summaryrefslogtreecommitdiffstats
path: root/js/src/jit/arm64/vixl/Assembler-vixl.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'js/src/jit/arm64/vixl/Assembler-vixl.cpp')
-rw-r--r--js/src/jit/arm64/vixl/Assembler-vixl.cpp5326
1 files changed, 5326 insertions, 0 deletions
diff --git a/js/src/jit/arm64/vixl/Assembler-vixl.cpp b/js/src/jit/arm64/vixl/Assembler-vixl.cpp
new file mode 100644
index 0000000000..d96c74f81b
--- /dev/null
+++ b/js/src/jit/arm64/vixl/Assembler-vixl.cpp
@@ -0,0 +1,5326 @@
+// Copyright 2015, VIXL authors
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "jit/arm64/vixl/Assembler-vixl.h"
+
+#include <cmath>
+
+#include "jit/arm64/vixl/MacroAssembler-vixl.h"
+
+namespace vixl {
+
+// CPURegList utilities.
+CPURegister CPURegList::PopLowestIndex() {
+ if (IsEmpty()) {
+ return NoCPUReg;
+ }
+ int index = CountTrailingZeros(list_);
+ VIXL_ASSERT((1ULL << index) & list_);
+ Remove(index);
+ return CPURegister(index, size_, type_);
+}
+
+
+CPURegister CPURegList::PopHighestIndex() {
+ VIXL_ASSERT(IsValid());
+ if (IsEmpty()) {
+ return NoCPUReg;
+ }
+ int index = CountLeadingZeros(list_);
+ index = kRegListSizeInBits - 1 - index;
+ VIXL_ASSERT((1ULL << index) & list_);
+ Remove(index);
+ return CPURegister(index, size_, type_);
+}
+
+
+bool CPURegList::IsValid() const {
+ if ((type_ == CPURegister::kRegister) ||
+ (type_ == CPURegister::kVRegister)) {
+ bool is_valid = true;
+ // Try to create a CPURegister for each element in the list.
+ for (int i = 0; i < kRegListSizeInBits; i++) {
+ if (((list_ >> i) & 1) != 0) {
+ is_valid &= CPURegister(i, size_, type_).IsValid();
+ }
+ }
+ return is_valid;
+ } else if (type_ == CPURegister::kNoRegister) {
+ // We can't use IsEmpty here because that asserts IsValid().
+ return list_ == 0;
+ } else {
+ return false;
+ }
+}
+
+
+void CPURegList::RemoveCalleeSaved() {
+ if (type() == CPURegister::kRegister) {
+ Remove(GetCalleeSaved(RegisterSizeInBits()));
+ } else if (type() == CPURegister::kVRegister) {
+ Remove(GetCalleeSavedV(RegisterSizeInBits()));
+ } else {
+ VIXL_ASSERT(type() == CPURegister::kNoRegister);
+ VIXL_ASSERT(IsEmpty());
+ // The list must already be empty, so do nothing.
+ }
+}
+
+
+CPURegList CPURegList::Union(const CPURegList& list_1,
+ const CPURegList& list_2,
+ const CPURegList& list_3) {
+ return Union(list_1, Union(list_2, list_3));
+}
+
+
+CPURegList CPURegList::Union(const CPURegList& list_1,
+ const CPURegList& list_2,
+ const CPURegList& list_3,
+ const CPURegList& list_4) {
+ return Union(Union(list_1, list_2), Union(list_3, list_4));
+}
+
+
+CPURegList CPURegList::Intersection(const CPURegList& list_1,
+ const CPURegList& list_2,
+ const CPURegList& list_3) {
+ return Intersection(list_1, Intersection(list_2, list_3));
+}
+
+
+CPURegList CPURegList::Intersection(const CPURegList& list_1,
+ const CPURegList& list_2,
+ const CPURegList& list_3,
+ const CPURegList& list_4) {
+ return Intersection(Intersection(list_1, list_2),
+ Intersection(list_3, list_4));
+}
+
+
+CPURegList CPURegList::GetCalleeSaved(unsigned size) {
+ return CPURegList(CPURegister::kRegister, size, 19, 29);
+}
+
+
+CPURegList CPURegList::GetCalleeSavedV(unsigned size) {
+ return CPURegList(CPURegister::kVRegister, size, 8, 15);
+}
+
+
+CPURegList CPURegList::GetCallerSaved(unsigned size) {
+ // Registers x0-x18 and lr (x30) are caller-saved.
+ CPURegList list = CPURegList(CPURegister::kRegister, size, 0, 18);
+ // Do not use lr directly to avoid initialisation order fiasco bugs for users.
+ list.Combine(Register(30, kXRegSize));
+ return list;
+}
+
+
+CPURegList CPURegList::GetCallerSavedV(unsigned size) {
+ // Registers d0-d7 and d16-d31 are caller-saved.
+ CPURegList list = CPURegList(CPURegister::kVRegister, size, 0, 7);
+ list.Combine(CPURegList(CPURegister::kVRegister, size, 16, 31));
+ return list;
+}
+
+
+const CPURegList kCalleeSaved = CPURegList::GetCalleeSaved();
+const CPURegList kCalleeSavedV = CPURegList::GetCalleeSavedV();
+const CPURegList kCallerSaved = CPURegList::GetCallerSaved();
+const CPURegList kCallerSavedV = CPURegList::GetCallerSavedV();
+
+
+// Registers.
+#define WREG(n) w##n,
+const Register Register::wregisters[] = {
+REGISTER_CODE_LIST(WREG)
+};
+#undef WREG
+
+#define XREG(n) x##n,
+const Register Register::xregisters[] = {
+REGISTER_CODE_LIST(XREG)
+};
+#undef XREG
+
+#define BREG(n) b##n,
+const VRegister VRegister::bregisters[] = {
+REGISTER_CODE_LIST(BREG)
+};
+#undef BREG
+
+#define HREG(n) h##n,
+const VRegister VRegister::hregisters[] = {
+REGISTER_CODE_LIST(HREG)
+};
+#undef HREG
+
+#define SREG(n) s##n,
+const VRegister VRegister::sregisters[] = {
+REGISTER_CODE_LIST(SREG)
+};
+#undef SREG
+
+#define DREG(n) d##n,
+const VRegister VRegister::dregisters[] = {
+REGISTER_CODE_LIST(DREG)
+};
+#undef DREG
+
+#define QREG(n) q##n,
+const VRegister VRegister::qregisters[] = {
+REGISTER_CODE_LIST(QREG)
+};
+#undef QREG
+
+#define VREG(n) v##n,
+const VRegister VRegister::vregisters[] = {
+REGISTER_CODE_LIST(VREG)
+};
+#undef VREG
+
+
+const Register& Register::WRegFromCode(unsigned code) {
+ if (code == kSPRegInternalCode) {
+ return wsp;
+ } else {
+ VIXL_ASSERT(code < kNumberOfRegisters);
+ return wregisters[code];
+ }
+}
+
+
+const Register& Register::XRegFromCode(unsigned code) {
+ if (code == kSPRegInternalCode) {
+ return sp;
+ } else {
+ VIXL_ASSERT(code < kNumberOfRegisters);
+ return xregisters[code];
+ }
+}
+
+
+const VRegister& VRegister::BRegFromCode(unsigned code) {
+ VIXL_ASSERT(code < kNumberOfVRegisters);
+ return bregisters[code];
+}
+
+
+const VRegister& VRegister::HRegFromCode(unsigned code) {
+ VIXL_ASSERT(code < kNumberOfVRegisters);
+ return hregisters[code];
+}
+
+
+const VRegister& VRegister::SRegFromCode(unsigned code) {
+ VIXL_ASSERT(code < kNumberOfVRegisters);
+ return sregisters[code];
+}
+
+
+const VRegister& VRegister::DRegFromCode(unsigned code) {
+ VIXL_ASSERT(code < kNumberOfVRegisters);
+ return dregisters[code];
+}
+
+
+const VRegister& VRegister::QRegFromCode(unsigned code) {
+ VIXL_ASSERT(code < kNumberOfVRegisters);
+ return qregisters[code];
+}
+
+
+const VRegister& VRegister::VRegFromCode(unsigned code) {
+ VIXL_ASSERT(code < kNumberOfVRegisters);
+ return vregisters[code];
+}
+
+
+const Register& CPURegister::W() const {
+ VIXL_ASSERT(IsValidRegister());
+ return Register::WRegFromCode(code_);
+}
+
+
+const Register& CPURegister::X() const {
+ VIXL_ASSERT(IsValidRegister());
+ return Register::XRegFromCode(code_);
+}
+
+
+const VRegister& CPURegister::B() const {
+ VIXL_ASSERT(IsValidVRegister());
+ return VRegister::BRegFromCode(code_);
+}
+
+
+const VRegister& CPURegister::H() const {
+ VIXL_ASSERT(IsValidVRegister());
+ return VRegister::HRegFromCode(code_);
+}
+
+
+const VRegister& CPURegister::S() const {
+ VIXL_ASSERT(IsValidVRegister());
+ return VRegister::SRegFromCode(code_);
+}
+
+
+const VRegister& CPURegister::D() const {
+ VIXL_ASSERT(IsValidVRegister());
+ return VRegister::DRegFromCode(code_);
+}
+
+
+const VRegister& CPURegister::Q() const {
+ VIXL_ASSERT(IsValidVRegister());
+ return VRegister::QRegFromCode(code_);
+}
+
+
+const VRegister& CPURegister::V() const {
+ VIXL_ASSERT(IsValidVRegister());
+ return VRegister::VRegFromCode(code_);
+}
+
+
+// Operand.
+Operand::Operand(int64_t immediate)
+ : immediate_(immediate),
+ reg_(NoReg),
+ shift_(NO_SHIFT),
+ extend_(NO_EXTEND),
+ shift_amount_(0) {}
+
+
+Operand::Operand(Register reg, Shift shift, unsigned shift_amount)
+ : reg_(reg),
+ shift_(shift),
+ extend_(NO_EXTEND),
+ shift_amount_(shift_amount) {
+ VIXL_ASSERT(shift != MSL);
+ VIXL_ASSERT(reg.Is64Bits() || (shift_amount < kWRegSize));
+ VIXL_ASSERT(reg.Is32Bits() || (shift_amount < kXRegSize));
+ VIXL_ASSERT(!reg.IsSP());
+}
+
+
+Operand::Operand(Register reg, Extend extend, unsigned shift_amount)
+ : reg_(reg),
+ shift_(NO_SHIFT),
+ extend_(extend),
+ shift_amount_(shift_amount) {
+ VIXL_ASSERT(reg.IsValid());
+ VIXL_ASSERT(shift_amount <= 4);
+ VIXL_ASSERT(!reg.IsSP());
+
+ // Extend modes SXTX and UXTX require a 64-bit register.
+ VIXL_ASSERT(reg.Is64Bits() || ((extend != SXTX) && (extend != UXTX)));
+}
+
+
+bool Operand::IsImmediate() const {
+ return reg_.Is(NoReg);
+}
+
+
+bool Operand::IsShiftedRegister() const {
+ return reg_.IsValid() && (shift_ != NO_SHIFT);
+}
+
+
+bool Operand::IsExtendedRegister() const {
+ return reg_.IsValid() && (extend_ != NO_EXTEND);
+}
+
+
+bool Operand::IsZero() const {
+ if (IsImmediate()) {
+ return immediate() == 0;
+ } else {
+ return reg().IsZero();
+ }
+}
+
+
+Operand Operand::ToExtendedRegister() const {
+ VIXL_ASSERT(IsShiftedRegister());
+ VIXL_ASSERT((shift_ == LSL) && (shift_amount_ <= 4));
+ return Operand(reg_, reg_.Is64Bits() ? UXTX : UXTW, shift_amount_);
+}
+
+
+// MemOperand
+MemOperand::MemOperand(Register base, int64_t offset, AddrMode addrmode)
+ : base_(base), regoffset_(NoReg), offset_(offset), addrmode_(addrmode) {
+ VIXL_ASSERT(base.Is64Bits() && !base.IsZero());
+}
+
+
+MemOperand::MemOperand(Register base,
+ Register regoffset,
+ Extend extend,
+ unsigned shift_amount)
+ : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
+ shift_(NO_SHIFT), extend_(extend), shift_amount_(shift_amount) {
+ VIXL_ASSERT(base.Is64Bits() && !base.IsZero());
+ VIXL_ASSERT(!regoffset.IsSP());
+ VIXL_ASSERT((extend == UXTW) || (extend == SXTW) || (extend == SXTX));
+
+ // SXTX extend mode requires a 64-bit offset register.
+ VIXL_ASSERT(regoffset.Is64Bits() || (extend != SXTX));
+}
+
+
+MemOperand::MemOperand(Register base,
+ Register regoffset,
+ Shift shift,
+ unsigned shift_amount)
+ : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
+ shift_(shift), extend_(NO_EXTEND), shift_amount_(shift_amount) {
+ VIXL_ASSERT(base.Is64Bits() && !base.IsZero());
+ VIXL_ASSERT(regoffset.Is64Bits() && !regoffset.IsSP());
+ VIXL_ASSERT(shift == LSL);
+}
+
+
+MemOperand::MemOperand(Register base, const Operand& offset, AddrMode addrmode)
+ : base_(base), regoffset_(NoReg), addrmode_(addrmode) {
+ VIXL_ASSERT(base.Is64Bits() && !base.IsZero());
+
+ if (offset.IsImmediate()) {
+ offset_ = offset.immediate();
+ } else if (offset.IsShiftedRegister()) {
+ VIXL_ASSERT((addrmode == Offset) || (addrmode == PostIndex));
+
+ regoffset_ = offset.reg();
+ shift_ = offset.shift();
+ shift_amount_ = offset.shift_amount();
+
+ extend_ = NO_EXTEND;
+ offset_ = 0;
+
+ // These assertions match those in the shifted-register constructor.
+ VIXL_ASSERT(regoffset_.Is64Bits() && !regoffset_.IsSP());
+ VIXL_ASSERT(shift_ == LSL);
+ } else {
+ VIXL_ASSERT(offset.IsExtendedRegister());
+ VIXL_ASSERT(addrmode == Offset);
+
+ regoffset_ = offset.reg();
+ extend_ = offset.extend();
+ shift_amount_ = offset.shift_amount();
+
+ shift_ = NO_SHIFT;
+ offset_ = 0;
+
+ // These assertions match those in the extended-register constructor.
+ VIXL_ASSERT(!regoffset_.IsSP());
+ VIXL_ASSERT((extend_ == UXTW) || (extend_ == SXTW) || (extend_ == SXTX));
+ VIXL_ASSERT((regoffset_.Is64Bits() || (extend_ != SXTX)));
+ }
+}
+
+
+bool MemOperand::IsImmediateOffset() const {
+ return (addrmode_ == Offset) && regoffset_.Is(NoReg);
+}
+
+
+bool MemOperand::IsRegisterOffset() const {
+ return (addrmode_ == Offset) && !regoffset_.Is(NoReg);
+}
+
+
+bool MemOperand::IsPreIndex() const {
+ return addrmode_ == PreIndex;
+}
+
+
+bool MemOperand::IsPostIndex() const {
+ return addrmode_ == PostIndex;
+}
+
+
+void MemOperand::AddOffset(int64_t offset) {
+ VIXL_ASSERT(IsImmediateOffset());
+ offset_ += offset;
+}
+
+static CPUFeatures InitCachedCPUFeatures() {
+ CPUFeatures cpu_features = CPUFeatures::AArch64LegacyBaseline();
+
+ // Mozilla change: always use maximally-present features.
+ cpu_features.Combine(CPUFeatures::InferFromOS());
+
+ // Mozilla change: Compile time hard-coded value from js-config.mozbuild.
+#ifndef MOZ_AARCH64_JSCVT
+# error "MOZ_AARCH64_JSCVT must be defined."
+#elif MOZ_AARCH64_JSCVT >= 1
+ // Note, vixl backend implements the JSCVT flag as a boolean despite having 3
+ // extra bits reserved for forward compatibility in the ARMv8 documentation.
+ cpu_features.Combine(CPUFeatures::kJSCVT);
+#endif
+
+ return cpu_features;
+}
+
+// Assembler
+Assembler::Assembler(PositionIndependentCodeOption pic)
+ : pic_(pic)
+{
+ // Mozilla change: query cpu features once and cache result.
+ static CPUFeatures cached_cpu_features = InitCachedCPUFeatures();
+ cpu_features_ = cached_cpu_features;
+}
+
+
+// Code generation.
+void Assembler::br(const Register& xn) {
+ VIXL_ASSERT(xn.Is64Bits());
+ Emit(BR | Rn(xn));
+}
+
+
+void Assembler::blr(const Register& xn) {
+ VIXL_ASSERT(xn.Is64Bits());
+ Emit(BLR | Rn(xn));
+}
+
+
+void Assembler::ret(const Register& xn) {
+ VIXL_ASSERT(xn.Is64Bits());
+ Emit(RET | Rn(xn));
+}
+
+
+void Assembler::NEONTable(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ NEONTableOp op) {
+ VIXL_ASSERT(vd.Is16B() || vd.Is8B());
+ VIXL_ASSERT(vn.Is16B());
+ VIXL_ASSERT(AreSameFormat(vd, vm));
+ Emit(op | (vd.IsQ() ? NEON_Q : 0) | Rm(vm) | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::tbl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm) {
+ NEONTable(vd, vn, vm, NEON_TBL_1v);
+}
+
+
+void Assembler::tbl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vn2,
+ const VRegister& vm) {
+ USE(vn2);
+ VIXL_ASSERT(AreSameFormat(vn, vn2));
+ VIXL_ASSERT(vn2.code() == ((vn.code() + 1) % kNumberOfVRegisters));
+
+ NEONTable(vd, vn, vm, NEON_TBL_2v);
+}
+
+
+void Assembler::tbl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vn2,
+ const VRegister& vn3,
+ const VRegister& vm) {
+ USE(vn2, vn3);
+ VIXL_ASSERT(AreSameFormat(vn, vn2, vn3));
+ VIXL_ASSERT(vn2.code() == ((vn.code() + 1) % kNumberOfVRegisters));
+ VIXL_ASSERT(vn3.code() == ((vn.code() + 2) % kNumberOfVRegisters));
+
+ NEONTable(vd, vn, vm, NEON_TBL_3v);
+}
+
+
+void Assembler::tbl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vn2,
+ const VRegister& vn3,
+ const VRegister& vn4,
+ const VRegister& vm) {
+ USE(vn2, vn3, vn4);
+ VIXL_ASSERT(AreSameFormat(vn, vn2, vn3, vn4));
+ VIXL_ASSERT(vn2.code() == ((vn.code() + 1) % kNumberOfVRegisters));
+ VIXL_ASSERT(vn3.code() == ((vn.code() + 2) % kNumberOfVRegisters));
+ VIXL_ASSERT(vn4.code() == ((vn.code() + 3) % kNumberOfVRegisters));
+
+ NEONTable(vd, vn, vm, NEON_TBL_4v);
+}
+
+
+void Assembler::tbx(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm) {
+ NEONTable(vd, vn, vm, NEON_TBX_1v);
+}
+
+
+void Assembler::tbx(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vn2,
+ const VRegister& vm) {
+ USE(vn2);
+ VIXL_ASSERT(AreSameFormat(vn, vn2));
+ VIXL_ASSERT(vn2.code() == ((vn.code() + 1) % kNumberOfVRegisters));
+
+ NEONTable(vd, vn, vm, NEON_TBX_2v);
+}
+
+
+void Assembler::tbx(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vn2,
+ const VRegister& vn3,
+ const VRegister& vm) {
+ USE(vn2, vn3);
+ VIXL_ASSERT(AreSameFormat(vn, vn2, vn3));
+ VIXL_ASSERT(vn2.code() == ((vn.code() + 1) % kNumberOfVRegisters));
+ VIXL_ASSERT(vn3.code() == ((vn.code() + 2) % kNumberOfVRegisters));
+
+ NEONTable(vd, vn, vm, NEON_TBX_3v);
+}
+
+
+void Assembler::tbx(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vn2,
+ const VRegister& vn3,
+ const VRegister& vn4,
+ const VRegister& vm) {
+ USE(vn2, vn3, vn4);
+ VIXL_ASSERT(AreSameFormat(vn, vn2, vn3, vn4));
+ VIXL_ASSERT(vn2.code() == ((vn.code() + 1) % kNumberOfVRegisters));
+ VIXL_ASSERT(vn3.code() == ((vn.code() + 2) % kNumberOfVRegisters));
+ VIXL_ASSERT(vn4.code() == ((vn.code() + 3) % kNumberOfVRegisters));
+
+ NEONTable(vd, vn, vm, NEON_TBX_4v);
+}
+
+
+void Assembler::add(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ AddSub(rd, rn, operand, LeaveFlags, ADD);
+}
+
+
+void Assembler::adds(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ AddSub(rd, rn, operand, SetFlags, ADD);
+}
+
+
+void Assembler::cmn(const Register& rn,
+ const Operand& operand) {
+ Register zr = AppropriateZeroRegFor(rn);
+ adds(zr, rn, operand);
+}
+
+
+void Assembler::sub(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ AddSub(rd, rn, operand, LeaveFlags, SUB);
+}
+
+
+void Assembler::subs(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ AddSub(rd, rn, operand, SetFlags, SUB);
+}
+
+
+void Assembler::cmp(const Register& rn, const Operand& operand) {
+ Register zr = AppropriateZeroRegFor(rn);
+ subs(zr, rn, operand);
+}
+
+
+void Assembler::neg(const Register& rd, const Operand& operand) {
+ Register zr = AppropriateZeroRegFor(rd);
+ sub(rd, zr, operand);
+}
+
+
+void Assembler::negs(const Register& rd, const Operand& operand) {
+ Register zr = AppropriateZeroRegFor(rd);
+ subs(rd, zr, operand);
+}
+
+
+void Assembler::adc(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ AddSubWithCarry(rd, rn, operand, LeaveFlags, ADC);
+}
+
+
+void Assembler::adcs(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ AddSubWithCarry(rd, rn, operand, SetFlags, ADC);
+}
+
+
+void Assembler::sbc(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ AddSubWithCarry(rd, rn, operand, LeaveFlags, SBC);
+}
+
+
+void Assembler::sbcs(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ AddSubWithCarry(rd, rn, operand, SetFlags, SBC);
+}
+
+
+void Assembler::ngc(const Register& rd, const Operand& operand) {
+ Register zr = AppropriateZeroRegFor(rd);
+ sbc(rd, zr, operand);
+}
+
+
+void Assembler::ngcs(const Register& rd, const Operand& operand) {
+ Register zr = AppropriateZeroRegFor(rd);
+ sbcs(rd, zr, operand);
+}
+
+
+// Logical instructions.
+void Assembler::and_(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ Logical(rd, rn, operand, AND);
+}
+
+
+void Assembler::bic(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ Logical(rd, rn, operand, BIC);
+}
+
+
+void Assembler::bics(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ Logical(rd, rn, operand, BICS);
+}
+
+
+void Assembler::orr(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ Logical(rd, rn, operand, ORR);
+}
+
+
+void Assembler::orn(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ Logical(rd, rn, operand, ORN);
+}
+
+
+void Assembler::eor(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ Logical(rd, rn, operand, EOR);
+}
+
+
+void Assembler::eon(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ Logical(rd, rn, operand, EON);
+}
+
+
+void Assembler::lslv(const Register& rd,
+ const Register& rn,
+ const Register& rm) {
+ VIXL_ASSERT(rd.size() == rn.size());
+ VIXL_ASSERT(rd.size() == rm.size());
+ Emit(SF(rd) | LSLV | Rm(rm) | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::lsrv(const Register& rd,
+ const Register& rn,
+ const Register& rm) {
+ VIXL_ASSERT(rd.size() == rn.size());
+ VIXL_ASSERT(rd.size() == rm.size());
+ Emit(SF(rd) | LSRV | Rm(rm) | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::asrv(const Register& rd,
+ const Register& rn,
+ const Register& rm) {
+ VIXL_ASSERT(rd.size() == rn.size());
+ VIXL_ASSERT(rd.size() == rm.size());
+ Emit(SF(rd) | ASRV | Rm(rm) | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::rorv(const Register& rd,
+ const Register& rn,
+ const Register& rm) {
+ VIXL_ASSERT(rd.size() == rn.size());
+ VIXL_ASSERT(rd.size() == rm.size());
+ Emit(SF(rd) | RORV | Rm(rm) | Rn(rn) | Rd(rd));
+}
+
+
+// Bitfield operations.
+void Assembler::bfm(const Register& rd,
+ const Register& rn,
+ unsigned immr,
+ unsigned imms) {
+ VIXL_ASSERT(rd.size() == rn.size());
+ Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
+ Emit(SF(rd) | BFM | N |
+ ImmR(immr, rd.size()) | ImmS(imms, rn.size()) | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::sbfm(const Register& rd,
+ const Register& rn,
+ unsigned immr,
+ unsigned imms) {
+ VIXL_ASSERT(rd.Is64Bits() || rn.Is32Bits());
+ Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
+ Emit(SF(rd) | SBFM | N |
+ ImmR(immr, rd.size()) | ImmS(imms, rn.size()) | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::ubfm(const Register& rd,
+ const Register& rn,
+ unsigned immr,
+ unsigned imms) {
+ VIXL_ASSERT(rd.size() == rn.size());
+ Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
+ Emit(SF(rd) | UBFM | N |
+ ImmR(immr, rd.size()) | ImmS(imms, rn.size()) | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::extr(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ unsigned lsb) {
+ VIXL_ASSERT(rd.size() == rn.size());
+ VIXL_ASSERT(rd.size() == rm.size());
+ Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
+ Emit(SF(rd) | EXTR | N | Rm(rm) | ImmS(lsb, rn.size()) | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::csel(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond) {
+ ConditionalSelect(rd, rn, rm, cond, CSEL);
+}
+
+
+void Assembler::csinc(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond) {
+ ConditionalSelect(rd, rn, rm, cond, CSINC);
+}
+
+
+void Assembler::csinv(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond) {
+ ConditionalSelect(rd, rn, rm, cond, CSINV);
+}
+
+
+void Assembler::csneg(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond) {
+ ConditionalSelect(rd, rn, rm, cond, CSNEG);
+}
+
+
+void Assembler::cset(const Register &rd, Condition cond) {
+ VIXL_ASSERT((cond != al) && (cond != nv));
+ Register zr = AppropriateZeroRegFor(rd);
+ csinc(rd, zr, zr, InvertCondition(cond));
+}
+
+
+void Assembler::csetm(const Register &rd, Condition cond) {
+ VIXL_ASSERT((cond != al) && (cond != nv));
+ Register zr = AppropriateZeroRegFor(rd);
+ csinv(rd, zr, zr, InvertCondition(cond));
+}
+
+
+void Assembler::cinc(const Register &rd, const Register &rn, Condition cond) {
+ VIXL_ASSERT((cond != al) && (cond != nv));
+ csinc(rd, rn, rn, InvertCondition(cond));
+}
+
+
+void Assembler::cinv(const Register &rd, const Register &rn, Condition cond) {
+ VIXL_ASSERT((cond != al) && (cond != nv));
+ csinv(rd, rn, rn, InvertCondition(cond));
+}
+
+
+void Assembler::cneg(const Register &rd, const Register &rn, Condition cond) {
+ VIXL_ASSERT((cond != al) && (cond != nv));
+ csneg(rd, rn, rn, InvertCondition(cond));
+}
+
+
+void Assembler::ConditionalSelect(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond,
+ ConditionalSelectOp op) {
+ VIXL_ASSERT(rd.size() == rn.size());
+ VIXL_ASSERT(rd.size() == rm.size());
+ Emit(SF(rd) | op | Rm(rm) | Cond(cond) | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::ccmn(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond) {
+ ConditionalCompare(rn, operand, nzcv, cond, CCMN);
+}
+
+
+void Assembler::ccmp(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond) {
+ ConditionalCompare(rn, operand, nzcv, cond, CCMP);
+}
+
+
+void Assembler::DataProcessing3Source(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra,
+ DataProcessing3SourceOp op) {
+ Emit(SF(rd) | op | Rm(rm) | Ra(ra) | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::crc32b(const Register& rd,
+ const Register& rn,
+ const Register& rm) {
+ VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is32Bits());
+ Emit(SF(rm) | Rm(rm) | CRC32B | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::crc32h(const Register& rd,
+ const Register& rn,
+ const Register& rm) {
+ VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is32Bits());
+ Emit(SF(rm) | Rm(rm) | CRC32H | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::crc32w(const Register& rd,
+ const Register& rn,
+ const Register& rm) {
+ VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is32Bits());
+ Emit(SF(rm) | Rm(rm) | CRC32W | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::crc32x(const Register& rd,
+ const Register& rn,
+ const Register& rm) {
+ VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is64Bits());
+ Emit(SF(rm) | Rm(rm) | CRC32X | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::crc32cb(const Register& rd,
+ const Register& rn,
+ const Register& rm) {
+ VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is32Bits());
+ Emit(SF(rm) | Rm(rm) | CRC32CB | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::crc32ch(const Register& rd,
+ const Register& rn,
+ const Register& rm) {
+ VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is32Bits());
+ Emit(SF(rm) | Rm(rm) | CRC32CH | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::crc32cw(const Register& rd,
+ const Register& rn,
+ const Register& rm) {
+ VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is32Bits());
+ Emit(SF(rm) | Rm(rm) | CRC32CW | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::crc32cx(const Register& rd,
+ const Register& rn,
+ const Register& rm) {
+ VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is64Bits());
+ Emit(SF(rm) | Rm(rm) | CRC32CX | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::mul(const Register& rd,
+ const Register& rn,
+ const Register& rm) {
+ VIXL_ASSERT(AreSameSizeAndType(rd, rn, rm));
+ DataProcessing3Source(rd, rn, rm, AppropriateZeroRegFor(rd), MADD);
+}
+
+
+void Assembler::madd(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra) {
+ DataProcessing3Source(rd, rn, rm, ra, MADD);
+}
+
+
+void Assembler::mneg(const Register& rd,
+ const Register& rn,
+ const Register& rm) {
+ VIXL_ASSERT(AreSameSizeAndType(rd, rn, rm));
+ DataProcessing3Source(rd, rn, rm, AppropriateZeroRegFor(rd), MSUB);
+}
+
+
+void Assembler::msub(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra) {
+ DataProcessing3Source(rd, rn, rm, ra, MSUB);
+}
+
+
+void Assembler::umaddl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra) {
+ VIXL_ASSERT(rd.Is64Bits() && ra.Is64Bits());
+ VIXL_ASSERT(rn.Is32Bits() && rm.Is32Bits());
+ DataProcessing3Source(rd, rn, rm, ra, UMADDL_x);
+}
+
+
+void Assembler::smaddl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra) {
+ VIXL_ASSERT(rd.Is64Bits() && ra.Is64Bits());
+ VIXL_ASSERT(rn.Is32Bits() && rm.Is32Bits());
+ DataProcessing3Source(rd, rn, rm, ra, SMADDL_x);
+}
+
+
+void Assembler::umsubl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra) {
+ VIXL_ASSERT(rd.Is64Bits() && ra.Is64Bits());
+ VIXL_ASSERT(rn.Is32Bits() && rm.Is32Bits());
+ DataProcessing3Source(rd, rn, rm, ra, UMSUBL_x);
+}
+
+
+void Assembler::smsubl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra) {
+ VIXL_ASSERT(rd.Is64Bits() && ra.Is64Bits());
+ VIXL_ASSERT(rn.Is32Bits() && rm.Is32Bits());
+ DataProcessing3Source(rd, rn, rm, ra, SMSUBL_x);
+}
+
+
+void Assembler::smull(const Register& rd,
+ const Register& rn,
+ const Register& rm) {
+ VIXL_ASSERT(rd.Is64Bits());
+ VIXL_ASSERT(rn.Is32Bits() && rm.Is32Bits());
+ DataProcessing3Source(rd, rn, rm, xzr, SMADDL_x);
+}
+
+
+void Assembler::sdiv(const Register& rd,
+ const Register& rn,
+ const Register& rm) {
+ VIXL_ASSERT(rd.size() == rn.size());
+ VIXL_ASSERT(rd.size() == rm.size());
+ Emit(SF(rd) | SDIV | Rm(rm) | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::smulh(const Register& xd,
+ const Register& xn,
+ const Register& xm) {
+ VIXL_ASSERT(xd.Is64Bits() && xn.Is64Bits() && xm.Is64Bits());
+ DataProcessing3Source(xd, xn, xm, xzr, SMULH_x);
+}
+
+
+void Assembler::umulh(const Register& xd,
+ const Register& xn,
+ const Register& xm) {
+ VIXL_ASSERT(xd.Is64Bits() && xn.Is64Bits() && xm.Is64Bits());
+ DataProcessing3Source(xd, xn, xm, xzr, UMULH_x);
+}
+
+
+void Assembler::udiv(const Register& rd,
+ const Register& rn,
+ const Register& rm) {
+ VIXL_ASSERT(rd.size() == rn.size());
+ VIXL_ASSERT(rd.size() == rm.size());
+ Emit(SF(rd) | UDIV | Rm(rm) | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::rbit(const Register& rd,
+ const Register& rn) {
+ DataProcessing1Source(rd, rn, RBIT);
+}
+
+
+void Assembler::rev16(const Register& rd,
+ const Register& rn) {
+ DataProcessing1Source(rd, rn, REV16);
+}
+
+
+void Assembler::rev32(const Register& rd,
+ const Register& rn) {
+ VIXL_ASSERT(rd.Is64Bits());
+ DataProcessing1Source(rd, rn, REV);
+}
+
+
+void Assembler::rev(const Register& rd,
+ const Register& rn) {
+ DataProcessing1Source(rd, rn, rd.Is64Bits() ? REV_x : REV_w);
+}
+
+
+void Assembler::clz(const Register& rd,
+ const Register& rn) {
+ DataProcessing1Source(rd, rn, CLZ);
+}
+
+
+void Assembler::cls(const Register& rd,
+ const Register& rn) {
+ DataProcessing1Source(rd, rn, CLS);
+}
+
+
+void Assembler::ldp(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& src) {
+ LoadStorePair(rt, rt2, src, LoadPairOpFor(rt, rt2));
+}
+
+
+void Assembler::stp(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& dst) {
+ LoadStorePair(rt, rt2, dst, StorePairOpFor(rt, rt2));
+}
+
+
+void Assembler::ldpsw(const Register& rt,
+ const Register& rt2,
+ const MemOperand& src) {
+ VIXL_ASSERT(rt.Is64Bits());
+ LoadStorePair(rt, rt2, src, LDPSW_x);
+}
+
+
+void Assembler::LoadStorePair(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& addr,
+ LoadStorePairOp op) {
+ // 'rt' and 'rt2' can only be aliased for stores.
+ VIXL_ASSERT(((op & LoadStorePairLBit) == 0) || !rt.Is(rt2));
+ VIXL_ASSERT(AreSameSizeAndType(rt, rt2));
+ VIXL_ASSERT(IsImmLSPair(addr.offset(), CalcLSPairDataSize(op)));
+
+ int offset = static_cast<int>(addr.offset());
+ Instr memop = op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) |
+ ImmLSPair(offset, CalcLSPairDataSize(op));
+
+ Instr addrmodeop;
+ if (addr.IsImmediateOffset()) {
+ addrmodeop = LoadStorePairOffsetFixed;
+ } else {
+ VIXL_ASSERT(addr.offset() != 0);
+ if (addr.IsPreIndex()) {
+ addrmodeop = LoadStorePairPreIndexFixed;
+ } else {
+ VIXL_ASSERT(addr.IsPostIndex());
+ addrmodeop = LoadStorePairPostIndexFixed;
+ }
+ }
+ Emit(addrmodeop | memop);
+}
+
+
+void Assembler::ldnp(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& src) {
+ LoadStorePairNonTemporal(rt, rt2, src,
+ LoadPairNonTemporalOpFor(rt, rt2));
+}
+
+
+void Assembler::stnp(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& dst) {
+ LoadStorePairNonTemporal(rt, rt2, dst,
+ StorePairNonTemporalOpFor(rt, rt2));
+}
+
+
+void Assembler::LoadStorePairNonTemporal(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& addr,
+ LoadStorePairNonTemporalOp op) {
+ VIXL_ASSERT(!rt.Is(rt2));
+ VIXL_ASSERT(AreSameSizeAndType(rt, rt2));
+ VIXL_ASSERT(addr.IsImmediateOffset());
+
+ unsigned size = CalcLSPairDataSize(
+ static_cast<LoadStorePairOp>(op & LoadStorePairMask));
+ VIXL_ASSERT(IsImmLSPair(addr.offset(), size));
+ int offset = static_cast<int>(addr.offset());
+ Emit(op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) | ImmLSPair(offset, size));
+}
+
+
+// Memory instructions.
+void Assembler::ldrb(const Register& rt, const MemOperand& src,
+ LoadStoreScalingOption option) {
+ VIXL_ASSERT(option != RequireUnscaledOffset);
+ VIXL_ASSERT(option != PreferUnscaledOffset);
+ LoadStore(rt, src, LDRB_w, option);
+}
+
+
+void Assembler::strb(const Register& rt, const MemOperand& dst,
+ LoadStoreScalingOption option) {
+ VIXL_ASSERT(option != RequireUnscaledOffset);
+ VIXL_ASSERT(option != PreferUnscaledOffset);
+ LoadStore(rt, dst, STRB_w, option);
+}
+
+
+void Assembler::ldrsb(const Register& rt, const MemOperand& src,
+ LoadStoreScalingOption option) {
+ VIXL_ASSERT(option != RequireUnscaledOffset);
+ VIXL_ASSERT(option != PreferUnscaledOffset);
+ LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w, option);
+}
+
+
+void Assembler::ldrh(const Register& rt, const MemOperand& src,
+ LoadStoreScalingOption option) {
+ VIXL_ASSERT(option != RequireUnscaledOffset);
+ VIXL_ASSERT(option != PreferUnscaledOffset);
+ LoadStore(rt, src, LDRH_w, option);
+}
+
+
+void Assembler::strh(const Register& rt, const MemOperand& dst,
+ LoadStoreScalingOption option) {
+ VIXL_ASSERT(option != RequireUnscaledOffset);
+ VIXL_ASSERT(option != PreferUnscaledOffset);
+ LoadStore(rt, dst, STRH_w, option);
+}
+
+
+void Assembler::ldrsh(const Register& rt, const MemOperand& src,
+ LoadStoreScalingOption option) {
+ VIXL_ASSERT(option != RequireUnscaledOffset);
+ VIXL_ASSERT(option != PreferUnscaledOffset);
+ LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w, option);
+}
+
+
+void Assembler::ldr(const CPURegister& rt, const MemOperand& src,
+ LoadStoreScalingOption option) {
+ VIXL_ASSERT(option != RequireUnscaledOffset);
+ VIXL_ASSERT(option != PreferUnscaledOffset);
+ LoadStore(rt, src, LoadOpFor(rt), option);
+}
+
+
+void Assembler::str(const CPURegister& rt, const MemOperand& dst,
+ LoadStoreScalingOption option) {
+ VIXL_ASSERT(option != RequireUnscaledOffset);
+ VIXL_ASSERT(option != PreferUnscaledOffset);
+ LoadStore(rt, dst, StoreOpFor(rt), option);
+}
+
+
+void Assembler::ldrsw(const Register& rt, const MemOperand& src,
+ LoadStoreScalingOption option) {
+ VIXL_ASSERT(rt.Is64Bits());
+ VIXL_ASSERT(option != RequireUnscaledOffset);
+ VIXL_ASSERT(option != PreferUnscaledOffset);
+ LoadStore(rt, src, LDRSW_x, option);
+}
+
+
+void Assembler::ldurb(const Register& rt, const MemOperand& src,
+ LoadStoreScalingOption option) {
+ VIXL_ASSERT(option != RequireScaledOffset);
+ VIXL_ASSERT(option != PreferScaledOffset);
+ LoadStore(rt, src, LDRB_w, option);
+}
+
+
+void Assembler::sturb(const Register& rt, const MemOperand& dst,
+ LoadStoreScalingOption option) {
+ VIXL_ASSERT(option != RequireScaledOffset);
+ VIXL_ASSERT(option != PreferScaledOffset);
+ LoadStore(rt, dst, STRB_w, option);
+}
+
+
+void Assembler::ldursb(const Register& rt, const MemOperand& src,
+ LoadStoreScalingOption option) {
+ VIXL_ASSERT(option != RequireScaledOffset);
+ VIXL_ASSERT(option != PreferScaledOffset);
+ LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w, option);
+}
+
+
+void Assembler::ldurh(const Register& rt, const MemOperand& src,
+ LoadStoreScalingOption option) {
+ VIXL_ASSERT(option != RequireScaledOffset);
+ VIXL_ASSERT(option != PreferScaledOffset);
+ LoadStore(rt, src, LDRH_w, option);
+}
+
+
+void Assembler::sturh(const Register& rt, const MemOperand& dst,
+ LoadStoreScalingOption option) {
+ VIXL_ASSERT(option != RequireScaledOffset);
+ VIXL_ASSERT(option != PreferScaledOffset);
+ LoadStore(rt, dst, STRH_w, option);
+}
+
+
+void Assembler::ldursh(const Register& rt, const MemOperand& src,
+ LoadStoreScalingOption option) {
+ VIXL_ASSERT(option != RequireScaledOffset);
+ VIXL_ASSERT(option != PreferScaledOffset);
+ LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w, option);
+}
+
+
+void Assembler::ldur(const CPURegister& rt, const MemOperand& src,
+ LoadStoreScalingOption option) {
+ VIXL_ASSERT(option != RequireScaledOffset);
+ VIXL_ASSERT(option != PreferScaledOffset);
+ LoadStore(rt, src, LoadOpFor(rt), option);
+}
+
+
+void Assembler::stur(const CPURegister& rt, const MemOperand& dst,
+ LoadStoreScalingOption option) {
+ VIXL_ASSERT(option != RequireScaledOffset);
+ VIXL_ASSERT(option != PreferScaledOffset);
+ LoadStore(rt, dst, StoreOpFor(rt), option);
+}
+
+
+void Assembler::ldursw(const Register& rt, const MemOperand& src,
+ LoadStoreScalingOption option) {
+ VIXL_ASSERT(rt.Is64Bits());
+ VIXL_ASSERT(option != RequireScaledOffset);
+ VIXL_ASSERT(option != PreferScaledOffset);
+ LoadStore(rt, src, LDRSW_x, option);
+}
+
+
+void Assembler::ldrsw(const Register& rt, int imm19) {
+ Emit(LDRSW_x_lit | ImmLLiteral(imm19) | Rt(rt));
+}
+
+
+void Assembler::ldr(const CPURegister& rt, int imm19) {
+ LoadLiteralOp op = LoadLiteralOpFor(rt);
+ Emit(op | ImmLLiteral(imm19) | Rt(rt));
+}
+
+// clang-format off
+#define COMPARE_AND_SWAP_W_X_LIST(V) \
+ V(cas, CAS) \
+ V(casa, CASA) \
+ V(casl, CASL) \
+ V(casal, CASAL)
+// clang-format on
+
+#define DEFINE_ASM_FUNC(FN, OP) \
+ void Assembler::FN(const Register& rs, const Register& rt, \
+ const MemOperand& src) { \
+ VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); \
+ LoadStoreExclusive op = rt.Is64Bits() ? OP##_x : OP##_w; \
+ Emit(op | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(src.base())); \
+ }
+COMPARE_AND_SWAP_W_X_LIST(DEFINE_ASM_FUNC)
+#undef DEFINE_ASM_FUNC
+
+// clang-format off
+#define COMPARE_AND_SWAP_W_LIST(V) \
+ V(casb, CASB) \
+ V(casab, CASAB) \
+ V(caslb, CASLB) \
+ V(casalb, CASALB) \
+ V(cash, CASH) \
+ V(casah, CASAH) \
+ V(caslh, CASLH) \
+ V(casalh, CASALH)
+// clang-format on
+
+#define DEFINE_ASM_FUNC(FN, OP) \
+ void Assembler::FN(const Register& rs, const Register& rt, \
+ const MemOperand& src) { \
+ VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); \
+ Emit(OP | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(src.base())); \
+ }
+COMPARE_AND_SWAP_W_LIST(DEFINE_ASM_FUNC)
+#undef DEFINE_ASM_FUNC
+
+// clang-format off
+#define COMPARE_AND_SWAP_PAIR_LIST(V) \
+ V(casp, CASP) \
+ V(caspa, CASPA) \
+ V(caspl, CASPL) \
+ V(caspal, CASPAL)
+// clang-format on
+
+#define DEFINE_ASM_FUNC(FN, OP) \
+ void Assembler::FN(const Register& rs, const Register& rs1, \
+ const Register& rt, const Register& rt1, \
+ const MemOperand& src) { \
+ USE(rs1, rt1); \
+ VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); \
+ VIXL_ASSERT(AreEven(rs, rt)); \
+ VIXL_ASSERT(AreConsecutive(rs, rs1)); \
+ VIXL_ASSERT(AreConsecutive(rt, rt1)); \
+ LoadStoreExclusive op = rt.Is64Bits() ? OP##_x : OP##_w; \
+ Emit(op | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(src.base())); \
+ }
+COMPARE_AND_SWAP_PAIR_LIST(DEFINE_ASM_FUNC)
+#undef DEFINE_ASM_FUNC
+
+void Assembler::prfm(PrefetchOperation op, int imm19) {
+ Emit(PRFM_lit | ImmPrefetchOperation(op) | ImmLLiteral(imm19));
+}
+
+
+// Exclusive-access instructions.
+void Assembler::stxrb(const Register& rs,
+ const Register& rt,
+ const MemOperand& dst) {
+ VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
+ Emit(STXRB_w | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base()));
+}
+
+
+void Assembler::stxrh(const Register& rs,
+ const Register& rt,
+ const MemOperand& dst) {
+ VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
+ Emit(STXRH_w | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base()));
+}
+
+
+void Assembler::stxr(const Register& rs,
+ const Register& rt,
+ const MemOperand& dst) {
+ VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
+ LoadStoreExclusive op = rt.Is64Bits() ? STXR_x : STXR_w;
+ Emit(op | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base()));
+}
+
+
+void Assembler::ldxrb(const Register& rt,
+ const MemOperand& src) {
+ VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
+ Emit(LDXRB_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base()));
+}
+
+
+void Assembler::ldxrh(const Register& rt,
+ const MemOperand& src) {
+ VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
+ Emit(LDXRH_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base()));
+}
+
+
+void Assembler::ldxr(const Register& rt,
+ const MemOperand& src) {
+ VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
+ LoadStoreExclusive op = rt.Is64Bits() ? LDXR_x : LDXR_w;
+ Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base()));
+}
+
+
+void Assembler::stxp(const Register& rs,
+ const Register& rt,
+ const Register& rt2,
+ const MemOperand& dst) {
+ VIXL_ASSERT(rt.size() == rt2.size());
+ VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
+ LoadStoreExclusive op = rt.Is64Bits() ? STXP_x : STXP_w;
+ Emit(op | Rs(rs) | Rt(rt) | Rt2(rt2) | RnSP(dst.base()));
+}
+
+
+void Assembler::ldxp(const Register& rt,
+ const Register& rt2,
+ const MemOperand& src) {
+ VIXL_ASSERT(rt.size() == rt2.size());
+ VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
+ LoadStoreExclusive op = rt.Is64Bits() ? LDXP_x : LDXP_w;
+ Emit(op | Rs_mask | Rt(rt) | Rt2(rt2) | RnSP(src.base()));
+}
+
+
+void Assembler::stlxrb(const Register& rs,
+ const Register& rt,
+ const MemOperand& dst) {
+ VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
+ Emit(STLXRB_w | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base()));
+}
+
+
+void Assembler::stlxrh(const Register& rs,
+ const Register& rt,
+ const MemOperand& dst) {
+ VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
+ Emit(STLXRH_w | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base()));
+}
+
+
+void Assembler::stlxr(const Register& rs,
+ const Register& rt,
+ const MemOperand& dst) {
+ VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
+ LoadStoreExclusive op = rt.Is64Bits() ? STLXR_x : STLXR_w;
+ Emit(op | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base()));
+}
+
+
+void Assembler::ldaxrb(const Register& rt,
+ const MemOperand& src) {
+ VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
+ Emit(LDAXRB_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base()));
+}
+
+
+void Assembler::ldaxrh(const Register& rt,
+ const MemOperand& src) {
+ VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
+ Emit(LDAXRH_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base()));
+}
+
+
+void Assembler::ldaxr(const Register& rt,
+ const MemOperand& src) {
+ VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
+ LoadStoreExclusive op = rt.Is64Bits() ? LDAXR_x : LDAXR_w;
+ Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base()));
+}
+
+
+void Assembler::stlxp(const Register& rs,
+ const Register& rt,
+ const Register& rt2,
+ const MemOperand& dst) {
+ VIXL_ASSERT(rt.size() == rt2.size());
+ VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
+ LoadStoreExclusive op = rt.Is64Bits() ? STLXP_x : STLXP_w;
+ Emit(op | Rs(rs) | Rt(rt) | Rt2(rt2) | RnSP(dst.base()));
+}
+
+
+void Assembler::ldaxp(const Register& rt,
+ const Register& rt2,
+ const MemOperand& src) {
+ VIXL_ASSERT(rt.size() == rt2.size());
+ VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
+ LoadStoreExclusive op = rt.Is64Bits() ? LDAXP_x : LDAXP_w;
+ Emit(op | Rs_mask | Rt(rt) | Rt2(rt2) | RnSP(src.base()));
+}
+
+
+void Assembler::stlrb(const Register& rt,
+ const MemOperand& dst) {
+ VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
+ Emit(STLRB_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(dst.base()));
+}
+
+
+void Assembler::stlrh(const Register& rt,
+ const MemOperand& dst) {
+ VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
+ Emit(STLRH_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(dst.base()));
+}
+
+
+void Assembler::stlr(const Register& rt,
+ const MemOperand& dst) {
+ VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0));
+ LoadStoreExclusive op = rt.Is64Bits() ? STLR_x : STLR_w;
+ Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(dst.base()));
+}
+
+
+void Assembler::ldarb(const Register& rt,
+ const MemOperand& src) {
+ VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
+ Emit(LDARB_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base()));
+}
+
+
+void Assembler::ldarh(const Register& rt,
+ const MemOperand& src) {
+ VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
+ Emit(LDARH_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base()));
+}
+
+
+void Assembler::ldar(const Register& rt,
+ const MemOperand& src) {
+ VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0));
+ LoadStoreExclusive op = rt.Is64Bits() ? LDAR_x : LDAR_w;
+ Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base()));
+}
+
+// These macros generate all the variations of the atomic memory operations,
+// e.g. ldadd, ldadda, ldaddb, staddl, etc.
+// For a full list of the methods with comments, see the assembler header file.
+
+// clang-format off
+#define ATOMIC_MEMORY_SIMPLE_OPERATION_LIST(V, DEF) \
+ V(DEF, add, LDADD) \
+ V(DEF, clr, LDCLR) \
+ V(DEF, eor, LDEOR) \
+ V(DEF, set, LDSET) \
+ V(DEF, smax, LDSMAX) \
+ V(DEF, smin, LDSMIN) \
+ V(DEF, umax, LDUMAX) \
+ V(DEF, umin, LDUMIN)
+
+#define ATOMIC_MEMORY_STORE_MODES(V, NAME, OP) \
+ V(NAME, OP##_x, OP##_w) \
+ V(NAME##l, OP##L_x, OP##L_w) \
+ V(NAME##b, OP##B, OP##B) \
+ V(NAME##lb, OP##LB, OP##LB) \
+ V(NAME##h, OP##H, OP##H) \
+ V(NAME##lh, OP##LH, OP##LH)
+
+#define ATOMIC_MEMORY_LOAD_MODES(V, NAME, OP) \
+ ATOMIC_MEMORY_STORE_MODES(V, NAME, OP) \
+ V(NAME##a, OP##A_x, OP##A_w) \
+ V(NAME##al, OP##AL_x, OP##AL_w) \
+ V(NAME##ab, OP##AB, OP##AB) \
+ V(NAME##alb, OP##ALB, OP##ALB) \
+ V(NAME##ah, OP##AH, OP##AH) \
+ V(NAME##alh, OP##ALH, OP##ALH)
+// clang-format on
+
+#define DEFINE_ASM_LOAD_FUNC(FN, OP_X, OP_W) \
+ void Assembler::ld##FN(const Register& rs, const Register& rt, \
+ const MemOperand& src) { \
+ VIXL_ASSERT(CPUHas(CPUFeatures::kAtomics)); \
+ VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); \
+ AtomicMemoryOp op = rt.Is64Bits() ? OP_X : OP_W; \
+ Emit(op | Rs(rs) | Rt(rt) | RnSP(src.base())); \
+ }
+#define DEFINE_ASM_STORE_FUNC(FN, OP_X, OP_W) \
+ void Assembler::st##FN(const Register& rs, const MemOperand& src) { \
+ VIXL_ASSERT(CPUHas(CPUFeatures::kAtomics)); \
+ ld##FN(rs, AppropriateZeroRegFor(rs), src); \
+ }
+
+ATOMIC_MEMORY_SIMPLE_OPERATION_LIST(ATOMIC_MEMORY_LOAD_MODES,
+ DEFINE_ASM_LOAD_FUNC)
+ATOMIC_MEMORY_SIMPLE_OPERATION_LIST(ATOMIC_MEMORY_STORE_MODES,
+ DEFINE_ASM_STORE_FUNC)
+
+#define DEFINE_ASM_SWP_FUNC(FN, OP_X, OP_W) \
+ void Assembler::FN(const Register& rs, const Register& rt, \
+ const MemOperand& src) { \
+ VIXL_ASSERT(CPUHas(CPUFeatures::kAtomics)); \
+ VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); \
+ AtomicMemoryOp op = rt.Is64Bits() ? OP_X : OP_W; \
+ Emit(op | Rs(rs) | Rt(rt) | RnSP(src.base())); \
+ }
+
+ATOMIC_MEMORY_LOAD_MODES(DEFINE_ASM_SWP_FUNC, swp, SWP)
+
+#undef DEFINE_ASM_LOAD_FUNC
+#undef DEFINE_ASM_STORE_FUNC
+#undef DEFINE_ASM_SWP_FUNC
+
+void Assembler::prfm(PrefetchOperation op, const MemOperand& address,
+ LoadStoreScalingOption option) {
+ VIXL_ASSERT(option != RequireUnscaledOffset);
+ VIXL_ASSERT(option != PreferUnscaledOffset);
+ Prefetch(op, address, option);
+}
+
+
+void Assembler::prfum(PrefetchOperation op, const MemOperand& address,
+ LoadStoreScalingOption option) {
+ VIXL_ASSERT(option != RequireScaledOffset);
+ VIXL_ASSERT(option != PreferScaledOffset);
+ Prefetch(op, address, option);
+}
+
+
+void Assembler::sys(int op1, int crn, int crm, int op2, const Register& rt) {
+ Emit(SYS | ImmSysOp1(op1) | CRn(crn) | CRm(crm) | ImmSysOp2(op2) | Rt(rt));
+}
+
+
+void Assembler::sys(int op, const Register& rt) {
+ Emit(SYS | SysOp(op) | Rt(rt));
+}
+
+
+void Assembler::dc(DataCacheOp op, const Register& rt) {
+ VIXL_ASSERT((op == CVAC) || (op == CVAU) || (op == CIVAC) || (op == ZVA));
+ sys(op, rt);
+}
+
+
+void Assembler::ic(InstructionCacheOp op, const Register& rt) {
+ VIXL_ASSERT(op == IVAU);
+ sys(op, rt);
+}
+
+
+// NEON structure loads and stores.
+Instr Assembler::LoadStoreStructAddrModeField(const MemOperand& addr) {
+ Instr addr_field = RnSP(addr.base());
+
+ if (addr.IsPostIndex()) {
+ VIXL_STATIC_ASSERT(NEONLoadStoreMultiStructPostIndex ==
+ static_cast<NEONLoadStoreMultiStructPostIndexOp>(
+ NEONLoadStoreSingleStructPostIndex));
+
+ addr_field |= NEONLoadStoreMultiStructPostIndex;
+ if (addr.offset() == 0) {
+ addr_field |= RmNot31(addr.regoffset());
+ } else {
+ // The immediate post index addressing mode is indicated by rm = 31.
+ // The immediate is implied by the number of vector registers used.
+ addr_field |= (0x1f << Rm_offset);
+ }
+ } else {
+ VIXL_ASSERT(addr.IsImmediateOffset() && (addr.offset() == 0));
+ }
+ return addr_field;
+}
+
+void Assembler::LoadStoreStructVerify(const VRegister& vt,
+ const MemOperand& addr,
+ Instr op) {
+#ifdef DEBUG
+ // Assert that addressing mode is either offset (with immediate 0), post
+ // index by immediate of the size of the register list, or post index by a
+ // value in a core register.
+ if (addr.IsImmediateOffset()) {
+ VIXL_ASSERT(addr.offset() == 0);
+ } else {
+ int offset = vt.SizeInBytes();
+ switch (op) {
+ case NEON_LD1_1v:
+ case NEON_ST1_1v:
+ offset *= 1; break;
+ case NEONLoadStoreSingleStructLoad1:
+ case NEONLoadStoreSingleStructStore1:
+ case NEON_LD1R:
+ offset = (offset / vt.lanes()) * 1; break;
+
+ case NEON_LD1_2v:
+ case NEON_ST1_2v:
+ case NEON_LD2:
+ case NEON_ST2:
+ offset *= 2;
+ break;
+ case NEONLoadStoreSingleStructLoad2:
+ case NEONLoadStoreSingleStructStore2:
+ case NEON_LD2R:
+ offset = (offset / vt.lanes()) * 2; break;
+
+ case NEON_LD1_3v:
+ case NEON_ST1_3v:
+ case NEON_LD3:
+ case NEON_ST3:
+ offset *= 3; break;
+ case NEONLoadStoreSingleStructLoad3:
+ case NEONLoadStoreSingleStructStore3:
+ case NEON_LD3R:
+ offset = (offset / vt.lanes()) * 3; break;
+
+ case NEON_LD1_4v:
+ case NEON_ST1_4v:
+ case NEON_LD4:
+ case NEON_ST4:
+ offset *= 4; break;
+ case NEONLoadStoreSingleStructLoad4:
+ case NEONLoadStoreSingleStructStore4:
+ case NEON_LD4R:
+ offset = (offset / vt.lanes()) * 4; break;
+ default:
+ VIXL_UNREACHABLE();
+ }
+ VIXL_ASSERT(!addr.regoffset().Is(NoReg) ||
+ addr.offset() == offset);
+ }
+#else
+ USE(vt, addr, op);
+#endif
+}
+
+void Assembler::LoadStoreStruct(const VRegister& vt,
+ const MemOperand& addr,
+ NEONLoadStoreMultiStructOp op) {
+ LoadStoreStructVerify(vt, addr, op);
+ VIXL_ASSERT(vt.IsVector() || vt.Is1D());
+ Emit(op | LoadStoreStructAddrModeField(addr) | LSVFormat(vt) | Rt(vt));
+}
+
+
+void Assembler::LoadStoreStructSingleAllLanes(const VRegister& vt,
+ const MemOperand& addr,
+ NEONLoadStoreSingleStructOp op) {
+ LoadStoreStructVerify(vt, addr, op);
+ Emit(op | LoadStoreStructAddrModeField(addr) | LSVFormat(vt) | Rt(vt));
+}
+
+
+void Assembler::ld1(const VRegister& vt,
+ const MemOperand& src) {
+ LoadStoreStruct(vt, src, NEON_LD1_1v);
+}
+
+
+void Assembler::ld1(const VRegister& vt,
+ const VRegister& vt2,
+ const MemOperand& src) {
+ USE(vt2);
+ VIXL_ASSERT(AreSameFormat(vt, vt2));
+ VIXL_ASSERT(AreConsecutive(vt, vt2));
+ LoadStoreStruct(vt, src, NEON_LD1_2v);
+}
+
+
+void Assembler::ld1(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const MemOperand& src) {
+ USE(vt2, vt3);
+ VIXL_ASSERT(AreSameFormat(vt, vt2, vt3));
+ VIXL_ASSERT(AreConsecutive(vt, vt2, vt3));
+ LoadStoreStruct(vt, src, NEON_LD1_3v);
+}
+
+
+void Assembler::ld1(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const VRegister& vt4,
+ const MemOperand& src) {
+ USE(vt2, vt3, vt4);
+ VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4));
+ VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4));
+ LoadStoreStruct(vt, src, NEON_LD1_4v);
+}
+
+
+void Assembler::ld2(const VRegister& vt,
+ const VRegister& vt2,
+ const MemOperand& src) {
+ USE(vt2);
+ VIXL_ASSERT(AreSameFormat(vt, vt2));
+ VIXL_ASSERT(AreConsecutive(vt, vt2));
+ LoadStoreStruct(vt, src, NEON_LD2);
+}
+
+
+void Assembler::ld2(const VRegister& vt,
+ const VRegister& vt2,
+ int lane,
+ const MemOperand& src) {
+ USE(vt2);
+ VIXL_ASSERT(AreSameFormat(vt, vt2));
+ VIXL_ASSERT(AreConsecutive(vt, vt2));
+ LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad2);
+}
+
+
+void Assembler::ld2r(const VRegister& vt,
+ const VRegister& vt2,
+ const MemOperand& src) {
+ USE(vt2);
+ VIXL_ASSERT(AreSameFormat(vt, vt2));
+ VIXL_ASSERT(AreConsecutive(vt, vt2));
+ LoadStoreStructSingleAllLanes(vt, src, NEON_LD2R);
+}
+
+
+void Assembler::ld3(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const MemOperand& src) {
+ USE(vt2, vt3);
+ VIXL_ASSERT(AreSameFormat(vt, vt2, vt3));
+ VIXL_ASSERT(AreConsecutive(vt, vt2, vt3));
+ LoadStoreStruct(vt, src, NEON_LD3);
+}
+
+
+void Assembler::ld3(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ int lane,
+ const MemOperand& src) {
+ USE(vt2, vt3);
+ VIXL_ASSERT(AreSameFormat(vt, vt2, vt3));
+ VIXL_ASSERT(AreConsecutive(vt, vt2, vt3));
+ LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad3);
+}
+
+
+void Assembler::ld3r(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const MemOperand& src) {
+ USE(vt2, vt3);
+ VIXL_ASSERT(AreSameFormat(vt, vt2, vt3));
+ VIXL_ASSERT(AreConsecutive(vt, vt2, vt3));
+ LoadStoreStructSingleAllLanes(vt, src, NEON_LD3R);
+}
+
+
+void Assembler::ld4(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const VRegister& vt4,
+ const MemOperand& src) {
+ USE(vt2, vt3, vt4);
+ VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4));
+ VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4));
+ LoadStoreStruct(vt, src, NEON_LD4);
+}
+
+
+void Assembler::ld4(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const VRegister& vt4,
+ int lane,
+ const MemOperand& src) {
+ USE(vt2, vt3, vt4);
+ VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4));
+ VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4));
+ LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad4);
+}
+
+
+void Assembler::ld4r(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const VRegister& vt4,
+ const MemOperand& src) {
+ USE(vt2, vt3, vt4);
+ VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4));
+ VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4));
+ LoadStoreStructSingleAllLanes(vt, src, NEON_LD4R);
+}
+
+
+void Assembler::st1(const VRegister& vt,
+ const MemOperand& src) {
+ LoadStoreStruct(vt, src, NEON_ST1_1v);
+}
+
+
+void Assembler::st1(const VRegister& vt,
+ const VRegister& vt2,
+ const MemOperand& src) {
+ USE(vt2);
+ VIXL_ASSERT(AreSameFormat(vt, vt2));
+ VIXL_ASSERT(AreConsecutive(vt, vt2));
+ LoadStoreStruct(vt, src, NEON_ST1_2v);
+}
+
+
+void Assembler::st1(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const MemOperand& src) {
+ USE(vt2, vt3);
+ VIXL_ASSERT(AreSameFormat(vt, vt2, vt3));
+ VIXL_ASSERT(AreConsecutive(vt, vt2, vt3));
+ LoadStoreStruct(vt, src, NEON_ST1_3v);
+}
+
+
+void Assembler::st1(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const VRegister& vt4,
+ const MemOperand& src) {
+ USE(vt2, vt3, vt4);
+ VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4));
+ VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4));
+ LoadStoreStruct(vt, src, NEON_ST1_4v);
+}
+
+
+void Assembler::st2(const VRegister& vt,
+ const VRegister& vt2,
+ const MemOperand& dst) {
+ USE(vt2);
+ VIXL_ASSERT(AreSameFormat(vt, vt2));
+ VIXL_ASSERT(AreConsecutive(vt, vt2));
+ LoadStoreStruct(vt, dst, NEON_ST2);
+}
+
+
+void Assembler::st2(const VRegister& vt,
+ const VRegister& vt2,
+ int lane,
+ const MemOperand& dst) {
+ USE(vt2);
+ VIXL_ASSERT(AreSameFormat(vt, vt2));
+ VIXL_ASSERT(AreConsecutive(vt, vt2));
+ LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore2);
+}
+
+
+void Assembler::st3(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const MemOperand& dst) {
+ USE(vt2, vt3);
+ VIXL_ASSERT(AreSameFormat(vt, vt2, vt3));
+ VIXL_ASSERT(AreConsecutive(vt, vt2, vt3));
+ LoadStoreStruct(vt, dst, NEON_ST3);
+}
+
+
+void Assembler::st3(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ int lane,
+ const MemOperand& dst) {
+ USE(vt2, vt3);
+ VIXL_ASSERT(AreSameFormat(vt, vt2, vt3));
+ VIXL_ASSERT(AreConsecutive(vt, vt2, vt3));
+ LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore3);
+}
+
+
+void Assembler::st4(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const VRegister& vt4,
+ const MemOperand& dst) {
+ USE(vt2, vt3, vt4);
+ VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4));
+ VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4));
+ LoadStoreStruct(vt, dst, NEON_ST4);
+}
+
+
+void Assembler::st4(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const VRegister& vt4,
+ int lane,
+ const MemOperand& dst) {
+ USE(vt2, vt3, vt4);
+ VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4));
+ VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4));
+ LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore4);
+}
+
+
+void Assembler::LoadStoreStructSingle(const VRegister& vt,
+ uint32_t lane,
+ const MemOperand& addr,
+ NEONLoadStoreSingleStructOp op) {
+ LoadStoreStructVerify(vt, addr, op);
+
+ // We support vt arguments of the form vt.VxT() or vt.T(), where x is the
+ // number of lanes, and T is b, h, s or d.
+ unsigned lane_size = vt.LaneSizeInBytes();
+ VIXL_ASSERT(lane < (kQRegSizeInBytes / lane_size));
+
+ // Lane size is encoded in the opcode field. Lane index is encoded in the Q,
+ // S and size fields.
+ lane *= lane_size;
+ if (lane_size == 8) lane++;
+
+ Instr size = (lane << NEONLSSize_offset) & NEONLSSize_mask;
+ Instr s = (lane << (NEONS_offset - 2)) & NEONS_mask;
+ Instr q = (lane << (NEONQ_offset - 3)) & NEONQ_mask;
+
+ Instr instr = op;
+ switch (lane_size) {
+ case 1: instr |= NEONLoadStoreSingle_b; break;
+ case 2: instr |= NEONLoadStoreSingle_h; break;
+ case 4: instr |= NEONLoadStoreSingle_s; break;
+ default:
+ VIXL_ASSERT(lane_size == 8);
+ instr |= NEONLoadStoreSingle_d;
+ }
+
+ Emit(instr | LoadStoreStructAddrModeField(addr) | q | size | s | Rt(vt));
+}
+
+
+void Assembler::ld1(const VRegister& vt,
+ int lane,
+ const MemOperand& src) {
+ LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad1);
+}
+
+
+void Assembler::ld1r(const VRegister& vt,
+ const MemOperand& src) {
+ LoadStoreStructSingleAllLanes(vt, src, NEON_LD1R);
+}
+
+
+void Assembler::st1(const VRegister& vt,
+ int lane,
+ const MemOperand& dst) {
+ LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore1);
+}
+
+
+void Assembler::NEON3DifferentL(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ NEON3DifferentOp vop) {
+ VIXL_ASSERT(AreSameFormat(vn, vm));
+ VIXL_ASSERT((vn.Is1H() && vd.Is1S()) ||
+ (vn.Is1S() && vd.Is1D()) ||
+ (vn.Is8B() && vd.Is8H()) ||
+ (vn.Is4H() && vd.Is4S()) ||
+ (vn.Is2S() && vd.Is2D()) ||
+ (vn.Is16B() && vd.Is8H())||
+ (vn.Is8H() && vd.Is4S()) ||
+ (vn.Is4S() && vd.Is2D()));
+ Instr format, op = vop;
+ if (vd.IsScalar()) {
+ op |= NEON_Q | NEONScalar;
+ format = SFormat(vn);
+ } else {
+ format = VFormat(vn);
+ }
+ Emit(format | op | Rm(vm) | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::NEON3DifferentW(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ NEON3DifferentOp vop) {
+ VIXL_ASSERT(AreSameFormat(vd, vn));
+ VIXL_ASSERT((vm.Is8B() && vd.Is8H()) ||
+ (vm.Is4H() && vd.Is4S()) ||
+ (vm.Is2S() && vd.Is2D()) ||
+ (vm.Is16B() && vd.Is8H())||
+ (vm.Is8H() && vd.Is4S()) ||
+ (vm.Is4S() && vd.Is2D()));
+ Emit(VFormat(vm) | vop | Rm(vm) | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::NEON3DifferentHN(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ NEON3DifferentOp vop) {
+ VIXL_ASSERT(AreSameFormat(vm, vn));
+ VIXL_ASSERT((vd.Is8B() && vn.Is8H()) ||
+ (vd.Is4H() && vn.Is4S()) ||
+ (vd.Is2S() && vn.Is2D()) ||
+ (vd.Is16B() && vn.Is8H())||
+ (vd.Is8H() && vn.Is4S()) ||
+ (vd.Is4S() && vn.Is2D()));
+ Emit(VFormat(vd) | vop | Rm(vm) | Rn(vn) | Rd(vd));
+}
+
+
+#define NEON_3DIFF_LONG_LIST(V) \
+ V(pmull, NEON_PMULL, vn.IsVector() && vn.Is8B()) \
+ V(pmull2, NEON_PMULL2, vn.IsVector() && vn.Is16B()) \
+ V(saddl, NEON_SADDL, vn.IsVector() && vn.IsD()) \
+ V(saddl2, NEON_SADDL2, vn.IsVector() && vn.IsQ()) \
+ V(sabal, NEON_SABAL, vn.IsVector() && vn.IsD()) \
+ V(sabal2, NEON_SABAL2, vn.IsVector() && vn.IsQ()) \
+ V(uabal, NEON_UABAL, vn.IsVector() && vn.IsD()) \
+ V(uabal2, NEON_UABAL2, vn.IsVector() && vn.IsQ()) \
+ V(sabdl, NEON_SABDL, vn.IsVector() && vn.IsD()) \
+ V(sabdl2, NEON_SABDL2, vn.IsVector() && vn.IsQ()) \
+ V(uabdl, NEON_UABDL, vn.IsVector() && vn.IsD()) \
+ V(uabdl2, NEON_UABDL2, vn.IsVector() && vn.IsQ()) \
+ V(smlal, NEON_SMLAL, vn.IsVector() && vn.IsD()) \
+ V(smlal2, NEON_SMLAL2, vn.IsVector() && vn.IsQ()) \
+ V(umlal, NEON_UMLAL, vn.IsVector() && vn.IsD()) \
+ V(umlal2, NEON_UMLAL2, vn.IsVector() && vn.IsQ()) \
+ V(smlsl, NEON_SMLSL, vn.IsVector() && vn.IsD()) \
+ V(smlsl2, NEON_SMLSL2, vn.IsVector() && vn.IsQ()) \
+ V(umlsl, NEON_UMLSL, vn.IsVector() && vn.IsD()) \
+ V(umlsl2, NEON_UMLSL2, vn.IsVector() && vn.IsQ()) \
+ V(smull, NEON_SMULL, vn.IsVector() && vn.IsD()) \
+ V(smull2, NEON_SMULL2, vn.IsVector() && vn.IsQ()) \
+ V(umull, NEON_UMULL, vn.IsVector() && vn.IsD()) \
+ V(umull2, NEON_UMULL2, vn.IsVector() && vn.IsQ()) \
+ V(ssubl, NEON_SSUBL, vn.IsVector() && vn.IsD()) \
+ V(ssubl2, NEON_SSUBL2, vn.IsVector() && vn.IsQ()) \
+ V(uaddl, NEON_UADDL, vn.IsVector() && vn.IsD()) \
+ V(uaddl2, NEON_UADDL2, vn.IsVector() && vn.IsQ()) \
+ V(usubl, NEON_USUBL, vn.IsVector() && vn.IsD()) \
+ V(usubl2, NEON_USUBL2, vn.IsVector() && vn.IsQ()) \
+ V(sqdmlal, NEON_SQDMLAL, vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \
+ V(sqdmlal2, NEON_SQDMLAL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) \
+ V(sqdmlsl, NEON_SQDMLSL, vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \
+ V(sqdmlsl2, NEON_SQDMLSL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) \
+ V(sqdmull, NEON_SQDMULL, vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \
+ V(sqdmull2, NEON_SQDMULL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) \
+
+
+#define DEFINE_ASM_FUNC(FN, OP, AS) \
+void Assembler::FN(const VRegister& vd, \
+ const VRegister& vn, \
+ const VRegister& vm) { \
+ VIXL_ASSERT(AS); \
+ NEON3DifferentL(vd, vn, vm, OP); \
+}
+NEON_3DIFF_LONG_LIST(DEFINE_ASM_FUNC)
+#undef DEFINE_ASM_FUNC
+
+#define NEON_3DIFF_HN_LIST(V) \
+ V(addhn, NEON_ADDHN, vd.IsD()) \
+ V(addhn2, NEON_ADDHN2, vd.IsQ()) \
+ V(raddhn, NEON_RADDHN, vd.IsD()) \
+ V(raddhn2, NEON_RADDHN2, vd.IsQ()) \
+ V(subhn, NEON_SUBHN, vd.IsD()) \
+ V(subhn2, NEON_SUBHN2, vd.IsQ()) \
+ V(rsubhn, NEON_RSUBHN, vd.IsD()) \
+ V(rsubhn2, NEON_RSUBHN2, vd.IsQ())
+
+#define DEFINE_ASM_FUNC(FN, OP, AS) \
+void Assembler::FN(const VRegister& vd, \
+ const VRegister& vn, \
+ const VRegister& vm) { \
+ VIXL_ASSERT(AS); \
+ NEON3DifferentHN(vd, vn, vm, OP); \
+}
+NEON_3DIFF_HN_LIST(DEFINE_ASM_FUNC)
+#undef DEFINE_ASM_FUNC
+
+void Assembler::uaddw(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm) {
+ VIXL_ASSERT(vm.IsD());
+ NEON3DifferentW(vd, vn, vm, NEON_UADDW);
+}
+
+
+void Assembler::uaddw2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm) {
+ VIXL_ASSERT(vm.IsQ());
+ NEON3DifferentW(vd, vn, vm, NEON_UADDW2);
+}
+
+
+void Assembler::saddw(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm) {
+ VIXL_ASSERT(vm.IsD());
+ NEON3DifferentW(vd, vn, vm, NEON_SADDW);
+}
+
+
+void Assembler::saddw2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm) {
+ VIXL_ASSERT(vm.IsQ());
+ NEON3DifferentW(vd, vn, vm, NEON_SADDW2);
+}
+
+
+void Assembler::usubw(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm) {
+ VIXL_ASSERT(vm.IsD());
+ NEON3DifferentW(vd, vn, vm, NEON_USUBW);
+}
+
+
+void Assembler::usubw2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm) {
+ VIXL_ASSERT(vm.IsQ());
+ NEON3DifferentW(vd, vn, vm, NEON_USUBW2);
+}
+
+
+void Assembler::ssubw(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm) {
+ VIXL_ASSERT(vm.IsD());
+ NEON3DifferentW(vd, vn, vm, NEON_SSUBW);
+}
+
+
+void Assembler::ssubw2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm) {
+ VIXL_ASSERT(vm.IsQ());
+ NEON3DifferentW(vd, vn, vm, NEON_SSUBW2);
+}
+
+
+void Assembler::mov(const Register& rd, const Register& rm) {
+ // Moves involving the stack pointer are encoded as add immediate with
+ // second operand of zero. Otherwise, orr with first operand zr is
+ // used.
+ if (rd.IsSP() || rm.IsSP()) {
+ add(rd, rm, 0);
+ } else {
+ orr(rd, AppropriateZeroRegFor(rd), rm);
+ }
+}
+
+
+void Assembler::mvn(const Register& rd, const Operand& operand) {
+ orn(rd, AppropriateZeroRegFor(rd), operand);
+}
+
+
+void Assembler::mrs(const Register& rt, SystemRegister sysreg) {
+ VIXL_ASSERT(rt.Is64Bits());
+ Emit(MRS | ImmSystemRegister(sysreg) | Rt(rt));
+}
+
+
+void Assembler::msr(SystemRegister sysreg, const Register& rt) {
+ VIXL_ASSERT(rt.Is64Bits());
+ Emit(MSR | Rt(rt) | ImmSystemRegister(sysreg));
+}
+
+
+void Assembler::clrex(int imm4) {
+ Emit(CLREX | CRm(imm4));
+}
+
+
+void Assembler::dmb(BarrierDomain domain, BarrierType type) {
+ Emit(DMB | ImmBarrierDomain(domain) | ImmBarrierType(type));
+}
+
+
+void Assembler::dsb(BarrierDomain domain, BarrierType type) {
+ Emit(DSB | ImmBarrierDomain(domain) | ImmBarrierType(type));
+}
+
+
+void Assembler::isb() {
+ Emit(ISB | ImmBarrierDomain(FullSystem) | ImmBarrierType(BarrierAll));
+}
+
+
+void Assembler::fmov(const VRegister& vd, double imm) {
+ if (vd.IsScalar()) {
+ VIXL_ASSERT(vd.Is1D());
+ Emit(FMOV_d_imm | Rd(vd) | ImmFP64(imm));
+ } else {
+ VIXL_ASSERT(vd.Is2D());
+ Instr op = NEONModifiedImmediate_MOVI | NEONModifiedImmediateOpBit;
+ Instr q = NEON_Q;
+ uint32_t encoded_imm = FP64ToImm8(imm);
+ Emit(q | op | ImmNEONabcdefgh(encoded_imm) | NEONCmode(0xf) | Rd(vd));
+ }
+}
+
+
+void Assembler::fmov(const VRegister& vd, float imm) {
+ if (vd.IsScalar()) {
+ VIXL_ASSERT(vd.Is1S());
+ Emit(FMOV_s_imm | Rd(vd) | ImmFP32(imm));
+ } else {
+ VIXL_ASSERT(vd.Is2S() || vd.Is4S());
+ Instr op = NEONModifiedImmediate_MOVI;
+ Instr q = vd.Is4S() ? NEON_Q : 0;
+ uint32_t encoded_imm = FP32ToImm8(imm);
+ Emit(q | op | ImmNEONabcdefgh(encoded_imm) | NEONCmode(0xf) | Rd(vd));
+ }
+}
+
+
+void Assembler::fmov(const Register& rd, const VRegister& vn) {
+ VIXL_ASSERT(vn.Is1S() || vn.Is1D());
+ VIXL_ASSERT(rd.size() == vn.size());
+ FPIntegerConvertOp op = rd.Is32Bits() ? FMOV_ws : FMOV_xd;
+ Emit(op | Rd(rd) | Rn(vn));
+}
+
+
+void Assembler::fmov(const VRegister& vd, const Register& rn) {
+ VIXL_ASSERT(vd.Is1S() || vd.Is1D());
+ VIXL_ASSERT(vd.size() == rn.size());
+ FPIntegerConvertOp op = vd.Is32Bits() ? FMOV_sw : FMOV_dx;
+ Emit(op | Rd(vd) | Rn(rn));
+}
+
+
+void Assembler::fmov(const VRegister& vd, const VRegister& vn) {
+ VIXL_ASSERT(vd.Is1S() || vd.Is1D());
+ VIXL_ASSERT(vd.IsSameFormat(vn));
+ Emit(FPType(vd) | FMOV | Rd(vd) | Rn(vn));
+}
+
+
+void Assembler::fmov(const VRegister& vd, int index, const Register& rn) {
+ VIXL_ASSERT((index == 1) && vd.Is1D() && rn.IsX());
+ USE(index);
+ Emit(FMOV_d1_x | Rd(vd) | Rn(rn));
+}
+
+
+void Assembler::fmov(const Register& rd, const VRegister& vn, int index) {
+ VIXL_ASSERT((index == 1) && vn.Is1D() && rd.IsX());
+ USE(index);
+ Emit(FMOV_x_d1 | Rd(rd) | Rn(vn));
+}
+
+
+void Assembler::fmadd(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ const VRegister& va) {
+ FPDataProcessing3Source(vd, vn, vm, va, vd.Is1S() ? FMADD_s : FMADD_d);
+}
+
+
+void Assembler::fmsub(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ const VRegister& va) {
+ FPDataProcessing3Source(vd, vn, vm, va, vd.Is1S() ? FMSUB_s : FMSUB_d);
+}
+
+
+void Assembler::fnmadd(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ const VRegister& va) {
+ FPDataProcessing3Source(vd, vn, vm, va, vd.Is1S() ? FNMADD_s : FNMADD_d);
+}
+
+
+void Assembler::fnmsub(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ const VRegister& va) {
+ FPDataProcessing3Source(vd, vn, vm, va, vd.Is1S() ? FNMSUB_s : FNMSUB_d);
+}
+
+
+void Assembler::fnmul(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm) {
+ VIXL_ASSERT(AreSameSizeAndType(vd, vn, vm));
+ Instr op = vd.Is1S() ? FNMUL_s : FNMUL_d;
+ Emit(FPType(vd) | op | Rm(vm) | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::FPCompareMacro(const VRegister& vn,
+ double value,
+ FPTrapFlags trap) {
+ USE(value);
+ // Although the fcmp{e} instructions can strictly only take an immediate
+ // value of +0.0, we don't need to check for -0.0 because the sign of 0.0
+ // doesn't affect the result of the comparison.
+ VIXL_ASSERT(value == 0.0);
+ VIXL_ASSERT(vn.Is1S() || vn.Is1D());
+ Instr op = (trap == EnableTrap) ? FCMPE_zero : FCMP_zero;
+ Emit(FPType(vn) | op | Rn(vn));
+}
+
+
+void Assembler::FPCompareMacro(const VRegister& vn,
+ const VRegister& vm,
+ FPTrapFlags trap) {
+ VIXL_ASSERT(vn.Is1S() || vn.Is1D());
+ VIXL_ASSERT(vn.IsSameSizeAndType(vm));
+ Instr op = (trap == EnableTrap) ? FCMPE : FCMP;
+ Emit(FPType(vn) | op | Rm(vm) | Rn(vn));
+}
+
+
+void Assembler::fcmp(const VRegister& vn,
+ const VRegister& vm) {
+ FPCompareMacro(vn, vm, DisableTrap);
+}
+
+
+void Assembler::fcmpe(const VRegister& vn,
+ const VRegister& vm) {
+ FPCompareMacro(vn, vm, EnableTrap);
+}
+
+
+void Assembler::fcmp(const VRegister& vn,
+ double value) {
+ FPCompareMacro(vn, value, DisableTrap);
+}
+
+
+void Assembler::fcmpe(const VRegister& vn,
+ double value) {
+ FPCompareMacro(vn, value, EnableTrap);
+}
+
+
+void Assembler::FPCCompareMacro(const VRegister& vn,
+ const VRegister& vm,
+ StatusFlags nzcv,
+ Condition cond,
+ FPTrapFlags trap) {
+ VIXL_ASSERT(vn.Is1S() || vn.Is1D());
+ VIXL_ASSERT(vn.IsSameSizeAndType(vm));
+ Instr op = (trap == EnableTrap) ? FCCMPE : FCCMP;
+ Emit(FPType(vn) | op | Rm(vm) | Cond(cond) | Rn(vn) | Nzcv(nzcv));
+}
+
+void Assembler::fccmp(const VRegister& vn,
+ const VRegister& vm,
+ StatusFlags nzcv,
+ Condition cond) {
+ FPCCompareMacro(vn, vm, nzcv, cond, DisableTrap);
+}
+
+
+void Assembler::fccmpe(const VRegister& vn,
+ const VRegister& vm,
+ StatusFlags nzcv,
+ Condition cond) {
+ FPCCompareMacro(vn, vm, nzcv, cond, EnableTrap);
+}
+
+
+void Assembler::fcsel(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ Condition cond) {
+ VIXL_ASSERT(vd.Is1S() || vd.Is1D());
+ VIXL_ASSERT(AreSameFormat(vd, vn, vm));
+ Emit(FPType(vd) | FCSEL | Rm(vm) | Cond(cond) | Rn(vn) | Rd(vd));
+}
+
+void Assembler::fjcvtzs(const Register& rd, const VRegister& vn) {
+ VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kJSCVT));
+ VIXL_ASSERT(rd.IsW() && vn.Is1D());
+ Emit(FJCVTZS | Rn(vn) | Rd(rd));
+}
+
+
+void Assembler::NEONFPConvertToInt(const Register& rd,
+ const VRegister& vn,
+ Instr op) {
+ Emit(SF(rd) | FPType(vn) | op | Rn(vn) | Rd(rd));
+}
+
+
+void Assembler::NEONFPConvertToInt(const VRegister& vd,
+ const VRegister& vn,
+ Instr op) {
+ if (vn.IsScalar()) {
+ VIXL_ASSERT((vd.Is1S() && vn.Is1S()) || (vd.Is1D() && vn.Is1D()));
+ op |= NEON_Q | NEONScalar;
+ }
+ Emit(FPFormat(vn) | op | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::fcvt(const VRegister& vd,
+ const VRegister& vn) {
+ FPDataProcessing1SourceOp op;
+ if (vd.Is1D()) {
+ VIXL_ASSERT(vn.Is1S() || vn.Is1H());
+ op = vn.Is1S() ? FCVT_ds : FCVT_dh;
+ } else if (vd.Is1S()) {
+ VIXL_ASSERT(vn.Is1D() || vn.Is1H());
+ op = vn.Is1D() ? FCVT_sd : FCVT_sh;
+ } else {
+ VIXL_ASSERT(vd.Is1H());
+ VIXL_ASSERT(vn.Is1D() || vn.Is1S());
+ op = vn.Is1D() ? FCVT_hd : FCVT_hs;
+ }
+ FPDataProcessing1Source(vd, vn, op);
+}
+
+
+void Assembler::fcvtl(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT((vd.Is4S() && vn.Is4H()) ||
+ (vd.Is2D() && vn.Is2S()));
+ Instr format = vd.Is2D() ? (1 << NEONSize_offset) : 0;
+ Emit(format | NEON_FCVTL | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::fcvtl2(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT((vd.Is4S() && vn.Is8H()) ||
+ (vd.Is2D() && vn.Is4S()));
+ Instr format = vd.Is2D() ? (1 << NEONSize_offset) : 0;
+ Emit(NEON_Q | format | NEON_FCVTL | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::fcvtn(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT((vn.Is4S() && vd.Is4H()) ||
+ (vn.Is2D() && vd.Is2S()));
+ Instr format = vn.Is2D() ? (1 << NEONSize_offset) : 0;
+ Emit(format | NEON_FCVTN | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::fcvtn2(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT((vn.Is4S() && vd.Is8H()) ||
+ (vn.Is2D() && vd.Is4S()));
+ Instr format = vn.Is2D() ? (1 << NEONSize_offset) : 0;
+ Emit(NEON_Q | format | NEON_FCVTN | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::fcvtxn(const VRegister& vd,
+ const VRegister& vn) {
+ Instr format = 1 << NEONSize_offset;
+ if (vd.IsScalar()) {
+ VIXL_ASSERT(vd.Is1S() && vn.Is1D());
+ Emit(format | NEON_FCVTXN_scalar | Rn(vn) | Rd(vd));
+ } else {
+ VIXL_ASSERT(vd.Is2S() && vn.Is2D());
+ Emit(format | NEON_FCVTXN | Rn(vn) | Rd(vd));
+ }
+}
+
+
+void Assembler::fcvtxn2(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT(vd.Is4S() && vn.Is2D());
+ Instr format = 1 << NEONSize_offset;
+ Emit(NEON_Q | format | NEON_FCVTXN | Rn(vn) | Rd(vd));
+}
+
+
+#define NEON_FP2REGMISC_FCVT_LIST(V) \
+ V(fcvtnu, NEON_FCVTNU, FCVTNU) \
+ V(fcvtns, NEON_FCVTNS, FCVTNS) \
+ V(fcvtpu, NEON_FCVTPU, FCVTPU) \
+ V(fcvtps, NEON_FCVTPS, FCVTPS) \
+ V(fcvtmu, NEON_FCVTMU, FCVTMU) \
+ V(fcvtms, NEON_FCVTMS, FCVTMS) \
+ V(fcvtau, NEON_FCVTAU, FCVTAU) \
+ V(fcvtas, NEON_FCVTAS, FCVTAS)
+
+#define DEFINE_ASM_FUNCS(FN, VEC_OP, SCA_OP) \
+void Assembler::FN(const Register& rd, \
+ const VRegister& vn) { \
+ NEONFPConvertToInt(rd, vn, SCA_OP); \
+} \
+void Assembler::FN(const VRegister& vd, \
+ const VRegister& vn) { \
+ NEONFPConvertToInt(vd, vn, VEC_OP); \
+}
+NEON_FP2REGMISC_FCVT_LIST(DEFINE_ASM_FUNCS)
+#undef DEFINE_ASM_FUNCS
+
+
+void Assembler::fcvtzs(const Register& rd,
+ const VRegister& vn,
+ int fbits) {
+ VIXL_ASSERT(vn.Is1S() || vn.Is1D());
+ VIXL_ASSERT((fbits >= 0) && (fbits <= rd.SizeInBits()));
+ if (fbits == 0) {
+ Emit(SF(rd) | FPType(vn) | FCVTZS | Rn(vn) | Rd(rd));
+ } else {
+ Emit(SF(rd) | FPType(vn) | FCVTZS_fixed | FPScale(64 - fbits) | Rn(vn) |
+ Rd(rd));
+ }
+}
+
+
+void Assembler::fcvtzs(const VRegister& vd,
+ const VRegister& vn,
+ int fbits) {
+ VIXL_ASSERT(fbits >= 0);
+ if (fbits == 0) {
+ NEONFP2RegMisc(vd, vn, NEON_FCVTZS);
+ } else {
+ VIXL_ASSERT(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S());
+ NEONShiftRightImmediate(vd, vn, fbits, NEON_FCVTZS_imm);
+ }
+}
+
+
+void Assembler::fcvtzu(const Register& rd,
+ const VRegister& vn,
+ int fbits) {
+ VIXL_ASSERT(vn.Is1S() || vn.Is1D());
+ VIXL_ASSERT((fbits >= 0) && (fbits <= rd.SizeInBits()));
+ if (fbits == 0) {
+ Emit(SF(rd) | FPType(vn) | FCVTZU | Rn(vn) | Rd(rd));
+ } else {
+ Emit(SF(rd) | FPType(vn) | FCVTZU_fixed | FPScale(64 - fbits) | Rn(vn) |
+ Rd(rd));
+ }
+}
+
+
+void Assembler::fcvtzu(const VRegister& vd,
+ const VRegister& vn,
+ int fbits) {
+ VIXL_ASSERT(fbits >= 0);
+ if (fbits == 0) {
+ NEONFP2RegMisc(vd, vn, NEON_FCVTZU);
+ } else {
+ VIXL_ASSERT(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S());
+ NEONShiftRightImmediate(vd, vn, fbits, NEON_FCVTZU_imm);
+ }
+}
+
+void Assembler::ucvtf(const VRegister& vd,
+ const VRegister& vn,
+ int fbits) {
+ VIXL_ASSERT(fbits >= 0);
+ if (fbits == 0) {
+ NEONFP2RegMisc(vd, vn, NEON_UCVTF);
+ } else {
+ VIXL_ASSERT(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S());
+ NEONShiftRightImmediate(vd, vn, fbits, NEON_UCVTF_imm);
+ }
+}
+
+void Assembler::scvtf(const VRegister& vd,
+ const VRegister& vn,
+ int fbits) {
+ VIXL_ASSERT(fbits >= 0);
+ if (fbits == 0) {
+ NEONFP2RegMisc(vd, vn, NEON_SCVTF);
+ } else {
+ VIXL_ASSERT(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S());
+ NEONShiftRightImmediate(vd, vn, fbits, NEON_SCVTF_imm);
+ }
+}
+
+
+void Assembler::scvtf(const VRegister& vd,
+ const Register& rn,
+ int fbits) {
+ VIXL_ASSERT(vd.Is1S() || vd.Is1D());
+ VIXL_ASSERT(fbits >= 0);
+ if (fbits == 0) {
+ Emit(SF(rn) | FPType(vd) | SCVTF | Rn(rn) | Rd(vd));
+ } else {
+ Emit(SF(rn) | FPType(vd) | SCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
+ Rd(vd));
+ }
+}
+
+
+void Assembler::ucvtf(const VRegister& vd,
+ const Register& rn,
+ int fbits) {
+ VIXL_ASSERT(vd.Is1S() || vd.Is1D());
+ VIXL_ASSERT(fbits >= 0);
+ if (fbits == 0) {
+ Emit(SF(rn) | FPType(vd) | UCVTF | Rn(rn) | Rd(vd));
+ } else {
+ Emit(SF(rn) | FPType(vd) | UCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
+ Rd(vd));
+ }
+}
+
+
+void Assembler::NEON3Same(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ NEON3SameOp vop) {
+ VIXL_ASSERT(AreSameFormat(vd, vn, vm));
+ VIXL_ASSERT(vd.IsVector() || !vd.IsQ());
+
+ Instr format, op = vop;
+ if (vd.IsScalar()) {
+ op |= NEON_Q | NEONScalar;
+ format = SFormat(vd);
+ } else {
+ format = VFormat(vd);
+ }
+
+ Emit(format | op | Rm(vm) | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::NEONFP3Same(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ Instr op) {
+ VIXL_ASSERT(AreSameFormat(vd, vn, vm));
+ Emit(FPFormat(vd) | op | Rm(vm) | Rn(vn) | Rd(vd));
+}
+
+
+#define NEON_FP2REGMISC_LIST(V) \
+ V(fabs, NEON_FABS, FABS) \
+ V(fneg, NEON_FNEG, FNEG) \
+ V(fsqrt, NEON_FSQRT, FSQRT) \
+ V(frintn, NEON_FRINTN, FRINTN) \
+ V(frinta, NEON_FRINTA, FRINTA) \
+ V(frintp, NEON_FRINTP, FRINTP) \
+ V(frintm, NEON_FRINTM, FRINTM) \
+ V(frintx, NEON_FRINTX, FRINTX) \
+ V(frintz, NEON_FRINTZ, FRINTZ) \
+ V(frinti, NEON_FRINTI, FRINTI) \
+ V(frsqrte, NEON_FRSQRTE, NEON_FRSQRTE_scalar) \
+ V(frecpe, NEON_FRECPE, NEON_FRECPE_scalar )
+
+
+#define DEFINE_ASM_FUNC(FN, VEC_OP, SCA_OP) \
+void Assembler::FN(const VRegister& vd, \
+ const VRegister& vn) { \
+ Instr op; \
+ if (vd.IsScalar()) { \
+ VIXL_ASSERT(vd.Is1S() || vd.Is1D()); \
+ op = SCA_OP; \
+ } else { \
+ VIXL_ASSERT(vd.Is2S() || vd.Is2D() || vd.Is4S()); \
+ op = VEC_OP; \
+ } \
+ NEONFP2RegMisc(vd, vn, op); \
+}
+NEON_FP2REGMISC_LIST(DEFINE_ASM_FUNC)
+#undef DEFINE_ASM_FUNC
+
+
+void Assembler::NEONFP2RegMisc(const VRegister& vd,
+ const VRegister& vn,
+ Instr op) {
+ VIXL_ASSERT(AreSameFormat(vd, vn));
+ Emit(FPFormat(vd) | op | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::NEON2RegMisc(const VRegister& vd,
+ const VRegister& vn,
+ NEON2RegMiscOp vop,
+ int value) {
+ VIXL_ASSERT(AreSameFormat(vd, vn));
+ VIXL_ASSERT(value == 0);
+ USE(value);
+
+ Instr format, op = vop;
+ if (vd.IsScalar()) {
+ op |= NEON_Q | NEONScalar;
+ format = SFormat(vd);
+ } else {
+ format = VFormat(vd);
+ }
+
+ Emit(format | op | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::cmeq(const VRegister& vd,
+ const VRegister& vn,
+ int value) {
+ VIXL_ASSERT(vd.IsVector() || vd.Is1D());
+ NEON2RegMisc(vd, vn, NEON_CMEQ_zero, value);
+}
+
+
+void Assembler::cmge(const VRegister& vd,
+ const VRegister& vn,
+ int value) {
+ VIXL_ASSERT(vd.IsVector() || vd.Is1D());
+ NEON2RegMisc(vd, vn, NEON_CMGE_zero, value);
+}
+
+
+void Assembler::cmgt(const VRegister& vd,
+ const VRegister& vn,
+ int value) {
+ VIXL_ASSERT(vd.IsVector() || vd.Is1D());
+ NEON2RegMisc(vd, vn, NEON_CMGT_zero, value);
+}
+
+
+void Assembler::cmle(const VRegister& vd,
+ const VRegister& vn,
+ int value) {
+ VIXL_ASSERT(vd.IsVector() || vd.Is1D());
+ NEON2RegMisc(vd, vn, NEON_CMLE_zero, value);
+}
+
+
+void Assembler::cmlt(const VRegister& vd,
+ const VRegister& vn,
+ int value) {
+ VIXL_ASSERT(vd.IsVector() || vd.Is1D());
+ NEON2RegMisc(vd, vn, NEON_CMLT_zero, value);
+}
+
+
+void Assembler::shll(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT((vd.Is8H() && vn.Is8B() && shift == 8) ||
+ (vd.Is4S() && vn.Is4H() && shift == 16) ||
+ (vd.Is2D() && vn.Is2S() && shift == 32));
+ USE(shift);
+ Emit(VFormat(vn) | NEON_SHLL | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::shll2(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ USE(shift);
+ VIXL_ASSERT((vd.Is8H() && vn.Is16B() && shift == 8) ||
+ (vd.Is4S() && vn.Is8H() && shift == 16) ||
+ (vd.Is2D() && vn.Is4S() && shift == 32));
+ Emit(VFormat(vn) | NEON_SHLL | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::NEONFP2RegMisc(const VRegister& vd,
+ const VRegister& vn,
+ NEON2RegMiscOp vop,
+ double value) {
+ VIXL_ASSERT(AreSameFormat(vd, vn));
+ VIXL_ASSERT(value == 0.0);
+ USE(value);
+
+ Instr op = vop;
+ if (vd.IsScalar()) {
+ VIXL_ASSERT(vd.Is1S() || vd.Is1D());
+ op |= NEON_Q | NEONScalar;
+ } else {
+ VIXL_ASSERT(vd.Is2S() || vd.Is2D() || vd.Is4S());
+ }
+
+ Emit(FPFormat(vd) | op | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::fcmeq(const VRegister& vd,
+ const VRegister& vn,
+ double value) {
+ NEONFP2RegMisc(vd, vn, NEON_FCMEQ_zero, value);
+}
+
+
+void Assembler::fcmge(const VRegister& vd,
+ const VRegister& vn,
+ double value) {
+ NEONFP2RegMisc(vd, vn, NEON_FCMGE_zero, value);
+}
+
+
+void Assembler::fcmgt(const VRegister& vd,
+ const VRegister& vn,
+ double value) {
+ NEONFP2RegMisc(vd, vn, NEON_FCMGT_zero, value);
+}
+
+
+void Assembler::fcmle(const VRegister& vd,
+ const VRegister& vn,
+ double value) {
+ NEONFP2RegMisc(vd, vn, NEON_FCMLE_zero, value);
+}
+
+
+void Assembler::fcmlt(const VRegister& vd,
+ const VRegister& vn,
+ double value) {
+ NEONFP2RegMisc(vd, vn, NEON_FCMLT_zero, value);
+}
+
+
+void Assembler::frecpx(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT(vd.IsScalar());
+ VIXL_ASSERT(AreSameFormat(vd, vn));
+ VIXL_ASSERT(vd.Is1S() || vd.Is1D());
+ Emit(FPFormat(vd) | NEON_FRECPX_scalar | Rn(vn) | Rd(vd));
+}
+
+
+#define NEON_3SAME_LIST(V) \
+ V(add, NEON_ADD, vd.IsVector() || vd.Is1D()) \
+ V(addp, NEON_ADDP, vd.IsVector() || vd.Is1D()) \
+ V(sub, NEON_SUB, vd.IsVector() || vd.Is1D()) \
+ V(cmeq, NEON_CMEQ, vd.IsVector() || vd.Is1D()) \
+ V(cmge, NEON_CMGE, vd.IsVector() || vd.Is1D()) \
+ V(cmgt, NEON_CMGT, vd.IsVector() || vd.Is1D()) \
+ V(cmhi, NEON_CMHI, vd.IsVector() || vd.Is1D()) \
+ V(cmhs, NEON_CMHS, vd.IsVector() || vd.Is1D()) \
+ V(cmtst, NEON_CMTST, vd.IsVector() || vd.Is1D()) \
+ V(sshl, NEON_SSHL, vd.IsVector() || vd.Is1D()) \
+ V(ushl, NEON_USHL, vd.IsVector() || vd.Is1D()) \
+ V(srshl, NEON_SRSHL, vd.IsVector() || vd.Is1D()) \
+ V(urshl, NEON_URSHL, vd.IsVector() || vd.Is1D()) \
+ V(sqdmulh, NEON_SQDMULH, vd.IsLaneSizeH() || vd.IsLaneSizeS()) \
+ V(sqrdmulh, NEON_SQRDMULH, vd.IsLaneSizeH() || vd.IsLaneSizeS()) \
+ V(shadd, NEON_SHADD, vd.IsVector() && !vd.IsLaneSizeD()) \
+ V(uhadd, NEON_UHADD, vd.IsVector() && !vd.IsLaneSizeD()) \
+ V(srhadd, NEON_SRHADD, vd.IsVector() && !vd.IsLaneSizeD()) \
+ V(urhadd, NEON_URHADD, vd.IsVector() && !vd.IsLaneSizeD()) \
+ V(shsub, NEON_SHSUB, vd.IsVector() && !vd.IsLaneSizeD()) \
+ V(uhsub, NEON_UHSUB, vd.IsVector() && !vd.IsLaneSizeD()) \
+ V(smax, NEON_SMAX, vd.IsVector() && !vd.IsLaneSizeD()) \
+ V(smaxp, NEON_SMAXP, vd.IsVector() && !vd.IsLaneSizeD()) \
+ V(smin, NEON_SMIN, vd.IsVector() && !vd.IsLaneSizeD()) \
+ V(sminp, NEON_SMINP, vd.IsVector() && !vd.IsLaneSizeD()) \
+ V(umax, NEON_UMAX, vd.IsVector() && !vd.IsLaneSizeD()) \
+ V(umaxp, NEON_UMAXP, vd.IsVector() && !vd.IsLaneSizeD()) \
+ V(umin, NEON_UMIN, vd.IsVector() && !vd.IsLaneSizeD()) \
+ V(uminp, NEON_UMINP, vd.IsVector() && !vd.IsLaneSizeD()) \
+ V(saba, NEON_SABA, vd.IsVector() && !vd.IsLaneSizeD()) \
+ V(sabd, NEON_SABD, vd.IsVector() && !vd.IsLaneSizeD()) \
+ V(uaba, NEON_UABA, vd.IsVector() && !vd.IsLaneSizeD()) \
+ V(uabd, NEON_UABD, vd.IsVector() && !vd.IsLaneSizeD()) \
+ V(mla, NEON_MLA, vd.IsVector() && !vd.IsLaneSizeD()) \
+ V(mls, NEON_MLS, vd.IsVector() && !vd.IsLaneSizeD()) \
+ V(mul, NEON_MUL, vd.IsVector() && !vd.IsLaneSizeD()) \
+ V(and_, NEON_AND, vd.Is8B() || vd.Is16B()) \
+ V(orr, NEON_ORR, vd.Is8B() || vd.Is16B()) \
+ V(orn, NEON_ORN, vd.Is8B() || vd.Is16B()) \
+ V(eor, NEON_EOR, vd.Is8B() || vd.Is16B()) \
+ V(bic, NEON_BIC, vd.Is8B() || vd.Is16B()) \
+ V(bit, NEON_BIT, vd.Is8B() || vd.Is16B()) \
+ V(bif, NEON_BIF, vd.Is8B() || vd.Is16B()) \
+ V(bsl, NEON_BSL, vd.Is8B() || vd.Is16B()) \
+ V(pmul, NEON_PMUL, vd.Is8B() || vd.Is16B()) \
+ V(uqadd, NEON_UQADD, true) \
+ V(sqadd, NEON_SQADD, true) \
+ V(uqsub, NEON_UQSUB, true) \
+ V(sqsub, NEON_SQSUB, true) \
+ V(sqshl, NEON_SQSHL, true) \
+ V(uqshl, NEON_UQSHL, true) \
+ V(sqrshl, NEON_SQRSHL, true) \
+ V(uqrshl, NEON_UQRSHL, true)
+
+#define DEFINE_ASM_FUNC(FN, OP, AS) \
+void Assembler::FN(const VRegister& vd, \
+ const VRegister& vn, \
+ const VRegister& vm) { \
+ VIXL_ASSERT(AS); \
+ NEON3Same(vd, vn, vm, OP); \
+}
+NEON_3SAME_LIST(DEFINE_ASM_FUNC)
+#undef DEFINE_ASM_FUNC
+
+
+#define NEON_FP3SAME_OP_LIST(V) \
+ V(fadd, NEON_FADD, FADD) \
+ V(fsub, NEON_FSUB, FSUB) \
+ V(fmul, NEON_FMUL, FMUL) \
+ V(fdiv, NEON_FDIV, FDIV) \
+ V(fmax, NEON_FMAX, FMAX) \
+ V(fmaxnm, NEON_FMAXNM, FMAXNM) \
+ V(fmin, NEON_FMIN, FMIN) \
+ V(fminnm, NEON_FMINNM, FMINNM) \
+ V(fmulx, NEON_FMULX, NEON_FMULX_scalar) \
+ V(frecps, NEON_FRECPS, NEON_FRECPS_scalar) \
+ V(frsqrts, NEON_FRSQRTS, NEON_FRSQRTS_scalar) \
+ V(fabd, NEON_FABD, NEON_FABD_scalar) \
+ V(fmla, NEON_FMLA, 0) \
+ V(fmls, NEON_FMLS, 0) \
+ V(facge, NEON_FACGE, NEON_FACGE_scalar) \
+ V(facgt, NEON_FACGT, NEON_FACGT_scalar) \
+ V(fcmeq, NEON_FCMEQ, NEON_FCMEQ_scalar) \
+ V(fcmge, NEON_FCMGE, NEON_FCMGE_scalar) \
+ V(fcmgt, NEON_FCMGT, NEON_FCMGT_scalar) \
+ V(faddp, NEON_FADDP, 0) \
+ V(fmaxp, NEON_FMAXP, 0) \
+ V(fminp, NEON_FMINP, 0) \
+ V(fmaxnmp, NEON_FMAXNMP, 0) \
+ V(fminnmp, NEON_FMINNMP, 0)
+
+#define DEFINE_ASM_FUNC(FN, VEC_OP, SCA_OP) \
+void Assembler::FN(const VRegister& vd, \
+ const VRegister& vn, \
+ const VRegister& vm) { \
+ Instr op; \
+ if ((SCA_OP != 0) && vd.IsScalar()) { \
+ VIXL_ASSERT(vd.Is1S() || vd.Is1D()); \
+ op = SCA_OP; \
+ } else { \
+ VIXL_ASSERT(vd.IsVector()); \
+ VIXL_ASSERT(vd.Is2S() || vd.Is2D() || vd.Is4S()); \
+ op = VEC_OP; \
+ } \
+ NEONFP3Same(vd, vn, vm, op); \
+}
+NEON_FP3SAME_OP_LIST(DEFINE_ASM_FUNC)
+#undef DEFINE_ASM_FUNC
+
+
+void Assembler::addp(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT((vd.Is1D() && vn.Is2D()));
+ Emit(SFormat(vd) | NEON_ADDP_scalar | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::faddp(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT((vd.Is1S() && vn.Is2S()) ||
+ (vd.Is1D() && vn.Is2D()));
+ Emit(FPFormat(vd) | NEON_FADDP_scalar | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::fmaxp(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT((vd.Is1S() && vn.Is2S()) ||
+ (vd.Is1D() && vn.Is2D()));
+ Emit(FPFormat(vd) | NEON_FMAXP_scalar | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::fminp(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT((vd.Is1S() && vn.Is2S()) ||
+ (vd.Is1D() && vn.Is2D()));
+ Emit(FPFormat(vd) | NEON_FMINP_scalar | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::fmaxnmp(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT((vd.Is1S() && vn.Is2S()) ||
+ (vd.Is1D() && vn.Is2D()));
+ Emit(FPFormat(vd) | NEON_FMAXNMP_scalar | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::fminnmp(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT((vd.Is1S() && vn.Is2S()) ||
+ (vd.Is1D() && vn.Is2D()));
+ Emit(FPFormat(vd) | NEON_FMINNMP_scalar | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::orr(const VRegister& vd,
+ const int imm8,
+ const int left_shift) {
+ NEONModifiedImmShiftLsl(vd, imm8, left_shift,
+ NEONModifiedImmediate_ORR);
+}
+
+
+void Assembler::mov(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT(AreSameFormat(vd, vn));
+ if (vd.IsD()) {
+ orr(vd.V8B(), vn.V8B(), vn.V8B());
+ } else {
+ VIXL_ASSERT(vd.IsQ());
+ orr(vd.V16B(), vn.V16B(), vn.V16B());
+ }
+}
+
+
+void Assembler::bic(const VRegister& vd,
+ const int imm8,
+ const int left_shift) {
+ NEONModifiedImmShiftLsl(vd, imm8, left_shift,
+ NEONModifiedImmediate_BIC);
+}
+
+
+void Assembler::movi(const VRegister& vd,
+ const uint64_t imm,
+ Shift shift,
+ const int shift_amount) {
+ VIXL_ASSERT((shift == LSL) || (shift == MSL));
+ if (vd.Is2D() || vd.Is1D()) {
+ VIXL_ASSERT(shift_amount == 0);
+ int imm8 = 0;
+ for (int i = 0; i < 8; ++i) {
+ int byte = (imm >> (i * 8)) & 0xff;
+ VIXL_ASSERT((byte == 0) || (byte == 0xff));
+ if (byte == 0xff) {
+ imm8 |= (1 << i);
+ }
+ }
+ int q = vd.Is2D() ? NEON_Q : 0;
+ Emit(q | NEONModImmOp(1) | NEONModifiedImmediate_MOVI |
+ ImmNEONabcdefgh(imm8) | NEONCmode(0xe) | Rd(vd));
+ } else if (shift == LSL) {
+ VIXL_ASSERT(IsUint8(imm));
+ NEONModifiedImmShiftLsl(vd, static_cast<int>(imm), shift_amount,
+ NEONModifiedImmediate_MOVI);
+ } else {
+ VIXL_ASSERT(IsUint8(imm));
+ NEONModifiedImmShiftMsl(vd, static_cast<int>(imm), shift_amount,
+ NEONModifiedImmediate_MOVI);
+ }
+}
+
+
+void Assembler::mvn(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT(AreSameFormat(vd, vn));
+ if (vd.IsD()) {
+ not_(vd.V8B(), vn.V8B());
+ } else {
+ VIXL_ASSERT(vd.IsQ());
+ not_(vd.V16B(), vn.V16B());
+ }
+}
+
+
+void Assembler::mvni(const VRegister& vd,
+ const int imm8,
+ Shift shift,
+ const int shift_amount) {
+ VIXL_ASSERT((shift == LSL) || (shift == MSL));
+ if (shift == LSL) {
+ NEONModifiedImmShiftLsl(vd, imm8, shift_amount,
+ NEONModifiedImmediate_MVNI);
+ } else {
+ NEONModifiedImmShiftMsl(vd, imm8, shift_amount,
+ NEONModifiedImmediate_MVNI);
+ }
+}
+
+
+void Assembler::NEONFPByElement(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index,
+ NEONByIndexedElementOp vop) {
+ VIXL_ASSERT(AreSameFormat(vd, vn));
+ VIXL_ASSERT((vd.Is2S() && vm.Is1S()) ||
+ (vd.Is4S() && vm.Is1S()) ||
+ (vd.Is1S() && vm.Is1S()) ||
+ (vd.Is2D() && vm.Is1D()) ||
+ (vd.Is1D() && vm.Is1D()));
+ VIXL_ASSERT((vm.Is1S() && (vm_index < 4)) ||
+ (vm.Is1D() && (vm_index < 2)));
+
+ Instr op = vop;
+ int index_num_bits = vm.Is1S() ? 2 : 1;
+ if (vd.IsScalar()) {
+ op |= NEON_Q | NEONScalar;
+ }
+
+ Emit(FPFormat(vd) | op | ImmNEONHLM(vm_index, index_num_bits) |
+ Rm(vm) | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::NEONByElement(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index,
+ NEONByIndexedElementOp vop) {
+ VIXL_ASSERT(AreSameFormat(vd, vn));
+ VIXL_ASSERT((vd.Is4H() && vm.Is1H()) ||
+ (vd.Is8H() && vm.Is1H()) ||
+ (vd.Is1H() && vm.Is1H()) ||
+ (vd.Is2S() && vm.Is1S()) ||
+ (vd.Is4S() && vm.Is1S()) ||
+ (vd.Is1S() && vm.Is1S()));
+ VIXL_ASSERT((vm.Is1H() && (vm.code() < 16) && (vm_index < 8)) ||
+ (vm.Is1S() && (vm_index < 4)));
+
+ Instr format, op = vop;
+ int index_num_bits = vm.Is1H() ? 3 : 2;
+ if (vd.IsScalar()) {
+ op |= NEONScalar | NEON_Q;
+ format = SFormat(vn);
+ } else {
+ format = VFormat(vn);
+ }
+ Emit(format | op | ImmNEONHLM(vm_index, index_num_bits) |
+ Rm(vm) | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::NEONByElementL(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index,
+ NEONByIndexedElementOp vop) {
+ VIXL_ASSERT((vd.Is4S() && vn.Is4H() && vm.Is1H()) ||
+ (vd.Is4S() && vn.Is8H() && vm.Is1H()) ||
+ (vd.Is1S() && vn.Is1H() && vm.Is1H()) ||
+ (vd.Is2D() && vn.Is2S() && vm.Is1S()) ||
+ (vd.Is2D() && vn.Is4S() && vm.Is1S()) ||
+ (vd.Is1D() && vn.Is1S() && vm.Is1S()));
+
+ VIXL_ASSERT((vm.Is1H() && (vm.code() < 16) && (vm_index < 8)) ||
+ (vm.Is1S() && (vm_index < 4)));
+
+ Instr format, op = vop;
+ int index_num_bits = vm.Is1H() ? 3 : 2;
+ if (vd.IsScalar()) {
+ op |= NEONScalar | NEON_Q;
+ format = SFormat(vn);
+ } else {
+ format = VFormat(vn);
+ }
+ Emit(format | op | ImmNEONHLM(vm_index, index_num_bits) |
+ Rm(vm) | Rn(vn) | Rd(vd));
+}
+
+
+#define NEON_BYELEMENT_LIST(V) \
+ V(mul, NEON_MUL_byelement, vn.IsVector()) \
+ V(mla, NEON_MLA_byelement, vn.IsVector()) \
+ V(mls, NEON_MLS_byelement, vn.IsVector()) \
+ V(sqdmulh, NEON_SQDMULH_byelement, true) \
+ V(sqrdmulh, NEON_SQRDMULH_byelement, true)
+
+
+#define DEFINE_ASM_FUNC(FN, OP, AS) \
+void Assembler::FN(const VRegister& vd, \
+ const VRegister& vn, \
+ const VRegister& vm, \
+ int vm_index) { \
+ VIXL_ASSERT(AS); \
+ NEONByElement(vd, vn, vm, vm_index, OP); \
+}
+NEON_BYELEMENT_LIST(DEFINE_ASM_FUNC)
+#undef DEFINE_ASM_FUNC
+
+
+#define NEON_FPBYELEMENT_LIST(V) \
+ V(fmul, NEON_FMUL_byelement) \
+ V(fmla, NEON_FMLA_byelement) \
+ V(fmls, NEON_FMLS_byelement) \
+ V(fmulx, NEON_FMULX_byelement)
+
+
+#define DEFINE_ASM_FUNC(FN, OP) \
+void Assembler::FN(const VRegister& vd, \
+ const VRegister& vn, \
+ const VRegister& vm, \
+ int vm_index) { \
+ NEONFPByElement(vd, vn, vm, vm_index, OP); \
+}
+NEON_FPBYELEMENT_LIST(DEFINE_ASM_FUNC)
+#undef DEFINE_ASM_FUNC
+
+
+#define NEON_BYELEMENT_LONG_LIST(V) \
+ V(sqdmull, NEON_SQDMULL_byelement, vn.IsScalar() || vn.IsD()) \
+ V(sqdmull2, NEON_SQDMULL_byelement, vn.IsVector() && vn.IsQ()) \
+ V(sqdmlal, NEON_SQDMLAL_byelement, vn.IsScalar() || vn.IsD()) \
+ V(sqdmlal2, NEON_SQDMLAL_byelement, vn.IsVector() && vn.IsQ()) \
+ V(sqdmlsl, NEON_SQDMLSL_byelement, vn.IsScalar() || vn.IsD()) \
+ V(sqdmlsl2, NEON_SQDMLSL_byelement, vn.IsVector() && vn.IsQ()) \
+ V(smull, NEON_SMULL_byelement, vn.IsVector() && vn.IsD()) \
+ V(smull2, NEON_SMULL_byelement, vn.IsVector() && vn.IsQ()) \
+ V(umull, NEON_UMULL_byelement, vn.IsVector() && vn.IsD()) \
+ V(umull2, NEON_UMULL_byelement, vn.IsVector() && vn.IsQ()) \
+ V(smlal, NEON_SMLAL_byelement, vn.IsVector() && vn.IsD()) \
+ V(smlal2, NEON_SMLAL_byelement, vn.IsVector() && vn.IsQ()) \
+ V(umlal, NEON_UMLAL_byelement, vn.IsVector() && vn.IsD()) \
+ V(umlal2, NEON_UMLAL_byelement, vn.IsVector() && vn.IsQ()) \
+ V(smlsl, NEON_SMLSL_byelement, vn.IsVector() && vn.IsD()) \
+ V(smlsl2, NEON_SMLSL_byelement, vn.IsVector() && vn.IsQ()) \
+ V(umlsl, NEON_UMLSL_byelement, vn.IsVector() && vn.IsD()) \
+ V(umlsl2, NEON_UMLSL_byelement, vn.IsVector() && vn.IsQ())
+
+
+#define DEFINE_ASM_FUNC(FN, OP, AS) \
+void Assembler::FN(const VRegister& vd, \
+ const VRegister& vn, \
+ const VRegister& vm, \
+ int vm_index) { \
+ VIXL_ASSERT(AS); \
+ NEONByElementL(vd, vn, vm, vm_index, OP); \
+}
+NEON_BYELEMENT_LONG_LIST(DEFINE_ASM_FUNC)
+#undef DEFINE_ASM_FUNC
+
+
+void Assembler::suqadd(const VRegister& vd,
+ const VRegister& vn) {
+ NEON2RegMisc(vd, vn, NEON_SUQADD);
+}
+
+
+void Assembler::usqadd(const VRegister& vd,
+ const VRegister& vn) {
+ NEON2RegMisc(vd, vn, NEON_USQADD);
+}
+
+
+void Assembler::abs(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT(vd.IsVector() || vd.Is1D());
+ NEON2RegMisc(vd, vn, NEON_ABS);
+}
+
+
+void Assembler::sqabs(const VRegister& vd,
+ const VRegister& vn) {
+ NEON2RegMisc(vd, vn, NEON_SQABS);
+}
+
+
+void Assembler::neg(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT(vd.IsVector() || vd.Is1D());
+ NEON2RegMisc(vd, vn, NEON_NEG);
+}
+
+
+void Assembler::sqneg(const VRegister& vd,
+ const VRegister& vn) {
+ NEON2RegMisc(vd, vn, NEON_SQNEG);
+}
+
+
+void Assembler::NEONXtn(const VRegister& vd,
+ const VRegister& vn,
+ NEON2RegMiscOp vop) {
+ Instr format, op = vop;
+ if (vd.IsScalar()) {
+ VIXL_ASSERT((vd.Is1B() && vn.Is1H()) ||
+ (vd.Is1H() && vn.Is1S()) ||
+ (vd.Is1S() && vn.Is1D()));
+ op |= NEON_Q | NEONScalar;
+ format = SFormat(vd);
+ } else {
+ VIXL_ASSERT((vd.Is8B() && vn.Is8H()) ||
+ (vd.Is4H() && vn.Is4S()) ||
+ (vd.Is2S() && vn.Is2D()) ||
+ (vd.Is16B() && vn.Is8H()) ||
+ (vd.Is8H() && vn.Is4S()) ||
+ (vd.Is4S() && vn.Is2D()));
+ format = VFormat(vd);
+ }
+ Emit(format | op | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::xtn(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT(vd.IsVector() && vd.IsD());
+ NEONXtn(vd, vn, NEON_XTN);
+}
+
+
+void Assembler::xtn2(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT(vd.IsVector() && vd.IsQ());
+ NEONXtn(vd, vn, NEON_XTN);
+}
+
+
+void Assembler::sqxtn(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT(vd.IsScalar() || vd.IsD());
+ NEONXtn(vd, vn, NEON_SQXTN);
+}
+
+
+void Assembler::sqxtn2(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT(vd.IsVector() && vd.IsQ());
+ NEONXtn(vd, vn, NEON_SQXTN);
+}
+
+
+void Assembler::sqxtun(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT(vd.IsScalar() || vd.IsD());
+ NEONXtn(vd, vn, NEON_SQXTUN);
+}
+
+
+void Assembler::sqxtun2(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT(vd.IsVector() && vd.IsQ());
+ NEONXtn(vd, vn, NEON_SQXTUN);
+}
+
+
+void Assembler::uqxtn(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT(vd.IsScalar() || vd.IsD());
+ NEONXtn(vd, vn, NEON_UQXTN);
+}
+
+
+void Assembler::uqxtn2(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT(vd.IsVector() && vd.IsQ());
+ NEONXtn(vd, vn, NEON_UQXTN);
+}
+
+
+// NEON NOT and RBIT are distinguised by bit 22, the bottom bit of "size".
+void Assembler::not_(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT(AreSameFormat(vd, vn));
+ VIXL_ASSERT(vd.Is8B() || vd.Is16B());
+ Emit(VFormat(vd) | NEON_RBIT_NOT | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::rbit(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT(AreSameFormat(vd, vn));
+ VIXL_ASSERT(vd.Is8B() || vd.Is16B());
+ Emit(VFormat(vn) | (1 << NEONSize_offset) | NEON_RBIT_NOT | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::ext(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int index) {
+ VIXL_ASSERT(AreSameFormat(vd, vn, vm));
+ VIXL_ASSERT(vd.Is8B() || vd.Is16B());
+ VIXL_ASSERT((0 <= index) && (index < vd.lanes()));
+ Emit(VFormat(vd) | NEON_EXT | Rm(vm) | ImmNEONExt(index) | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::dup(const VRegister& vd,
+ const VRegister& vn,
+ int vn_index) {
+ Instr q, scalar;
+
+ // We support vn arguments of the form vn.VxT() or vn.T(), where x is the
+ // number of lanes, and T is b, h, s or d.
+ int lane_size = vn.LaneSizeInBytes();
+ NEONFormatField format;
+ switch (lane_size) {
+ case 1: format = NEON_16B; break;
+ case 2: format = NEON_8H; break;
+ case 4: format = NEON_4S; break;
+ default:
+ VIXL_ASSERT(lane_size == 8);
+ format = NEON_2D;
+ break;
+ }
+
+ if (vd.IsScalar()) {
+ q = NEON_Q;
+ scalar = NEONScalar;
+ } else {
+ VIXL_ASSERT(!vd.Is1D());
+ q = vd.IsD() ? 0 : NEON_Q;
+ scalar = 0;
+ }
+ Emit(q | scalar | NEON_DUP_ELEMENT |
+ ImmNEON5(format, vn_index) | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::mov(const VRegister& vd,
+ const VRegister& vn,
+ int vn_index) {
+ VIXL_ASSERT(vn.IsScalar());
+ dup(vd, vn, vn_index);
+}
+
+
+void Assembler::dup(const VRegister& vd, const Register& rn) {
+ VIXL_ASSERT(!vd.Is1D());
+ VIXL_ASSERT(vd.Is2D() == rn.IsX());
+ int q = vd.IsD() ? 0 : NEON_Q;
+ Emit(q | NEON_DUP_GENERAL | ImmNEON5(VFormat(vd), 0) | Rn(rn) | Rd(vd));
+}
+
+
+void Assembler::ins(const VRegister& vd,
+ int vd_index,
+ const VRegister& vn,
+ int vn_index) {
+ VIXL_ASSERT(AreSameFormat(vd, vn));
+ // We support vd arguments of the form vd.VxT() or vd.T(), where x is the
+ // number of lanes, and T is b, h, s or d.
+ int lane_size = vd.LaneSizeInBytes();
+ NEONFormatField format;
+ switch (lane_size) {
+ case 1: format = NEON_16B; break;
+ case 2: format = NEON_8H; break;
+ case 4: format = NEON_4S; break;
+ default:
+ VIXL_ASSERT(lane_size == 8);
+ format = NEON_2D;
+ break;
+ }
+
+ VIXL_ASSERT((0 <= vd_index) &&
+ (vd_index < LaneCountFromFormat(static_cast<VectorFormat>(format))));
+ VIXL_ASSERT((0 <= vn_index) &&
+ (vn_index < LaneCountFromFormat(static_cast<VectorFormat>(format))));
+ Emit(NEON_INS_ELEMENT | ImmNEON5(format, vd_index) |
+ ImmNEON4(format, vn_index) | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::mov(const VRegister& vd,
+ int vd_index,
+ const VRegister& vn,
+ int vn_index) {
+ ins(vd, vd_index, vn, vn_index);
+}
+
+
+void Assembler::ins(const VRegister& vd,
+ int vd_index,
+ const Register& rn) {
+ // We support vd arguments of the form vd.VxT() or vd.T(), where x is the
+ // number of lanes, and T is b, h, s or d.
+ int lane_size = vd.LaneSizeInBytes();
+ NEONFormatField format;
+ switch (lane_size) {
+ case 1: format = NEON_16B; VIXL_ASSERT(rn.IsW()); break;
+ case 2: format = NEON_8H; VIXL_ASSERT(rn.IsW()); break;
+ case 4: format = NEON_4S; VIXL_ASSERT(rn.IsW()); break;
+ default:
+ VIXL_ASSERT(lane_size == 8);
+ VIXL_ASSERT(rn.IsX());
+ format = NEON_2D;
+ break;
+ }
+
+ VIXL_ASSERT((0 <= vd_index) &&
+ (vd_index < LaneCountFromFormat(static_cast<VectorFormat>(format))));
+ Emit(NEON_INS_GENERAL | ImmNEON5(format, vd_index) | Rn(rn) | Rd(vd));
+}
+
+
+void Assembler::mov(const VRegister& vd,
+ int vd_index,
+ const Register& rn) {
+ ins(vd, vd_index, rn);
+}
+
+
+void Assembler::umov(const Register& rd,
+ const VRegister& vn,
+ int vn_index) {
+ // We support vd arguments of the form vd.VxT() or vd.T(), where x is the
+ // number of lanes, and T is b, h, s or d.
+ int lane_size = vn.LaneSizeInBytes();
+ NEONFormatField format;
+ Instr q = 0;
+ switch (lane_size) {
+ case 1: format = NEON_16B; VIXL_ASSERT(rd.IsW()); break;
+ case 2: format = NEON_8H; VIXL_ASSERT(rd.IsW()); break;
+ case 4: format = NEON_4S; VIXL_ASSERT(rd.IsW()); break;
+ default:
+ VIXL_ASSERT(lane_size == 8);
+ VIXL_ASSERT(rd.IsX());
+ format = NEON_2D;
+ q = NEON_Q;
+ break;
+ }
+
+ VIXL_ASSERT((0 <= vn_index) &&
+ (vn_index < LaneCountFromFormat(static_cast<VectorFormat>(format))));
+ Emit(q | NEON_UMOV | ImmNEON5(format, vn_index) | Rn(vn) | Rd(rd));
+}
+
+
+void Assembler::mov(const Register& rd,
+ const VRegister& vn,
+ int vn_index) {
+ VIXL_ASSERT(vn.SizeInBytes() >= 4);
+ umov(rd, vn, vn_index);
+}
+
+
+void Assembler::smov(const Register& rd,
+ const VRegister& vn,
+ int vn_index) {
+ // We support vd arguments of the form vd.VxT() or vd.T(), where x is the
+ // number of lanes, and T is b, h, s.
+ int lane_size = vn.LaneSizeInBytes();
+ NEONFormatField format;
+ Instr q = 0;
+ VIXL_ASSERT(lane_size != 8);
+ switch (lane_size) {
+ case 1: format = NEON_16B; break;
+ case 2: format = NEON_8H; break;
+ default:
+ VIXL_ASSERT(lane_size == 4);
+ VIXL_ASSERT(rd.IsX());
+ format = NEON_4S;
+ break;
+ }
+ q = rd.IsW() ? 0 : NEON_Q;
+ VIXL_ASSERT((0 <= vn_index) &&
+ (vn_index < LaneCountFromFormat(static_cast<VectorFormat>(format))));
+ Emit(q | NEON_SMOV | ImmNEON5(format, vn_index) | Rn(vn) | Rd(rd));
+}
+
+
+void Assembler::cls(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT(AreSameFormat(vd, vn));
+ VIXL_ASSERT(!vd.Is1D() && !vd.Is2D());
+ Emit(VFormat(vn) | NEON_CLS | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::clz(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT(AreSameFormat(vd, vn));
+ VIXL_ASSERT(!vd.Is1D() && !vd.Is2D());
+ Emit(VFormat(vn) | NEON_CLZ | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::cnt(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT(AreSameFormat(vd, vn));
+ VIXL_ASSERT(vd.Is8B() || vd.Is16B());
+ Emit(VFormat(vn) | NEON_CNT | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::rev16(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT(AreSameFormat(vd, vn));
+ VIXL_ASSERT(vd.Is8B() || vd.Is16B());
+ Emit(VFormat(vn) | NEON_REV16 | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::rev32(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT(AreSameFormat(vd, vn));
+ VIXL_ASSERT(vd.Is8B() || vd.Is16B() || vd.Is4H() || vd.Is8H());
+ Emit(VFormat(vn) | NEON_REV32 | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::rev64(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT(AreSameFormat(vd, vn));
+ VIXL_ASSERT(!vd.Is1D() && !vd.Is2D());
+ Emit(VFormat(vn) | NEON_REV64 | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::ursqrte(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT(AreSameFormat(vd, vn));
+ VIXL_ASSERT(vd.Is2S() || vd.Is4S());
+ Emit(VFormat(vn) | NEON_URSQRTE | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::urecpe(const VRegister& vd,
+ const VRegister& vn) {
+ VIXL_ASSERT(AreSameFormat(vd, vn));
+ VIXL_ASSERT(vd.Is2S() || vd.Is4S());
+ Emit(VFormat(vn) | NEON_URECPE | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::NEONAddlp(const VRegister& vd,
+ const VRegister& vn,
+ NEON2RegMiscOp op) {
+ VIXL_ASSERT((op == NEON_SADDLP) ||
+ (op == NEON_UADDLP) ||
+ (op == NEON_SADALP) ||
+ (op == NEON_UADALP));
+
+ VIXL_ASSERT((vn.Is8B() && vd.Is4H()) ||
+ (vn.Is4H() && vd.Is2S()) ||
+ (vn.Is2S() && vd.Is1D()) ||
+ (vn.Is16B() && vd.Is8H())||
+ (vn.Is8H() && vd.Is4S()) ||
+ (vn.Is4S() && vd.Is2D()));
+ Emit(VFormat(vn) | op | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::saddlp(const VRegister& vd,
+ const VRegister& vn) {
+ NEONAddlp(vd, vn, NEON_SADDLP);
+}
+
+
+void Assembler::uaddlp(const VRegister& vd,
+ const VRegister& vn) {
+ NEONAddlp(vd, vn, NEON_UADDLP);
+}
+
+
+void Assembler::sadalp(const VRegister& vd,
+ const VRegister& vn) {
+ NEONAddlp(vd, vn, NEON_SADALP);
+}
+
+
+void Assembler::uadalp(const VRegister& vd,
+ const VRegister& vn) {
+ NEONAddlp(vd, vn, NEON_UADALP);
+}
+
+
+void Assembler::NEONAcrossLanesL(const VRegister& vd,
+ const VRegister& vn,
+ NEONAcrossLanesOp op) {
+ VIXL_ASSERT((vn.Is8B() && vd.Is1H()) ||
+ (vn.Is16B() && vd.Is1H()) ||
+ (vn.Is4H() && vd.Is1S()) ||
+ (vn.Is8H() && vd.Is1S()) ||
+ (vn.Is4S() && vd.Is1D()));
+ Emit(VFormat(vn) | op | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::saddlv(const VRegister& vd,
+ const VRegister& vn) {
+ NEONAcrossLanesL(vd, vn, NEON_SADDLV);
+}
+
+
+void Assembler::uaddlv(const VRegister& vd,
+ const VRegister& vn) {
+ NEONAcrossLanesL(vd, vn, NEON_UADDLV);
+}
+
+
+void Assembler::NEONAcrossLanes(const VRegister& vd,
+ const VRegister& vn,
+ NEONAcrossLanesOp op) {
+ VIXL_ASSERT((vn.Is8B() && vd.Is1B()) ||
+ (vn.Is16B() && vd.Is1B()) ||
+ (vn.Is4H() && vd.Is1H()) ||
+ (vn.Is8H() && vd.Is1H()) ||
+ (vn.Is4S() && vd.Is1S()));
+ if ((op & NEONAcrossLanesFPFMask) == NEONAcrossLanesFPFixed) {
+ Emit(FPFormat(vn) | op | Rn(vn) | Rd(vd));
+ } else {
+ Emit(VFormat(vn) | op | Rn(vn) | Rd(vd));
+ }
+}
+
+
+#define NEON_ACROSSLANES_LIST(V) \
+ V(fmaxv, NEON_FMAXV, vd.Is1S()) \
+ V(fminv, NEON_FMINV, vd.Is1S()) \
+ V(fmaxnmv, NEON_FMAXNMV, vd.Is1S()) \
+ V(fminnmv, NEON_FMINNMV, vd.Is1S()) \
+ V(addv, NEON_ADDV, true) \
+ V(smaxv, NEON_SMAXV, true) \
+ V(sminv, NEON_SMINV, true) \
+ V(umaxv, NEON_UMAXV, true) \
+ V(uminv, NEON_UMINV, true)
+
+
+#define DEFINE_ASM_FUNC(FN, OP, AS) \
+void Assembler::FN(const VRegister& vd, \
+ const VRegister& vn) { \
+ VIXL_ASSERT(AS); \
+ NEONAcrossLanes(vd, vn, OP); \
+}
+NEON_ACROSSLANES_LIST(DEFINE_ASM_FUNC)
+#undef DEFINE_ASM_FUNC
+
+
+void Assembler::NEONPerm(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ NEONPermOp op) {
+ VIXL_ASSERT(AreSameFormat(vd, vn, vm));
+ VIXL_ASSERT(!vd.Is1D());
+ Emit(VFormat(vd) | op | Rm(vm) | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::trn1(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm) {
+ NEONPerm(vd, vn, vm, NEON_TRN1);
+}
+
+
+void Assembler::trn2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm) {
+ NEONPerm(vd, vn, vm, NEON_TRN2);
+}
+
+
+void Assembler::uzp1(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm) {
+ NEONPerm(vd, vn, vm, NEON_UZP1);
+}
+
+
+void Assembler::uzp2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm) {
+ NEONPerm(vd, vn, vm, NEON_UZP2);
+}
+
+
+void Assembler::zip1(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm) {
+ NEONPerm(vd, vn, vm, NEON_ZIP1);
+}
+
+
+void Assembler::zip2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm) {
+ NEONPerm(vd, vn, vm, NEON_ZIP2);
+}
+
+
+void Assembler::NEONShiftImmediate(const VRegister& vd,
+ const VRegister& vn,
+ NEONShiftImmediateOp op,
+ int immh_immb) {
+ VIXL_ASSERT(AreSameFormat(vd, vn));
+ Instr q, scalar;
+ if (vn.IsScalar()) {
+ q = NEON_Q;
+ scalar = NEONScalar;
+ } else {
+ q = vd.IsD() ? 0 : NEON_Q;
+ scalar = 0;
+ }
+ Emit(q | op | scalar | immh_immb | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::NEONShiftLeftImmediate(const VRegister& vd,
+ const VRegister& vn,
+ int shift,
+ NEONShiftImmediateOp op) {
+ int laneSizeInBits = vn.LaneSizeInBits();
+ VIXL_ASSERT((shift >= 0) && (shift < laneSizeInBits));
+ NEONShiftImmediate(vd, vn, op, (laneSizeInBits + shift) << 16);
+}
+
+
+void Assembler::NEONShiftRightImmediate(const VRegister& vd,
+ const VRegister& vn,
+ int shift,
+ NEONShiftImmediateOp op) {
+ int laneSizeInBits = vn.LaneSizeInBits();
+ VIXL_ASSERT((shift >= 1) && (shift <= laneSizeInBits));
+ NEONShiftImmediate(vd, vn, op, ((2 * laneSizeInBits) - shift) << 16);
+}
+
+
+void Assembler::NEONShiftImmediateL(const VRegister& vd,
+ const VRegister& vn,
+ int shift,
+ NEONShiftImmediateOp op) {
+ int laneSizeInBits = vn.LaneSizeInBits();
+ VIXL_ASSERT((shift >= 0) && (shift < laneSizeInBits));
+ int immh_immb = (laneSizeInBits + shift) << 16;
+
+ VIXL_ASSERT((vn.Is8B() && vd.Is8H()) ||
+ (vn.Is4H() && vd.Is4S()) ||
+ (vn.Is2S() && vd.Is2D()) ||
+ (vn.Is16B() && vd.Is8H())||
+ (vn.Is8H() && vd.Is4S()) ||
+ (vn.Is4S() && vd.Is2D()));
+ Instr q;
+ q = vn.IsD() ? 0 : NEON_Q;
+ Emit(q | op | immh_immb | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::NEONShiftImmediateN(const VRegister& vd,
+ const VRegister& vn,
+ int shift,
+ NEONShiftImmediateOp op) {
+ Instr q, scalar;
+ int laneSizeInBits = vd.LaneSizeInBits();
+ VIXL_ASSERT((shift >= 1) && (shift <= laneSizeInBits));
+ int immh_immb = (2 * laneSizeInBits - shift) << 16;
+
+ if (vn.IsScalar()) {
+ VIXL_ASSERT((vd.Is1B() && vn.Is1H()) ||
+ (vd.Is1H() && vn.Is1S()) ||
+ (vd.Is1S() && vn.Is1D()));
+ q = NEON_Q;
+ scalar = NEONScalar;
+ } else {
+ VIXL_ASSERT((vd.Is8B() && vn.Is8H()) ||
+ (vd.Is4H() && vn.Is4S()) ||
+ (vd.Is2S() && vn.Is2D()) ||
+ (vd.Is16B() && vn.Is8H())||
+ (vd.Is8H() && vn.Is4S()) ||
+ (vd.Is4S() && vn.Is2D()));
+ scalar = 0;
+ q = vd.IsD() ? 0 : NEON_Q;
+ }
+ Emit(q | op | scalar | immh_immb | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::shl(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vd.IsVector() || vd.Is1D());
+ NEONShiftLeftImmediate(vd, vn, shift, NEON_SHL);
+}
+
+
+void Assembler::sli(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vd.IsVector() || vd.Is1D());
+ NEONShiftLeftImmediate(vd, vn, shift, NEON_SLI);
+}
+
+
+void Assembler::sqshl(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ NEONShiftLeftImmediate(vd, vn, shift, NEON_SQSHL_imm);
+}
+
+
+void Assembler::sqshlu(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ NEONShiftLeftImmediate(vd, vn, shift, NEON_SQSHLU);
+}
+
+
+void Assembler::uqshl(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ NEONShiftLeftImmediate(vd, vn, shift, NEON_UQSHL_imm);
+}
+
+
+void Assembler::sshll(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vn.IsD());
+ NEONShiftImmediateL(vd, vn, shift, NEON_SSHLL);
+}
+
+
+void Assembler::sshll2(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vn.IsQ());
+ NEONShiftImmediateL(vd, vn, shift, NEON_SSHLL);
+}
+
+
+void Assembler::sxtl(const VRegister& vd,
+ const VRegister& vn) {
+ sshll(vd, vn, 0);
+}
+
+
+void Assembler::sxtl2(const VRegister& vd,
+ const VRegister& vn) {
+ sshll2(vd, vn, 0);
+}
+
+
+void Assembler::ushll(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vn.IsD());
+ NEONShiftImmediateL(vd, vn, shift, NEON_USHLL);
+}
+
+
+void Assembler::ushll2(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vn.IsQ());
+ NEONShiftImmediateL(vd, vn, shift, NEON_USHLL);
+}
+
+
+void Assembler::uxtl(const VRegister& vd,
+ const VRegister& vn) {
+ ushll(vd, vn, 0);
+}
+
+
+void Assembler::uxtl2(const VRegister& vd,
+ const VRegister& vn) {
+ ushll2(vd, vn, 0);
+}
+
+
+void Assembler::sri(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vd.IsVector() || vd.Is1D());
+ NEONShiftRightImmediate(vd, vn, shift, NEON_SRI);
+}
+
+
+void Assembler::sshr(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vd.IsVector() || vd.Is1D());
+ NEONShiftRightImmediate(vd, vn, shift, NEON_SSHR);
+}
+
+
+void Assembler::ushr(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vd.IsVector() || vd.Is1D());
+ NEONShiftRightImmediate(vd, vn, shift, NEON_USHR);
+}
+
+
+void Assembler::srshr(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vd.IsVector() || vd.Is1D());
+ NEONShiftRightImmediate(vd, vn, shift, NEON_SRSHR);
+}
+
+
+void Assembler::urshr(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vd.IsVector() || vd.Is1D());
+ NEONShiftRightImmediate(vd, vn, shift, NEON_URSHR);
+}
+
+
+void Assembler::ssra(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vd.IsVector() || vd.Is1D());
+ NEONShiftRightImmediate(vd, vn, shift, NEON_SSRA);
+}
+
+
+void Assembler::usra(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vd.IsVector() || vd.Is1D());
+ NEONShiftRightImmediate(vd, vn, shift, NEON_USRA);
+}
+
+
+void Assembler::srsra(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vd.IsVector() || vd.Is1D());
+ NEONShiftRightImmediate(vd, vn, shift, NEON_SRSRA);
+}
+
+
+void Assembler::ursra(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vd.IsVector() || vd.Is1D());
+ NEONShiftRightImmediate(vd, vn, shift, NEON_URSRA);
+}
+
+
+void Assembler::shrn(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vn.IsVector() && vd.IsD());
+ NEONShiftImmediateN(vd, vn, shift, NEON_SHRN);
+}
+
+
+void Assembler::shrn2(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vn.IsVector() && vd.IsQ());
+ NEONShiftImmediateN(vd, vn, shift, NEON_SHRN);
+}
+
+
+void Assembler::rshrn(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vn.IsVector() && vd.IsD());
+ NEONShiftImmediateN(vd, vn, shift, NEON_RSHRN);
+}
+
+
+void Assembler::rshrn2(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vn.IsVector() && vd.IsQ());
+ NEONShiftImmediateN(vd, vn, shift, NEON_RSHRN);
+}
+
+
+void Assembler::sqshrn(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
+ NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRN);
+}
+
+
+void Assembler::sqshrn2(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vn.IsVector() && vd.IsQ());
+ NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRN);
+}
+
+
+void Assembler::sqrshrn(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
+ NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRN);
+}
+
+
+void Assembler::sqrshrn2(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vn.IsVector() && vd.IsQ());
+ NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRN);
+}
+
+
+void Assembler::sqshrun(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
+ NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRUN);
+}
+
+
+void Assembler::sqshrun2(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vn.IsVector() && vd.IsQ());
+ NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRUN);
+}
+
+
+void Assembler::sqrshrun(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
+ NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRUN);
+}
+
+
+void Assembler::sqrshrun2(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vn.IsVector() && vd.IsQ());
+ NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRUN);
+}
+
+
+void Assembler::uqshrn(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
+ NEONShiftImmediateN(vd, vn, shift, NEON_UQSHRN);
+}
+
+
+void Assembler::uqshrn2(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vn.IsVector() && vd.IsQ());
+ NEONShiftImmediateN(vd, vn, shift, NEON_UQSHRN);
+}
+
+
+void Assembler::uqrshrn(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
+ NEONShiftImmediateN(vd, vn, shift, NEON_UQRSHRN);
+}
+
+
+void Assembler::uqrshrn2(const VRegister& vd,
+ const VRegister& vn,
+ int shift) {
+ VIXL_ASSERT(vn.IsVector() && vd.IsQ());
+ NEONShiftImmediateN(vd, vn, shift, NEON_UQRSHRN);
+}
+
+
+// Note:
+// Below, a difference in case for the same letter indicates a
+// negated bit.
+// If b is 1, then B is 0.
+uint32_t Assembler::FP32ToImm8(float imm) {
+ VIXL_ASSERT(IsImmFP32(imm));
+ // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
+ uint32_t bits = FloatToRawbits(imm);
+ // bit7: a000.0000
+ uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
+ // bit6: 0b00.0000
+ uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
+ // bit5_to_0: 00cd.efgh
+ uint32_t bit5_to_0 = (bits >> 19) & 0x3f;
+
+ return bit7 | bit6 | bit5_to_0;
+}
+
+
+Instr Assembler::ImmFP32(float imm) {
+ return FP32ToImm8(imm) << ImmFP_offset;
+}
+
+
+uint32_t Assembler::FP64ToImm8(double imm) {
+ VIXL_ASSERT(IsImmFP64(imm));
+ // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
+ // 0000.0000.0000.0000.0000.0000.0000.0000
+ uint64_t bits = DoubleToRawbits(imm);
+ // bit7: a000.0000
+ uint64_t bit7 = ((bits >> 63) & 0x1) << 7;
+ // bit6: 0b00.0000
+ uint64_t bit6 = ((bits >> 61) & 0x1) << 6;
+ // bit5_to_0: 00cd.efgh
+ uint64_t bit5_to_0 = (bits >> 48) & 0x3f;
+
+ return static_cast<uint32_t>(bit7 | bit6 | bit5_to_0);
+}
+
+
+Instr Assembler::ImmFP64(double imm) {
+ return FP64ToImm8(imm) << ImmFP_offset;
+}
+
+
+// Code generation helpers.
+void Assembler::MoveWide(const Register& rd,
+ uint64_t imm,
+ int shift,
+ MoveWideImmediateOp mov_op) {
+ // Ignore the top 32 bits of an immediate if we're moving to a W register.
+ if (rd.Is32Bits()) {
+ // Check that the top 32 bits are zero (a positive 32-bit number) or top
+ // 33 bits are one (a negative 32-bit number, sign extended to 64 bits).
+ VIXL_ASSERT(((imm >> kWRegSize) == 0) ||
+ ((imm >> (kWRegSize - 1)) == 0x1ffffffff));
+ imm &= kWRegMask;
+ }
+
+ if (shift >= 0) {
+ // Explicit shift specified.
+ VIXL_ASSERT((shift == 0) || (shift == 16) ||
+ (shift == 32) || (shift == 48));
+ VIXL_ASSERT(rd.Is64Bits() || (shift == 0) || (shift == 16));
+ shift /= 16;
+ } else {
+ // Calculate a new immediate and shift combination to encode the immediate
+ // argument.
+ shift = 0;
+ if ((imm & 0xffffffffffff0000) == 0) {
+ // Nothing to do.
+ } else if ((imm & 0xffffffff0000ffff) == 0) {
+ imm >>= 16;
+ shift = 1;
+ } else if ((imm & 0xffff0000ffffffff) == 0) {
+ VIXL_ASSERT(rd.Is64Bits());
+ imm >>= 32;
+ shift = 2;
+ } else if ((imm & 0x0000ffffffffffff) == 0) {
+ VIXL_ASSERT(rd.Is64Bits());
+ imm >>= 48;
+ shift = 3;
+ }
+ }
+
+ VIXL_ASSERT(IsUint16(imm));
+
+ Emit(SF(rd) | MoveWideImmediateFixed | mov_op |
+ Rd(rd) | ImmMoveWide(imm) | ShiftMoveWide(shift));
+}
+
+
+void Assembler::AddSub(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ AddSubOp op) {
+ VIXL_ASSERT(rd.size() == rn.size());
+ if (operand.IsImmediate()) {
+ int64_t immediate = operand.immediate();
+ VIXL_ASSERT(IsImmAddSub(immediate));
+ Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
+ Emit(SF(rd) | AddSubImmediateFixed | op | Flags(S) |
+ ImmAddSub(static_cast<int>(immediate)) | dest_reg | RnSP(rn));
+ } else if (operand.IsShiftedRegister()) {
+ VIXL_ASSERT(operand.reg().size() == rd.size());
+ VIXL_ASSERT(operand.shift() != ROR);
+
+ // For instructions of the form:
+ // add/sub wsp, <Wn>, <Wm> [, LSL #0-3 ]
+ // add/sub <Wd>, wsp, <Wm> [, LSL #0-3 ]
+ // add/sub wsp, wsp, <Wm> [, LSL #0-3 ]
+ // adds/subs <Wd>, wsp, <Wm> [, LSL #0-3 ]
+ // or their 64-bit register equivalents, convert the operand from shifted to
+ // extended register mode, and emit an add/sub extended instruction.
+ if (rn.IsSP() || rd.IsSP()) {
+ VIXL_ASSERT(!(rd.IsSP() && (S == SetFlags)));
+ DataProcExtendedRegister(rd, rn, operand.ToExtendedRegister(), S,
+ AddSubExtendedFixed | op);
+ } else {
+ DataProcShiftedRegister(rd, rn, operand, S, AddSubShiftedFixed | op);
+ }
+ } else {
+ VIXL_ASSERT(operand.IsExtendedRegister());
+ DataProcExtendedRegister(rd, rn, operand, S, AddSubExtendedFixed | op);
+ }
+}
+
+
+void Assembler::AddSubWithCarry(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ AddSubWithCarryOp op) {
+ VIXL_ASSERT(rd.size() == rn.size());
+ VIXL_ASSERT(rd.size() == operand.reg().size());
+ VIXL_ASSERT(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
+ Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::hlt(int code) {
+ VIXL_ASSERT(IsUint16(code));
+ Emit(HLT | ImmException(code));
+}
+
+
+void Assembler::brk(int code) {
+ VIXL_ASSERT(IsUint16(code));
+ Emit(BRK | ImmException(code));
+}
+
+
+void Assembler::svc(int code) {
+ Emit(SVC | ImmException(code));
+}
+
+
+void Assembler::ConditionalCompare(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond,
+ ConditionalCompareOp op) {
+ Instr ccmpop;
+ if (operand.IsImmediate()) {
+ int64_t immediate = operand.immediate();
+ VIXL_ASSERT(IsImmConditionalCompare(immediate));
+ ccmpop = ConditionalCompareImmediateFixed | op |
+ ImmCondCmp(static_cast<unsigned>(immediate));
+ } else {
+ VIXL_ASSERT(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
+ ccmpop = ConditionalCompareRegisterFixed | op | Rm(operand.reg());
+ }
+ Emit(SF(rn) | ccmpop | Cond(cond) | Rn(rn) | Nzcv(nzcv));
+}
+
+
+void Assembler::DataProcessing1Source(const Register& rd,
+ const Register& rn,
+ DataProcessing1SourceOp op) {
+ VIXL_ASSERT(rd.size() == rn.size());
+ Emit(SF(rn) | op | Rn(rn) | Rd(rd));
+}
+
+
+void Assembler::FPDataProcessing1Source(const VRegister& vd,
+ const VRegister& vn,
+ FPDataProcessing1SourceOp op) {
+ VIXL_ASSERT(vd.Is1H() || vd.Is1S() || vd.Is1D());
+ Emit(FPType(vn) | op | Rn(vn) | Rd(vd));
+}
+
+
+void Assembler::FPDataProcessing3Source(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ const VRegister& va,
+ FPDataProcessing3SourceOp op) {
+ VIXL_ASSERT(vd.Is1S() || vd.Is1D());
+ VIXL_ASSERT(AreSameSizeAndType(vd, vn, vm, va));
+ Emit(FPType(vd) | op | Rm(vm) | Rn(vn) | Rd(vd) | Ra(va));
+}
+
+
+void Assembler::NEONModifiedImmShiftLsl(const VRegister& vd,
+ const int imm8,
+ const int left_shift,
+ NEONModifiedImmediateOp op) {
+ VIXL_ASSERT(vd.Is8B() || vd.Is16B() || vd.Is4H() || vd.Is8H() ||
+ vd.Is2S() || vd.Is4S());
+ VIXL_ASSERT((left_shift == 0) || (left_shift == 8) ||
+ (left_shift == 16) || (left_shift == 24));
+ VIXL_ASSERT(IsUint8(imm8));
+
+ int cmode_1, cmode_2, cmode_3;
+ if (vd.Is8B() || vd.Is16B()) {
+ VIXL_ASSERT(op == NEONModifiedImmediate_MOVI);
+ cmode_1 = 1;
+ cmode_2 = 1;
+ cmode_3 = 1;
+ } else {
+ cmode_1 = (left_shift >> 3) & 1;
+ cmode_2 = left_shift >> 4;
+ cmode_3 = 0;
+ if (vd.Is4H() || vd.Is8H()) {
+ VIXL_ASSERT((left_shift == 0) || (left_shift == 8));
+ cmode_3 = 1;
+ }
+ }
+ int cmode = (cmode_3 << 3) | (cmode_2 << 2) | (cmode_1 << 1);
+
+ int q = vd.IsQ() ? NEON_Q : 0;
+
+ Emit(q | op | ImmNEONabcdefgh(imm8) | NEONCmode(cmode) | Rd(vd));
+}
+
+
+void Assembler::NEONModifiedImmShiftMsl(const VRegister& vd,
+ const int imm8,
+ const int shift_amount,
+ NEONModifiedImmediateOp op) {
+ VIXL_ASSERT(vd.Is2S() || vd.Is4S());
+ VIXL_ASSERT((shift_amount == 8) || (shift_amount == 16));
+ VIXL_ASSERT(IsUint8(imm8));
+
+ int cmode_0 = (shift_amount >> 4) & 1;
+ int cmode = 0xc | cmode_0;
+
+ int q = vd.IsQ() ? NEON_Q : 0;
+
+ Emit(q | op | ImmNEONabcdefgh(imm8) | NEONCmode(cmode) | Rd(vd));
+}
+
+
+void Assembler::EmitShift(const Register& rd,
+ const Register& rn,
+ Shift shift,
+ unsigned shift_amount) {
+ switch (shift) {
+ case LSL:
+ lsl(rd, rn, shift_amount);
+ break;
+ case LSR:
+ lsr(rd, rn, shift_amount);
+ break;
+ case ASR:
+ asr(rd, rn, shift_amount);
+ break;
+ case ROR:
+ ror(rd, rn, shift_amount);
+ break;
+ default:
+ VIXL_UNREACHABLE();
+ }
+}
+
+
+void Assembler::EmitExtendShift(const Register& rd,
+ const Register& rn,
+ Extend extend,
+ unsigned left_shift) {
+ VIXL_ASSERT(rd.size() >= rn.size());
+ unsigned reg_size = rd.size();
+ // Use the correct size of register.
+ Register rn_ = Register(rn.code(), rd.size());
+ // Bits extracted are high_bit:0.
+ unsigned high_bit = (8 << (extend & 0x3)) - 1;
+ // Number of bits left in the result that are not introduced by the shift.
+ unsigned non_shift_bits = (reg_size - left_shift) & (reg_size - 1);
+
+ if ((non_shift_bits > high_bit) || (non_shift_bits == 0)) {
+ switch (extend) {
+ case UXTB:
+ case UXTH:
+ case UXTW: ubfm(rd, rn_, non_shift_bits, high_bit); break;
+ case SXTB:
+ case SXTH:
+ case SXTW: sbfm(rd, rn_, non_shift_bits, high_bit); break;
+ case UXTX:
+ case SXTX: {
+ VIXL_ASSERT(rn.size() == kXRegSize);
+ // Nothing to extend. Just shift.
+ lsl(rd, rn_, left_shift);
+ break;
+ }
+ default: VIXL_UNREACHABLE();
+ }
+ } else {
+ // No need to extend as the extended bits would be shifted away.
+ lsl(rd, rn_, left_shift);
+ }
+}
+
+
+void Assembler::DataProcExtendedRegister(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ Instr op) {
+ Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
+ Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) |
+ ExtendMode(operand.extend()) | ImmExtendShift(operand.shift_amount()) |
+ dest_reg | RnSP(rn));
+}
+
+
+Instr Assembler::LoadStoreMemOperand(const MemOperand& addr,
+ unsigned access_size,
+ LoadStoreScalingOption option) {
+ Instr base = RnSP(addr.base());
+ int64_t offset = addr.offset();
+
+ if (addr.IsImmediateOffset()) {
+ bool prefer_unscaled = (option == PreferUnscaledOffset) ||
+ (option == RequireUnscaledOffset);
+ if (prefer_unscaled && IsImmLSUnscaled(offset)) {
+ // Use the unscaled addressing mode.
+ return base | LoadStoreUnscaledOffsetFixed |
+ ImmLS(static_cast<int>(offset));
+ }
+
+ if ((option != RequireUnscaledOffset) &&
+ IsImmLSScaled(offset, access_size)) {
+ // Use the scaled addressing mode.
+ return base | LoadStoreUnsignedOffsetFixed |
+ ImmLSUnsigned(static_cast<int>(offset) >> access_size);
+ }
+
+ if ((option != RequireScaledOffset) && IsImmLSUnscaled(offset)) {
+ // Use the unscaled addressing mode.
+ return base | LoadStoreUnscaledOffsetFixed |
+ ImmLS(static_cast<int>(offset));
+ }
+ }
+
+ // All remaining addressing modes are register-offset, pre-indexed or
+ // post-indexed modes.
+ VIXL_ASSERT((option != RequireUnscaledOffset) &&
+ (option != RequireScaledOffset));
+
+ if (addr.IsRegisterOffset()) {
+ Extend ext = addr.extend();
+ Shift shift = addr.shift();
+ unsigned shift_amount = addr.shift_amount();
+
+ // LSL is encoded in the option field as UXTX.
+ if (shift == LSL) {
+ ext = UXTX;
+ }
+
+ // Shifts are encoded in one bit, indicating a left shift by the memory
+ // access size.
+ VIXL_ASSERT((shift_amount == 0) || (shift_amount == access_size));
+ return base | LoadStoreRegisterOffsetFixed | Rm(addr.regoffset()) |
+ ExtendMode(ext) | ImmShiftLS((shift_amount > 0) ? 1 : 0);
+ }
+
+ if (addr.IsPreIndex() && IsImmLSUnscaled(offset)) {
+ return base | LoadStorePreIndexFixed | ImmLS(static_cast<int>(offset));
+ }
+
+ if (addr.IsPostIndex() && IsImmLSUnscaled(offset)) {
+ return base | LoadStorePostIndexFixed | ImmLS(static_cast<int>(offset));
+ }
+
+ // If this point is reached, the MemOperand (addr) cannot be encoded.
+ VIXL_UNREACHABLE();
+ return 0;
+}
+
+
+void Assembler::LoadStore(const CPURegister& rt,
+ const MemOperand& addr,
+ LoadStoreOp op,
+ LoadStoreScalingOption option) {
+ Emit(op | Rt(rt) | LoadStoreMemOperand(addr, CalcLSDataSize(op), option));
+}
+
+
+void Assembler::Prefetch(PrefetchOperation op,
+ const MemOperand& addr,
+ LoadStoreScalingOption option) {
+ VIXL_ASSERT(addr.IsRegisterOffset() || addr.IsImmediateOffset());
+
+ Instr prfop = ImmPrefetchOperation(op);
+ Emit(PRFM | prfop | LoadStoreMemOperand(addr, kXRegSizeInBytesLog2, option));
+}
+
+
+bool Assembler::IsImmAddSub(int64_t immediate) {
+ return IsUint12(immediate) ||
+ (IsUint12(immediate >> 12) && ((immediate & 0xfff) == 0));
+}
+
+
+bool Assembler::IsImmConditionalCompare(int64_t immediate) {
+ return IsUint5(immediate);
+}
+
+
+bool Assembler::IsImmFP32(float imm) {
+ // Valid values will have the form:
+ // aBbb.bbbc.defg.h000.0000.0000.0000.0000
+ uint32_t bits = FloatToRawbits(imm);
+ // bits[19..0] are cleared.
+ if ((bits & 0x7ffff) != 0) {
+ return false;
+ }
+
+ // bits[29..25] are all set or all cleared.
+ uint32_t b_pattern = (bits >> 16) & 0x3e00;
+ if (b_pattern != 0 && b_pattern != 0x3e00) {
+ return false;
+ }
+
+ // bit[30] and bit[29] are opposite.
+ if (((bits ^ (bits << 1)) & 0x40000000) == 0) {
+ return false;
+ }
+
+ return true;
+}
+
+
+bool Assembler::IsImmFP64(double imm) {
+ // Valid values will have the form:
+ // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
+ // 0000.0000.0000.0000.0000.0000.0000.0000
+ uint64_t bits = DoubleToRawbits(imm);
+ // bits[47..0] are cleared.
+ if ((bits & 0x0000ffffffffffff) != 0) {
+ return false;
+ }
+
+ // bits[61..54] are all set or all cleared.
+ uint32_t b_pattern = (bits >> 48) & 0x3fc0;
+ if ((b_pattern != 0) && (b_pattern != 0x3fc0)) {
+ return false;
+ }
+
+ // bit[62] and bit[61] are opposite.
+ if (((bits ^ (bits << 1)) & (UINT64_C(1) << 62)) == 0) {
+ return false;
+ }
+
+ return true;
+}
+
+
+bool Assembler::IsImmLSPair(int64_t offset, unsigned access_size) {
+ VIXL_ASSERT(access_size <= kQRegSizeInBytesLog2);
+ bool offset_is_size_multiple =
+ (((offset >> access_size) << access_size) == offset);
+ return offset_is_size_multiple && IsInt7(offset >> access_size);
+}
+
+
+bool Assembler::IsImmLSScaled(int64_t offset, unsigned access_size) {
+ VIXL_ASSERT(access_size <= kQRegSizeInBytesLog2);
+ bool offset_is_size_multiple =
+ (((offset >> access_size) << access_size) == offset);
+ return offset_is_size_multiple && IsUint12(offset >> access_size);
+}
+
+
+bool Assembler::IsImmLSUnscaled(int64_t offset) {
+ return IsInt9(offset);
+}
+
+
+// The movn instruction can generate immediates containing an arbitrary 16-bit
+// value, with remaining bits set, eg. 0xffff1234, 0xffff1234ffffffff.
+bool Assembler::IsImmMovn(uint64_t imm, unsigned reg_size) {
+ return IsImmMovz(~imm, reg_size);
+}
+
+
+// The movz instruction can generate immediates containing an arbitrary 16-bit
+// value, with remaining bits clear, eg. 0x00001234, 0x0000123400000000.
+bool Assembler::IsImmMovz(uint64_t imm, unsigned reg_size) {
+ VIXL_ASSERT((reg_size == kXRegSize) || (reg_size == kWRegSize));
+ return CountClearHalfWords(imm, reg_size) >= ((reg_size / 16) - 1);
+}
+
+
+// Test if a given value can be encoded in the immediate field of a logical
+// instruction.
+// If it can be encoded, the function returns true, and values pointed to by n,
+// imm_s and imm_r are updated with immediates encoded in the format required
+// by the corresponding fields in the logical instruction.
+// If it can not be encoded, the function returns false, and the values pointed
+// to by n, imm_s and imm_r are undefined.
+bool Assembler::IsImmLogical(uint64_t value,
+ unsigned width,
+ unsigned* n,
+ unsigned* imm_s,
+ unsigned* imm_r) {
+ VIXL_ASSERT((width == kWRegSize) || (width == kXRegSize));
+
+ bool negate = false;
+
+ // Logical immediates are encoded using parameters n, imm_s and imm_r using
+ // the following table:
+ //
+ // N imms immr size S R
+ // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
+ // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
+ // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
+ // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
+ // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
+ // 0 11110s xxxxxr 2 UInt(s) UInt(r)
+ // (s bits must not be all set)
+ //
+ // A pattern is constructed of size bits, where the least significant S+1 bits
+ // are set. The pattern is rotated right by R, and repeated across a 32 or
+ // 64-bit value, depending on destination register width.
+ //
+ // Put another way: the basic format of a logical immediate is a single
+ // contiguous stretch of 1 bits, repeated across the whole word at intervals
+ // given by a power of 2. To identify them quickly, we first locate the
+ // lowest stretch of 1 bits, then the next 1 bit above that; that combination
+ // is different for every logical immediate, so it gives us all the
+ // information we need to identify the only logical immediate that our input
+ // could be, and then we simply check if that's the value we actually have.
+ //
+ // (The rotation parameter does give the possibility of the stretch of 1 bits
+ // going 'round the end' of the word. To deal with that, we observe that in
+ // any situation where that happens the bitwise NOT of the value is also a
+ // valid logical immediate. So we simply invert the input whenever its low bit
+ // is set, and then we know that the rotated case can't arise.)
+
+ if (value & 1) {
+ // If the low bit is 1, negate the value, and set a flag to remember that we
+ // did (so that we can adjust the return values appropriately).
+ negate = true;
+ value = ~value;
+ }
+
+ if (width == kWRegSize) {
+ // To handle 32-bit logical immediates, the very easiest thing is to repeat
+ // the input value twice to make a 64-bit word. The correct encoding of that
+ // as a logical immediate will also be the correct encoding of the 32-bit
+ // value.
+
+ // Avoid making the assumption that the most-significant 32 bits are zero by
+ // shifting the value left and duplicating it.
+ value <<= kWRegSize;
+ value |= value >> kWRegSize;
+ }
+
+ // The basic analysis idea: imagine our input word looks like this.
+ //
+ // 0011111000111110001111100011111000111110001111100011111000111110
+ // c b a
+ // |<--d-->|
+ //
+ // We find the lowest set bit (as an actual power-of-2 value, not its index)
+ // and call it a. Then we add a to our original number, which wipes out the
+ // bottommost stretch of set bits and replaces it with a 1 carried into the
+ // next zero bit. Then we look for the new lowest set bit, which is in
+ // position b, and subtract it, so now our number is just like the original
+ // but with the lowest stretch of set bits completely gone. Now we find the
+ // lowest set bit again, which is position c in the diagram above. Then we'll
+ // measure the distance d between bit positions a and c (using CLZ), and that
+ // tells us that the only valid logical immediate that could possibly be equal
+ // to this number is the one in which a stretch of bits running from a to just
+ // below b is replicated every d bits.
+ uint64_t a = LowestSetBit(value);
+ uint64_t value_plus_a = value + a;
+ uint64_t b = LowestSetBit(value_plus_a);
+ uint64_t value_plus_a_minus_b = value_plus_a - b;
+ uint64_t c = LowestSetBit(value_plus_a_minus_b);
+
+ int d, clz_a, out_n;
+ uint64_t mask;
+
+ if (c != 0) {
+ // The general case, in which there is more than one stretch of set bits.
+ // Compute the repeat distance d, and set up a bitmask covering the basic
+ // unit of repetition (i.e. a word with the bottom d bits set). Also, in all
+ // of these cases the N bit of the output will be zero.
+ clz_a = CountLeadingZeros(a, kXRegSize);
+ int clz_c = CountLeadingZeros(c, kXRegSize);
+ d = clz_a - clz_c;
+ mask = ((UINT64_C(1) << d) - 1);
+ out_n = 0;
+ } else {
+ // Handle degenerate cases.
+ //
+ // If any of those 'find lowest set bit' operations didn't find a set bit at
+ // all, then the word will have been zero thereafter, so in particular the
+ // last lowest_set_bit operation will have returned zero. So we can test for
+ // all the special case conditions in one go by seeing if c is zero.
+ if (a == 0) {
+ // The input was zero (or all 1 bits, which will come to here too after we
+ // inverted it at the start of the function), for which we just return
+ // false.
+ return false;
+ } else {
+ // Otherwise, if c was zero but a was not, then there's just one stretch
+ // of set bits in our word, meaning that we have the trivial case of
+ // d == 64 and only one 'repetition'. Set up all the same variables as in
+ // the general case above, and set the N bit in the output.
+ clz_a = CountLeadingZeros(a, kXRegSize);
+ d = 64;
+ mask = ~UINT64_C(0);
+ out_n = 1;
+ }
+ }
+
+ // If the repeat period d is not a power of two, it can't be encoded.
+ if (!IsPowerOf2(d)) {
+ return false;
+ }
+
+ if (((b - a) & ~mask) != 0) {
+ // If the bit stretch (b - a) does not fit within the mask derived from the
+ // repeat period, then fail.
+ return false;
+ }
+
+ // The only possible option is b - a repeated every d bits. Now we're going to
+ // actually construct the valid logical immediate derived from that
+ // specification, and see if it equals our original input.
+ //
+ // To repeat a value every d bits, we multiply it by a number of the form
+ // (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can
+ // be derived using a table lookup on CLZ(d).
+ static const uint64_t multipliers[] = {
+ 0x0000000000000001UL,
+ 0x0000000100000001UL,
+ 0x0001000100010001UL,
+ 0x0101010101010101UL,
+ 0x1111111111111111UL,
+ 0x5555555555555555UL,
+ };
+ uint64_t multiplier = multipliers[CountLeadingZeros(d, kXRegSize) - 57];
+ uint64_t candidate = (b - a) * multiplier;
+
+ if (value != candidate) {
+ // The candidate pattern doesn't match our input value, so fail.
+ return false;
+ }
+
+ // We have a match! This is a valid logical immediate, so now we have to
+ // construct the bits and pieces of the instruction encoding that generates
+ // it.
+
+ // Count the set bits in our basic stretch. The special case of clz(0) == -1
+ // makes the answer come out right for stretches that reach the very top of
+ // the word (e.g. numbers like 0xffffc00000000000).
+ int clz_b = (b == 0) ? -1 : CountLeadingZeros(b, kXRegSize);
+ int s = clz_a - clz_b;
+
+ // Decide how many bits to rotate right by, to put the low bit of that basic
+ // stretch in position a.
+ int r;
+ if (negate) {
+ // If we inverted the input right at the start of this function, here's
+ // where we compensate: the number of set bits becomes the number of clear
+ // bits, and the rotation count is based on position b rather than position
+ // a (since b is the location of the 'lowest' 1 bit after inversion).
+ s = d - s;
+ r = (clz_b + 1) & (d - 1);
+ } else {
+ r = (clz_a + 1) & (d - 1);
+ }
+
+ // Now we're done, except for having to encode the S output in such a way that
+ // it gives both the number of set bits and the length of the repeated
+ // segment. The s field is encoded like this:
+ //
+ // imms size S
+ // ssssss 64 UInt(ssssss)
+ // 0sssss 32 UInt(sssss)
+ // 10ssss 16 UInt(ssss)
+ // 110sss 8 UInt(sss)
+ // 1110ss 4 UInt(ss)
+ // 11110s 2 UInt(s)
+ //
+ // So we 'or' (-d << 1) with our computed s to form imms.
+ if ((n != NULL) || (imm_s != NULL) || (imm_r != NULL)) {
+ *n = out_n;
+ *imm_s = ((-d << 1) | (s - 1)) & 0x3f;
+ *imm_r = r;
+ }
+
+ return true;
+}
+
+
+LoadStoreOp Assembler::LoadOpFor(const CPURegister& rt) {
+ VIXL_ASSERT(rt.IsValid());
+ if (rt.IsRegister()) {
+ return rt.Is64Bits() ? LDR_x : LDR_w;
+ } else {
+ VIXL_ASSERT(rt.IsVRegister());
+ switch (rt.SizeInBits()) {
+ case kBRegSize: return LDR_b;
+ case kHRegSize: return LDR_h;
+ case kSRegSize: return LDR_s;
+ case kDRegSize: return LDR_d;
+ default:
+ VIXL_ASSERT(rt.IsQ());
+ return LDR_q;
+ }
+ }
+}
+
+
+LoadStoreOp Assembler::StoreOpFor(const CPURegister& rt) {
+ VIXL_ASSERT(rt.IsValid());
+ if (rt.IsRegister()) {
+ return rt.Is64Bits() ? STR_x : STR_w;
+ } else {
+ VIXL_ASSERT(rt.IsVRegister());
+ switch (rt.SizeInBits()) {
+ case kBRegSize: return STR_b;
+ case kHRegSize: return STR_h;
+ case kSRegSize: return STR_s;
+ case kDRegSize: return STR_d;
+ default:
+ VIXL_ASSERT(rt.IsQ());
+ return STR_q;
+ }
+ }
+}
+
+
+LoadStorePairOp Assembler::StorePairOpFor(const CPURegister& rt,
+ const CPURegister& rt2) {
+ VIXL_ASSERT(AreSameSizeAndType(rt, rt2));
+ USE(rt2);
+ if (rt.IsRegister()) {
+ return rt.Is64Bits() ? STP_x : STP_w;
+ } else {
+ VIXL_ASSERT(rt.IsVRegister());
+ switch (rt.SizeInBytes()) {
+ case kSRegSizeInBytes: return STP_s;
+ case kDRegSizeInBytes: return STP_d;
+ default:
+ VIXL_ASSERT(rt.IsQ());
+ return STP_q;
+ }
+ }
+}
+
+
+LoadStorePairOp Assembler::LoadPairOpFor(const CPURegister& rt,
+ const CPURegister& rt2) {
+ VIXL_ASSERT((STP_w | LoadStorePairLBit) == LDP_w);
+ return static_cast<LoadStorePairOp>(StorePairOpFor(rt, rt2) |
+ LoadStorePairLBit);
+}
+
+
+LoadStorePairNonTemporalOp Assembler::StorePairNonTemporalOpFor(
+ const CPURegister& rt, const CPURegister& rt2) {
+ VIXL_ASSERT(AreSameSizeAndType(rt, rt2));
+ USE(rt2);
+ if (rt.IsRegister()) {
+ return rt.Is64Bits() ? STNP_x : STNP_w;
+ } else {
+ VIXL_ASSERT(rt.IsVRegister());
+ switch (rt.SizeInBytes()) {
+ case kSRegSizeInBytes: return STNP_s;
+ case kDRegSizeInBytes: return STNP_d;
+ default:
+ VIXL_ASSERT(rt.IsQ());
+ return STNP_q;
+ }
+ }
+}
+
+
+LoadStorePairNonTemporalOp Assembler::LoadPairNonTemporalOpFor(
+ const CPURegister& rt, const CPURegister& rt2) {
+ VIXL_ASSERT((STNP_w | LoadStorePairNonTemporalLBit) == LDNP_w);
+ return static_cast<LoadStorePairNonTemporalOp>(
+ StorePairNonTemporalOpFor(rt, rt2) | LoadStorePairNonTemporalLBit);
+}
+
+
+LoadLiteralOp Assembler::LoadLiteralOpFor(const CPURegister& rt) {
+ if (rt.IsRegister()) {
+ return rt.IsX() ? LDR_x_lit : LDR_w_lit;
+ } else {
+ VIXL_ASSERT(rt.IsVRegister());
+ switch (rt.SizeInBytes()) {
+ case kSRegSizeInBytes: return LDR_s_lit;
+ case kDRegSizeInBytes: return LDR_d_lit;
+ default:
+ VIXL_ASSERT(rt.IsQ());
+ return LDR_q_lit;
+ }
+ }
+}
+
+
+bool Assembler::CPUHas(const CPURegister& rt) const {
+ // Core registers are available without any particular CPU features.
+ if (rt.IsRegister()) return true;
+ VIXL_ASSERT(rt.IsVRegister());
+ // The architecture does not allow FP and NEON to be implemented separately,
+ // but we can crudely categorise them based on register size, since FP only
+ // uses D, S and (occasionally) H registers.
+ if (rt.IsH() || rt.IsS() || rt.IsD()) {
+ return CPUHas(CPUFeatures::kFP) || CPUHas(CPUFeatures::kNEON);
+ }
+ VIXL_ASSERT(rt.IsB() || rt.IsQ());
+ return CPUHas(CPUFeatures::kNEON);
+}
+
+
+bool Assembler::CPUHas(const CPURegister& rt, const CPURegister& rt2) const {
+ // This is currently only used for loads and stores, where rt and rt2 must
+ // have the same size and type. We could extend this to cover other cases if
+ // necessary, but for now we can avoid checking both registers.
+ VIXL_ASSERT(AreSameSizeAndType(rt, rt2));
+ USE(rt2);
+ return CPUHas(rt);
+}
+
+
+bool Assembler::CPUHas(SystemRegister sysreg) const {
+ switch (sysreg) {
+ case RNDR:
+ case RNDRRS:
+ return CPUHas(CPUFeatures::kRNG);
+ case FPCR:
+ case NZCV:
+ break;
+ }
+ return true;
+}
+
+
+bool AreAliased(const CPURegister& reg1, const CPURegister& reg2,
+ const CPURegister& reg3, const CPURegister& reg4,
+ const CPURegister& reg5, const CPURegister& reg6,
+ const CPURegister& reg7, const CPURegister& reg8) {
+ int number_of_valid_regs = 0;
+ int number_of_valid_fpregs = 0;
+
+ RegList unique_regs = 0;
+ RegList unique_fpregs = 0;
+
+ const CPURegister regs[] = {reg1, reg2, reg3, reg4, reg5, reg6, reg7, reg8};
+
+ for (unsigned i = 0; i < sizeof(regs) / sizeof(regs[0]); i++) {
+ if (regs[i].IsRegister()) {
+ number_of_valid_regs++;
+ unique_regs |= regs[i].Bit();
+ } else if (regs[i].IsVRegister()) {
+ number_of_valid_fpregs++;
+ unique_fpregs |= regs[i].Bit();
+ } else {
+ VIXL_ASSERT(!regs[i].IsValid());
+ }
+ }
+
+ int number_of_unique_regs = CountSetBits(unique_regs);
+ int number_of_unique_fpregs = CountSetBits(unique_fpregs);
+
+ VIXL_ASSERT(number_of_valid_regs >= number_of_unique_regs);
+ VIXL_ASSERT(number_of_valid_fpregs >= number_of_unique_fpregs);
+
+ return (number_of_valid_regs != number_of_unique_regs) ||
+ (number_of_valid_fpregs != number_of_unique_fpregs);
+}
+
+
+bool AreSameSizeAndType(const CPURegister& reg1, const CPURegister& reg2,
+ const CPURegister& reg3, const CPURegister& reg4,
+ const CPURegister& reg5, const CPURegister& reg6,
+ const CPURegister& reg7, const CPURegister& reg8) {
+ VIXL_ASSERT(reg1.IsValid());
+ bool match = true;
+ match &= !reg2.IsValid() || reg2.IsSameSizeAndType(reg1);
+ match &= !reg3.IsValid() || reg3.IsSameSizeAndType(reg1);
+ match &= !reg4.IsValid() || reg4.IsSameSizeAndType(reg1);
+ match &= !reg5.IsValid() || reg5.IsSameSizeAndType(reg1);
+ match &= !reg6.IsValid() || reg6.IsSameSizeAndType(reg1);
+ match &= !reg7.IsValid() || reg7.IsSameSizeAndType(reg1);
+ match &= !reg8.IsValid() || reg8.IsSameSizeAndType(reg1);
+ return match;
+}
+
+bool AreEven(const CPURegister& reg1,
+ const CPURegister& reg2,
+ const CPURegister& reg3,
+ const CPURegister& reg4,
+ const CPURegister& reg5,
+ const CPURegister& reg6,
+ const CPURegister& reg7,
+ const CPURegister& reg8) {
+ VIXL_ASSERT(reg1.IsValid());
+ bool even = (reg1.code() % 2) == 0;
+ even &= !reg2.IsValid() || ((reg2.code() % 2) == 0);
+ even &= !reg3.IsValid() || ((reg3.code() % 2) == 0);
+ even &= !reg4.IsValid() || ((reg4.code() % 2) == 0);
+ even &= !reg5.IsValid() || ((reg5.code() % 2) == 0);
+ even &= !reg6.IsValid() || ((reg6.code() % 2) == 0);
+ even &= !reg7.IsValid() || ((reg7.code() % 2) == 0);
+ even &= !reg8.IsValid() || ((reg8.code() % 2) == 0);
+ return even;
+}
+
+bool AreConsecutive(const CPURegister& reg1,
+ const CPURegister& reg2,
+ const CPURegister& reg3,
+ const CPURegister& reg4) {
+ VIXL_ASSERT(reg1.IsValid());
+
+ if (!reg2.IsValid()) {
+ return true;
+ } else if (reg2.code() != ((reg1.code() + 1) % kNumberOfRegisters)) {
+ return false;
+ }
+
+ if (!reg3.IsValid()) {
+ return true;
+ } else if (reg3.code() != ((reg2.code() + 1) % kNumberOfRegisters)) {
+ return false;
+ }
+
+ if (!reg4.IsValid()) {
+ return true;
+ } else if (reg4.code() != ((reg3.code() + 1) % kNumberOfRegisters)) {
+ return false;
+ }
+
+ return true;
+}
+
+bool AreSameFormat(const VRegister& reg1, const VRegister& reg2,
+ const VRegister& reg3, const VRegister& reg4) {
+ VIXL_ASSERT(reg1.IsValid());
+ bool match = true;
+ match &= !reg2.IsValid() || reg2.IsSameFormat(reg1);
+ match &= !reg3.IsValid() || reg3.IsSameFormat(reg1);
+ match &= !reg4.IsValid() || reg4.IsSameFormat(reg1);
+ return match;
+}
+
+
+bool AreConsecutive(const VRegister& reg1, const VRegister& reg2,
+ const VRegister& reg3, const VRegister& reg4) {
+ VIXL_ASSERT(reg1.IsValid());
+ bool match = true;
+ match &= !reg2.IsValid() ||
+ (reg2.code() == ((reg1.code() + 1) % kNumberOfVRegisters));
+ match &= !reg3.IsValid() ||
+ (reg3.code() == ((reg1.code() + 2) % kNumberOfVRegisters));
+ match &= !reg4.IsValid() ||
+ (reg4.code() == ((reg1.code() + 3) % kNumberOfVRegisters));
+ return match;
+}
+} // namespace vixl