins->temp0());
+ Register temp1 = ToRegister(ins->temp1());
+ Register temp2 = ToRegister(ins->temp2());
+ Register temp3 = ToRegister(ins->temp3());
+ Register output = ToRegister(ins->output());
+
+ masm.setObjectHasBigInt(setObj, input, hash, output, temp0, temp1, temp2,
+ temp3);
+}
+
+void CodeGenerator::visitSetObjectHasValue(LSetObjectHasValue* ins) {
+ Register setObj = ToRegister(ins->setObject());
+ ValueOperand input = ToValue(ins, LSetObjectHasValue::InputIndex);
+ Register hash = ToRegister(ins->hash());
+ Register temp0 = ToRegister(ins->temp0());
+ Register temp1 = ToRegister(ins->temp1());
+ Register temp2 = ToRegister(ins->temp2());
+ Register temp3 = ToRegister(ins->temp3());
+ Register output = ToRegister(ins->output());
+
+ masm.setObjectHasValue(setObj, input, hash, output, temp0, temp1, temp2,
+ temp3);
+}
+
+void CodeGenerator::visitSetObjectHasValueVMCall(
+ LSetObjectHasValueVMCall* ins) {
+ pushArg(ToValue(ins, LSetObjectHasValueVMCall::InputIndex));
+ pushArg(ToRegister(ins->setObject()));
+
+ using Fn = bool (*)(JSContext*, HandleObject, HandleValue, bool*);
+ callVM<Fn, jit::SetObjectHas>(ins);
+}
+
+void CodeGenerator::visitSetObjectSize(LSetObjectSize* ins) {
+ Register setObj = ToRegister(ins->setObject());
+ Register output = ToRegister(ins->output());
+
+ masm.loadSetObjectSize(setObj, output);
+}
+
+void CodeGenerator::visitMapObjectHasNonBigInt(LMapObjectHasNonBigInt* ins) {
+ Register mapObj = ToRegister(ins->mapObject());
+ ValueOperand input = ToValue(ins, LMapObjectHasNonBigInt::InputIndex);
+ Register hash = ToRegister(ins->hash());
+ Register temp0 = ToRegister(ins->temp0());
+ Register temp1 = ToRegister(ins->temp1());
+ Register output = ToRegister(ins->output());
+
+ masm.mapObjectHasNonBigInt(mapObj, input, hash, output, temp0, temp1);
+}
+
+void CodeGenerator::visitMapObjectHasBigInt(LMapObjectHasBigInt* ins) {
+ Register mapObj = ToRegister(ins->mapObject());
+ ValueOperand input = ToValue(ins, LMapObjectHasBigInt::InputIndex);
+ Register hash = ToRegister(ins->hash());
+ Register temp0 = ToRegister(ins->temp0());
+ Register temp1 = ToRegister(ins->temp1());
+ Register temp2 = ToRegister(ins->temp2());
+ Register temp3 = ToRegister(ins->temp3());
+ Register output = ToRegister(ins->output());
+
+ masm.mapObjectHasBigInt(mapObj, input, hash, output, temp0, temp1, temp2,
+ temp3);
+}
+
+void CodeGenerator::visitMapObjectHasValue(LMapObjectHasValue* ins) {
+ Register mapObj = ToRegister(ins->mapObject());
+ ValueOperand input = ToValue(ins, LMapObjectHasValue::InputIndex);
+ Register hash = ToRegister(ins->hash());
+ Register temp0 = ToRegister(ins->temp0());
+ Register temp1 = ToRegister(ins->temp1());
+ Register temp2 = ToRegister(ins->temp2());
+ Register temp3 = ToRegister(ins->temp3());
+ Register output = ToRegister(ins->output());
+
+ masm.mapObjectHasValue(mapObj, input, hash, output, temp0, temp1, temp2,
+ temp3);
+}
+
+void CodeGenerator::visitMapObjectHasValueVMCall(
+ LMapObjectHasValueVMCall* ins) {
+ pushArg(ToValue(ins, LMapObjectHasValueVMCall::InputIndex));
+ pushArg(ToRegister(ins->mapObject()));
+
+ using Fn = bool (*)(JSContext*, HandleObject, HandleValue, bool*);
+ callVM<Fn, jit::MapObjectHas>(ins);
+}
+
+void CodeGenerator::visitMapObjectGetNonBigInt(LMapObjectGetNonBigInt* ins) {
+ Register mapObj = ToRegister(ins->mapObject());
+ ValueOperand input = ToValue(ins, LMapObjectGetNonBigInt::InputIndex);
+ Register hash = ToRegister(ins->hash());
+ Register temp0 = ToRegister(ins->temp0());
+ Register temp1 = ToRegister(ins->temp1());
+ ValueOperand output = ToOutValue(ins);
+
+ masm.mapObjectGetNonBigInt(mapObj, input, hash, output, temp0, temp1,
+ output.scratchReg());
+}
+
+void CodeGenerator::visitMapObjectGetBigInt(LMapObjectGetBigInt* ins) {
+ Register mapObj = ToRegister(ins->mapObject());
+ ValueOperand input = ToValue(ins, LMapObjectGetBigInt::InputIndex);
+ Register hash = ToRegister(ins->hash());
+ Register temp0 = ToRegister(ins->temp0());
+ Register temp1 = ToRegister(ins->temp1());
+ Register temp2 = ToRegister(ins->temp2());
+ Register temp3 = ToRegister(ins->temp3());
+ ValueOperand output = ToOutValue(ins);
+
+ masm.mapObjectGetBigInt(mapObj, input, hash, output, temp0, temp1, temp2,
+ temp3, output.scratchReg());
+}
+
+void CodeGenerator::visitMapObjectGetValue(LMapObjectGetValue* ins) {
+ Register mapObj = ToRegister(ins->mapObject());
+ ValueOperand input = ToValue(ins, LMapObjectGetValue::InputIndex);
+ Register hash = ToRegister(ins->hash());
+ Register temp0 = ToRegister(ins->temp0());
+ Register temp1 = ToRegister(ins->temp1());
+ Register temp2 = ToRegister(ins->temp2());
+ Register temp3 = ToRegister(ins->temp3());
+ ValueOperand output = ToOutValue(ins);
+
+ masm.mapObjectGetValue(mapObj, input, hash, output, temp0, temp1, temp2,
+ temp3, output.scratchReg());
+}
+
+void CodeGenerator::visitMapObjectGetValueVMCall(
+ LMapObjectGetValueVMCall* ins) {
+ pushArg(ToValue(ins, LMapObjectGetValueVMCall::InputIndex));
+ pushArg(ToRegister(ins->mapObject()));
+
+ using Fn =
+ bool (*)(JSContext*, HandleObject, HandleValue, MutableHandleValue);
+ callVM<Fn, jit::MapObjectGet>(ins);
+}
+
+void CodeGenerator::visitMapObjectSize(LMapObjectSize* ins) {
+ Register mapObj = ToRegister(ins->mapObject());
+ Register output = ToRegister(ins->output());
+
+ masm.loadMapObjectSize(mapObj, output);
+}
+
+template <size_t NumDefs>
+void CodeGenerator::emitIonToWasmCallBase(LIonToWasmCallBase<NumDefs>* lir) {
+ wasm::JitCallStackArgVector stackArgs;
+ masm.propagateOOM(stackArgs.reserve(lir->numOperands()));
+ if (masm.oom()) {
+ return;
+ }
+
+ MIonToWasmCall* mir = lir->mir();
+ const wasm::FuncExport& funcExport = mir->funcExport();
+ const wasm::FuncType& sig =
+ mir->instance()->metadata().getFuncExportType(funcExport);
+
+ WasmABIArgGenerator abi;
+ for (size_t i = 0; i < lir->numOperands(); i++) {
+ MIRType argMir;
+ switch (sig.args()[i].kind()) {
+ case wasm::ValType::I32:
+ case wasm::ValType::I64:
+ case wasm::ValType::F32:
+ case wasm::ValType::F64:
+ argMir = sig.args()[i].toMIRType();
+ break;
+ case wasm::ValType::V128:
+ MOZ_CRASH("unexpected argument type when calling from ion to wasm");
+ case wasm::ValType::Ref:
+ // temporarilyUnsupportedReftypeForEntry() restricts args to externref
+ MOZ_RELEASE_ASSERT(sig.args()[i].refType().isExtern());
+ // Argument is boxed on the JS side to an anyref, so passed as a
+ // pointer here.
+ argMir = sig.args()[i].toMIRType();
+ break;
+ }
+
+ ABIArg arg = abi.next(argMir);
+ switch (arg.kind()) {
+ case ABIArg::GPR:
+ case ABIArg::FPU: {
+ MOZ_ASSERT(ToAnyRegister(lir->getOperand(i)) == arg.reg());
+ stackArgs.infallibleEmplaceBack(wasm::JitCallStackArg());
+ break;
+ }
+ case ABIArg::Stack: {
+ const LAllocation* larg = lir->getOperand(i);
+ if (larg->isConstant()) {
+ stackArgs.infallibleEmplaceBack(ToInt32(larg));
+ } else if (larg->isGeneralReg()) {
+ stackArgs.infallibleEmplaceBack(ToRegister(larg));
+ } else if (larg->isFloatReg()) {
+ stackArgs.infallibleEmplaceBack(ToFloatRegister(larg));
+ } else {
+ // Always use the stack pointer here because GenerateDirectCallFromJit
+ // depends on this.
+ Address addr = ToAddress<BaseRegForAddress::SP>(larg);
+ stackArgs.infallibleEmplaceBack(addr);
+ }
+ break;
+ }
+#ifdef JS_CODEGEN_REGISTER_PAIR
+ case ABIArg::GPR_PAIR: {
+ MOZ_CRASH(
+ "no way to pass i64, and wasm uses hardfp for function calls");
+ }
+#endif
+ case ABIArg::Uninitialized: {
+ MOZ_CRASH("Uninitialized ABIArg kind");
+ }
+ }
+ }
+
+ const wasm::ValTypeVector& results = sig.results();
+ if (results.length() == 0) {
+ MOZ_ASSERT(lir->mir()->type() == MIRType::Value);
+ } else {
+ MOZ_ASSERT(results.length() == 1, "multi-value return unimplemented");
+ switch (results[0].kind()) {
+ case wasm::ValType::I32:
+ MOZ_ASSERT(lir->mir()->type() == MIRType::Int32);
+ MOZ_ASSERT(ToRegister(lir->output()) == ReturnReg);
+ break;
+ case wasm::ValType::I64:
+ MOZ_ASSERT(lir->mir()->type() == MIRType::Int64);
+ MOZ_ASSERT(ToOutRegister64(lir) == ReturnReg64);
+ break;
+ case wasm::ValType::F32:
+ MOZ_ASSERT(lir->mir()->type() == MIRType::Float32);
+ MOZ_ASSERT(ToFloatRegister(lir->output()) == ReturnFloat32Reg);
+ break;
+ case wasm::ValType::F64:
+ MOZ_ASSERT(lir->mir()->type() == MIRType::Double);
+ MOZ_ASSERT(ToFloatRegister(lir->output()) == ReturnDoubleReg);
+ break;
+ case wasm::ValType::V128:
+ MOZ_CRASH("unexpected return type when calling from ion to wasm");
+ case wasm::ValType::Ref:
+ // The wasm stubs layer unboxes anything that needs to be unboxed
+ // and leaves it in a Value. A FuncRef/EqRef we could in principle
+ // leave it as a raw object pointer but for now it complicates the
+ // API to do so.
+ MOZ_ASSERT(lir->mir()->type() == MIRType::Value);
+ break;
+ }
+ }
+
+ WasmInstanceObject* instObj = lir->mir()->instanceObject();
+
+ Register scratch = ToRegister(lir->temp());
+
+ uint32_t callOffset;
+ ensureOsiSpace();
+ GenerateDirectCallFromJit(masm, funcExport, instObj->instance(), stackArgs,
+ scratch, &callOffset);
+
+ // Add the instance object to the constant pool, so it is transferred to
+ // the owning IonScript and so that it gets traced as long as the IonScript
+ // lives.
+
+ uint32_t unused;
+ masm.propagateOOM(graph.addConstantToPool(ObjectValue(*instObj), &unused));
+
+ markSafepointAt(callOffset, lir);
+}
+
+void CodeGenerator::visitIonToWasmCall(LIonToWasmCall* lir) {
+ emitIonToWasmCallBase(lir);
+}
+void CodeGenerator::visitIonToWasmCallV(LIonToWasmCallV* lir) {
+ emitIonToWasmCallBase(lir);
+}
+void CodeGenerator::visitIonToWasmCallI64(LIonToWasmCallI64* lir) {
+ emitIonToWasmCallBase(lir);
+}
+
+void CodeGenerator::visitWasmNullConstant(LWasmNullConstant* lir) {
+ masm.xorPtr(ToRegister(lir->output()), ToRegister(lir->output()));
+}
+
+void CodeGenerator::visitWasmFence(LWasmFence* lir) {
+ MOZ_ASSERT(gen->compilingWasm());
+ masm.memoryBarrier(MembarFull);
+}
+
+void CodeGenerator::visitWasmAnyRefFromJSValue(LWasmAnyRefFromJSValue* lir) {
+ ValueOperand input = ToValue(lir, LWasmAnyRefFromJSValue::InputIndex);
+ Register output = ToRegister(lir->output());
+ FloatRegister tempFloat = ToFloatRegister(lir->temp0());
+
+ using Fn = JSObject* (*)(JSContext* cx, HandleValue value);
+ OutOfLineCode* oolBoxValue = oolCallVM<Fn, wasm::AnyRef::boxValue>(
+ lir, ArgList(input), StoreRegisterTo(output));
+ masm.convertValueToWasmAnyRef(input, output, tempFloat, oolBoxValue->entry());
+ masm.bind(oolBoxValue->rejoin());
+}
+
+void CodeGenerator::visitWasmAnyRefFromJSObject(LWasmAnyRefFromJSObject* lir) {
+ Register input = ToRegister(lir->input());
+ Register output = ToRegister(lir->output());
+ masm.convertObjectToWasmAnyRef(input, output);
+}
+
+void CodeGenerator::visitWasmAnyRefFromJSString(LWasmAnyRefFromJSString* lir) {
+ Register input = ToRegister(lir->input());
+ Register output = ToRegister(lir->output());
+ masm.convertStringToWasmAnyRef(input, output);
+}
+
+void CodeGenerator::visitWasmNewI31Ref(LWasmNewI31Ref* lir) {
+ Register value = ToRegister(lir->value());
+ Register output = ToRegister(lir->output());
+ masm.truncate32ToWasmI31Ref(value, output);
+}
+
+void CodeGenerator::visitWasmI31RefGet(LWasmI31RefGet* lir) {
+ Register value = ToRegister(lir->value());
+ Register output = ToRegister(lir->output());
+ if (lir->mir()->wideningOp() == wasm::FieldWideningOp::Signed) {
+ masm.convertWasmI31RefTo32Signed(value, output);
+ } else {
+ masm.convertWasmI31RefTo32Unsigned(value, output);
+ }
+}
+
+#ifdef FUZZING_JS_FUZZILLI
+void CodeGenerator::emitFuzzilliHashDouble(FloatRegister floatDouble,
+ Register scratch, Register output) {
+# ifdef JS_PUNBOX64
+ Register64 reg64_1(scratch);
+ Register64 reg64_2(output);
+ masm.moveDoubleToGPR64(floatDouble, reg64_1);
+ masm.move64(reg64_1, reg64_2);
+ masm.rshift64(Imm32(32), reg64_2);
+ masm.add32(scratch, output);
+# else
+ Register64 reg64(scratch, output);
+ masm.moveDoubleToGPR64(floatDouble, reg64);
+ masm.add32(scratch, output);
+# endif
+}
+
+void CodeGenerator::emitFuzzilliHashObject(LInstruction* lir, Register obj,
+ Register output) {
+ using Fn = void (*)(JSContext* cx, JSObject* obj, uint32_t* out);
+ OutOfLineCode* ool = oolCallVM<Fn, FuzzilliHashObjectInl>(
+ lir, ArgList(obj), StoreRegisterTo(output));
+
+ masm.jump(ool->entry());
+ masm.bind(ool->rejoin());
+}
+
+void CodeGenerator::emitFuzzilliHashBigInt(Register bigInt, Register output) {
+ LiveRegisterSet volatileRegs(GeneralRegisterSet::All(),
+ FloatRegisterSet::All());
+ volatileRegs.takeUnchecked(output);
+ masm.PushRegsInMask(volatileRegs);
+
+ using Fn = uint32_t (*)(BigInt* bigInt);
+ masm.setupUnalignedABICall(output);
+ masm.passABIArg(bigInt);
+ masm.callWithABI<Fn, js::FuzzilliHashBigInt>();
+ masm.storeCallInt32Result(output);
+
+ masm.PopRegsInMask(volatileRegs);
+}
+
+void CodeGenerator::visitFuzzilliHashV(LFuzzilliHashV* ins) {
+ MOZ_ASSERT(ins->mir()->getOperand(0)->type() == MIRType::Value);
+
+ ValueOperand value = ToValue(ins, 0);
+
+ Label isDouble, isObject, isBigInt, done;
+
+ FloatRegister scratchFloat = ToFloatRegister(ins->getTemp(1));
+ Register scratch = ToRegister(ins->getTemp(0));
+ Register output = ToRegister(ins->output());
+ MOZ_ASSERT(scratch != output);
+
+# ifdef JS_PUNBOX64
+ Register tagReg = ToRegister(ins->getTemp(0));
+ masm.splitTag(value, tagReg);
+# else
+ Register tagReg = value.typeReg();
+# endif
+
+ Label noBigInt;
+ masm.branchTestBigInt(Assembler::NotEqual, tagReg, &noBigInt);
+ masm.unboxBigInt(value, scratch);
+ masm.jump(&isBigInt);
+ masm.bind(&noBigInt);
+
+ Label noObject;
+ masm.branchTestObject(Assembler::NotEqual, tagReg, &noObject);
+ masm.unboxObject(value, scratch);
+ masm.jump(&isObject);
+ masm.bind(&noObject);
+
+ Label noInt32;
+ masm.branchTestInt32(Assembler::NotEqual, tagReg, &noInt32);
+ masm.unboxInt32(value, scratch);
+ masm.convertInt32ToDouble(scratch, scratchFloat);
+ masm.jump(&isDouble);
+ masm.bind(&noInt32);
+
+ Label noNull;
+ masm.branchTestNull(Assembler::NotEqual, tagReg, &noNull);
+ masm.move32(Imm32(1), scratch);
+ masm.convertInt32ToDouble(scratch, scratchFloat);
+ masm.jump(&isDouble);
+ masm.bind(&noNull);
+
+ Label noUndefined;
+ masm.branchTestUndefined(Assembler::NotEqual, tagReg, &noUndefined);
+ masm.move32(Imm32(2), scratch);
+ masm.convertInt32ToDouble(scratch, scratchFloat);
+ masm.jump(&isDouble);
+ masm.bind(&noUndefined);
+
+ Label noBoolean;
+ masm.branchTestBoolean(Assembler::NotEqual, tagReg, &noBoolean);
+ masm.unboxBoolean(value, scratch);
+ masm.add32(Imm32(3), scratch);
+ masm.convertInt32ToDouble(scratch, scratchFloat);
+ masm.jump(&isDouble);
+ masm.bind(&noBoolean);
+
+ Label noDouble;
+ masm.branchTestDouble(Assembler::NotEqual, tagReg, &noDouble);
+ masm.unboxDouble(value, scratchFloat);
+ masm.canonicalizeDoubleIfDeterministic(scratchFloat);
+
+ masm.jump(&isDouble);
+ masm.bind(&noDouble);
+ masm.move32(Imm32(0), output);
+ masm.jump(&done);
+
+ masm.bind(&isBigInt);
+ emitFuzzilliHashBigInt(scratch, output);
+ masm.jump(&done);
+
+ masm.bind(&isObject);
+ emitFuzzilliHashObject(ins, scratch, output);
+ masm.jump(&done);
+
+ masm.bind(&isDouble);
+ emitFuzzilliHashDouble(scratchFloat, scratch, output);
+
+ masm.bind(&done);
+}
+
+void CodeGenerator::visitFuzzilliHashT(LFuzzilliHashT* ins) {
+ const LAllocation* value = ins->value();
+ MIRType mirType = ins->mir()->getOperand(0)->type();
+
+ FloatRegister scratchFloat = ToFloatRegister(ins->getTemp(1));
+ Register scratch = ToRegister(ins->getTemp(0));
+ Register output = ToRegister(ins->output());
+ MOZ_ASSERT(scratch != output);
+
+ if (mirType == MIRType::Object) {
+ MOZ_ASSERT(value->isGeneralReg());
+ masm.mov(value->toGeneralReg()->reg(), scratch);
+ emitFuzzilliHashObject(ins, scratch, output);
+ } else if (mirType == MIRType::BigInt) {
+ MOZ_ASSERT(value->isGeneralReg());
+ masm.mov(value->toGeneralReg()->reg(), scratch);
+ emitFuzzilliHashBigInt(scratch, output);
+ } else if (mirType == MIRType::Double) {
+ MOZ_ASSERT(value->isFloatReg());
+ masm.moveDouble(value->toFloatReg()->reg(), scratchFloat);
+ masm.canonicalizeDoubleIfDeterministic(scratchFloat);
+ emitFuzzilliHashDouble(scratchFloat, scratch, output);
+ } else if (mirType == MIRType::Float32) {
+ MOZ_ASSERT(value->isFloatReg());
+ masm.convertFloat32ToDouble(value->toFloatReg()->reg(), scratchFloat);
+ masm.canonicalizeDoubleIfDeterministic(scratchFloat);
+ emitFuzzilliHashDouble(scratchFloat, scratch, output);
+ } else if (mirType == MIRType::Int32) {
+ MOZ_ASSERT(value->isGeneralReg());
+ masm.mov(value->toGeneralReg()->reg(), scratch);
+ masm.convertInt32ToDouble(scratch, scratchFloat);
+ emitFuzzilliHashDouble(scratchFloat, scratch, output);
+ } else if (mirType == MIRType::Null) {
+ MOZ_ASSERT(value->isBogus());
+ masm.move32(Imm32(1), scratch);
+ masm.convertInt32ToDouble(scratch, scratchFloat);
+ emitFuzzilliHashDouble(scratchFloat, scratch, output);
+ } else if (mirType == MIRType::Undefined) {
+ MOZ_ASSERT(value->isBogus());
+ masm.move32(Imm32(2), scratch);
+ masm.convertInt32ToDouble(scratch, scratchFloat);
+ emitFuzzilliHashDouble(scratchFloat, scratch, output);
+ } else if (mirType == MIRType::Boolean) {
+ MOZ_ASSERT(value->isGeneralReg());
+ masm.mov(value->toGeneralReg()->reg(), scratch);
+ masm.add32(Imm32(3), scratch);
+ masm.convertInt32ToDouble(scratch, scratchFloat);
+ emitFuzzilliHashDouble(scratchFloat, scratch, output);
+ } else {
+ MOZ_CRASH("unexpected type");
+ }
+}
+
+void CodeGenerator::visitFuzzilliHashStore(LFuzzilliHashStore* ins) {
+ const LAllocation* value = ins->value();
+ MOZ_ASSERT(ins->mir()->getOperand(0)->type() == MIRType::Int32);
+ MOZ_ASSERT(value->isGeneralReg());
+
+ Register scratchJSContext = ToRegister(ins->getTemp(0));
+ Register scratch = ToRegister(ins->getTemp(1));
+
+ masm.loadJSContext(scratchJSContext);
+
+ // stats
+ Address addrExecHashInputs(scratchJSContext,
+ offsetof(JSContext, executionHashInputs));
+ masm.load32(addrExecHashInputs, scratch);
+ masm.add32(Imm32(1), scratch);
+ masm.store32(scratch, addrExecHashInputs);
+
+ Address addrExecHash(scratchJSContext, offsetof(JSContext, executionHash));
+ masm.load32(addrExecHash, scratch);
+ masm.add32(value->toGeneralReg()->reg(), scratch);
+ masm.rotateLeft(Imm32(1), scratch, scratch);
+ masm.store32(scratch, addrExecHash);
+}
+#endif
+
+static_assert(!std::is_polymorphic_v<CodeGenerator>,
+ "CodeGenerator should not have any virtual methods");
+
+} // namespace jit
+} // namespace js